当前位置: 仪器信息网 > 行业主题 > >

芹菜素鼠李糖龙胆糖

仪器信息网芹菜素鼠李糖龙胆糖专题为您提供2024年最新芹菜素鼠李糖龙胆糖价格报价、厂家品牌的相关信息, 包括芹菜素鼠李糖龙胆糖参数、型号等,不管是国产,还是进口品牌的芹菜素鼠李糖龙胆糖您都可以在这里找到。 除此之外,仪器信息网还免费为您整合芹菜素鼠李糖龙胆糖相关的耗材配件、试剂标物,还有芹菜素鼠李糖龙胆糖相关的最新资讯、资料,以及芹菜素鼠李糖龙胆糖相关的解决方案。

芹菜素鼠李糖龙胆糖相关的资讯

  • 广东省农业标准化协会立项《芹菜中代森锌残留量的测定 顶空-气相色谱法》团体标准
    各相关单位:根据《广东省农业标准化协会团体标准管理办法》的相关要求,2023年7月6日-7月13日,广东省农业标准化协会对《芹菜中代森锌残留量的测定 顶空-气相色谱法》团体标准进行了立项审查,经协会技术专家认真研究与审核,上述所申报的团体标准符合立项条件,现批准立项。请制标单位严格按照相关要求抓紧组织实施,严把标准质量关,切实提高标准编制的质量和水平,增强标准的适用性和有效性。同时欢迎与立项标准有关的高校、科研机构、相关企业、使用单位等加入该标准的起草编制工作。有意参与标准起草工作的请与协会秘书处联系。特此公告。联系人:钱波 电 话:020-85161829 电子邮箱:gdnybzh@163.com广东省农业标准化协会2023年7月13日粤农标协字〔2023〕26号广东省农业标准化协会关于《芹菜中代森锌残留量的测定 顶空-气相色谱法》团体标准立项的公告.pdf
  • 【瑞士步琦】喷雾干燥制备鼠李糖乳杆菌微胶囊研究
    喷雾干燥技术微囊化鼠李糖乳杆菌ATCC 7469益生菌是一种活的微生物,当摄入足够的量时会对健康有益,只有在生存能力(107-1010 CUF m/L)得到保护的情况下才能发挥其作用。益生菌通常是乳杆菌和双岐杆菌,它们常与胃肠道有关;它们通常以冻干培养物的形式供应,或者被雾化并直接添加到食物中。益生菌功能食品在市场上需求量很大,酸奶和发酵乳制品通常被用作这类生物活性微生物的载体;然而,人们对在其他类型的非乳制品基质中掺入益生菌菌株越来越感兴趣,尤其是对于患有乳糖不耐受症、对酪蛋白过敏或与乳制品有关的其它问题的消费者。一些研究报告了微胶囊益生菌的应用。例如,将益生菌菌株掺入奶酪、巧克力涂层和巧克力中,以及掺入果汁、蛋黄酱、黄油、肉类和烘焙产品等非乳制品中。益生菌菌株对胃肠道健康很重要,因为它们可以预防肠道炎症,为上皮细胞提供保护,并调节抗体。它们可以产生细胞因子或趋化因子,改善乳糖不耐受,增加对结直肠癌的保护,抑制幽门螺杆菌活性,并用于治疗食物过敏和预防急性腹泻。然而,这些微生物有不幸的缺陷,特别是在菌株存活方面。喷雾干燥是微胶囊化最广泛使用的方法之一,因为其成本低,在最佳干燥条件下具有高存活率,并且在配方中加入了保护剂。近年来,乳清蛋白作为益生菌保护剂的使用获得了越来越多的兴趣,因为这些蛋白是提高益生菌活性的天然载体,并且由于结构和理化特征,可以作为胃肠道中的递送系统。蛋白质可以在干燥过程中增加益生菌的存活率,因为它们能够形成降低热应力的保护膜。糖的添加也会影响干燥的益生菌制剂的存活。研究人员肯定了糖(如肌醇、山梨醇、果糖、乳糖、葡萄糖和海藻糖)对脱水细菌细胞的保护作用。研究发现,海藻糖等糖是一种能够通过氢键与蛋白质分子相互作用的二糖;它可以在脱水和再水化过程中替代蛋白质周围的水分子,形成一种玻璃状基质,稳定生物大分子。科学家研究了使用奶酪乳清与淀粉、阿拉伯胶、麦芽糖糊精和乳清蛋白浓缩物联合干燥鼠李糖乳杆菌 64 的载体剂选择。另一方面,干燥温度是影响存活率的因素。例如,喷雾干燥的植物乳杆菌 WCFS1 再低干燥温度下表现出较高的存活率。在此背景下,本研究以 WPC、麦芽糊精和海藻糖为原料,采用喷雾干燥的方法对鼠李糖乳杆菌 ATCC 7469 进行微囊化,并评估微囊化对细胞活力和干粉性能的影响。以喷雾干燥条件(包括进口温度、空气流量和进料泵)为自变量,益生菌存活率、水分含量、水分活性和有效产量为因变量。采用响应面法对喷雾干燥包裹的鼠李糖乳杆菌的存活率进行了优化,并对粉末的稳定性进行了评估。1样品制备按最佳稳定性配方乳清浓缩蛋白:麦芽糊精:海藻糖(75:10:15)的比例采用超滤的方法制备乳制品悬浮液。将冻干的鼠李糖乳杆菌 ATCC 7469 菌株悬浮于 2ml 培养基中,在 MRS 肉汤(蛋白胨:10.0g,牛肉浸粉:10.0g,酵母浸粉:5.0g,葡萄糖:20.0g,吐温80:1.0g,磷酸氢二钾:2.0g,醋酸钠:5.0g,柠檬酸铵:2.0g,硫酸镁:0.1g,硫酸锰:0.05g,pH6.2±0.2,25℃)中重新激活制备细菌悬浮液。2实验过程在磁力搅拌下将鼠李糖乳杆菌 ATCC 7469 菌株悬浮液添加到每个乳悬浮液中,在微囊化过程期间使所述分散液保持在恒定的搅拌状态。喷雾干燥仪选用瑞士步琦 B-290,通过改变进口温度(120℃-180℃)、干燥空气流量(70%-90%,即:28-35m3/h)和进料量(10%-55%,即 3-17mL/min)来进行工艺摸索。▲S-300工艺探索采用响应面法和二次复合中心设计对益生菌微囊化进行了优化,其自变量有进口温度、空气流速和进料流量。在最优理论条件下进行了三次实验验证。图1 考察了菌株存活率的响应面变化。由图可知存活率与出口温度呈反比,低温时存活率在 69%、高温时存活率在 23%。其他科学家在使用含益生元的脱脂乳制备鼠李糖乳杆菌 GG(ATCC 53,103),70℃ 时的存活率为 76%。也跟我们的研究结果相吻合。图2 考察了水分含量的响应面变化。从图可得到进口温度与水分含量之间呈反比关系,当进口温度与进料量较高时,粉末的水分含量较低,结合存活率考虑,水分含量在 3.0%-5.8% 之间,与其他报道的数值相接近。图3 考察了水活度的响应面变化。在较高的进口温度下,进料量和气体流量得到了较低的水活度值,因素与结果之间呈反比关系。其他使用麦芽糊精、乳清蛋白浓缩物和葡萄糖的相关研究中,水活度的值与本研究中活性最高的粉末报告结果一致。3实验结果确定益生菌的包封中壁材的最佳比例对于提高微生物对抗整个胃肠道条件的稳定性很重要。在干燥过程中指定最佳条件以最大限度地提高作为壁材的蛋白质-海藻糖-麦芽糊精混合物的保护能力并因此提高鼠李糖的存活值也是重要的。因此,使用响应面方法确定干燥过程的最佳条件。表2显示了鼠李糖乳杆菌微囊化的最佳操作参数,结果表明,理论模型可以很好地近似实验值(差异<10%)。得到的最佳喷雾干燥条件是进口温度、空气流量和进料泵流量分别为169℃、33m3/h和16ml/min,存活率为70%,吸气率为84%,出口温度为52℃,总体满意度为0.96。物理性质评价如图4所示,得到的粉末水活性动力学显示了较高的吸水能力,这可能是海藻糖作为低分子量碳水化合物,表现出的分子运动和扩散效应,与用于包封基质的典型吸水行为一致。吸湿性随着储存时间的延长有增加的趋势,直到达到某种程度的平衡。因此加入了 WPC 来降低吸湿性,因为它的表面活性和形成具有较高 Tg 膜的能力。粒径和形态结果如图5显示。(a)在最佳工艺参数上制备的粉体,其微胶囊紧凑,类球形形状,具有不同的大小和不规则的表面与压痕,外表面显示无裂缝或破坏的墙壁,这是确保更高的保护和更低的气体渗透性的基础。4结论结果表明,蛋白质-海藻糖-麦芽糊精混合物是包裹鼠李糖乳杆菌的良好壁材,在干燥过程中表现出重要的热保护作用,并提高了其存活率;通过响应面方法优化的喷雾干燥工艺条件生产的微胶囊具有可接受的理化性质——水分、水活性、吸湿性和粒径等,为益生菌的微囊化提供了思路。5文献来源Microencapsulation of Lactobacillus rhamnosus ATCC 7469 by spray drying using maltodextrin, whey protein concentrate and trehalose.
  • 同仁堂旗下药品屡曝含毒 中药现代化受阻
    继炮轰胶原蛋白之后(《每日经济新闻(微博)》5月23日曾作报道),北京积水潭医院烧伤科主治医师再将矛头指向了连日来饱受争议的同仁堂。   这位微博名为 “烧伤超人阿宝”的主治医师在微博中称,同仁堂名下有近150款中成药含有国外禁用成分。尤为引人关注的是,大量的儿科药物里面含有朱砂,其中包括小儿惊风散和小儿至宝丸。小儿至宝丸是同仁堂名下被曝汞超标的产品。这一信息已经多家媒体证实。   昨日 (5月23日),《每日经济新闻》记者就此向同仁堂有关负责人求证时,上述人士表示,同仁堂的药品都是符合国家药典的。同仁堂是否对含有可引起中毒成分的药品进行过相关临床试验?该负责人和同仁堂品牌部均未作出回应。   2002年,多部门出台了《中药现代化发展纲要(2002~2010)》,提出要在2010年争取2~3个中药品种进入国际医药主流市场。然而,由于在药理毒理的明确上存在缺失,中成药反而在国外频频受挫。   两成药品被曝含毒原料   朱砂是传统的中药材,主要成分是硫化汞。在现行2010年版《中国药典》中,朱砂具有清心镇惊、安神、明目、解毒的功效。但是,目前朱砂已经在大部分国家和地区被禁用,而在国内,关于朱砂是否应该退出中药市场这一话题也一直存有争论。   据“烧伤超人阿宝”统计,同仁堂在国家食药监总局注册的732条不重复药方记录中,含朱砂(硫化汞)的86条、含轻粉(氯化亚汞)的8条、含红粉(氧化汞+硝基汞)的4条、含雄黄(硫化砷)的46条,各类铅剂(红丹、官粉、黑锡)6条。而以上成分在中国以外的大部分地区都被禁用。这150条药方,占到其注册总量的五分之一。   据河南媒体报道,同仁堂陷入此次风波后,郑州的牛黄千金散和小儿至宝丸已经停售。《海口晚报》报道称,小儿至宝丸涉嫌含毒已经导致家长恐慌。昨日,记者在走访北京清河附近的同仁堂时,也未见到牛黄千金散出售,但小儿至宝丸仍在售。   记者就有关问题向同仁堂有关负责人求证时,其负责人表示,同仁堂对此已经给出声明,其含有的朱砂符合国家药品标准。   同仁堂声明称,同仁堂中成药使用朱砂是在中医理论的指导下,与其他中药配伍使用,符合中医配伍理论,患者遵照医嘱按照药品使用说明书服用是安全有效的。   中成药国外屡遭拒   医药行业资深人士边晨光对《每日经济新闻》记者表示,中、西医理论体系不同,遭遇尴尬在所难免。也有业内人士表示,中医如果要和世界医学接轨,中国必须遵照现代医学的标准,不能一直停留在药物禁忌、不良反应等均不明确的阶段。   据悉,中药现代化早在上个世纪90年代就被提上日程,2002年,科技部、原国家计委、经贸委、原卫生部、原药品监管局、知识产权局等多部门出台《中药现代化发展纲要(2002~2010)》,提出要在2010年争取2~3个中药品种进入国际医药主流市场。   然而3年过去了,至今仍未见到中药品种进入国际医药主流市场,中成药在国际主流医药市场受阻的消息反而屡见报端。   资料显示,2004年,欧盟颁布《传统草药药品注册指令》,规定所有在欧盟销售的中成药,都必须在2011年4月30日前完成性新法规的注册,否则不予销售。消息发布后,国内中成药企业哀鸿一片。据中国医药保健品进出口商会统计,在2011年,中成药对欧盟出口量同比下降13.5%。   今年3月份,我国香港卫生署、澳门卫生局发文禁售5种云南白药制剂,因为发现其中含有未标示的乌头类生物碱。今年,4月份,英国卫生部门发文称,华润三九的正天丸服用后可引发严重的健康问题。   对此,华润三九、同仁堂、汉森制药等企业均以符合药典标准作为回应。而媒体询问是否针对这些成分的毒性进行过相关的临床试验时,并未得到相关的回复。   业内人士表示,药物作用机理不明,缺乏相应的临床研究是受阻的重要原因。而国内由于中成药在注册时标准比较宽松,很多药品的说明书中根本不列出这些内容,对不良反应也缺乏相应的临床研究。   中国保护消费者基金会打假工作委员会投诉举报办公室主任贾宁此前接受《每日经济新闻》记者采访时表示,进入《中国药典》并不一定就是安全的。“祛火良药”龙胆泻肝丸曾造成消费者肾伤害,其含有的“关木通”一直被列入《中国药典》,上世纪60年代就有伤害的案例,但直到2002年,国家药典委员会才批准用“木通”取代“关木通”。   中药现代化遇阻   2002年   多部门颁布《中药现代化发展纲要 (2002~2010)》,提出要在2010年争取2~3个中药品种进入国际医药主流市场。   2004年   欧盟颁布 《传统草药药品注册指令》,规定所有在欧盟销售的中成药都必须在2011年4月30日前完成新法规的注册,否则不准予销售。   2011年   我国中成药对欧盟出口量同比下降13.5%。   2013年3月   香港卫生署、澳门卫生局发文禁售5种云南白药制剂,因为发现其中含有未标示的乌头类生物碱。   2013年4月   英国卫生部门发文称,华润三九的正天丸服用后可引发严重的健康问题。
  • 美素力奶粉中惊现黑色小颗粒 厂方称是焦糖
    孩子吃的奶粉里那些黑色小颗粒到底是什么?这两天,杭州市民杨先生一家一直在为这个问题纠结着。   虽然厂家已经明确表示,这些黑色小颗粒是高温烘培产生的焦糖颗粒,绝对不会对孩子产生影响,但杨先生还是很不放心。于是,他向工商部门投诉了奶粉生产商。   奶粉中漂浮着黑色小颗粒   42岁的杨先生,中年得子,现在一家人都围着孩子转,唯恐有一点差池。今年1月,孩子出生后,杨先生一直给孩子吃美素力婴儿奶粉,之前并没发现什么问题。   3月17日早上,杨先生妻子和往常一样,给孩子冲了一瓶奶粉。因为当天刚好是在光线强烈的地方,她忽然看到了奶瓶中隐约有几个黑色的小点点在浮动。   这些黑点虽然不大,但明显不溶于水,这个发现,让一家人都乱了套,害怕这些黑点对孩子健康产生影响。   杨先生说,美素力奶粉产自荷兰,他们一家正是看中进口奶粉质量有保证才购买的。   当天晚上,他就给美素力公司的全国客服热线打了电话,但对方告诉他,黑色小颗粒是乳液高温烘培后形成的焦糖沉淀物,属于正常现象,不会对孩子的健康产生影响。   虽然对方说得板上钉钉,可杨先生一家却始终放心不下。杨先生觉得,国家有相关规定,奶粉里是不能出现不相关的杂质的,那么这些小颗粒是不是属于这个范围呢?   就算这些小颗粒确实无害,那又是不是应该在罐体上向消费者注明呢?   厂家解释黑色颗粒是焦糖   带着杨先生的这些疑问,记者前天首先拨打了美素力全国客服热线。经过沟通后,202号话务员请技术人员给记者详细解释了小黑颗粒产生的原因。   技术人员说,黑色小颗粒确实是乳液中的乳糖在高温烘培后形成的焦糖颗粒。因为这批奶粉采用的是国外比较常见的高温烘培加工法,首先对新鲜的乳液进行高温烘培,在经历好几个循环后形成奶粉。在这个物理过程中,会有一些乳糖转化为黑色或咖啡色的焦糖颗粒,工厂会采用技术手段剔除一些较大的颗粒,但一些非常细微的颗粒确实会留下来。   厂方也承认,这些小颗粒不溶于水,也无法被正常吸收,但焦糖颗粒没有害处,而且会随着新陈代谢被自然排出体外。   至于这样的问题是否应该在罐体上标明,这位工作人员表示,确实有一些进口奶粉会在罐体上标明这个事情,但他们这个牌子的奶粉没有做到,他们也会把事情向上级反映。   工商部门已介入调查   记者通过网络搜索发现,不仅是杭州地区,也不仅是美素力这个品牌,确实有不少使用烘焙制作的进口奶粉存在出现小颗粒的问题。   昨天下午,记者从工商部门了解到,杨先生已经向下城工商局长庆中队提交了相关的投诉单,而工商部门也立刻抽取了同个品牌批次的产品送鉴定部门化验,不过鉴定结果需要好几个工作日才能出来。   工商局相关负责人表示,虽然目前双方各执一词,但等鉴定结果出来后一定会给出明确答复。如果产品有问题,那么不是说赔钱这么简单,肯定会对相关产品进行查处。但要是证明产品质量没有问题,他们也会和杨先生沟通,请他放心。
  • 国家药监局关于发布消肿片中松香酸检查项和复方龙胆碳酸氢钠片中土大黄苷检查项2项补充检验方法的公告
    根据《中华人民共和国药品管理法》及其实施条例的有关规定,《消肿片中松香酸检查项补充检验方法》《复方龙胆碳酸氢钠片中土大黄苷检查项补充检验方法》经国家药品监督管理局批准,现予发布。特此公告。附件1消肿片中松香酸检查项补充检验方法(BJY 202111)【检查】松香酸照高效液相色谱法(中国药典2020年版通则0512)测定。色谱条件与系统适用性试验以十八烷基硅烷键合硅胶为填充剂;以乙腈-0.1%甲酸(70:30)为流动相;检测波长为241nm。理论板数按松香酸峰计算应不低于3000。对照溶液的制备(临用新制)取松香酸对照试剂适量,精密称定,加乙醇制成每1ml含2µg的溶液,作为对照试剂溶液。另取11-羰基-β-乙酰乳香酸对照品适量,精密称定,加乙醇制成每1ml含2µg的溶液,作为参照溶液。供试品溶液的制备取本品10片,研细,取0.2g,精密称定,精密加入乙醇20ml,称定重量,超声处理20分钟,放冷,再称定重量,用乙醇补足减失的重量,摇匀,滤过,取续滤液,即得。测定法分别精密吸取供试品溶液、对照试剂溶液与参照溶液各10µl,注入液相色谱仪,记录色谱图。结果判断供试品色谱中,在与松香酸对照试剂溶液色谱峰保留时间相应的位置上不得出现相同的色谱峰。若出现保留时间相同的色谱峰,采用二极管阵列检测器比较相应色谱峰的紫外-可见吸收光谱,吸收光谱应不同(松香酸对照试剂色谱峰在241nm显示最大吸收);若吸收光谱相同,且该色谱峰的峰面积值大于11-羰基-β-乙酰乳香酸参照溶液色谱峰的峰面积值,则视为阳性检出。备注:必要时,可采用高效液相色谱-质谱联用方法进行验证。起草单位:连云港市食品药品检验检测中心复核单位:江苏省食品药品监督检验研究院广州市药品检验所附件2复方龙胆碳酸氢钠片中土大黄苷检查项补充检验方法(BJY 202112)【检查】土大黄苷(1)取本品细粉适量,约相当于大黄原生药0.1g,加甲醇10ml,超声处理20分钟,滤过,取滤液1ml,加甲醇至10ml,作为供试品溶液。另取土大黄苷对照品,加甲醇制成每1ml含10μg的溶液,作为对照品溶液(临用新制)。照薄层色谱法(中国药典2020年版通则0502)试验,吸取对照品溶液与供试品溶液各5μl,分别点于同一聚酰胺薄膜上,以甲苯甲酸乙酯丙酮甲醇甲酸(30:5:5:20:0.1)为展开剂展开,取出,晾干,置紫外光灯(365nm)下检视。供试品色谱中,在与对照品色谱相应的位置上,不得显相同的亮蓝色荧光斑点。(2)照高效液相色谱法(中国药典2020年版通则0512)测定。色谱条件与系统适用性试验 以十八烷基硅烷键合硅胶为填充剂;以乙腈-水(20:80)为流动相;二极管阵列检测器,检测波长为328nm,柱温30℃。理论板数按土大黄苷色谱峰计算应不低于3000,土大黄苷峰与相邻峰之间的分离度应符合要求。对照品溶液的制备(临用新制) 取土大黄苷对照品适量,精密称定,加甲醇制成每1ml含60μg的溶液,即得。供试品溶液的制备 取本品20片,研细,取约相当于大黄原生药0.1g,精密称定,精密加入甲醇25ml,称定重量,超声处理60分钟,放冷,再称定重量,用甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。测定法 分别精密量取供试品溶液和对照品溶液各10μl,注入液相色谱仪,记录色谱图。结果判定 供试品色谱中,在与土大黄苷对照品色谱峰保留时间相应的位置上应不得出现相同的色谱峰。若出现保留时间相同的色谱峰,则采用二极管阵列检测器比较相应色谱峰的紫外-可见吸收光谱,吸收光谱应不同(土大黄苷对照品色谱峰在219nm和325nm波长处有最大吸收);若吸收光谱相同,则视为阳性检出。备注:必要时可采用高效液相色谱-质谱联用方法进行验证。起草单位:青海省药品检验检测院复核单位:甘肃省药品检验研究院陕西省食品药品检验研究院
  • 中国科学院上海药物研究所:研究揭示糖蛋白激素作用机制
    9月22日,中国科学院上海药物研究所研究员徐华强/蒋轶团队,联合浙江大学研究员张岩团队,在Nature上发表了题为Structures of full-length glycoprotein hormone receptor signaling complexes的研究论文,首次解析了糖蛋白激素GPCR,即全长黄体生成素/绒毛膜促性腺激素受体(luteinizing hormone/choriogonadotropin receptor, LHCGR)处于失活状态和多种激活状态下的四个结构。该工作揭示出绒毛膜促性腺激素(CG)识别LHCGR的分子机制,以及1期临床实验的小分子化合物Org43553与受体LHCGR相互作用细节模式;鉴定了糖蛋白激素选择性结合LHCGR和促卵泡激素(follicle-stimulating hormone,FSH)受体的关键氨基酸残基;提出了激素配体激活受体的“Push and Pull”模型。上述工作对理解糖蛋白激素识别和激活GPCR的机制,为临床开发替代激素治疗的小分子药物具有理论和现实意义。  激素是人体的化学信使,控制着各个器官的生理功能,而下丘脑和脑下垂体是内分泌激素的控制中心。传统内分泌系统由三大分支组成,即下丘脑-垂体-性腺轴(HPG)、下丘脑-垂体-甲状腺轴(HPT)和下丘脑-垂体-肾上腺轴(HPA)。其中,三种促性腺激素,包括促黄体生成素(luteinizing hormone,LH),促卵泡激素(follicle-stimulating hormone,FSH)和绒毛膜促性腺激素(chorionic gonadotropin,CG)是糖蛋白激素,调控HPG轴的关键生理功能,包括人体的性别发育,精子发生和卵子成熟,以及促进第二性特征的发育及维持。另一类糖蛋白激素促甲状腺激素(thyroid-stimulating hormone,TSH)是HPT轴调节的关键糖蛋白激素,主要通过调控机体甲状腺素的水平从而调节人体代谢。上述激素均为临床重要的治疗药物,其中FSH和LH用于辅助生殖及体外受精,以及治疗女性不孕症和男性促性腺功能减退症等;CG用来诱导女性排卵,增加男性精子数量等。TSH与131I联合应用于甲状腺癌术后患者,抑制和消融残余癌组织等。尽管糖蛋白激素的临床应用取得成功,但糖蛋白激素激活人体细胞中受体的机制仍然未知。  四种糖蛋白激素的整体三维结构高度相似,均由一条保守的α链和激素特异性的β链组成。糖蛋白激素受体为A类G蛋白偶联受体(G protein-coupled receptor, GPCR),其中,LH和CG共同作用于促黄体生成素/绒促性素受体(LHCGR),FSH作用于卵泡刺激素受体(FSHR),TSH作用于促甲状腺激素受体(TSHR)来发挥生理功能。与大多数A类GPCR不同,糖蛋白激素受体有约由340-420个氨基酸构成的巨大N端胞外区结构域(ECD),该结构域由富含亮氨酸的重复序列构成,并且存在复杂的糖基化修饰,然而,由于糖蛋白激素受体结构的特殊性,体外获得全长的该类蛋白十分困难。目前尚无全长糖蛋白激素及其受体复合物的结构被报道,限制了人们对于该类受体的激素选择性,以及对受体激活机制的理解。此外,结构信息的缺乏也制约了靶向该类受体的小分子治疗药物的研发。  该研究中,科研人员采用单颗粒冷冻电镜技术,首次解析了3个近原子分辨率的全长LHCGR处于激活状态下的结构(图1),包括结合内源性激素CG的LHCGR(野生型)受体结构(4.3埃)、结合内源性激素CG的LHCGR(含持续性激活突变S277I)受体结构(3.8埃)以及结合内源性激素CG和小分子化合物Org43553的LHCGR(含持续性激活突变S277I)受体结构(3.2埃)。该研究首次揭示了全长LHCGR的结构,以及CG与LHCGR相互作用的细节;解析了失活状态下全长LHCGR的电镜结构,分辨率为3.8埃。通过对比激活LHCGR结构,研究发现受体的ECD发生了约45度的偏转。通过进一步结构分析和功能试验验证,研究提出了LHCGR受体“Push and Pull”的受体激活模型(图2)。这也是首个全长单独GPCR的电镜结构。此外,研究还解析了处于1期临床试验中的小分子化合物Org43553与LHCGR相互作用的分子细节,揭示了Org43553的结合口袋,为临床开发针对LHCGR,FSHR和TSHR的选择性小分子药物替代激素治疗提供了结构模板。  综上,该研究解析了首个糖蛋白激素受体——LHCGR的全长结构,揭示出LHCGR与其内源性激素配体CG的相互作用模式,解决了LHCGR和FSHR对于三种激素LH,CG,FSH的选择性问题;率先提出LHCGR的“Push and Pull”激活模型,并证实该激活模型在糖蛋白GPCR中的普遍性;阐明了小分子化合物Org43553识别LHCGR的分子基础,为靶向糖蛋白激素受体的小分子药物开发奠定了结构基础。  研究工作得到国家重点研发计划、上海市市级科技重大专项、中科院战略性先导科技专项、国家自然科学基金委员会及浙江省自然基金委员会等的资助。
  • 大会报告:糖蛋白的最新分析技术与研究进展
    仪器信息网讯,2010年5月15日,蛋白质组数据处理暨全国生物质谱学术交流会”在云南省丽江市召开。会议为期两天,主要讨论了蛋白质组学技术和应用、数据挖掘和生物质谱等方面的现状及其进展。在所有的大会报告中,除一些关于蛋白质组学技术最新研究进展的大会特邀报告外,第一天的专家报告集中讨论了糖蛋白组的最新分析技术与研究进展,第二天的报告集中讨论了蛋白质数据处理技术,包括蛋白质组生物数据库及分析平台的构建、数据统计分析方法的研究等方面。   作为会议议题的主要内容之一,糖蛋白广泛存在于生物体内,是重要的生物活性物质,具有很多重要功能,关于其的最新研究进展已受到国内外科学家们的高度关注。在本次大会上,南京大学的梁亮博士、美国约翰霍普金斯大学李岩博士、上海交通大学系统生物医学研究院的张延研究员等多位专家学者作了关于糖蛋白最新研究进展的报告,本文对关于糖蛋白研究的部分报告主要内容进行简要报道:   报告题目:应用糖蛋白质组学和糖组学的方法筛选癌症分子标记物   报告人:美国约翰霍普金斯大学李岩博士 李岩博士   李岩博士在报告中表示,目前分子标记物研究主要面临的挑战主要是,样品的复杂性与患者的个体差异性,应对其建立高准确度、高灵敏度、高通读、高重复性的分析检测方法。糖蛋白在分子标志物研究中的重要意义,大部分分泌蛋白、跨膜蛋白、和细胞表面蛋白是糖基化蛋白,他们涉及大量的生物学功能,并且,美国FDA已批准的生物标记物几乎全是糖蛋白。   在其报告中,分别通过糖蛋白质组学糖组学的方法对分子标记物进行了分析比较分析。   在糖蛋白质组学研究中,其分别采用多维色谱-质谱法(MALDI-TOF/TOF)和SRM-MS对糖蛋白进行了定量检测 在糖组学研究中,其表示,现有的糖组学方法不能用于临床样本检测,而新方法有待确立,李岩博士通过凝集素-抗体反应方法检测了糖的motif在前列腺组织中的表达水平。通过对糖蛋白质组学和糖组学方法的分析比较,其建立了适用于临床的检测方法,对于在前列腺中发现可能的分子标志物选择临床治疗方案有很大的帮助。   报告题目:用于糖蛋白富集的团队硼亲和方法研究   报告人:南京大学梁亮博士 梁亮博士   梁亮博士在报告中首先提到,糖蛋白(包括糖肽)的富集是糖蛋白质组学研究中的一个关键科学问题。目前用于糖蛋白富集的主要方法有凝集素亲和法、肼化学法、亲水作用色谱法和硼亲和色谱法等。和其他些方法比较,硼亲和方法虽具有显著的优点,但也有两个明显的缺点:(1)在中性pH下的亲和能力极弱,必须在碱性pH下才能与顺式二羟基化合物结合,这造成了操作上的不便,增加了样品变性的危险 (2)在碱性pH时取代硼酸带负电,与样品及样品基体间存在静电相互作用,因而导致专一性的下降。   为了同时解决以上两个问题,其科研团队提出了“团队硼亲和”的原理以及相应的方法。该方法要求分子团队成员在分子的另一端带上氨基,通过与环氧开环形成多孔整体材料,分子团队固定到整体材料的表面。该方法只需要一步反应即可制备得到所需的整体柱,操作十分简单,对操作者和环境友好。制备得到的整体柱可以直接应用于生理样品中的核苷等生物分子的专一性富集。最近,其科研团队提出了构建团队硼亲和的另一个绿色化学路线:分子自组装法。分子团队成员在分子的另一端带为噻吩或巯基,利用在金表面的分子自组装,一步反应即可得到团队硼亲和材料。利用该方法,制备了团队硼亲和磁性纳米颗粒和团队硼亲和MALDI靶板,其优异的亲和力和专一性得到验证,成功实现了在中性pH条件下对糖蛋白的专一性富集和纯化。利用团队硼亲和磁性纳米颗粒作为微萃取探针,通过MALDI-TOF MS检测,在生理pH条件下,存在于浓度高100倍的非糖蛋白基体中的糖蛋白能被专一性地萃取。   报告题目:蛋白质的O-糖基化修饰研究   报告人:上海交通大学系统生物医学研究院张延研究员 张延研究员   糖链修饰是一种重要的蛋白质翻译后修饰。细胞内50%以上的蛋白质都有糖链修饰。糖链参与了细胞识别、细胞分化、发育、信号传导、免疫应答等各种重要生命活动。按糖链与氨基酸的糖苷键结合方式的不同,真核生物中蛋白质糖基化可分为N-糖基化修饰和O-糖基化修饰,蛋白质的O-糖基化修饰中最主要的O-GalNAc修饰。   张延研究员通过对O-GalNAc糖基转移酶的糖基化修饰特性进行研究,利用UDP-GalNAc衍生物糖探针的荧光标记技术,结合质谱及多肽蛋白质芯片技术,建立了一种高通量发现蛋白质O-糖基化的新策略。
  • 吃饼干治糖尿病?新研究让口服胰岛素成为可能
    吃块饼干,治糖尿病。这个很多“糖友”梦寐以求的成果出现在11月16日的国际顶刊《自然化学生物学》上。北京大学药学院刘涛团队与华东师范大学叶海峰团队利用合成生物学技术开发出了一种新细胞。在他们的研究中,植入这种工程细胞的糖尿病小鼠,只要吃下特定的氨基酸饼干,就能提高胰岛素水平,进而降糖。“这是首次将基因密码扩展技术用于细胞治疗。”论文通讯作者之一、北京大学药学院教授刘涛告诉科技日报记者,吃下饼干的小鼠只需要90分钟就能降糖,和注射胰岛素起效时间相当。创造胰岛素微型“无人工厂”在“糖友”体内产生胰岛素,光靠饼干就可以吗?其实不是,“饼干”只是一把钥匙,真正生产胰岛素的是一座微型“无人工厂”。胰岛素作为人体的一种蛋白要求极高,胰岛素水平高了会发生低血糖、低了或者无效危害更大。细胞能做到精准的控制吗?“我们有一套独特的控制系统,控制的核心是一种人造的密码子。” 论文通讯作者之一、华东师范大学生命学院、上海市调控生物学重点实验室研究员叶海峰解释,自然界里有3个不编码氨基酸的密码子(终止子,功能是终止蛋白质翻译),通过人为改造可以让其中一个只听“饼干”的命令。饼干里的特殊氨基酸在自然界找不到,所以平时不会开启。经过改造的密码子就此有了双重身份。人工氨基酸一来,密码子配对,开启胰岛素的翻译过程,人工氨基酸一走,密码子还是“终止子”,整个流水线关闭。这才有了“吃饼干”合成胰岛素的完整治疗过程。给饼干开通一个专线快递前面说了,饼干里的氨基酸在自然界里找不到,那自然也找不到匹配的运送系统。“原来负责转运氨基酸的信使RNA都有自己的密码子,就像京东快递是负责这几个密码子、顺丰快递负责另外几个密码子、圆通也有自己要负责的密码子,现在多出来一个非天然的快递单怎么办呢?”刘涛打了一个很形象的比方,为了解决这个问题,合成生物学又出手了。“我们给‘饼干’开通了一个专线快递。”刘涛说,一种人工的合成酶能够把非天然的氨基酸送到快递员手上,即通过氨酰化的生化反应,把非天然氨基酸与特定的转运RNA连接起来,让它直送到胰岛素的装配生产线上。经过一系列“神操作”,饼干里的非天然氨基酸有如神助地直接成为生物体内胰岛素的重要组成部分。这种“专线快递”特点的正规名称叫“生物正交”,是指人造反应不会被机体内源的元件识别,也不干扰内源的生物化学过程。也就是说,胰岛素的整个制造过程不会干扰到其他生命活动。更具临床实用价值“利用我们的技术,只需要纳摩尔每升级别浓度的非天然氨基酸,给药1分钟就足以激活系统,表达释放胰岛素 。”刘涛说,这种非天然氨基酸与很多功能饮料中添加的成分类似,对人体非常友好。动物试验研究显示,将改造过的工程细胞经材料包埋后植入小鼠皮下,给小鼠喂食含有非天然氨基酸的饼干,可以在一个月内稳定且有效地降低小鼠血糖。一系列动物安全性实验也表明,服用一个月有效剂量的非天然氨基酸后,小鼠并未表现出明显的体重减低或其它生化指标的改变。“或许某一天,只需要每天饭前服用一粒非天然氨基酸药物,或含有非天然氨基酸成分适合糖尿病患者的食物,就可以控制血糖了。”刘涛说。浙江大学药学院院长顾臻教授在论文同期刊发的评论中认为,通过合成生物学方法创建工程细胞,进而产生治疗性蛋白质是解决包括胰岛素在内的蛋白质分子稳定性差、生物半衰期短及其不受控释放等挑战的极具吸引力的替代方法。据介绍,该研究获得国家“重大新药创制”专项、科技部合成生物学重点专项、国家自然科学优秀青年基金、北京市杰出青年基金、上海市科委等项目的支持。
  • 氨基糖苷类抗生素(AGs)方法包发布,攻克行业检测难题!
    我国每年约有30000儿童因药物性致聋陷入无声世界,其中因抗生素使用不当致聋占了约一半。近年研究还发现,我国药源性耳聋患者中50%与遗传因素有关,而且属“母系遗传”,有家族史的患者应禁用氨基糖苷类药物。 氨基糖苷类抗生素药因价格低廉、抗菌谱广等特点,也应用于兽用药杀菌以促进家畜生长。此类抗生素由2个或多个氨基糖基团通过糖苷和氨基环多醇键合而成,极性大,易溶于水,脂溶性差,人体和禽畜的胃肠道不易吸收,通过肌肉注射后大部分以原药经肾排泄,通过粪肥可能迁移至土壤及周围水体中,最终进入食物链,对动物和人体健康及生态系统构成潜在威胁。 氨基糖苷类抗生素药分析检测中的挑战由于此类化合物极性极大,常规色谱保留弱或无保留,无紫外吸收或紫外吸收弱,业内目前也没有特别成熟稳定且灵敏的检测方法。 Idea 1对于极性化合物的检测,一般会首先想到选用亲水作用液相色谱-HILIC,理论上亲水性越强的化合物,在Hilic柱上被保留的时间越长。市面上有两款Hilic柱在极性化合物的保留能力方面颇受广大科研工作者的青睐,但在进行氨基糖苷类抗生素化合物分析检测时,因基质残留大、稳定性差、重现性不好、灵敏度不高等原因而未受认可。 Idea 2另外一个思路是在流动相中添加七氟丁酸(HFBA)、三氟乙酸(TFA)等离子对试剂来增强极性化合物的保留,GBT21323-2007《动物组织中氨基糖苷类药物残留量的测定高效液相色谱-质谱/质谱法》中,使用100mM HFBA作为流动相,结合常规的C18柱,对这类化合物保留良好。但是,TFA、HFBA等离子对试剂,负离子响应极强,进到质谱中极易残留且不容易洗掉,极大地影响其他负离子化合物的检测灵敏度,质谱分析中是不建议使用离子对试剂的。另外,国标方法中,进样量大(30μL),基质效应明显,其检测的10种氨基糖类抗生素LOQ分别为50ppb、300ppb,灵敏度不高。 ??检测氨基糖苷,赛默飞有妙招!??赛默飞氨基糖苷类抗生素(AGs)检测方法包赛默飞采用Thermo Scientific™ Vanquish™ Binary Horizon液相系统与Thermo Scientific™ TSQ Fortis™ 三重四极杆质谱仪联用平台,通过在流动相中添加TFA和HFBA等离子对试剂,搭配Thermo Scientific™ Acclaim™ AmG C18 氨基糖苷类抗生素检测的专用柱(可耐pH范围0.5~10),来增强这些极性化合物的保留,再结合赛默飞离子色谱专利的电解再生膜抑制器技术,去掉TFA和HFBA离子,避免污染质谱。Vanquish™ Binary Horizon液相系统与TSQ Fortis™ 三重四极杆质谱仪联用平台 基于这样的理念和赛默飞独有的技术平台,成功建立了快速检测动物源食品中14种氨基糖苷类抗生素残留的方法(潮霉素、阿米卡星、安普霉素、巴龙霉素、卡那霉素、链霉素、奈替米星、庆大霉素、大观霉素、双氢链霉素、妥布霉素、新霉素、西索米星、依替米星)。Acclaim™ AmG C18 氨基糖苷类抗生素检测的专用柱 样品前处理方式与国标GBT21323-2007一致,21min内获得良好的分离(国标35 min),灵敏度满足国标要求,LOQ均≤20ppb(进样量5μL)且连续6针的RSD均<14%,连续进50针猪肉基质样品后,保留时间精密度和峰面积重复性良好,RTs偏差≤±0.03min,各化合物50ppb的峰面积重复性均<11%,本方案快速灵敏、可靠稳定。 电解再生膜抑制器 部分实验数据展示14种氨基糖苷类抗生素在21min内实现良好保留和分离。点击查看大图点击查看大图 抑制器原理小贴士在下图抑制器原理图中,两边是选择性透过膜,中间为流动相通道,通过电解水作用,在阴极产生OH?置换出流动相中的TFA?和HFBA?,直接从阳极排到废液。点击查看大图 参考文献徐媛,陈达,钟新林,徐牛生,LC-MSMS结合离子色谱电解再生膜抑制器技术快速检测动物源食品中14种氨基糖苷类抗生素残留 点击下载完整版【赛默飞氨基糖苷类抗生素方案】!
  • 复旦大学杨芃原团队建立糖蛋白质/糖链质谱定量新方法
    糖是组成生命体的四大类重要分子之一,糖蛋白质是由糖链与肽链中的特定氨基酸残基以糖苷键共价连接而成的蛋白质。糖蛋白质普遍存在于生物体内,在很多生命过程中起着重要作用,如蛋白质的折叠、细胞之间的相互识别、炎症反应等。同时,糖基化修饰在疾病中,特别是肿瘤的发生、发展和转移过程中也起到重要作用,许多疾病诊断标志物及治疗的靶标都是糖蛋白质。糖蛋白质组学和糖组学的研究具有重要的科学意义。以基质辅助激光解吸电离质谱(MALDI-MS)和电喷雾质谱(ESI-MS)为代表的生物质谱技术,因具有快速、灵敏、可提供结构信息等优点,已成为糖蛋白质组和糖组分析的重要工具。  由复旦大学杨芃原教授团队撰写的综述文章“质谱技术在糖蛋白质组学与糖组学方面的研究进展”发表于2016年第3期的《国家科学评论》。这篇综述论文系统介绍了近年来以质谱为核心的糖蛋白质组和糖组的研究策略和方法,以及该领域重要的生物和临床发现。重点讨论了国内糖蛋白质组学和糖组学研究团队在糖蛋白质和糖链的分离富集、糖链的衍生,糖链和糖蛋白质的质谱碎裂技术,糖链及糖蛋白质序列组成分析的软件技术等方面的进展,并分析了基于质谱技术的糖蛋白质组和糖组研究的关键问题,展望了该领域未来的发展趋势。  杨芃原教授团队在基于质谱的糖蛋白质组学和糖组学方面展开了系统的研究。他们发展了一系列糖蛋白质/糖链富集和质谱定性的新方法,建立了基于复合纳米材料的富集新方法,基于新的共价反应的富集新策略,以及基于协同富集思路的富集新流程 建立了一系列糖蛋白质/糖链的质谱定量新方法,提出了酶促去糖链过程中的标记定量新方法和糖蛋白质组在蛋白质水平、糖基化程度水平及糖链水平的同时定量新方法等 开发了高通量糖蛋白质质谱检索的新算法等。这些工作提升了中国糖蛋白质组学和糖组学的研究水平,为糖蛋白质组学和糖组学研究提供了新的研究方法。
  • 糖尿病药物治疗史里程碑成果:林圣彩团队破解二甲双胍靶点
    二甲双胍作为一种天然化合物的衍生物自1957 年上市后,历经 60 多年的发展,至今仍作为一 线药物在临床被广泛使用,而且近年来发现二甲双胍有越来越多的益处,有“神药”之称。然而业内人士谈到其具体的作用靶点时总是争论不休,以至于学术圈都觉得“神药”之所以神就是因为没有明确靶点,久而久之没有明确靶点成了“广泛共识”。今日,来自厦门大学的林圣彩教授团队经历7年的科研攻关,用“钓鱼”的方法破解了破解二甲双胍直接作用靶点之谜,围绕二甲双胍发表的论文已经有近3万篇,林圣彩团队的这项工作称得上是里程碑式的工作,相关研究以Low-dose metformin targets the lysosome–AMPK pathway through PEN2为题发表在Nature杂志上,鉴于该工作的重要意义,来自复旦大学附属中山医院李小英教授和原新加坡分子细胞生物学研究所所长 CHRIS Y H TAN对这项工作进行了精彩点评,以飨读者!如果要我们列举几种自己所熟悉的药物,那么二甲双胍一定能占据一席之地。它不仅仅是治疗二型糖尿病的一线药物:便宜、降糖效果好且副作用小,更因为近年来不断发现的各种神奇功效:降低糖尿病人的体重、缓解脂肪肝,甚至于有潜在的抵抗由于糖尿病所引起的多种癌症的效果等,而被称为“明星”药物。特别地,对于健康人群,二甲双胍也很可能有抵抗衰老、延长寿命的作用。因此,它经常和卡路里限制一起,被列为人类未来通向健康长寿之路的重要手段之一。在国外,有数个大规模的探索二甲双胍对人类寿命影响的长期临床实验已经展开,目的就是要找到这一“健康密码”的最终证据,造福于我们的子孙后代。然而,尽管二甲双胍有着如此耀眼的作用,它的分子靶点却一直没有弄清,这极大地限制了我们对二甲双胍的理解和应用——我们不知道二甲双胍的这些神奇效果是从何而来,由哪些分子所介导,当然也就没办法“举一反三”,去借助这些原理,设计相应策略来更好地行使这些功能。换句话说,我们还没有真正理解二甲双胍这一健康密码的本质。更何况,二甲双胍的作用是有局限性的,例如它只能作用于肝脏、肠道等少数几个组织,对于脂肪组织则无可奈何。因此,如果我们想使用二甲双胍,在减少脂肪的同时保留健硕的肌肉,而不是(因为吃得少)一起减少,那就是要尤其慎重的。如果能设计出专一性靶向脂肪组织里的二甲双胍靶点的药物,突破这一瓶颈,一定能为眼下日益严重的营养过剩等各种代谢性疾病的治疗带来福祉。厦门大学林圣彩院士团队正是在二甲双胍的分子靶点研究方面取得了突破。他们团队长期致力于代谢稳态和代谢疾病发生机制的研究,而从2014年起,他们就对二甲双胍产生了兴趣。那时人们已经发现,二甲双胍能够通过激活一个名为AMPK的蛋白行使上述的诸多功效,然而对于它如何激活AMPK,靶点又是什么,则完全没有弄明白:和二甲双胍相比,其它合成的AMPK激活剂并不具有二甲双胍的所有功效,而二甲双胍(超过临床剂量的除外)对于AMPK在体内的天然激活剂——AMP的水平提升也没有任何作用。种种迹象表明,二甲双胍对AMPK的激活可能是“另辟蹊径”的。经过探索,他们团队在2016年于Cell Metabolism上报道了二甲双胍可能通过他们先前发现的,机体感应饥饿和葡萄糖水平下降时所用的一条名为“溶酶体途径”的通路,激活AMPK的初步结论,为二甲双胍的功效行使指明了一个粗略的方向(关于这条中国人自己发现的新通路,详见林圣彩团队参与撰写的重要综述:『珍藏版』“Must-Read”综述丨阴阳相济的中庸之道——AMPK和mTORC1营养感知与细胞生长调节)。在上述基础上,他们又经过了五年多的探索,最终找到了二甲双胍的分子靶点——PEN2(γ-secretase的亚基),并搞清了它导向溶酶体途径,激活AMPK的具体方式,相关工作以Low-dose metformin targets the lysosome–AMPK pathway through PEN2为题于2022年2月24日发表在Nature杂志上。在这一工作中,林圣彩团队首先通过和厦门大学邓贤明团队合作,后者通过一系列摸索,突破了多个化学合成上的难题,合成了二甲双胍的化学探针。简单地说,这个探针的工作原理就像我们钓鱼一样,前端的“鱼钩”是二甲双胍这个分子,后端的“钓竿”则是一个名为生物素的标签:当前端的二甲双胍分子碰到了它所结合的蛋白,也就是靶点以后,我们就可以通过后端的标签,把二甲双胍连同它的靶点一起“钓”上来,再通过质谱等手段分析,就能知道二甲双胍结合的这个靶点是什么。通过这种方法,他们从细胞中“钓”出了2000多种可能和二甲双胍结合的蛋白。由于二甲双胍可以独立地通过溶酶体途径激活AMPK,他们于是从中筛选出了317种存在于溶酶体上的蛋白进行进一步验证。鉴于这些蛋白又很可能有不少是被“拔出萝卜带出泥”的,他们于是逐一验证了二甲双胍和这些蛋白的相互作用,又从中筛选到了113种,真正直接结合了二甲双胍的蛋白。之后,他们又逐一在细胞中敲低这些蛋白,最终找到了一个名为PEN2的蛋白,能够介导二甲双胍对AMPK的激活。后续的实验进一步表明,PEN2就是二甲双胍启动溶酶体途径激活AMPK的前提,而敲除了PEN2,二甲双胍不但不能激活AMPK,它对于降低脂肪肝、缓解高血糖、延长寿命等诸多效果就都不存在了。这些结果充分说明,二甲双胍确实通过PEN2激活AMPK,并起到各种功效,也就是说,PEN2就是二甲双胍的靶点。林圣彩团队的这一发现无疑加深了我们对二甲双胍这一“健康密码”的理解,不但首次从分子角度勾画出了二甲双胍行使功能的路线图,还为二甲双胍替代药品的筛选提供了潜在的靶点,从而在治疗糖尿病和其他代谢性疾病方面产生更好的疗效。有意思的是,尽管具体的分子靶点有些许不同,但二甲双胍和饥饿(葡萄糖水平下降)走的是同一条路线,即上述的溶酶体途径,可见大自然的大道至简。联想到卡路里限制可以看做是一种大尺度下的饥饿,而它和二甲双胍的功效又大有相似之处,这又让我们不得不喟叹长寿之路的万化归一,而我们祖先所推崇的辟谷养生是多么有前瞻性!当然,这一切的机制的解析的背后,离不开林圣彩团队长期以来的辛勤工作。据林圣彩老师透露,实际上在目前,解析类似于二甲双胍这样的小分子和蛋白质的相互作用,仍是一个很前沿,或者说是很不成熟的领域。以他们此次发现二甲双胍的靶点的经历来看,事实上二甲双胍在水溶液中就像溶于其中的无数盐离子一样,而它所能结合的同样是水溶性的蛋白分子,就如同水中的各种盐离子一样,也是数不胜数。即使对于PEN2这个靶点本身,他们都发现了多个能结合二甲双胍的位点,这可能也是为什么他们课题组最后从2000多个潜在靶点中只找到了一个真正的靶点的原因。对于这种极高的“假阳性”,目前并没有任何手段加以避免,只能说是小分子和蛋白质结合的本质就是如此。因此,唯一的方法只能是不厌其烦地逐一筛选,而这需要的是热爱和执着,以及对小分子“见微知著”的坚定信念。据悉,本文的第一作者马腾是厦门大学2014级博士,从博士入学时起就参与了这一系列工作,为该靶点的最终鉴定付出了长达七年的辛勤努力。而本文的另外两位共同第一作者田潇和张保锭,也都长期高强度地投入在本课题的研究工作上,和本文其他作者一起,为该靶点的鉴定做出了重大贡献。特别值得一提的是,本文的共同通讯作者之一、林圣彩教授培养的得意弟子张宸崧博士(如今也是厦门大学生命科学学院教授)长期围绕AMPK做出的一系列创新性工作,包括2017年作为第一作者发表在Nature上颠覆性工作(颠覆性发现:林圣彩组Nature破解葡萄糖感受的新机制)。我们在此期待着林圣彩团队未来能有更多的成果,也许在那时,我们“游于空虚之境,顺乎自然之理”的长寿之路,就将不再遥远。近年来,林圣彩教授以细胞代谢稳态调控为研究核心,针对细胞对营养物质与能量的感知机制以及代谢紊乱相关疾病的发生发展的分子机制进行研究,取得了一系列原创性成果,特别是发现和鉴定了细胞感应葡萄糖缺乏的溶酶体途径和所在的“葡萄糖感受器”,及其激活AMPK的方式,并打破了传统的“AMPK的激活仅依赖于AMP浓度的变化”的认知(Cell Metabolism, 2013, 2014 Nature, 2017 Cell Research, 2019)。基于本团队发现的溶酶体AMPK通路,他们揭示了二甲双胍激活AMPK是通过该通路(Cell Metabolism, 2016),以及AMPK依赖于不同应激的状态的时空调控(Cell Research, 2019),揭示了钙离子通道TRPV介导了缩醛酶感知葡萄糖到AMPK激活的过程,让葡萄糖感知的通路全线贯通(Cell Metabolism, 2019),围绕AMPK分别与Grahame Hardie和Michael Hall发表两篇重要综述(Cell Metabolism,2018,2020)。专家点评李小英 教授 (复旦大学附属中山医院内分泌代谢科主任)揭开二甲双胍的神秘面纱 随着生活方式和饮食结构的改变,糖尿病呈现全球流行趋势。2015 年全球糖尿病患者达到 4.15 亿,预计 2040 年糖尿病患者将会上升至 6.42 亿。在糖尿病治疗药物的广阔天空中,二甲双胍无疑是一颗耀眼的明星。过去65年,二甲双胍一直作为糖尿病患者治疗的主要手段,长期占据糖尿病治疗一线药物的地位。它引导我们不断深入探索,以期真正揭开这一经典降糖药物的作用靶点和分子机制。近日,厦门大学林圣彩院士团队及其合作者发表在Nature杂志上的研究,发现了治疗剂量的二甲双胍的直接作用靶点及其分子机制,取得了历史性突破。为糖尿病的治疗,乃至抗肿瘤、抗衰老的药物研发和应用提供了崭新的思路,有望成为糖尿病药物治疗史上的一座闪亮的里程碑。二甲双胍于上世纪20年代从植物山羊豆中分离得到,50年代法国医生Jean Sterne开始研究二甲双胍的降糖作用,直到1957成功用于糖尿病患者的治疗。二甲双胍的同类药物苯乙双胍、丁双胍等均因其乳酸酸中毒发生风险和心脏病事件死亡率增高而于70年代退出市场。70年代以来,以UKPDS为代表的大型糖尿病心血管结局研究证明二甲双胍具有显著的降糖效果、良好的安全性、对肥胖的2型糖尿病患者具有心血管保护作用,长期以来一直是2型糖尿病治疗的一线用药,也是应用最为广泛的口服抗糖尿病药物。随着二甲双胍在临床上的广泛使用,人们发现二甲双胍还具有抗肿瘤、延缓衰老、缓解神经退行性疾病症状等作用。因此,解析二甲双胍的作用机制一直是科学家们的梦想。二甲双胍是一种极亲水的小分子药物,在生理情况下通常以带正电荷的质子化形式存在。其主要通过肠道上皮细胞肠腔侧的血浆单胺转运体(PMAT)吸收,而肝脏对二甲双胍的摄取主要是通过肝细胞基底侧的有机阳离子转运体1(OCT1)。二甲双胍的生物利用度约为50%-60%,1-2g/天(或20 mg/kg)二甲双胍摄入达到血药浓度约为10 µM -40 µM。既往在研究二甲双胍作用机制的不同报道中使用的二甲双胍浓度差异很大,常常远高于二甲双胍治疗剂量的血药浓度,并且二甲双胍的作用还受到给药途径的影响。这些问题都导致二甲双胍的作用机制研究产生不一致的结论。本世纪初,El-Mir和Owen分别发现二甲双胍可以特异性的作用于线粒体呼吸链复合体Ⅰ,抑制电子跨膜流动和膜电位形成,从而降低线粒体氧耗,并抑制三磷酸腺苷(ATP)的生成,使AMP/ATP比值升高。值得注意的是,Owen等人在实验中使用了极高浓度(10 mM)的二甲双胍处理,其结果可能无法反应真实的生理效应。Zhou等人提出:二甲双胍通过单磷酸腺苷激活的蛋白激酶(AMPK)依赖的机制抑制肝脏糖异生——该作用对于二甲双胍缓解糖尿病人的高血糖表型可能十分重要,这在深入探讨二甲双胍作用机制的漫漫长路上无疑是一个里程碑式的发现。随后,Shaw等人的研究进一步证实LKB1/AMPK信号通路的激活是二甲双胍抑制糖异生的重要分子机制。 此外,AMPK 介导的二甲双胍降低肝糖输出的可能机制还包括:1)二甲双胍通过AMPK信号通路上调小异二聚体伴侣(SHP),SHP进而与转录因子CREB直接作用,阻止CREB对CRTC2的招募,从而下调糖异生基因的表达;2)二甲双胍通过AMPK信号通路,上调肝脏去乙酰化酶SIRT1基因的表达,SIRT1使CRTC2去乙酰化,促进其泛素化降解,进而下调糖异生基因的表达。除了在糖尿病中发挥作用以外,AMPK还被认为在二甲双胍所介导的延长寿命、延缓衰老等功能上发挥了作用。近年来的研究也进一步发现了许多二甲双胍不依赖于AMPK行使作用的机制,例如Foretz等人发现,在小鼠肝脏特异性敲除AMPK的α催化亚基,并未对小鼠的血糖或二甲双胍的降糖作用产生影响。而肝脏LKB1特异性敲除的小鼠,虽然在基础状态下存在肝糖输出增加和血糖升高的表现,但并不影响其对二甲双胍的反应性。进一步地,Madiraju等人的研究揭示了二甲双胍在线粒体的另一个作用靶点——线粒体甘油磷酸脱氢酶(mGPD)。二甲双胍通过抑制mGPD的活性,阻断α-磷酸甘油穿梭的过程,使NADH在胞浆内聚积,增加胞浆的还原状态而降低线粒体内的还原状态,最终使以乳酸和甘油为底物的糖异生过程受到抑制。此外,Duca等人最近的研究又为我们认识二甲双胍的作用机制提供了崭新的视角。他们发现,二甲双胍发挥降糖作用的第一靶点可能在肠道。经肠道给药后的短时间内,二甲双胍迅速激活肠道AMPK及其下游信号通路,进而通过分布于肠道的迷走神经传入纤维将局部信号传递至中枢,再通过迷走神经传出纤维支配肝脏,最终抑制肝脏的葡萄糖输出。林圣彩团队发现,低剂量的二甲双胍不会引起线粒体呼吸链复合体I的抑制以及AMP/ATP比值的升高,相对地,它可与PEN2分子直接结合。结合二甲双胍的PEN2进一步与溶酶体膜ATP6AP1结合形成复合物。作为v-ATPase的亚单位,ATP6AP1与PEN2复合物则抑制v-ATPase活性,从而激活溶酶体上的AMPK(图1),这种小范围内的AMPK激活,类似于热卡限制情况下的AMPK激活,避免了整个细胞AMPK激活带来的副作用,包括心肌损伤等。林圣彩团队还分别在小鼠肝脏和肠道,以及线虫敲除PEN2,观察到二甲双胍减少肝脏脂质沉积的作用减弱,二双胍的降糖作用受到影响,以及二甲双胍延长寿命的作用消失。该研究表明,深入认识基于细胞内亚细胞器的区域化精准信号通路调控,对提高药物靶点的安全性和有效性都至关重要。图1 二甲双胍激活AMPK机制专家点评Chris YHTan (新加坡分子细胞生物学研究所前所长,)健康活到120岁将不是梦想!【译文】人类对长生不老孜孜不倦地追求始于文明之初。著名的秦始皇49岁英年早逝,太医配制的延年益寿仙丹含有水银,对长生不老的向往让秦始皇死于水银中毒。寿命延长的追求持续到了现代。1975年,国会批准NIH建立国立衰老研究院(National Institute of Ageing)。一开始科学家们对于如何开展关于衰老的研究没有一丝头绪。我在发现了干扰素和抗氧化酶SOD-1的作用机制后,从耶鲁来到NIA,这些基因也和神经疾病及长寿相关。衰老过程伴随位于染色体两侧的DNA序列--端粒的改变,端粒酶可以阻止端粒变短。寻找激活端粒酶的分子给予了科学家长生不老成药的希望。但是,端粒酶的激活分子也存在危险,可以使衰老的细胞变成永生的癌细胞。研究停滞不前。科学家发现在果蝇中增加SOD-1的基因剂量可使寿命成倍增加,这一发现掀起了另一波探索的热潮。然而SOD-1使寿命延长的机制迟迟未能阐明,基于SOD-1开发长寿药也毫无进展。现在,机缘和实力的加持,来自于厦门大学的林圣彩团队发现了长寿的秘密。二甲双胍是治疗糖尿病的一线药物,近年来又发现了抗衰老和抗癌等神奇功效。林圣彩团队发现了二甲双胍通过低葡萄糖感知通路激活AMPK调节寿命的机制,我将此命名为“林通路”。他们发表在本期Nature的文章研究成果找到了二甲双胍的作用靶点进一步证实这一理论。林通路的发现开启了我们对葡萄糖代谢新的认知认识。在过去的一个世纪,科学研究揭示了葡萄糖代谢产能的中心角色。没有葡萄糖,生命难以延续。从1921年Banting和Best因发现胰岛素而获奖开始,多个诺贝尔生理医学奖授予了葡萄糖代谢的研究。现在多数人会认为葡萄糖研究的热潮已经过去。林团队在模式生物的研究揭示了葡萄糖在寿命延长中重要调控机制,重新发掘葡萄糖代谢的中心地位。他们发现了葡萄糖感受器,在饥饿状态、低葡萄糖水平情况下,果糖(1,6)二磷酸水平降低,其醛缩酶被征召至细胞器溶酶体表面,和v-ATPase形成复合物,激活AMPK,抑制mTORC的活性,抑制细胞生物合成。林通路葡萄糖感受器的发现将AMPK调控的分解代谢和mTOR调控的合成代谢联系起来,组成了细胞阴阳两面。林团队的研究使我们从全新角度思考葡萄糖的功能:葡萄糖不仅仅是能量分子,它也是重要的信使分子。目前,林团队握有崭新的一整个系列先导分子的专利,将可能使我们保持健康活得更长。林团队开启了以前难以想象的药物研发新篇章,首次实现通过无毒药物将癌症变为可控疾病的可能。这些先导分子可预防癌症,可治疗肥胖和脂肪肝。在不远的将来,也可能在我们身上,健康活到120岁将不是梦想!
  • 这5种蔬菜农药残留最严重,都是你最爱吃的!7妙招教你去农残!
    p   近日,农经委对市面上的44种常见蔬菜进行 a style=" color: rgb(255, 0, 0) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S03004-T020-3-1-1.html" target=" _blank" strong span style=" color: rgb(255, 0, 0) " 农残检测 /span /strong /a 后发现,有5类蔬菜农药残留超标严重——番茄、辣椒、韭菜、芹菜、茼蒿。 /p p style=" text-align: center " img title=" initpintu_副本_副本.jpg" src=" http://img1.17img.cn/17img/images/201603/insimg/f29e7f18-4907-436f-a2fc-52b6d676393f.jpg" / /p p   中国农业大学食品学院博士生导师李里特介绍说,一般来说容易生虫、生虫后比较难防治的果蔬,常常是农药污染比较严重的品种。 /p p   相对来说,水果中的苹果、梨、李子、葡萄、草莓等农药残留比较严重,而带壳的水果如荔枝、龙眼等污染较小。 /p p   污染较重的蔬菜有叶菜和细菜,如小白菜、青菜、鸡毛菜、韭菜、菠菜、油菜等,因为农药一般打在叶子上防虫治病,农药再传递到果实上需要一段时间。加之叶菜生长快,一般20多天就上市了,打过农药的间隔期短,农药还来不及分解太多。 /p p   而根菜、瓜菜和果菜(如土豆、南瓜、黄瓜、苦瓜、窝瓜以及洋葱等)受到农药的污染相对较小,并且营养成分较高。 /p p style=" text-align: center " img title=" 1_副本_副本.jpg" src=" http://img1.17img.cn/17img/images/201603/insimg/c91cd1e4-3763-4b70-8e5e-64b39a4f1c1d.jpg" / /p p   “农残超标”只是相对而言,但如何清洗农药残留,才是大伙儿最关心的问题! /p p    span style=" color: rgb(255, 0, 0) " strong 1、去皮 /strong /span /p p   蔬菜表面有蜡质,很容易吸附农药。因此,对能去皮的蔬菜,应先去皮后再食用。 /p p style=" text-align: center " img title=" 2_副本.jpg" src=" http://img1.17img.cn/17img/images/201603/insimg/43cf9b52-179d-489f-b527-b8e4ac356874.jpg" / /p p   span style=" color: rgb(255, 0, 0) " strong  2、水洗 /strong /span /p p   一般蔬菜先用清水至少冲洗3-6遍,然后泡入淡盐水中再冲洗一遍。对包心类蔬菜,可先切开,放在清水中浸泡1-2小时,再用清水冲洗,以清除残附的农药。 /p p    span style=" color: rgb(255, 0, 0) " strong 3、碱洗 /strong /span /p p   先在水中放上一小勺小苏打,搅匀后再放入蔬菜。浸泡15分钟,把水倒出去,接着用清水漂洗干净。 /p p    strong span style=" color: rgb(255, 0, 0) " 4、用洗洁精洗涤 /span /strong /p p   用洗洁精稀释300倍先清洗一次,再用清水冲洗1-2遍,这样可去除蔬菜上的病菌、虫卵和残留的农药。 /p p    strong span style=" color: rgb(255, 0, 0) " 5、用开水烫 /span /strong /p p   对有些残留农药的最好清除方法是烫,如青椒、菜花、豆角、芹菜等,在下锅炒或烧前最好先用开水烫一下。据试验,可清除90%以上的残留农药。 /p p style=" text-align: center " img title=" 3_副本.jpg" src=" http://img1.17img.cn/17img/images/201603/insimg/b5cc65cf-9516-4089-a0af-80a9aa13599a.jpg" / /p p    span style=" color: rgb(255, 0, 0) " strong 6、阳光晒 /strong /span /p p   利用阳光中多光谱效应,会使蔬菜中部分残留农药被分解、破坏。这样经日光照射晒干后的蔬菜,农药残留较少。据测定,鲜菜、水果在阳光下照射5分钟,有机氯、有机汞农药的残留量损失达60%。对于方便贮藏的蔬菜,最好先放置一段时间,空气中的氧与蔬菜中的色酶对残留农药有一定的分解作用。购买蔬菜后,在室温下放24个小时左右,残留化学农药平均消失率为5%。 /p p    span style=" color: rgb(255, 0, 0) " strong 7、用淘米水洗 /strong /span /p p   用淘米水洗菜能除去残留在蔬菜上的部分农药。我国目前大多用甲胺磷、辛硫磷、敌敌畏、乐果等有机磷农药杀虫,这些农药一遇酸性物质就会失去毒性。在淘米水中浸泡10分钟左右,用清水冲洗干净,就能使蔬菜残留的农药成分减少。 /p p   没想到这些平时最爱吃的竟然是农药污染最严重的,还是要牢记这些清洗技巧,吃最干净放心的蔬菜。 /p p   看到这,实验室的部分妹子们可能会问: strong 蔬菜中的农药洗去容易,检测难,如何通过有效的实验方法准确地进行检测呢? /strong /p p strong    /strong 别担心,快来 strong a style=" color: rgb(255, 0, 0) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/application/" target=" _blank" span style=" color: rgb(255, 0, 0) " 行业应用 /span /a /strong 栏目 strong a style=" color: rgb(255, 0, 0) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S03004-T020-3-1-1.html" target=" _blank" span style=" color: rgb(255, 0, 0) " 食品检测 /span /a /strong 频道寻找答案吧! /p p /p
  • 云唐|动物疫病快速诊断仪可现场快速检测禽畜产品
    【山东云唐*新品推荐YT-DWYB】动物疫病快速诊断仪可现场快速检测禽畜产品|云唐→点击此处进入客服在线咨询优惠专区。山东云唐专业厂家自主研发生产农药残留检测、食品安全检测、植物生理等仪器仪表,品质保障,价格实惠,售后无忧,欢迎新老客户来电咨询!山东云唐智能让诚信为高质量发展护航,我们将努力提供更卓越的产品质量和更人性化的售后服务给广大客户,为社会创造更大的价值。动物疫病快速诊断仪可现场快速检测禽畜产品  动物疫病快速诊断仪,以其独特的优势,正逐渐在禽畜产品检测领域占据一席之地。这款仪器能够在现场快速准确地检测禽畜产品,大大提高了检测效率,为动物疫病的防控工作提供了强有力的技术支持。  传统的禽畜产品检测方法往往需要将样品送往实验室进行化验,这不仅耗时耗力,而且成本高昂。而动物疫病快速诊断仪的出现,彻底改变了这一局面。它采用先进的生物传感技术和智能算法,能够在短时间内对样品进行高效分析,准确识别出潜在的疫病风险。  在现场应用中,动物疫病快速诊断仪的操作简便快捷。检测人员只需将样品放入仪器中,按照操作提示进行操作,即可在短时间内获得检测结果。这不仅大大缩短了检测时间,还降低了对专业人员的依赖,使得更多的人员能够参与到疫病防控工作中来。  此外,动物疫病快速诊断仪还具有高度的灵敏性和准确性。它能够检测到极低浓度的病原体,有效避免了漏检和误检的情况。同时,仪器内置的智能算法能够对检测数据进行自动分析和处理,提高了检测结果的可靠性。  随着科技的不断进步和普及,动物疫病快速诊断仪将在未来发挥更加重要的作用。它不仅能够提高禽畜产品检测的效率和准确性,还能够为动物疫病的防控工作提供更加有力的支持。我们有理由相信,在动物疫病快速诊断仪的助力下,我们的禽畜产品将更加安全、健康,人们的生活也将更加美好。    动物疫病诊断仪适用于猪、鸡、鸭、羊、牛、牛奶等畜禽产品中动物疫病、兽药残留、有毒有害物质和抗生素残留的检测可广泛应用于食药监局、卫生部门、高教院校、科研院所、农业部门、畜牧兽医、养殖场、屠宰场、食品肉产品深加工企业、检验检疫部门等单位使用。  动物疫病诊断仪可现场快速检测猪蓝耳病毒、猪瘟病毒、黄曲霉毒素B1、猪伪狂犬病毒、猪伪狂犬病毒gE蛋白、猪口蹄疫3ABC蛋白、猪口蹄疫病毒IgG、猪细小病毒等快速检测、盐酸克伦特罗、莱克多巴胺、三聚氰胺、磺胺类、喹喏酮类、呋喃类、四环素类、孔雀石绿、黄曲霉毒素(B1,B2,G1,G2,M1,M2 )、疾病诊断、喹乙醇、已烯雌酚等。
  • 沃特世发布糖蛋白表征分析新技术
    沃特世将通过新型UPLC和UPLC-MS分析工作流程为蛋白糖基分析带来革命性转变 新型RapiFluor-MS标记试剂和样品制备方案将极大提升对蛋白N-糖进行分析和表征的速度、灵敏度以及简便性 华盛顿特区,2015年1月27日 – 沃特世(Waters?)公司(纽约证券交易所代码:WAT)今日隆重发布用于糖蛋白表征分析的开创性新技术。此技术将在WCBP 2015大会上介绍给公众,其内容包括新型GlycoWorks?RapiFluor-MS N-糖分析试剂盒、Waters?ACQUITY UPLC?、ACQUITY? UPLC FLR检测器和ACQUITY QDa?检测器,它们将帮助科学家们准确分析游离N-糖,使分析速度、灵敏度和简便性提升到更高水平,为科学家们提供前所未有的详细结构信息。 此项新型技术系列能够实现快速糖基释放和标记,可将工作流程中的样品制备时间从一天缩短至一小时以内;使表征和研发分析中的质谱检测灵敏度提升至当前方法的100至1000倍;还可为常规实验室提供简便可靠的方案支持,即使没有MS专家,也能顺利完成分析。“我们今天推出的新型技术为蛋白糖基分析带来了开创性的分析方法,它的出现意味着科学家们将能够对游离N-糖进行前所未有的监测和表征分析,”沃特世消耗品业务部门副总裁Mike Yelle说道,“这些全新的工作流程承担了过去专业且复杂的操作,实现了流程一体化,使科学家们和实验室在成功的道路上更近一步。” 大部分的生物治疗性蛋白质都是糖蛋白,且这些蛋白质上的特异性多聚糖群体是关键的品质属性,可对其功能、稳定性和治疗安全性概况产生影响。提交至监管机构的新药申报材料中必须包含其所含糖基侧链的详细结构信息,以及能够证明这些糖蛋白能够在生产过程中保持糖型谱图一致的信息。 支持糖蛋白工艺开发、监测和批量放行 对于从事生物治疗药物工艺开发、监测或批量放行研究的科学家们而言,全新的RapiFluor-MS标记技术与沃特世ACQUITY UPLC H-Class系统和QDa检测器的完美结合将开创游离N-糖谱图监测的新时代。沃特世所提供的试剂和方案在速度和灵敏度方面都具有非常突出的优势,将为用户带来更加简便的常规MS分析,ACQUITY QDa检测器可生成前所未有的详细信息,分析人员通过这些质量数数据即可轻松确认糖型。科学家们无需再依靠质谱专家和高分辨率的LC-MS仪器,即可对糖型分析进行方法开发、转换和执行过程中频频出现的问题作出确切的解答。此套工作流程可帮助生物制药组织更轻松地诊断问题、加快决策制定,更快速地将实验室中的分子变成药物推向临床领域。 对使用荧光检测技术的分析人员而言,将此款新型试剂盒与ACQUITY UPLC和ACQUITY UPLC FLR检测器联用时,样品制备时间可从一天缩短至一小时以内,同时荧光灵敏度也将得到有效提高。 支持蛋白糖基表征分析 蛋白糖基表征包括对连接到糖蛋白的所有多聚糖(无论其浓度有多低)进行鉴别,以及对这些多聚糖的分子结构进行确证。要高效地完成这项工作,需要UPLC-MS-MS仪器能够应对分析中的各项难题。 沃特世UNIFI?蛋白糖基分析应用解决方案于2013年推出,是更广泛的沃特世UNIFI生物制药平台解决方案的一部分,它配有高分辨率的UPLC/QTof-MS系统,可对生物制药研发实验室中以及受高度监管的后期开发和QC组织中的蛋白糖基侧链进行定性和监测。 现在,凭借RapiFluor-MS标记提供的高灵敏度,研究人员将获得更大的光谱和质谱响应值,这将有力促进低含量峰的准确质量数确认,提高MS/MS多聚糖碎裂性能,实现确定性更高的糖型指认。 此外,我们还推出了RapiFluor-MS葡聚糖校准曲线标准品和多聚糖性能测试标准品(基于混合IgG),用以支持系统性能的基准测试和执行基于葡聚糖单元数(GU)的蛋白游离糖基分析研究。沃特世公司率先将基于GU的葡聚糖校准曲线标准品保留时间归一化方法实现了商业化,此方法最初由来自爱尔兰国家生物工艺研究培训所(NIBRT)的Pauline Rudd教授提出。这种基于GU的方法使多聚糖的分析更加稳定,可以更轻松地在仪器之间和实验室之间实现UPLC-MS检测分析的转换。沃特世正在与Rudd教授及其在NIBRT的团队合作,开发全新的GU数据库,期望能够促进GU和GU+准确质量数多聚糖分配,这项工作将作为联合海报的主题于本年度的WCBP会议上展示。 更多信息: 有关GlycoWorksRapiFluor-MS N-多聚糖试剂盒的更多信息,请访问www.waters.com/glycans。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司通过提供实用、可持续的创新,使全球范围内的医疗服务、环境管理、食品安全、水质监测、消费品和高附加值化学品领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2014年沃特世拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 ### Waters、RapiFluor-MS、ACQUITY、ACQUITY UPLC、UNIFI、QDa和UPLC是沃特世公司的商标。
  • 孙士生:用糖蛋白质组学破译癌症的密码
    p   作为一名生长在齐鲁大地、深受儒家文化熏陶的青年学者,即便在海外求学多年,孙士生始终心系国家、情牵母校。伴随着时代的召唤,入选国家“千人计划”青年项目的孙士生毅然回到母校西北大学,希冀将他在美国掌握与研发的先进技术应用到西北这片广袤的大地上,以期为母校、为西北地区乃至为整个中国的科研水平真正实现与世界一流接轨尽一份力。 br/ /p p   “在我看来,在西部地区开展工作有一定的好处及空间,这里受到的外界诱惑和干扰应该会相对少一些,这份安静其实对于基础科学研究颇有助益。”对于未来,“我将继续在自己擅长的方向——糖蛋白质组学和生物标志物发现研究领域开展前沿研究”,为破译人类癌症的密码贡献力量。在接受《中国科学报》记者采访时,孙士生这样表示到。 /p p   和糖蛋白的缘分 /p p   2005年本科毕业后,孙士生进入西北大学攻读研究生,并在那里获得了硕士和博士学位。 /p p   “还在读大学的时候,我就对糖蛋白比较感兴趣。这个领域研究的人还比较少,但其实相当重要。当时教科书上关于糖蛋白的介绍还非常有限,从那时起我就开始注意搜集这方面的资料,没想到有一天还真的从事了这方面的研究。”孙士生回忆说。 /p p   糖蛋白是被聚糖共价修饰的一类蛋白质,糖蛋白上的寡糖链与肽链中的特定氨基酸残基侧链以糖苷键共价连接.糖蛋白普遍存在于动物、植物,真核微生物和各种病毒表面,种类繁多,功能广泛。其中N-连接的糖链合成起始于内质网,完成于高尔基体。其整个合成和分解过程受到各种酶类的特异催化和精确调控。其主要生物学功能为细胞或分子的生物识别,如人类ABO血型和精卵结合过程 另外,受体蛋白、肿瘤细胞表面抗原等亦均属糖蛋白。 /p p   近年来,科学界逐渐认识到,糖蛋白与很多疾病如感染、肿瘤、心血管病、肝病、肾病、糖尿病以及某些遗传性疾病等的发生、发展有关。再者,细胞表面的糖蛋白及糖脂可“脱落”到周围环境或进入血循环,它们可以作为相关组织或细胞异常的标志为临床诊断提供信息 患某些疾病时体液中的糖蛋白亦常有特异性或强或弱的改变,这些糖蛋白的发现和应用将有助于疾病诊断或预后的判断。 /p p   读研伊始,孙士生从事的是生物芯片方面的研究,“后来因为参与一个糖芯片检测流感病毒宿主范围的项目,我有幸进入了糖蛋白的研究领域,或许这就是缘分吧”,孙士生说。 /p p   2011年,从西北大学毕业后,孙士生选择前往美国约翰· 霍普金斯大学Dr. Hui Zhang实验室做博士后,继续从事糖蛋白质组的方法学和生物标志物发现研究。 /p p   Dr. Zhang建立了经典分析糖蛋白方法,这在世界上属于蛋白质组学领域的权威。他所领导的实验室,有着很多国际前沿的技术和研究。有幸在这样的实验室工作,孙士生深觉受益匪浅。 /p p   “在国外,感触比较深的一点是,国外做科研,比较强调原创性。在美国,张老师会说,这个领域已经有人在做,而且做得不错,我们应该选择一些新的领域去探索。很多学者认为别人没做过的研究会更困难,其实不然,正是因为没人做过,发挥的空间才会更大”。 /p p   糖蛋白组学意义重大 /p p   在美多年,孙士生所做的诸多研究也产生了不小的国际影响力。 /p p   孙士生介绍说,随着蛋白质组学研究的日益成熟和规模化,蛋白翻译后修饰谱成为了新的研究焦点。蛋白糖基化修饰作为最重要、最普遍的蛋白质翻译后修饰之一,主要参与细胞间识别、调控、信号传导、免疫应答、细胞转化和疾病的发生发展。而系统高通量的糖蛋白质组研究方法是蛋白糖基化分析的基础。在美期间,他在Dr. Zhang建立的经典分析糖蛋白方法基础上,通过改变分析策略,创建了一种全面系统分析N-糖蛋白质组的新方法。该方法可广泛应用于肿瘤标记物筛查,蛋白抗体、病毒以及其他各种生物样品中的蛋白糖基化分析。同时,孙士生还建立了一些其他基于质谱分析的糖蛋白质组学新方法。 /p p   在蛋白质组/糖蛋白质组学在疾病生物标记物和致病机理研究中的应用方面,孙士生也取得了一定的进展。他与合作者将蛋白质组/糖蛋白质组相关方法学成功应用于各种临床样本分析中。其应用范围包括:人流感病毒、艾滋病病毒(HIV)及其感染的细胞和宿主,不同年龄和性别的人唾液,肝癌细胞系和HCC病人血清,前列腺癌细胞系、组织和血清,卵巢癌细胞系和组织、肺癌细胞系模型和肾衰竭动物模型。 /p p   “其中值得一提的是,我在博士后期间作为样本制备主要负责人之一参与了美国临床蛋白质组肿瘤分析(CPTAC)项目。我所在的实验室是全美参与此项目的五个核心实验室之一。在此项目中,我一直负责实验室内样品分析方法的建立,标准流程的制定,样品制备,质量监控和问题解决。目前已顺利完成本轮所有临床样本的蛋白质组和糖蛋白质组图谱的解析,其中蛋白质组的研究成果已在Cell杂志发表”,孙士生说。 /p p   回国的“青年千人” /p p   梁园虽好,终非故土。在美国学习和工作多年后,孙士生最终选择回到西北大学,并在2017年顺利获得了中组部 “千人计划”青年项目的资助。 /p p   “我选择回西北大学,很大程度上是出于对母校的热爱。这儿有我老师、同学和朋友的帮助和支持。有着悠久历史的西北大学近年来综合实力也在蒸蒸日上”,孙士生指出,西北大学学术氛围相对自由,对青年学者没有设置太多限制,“选择西北大学,也有这方面的考量。” /p p   回到母校后,孙士生希望能将本人所学,特别是他在糖蛋白质组学及新的肿瘤标志物发现等领域所积累的研究经验及学术成果服务于祖国,同时将母校建设的更好。 /p p   展望未来,孙士生表示,他将继续致力于糖蛋白质组学新技术的开发并将其应用于新的生物标志物发现、致病机制研究和蛋白糖基化调控机制研究中。他已针对这些设想制定了详细的工作计划。 /p p   孙士生表示,蛋白质组研究技术在癌症、早老性痴呆等人类重大疾病的临床诊断和治疗方面具有诱人的应用前景。糖类作为重要的生物大分子之一,参与各种重要的生物学过程。然而系统糖生物学研究包括系统的糖链解析、高通量的糖蛋白和糖脂分析等才刚刚起步:“在中国从事这方面的研究,必然会大有可为。” /p p br/ /p
  • 葡萄糖中钠、钾元素对人体的作用
    什么是钠、钾元素?钠是细胞外液中带正电的主要离子,参与水的代谢,保证体内水的平衡,调节体内水分与渗透压;维持体内酸和碱的平衡;钠对ATP的生产和利用,肌肉运动,心血管功能,能量代谢都有关系,此外糖代谢,氧的利用也需要钠的参与;同时钠可以维持血压正常,增强神经肌肉兴奋性。与钠相对,人体中的钾主要(95%以上)在细胞内部,是细胞液中主要的正离子。钾参与糖类、蛋白质的正常代谢。葡萄糖和氨基酸经过葡萄细胞膜进入细胞合成糖原和蛋白质是必须有适量的钾离子参与;维持细胞内正常渗透压,由于钾主要存在于细胞内,因此钾在细胞内渗透压的维持中起着主要作用;维持细胞内外正常的酸碱平衡,钾代谢紊乱时,可影响细胞内外酸碱平衡。钾和钠一起作用,维持体内水分的平衡和心律的正常(钾在细胞内起作用,钠在细胞外起作用);钾和钠平衡失调时会损害神经和肌肉的机能。 实验 本实验根据中国药典2020年版四部通则0406来进行,采用日立ZA3000原子吸收分光光度计进行测试。实验过程:1.复方乳酸钠葡萄糖注射液中钠元素测定配置0μg/ml,2μg/ml,2.5μg/ml,3μg/ml,3.5μg/ml,4μg/ml浓度的标准溶液,同时提取注射液样品中的钠元素,标准溶液及样品液制备完成后,上机进行测试。喷入空气-乙炔火焰,在高温火焰中形成的钠基态原子对钠特征谱线进行吸收,在一定吸光值范围内,其吸光度值和钠的浓度成正比。测试结果: 2.葡萄糖氯化钠钾注射液中钠元素测定配置0μg/ml,0.9μg/ml,1.35μg/ml,1.8μg/ml,2.25μg/ml,2.7μg/ml浓度的标准溶液,同时提取注射液样品中的钠元素,标准溶液及样品液制备完成后,上机进行测试。喷入空气-乙炔火焰,在高温火焰中形成的钠基态原子对钠特征谱线进行吸收,在一定吸光值范围内,其吸光度值和钠的浓度成正比。测试结果: 3.复方葡萄糖电解质MG3注射液中钾元素测定配置 0μg/ml,1.5μg/ml,2.25μg/ml,3μg/ml,3.75μg/ml,4.5μg/ml浓度的标准溶液,同时提取注射液样品中的钾元素,标准溶液及样品液制备完成后,上机进行测试。 喷入空气-乙炔火焰,在高温火焰中形成的钾基态原子对钾特征谱线进行吸收,在一定吸光值范围内,其吸光度值和钾的浓度成正比。 测试结果:结论本次实验对注射液中提取的钠、钾元素进行测试。结果表明,日立ZA3000可以对特征波长589nm的钠元素和766.5nm的钾元素进行准确稳定的分析,测试结果不受注射液中其它共存物质的背景影响,方法稳定可靠。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 国科大发表蛋白质糖基化与人类重大疾病发生机制综述文章
    蛋白质糖基化是目前在高等真核生物中发现的最普遍、最重要的蛋白质翻译后修饰方式之一,该类修饰涉及聚糖与蛋白质分子的连接,是蛋白质分子正确折叠、维持稳定、参与互作和细胞黏附等活动所必需的。异常的糖基化修饰会导致多种人类重大疾病的发生,如白血病(leukemia)、胰腺功能障碍(pancreatic dysfunction)、阿尔茨海默病 (Alzheimer’s disease, AD)等。由于糖基化的复杂性,研究难度大,相关领域研究起步较晚,研究结果还不尽完善。中国科学院大学博士生导师、教授郎明林课题组发表了蛋白质糖基化与人类重大疾病发生机制综述,该研究通过探索葡萄糖的调控角色,突出了葡糖转移酶的功能结构特性及其对人类健康和疾病的影响,有利于学界认识葡萄糖修饰的重要性。  在动物胚胎神经系统的发育过程中,Notch蛋白对决定细胞未来命运发挥重要作用;其在成人大脑,特别是海马组织等高突触可塑性区域表达。多种证据表明,Notch1参与了神经元凋亡、轴突回缩和缺血性脑卒引起的神经退行性病变。葡萄糖基化是调控Notch受体S2切割,细胞表面展示、转运,以及EGF重复序列稳定性的重要修饰。由于Notch受体发挥正常功能需要糖基化修饰,其修饰缺陷会引起γ分泌酶(该酶参与淀粉样前体蛋白APP切割形成Aß分子)对Notch的切割,可能参与AD发病的机制。Notch蛋白保守的表皮生长因子EGF-like重复序列的葡萄糖基化由O-葡糖基转移酶POGLUTs催化完成,该酶通过KDEL-like信号驻留于内质网中。POGLUTs不仅具有葡萄糖基转移酶活性,还具有连接木糖至EGF保守重复序列的木糖基转移活性,而这些酶活特性的实现取决于内质网内糖的浓度水平和酶的构象变化。此外,POGLUTs通过Notch蛋白和转化生长因子β1(TGF-β1)信号,操纵了正常细胞周期循环或增殖所需的周期蛋白依赖性激酶CDKIs的表达。已有研究发现,POGLUTs异常过度或下调表达均会导致一些严重的并发症发生,如肌肉萎缩症、白血症、肝功能障碍等。POGLUTs通过控制不同CDKIs的表达,可发挥对细胞增殖诱导和抑制的双重作用。该研究评述有利于学界更深入地了解葡萄糖在当前糖生物学、癌症和细胞通信等研究领域中扮演的角色。  相关研究成果以Structure, Function, and Pathology of Protein O-Glucosyltransferases为题,在线发表在Nature子刊Cell Death & Disease上。国科大生命科学学院博士生Muhammad Zubair Mehboob为论文第一作者,郎明林为论文通讯作者。研究工作得到生物互作卓越创新中心、国家自然科学基金、北京市自然科学基金、河北省应用基础研究计划重点基础研究项目和河北省百名创新人才计划项目的支持。  论文链接
  • 市场监管总局发布2021年第40号通告,7批次食品抽检不合格,生物毒素、农残等问题依然突出
    近期,市场监管总局组织食品安全监督抽检,抽取粮食加工品、食用农产品、食糖、茶叶及相关制品、乳制品、饮料、酒类、糕点、炒货食品及坚果制品、饼干、淀粉及淀粉制品、方便食品、薯类和膨化食品、蛋制品、蜂产品、罐头、蔬菜制品、水果制品、肉制品、水产制品、调味品、速冻食品、糖果制品、婴幼儿配方食品、保健食品、特殊膳食食品和食用油、油脂及其制品等27大类食品307批次样品,检出其中食用农产品、炒货食品及坚果制品、方便食品、蔬菜制品和水果制品等5大类食品7批次样品不合格。发现的主要问题是,生物毒素、农兽药残留超标、重金属污染、食品添加剂超限量使用、质量指标不达标等。产品抽检结果可查询https://spcjsac.gsxt.gov.cn/。   对抽检发现的不合格食品,市场监管总局已责成北京、上海、江苏、浙江、江西、山东、广东、海南、重庆、陕西等省级市场监管部门立即组织开展核查处置,查清产品流向,督促企业采取下架召回不合格产品等措施控制风险;对违法违规行为,依法从严处理;及时将企业采取的风险防控措施和核查处置情况向社会公开,并向总局报告。   现将具体情况通告如下:   一、生物毒素问题   重庆市锦江麦德龙现购自运有限公司重庆南岸商场销售的、标称益海嘉里家乐氏食品(上海)有限公司进口的、家乐氏公司泰国瑞阳工厂生产的家乐氏可可球即食谷物(原产国:泰国),其中黄曲霉毒素B1检测值不符合食品安全国家标准规定。检验机构为重庆海关技术中心。上海市浦东新区市场监管局对益海嘉里家乐氏食品(上海)有限公司作出行政处罚,没收违法经营产品27672盒,没收违法所得44.5万元,罚款人民币1837万元。   二、农兽药残留超标问题   (一)北京诚惠凯旺商贸中心销售的、来自山东省聊城市莘县永旺食品有限公司的乌鸡,其中甲氧苄啶残留量不符合食品安全国家标准规定。检验机构为南京市食品药品监督检验院。   (二)海南旺豪阳光实业有限公司销售的、来自海南省海口市琼山区凤翔蔬菜批发市场(供应商:林佳俊)的长豆角(豇豆),其中甲氨基阿维菌素苯甲酸盐、克百威、啶虫脒残留量不符合食品安全国家标准规定。检验机构为江西省食品检验检测研究院。   三、重金属污染问题   淘宝网庄稼人干货铺(经营者为江苏省泰州市兴化市靖宇食品经营部)在淘宝网(网店)销售的、标称江苏省泰州市兴化市绿宝食品有限公司制造的芹菜粉,其中铅(以Pb计)检测值不符合产品执行标准要求。检验机构为合肥海关技术中心。   四、食品添加剂超限量使用问题   (一)天猫春江月食品旗舰店(经营者为浙江省杭州春江月食品有限公司)在天猫商城(网店)销售的、标称浙江省杭州春江月食品有限公司销售的、浙江省杭州果乐缘食品有限公司(分装)的乌梅(李子制品),其中亮蓝、苋菜红、相同色泽着色剂混合使用时各自用量占其最大使用量的比例之和检测值不符合食品安全国家标准规定。检验机构为成都市食品检验研究院。   (二)天猫向兴旗舰店(经营者为江西省天策教育咨询有限公司)在天猫商城(网店)销售的、标称广东省揭阳市揭西县盛华园食品厂分装的天山乌梅,其中亮蓝、苋菜红检测值不符合食品安全国家标准规定。检验机构为成都市食品检验研究院。   五、质量指标不达标问题   淘宝网老孙家炒货食品(经营者为陕西省西安市莲湖区老孙家炒货经销部)在淘宝网(网店)销售的、标称陕西省西安市莲湖区佳万食品有限公司委托陕西老孙家炒货食品有限公司生产的兰花豆,其中酸价(以脂肪计)检测值不符合食品安全国家标准规定。检验机构为河北省食品检验研究院。   特此通告。   附件:   市场监管总局    2021年10月8日
  • 沃特世将在WCBP推出业内首台蛋白质、多肽、多聚糖分析平台
    1月28日,沃特世公司(NYSE:WAT)在2013年生物精神病学世界大会(WCBP 2013)专题报告会上再次强调了他们将推进生物治疗表征技术的承诺。更具体地说,沃特世在当天推出了一款扩展的使用UNIFI® 的生物制药解决方案平台,新的ACQUITY 平台性能卓越,可利用 LC® (UPLC® )CSH130 C18 和 XSelect™ HPLC CSH130 C18 色谱柱分析肽图并可运用三GlycoWorks™ 试剂盒进行多聚糖标记和样品制备。   这些创新表明沃特世持续专注于为正在研发生物治疗药物和生物仿制药物的科研人员及相关的合作实验室或机构开发有针对性的解决方案。这些新产品将进一步促进常规化学疗法的分析,特别是除精细蛋白和多肽水平结构分析外的糖蛋白的多聚糖修饰成分分析。在整个研发制造过程中运用更快、更精确的糖基化知识,生物制药企业能够更大程度地获得分子水平上的关键性质量控制。这也是达到更好监管生物治疗药物安全、有效这一目标的内在需求所要求的。   沃特世集成UNIFI的生物制药解决方案平台   该生物制药解决方案平台汇集了HPLC/MS表征技术和UNIFI的科学信息系统,是第一个可进行完整的蛋白质质量分析,肽图绘制和常规生物分离的平台。今天,沃特世扩展的解决方案已可支持一个网络工作组实验室中的混合四级杆飞行时间质谱(Q-TOF)和光学检测仪器的运行。该UNIFI的部署能力基于系统可指导生物制药公司调节或不调节实验室环境,并在整个生产和质量体系控制的全程灵活地采用高分辨率的UPLC和高性能质谱进行生物分离和分析。   最新发行的多聚糖应用工作手册扩展了该平台的功能,可通过荧光检测器支持常规的多聚糖检测和分析。结合高性能UPLC的HILIC(亲水作用色谱法)分离,沃特世的校准标准物质和试剂,以及NIBRT/沃特世 GlycoBase 3+ UPLC 多聚糖单元参考数据库可对多聚糖进行定性、定量和定型。   爱尔兰国家生物处理研究与培训学院(NIBRT)教授Pauline Rudd率领的研究小组开发的GlycoBase 3+ 数据库是世界首个多聚糖色谱保留值的资料库,采用葡萄糖校准单元表示,涵盖了与现代生物治疗糖蛋白相关的多种不同结构的多聚糖类型。   当前基于UNIFI的生物制药解决方案平台具有的特点是:   ACQUITY UPLC H-Class和H-Class生物系统具有生物惰性流路并附带自动混合的四元溶剂处理技术,在执行高分辨率的生物分离时具有很大的灵活性   沃特世的肽、蛋白质和多聚糖色谱柱分离技术,利用生物分子的特性设计选择性并通过QC测试来确保达到预期结果   沃特世提供的生物制药的分析标准物质和试剂确保了SEC(尺寸排阻色谱法)及多聚糖分离校准系统、系统整体质量的检查标准、肽图和释放多聚糖流程的准确性   Xevo® G2-S Q-T质谱仪,一款高灵敏度、定性定量精确的台式质谱系统配备了沃特世专利的StepWave™ 离子光学技术,一种独特的离轴离子源技术,可为质谱提供顶级的灵敏度和优良的重现性   UNIFI科学信息系统,一种交互、工作流驱动的数据平台可进行灵活的仪器控制,先进的数据处理及出具综合性报告,通过GxP的实验室兼容性可实现工作站内的常规部署或工作组的实验室配置   GlycoBase 3+数据库,史无前例的色谱保留位置资料库记录了与一系列生物治疗药物相关联的以葡萄糖为单元的多聚糖结构。
  • 我国科学家研发癌胚硫酸软骨素修饰的蛋白多糖检测技术用于泛癌检测
    癌症的早期检测是癌症患者提高长期生存率和降低死亡率的最有希望的方法之一。目前,可用的癌症筛查生物标志物主要用于检测特定癌症类型(单一器官筛查),难以实现不同种癌症的早期诊断。因此,需要开发通用或多器官癌症(泛癌)的筛查工具。  近日,来自中山大学肿瘤防治中心的研究团队在《Nature Communication》期刊上发表题为“Establishment and validation of a plasma oncofetal chondroitin sulfated proteoglycan for pan-cancer detection”的研究论文。该研究针对癌胚硫酸软骨素 (ofCS)修饰的蛋白多糖 (PGs),建立可用于泛癌检测的筛查方法。  ofCS通常仅存在于胎盘的滋养层细胞中,但是却在癌症患者中被大量发现。该研究团队针对ofCS及其修饰的CD44、CSPG4和SDC1蛋白建立了ELISA检测体系。该研究首先对302例健康人和165例6种不同癌症患者进行分析,结果显示癌症患者血浆中的ofCS和ofCSPGs显著高于正常人(P值为1.2×10-2至4.4×10-10)。随后在验证队列中共纳入了11854例健康人和2681例癌症患者,其中涵盖了11种恶性肿瘤。研究发现ofCS-CD44可有效区分其中9种癌症,且血浆中ofCS-CD44 最高十分位数的个体相比最低的20%,有超过27倍的癌症风险(OR = 27.8,95%CI = 18.8–41.4,P =2.72×10−62)。此外,在泛癌的早期阶段可以检测到血浆CS-CD44 的升高,具有很强的剂量依赖性优势风险预测。  该研究建立针对ofCSPs的泛癌检测方法,能有效鉴别健康人和癌症患者,无需特异的癌症生物标志物进行逐个筛查,且该方法在多种癌症的早期筛查及预后中也具有良好效果,可为现今癌症的早期快速筛查提供一种新的技术手段。  注:此研究成果摘自《Nature Communication》杂志,文章内容并不代表本网站的观点和立场,仅供参考。
  • 益力多100克产品含糖16克 被指含糖量太高
    味道酸中带甜的益力多,喝一小瓶已等于吃了三粒方糖。昨日有报道称,香港消费者委员会和食物安全中心联合检测发现,在香港市面销售的80款饮料中,以每百克(毫升)为单位计算,乳酸菌饮料含糖量最高,其中益力多为每100克(一瓶的净重)含16克糖。   营养专家表示,长期、过多食用含糖量高的食品,容易造成肥胖、高血脂、高血压及蛀牙等疾病。   检测结果   一百克产品含糖十六克   香港方面的检测结果显示,在广州也相当畅销的“益力多”、“芬达”汽水和“维他”柠檬茶等,均被指含糖量太高。其中益力多为每100克含16克糖 “维他”柠檬茶检测结果为每100克中含有13克糖。香港有关方面调查发现,被检出含糖最高的益力多,喝一小瓶就等于吃下三粒方糖,成年人每日喝四瓶就超过人体摄取上限。   中山大学营养学教授蒋卓勤表示,糖分本是人体所必需的营养成分之一,摄入过多并不会造成食品安全问题。但是长期食用含糖量较高的食品,容易造成肥胖、高血脂、高血压、心血管及蛀牙等问题。尤其是儿童方面,因为益力多等乳酸菌饮品口感颇佳,小朋友容易贪饮而造成过量,从而导致蛀牙等。   益力多   七十年配方不会轻易改   对于在香港被指含糖量高一事,广州益力多乳品有限公司(下称广州益力多)负责人徐小姐昨日回应称,此次检测的是香港益力多公司供应的产品,广州益力多生产的产品主要供广东市场。另外,广州益力多与香港益力多产品配方接近,但含糖量稍有不同。“香港益力多每100克含糖量接近16克,但广州的是每100克含糖14.8克。”徐小姐还表示,粤、港两地的产品之所以含糖量不同,主要是因为两地消费者对产品口味的喜好不同。   徐小姐称,益力多在全球30多个国家都有销售,总体来说配方的差别不大。“我们的配方是经过技术研发和市场调研后最终确立的,目前这个配方已经使用了70多年了,配方不会轻易改动。”徐小姐强调。   对于此前有报道称香港益力多将考虑向日本总部研究配方调整的说法,徐小姐予以否认。   那么,益力多公司在制定产品配方时,是否曾考虑到含糖量高的问题?徐小姐对此回应,乳酸菌产品的发酵需要糖分,另外乳酸菌产品一般都会偏酸,若不加一定数量的糖,消费者会难以接受产品。对于量的问题,其表示公司已在产品外包装上标注“食用方法是每天一瓶”。   内地相关法规存在真空 乳酸菌类产品未限含糖量   对于饮品或食品中的含糖量,在内地目前并不是必检项目。   市民李小姐是忠实的益力多产品消费者,作为地道广州人的她将此饮品作为日常必备之物。“不敢说每天都喝,但几乎每个星期都会喝啦”。记者昨天走访市场发现,包括家乐福、好又多等各大超市在内,益力多乳酸菌饮品销量十分可观。   对于此次香港方面检测出益力多糖分含量高的问题,记者采访了广州市质量技术监督局及广州市工商局相关负责人。市质监局负责人表示,根据我国最新乳酸菌类产品的相关标准,“糖分含量”并不作为规定的必检项目,同时,国家标准中也未对糖分含量值做出明确规定。市工商局消保处处长张伟健表示,工商方面对于乳制品的检测,主要集中在直接涉及人体安全问题的项目,例如添加剂等,糖分含量并不在日常检测范围。
  • 可口可乐回应饮料致癌:所用焦糖色素不会致癌
    美国一家消费者组织(CSPI)近日发布一份研究报告,称可口可乐及百事可乐等其他饮料食品采用的焦糖色有致癌成分。美国饮料协会、美国食品饮料和消费者制造商协会对此发表了正式驳斥和澄清声明。昨天,可口可乐公司也发布声明称:焦糖色绝不会致癌。   “我们的饮料是完全安全的”,可口可乐公司对公众利益科学中心(CSPI)回应表示,CSPI很不负责任地在声明中质疑我们饮料中所使用的焦糖色的安全性,并无端挑起消费者对癌症的担忧。“事实上,研究表明,我们产品中使用的焦糖色不会导致癌症,而且也不含有CSPI所声称的2-MEI”。   可口可乐表示,微量的4-MEI存在于大量的食品和饮料中,包括可口可乐。通常烹饪过程中发生“褐变反应”就会形成4-MEI,甚至在普通人的厨房里,也会产生4-MEI.   美国饮料协会的声明称:4-MEI并不对人类健康构成威胁,4-MEI几乎是无处不在,多种食物和饮料中都有轻微含量。这家协会甚至表示,此次关于禁用4-MEI的呼吁,不过是“某一家长期致力于攻击食品和饮料行业的倡导组织又一次企图威吓消费者而已”。   针对美国公众科学中心(CSPI)日前发布的关于可口可乐及百事可乐以及其他饮料公司产品中广泛运用的焦糖色素可能致癌的报告,可口可乐公司以及美国饮料协会、美国食品饮料和消费品制造商协会纷纷发表声明驳斥,称饮料中使用的焦糖色并不会导致癌症,并指责CSPI的报告“不负责任”。   据17日刊出的英国《每日邮报》、香港《联合早报》等报道,CSPI在一份研究报告中指出,可口可乐和百事可乐所含的两种焦糖成分可能引发癌症风险,应该被禁用。引发他们担忧的成分是人工合成的褐色色素焦糖色素。研究人员指出这种色素可导致数千人患上癌症。   CSPI警告说,虽然美国当局一直准许使用焦糖人造色素,但这两种人造焦糖色素成分与在家中使用平底锅将糖煮融成焦糖不同,它是由糖、阿摩尼亚及亚硝酸盐在高压高温下产生化学作用而成,过程中会产生2-MI和4-MI两种化学物。美国有研究证实2-MI和4-MI会令实验室老鼠罹患肺癌、肝癌、甲状腺癌或白血病。CSPI成员之一的一名加州大学研究员更指出在五款不同品牌的可乐产品中,发现明显的4-MI。因此CSPI督促美国食品药品监督管理局,应禁止在深色饮料中对氨焦糖的使用。   对此,可口可乐公司昨日向媒体发表回应表示:“我们的饮料是完全安全的”,并指责CSPI的推断完全没有依据。   “CSPI很不负责任地在声明中质疑我们饮料中所使用的焦糖色的安全性,并无端挑起消费者对癌症的担忧。CSPI一直宣称是服务于大众的非政府组织,但此举却是对公众的损害而非服务。事实上,研究表明,我们产品中使用的焦糖色不会导致癌症,而且也不含有CSPI所声称的2-MEI。微量的4-MEI存在于大量的食品和饮料中,包括可口可乐。事实上,通常烹饪过程中发生"褐变反应"就会形成4-MEI,甚至在普通人的厨房里,也会产生4-MEI。”可口可乐称,“CSPI对人类健康和癌症的推断是完全没有依据的。我们有责任质疑Jacobson先生的声明,并让公众了解事实真相。”   同时,美国饮料协会(ABA)对CSPI的报告发表了措辞严厉的声明,称:“4-MEI并不对人类健康构成威胁。没有任何证据表明4-MEI会导致人类癌症。世界各地的任何健康监管机构,包括美国食品和药物管理局在内,均未曾表示4-MEI是一种人类致癌物。此次关于禁用4-MEI的呼吁,不过是某一家长期致力于攻击食品和饮料行业的倡导组织又一次企图威吓消费者的行为而已。”   而美国食品饮料和消费品制造商协会(GMA)也立刻做出声明回应表示:“很多食品及饮料中含有微量4-MEI。并没有证据表明4-MEI引发癌症,或者会给人类带来其他的健康隐患。此外,全世界没有一个健康监管机构,包括食品及药物管理局在内,指出4-MEI是一种已知的对人类有害的致癌物质。   针对国外机构有关焦糖色素致癌的研究报告,可口可乐公司予以否认。记者昨天从各大超市获悉,可乐系列产品销售正常,未见明显变化。
  • 全球血糖监测市场2017年将达到120亿美元
    近几十年来,许多医疗技术公司都试图通过各种方式让糖尿病患者更容易地监测血糖水平,但是最终收效甚微。现在,世界上最大的几家移动技术公司也决定加入这个队伍。据几位知情人士透露,苹果、三星和谷歌都在研发能够监测血糖的应用,这有助于让包括智能手表和腕带在内的可穿戴技术产品从&ldquo 新奇事物&rdquo 转变为&ldquo 必需品&rdquo 。   消息人士表示,这些公司都在大举招聘医学界的科学家和工程师,以应对美国监管机构未来的监管,发展具备血弹监测功能的可穿戴设备。   市场研究公司GlobalData指出,科技公司的首轮技术可能功能有限,但是最终它们有能力在全球血糖监测市场同传统公司展开竞争,这个市场到2017年规模将达到120亿美元。   美国有2900万名糖尿病患者,2012年的医疗费用达到2450亿美元,较五年之前增长了41%。为了测量血糖情况,许多患者每天不得不10次刺破自己的手指。   非侵入式技术的发展让多种血糖监测方式成为可能,电力或是超声波都可以穿过皮肤测量到患者的血糖水平。例如,可以用一束光透过患者的皮肤,再通过光谱仪分析他们血液中的血糖含量。   &ldquo 手机上的血糖监测是一个非常大的需求,&rdquo 强生公司前首席科学官约翰· 史密斯(John Smith)表示,&ldquo 把这个功能搞定,将获得巨大的回报。&rdquo   苹果、三星和谷歌均拒绝对此事置评,但是美国食品与药物管理局(FDA)化学和毒理学设备部门主管考特尼· 莱尔斯(Courtney Lias)表示,移动设备和血糖监测的&ldquo 联姻&rdquo 将&ldquo 带来天堂&rdquo 。   据FDA的总结报告显示,去年12月苹果的高管和该机构就血糖监测仪的监管展开了探讨:这种设备如果只是用于营养保健,那么它则可以不受监管 但是假如向糖尿病患者进行销售,它将作为&ldquo 医疗设备&rdquo 受到管理。   因此科技公司可能会开始关注非医疗应用,如健康和教育应用。就连教育设备都需要从当前的技术中获得突破,更不用说医疗领域的产品了。一些医疗行业业内人士表示,那些刚闯入医疗世界的科技公司,根本不懂这个领域面临的核心挑战。   非侵入方式测量血糖&ldquo 是个葬送所有努力的墓地&rdquo ,DexCom首席执行官特伦斯· 格雷格(Terrance Gregg)说道,这是一家以微创技术闻名的公司。这方面的成功需要&ldquo 数亿美元,甚至是十亿美元的投入。&rdquo 他说。   偷偷侵入   硅谷已经做好了打开鼓鼓的钱包的准备。   美敦力负责医药技术的高级副总裁史蒂芬· 欧斯特勒(Stephen Oesterle)表示,谷歌将成为医疗设备公司的强大对手,这家科技巨头为此投入了巨额的资金。   &ldquo 美敦力每年在研发上投入15亿美元,资金主要用于 开发 ,&rdquo 欧斯特勒在一次会议上表示,&ldquo 谷歌每年在研发上的支出为80亿美元,据我所知,它的资金主要用于 研究 。&rdquo   谷歌已经公布了它的计划:该公司表示已经研发出能够监测血糖水平的&ldquo 智能&rdquo 隐形眼镜。谷歌在一篇博文中表示,该设备通过一套LED系统,用小灯闪烁的方式对用户血糖过高或过低进行警告。谷歌最近表示,它正在寻求合作伙伴,把这款隐形眼镜推向市场。   这款用微型芯片和传感器监测眼泪中血糖水平的设备看起来距离商用还有很远,一些怀疑者甚至认为产品尚未完成。   此前非侵入方式一直无法做到准确测量血糖,它们被人体运动、水化作用的波动和温度等因素影响。虽然眼泪中也有低浓度的血糖,不过它们更加难以追踪。   但是据一位要求匿名的谷歌前员工表示,Google X实验室下属的生命科学团队已经在隐形眼镜上取得了类似无人驾驶汽车那样重大的突破。   据供应链人士透露,苹果旗下首款可穿戴设备iWatch将在今年10月发布。但是目前尚不清楚第一代产品中是否拥有血糖监测功能。   不过,苹果已经聘请了不少来自Masimo这样医疗技术公司的高管和生物工程师,该公司还收购了血糖监测初创公司C8 Medisensors。   Mediwise首席执行官乔治· 帕里卡洛斯(George Palikaras)表示:&ldquo 苹果挖走了许多血糖监测方面的人才。&rdquo Mediwise是一家致力于通过发射透过皮肤的无线电波监测血糖水平的初创公司。   这些科技公司也正在获得市场主流的注意。&ldquo 谷歌发布智能隐形眼镜的时候,是我职业生涯中最快乐的一段时光,我的公司开始收到大量电子邮件。&rdquo 帕里卡洛斯说道。   三星是最早生产智能手表的公司之一,但是这款产品最终没能带动潮流。现在三星发布了名为SiMBAnd的移动健康平台,该平台支持智能腕带和其他移动设备。   目前三星正在寻求合作伙伴,并允许开发者尝试不同的传感器和软件。据一位不愿透露姓名的三星员工表示,公司正在研发无创式血糖监测设备。   消息人士表示,三星正在与初创公司合作,为未来的Galaxy Gear智能手表开发&ldquo 红绿灯&rdquo 系统,通过闪烁的灯向用户发出血糖警告。   三星风投已经在这个领域进行了多笔投资。例如,三星通过旗下总资本5000万美元的&ldquo 数字健康基金(Digital Health Fund)&rdquo 向以色列糖尿病服务平台Glooko投资700万美元。   风投公司Claremont Creek Ventures的医疗健康投资人泰德· 德里斯科尔(Ted Driscoll)表示,他近期收到了十几家血糖监测初创公司的投资请求。   软件开发商表示,它们希望把血糖监测数据合并到健康应用中,这将引起运动员和有健康意识的用户的兴趣。   &ldquo 我们正在抓紧研究血糖对于减肥的影响。&rdquo 知名减肥应用MyFitnessPal的联合创始人迈克· 李(Mike Lee)表示。   走了几十年的弯路之后,开始有医学家相信人们终将突破血糖监测这个瓶颈。现在人类有能力更快地测试复杂的想法,传感器的小型化、低成本的电子产品和移动设备的快速扩散,都是这个领域难得的机遇。   已经卸任的三星前高级产品经理杰伊· 萨布哈什(Jay Subhash)就是其中的一位乐观主义者,他表示:&ldquo 假如那一天真的到来,我不会感到太惊讶。&rdquo
  • “冰糖心”好吃!苹果:不,这是病,得治!
    苹果水心病又称糖化病、蜜果病。我国的西北黄土高原和秦岭高地果区的元帅系和秦冠苹果受害严重,果实品质变劣,不耐贮藏,是一种苹果生理病害。 患水心病的苹果。图片来源:百度百科相关报道指出,苹果植物中从叶子转移到果实的主要碳水化合物是山梨糖醇。为了解苹果果实成熟过程中的碳水化合物代谢,了解水果中可溶性碳水化合物的分布似乎很重要,特别是山梨糖醇和蔗糖,因为山梨糖醇可能是水果中其他碳水化合物生物合成的原始基质,而且在植物组织中蔗糖必须由单糖生物合成。此外,由于已经有报道指出山梨糖醇可能与苹果果实中水心病的发病有关,果肉中山梨糖醇分布的可视化可以使人们了解水心病发病的机理。日本北海道大学农业研究院的科研人员使用基质辅助激光解吸电离飞行时间质谱成像(MALDI-TOF MSI)对成熟苹果的果实进行了相关研究,该研究建立了一种使用MALDI-TOF MSI可视化苹果果肉样品上可溶性碳水化合物分布的方法。 提到MALDI质谱成像技术,就不得不说一说融智生物QuanTOF质谱成像系统。融智生物于2017年推出QuanTOF质谱成像系统,该系统集合了新一代宽谱定量飞行时间质谱平台QuanTOF,拥有强大的5,000-10,000Hz长寿命半导体激光器,以及自主开发的数据采集软件。2018年7月,融智生物宣布实现可达500像素/秒的成像速率,提升MALDI-TOF MS成像速率达10倍以上,普通样本成像只需几十分钟,使得质谱成像实现了“立等可取”。经过进一步的研发,目前QuanTOF质谱成像系统已经实现高达1000像素/秒的成像速率,5-10微米的高空间分辨率,且仍然保持极高灵敏度。这使得质谱成像真正可用于临床病理分析、术中分析等领域。 苹果果实的水平部分(a)和附在玻璃载玻片上的果肉冻干样本(b)。使用字母(A-D)和数字(1-4)的组合将样本分成16个块。研究人员从成熟的果实中水平切下果肉样品,将其安装在载玻片上,冻干,然后使用MALDI-TOF MSI(基质辅助激光解吸电离飞行时间质谱成像)仪器在样品周围自动探测单个可溶性碳水化合物的离子强度。利用HPLC测定了同一水果相邻组织中可溶性碳水化合物的含量,比较了基于MALDI-TOF MSI离子强度和HPLC离子强度的单个碳水化合物的分布。 MALDI-TOF MSI的单个碳水化合物分布的仿彩色图像,以及使用HPLC定量相邻的16个组织块中的碳水化合物含量。结果显示,每种标准碳水化合物的浓度与MALDI-TOF MS的相对离子强度之间存在正相关(p0.95),因此似乎可以利用MALDI-TOF MS的离子强度来测定样品中碳水化合物的相对浓度。当DHB(2,5-二羟基苯甲酸)作为MALDI-TOF MSI(基质辅助激光解吸电离飞行时间质谱成像)基质时,从苹果果实标本中检测到仅附着钾离子的单电荷离子。MALDI-TOF MSI和HPLC都证实了果肉中蔗糖含量从中心到皮层的梯度增加。当基于MALDI-TOF MSI结果的单个碳水化合物分布的仿彩色图像与使用HPLC定量的相邻16个组织块中碳水化合物含量进行比较时,亮度与蔗糖和山梨醇的含量之间的强(p0.001,r2=0.6222)和弱(p0.10,r2=0.2123)相关性分别得到证实。尽管有人指出MALDI-TOF MS不适合检测低分子量(MW500)分子,因为基质的碎片离子峰有时会与目标分析物峰重叠。然而,本研究清楚地证明,使用MALDI-TOF MSI以DHB(2,5-二羟基苯甲酸)作为基质可以观察到苹果果实组织中蔗糖的分布。此外,它也适用于观察山梨糖醇分布。因此,MALDI-TOF MSI可用于检测苹果果实成熟过程中碳水化合物代谢的区域差异,并通过与外部13C标记的底物结合,逐步阐明水心病发病的机制。
  • 复旦大学杨芃原团队等创建精准N糖蛋白质组学分析方法
    p   复旦大学化学系教授杨芃原团队、中科院计算技术研究所研究员贺思敏团队、国家蛋白质科学中心(上海)研究员黄超兰团队合作研究,创建了基于质谱的高通量糖基化肽段分析方法pGlyco2.0,为精准N糖蛋白质组学提供了新技术。今天,相关研究成果以《pGlyco2.0:基于综合质控和一步质谱法的精准N糖蛋白质组学糖肽分析方法》为题发表于《自然· 通讯》。 /p p   据悉,杨芃原、贺思敏和黄超兰为共同通讯作者。杨芃原为该文的Lead Contact。 /p p   糖基化是最复杂的蛋白后修饰之一。与其他蛋白后修饰相比,糖基化不但会产生宏观不均一性(每个蛋白上可能有多个后修饰位点),更会产生海量的微观不均一性(每个位点上可能有几十甚至上百种不同的后修饰基团)。此外,糖链本身的离子化效率很低。这些因素的结合使得糖基化分析的通量和质量远低于蛋白质组学的常规分析水平。 /p p   这项研究通过深入研究和测试质谱条件,开发基于阶梯能量的一步质谱采集法,提高了糖肽鉴定的通量和开发具有自主产权的pGlyco2.0糖肽检索引擎,从糖链、肽段、糖肽三个层面对糖肽数据库检索进行精确质控,从而大幅提升了N糖蛋白质组学分析的通量和质量。 /p p   同时,研究人员首次将重标元素应用于糖肽鉴定准确度分析,为该领域的质控分析提供了新的方法及标准。 /p p   专家表示,这项研究报道了目前最大的糖基化数据集:在1%的假阳性率下,在小鼠的五个脏器种鉴定到了超过一万条N糖肽。 /p p /p
  • 调查称蔬菜种植农药使用随意 检测难全面
    一颗芸豆,在经历了从产地水土检测到加工包装,从大小尺寸筛选到农残化肥的全程检测之后,才能最终登上外贸货轮,出口海外。   同样是一颗芸豆,当它成为国内内销蔬菜的时候,道路就远没有它的兄弟那样“曲折”,有的甚至没有经过任何检测便已上市销售。   不仅仅是蔬菜,对同样一个苹果的质量检测亦内外有别,那些漂洋过海的苹果际遇更复杂和严格。   近日有消息曝出,一次性饭盒、废电池、药物、药瓶等有害垃圾,竟充斥在广州番禺区金山大道两侧蔬菜的肥料中。“垃圾肥”重金属检测成了漏网之鱼。   这些故事屡见报端,蔬菜质量检测令公众担心。那么,各地蔬菜检测究竟有无统一标准,出口、内销蔬菜检测是否“内外有别”?   农药使用随意   记者在北京顺义某菜地采访,菜农的说法让人惶恐。对适用农药的标准、种类、剂量,受访的菜农们并不在乎,他们关心更多的是蔬菜的产量。   一些菜农直言,“菜叶上看不到虫子”“不耽误卖”就行,至于农药的毒性高低不大去关心,农药品种也是“村头小店卖什么农药就打什么”,打多少药也全凭“估计”,没有准确标准用量。   事实上,一些菜农对农药使用标准并没有很明确的概念。菜农李大爷告诉法治周末记者,不用农药,蔬菜就会减产一半左右。夏天是最容易长虫子的季节,黄瓜、茄子、豇豆、辣椒都是必须打农药的。国家一直提倡使用低毒、低残留农药,但买来的究竟是不是高毒性的农药,菜农们也不太清楚。而且每种蔬菜、每个季节使用的农药都不一样。一般反季节蔬菜都是在大棚里种植。大棚的温度和湿度都很高,很不利于农药的降解,容易使农药残留在蔬菜上。一般反季节蔬菜瓜果病虫害严重,使用农药量大。另外,草莓生长季节短、经济效益快,用药量也很大 豆角是最难长的,虫害病害多,不使用农药几乎很难有收获,所以这类蔬菜瓜果的农药使用量也比较大。   如此使用农药,质量检测显得更为关键。山东寿光蔬菜产业集团商品交易所中原运营中心的工作人员告诉法治周末记者,蔬菜质量检测主要检测的内容是农药残留,这也是市场销售环节、公众最关心、反映出问题最多的一块。就单个的地区运营中心而言,它们是没有检测能力的,收购上来的蔬菜是由山东寿光蔬菜产业集团统一集中检测之后配发到各个交易中心进入交易环节的。   据记者了解,在目前的认证体系中,蔬菜的级别呈现出金字塔形态。   最底层的是普通蔬菜,也就是菜市场里最常见的蔬菜,什么认证都没有。   上面一层的是无公害蔬菜,需要经过本国、本省或者本市的有关认证,在种植条件上有一定要求,比如农药的残留量、重金属和亚硝酸盐等含量要控制在国家规定范围内。   再上面一层是绿色蔬菜,这个概念由日本提出,农药的残留量、重金属和亚硝酸盐等含量比无公害蔬菜更低一些,并且规定在上市前一周内不可施加农药和化肥,也需经过国内相关机构认证。   最高级别的是有机蔬菜,概念由欧洲提出,生产过程中要求完全不使用农药、化肥、生长调节剂等化学物质,不使用转基因工程技术,必须经过国际有机食品认证机构的认证,并在国内设有委托机构进行监督和审查。   检测无法全覆盖   目前人们对蔬菜安全关心最多的为农药残留问题。业内专家告诉法治周末记者,我国的农残检测主要有3种方法,一是农残速测法即酶抑制法 二是酶联免疫法,应用并不广泛 三是色谱检测法。   只有有机磷(水胺硫磷、氧化乐果属此类)或氨基甲酸酯类(克百威属此类)农药残留量达到1毫克/千克左右,速测法才能查出。   蔬菜农残检测一般操作是先用速测仪检测,若发现农药超标,再用色谱检测法检出具体种类和残留量。农残速测法只针对有机磷和氨基甲酸酯类农药,像早些年大量使用的六六六、DDT等高残留有机氯农药,及当前大量使用的拟除虫菊酯类农药,都不在蔬菜例行农残检测范围。   色谱检测设备一般需四五十万元至上百万元,检测一个样品成本在2000元左右,而且技术要求高,样本提取和净化步骤等前处理比较费时。市场上,一台速测仪加配套设备不到1万元,从取样到检测只需30分钟左右,成本在2元左右,技术水平要求也不高,因此在政府相关部门、生产基地、农贸市场、超市等领域广泛使用。基于农户分散种植现状,目前我国例行检测不可能采用农残定量检测。   北京市朝阳区植物保护检疫站一位检测员告诉法治周末记者,每个工作日,他们都要通过农药残留速测仪,对朝阳区比较大的蔬菜生产基地、农贸市场的食用蔬菜瓜果进行农残指标抽检。这种检测方式结果较为精确,能快速检出蔬菜、水果、粮食、茶叶、水及土壤中有机磷和氨基甲酸脂类农药残留。现在北京市各级农业检测中心、工商部门、生产基地、农贸市场、超市、卫生、环保、学校等,使用的基本上都是这种仪器。   用速测仪检测一个蔬菜样品需要30分钟至40分钟左右。但限于条件,只能是抽检,想要全部覆盖检查是不现实的。比如叶菜,每个抽取1公斤样品(记者注:1公斤油菜大概有一二十棵的样子),全部切成小碎丁,用试剂浸泡之后提取并加入检测酶。放入仪器,指标就会显示出来。使用的是通用的“酶抑制率检测法”,低于70%的为合格,该检测员解释。   抽检是按照蔬菜的品种进行,用筛查式检测。首先是定性,先用快速检测仪器,没问题就通过。如果有问题或出现超标的情况,再用定量检测仪器,对含有农药的品种、含量进行具体检测。   因为蔬菜的来源地不同,所使用的农药也不同。就目前朝阳区蔬菜市场的情况来看,本地生产的蔬菜只占蔬菜市场的百分之十几,其他都是外埠进来的菜。   “哪个省的都有,用的农药也不一样。”上述检测员说,“大洋路批发市场占整个北京市蔬菜批发总量的36%,全国各地的菜都有。往往是外埠进来的菜问题比较多。”   “同时,蔬菜种类不同,检测内容也不尽相同。水生植物藕、茭白就需要检测重金属含量,与其他蔬菜不一样。重金属的检测技术含量相对较高,对仪器、人员素质的要求更高。由于仪器价格昂贵,很多普通小检测站是没有配备的。”该检测员告诉记者。   标准一样 执行不一   而据记者了解,果品与蔬菜所属主管部门又不相同,属林业部门监管,检测的内容也不一样。一个苹果除了涉及农药残留,可能还会有糖分含量等检测内容。而由于农药挥发,温度、时间、空气、湿度、仪器误差可能都会影响检测结果。   至于植物检疫标准,果实、种子的检测与叶菜又不一样。全国不同地区的蔬菜调配也包含检疫环节,主要是为了防止有些病虫害物种没有天敌,能在不同地区快速繁殖。而对这些物种的检疫内容,各地又不尽相同。   这位检测员对法治周末记者强调,就农药残留而言,全国范围来看,检测标准是统一的,但监管力度可能参差不齐。农药残留主要有两个选择性标准,即国标和行标(农业行业标准)。全国各地执行的应该都是统一的。所谓选择性标准,就是蔬菜检测达到了其中一个就是质量合格的,因为两个标准原理相同。   但检测中的实际主要问题是,限于人力、物力、财力等方面的原因,只能做到抽检,无法做到完全覆盖。有业内人士指出,目前,蔬菜的安全检测有定性检测和定量检测,前者只能检测农药总量是否超标,无法查出农药种类 而后者可以精确到农药的种类和含量,但每个瓜菜品种每次检测费用高达2000元。   标准长期不更新   某品牌无公害蔬菜生产基地检测室的小刘从事“蔬菜安检”工作近5年了。每天早晨7时30分开始,小刘和助手就要抽检芹菜、小白菜、西红柿等20多种蔬菜。   小刘告诉法治周末记者,检测主要采用酶抑制率方法。对蔬菜抽选结束后,在检测室使用蔬菜农药残毒快速检测仪进行检测,主要检测蔬菜里是否含有有机磷和氨基甲酸酯。整个检测过程模仿人体对农药的反应,通过加入专用酶、底物、显色剂及提取试剂的过程,得出酶抑制率的数值。如果蔬菜的农药残留标准达到酶抑制率70%以下,就说明蔬菜农残标准合格 如果达到酶抑制率70%以上,检测员们至少会再做两次以上的重复检查。如果经过检查依然超标,他们就会将超标蔬菜实行销毁处理,以确保上市蔬菜的安全。   除了检测设备,该基地还有一套农产品安全追溯系统。安全生产标签可以追查农产品的种植号、地块号、投入品使用、采收时间等安全信息。消费者可以通过短信、电话及网络等查询方式追溯农产品信息。   山东寿光蔬菜产业集团一位工作人员告诉法治周末记者,异地上市蔬菜必须经过包括基地自检、市场速检、上机检测、检验检疫局监督、当地检测至少5道安全关。其实蔬菜还在采摘阶段就已经有监管部门介入检测了。   但毕竟,合格的蔬菜是种出来的,不是“检”出来的。   有媒体报道,我国允许的“农残”量要比欧盟和美国高出数倍,而这都源于标准滞后。“标准之争就是利益之争。”中国消费者协会律师团团长邱宝昌说,往往标准低一点,就有大量企业被放进去,而标准一高,一些生产能力落后的企业就会被淘汰出局。而我们的某些标准恰恰是迁就了一些落后企业,质量不高。   记者在国家标准网上查询,现在使用的蔬菜农药检测标准是2004年3月1日开始实施的蔬菜农药残留检测抽样规范。也就是说,现在使用的还是8年前的标准。   此前曝出的蔬菜重金属检测缺失、出口、内销蔬菜检测“内外有别”等事件,突出反映了标准滞后的问题。   事实上,我国的标准化法1989年开始实施,形势早已发生变化,标准化法修订工作开展近十年,目前新法仍未出台。《标准化法实施条例》也明确规定:标准实施后,制定标准的部门应当根据科学技术的发展和经济建设的需要适时进行复审。标准复审周期一般不超过5年。遗憾的是,有些标准长期“原地踏步”。   邱宝昌解释说,制定一个标准,需要大量的数据收集及论证,费用较高,而国家对此补助有限,不少花费往往是企业赞助,这样造成的结果是:一是“更新”慢 二是掺杂了企业的“意志”,有些企业就成了低标准的受益者。
  • 这家胡辣汤店使用罂粟壳 喝了就上瘾
    早上喝碗胡辣汤,这是不少市民的早餐选择。然而有一些人为牟利,竟在胡辣汤内添加违禁品。近日,二七区食品药品监督管理局联合郑州市公安局洁云路分局捣毁了江汉路上一家使用罂粟壳为食品提味增香的胡辣汤店。目前,两名涉案人员因涉嫌危害公共食品安全罪被警方刑拘。  事件丨买来5斤罂粟壳,用在胡辣汤里4斤多  近日,二七区食品药品监督管理局在江汉路与人和路交叉口附近名为“韩春华胡辣汤”的饭店销售的3元素胡辣汤和5元肉胡辣汤内检测出有罂粟碱成分。12月7日6时许,郑州市公安局洁云路分局治安管理服务大队一中队民警对此问题展开调查。  7日7时许,民警赶到正在经营中的“韩春华胡辣汤”店内,将涉嫌生产、销售有毒、有害食品的犯罪嫌疑人范某及韩某抓获,并根据二人供述,民警在二七区孙八寨中街嫌疑人租住的民房内,查获用编织袋装的罂粟壳数个,提取称重为328.6克。  “据嫌疑人交代,他们购买来的5斤罂粟壳用在胡辣汤里4斤多。”洁云路分局治安管理服务大队一中队指导员朱贺表示,警方抓获的犯罪嫌疑人范某及韩某为饭店经营者韩春华的妻子和儿子,韩春华目前仍在抓捕当中。从店内搜出的票据及嫌疑人供述显示,韩春华从周口沈丘老家一次购买的罂粟壳为5斤。  动机丨为防剩汤变质,“加料”提味防腹泻  韩春华21岁的儿子在接受民警讯问时称小店9月份开业时天气比较热,父亲从沈丘老家买来了一袋罂粟壳,磨粉添加到胡辣汤料中除了提味增香,还用来预防食物变质。  “天热食物容易变质,用这个预防拉肚子。”韩某说,小店熬制一锅胡辣汤,一早晨能售出170余碗,这个销售量只是半锅胡辣汤,为避免剩余的胡辣汤变质串味,他们开业之初就在汤中添加用罂粟壳磨成的粉。  他表示,小店经营近3个月,给胡辣汤额外“加料”的方法随着气温转低渐渐减少,他和家人并没想到在胡辣汤料中添加罂粟壳会给食客身体带来何种危害。  据韩某介绍,根据配比,28斤胡辣汤料放200克罂粟壳磨成的粉,一碗胡辣汤里大概有1.5克胡辣汤料。而按照这个数字进行计算的话,他们饭店平均每碗胡辣汤中可能含罂粟壳0.02克多点。  “接受讯问时,被抓嫌犯都知道在食品中添加罂粟壳是违法的。”洁云路分局治安管理服务大队一中队相关民警表示,他们在汤中添加罂粟壳,主要是为提味、增香,以招揽更多的客人。  结果丨涉嫌危害公共食品安全罪,两嫌犯被刑拘  记者在江汉路与人和路交叉口向西约200米找到了这家饭店,此时饭店大门上已被二七区食品药品监督管理局贴上了封条。“只是听说过有饭店经营者会往汤里加罂粟壳啥的,没想到就在自己身边。”附近一名市民说。  据了解,因涉嫌危害公共食品安全罪,目前被抓的两名涉案人员已被警方刑拘,而胡辣汤店老板警方仍在抓捕中。  “长期食用含有罂粟碱的食品,危害人们身体健康,是国家明令禁止的。”朱贺说。  据了解,2014年12月24日,国家禁毒委员会办公室、公安部、国家食品药品监督管理总局等共同下发《关于严厉打击在食品中添加罂粟壳行为的通知》,称 “罂粟壳作为国家管制的麻醉药品,长期食用易使人体产生依赖造成瘾癖”,要求相关部门全面排查。对构成“非法运输、买卖、储存、使用罂粟壳”等违法行为,依法严厉追究涉案单位及相关责任人员的法律责任。
  • 可乐焦糖色素检出可能致癌物 内地将修订限量标准
    昨日,浙江省杭州市,在一家超市里拍摄到的百事可乐。近日,百事可乐再次遭遇&ldquo 致癌风波&rdquo 。   昨日,在百事可乐饮料的外包装上,只能看到食品添加剂项目中标注有&ldquo 焦糖色&rdquo ,看不出该色素是否被改进了配方,是否含有4-甲基咪唑等信息。   新京报讯 近日,美国监督机构环境健康中心发布的一份报告指出,在百事可乐的焦糖色素中再次检测出了含有可能致癌的4-甲基咪唑(简称4-MEI)。前日,百事大中华区前日回应此事,坚称多个权威机构都认为其食品和饮料中的焦糖色素是安全的。对此,记者昨日从国家食品安全风险评估中心了解到,我国将修订焦糖色素限量标准。   今年3月,称两公司并未停止使用&ldquo 4-甲基咪唑&rdquo 生产可乐,美国加州对百事可乐和可口可乐提起诉讼。最新检测显示,可口可乐几乎没有检测到4-甲基咪唑,但百事可乐中仍然存在。   今年将重点评估焦糖色素影响   目前,百事可乐和可口可乐都称正在改进焦糖色素的生产配方,但并未提及在中国改进配方的具体时间表,消费者担心被企业执行&ldquo 双重标准&rdquo 。   昨日,记者从国家食品安全风险评估中心了解到,可乐添加焦糖色素中含有的4-甲基咪唑是否对人体健康有影响,已列入今年该中心的重点评估项目。   国家食品安全风险评估中心研究员王华丽昨日介绍,我国目前已批准四种焦糖色素的生产工艺,并非每种工艺在生产过程中,都会产生4-甲基咪唑。因此,企业可以根据产品品质要求和市场要求,选择其中任一种工艺生产焦糖色素。   现行标准规定&ldquo 按需要使用&rdquo   不过,现行食品质量国标中,可乐中焦糖色素没有限量标准,只规定&ldquo 按生产需要适量使用&rdquo 。对此,王华丽表示,焦糖色素在可乐中起着色剂作用,添加多了,对口感也会有影响。因此,可乐企业为了产品品质,不会随意过多添加焦糖色素,可乐中含有的4-甲基咪唑,也是微量的,但现行标准规定模糊,确实造成生产者和监管部门都缺乏标准依据,出现混乱的情况。   因此,国家卫生计生委正在进行的食品安全国家标准整合工作中,将对食品中焦糖色素添加的限量,统一作出修订。王华丽称,包括可乐在内的碳素饮料,也将有焦糖色素含量的具体限值标准,对今后其生产过程有一个明晰的安全性指导。   ■ 回应   百事改进配方暂未涉及中国   发声明称其食品和饮料安全无碍,但承诺改变工艺,降低焦糖中4-MEI含量   记者昨日在百事可乐、可口可乐两种饮料的外包装上,只能看到食品添加剂项目中标注有&ldquo 焦糖色&rdquo ,但看不出该色素是否被改进了配方,是否含有4-甲基咪唑等信息。   对于此事,百事大中华区前日发出声明,坚称包括美国食品药品管理局等在内的多个权威机构都认为百事的食品和饮料中的焦糖色素是安全的。   但同时,百事公司却又承诺使用改变生产工艺的焦糖色素,供应商正在修改生产工艺,降低焦糖中的4-MEI含量。有报道称,目前在美国加州已改变了饮料配方,并计划在2014年2月前在其他州也完成,将这种着色剂从其饮品中去除,然后在全球范围内更改饮料配方。   不过,对于在中国的饮料中改进焦糖色素工艺的时间表,百事公司却没有明确表态,只称&ldquo 百事在中国的饮料中所使用的焦糖色符合所有地方法规要求&rdquo ,消费者尽可放心享用。   此前可口可乐在接受采访时称,所有产品中的焦糖色素,过去、现在以及将来一直都是安全的。&ldquo 微量的4-甲基咪唑存在于大量的食品和饮料中,通常烹饪过程中发生&lsquo 褐变反应&rsquo 就会形成4-甲基咪唑&rdquo 。目前可口可乐也首先在加州改变了配方,美国以外地区也会过渡到经过改良的焦糖,但也没有具体的改进时间。   &ldquo 如果是改进配方,就应该在全球范围内都执行。&rdquo 一些消费者认为,两家可乐公司不能以&ldquo 双重标准&rdquo 区别对待,只局限在加州或者美国范围内改进配方。   ■ 说法   4-MEI是否致癌一直存争议   专家表示,目前显示可能导致动物致癌,但并无导致人类致癌证据   据了解,4-甲基咪唑(简称4-MEI)是一种重要的有机中间体,主要用于合成大宗胃药西咪替丁,也可用作环氧树脂固化剂和金属表面防护剂等。   早在2011年,美国加利福尼亚州就将&ldquo 4-甲基咪唑&rdquo 列为&ldquo 可能致癌物&rdquo 名单,规定每份食品或饮料如含有29微克以上的4-甲基咪唑,就必须带有警告标志。   不过,对于4-甲基咪唑的致癌性一直就具有很大的争议性。美国食药物管理局称,小剂量较安全,除非每天喝1000瓶听装可乐才会致癌。   美国饮料协会曾发声明认为,这是某些长期致力于攻击食品和饮料行业的组织又一次企图威吓消费者,&ldquo 4-MEI并不对人类健康构成威胁。没有任何证据表明4-MEI会致癌。&rdquo   记者昨日查询到,中国饮料工业协会曾引述美国观点指出,4-甲基咪唑在多种食物和饮料中都有轻微含量,该物质需求和用途广,医药、农药、染料、涂料等精细化工领域都会涉及。   中国农业大学食品科学与营养工程学院副教授何计国昨日称,4-甲基咪唑是在以亚硫酸铵为原料生产焦糖色素时产生的。目前显示是可能导致动物致癌,但并无导致人类致癌的证据和案例。   【背景】   可乐焦糖色素多次被指致癌   2011年初   美国监督机构环境健康中心公布在百事可乐和可口可乐的焦糖色素中含有致癌物质4-甲基咪唑。   2012年3月   美国消费者倡导组织公共利益科学中心称,可口可乐和百事可乐的苏打饮料中,发现高水平有致癌风险的4-MEI。   回应   两家公司表示,将改进其焦糖色素的生产流程,减少全美范围内饮料的4-MEI含量。   今年3月   美国加州还就此对百事可乐和可口可乐提起诉讼,指出两家公司仍没有停止使用&ldquo 4-甲基咪唑&rdquo 生产可乐。   检测   近期的最新检测显示,可口可乐几乎没有检测到4-甲基咪唑,但百事可乐却依然未采取行动。   几天前   非政府民间组织美国监督机构环境健康中心(CEH)发布报告,该机构在美国10个州购买的百事可乐中检测发现,4-甲基咪唑(4-MEI)严重超标,约为加利福尼亚州规定水平的4-8倍,而这种物质被实验鼠长期食用后会导致肺癌。   回应   百事可乐称,包括美国食品药品管理局等在内的多个权威机构都认为百事的食品和饮料中的焦糖色素是安全的。   同时,百事公司承诺使用改变生产工艺的焦糖色素,降低焦糖中的4-MEI含量。
  • 改写经典—清华大学科学家揭示胰岛素信号通路中调控糖原合成新机制
    2019年9月24日,清华大学李蓬课题组在Cell Reports上发表了题为“The protein phosphatase 1 complex is a direct target of AKT linking insulin signaling to hepatic glycogen deposition”的研究论文,报道了PP1复合物作为营养感知器,独立于GSK3介导胰岛素刺激下肝脏糖原合成的调节机制。胰岛素是机体调节血糖吸收、促进合成代谢(anabolic metabolism)最关键的激素,可以促进糖原、脂肪、蛋白质合成。糖原和脂肪可被用于能量贮存;糖原是最先被机体利用的能量储备:比如在运动时,肌肉糖原可以作为快速的能量来源,供肌肉细胞产生ATP;而肝脏中糖原负责在饥饿或能量缺乏时补充血糖,使之维持稳定浓度。但是糖原代谢里一个长期悬而未决的问题,胰岛素是如何激活糖原合成的?甚至在最新版(第七版)的Lehninger生化教科书中,也只是指出需要一个“insulin-sensitive protein kinase”,但不知其身份。虽然胰岛素-AKT可以通过抑制激酶GSK3、降低糖原合成酶GS磷酸化来促进糖原合成,但是这条调节通路的作用非常有限,因为GSK3的磷酸化位点突变后不影响糖原合成。并且,GSK3调控糖原合成是通过双抑制作用而起作用,目前我们的认识里还缺乏一种主动糖原合成调控的机制。虽然已知胰岛素还通过激活磷酸酶PP1,进而调节多个关键糖原代谢酶,然而由于对phosphatase调节研究的困难,领域内只能猜测却难以发现这个调节PP1磷酸酶的“insulin-sensitive protein kinase”。PP1(protein phosphatase1)对糖代谢具有重要作用,参与调节多个糖原代谢酶活性,包括GS、GP和GPK。PP1全酶由一个催化亚基(PP1c)和一个调节亚基(PPP1R)组成。已知PPP1R3家族作为特殊的一类调节亚基可以把PP1靶向到糖原代谢过程,该家族包括7个成员,PPP1R3a-g。尽管一些研究表明PPP1R3成员参与调节肝脏糖原合成和积累,但是具体的机制究竟是如何呢?针对这个问题,李蓬团队首先通过生物信息学分析磷酸化蛋白组数据库数据,找到了10个候选蛋白,可能是AKT新的磷酸化底物,同时也参与调节糖脂代谢。随后通过生化实验鉴定出PPP1R3g是AKT一个新的直接底物,同时结合质谱分析发现S79是PPP1R3g的AKT磷酸化位点。其后,课题组发现在胰岛素刺激下PPP1R3g可以直接被AKT磷酸化,更重要的是发现生理和病理条件下的胰岛素信号与PPP1R3g磷酸化水平密切相关。更进一步地,课题组发现在胰岛素刺激下,PPP1R3g介导糖原合成是不依赖于经典的GSK3途径的。接下来,课题组通过敲除和过表达系统在体研究了PPP1R3g磷酸化的生理功能,发现PPP1R3g磷酸化可以加快葡萄糖清除和提高胰岛素敏感性。在机制上,课题组发现PPP1R3g磷酸化可以提升与p-GS的结合,进而加快PP1c对GS的去磷酸化。同时发现了PPP1R3b可作为PPP1R3g的下游,通过结合从PPP1R3g上解离下来的去磷酸化GS,刺激糖原的合成,从而实现对胰岛素信号的传递。图1. 胰岛素-AKT调控PPP1R3G磷酸化促进糖原合成的新机制本研究回答了本领域近30年一直未回答的问题,为新版的生物化学书籍完善提供重要的一笔(图2)。图2. 经典生化教科书中可修改的一笔。左图为Lehninger Principles of Biochemistry(7th Edition)中提出的位置激酶,右图则是该研究提供的改写该论文中,糖原合成酶和糖原磷酸化酶活性的研究均采用放射性方法,利用放射性标记的葡萄糖作为底物,通过检测放射性活度来计算酶的活性。珀金埃尔默提供了从试剂、耗材到检测仪器的完整解决方案,助力中国科学家取得更大成就。
  • 刺突糖蛋白结构揭示新冠病毒演化新线索,或助疫苗设计
    p style=" text-align: justify line-height: 1.75em text-indent: 2em " 施普林格· 自然旗下专业学术期刊《自然-结构和分子生物学》最新发表一篇病毒学研究论文称,通过对新型冠状病毒(SARS-CoV-2)及其近缘蝙蝠病毒RaTG13的刺突糖蛋白 strong (刺突糖蛋白可以让病毒与细胞结合并进入细胞) /strong 结构进行比较研究,为进一步了解新冠病毒刺突的演化过程提供了信息,这对疫苗设计或具借鉴意义。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 413px " src=" https://img1.17img.cn/17img/images/202007/uepic/b316467b-3f03-46b6-b0df-d15b9cd8871f.jpg" title=" 111.png" alt=" 111.png" width=" 600" height=" 413" border=" 0" vspace=" 0" / /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   该论文指,研究人员认为蝙蝠冠状病毒可能是新冠病毒的演化前体,此前研究发现蝙蝠病毒RaTG13与新冠病毒的亲缘关系是已知关系中最近的。不过,尚不清楚新冠病毒如何演化到可以感染人类,也不清楚它是通过某个中间宿主还是直接传播给了人类。 /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   论文通讯作者、英国伦敦弗朗西斯· 克里克研究所病毒学研究专家Antoni Wrobel和Donald Benton及其同事,通过 strong 比较新冠病毒 /strong 和 strong RaTG13的刺突糖蛋白 /strong 发现, strong 两者虽然结构相似 /strong , strong 但新冠病毒刺突糖蛋白的形式更稳定,与人受体蛋白ACE2的亲和力要高出1000倍左右。 /strong /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   他们还发现新冠病毒刺突上的 strong 弗林蛋白酶切位点可能对病毒有利 /strong ,因为 strong 它可能会促进病毒与细胞上受体的结合。 /strong 基于这些观察结果, strong 论文作者认为与RaTG13相似的蝙蝠病毒不太可能感染人类细胞,这也支持了新冠病毒是不同冠状病毒基因组重组后演化而来的理论。 /strong /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   论文作者指出,他们进行研究的新冠病毒刺突糖蛋白分辨率高,几近完整,比之前报道的结构有更多的外部环(loop),这对于疫苗研发设计或许具有重要意义。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " strong 关于刺突糖蛋白(spike glycoprotein) /strong /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 刺突即病毒包膜的糖蛋白。有些病毒除了具有包膜外,还有包膜突起。病毒包膜突起的化学本质多为糖蛋白,其功能各不相同。有的是病毒粒子的吸附蛋白,与病毒的吸附有关;有的是病毒的融合蛋白,可以促进病毒包膜与细胞膜融合,与病毒的侵入有关。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 关于论文《SARS-CoV-2 and bat RaTG13 spike glycoproteinstructures inform on virus evolution andfurin-cleavage effects》,点击附件了解更多。 /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202007/attachment/5b4a8287-977a-42ff-8b2d-858c8fe5345c.pdf" title=" SARS-CoV-2 and bat RaTG13 spike glycoprotein.pdf" SARS-CoV-2 and bat RaTG13 spike glycoprotein.pdf /a /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制