当前位置: 仪器信息网 > 行业主题 > >

锌同位素丰度比溶液

仪器信息网锌同位素丰度比溶液专题为您提供2024年最新锌同位素丰度比溶液价格报价、厂家品牌的相关信息, 包括锌同位素丰度比溶液参数、型号等,不管是国产,还是进口品牌的锌同位素丰度比溶液您都可以在这里找到。 除此之外,仪器信息网还免费为您整合锌同位素丰度比溶液相关的耗材配件、试剂标物,还有锌同位素丰度比溶液相关的最新资讯、资料,以及锌同位素丰度比溶液相关的解决方案。

锌同位素丰度比溶液相关的资讯

  • 嗨,这里有你要的HJ 1183 同位素内标
    上周小编和大家共同学习了《HJ 1189-2021水质 28种有机磷农药的测定 气相色谱-质谱法》; 该标准覆盖了大部分的有机磷农药,但是对于沸点低,热稳定性差的农药,是不适合气相色谱法分析的;因此,生态环境部发布了《HJ 1183-2021 水质 氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷的测定 液相色谱-三重四级杆质谱法》,该标准为首次发布,并将于2021年12月15日起实施 氧化乐果、乙酰甲胺磷、辛硫磷是有机磷农药生产行业的特征污染物控制指标,乙酰甲胺磷在自然条件下易降解为甲胺磷,这4种有机磷农药均具有较强的生物毒性,其进入环境后对于生态环境和人体健康具有较大的危害。HJ 1183标准的出台,规定了地表水、地下水、生活污水和工业废水中氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷的测定方法,将有效支撑《农药工业水污染物排放标准》的执行工作,满足我国氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷水质监测和排放控制工作的需要,也是今后开展水体中这几种有机磷农药环境调查与排放监控的技术基础,对于保障水环境质量及人民群众的身体健康具有重要意义。 试剂与材料:章节类别试剂与材料要求用途5.1试剂乙腈(CH3CN)色谱纯溶剂5.2甲醇(CH3OH)色谱纯溶剂5.3乙酸乙酯(CH3COOCH2CH3)色谱纯溶剂5.4盐酸:ρ = 1.19 g/ml优级纯调节样品 pH 值5.5氢氧化钠(NaOH)。分析纯调节样品 pH 值5.6甲酸铵(HCOONH4)。分析纯流动相5.9溶液乙腈溶液φ( CH3CN )=50%标准稀释液5.10乙腈-乙酸乙酯混合溶液φ( CH3CN )=50%固相萃取洗脱液5.11甲醇溶液φ( CH3OH) =80%固相萃取洗脱液5.12盐酸溶液φ=50%调节样品 pH 值5.13氢氧化钠溶液c(NaOH) = 0.1mol/L调节样品 pH 值5.14甲酸铵溶液c(HCOONH4) = 5.0 mmol/L流动相5.15甲酸铵-乙腈溶液c = 5.0 mmol/L流动相5.16有证标准溶液氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷混合标准贮备液ρ=1000 μg/ml待测目标,坛墨编号:81426b5.18乙腈中甲胺磷-D6同位素ρ=100 μg/ml内标物,坛墨编号:92684a乙腈中氧化乐果-D6同位素ρ=100 μg/ml内标物,坛墨编号:92685a乙腈中辛硫磷-D5同位素ρ=100 μg/ml替代物,坛墨编号: 92686a5.20固相萃取柱Ⅰ填料为十八烷基键合硅胶,或同等柱效的萃取柱,规格为500 mg/6 ml。5.21固相萃取柱Ⅰ填料为二乙烯苯和N-乙烯基吡咯烷酮共聚物,或同等柱效的萃取柱,规格为500 mg/6 ml。 实验与分析:章节实验步骤实验过程7.17.1样品采集与保存按照HJ/T 91、HJ 91.1和HJ 164的相关规定进行样品的采集。用棕色采样瓶(6.4)采集样品,样品满瓶采集。如果采集的样品pH不在2~8之间,用盐酸溶液(5.12)或氢氧化钠溶液(5.13)调节pH至2~8,4℃以下冷藏避光运输和保存,3天内完成样品分析工作。7.2试样的制备A:地表水、地下水经滤膜(5.22)过滤,弃去2 ml初滤液后,移取1.0 ml过滤后的样品于棕色样品瓶(6.5)中,加入10.0 μl内标使用液(5.19),混匀待测。 B: 基体复杂的样品(生活污水和有机磷生产废水)经固相萃取净化后再进样。取5.0 ml样品,以约3 ml/min(约1滴/秒)的流速通过固相萃取柱。甲胺磷、氧化乐果和乙酰甲胺磷用固相萃取柱Ⅰ净化,10 ml乙腈-乙酸乙酯混合溶液洗脱;辛硫磷用固相萃取柱Ⅱ净化,10 ml甲醇洗脱。合并洗脱液,经浓缩装置浓缩至近干,用乙腈溶液定容至5.0 ml.经滤膜过滤后,取1.0 ml滤液于棕色样品瓶中,加入10.0 μl内标使用液,混匀待测。 7.3空白试样的制备以实验用水代替水样,按照与试样的制备(7.2)相同的步骤,制备空白试样。8.1仪器条件仪器:液相色谱-串联质谱联用仪流动相A:甲酸铵溶液;流动相B:甲酸铵-乙腈溶液;梯度洗脱;流速:0.3 ml/min;进样体积:5.0 μl;柱温:40℃。 质谱条件:正离子模式;离子化电压:5 500 V;离子源温度:550℃;喷雾气压力:380 kPa;辅助加热气压力:410 kPa;气帘气压力:210 kPa;多离子反应监测方式(MRM)。8.2标准曲线移取适量的氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷混合标准使用液,逐级稀释,配制至少5个浓度点的标准系列,各组分质量浓度分别为0.00 μg/L、2.00 μg/L、5.00 μg/L、10.0 μg/L、50.0 μg/L、100 μg/L(此为参考浓度)。移取1.0 ml配制好的标准系列溶液于棕色样品瓶(6.5)中,加入10.0 μl内标使用液(5.19),混匀待测。 按照仪器参考条件,由低浓度到高浓度依次对标准系列溶液进行测定。以标准系列溶液中目标组分的质量浓度(μg/L)为横坐标,以其对应的峰面积(或峰高)与内标物峰面积(或峰高)的比值和内标物浓度的乘积为纵坐标,建立标准曲线。可用平均相对响应因子法或标准曲线法进行标准曲线绘制。8.3试样的测定按照与标准曲线的建立(8.2)相同的仪器条件进行试样(7.2)的测定8.4空白试验按照与试样测定(8.3)相同的仪器条件进行空白试样(7.3)的测定。 分析结果表述:根据样品中目标化合物与标准系列中目标化合物的保留时间和特征离子定性,内标法定量。 坛墨质检秉持一直以来对环境安全的高度关注,依据该标准推出如下混标产品方案, 欢迎垂询!针对该标准,坛墨推出如下配套的产品方案:商城编码名 称浓 度说 明81426b乙腈中4种有机磷混标1000μg/mL标准储备液92684a乙腈中甲胺磷-D6同位素100μg/mL内标储备液92685a乙腈中氧化乐果-D6同位素100μg/mL内标储备液92686a乙腈中辛硫磷-D5同位素100μg/mL内标储备液欢迎大家到坛墨商城选购,有任何疑问,随时与我们交流。 原文章链接:https://www.gbw-china.com/ns_detail/1106.html
  • 上海市分析测试协会立项《氘化铝锂同位素丰度的测定》等2项团体标准
    各会员单位及有关单位:根据《中华人民共和国标准化法》、《团体标准管理规定》和《上海市分析测试协会团体标准管理办法》规定,在相关部门指导下,结合行业发展需要,上海市分析测试协会对《氘化铝锂同位素丰度的测定》、《锂电池电解液成分检测》2项团体标准进行了立项审查,经相关专家审议,上述所申报的2项团体标准符合立项条件,批准立项,现予以公告(详见附件)。请各制标单位严格按照相关要求抓紧组织实施,严把标准质量关,切实提高标准制定的质量和水平,增强标准的适用性和有效性。同时,欢迎有关企业和机构加入团体标准的起草编制工作。联系人:钱相如电话:15751007487邮箱:1318155546@qq.com上海市分析测试协会2024年2月6日上海市分析测试协会关于《氘化铝锂同位素丰度的测定》等 2 项团体标准立项的公告.pdf
  • 阿尔塔科技稳定同位素标记技术产业化基地建设成果系列报道之七:稳定同位素标记孔雀石绿与结晶紫
    为提高渔业产品质量,兽药被广泛应用于渔业养殖中寄生虫和微生物疾病的防治,不当使用会导致水产品中抗生素残留,最终影响人类食品安全和健康。图片来源:千图网孔雀石绿和结晶紫是有毒的三苯甲烷类化合物,易在水产品体内长期残留,农业部已将其列为水产禁药。然而,因其对鱼体的水霉病、寄生虫病等有特效,使得许多水产养殖户仍有违规使用,其在水产品中残留超标时有发生。因此,孔雀石绿和结晶紫为水产品检测的重点项目。孔雀石绿和结晶紫对人体健康有什么危害?图片来源:千图网孔雀石绿和结晶紫的人体暴露途径主要是食用含有孔雀石绿和结晶紫的鱼、虾等水产品。它们具有高毒性,可能会引起致癌、致畸、致突变,其代谢产物隐性孔雀石绿和隐性结晶紫的毒性强于母体化合物,对人体的健康危害非常大。孔雀石绿和结晶紫的限制法规图片来源:千图网2011年卫生部发布的《食品中可能违法添加的非食用物质和易滥用的食品添加剂名单(第1-5批汇总)》,以及2014年国家卫计委发布的《食品中可能违法添加的非食用物质名单》(国卫办食品函〔2014〕843号) 都指出不得违法添加及使用孔雀石绿和结晶紫。阿尔塔助力守护“舌尖上的安全”GB/T 19857-2005 《水产品中孔雀石绿和结晶紫残留量的测定 液相色谱-串联质谱和高效液相色谱的测定方法》适用于鲜活水产品及其制品中孔雀石绿、结晶紫及其代谢物残留量的检验。为保证检测的有效实施,阿尔塔科技成功研发出系列稳定同位素标记孔雀石绿和结晶紫及其代谢物标准物质,并且考虑到其具有高毒性的特点,推出系列经准确定值的标准溶液和混合标准溶液,为检测用户减少配制标液的风险,保护检测人员身体健康。部分孔雀石绿与结晶紫产品:了解更多产品或需要定制服务,请联系我们阿尔塔科技稳定同位素标记物产业化基地阿尔塔科技致力于建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障。阿尔塔科技开展科研攻关,已开发十余种稳定同位素标记物制备共性关键技术,实现了上百种的稳定性同位素标记农药、兽药、食品添加剂的量产和可持续供应,稳定同位素标记物产业化基地建设成果斐然,国产化和替代进口成绩显著。2022年,阿尔塔科技获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”。阿尔塔科技将依托重点实验室继续深耕食品安全、环境安全、医药研发、临床检测等领域稳定同位素标记标准物质的结构设计合成和分离纯化、分析方法开发和质量控制,开展稳定同位素标记标准物质全产业链应用技术研究。阿尔塔科技将陆续推出稳定同位素标记物产业化基地建设成果系列报道,展示阿尔塔科研团队的研发成果,包括但不限于十三五项目开发的稳定同位素标记RM。产品的化学结构、化学纯度和同位素丰度、均匀性和稳定性均经过严格的检测和评估,质量媲美进口产品,价格较进口产品大幅降低。我们期待与更多的科研机构、检测实验室进行合作,持续开发市场需求的高品质产品,让更多的国家标准制修订和实验室检测活动用上国产稳定同位素标记标准物质。
  • 同位素质谱高峰论坛成功举办 | 德国元素elementar
    为加强学术交流,进一步提升稳定同位素技术在科研领域的应用范围,11月2号,由德国元素elementar主办的2022年稳定同位素质谱线上高峰论坛成功举办。浏览德国元素elementar稳定同位素比质谱选型方案,助力科研贴息贷款浏览德国元素elementar125年来的传承和创新此次论坛特别邀请了奥地利伦茨水域生态研究中心Leonard I. Wassenaar博士、中国科学院沈阳应用生态研究所方运霆研究员和浙江农业科学院质量安全与营养研究所袁玉伟研究员,受邀嘉宾分享了稳定同位素技术在各自领域的研究进展,深入交流对稳定同位素技术的探索经验。在交流互动环节,与会者积极提问,互相碰撞出学术的火花,收获学术成果、增进友谊沟通。首先,袁玉伟研究员作了《肥料对有机食品蔬菜和大米氮同位素的影响》的精彩报告。近年来,我国农业生产从数量满足型向质量需求型转变,老百姓的饮食习惯也从以前的吃得饱转变为现在的吃得健康和吃得有营养,有机绿色消费成为新时尚,有机农业绿色发展成为现代农业的新模式。不同来源肥料的δ15N不同,有机肥的通常高于化学肥料的。采用氮稳定同位素δ15N来检测氮肥来源和有机食品的标识特征,可以为有机生产过程的监督和消费权益保障提供强有力的技术支持。随后,方运霆研究员分享了铵盐和硝酸盐15N丰度的测定技术,总结了过去几十年来铵盐和硝酸盐稳定同位素丰度测定方法的历史发展变化,重点介绍了次溴酸盐氧化结合羟胺还原法测定铵盐的氮同位素、反硝化细菌法和镉粉叠氮酸还原化学法测定硝酸盐的氮氧同位素等行业内通用方法。通过稳定同位素技术,方运霆研究员也对北京市冬季灰霾期间大气不同粒径气溶胶所含铵态氮15N自然丰度进行测定,成功推算出大气中不同氨气来源的贡献。最后,Leonard I. Wassenaar博士介绍了稳定同位素技术在生态取证的一些最新应用,比如稳定同位素在示踪动物食性信息、确定营养级位置关系、分析食物网结构以及研究鸟类迁徙等生态学应用。作为此次论坛的主办方,德国元素elementar致力于服务客户,与客户紧密合作,确保他们既有高质量的仪器,又有专业的技术支持,共同推动稳定同位素技术在国内的普及应用。以浓厚兴趣与责任为经,以奉献与专一为纬,120多年坚持做一件事 - 元素分析,德国元素Elementar正把他对科技的热诚汇入中国火热的经济发展大潮,为中国的未来,为中国的环境、材料、农业、食品医药等领域的研究发展,贡献自己的力量。
  • 气相色谱-中红外同位素光谱联用技术分析水中苯系物单体碳同位素
    单体稳定碳同位素分析(C-CSIA)技术是示踪温室气体与环境有机污染物来源和过程的有力工具。目前,气相色谱-同位素比值质谱仪(GC-IRMS)是C-SIA的主流技术。近年来,光谱同位素分析技术进步飞速,且具有高效、便携、可现场布控、分析成本低等特点,在现场实时测量温室气体和二氧化碳地质封存场地逸散气体的同位素指纹方面优势明显。但是,该项技术目前主要应用于甲烷、乙烷、丙烷等小分子气体的碳同位素分析。适用于不同环境介质样品中各类化合物的碳同位素光谱分析技术仍缺乏方法优化和系统验证,主要技术难点是衔接混合样品的高效色谱分离和光谱同位素的同步分析。近期,中国科学院广州地球化学研究所有机地球化学国家重点实验室博士研究生张霁云及导师金彪、张干研究员、王强工程师与苏州冠德能源科技有限公司史哲工程师及齐鲁工业大学朱地教授联合攻关,采用气相色谱-中红外同位素光谱联用技术,在水中苯系物的单体碳同位素组成分析方面取得了突破。这项工作聚焦水中挥发性有机污染物的C-CSIA分析测试需求,联用气相色谱和中红外光谱,通过调节、优化气路设计以及光谱参数,采用固相微萃取(SPME)和预热顶空两种进样方式,实现了微克每升浓度级别水溶液样品中的苯、甲苯、乙苯、三甲基苯等物质的色谱分离与单体δ13C高精度分析。通过与GC-IRMS技术的分析结果对比表明此方法对于各目标单体的分析误差均在0.5‰以内。另外,我们应用这个方法观测到了页岩气水平钻井过程钻井液中三甲基苯的稳定碳同位素分馏。该方法稳定性强、精度高、并以氮气为载气降低了污染物C-CSIA的分析成本,更利于污染场地现场布控和现场测试(图1)。图1. 气相色谱-中红外同位素光谱联用方法建立、优化与页岩气开发场地应用图2. 测量系统构成与原理(左)及JAAS期刊封面(右)该项成果近期以主封面(Front Cover)文章发表在Journal of Analytical AtomicSpectrometry (JAAS) 杂志(图2),该研究获得国家重点研发计划“页岩气开采场地特征污染物筛查和污染防控”(2019YFC1805500)和中国科学院仪器研发攻关预研项目(282021000003)资助。
  • 稳定同位素比质谱“编译”冰芯中的无字天书
    继探险时代之后,美国、俄罗斯、法国、英国等国家先后在两极建立了众多科学考察站,这些探险和考察活动极大丰富了人类发展的文明史。中国是极地科学考察事业中的后来者,截至目前,我国在南北极共建立了6座科考站,分别是长城站、中山站、昆仑站、泰山站、罗斯海新站、黄河站。图文无关神秘的南极和北极,天寒地冻,冰雪皑皑,深深地影响着人类居住的蓝色星球。自古以来,地球两极就吸引着无数人的目光。这里的冰芯是研究古气候和古环境变化最可靠的“天然档案馆”之一:冰芯中有古代空气的微小气泡,这些气体经提取后直接用质谱仪分析其浓度;而温度的测定则是通过冰芯融化后释放的水分子的同位素组成推断出来。我们知道,一个水分子(h2o)是由两个氢原子和一个氧原子组成的分子,但事情并没有那么简单,因为氢有1h、2h和3h三种同位素(3h有放射性,这里不予讨论),氧也有16o、17o和18o三种同位素。(17o自然丰度很低,约为0.039%)水中的重同位素和轻同位素的比值(即2h/1h和18o/16o)随气候变化而变化,根据这一原理,科学家通过测量冰芯样品中氧和氢的同位素比值,可以了解过去发生的气候变化。为什么会这样呢?我们以16o和18o举例简单说明。蒸发和冷凝是影响海洋中16o和18o比例的两个重要过程,含有16o的水分子比含有18o的水分子更容易蒸发,同理,含有18o的水蒸气分子更容易凝结。当空气上升或向两极移动而冷却时,部分水蒸气开始凝结并形成降水,含有18o的水蒸气分子比含有16o的水蒸气分子更容易凝结,未凝结的水蒸气分子随着空气继续向极地移动,在此过程中,水蒸气18o越来越少(衰减),16o则越来越多(富集)。1h和2h也有同样的规律。近几年,科学家测量了在南北极多个位置降雪的样本中δ18o(δ2h)与年平均温度之间的近似线性关系,并沿着冰芯的深度绘制δ18o或δ2h的深度图,揭示不同年代的气候变化。图1:数据来源jouzel et al., stable water isotope behavior during the last glacial maximum: a general circulation model analysis. 1994图2:不同冰层反应不同年代的气候 德国元素elementar的同位素质谱联用双路进样 (di-irms)技术是碳酸盐和水样分析中更精确、更灵敏的技术,具有更高的精度(≤0.05‰, 1σ, n=10),而且提供了三种不同样品预处理装置:iso aqua prep装置分析地面水、冰芯、生物水;iso carb prep装置分析碳酸盐矿物和化石碳酸盐; iso multi prep 装置则可以同时满足以上分析需求。 产品特性 高灵敏度;测量精度高;占地空间小;高度自动化;带有自主专利的微型冷指设计,液氮消耗量少
  • Pribolab明星产品—真菌毒素检测中的碳13稳定同位素内标
    h2 style=" margin-bottom:11px text-align:center background:white" span style=" font-size: 17px font-family:萍方-简 color:#333333 letter-spacing: 0 background:white" span Pribolab || /span 真菌毒素 sup span 13 /span /sup span C /span 稳定同位素内标 /span /h2 p style=" text-align:center" span img src=" https://img1.17img.cn/17img/images/202009/uepic/401ecf02-1ec2-4c52-b4a1-dca5159a427c.jpg" title=" clip_image002.jpg" / /span /p p style=" text-indent:28px" span style=" color: rgb(51, 51, 51) letter-spacing: 0px background: white font-family: arial, helvetica, sans-serif font-size: 10px " 随着质谱技术的应用,2020版《中国药典》及2017年最新颁布的真菌毒素新国标中已采用同位素内标稀释法,印证了同位素内标在真菌毒素检测领域举足轻重的地位!加之稳定性同位素内标无影响因子,可以有效校正基质效应;消除实验误差,有效提高准确度和精密度;结合普瑞邦固相净化柱完美实现一步净化,选择在待测样品中,净化过程或上LC-MS/MS前的步骤加入稳定性同位素内标(不同步骤加入有差异),可实现多毒素同时快速检测。 /span /p p style=" text-indent:28px" span style=" font-family: arial, helvetica, sans-serif " strong span style=" font-size: 14px letter-spacing: 1px " 独有的生物合成专利技术以及三重纯化方式推出的 /span /strong strong span style=" color: rgb(0, 158, 125) letter-spacing: 1px " Pribolab /span /strong strong span style=" color: rgb(0, 158, 125) letter-spacing: 1px " 真菌毒素 sup 13 /sup C稳定同位素内标, /span /strong strong span style=" font-size: 14px letter-spacing: 1px " 我司可提供常用规格1.2mL,臻品大包装2~10mL,亦可根据您的需求提供浓度、规格定制服务。 /span /strong /span /p p style=" text-indent:28px" span style=" font-size:10px letter-spacing:1px" & nbsp /span /p p style=" text-align:left" strong span style=" font-size:16px font-family: 宋体 color:#366092" 全新外包装,创新真菌毒素标准溶液长期存储模式 /span /strong strong span style=" font-size:11px font-family:宋体 color:#366092" “ /span /strong strong span style=" font-size:11px font-family: 宋体 color:#366092" 迷你取样口,防溢液漏液 span ” /span /span /strong /p p span img src=" https://img1.17img.cn/17img/images/202009/noimg/67c50ec5-5b74-4457-b053-40ee486de3df.gif" alt=" 说明: IMG_257" title=" clip_image004.gif" / /span /p p strong span style=" font-size:11px font-family:宋体 color:#366092" 注:取样针支持单独购买 /span /strong /p p style=" margin-bottom:16px text-align:left" strong span style=" font-size:16px font-family:宋体 color:#366092" & nbsp /span /strong /p p style=" text-align:justify text-justify:inter-ideograph background:white" strong span style=" font-family:宋体 color:#366092" 产品速递,现货充足,欢迎详询! span br/ br/ /span /span /strong /p table border=" 0" cellspacing=" 0" cellpadding=" 0" width=" 283" style=" border-collapse:collapse" tbody tr style=" height:28px" class=" firstRow" td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 黄曲霉毒素 /span /strong /p /td td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 脱氧雪腐镰刀菌烯醇 /span /strong /p /td /tr tr style=" height:28px" td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 伏马毒素 /span /strong /p /td td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" T-2/HT-2 /span /strong strong span style=" font-size:13px font-family: 华文细黑 color:#404040" 毒素 /span /strong /p /td /tr tr style=" height:28px" td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family: & #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#009E7D letter-spacing: 1px" 交链孢毒素 /span /strong strong /strong /p /td td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 玉米赤霉烯酮 /span /strong /p /td /tr tr style=" height:28px" td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 赭曲霉毒素 /span /strong /p /td td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 展青毒素 /span /strong /p /td /tr tr style=" height:28px" td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 黄绿青霉素 /span /strong /p /td td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 桔青霉素 /span /strong /p /td /tr tr style=" height:28px" td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 白僵菌素 /span /strong /p /td td width=" 141" style=" background: rgb(239, 239, 239) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 28" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:华文细黑 color:#404040" 细格菌素 /span /strong /p /td /tr /tbody /table p style=" text-align:justify text-justify:inter-ideograph background:white" strong span style=" font-family:宋体 color:#366092" & nbsp /span /strong /p p span style=" font-family: arial, helvetica, sans-serif " strong span style=" color: rgb(0, 158, 125) letter-spacing: 1px " 贴心小知识: /span /strong /span /p p style=" margin-left:28px" span style=" font-family: arial, helvetica, sans-serif " span style=" font-size: 13px font-family: Wingdings color: rgb(51, 51, 51) letter-spacing: 0px " l span style=" font: 9px & quot Times New Roman& quot " & nbsp /span /span span style=" font-size: 13px font-family: 微软雅黑, sans-serif color: rgb(51, 51, 51) letter-spacing: 0px background: white " 自然界中碳以 sup 12 /sup C、 sup 13 /sup C、 sup 14 /sup C等多种同位素的形式存在。 sup 13 /sup C在地球自然界的碳中占约1.109%,不仅丰度低,提取也极其困难。20世纪50年代以来,随着浓缩和分析技术的突破,利用 sup 13 /sup C同位素的质量和磁性的同位素效应,才让 sup 13 /sup C标记的提取成为可能。 /span /span /p p style=" margin-left:28px" span style=" font-family: arial, helvetica, sans-serif " span style=" font-size: 13px font-family: Wingdings color: rgb(51, 51, 51) letter-spacing: 0px " l span style=" font: 9px & quot Times New Roman& quot " & nbsp /span /span span style=" font-size: 13px font-family: 微软雅黑, sans-serif color: rgb(51, 51, 51) letter-spacing: 0px background: white " 相较于氘代同位素内标, sup 13 /sup C稳定同位素内标骨架取代,与原型物理化性质更接近,结构更稳定。 /span /span /p p style=" text-align: justify background: white " span style=" font-size:13px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333 letter-spacing:0 background:white" & nbsp /span /p
  • 祝贺2021年稳定同位素测量技术及应用学术交流会圆满成功!
    2021年4月15~16日,由北京师范大学地表过程与资源生态国家重点实验室主办,加拿大ABB公司及北京理加联合科技有限公司协办的2021年稳定同位素测量技术及应用学术交流会在线上成功举办。来自清华大学、北京大学、北京师范大学、中国林科院、中国科学院、中国农业大学、北京林业大学、东北师范大学、深圳大学、西南大学、南京信息工程大学、浙江大学、复旦大学、南开大学、同济大学、新疆大学、西北农林科技大学、美因茨大学、马德里理工大学等100余个单位的专家学者及业务人员参加了此次会议,直播间两日访问次数达3.5W余次。本次交流会的主题为:基于稳定同位素技术地表过程综合监测研究进展。目的为面向广大科研人员,开展以稳定同位素基础理论,技术方法,数据分析和地表过程综合监测研究进展等多方面为主的技术交流和培训,促进和推广稳定同位素技术在不同领域的应用。本次研讨会分为专家报告和技术培训两部分。4月15日9:00会议开始,北京理加联合科技有限公司孙宝宇总经理为会议致开幕辞,欢迎前来参会的老师,并预祝本次研讨会圆满成功。在上午的报告中,清华大学林光辉教授、东北师范大学白娥教授、深圳大学宋欣教授、北京理加联合科技有限公司孙宝宇总经理分别介绍了稳定同位素生态学研究及其应用的一些新进展、应用氮稳定同位素研究森林氮循环、植物水分及纤维素氧氢同位素分馏效应研究、生态系统监测新技术及应用实践的研究进展。在下午的报告中,北京师范大学王佩副教授、北京林业大学余新晓教授、西南大学何新华教授、ABB LGR公司Frederic despagne博士、中国科学院地理科学与资源研究所杨丽虎高级工程师、中国林业科学研究院徐庆研究员分别就植被冠层叶片水同位素观测及示踪研究、基于稳定同位素技术的植被水碳过程研究、田间原位13C/15N双标记实验技术及碳氮循环跟踪、Applications of ABB LGR-ICOS stable isotope analyzers in ecology、同位素技术在水文水资源中的应用、稳定同位素在陆地生态系统植物水分利用研究中的应用等方面进行了详细地介绍。4月16日上午,中国科学院地理科学与资源研究所温学发研究员、中国林业科学研究院孙守家副研究员、南京信息工程大学肖薇教授、北京师范大学吴秀臣教授、北京理加联合科技有限公司赵妮应用工程师分别介绍了同位素技术在生态系统生态学中的应用、稳定碳同位素在生态学研究中的应用、基于稳定同位素法研究地表对大气水汽的贡献、积雪对中国北方森林生长的影响、激光同位素测量技术在生态系统水碳氮循环中的应用。16日下午,由北京理加联合科技有限公司杜文生技术工程师对ABB LGR 水同位素分析仪及LI-2100 全自动真空冷凝抽提系统进行了详细的操作培训。本次交流会充分利用互联网平台,采用线上直播形式,各位老师通过共享屏幕、语音及文字对话等方式,快速进行问题答疑。培训过程中大家专心听讲,面对其中的难点,积极参与线上交流,学习氛围良好,互动热烈。此次线上会议还有直播抽奖环节,共抽取一等奖(2名)二等奖(6名)三等奖(10名)在直播结束后,依然有同学在直播间提出问题希望与老师进行交流,我们特此收集直播间内所提出的相关问题,如下,感谢各位老师的耐心解答。白娥老师Q&AQ:请问白老师,累积回收率超过100%如何理解?谢谢老师!A:累积回收率超过100%是由实验误差造成的,这在示踪实验中是比较常见的,也是被允许的。Q:请问白老师,零张力和吸力获取土壤溶液来源上的区别是什么?谢谢您。A:零张力和吸力获取土壤溶液来源上的区别:这个问题做土壤水的同仁们会更加清楚,零张力是渗漏水,也就是我们说的淋溶掉的。吸力采样计是孔隙水,采到的水可能并不一定能够淋失掉。但是有时候零张力采到的样品会非常少,为了更了解土壤水,就用吸力的代替了。Q:白老师 您好 在有机物的生物降解过程中 需要添加的氮量较多 才能降解有机物 我想知道有机物降解的过程中 氮的去向 那这时候我是可以加的标记的N15量较多吗?或者我可以加少量的标记15N,加更多的没有标记的氮吗?谢谢老师。A:在最终产品15N丰度达到很高的情况下,但是N15的添加量不足以降解有机物,我想既能降解有机物,又能知道氮的去向,我认为可以混合量多的没有标记的氮源和量少的15N标记的氮源,然后达到使用量后加入,只有计算的时候别算错了就可以。Q:白老师您好,想请教一下白老师,进一步讲一下气体怎么进行测定的,谢谢老师。A:气体的测定:用的静态箱法,采集到气袋后,用测定气体同位素的仪器测定同位素丰度Q:请问老师捕食者的同位素和猎物的同位素是否有具体的数值关系?A:捕食者的同位素和猎物的同位素一般有关系,决定一个生物的同位素最重要的因素是他的来源,比如猎物的氮是捕食者氮的来源,但是具体要看比例,如果还有很多其他来源,而这个猎物的占比小,则关系弱。如果捕食者只依赖这一单一来源,则应该有很强的相关性。Q:白老师,您好。在您讲的Part1.沉降氮的去向这个实验中,铵态氮和硝态氮是分别添加在不同的土壤中,还是同时添加在相同土壤中的?如果是添加在相同土壤,那么铵态氮和硝态氮在一系列的转化过程中,是不是会存在铵态氮中的N15跑到硝酸基中去了的情况,这应该是会影响硝态氮和铵态氮的测定的吧?A:Part1.沉降氮的去向这个实验中,铵态氮和硝态氮是分别添加在不同的土壤中的。不能同时添加到一个样品,你说的是对的。宋欣老师Q&AQ:感谢宋老师的精彩报告,有两个问题请教您一下:1. 用于抽提的枝条要剥皮吗?我看您PNAS的文章里面没有明确提到这一点,个人感觉剥皮对抽提的结果影响还挺大的;2. 您通过有机质H和木质部水的交换在一定程度上挑战了“两个水世界”,请问您有没有考虑过对于整株植物不同部位本身同位素组成的异质性以及土壤水分(比如不同孔隙尺度)同位素组成的异质性对您的整个结果的影响,谢谢。A:很好的问题。1)剥皮了,文章的方法里面其实有提到;2)这个问题很重要,土壤水真空抽提过程中也存在潜在的分馏,而且机制比较复杂,很多研究者都在做这个方面的研究,我们的控制实验使用的是沙土(我们甚至考虑过用水培,这样就能明确知道真实水源水的值了),因为根据前人的研究,沙土的分馏效应几乎可以忽略,我们论文里有针对土壤分馏复杂性的讨论;另植物不同部位同位素组成的差异,-- 这里是指枝条水还是叶片水?植物不同部位同位素组成的差异,我想了一下,在我们的实验体系里关系不大,一个是我们用的是小树苗,冠层比较简单,另外chamber里面空气充分混合,没有像野外一样存在小气候的差异,另外我们的取样部位是主干,而不是侧枝,而且主干使用了铝箔包裹,防止蒸腾富集。不过野外情况下会复杂很多,within-plant isotope heterogeneity的确是需要注意的问题。 Q:想问下宋老师,这种氢同位素贫化会因为植物的生长期不同和季节变化而变化吗?随时间和空间变化,还是会有一个恒定的偏移量?A:很好的问题。答案目前还不太清楚,这个问题值得通过进一步的数据积累去更好的揭示。根据我们发现的贫化程度和枝条水含量具有较好相关性的结果猜测,时空变化如果伴随枝条水含量(比如旱季枝条含水量可能偏低?)也发生变化的,那么贫化程度理应也会有差异的,不过差异幅度到底有多大还不说。一般来说枝条水含量的种间差异要比种内要大,因此贫化程度应该也是种间比种内差异大?何新华老师Q&AQ:13CO2标记要56天才取样?这样需要好多标记气体啊?A:大田标记13CO2标记一般是当天一次标记就拆掉装置,第二天就开始取样(持续天数根据实验目的和植物类型自定;土壤可持续数年如果标记地取样点未被扰动的话)。我们的经验是密闭留置标记装置过夜,第二天中午再拆掉,一般让剩余未吸收和/或当晚土壤呼吸释放的13CO2第二天上午再被植物吸收利用。Q:那个圆圆的土壤,是机器钻取的。那你们的机器最多是100cm吗?有没有试过更深的呢?A:根据作物根系,我们取样到100cm深度。(地质)钻孔机可取数米至数千米深样品。Q:标记之后一般多久取样,最优。Q:植物是持续标记的吗?密封的环境怎么更换干冰这些降温装置?A:根据实验目的、植物和土壤等类型自定一次或持续多次标记。干冰是负20℃,多少视情况择定。我们会将可以分享的PPT逐步在公众号内进行推送通过此次交流会的学习和交流,相信各位老师、同学对同位素的相关知识有了更深层次的认识,并且对LGR液态水同位素分析仪及LI-2100全自动真空冷凝抽提系统也有了进一步的了解。
  • 地化所开发出基于DGT技术测定水体汞同位素的分析方法
    汞(Hg)是全球性污染物,可通过大气环流在全球范围内进行传输,并沉积到陆地和水生生态系统中。在水生生态系统中,部分汞可转化为甲基汞(MeHg),并在食物链进行富集放大106-107倍,对人类健康和生态环境系统产生潜在危害。在天然水体中,游离的Hg2+及其不稳定的络合物是具有生物可利用性且易受甲基化影响的汞物种。因此,探讨游离态Hg2+的来源、转化和分布颇为重要。然而,由于水体汞浓度较低(通常在ng L-1水平),测定天然水体汞同位素的方法面临挑战。目前,现有的预富集方法通常是基于野外采集大量的水样(几升至几十升) ,再通过SnCl2将Hg(II)还原生成Hg(0),最后使其预富集至几mL的反王水溶液中。这一过程通常费力且耗时。在采集、保存和运输样品的过程中,玻璃容器中的水易降解和污染。此外,瞬时抓取采样不允许对汞的转化过程进行长期监测。因此,亟需高效、低成本、原位富集天然水体汞样品并进行汞同位素分析的方法。  DGT技术提供了有效的原位方法用以收集、富集和保存水中不稳定的汞组分。该技术降低了采样后运输和储存造成的样品污染的风险,具有良好的应用前景。目前,虽然DGT技术已被应用于测定不稳定态Hg(II)的浓度,但基于DGT技术测定水体汞同位素组成的研究未见报道。  中国科学院地球化学研究所环境地球化学国家重点实验室研究员冯新斌带领的研究团队,开发了基于DGT技术测定水体汞同位素的分析方法。实验室分析表明,DGT吸附Hg(II)的过程可导致约-0.2‰质量分馏(MDF),而不产生非质量分馏(MIF)。系列的温度梯度控制实验证实,温度差异对DGT吸附汞造成的分馏效应影响较小,保证了该方法的野外应用前景。由于Hg-MDF在环境过程中广泛发生,因而使用DGT方法监测水体汞的δ202Hg值时仍应谨慎。该方法强调使用DGT方法在天然水样中测量MIF的采样能力。野外验证结果表明,DGT与传统抓取采样方法的MIF(Δ199Hg)特征一致。同时,伴随着水稻叶片的生长,上覆水中的DGT捕捉到的MIF逐渐趋近于灌溉水和孔隙水。这说明DGT技术可以准确捕捉周期性的汞同位素信号值,特别是跟踪Hg-MIF(Δ199Hg)在不同时期的变化过程,为剖析污染场地汞的生物地球化学循环奠定了基础。  相关研究成果以Determination of the Isotopic Composition of Aqueous Mercury in a Paddy Ecosystem Using Diffusive Gradients in Thin Films为题,发表在《分析化学》(Analytical Chemistry)上。研究工作得到国家自然科学基金、国家重点研发计划和贵州省等的支持。(a-c)在15、25和35°C条件下, DGT吸附Hg(II)时生成物(DGT)和反应物(剩余液)的MDF(δ202Hg)值以及同位素质量平衡值;(d)不同温度反应物和生成物MIF (Δ199Hg)值。利用传统采样和DGT法在垢溪土法炼汞区采集的灌溉水,上覆水和孔隙水同位素值(δ202Hg和Δ199Hg)以及土壤样品的同位素组成。
  • LI-2100 | 叶片水氢氧同位素的控制因素
    太白山,是秦岭山脉最高峰,也是青藏高原以东第一高峰,如鹤立鸡群之势冠列秦岭群峰之首,以高、寒、险、奇、富饶、神秘的特点闻名于世、称雄华中。李白的“西上太白峰,夕阳穷登攀”,“西当太白有鸟道,可以横绝峨眉巅”,形象地将太白山的雄峻高耸烘托而出。如今,更是有不少中外游客慕名前来,一览拔仙绝顶和云海奇观,领略太白峰的险峻神秘。2020年,来自中国科学院地球环境研究所的研究团队分别于5月、7月和9月登上太白山,在奇观景象之中收集土壤和植物,开启了叶片水氢氧同位素的相关研究。叶片水氢氧同位素的控制因素氢氧稳定同位素(δ2H和δ18O)常被用作示踪剂来跟踪水从降水输入运移到土壤,最终通过土壤蒸发和叶片蒸腾释放的过程。叶片水蒸腾对于调节各种尺度的水平衡至关重要。陆地植物叶片水通过气孔蒸发分馏导致重同位素富集,这在很大程度上取决于等大气条件(温度和相对湿度等)以及生物生理过程。叶片水同位素信号整合到植物有机物中,例如纤维素和叶蜡,成为研究古气候重建的新方法。然而,尽管叶片水同位素在生态水文学和有机生物合成中很重要,但人们对叶片水同位素的控制因素以及源水和水文气候在确定叶片水同位素中的作用仍然缺乏了解且叶片内同位素分馏所涉及过程的复杂性使得准确预测和测量变得困难。基于此,在本研究中,来自中国科学院地球环境研究所的研究团队于2020年5、7和9月在太白山(33.96°N,107.77° E)收集了土壤和植物(枝条和叶片)样品,同时获取了温度、相对湿度和降水量等相关气象参数。利用LI-2100全自动真空冷凝抽提系统(北京理加联合科技有限公司)提取土壤和植物中的水分。利用Picarro L2130-i水同位素分析仪确定土壤水稳定同位素组成。并测定其他水体的稳定同位素组成。通过对土壤水、枝条水和叶片水的δ18O和δ2H测量值与叶片水的δ18O和δ2H C-G模型预测值进行综合分析,确定δ18OLeaf和δ2HLeaf值的控制因素,以增进我们对与叶片水相关的植物有机生物标志物中提取的δ18O和δ2H中所保存的环境信号的理解。【结果】叶片水δ18O和δ2H值与潜在源水δ18O和δ2H值(枝条水、土壤水和降水δ18O和δ2H)以及气象参数(例如、MAP、MMP、MAT、MMT、MARH、MMRH)相关性(r)热图。叶片水同位素测量值与C-G模型预测值比较。叶片水δ18O和δ2H值的结构方程模型(SEM)。【结论】沿黄土高原高程样带,对降水、土壤水、枝条水和叶片水进行重复采样,探索δ18OLeaf和δ2HLeaf值与气象参数和源水的控制关系。气象参数和源水对δ18OLeaf和δ2HLeaf值的影响不同,δ18OLeaf和δ2HLeaf双图生成同位素线。作者发现δ2HLeaf值与源水同位素的相关性比δ18OLeaf更密切,而高程样带沿线δ18OLeaf和δ2HLeaf值与气象参数具有相似的相关性。观测结果表明,源自δ18OLeaf和δ2HLeaf值的植物有机同位素(例如叶蜡和纤维素)可以提供中国黄土高原相对的气候信息。此外,双同位素分析表明δ18OLeaf和δ2HLeaf值由于相似的海拔和季节响应而密切相关。源水(即降水)主导δ18OLeaf和δ2HLeaf值,气象参数对δ18OLeaf和δ2HLeaf值的影响相当,且随黄土高原样带海拔和季节的变化而变化。未来,作者将研究交叉角与水文气候和生化因素的关系。
  • 传承不息,焕新升级 | 德国元素IRMS同位素质谱选型方案
    近日,国务院出台《推动大规模设备更新和消费品以旧换新行动方案》,是加快构建新发展格局、推动高质量发展的重要举措,鼓励对仪器设备的淘汰落后与更新升级,旨在大力促进先进设备生产应用,推动先进产能比重持续提升,实现当前与长远的双赢。薪火传承,创新致远德国元素Elementar助力仪器设备更新迭代加快产品更新换代是推动高质量发展的重要举措,可以体验到更先进的仪器分析技术,提高分析的准确性和效率。德国元素Elementar凭借在元素分析领域超过120余年的经验传承,在原先老仪器的坚实基础上不断优化升级,推陈出新,打造全系列高效、稳定、精准和便捷的元素分析仪,已成为专业元素分析的代名词,蜚声国际,为化工、农业、能源、环境、鉴定、材料等领域的客户提供卓越及客户友好的元素分析解决方案。德国元素Elementar是全球同位素分析领域的领导者,以浓厚兴趣与责任为经,以奉献与专一为纬,通过设计、制造和提供高质量的解决方案推动稳定同位素分析的发展,同时有效协调硬件和软件系统,让复杂的同位素分析变得简单而高效。德国元素Elementar稳定同位素分析解决方案visION系列一体化方案,成就大繁至简GeovisION主要配置:vario PYRO cube、visION主要应用:古气候、古环境、考古学研究分析元素:13C,15N,34S,2H,18OBiovisION主要配置:vario ISOTOPE cube、visION主要应用:食品真实性鉴定,产地溯源分析元素:13C,15N,34S,2H,18OEcovisION主要配置:vario ISOTOPE select、visION主要应用:食物链、鸟类迁徙等生态学研究分析元素:13C,15N,34S,2HBiovisION Honey主要配置:iso CHROM LC、Agilent 1260 II LC、visION主要应用:蜂蜜掺假分析元素:13CEnvirovisION主要配置:iso FLOW GHG、visION主要应用:硝酸盐反硝化和温室气体研究分析元素:CO2-13C,18O,CH4-13C,2H,N2O-15N,18OAnthrovisION主要配置:Agilent 8890GC、GC5、visION主要应用:公安刑侦、反兴奋剂研究分析元素:13C(低温碳模式),15N,2H(低温氢模式),18OPetrovisION主要配置:Agilent 8890GC、GC5、visION主要应用:能源勘探等研究分析元素:13C(高温和低温碳模式),15N,2H(高温氢模式),18OAromavisION主要配置:Agilent 8890GC、GC5、visION主要应用:研究香精和香料等来源分析元素:13C(低温碳模式),15N,2H(低温氢模式),18OprecisION系列有史最灵活,探索无限可能isoprime precisION除了可以和EA、GC、LC、iso FLOW GHG联用,还可以和以下外设联用,实现更多的基础性科学研究。iso FLOW 顶空分析仪主要配置:iso FLOW、precisION主要应用:水文学、地球科学研究分析元素:碳酸盐13C和18O,水样2H和18Oiso TOC cube主要配置:iso TOC cube、LCM、precisION主要应用:陆地和水生系统总有机碳和结合态氮同位素分析分析元素:TIC, TOC 的13C,TNb的15Niso Dual Inlet 双路进样主要配置:iso Dual Inletiso AQUA PREP(水样)iso CARB PREP(碳酸盐样品)iso MULTI PREP(水样和碳酸盐样品)主要应用:古气候、地质研究分析元素:碳酸盐13C、18O水样2H、18OCO2团簇同位素Δ47进样系统控制模块 NICM主要特点:进样系统控制模块NICM提供了将客户定制的进样系统与IRMS联用的途径,通过定制的输入/输出端口,允许电脑软件自动控制整个分析过程。lyticOS专业的同位素分析软件主要特点:行业领先的同位素分析软件,兼容实时分析和数据处理功能,内嵌多点同位素校正、空白扣除、漂移校准和自动峰匹配等多项功能。ArDB专业的数据库管理软件主要特点:分析结果的数据库管理和功能强大的数据解析和可视化,支持lyticOS同位素分析数据与ArDB实时传输。
  • 2022年德国元素同位素质谱高峰论坛
    德国元素Elementar是全球同位素分析领域的领导者,以浓厚兴趣与责任为经,以奉献与专一为纬,通过提供协调硬件和软件系统,让复杂的同位素分析变得简单而高效。今年是德国元素成立的125周年,我们邀请国内外在同位素分析领域深耕多年的3位大咖,于2022年11月2号下午15:00-16:30,与您相约线上,共同探讨稳定同位素分析技术及其未来发展趋势,欢迎有兴趣的老师报名参加! 时间 2022年11月2日下午 15:00-16:30 主题 稳定同位素分析技术及其未来发展趋势 论坛形式 线上,Microsoft TEAMS 特邀嘉宾
  • 我国已形成同位素计量基标准
    记者从中国计量科学研究院获悉,国家“十一五”科技支撑计划项目《以量子物理为基础的现代计量基准研究》中的“同位素丰度基准的研究”课题,日前通过国家质检总局组织的专家验收。该课题形成了具有自主知识产权的同位素计量基标准,填补了我国同位素丰度基准研究空白,建立了锌、钐、硒、镉、镱5种元素的同位素基准测量方法,研制了锌、钐、硒、镉4种元素同位素系列基准物质共计152种、系列标准物质共计50种,测定了硒、镱的原子量。   元素的同位素组成被认为是其特有“指纹”。中国计量科学研究院联合中科院地质与地球物理研究所等3家单位开展同位素丰度基准方面研究,在国际上首次在宽泛的锌、钐、硒、镉4种元素的同位素比值变化范围内,研究了多接收电感耦合等离子体质谱的质量歧视效应变化规律 首次建立了使用3种以上浓缩同位素配制校正样品的硒、镱同位素的绝对质谱测量方法 推导出不确定度灵敏系数的计算公式 锌、钐、镉、硒、镱主同位素丰度比测量值的不确定度,达到国际领先或先进水平。
  • 硫同位素为华南雾霾研究提供新途径
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 记者从中国科大获悉,该校地球和空间科学学院沈延安教授团队与美国同行等合作,在研究华南雾霾的物质来源和形成机制上取得重要进展。相关研究成果日前在线发表在国际学术期刊《美国科学院院刊》上。 /p p style=" line-height: 1.5em "   雾霾主要由硫酸盐、硝酸盐、有机碳和黑碳等组成,因此对硫酸盐的稳定硫同位素进行高精度的测定并探索其非质量分馏信号成因,对正确认识雾霾的来源和形成机制具有指导意义。放射性硫同位素35S只在高层大气生成,半衰期为87天,因此可以有效地对雾霾的来源及物理传输途径进行示踪。 /p p style=" line-height: 1.5em "   研究人员通过系统地测定华南气溶胶的硫酸盐、大气中的二氧化硫以及代表性稳定硫同位素,发现气溶胶硫酸盐33S和36S的异常组成与大气中二氧化硫的同位素组成不同。放射性35S分析结果显示,33S的异常组成与气团高度的变化密切相关,这说明二次硫酸盐形成过程中硫循环经历了在平流层的光化学反应然后沉降到对流层和地表。 /p p style=" line-height: 1.5em "   另一个重要发现是,36S异常与33S异常不存在相关性,但36S异常与硫氧化率及多种生物质燃烧示踪物(左旋葡聚糖、甘露聚糖、钾离子)的丰度均呈现强相关性。研究结果表明,在东亚及北美地区广泛观测到的气溶胶硫酸盐36S异常,主要是由化石燃料或生物质燃烧直接生成的一次硫酸盐气溶胶造成的。 /p p style=" line-height: 1.5em "   该研究不仅证明了硫同位素是追踪不同成因雾霾硫酸盐来源和形成机制的有力手段,还为雾霾的物质来源、传输途径和形成机制提供了新的研究思路和有力证据,对制定雾霾治理政策和措施具有指导意义。同时,不同硫同位素异常的不同成因,对探讨早期生命演化和地球早期25亿年之前大气的组成也具有重要启示。 /p p style=" text-align: right line-height: 1.5em " (记者吴长锋) /p
  • 倒计时7天 | 德国元素同位素质谱高峰论坛报名进行中
    倒计时7天 | 德国元素同位素质谱高峰论坛报名进行中德国元素Elementar 是全球同位素分析领域的领导者,以浓厚兴趣与责任为经,以奉献与专一为纬,通过提供协调硬件和软件系统,让复杂的同位素分析变得简单而高效。今年是德国元素成立的125周年,我们邀请国内外在同位素分析领域深耕多年的3位大咖,于2022年11月2号下午15:00-16:30,与您相约线上,共同探讨稳定同位素分析技术及其未来发展趋势,欢迎有兴趣的老师报名参加!长按并识别上图二维码即可填写问卷报名并加群 此次论坛安排 时间 2022年11月2日下午 15:00-16:30 论坛形式 线上,Microsoft TEAMS 特邀嘉宾 嘉宾简介 袁玉伟,博士,研究员,2008年毕业于中国农业科学院研究生院,农产品质量与食物安全专业,现任浙江省农业科学院质量营养所副所长,农业农村部农产品信息溯源重点实验室副主任。兼任中国食品科学技术学会食品真实性与溯源分会第一届理事会常务理事,农业农村部农产品营养标准专家委员会委员。近年来开展大米、茶叶和中药材稳定同位素溯源与影响机制研究,以第一作者或通讯作者在J.Agric.FoodChem.、FoodChemistry、FoodControl等发表论文64篇(SCI收录论文28篇),其中2篇SCI论文多次入选ESI前1%高被引,1篇入选2021年领跑者F5000顶尖学术论文。方运霆,中国科学院沈阳应用生态研究所研究员,博士导师,副所长。一直从事生态系统生态学、全球变化生态学、稳定同位素生态学方面的研究。主要以稳定同位素技术作为主要技术手段,开展陆地生态系统碳氮循环及其对全球变化和人为干扰响应的研究,研究成果发表在Nature Communications, Nature Food、PNAS和Ecological Monographs等著名期刊。所研制的稳定同位素测定技术已经在国内外100多家实验室应用。担任生态学杂志副主编和Ecological Processes等期刊编委。Leonard I. WASSENAAR,博士,研究员,目前担任奥地利伦茨水系统研究中心、奥地利多瑙大学、加拿大萨斯喀彻温大学客座教授,欧洲地球物理联合会(European Geophysical Union)、加拿大渥太华大学科学咨询委员会成员,《Isotopes in Environmental and Health Studies》期刊编委,30年实验室研发和管理经验,包括25多年在政府、国际组织和学术界的创新生态水文科学研究经验和在联合国国际原子能机构水、环境和核技术的全球交叉领域有10多年的经验。全球水文学和环境地球化学同位素应用领域造诣极深。
  • “全国气体同位素实验室联盟”筹备建立
    p   8月22日,由中国科学院西北生态环境资源研究院(简称“西北研究院”)、中国科学院青年创新促进会等单位主办,西北研究院油气资源研究中心、兰州资源环境科学大型仪器区域中心等单位承办的“第一届全国气体同位素技术与地球科学应用研讨会”在甘肃兰州召开。西北研究院院长王涛致词。 /p p   此次会议以气体同位素技术与地球科学发展为主题,共吸引了来自包括中国、美国、日本、英国等国家和地区170多家单位的600余名代表参会。并特别邀请到中科院院士欧阳自远、戴金星、王铁冠、赖远明等数十位知名专家参会。会议内容涉及天体化学、油气地质学、冰冻圈科学、生态学、环境科学、全球变化研究、农业科学及稳定同位素分析技术新方法等学科领域。会议规模大、规格高、跨学科领域广。 /p p   中国月球探测工程首席科学家,被誉为“嫦娥之父”的欧阳自远回顾了世界各国探索月球的历程,重点介绍了中国在月球探测、空间探测和太阳系探测方面的思路及进展。大量珍贵的图片资料为揭开月球、太阳系的神秘面纱提供了重要的科学依据。欧阳自远提到,“搞探月工程、搞航天事业,我们国家要靠自己自力更生,也只能自力更生,我们有能力凭借自己的力量搞好中国的探月工程”。 /p p   世界著名同位素地质研究专家、国际纯粹与应用化学联合会同位素丰度与原子量委员会主席丁悌平作了“气体同位素与地球科学的发展”的发言。他指出,气体同位素的技术是自然科学院领域研究中强有力的工具,在解决地球各大圈层物质的形成、演化和迁移过程等重大科学问题中发挥了重要作用。 /p p   中国质谱学会秘书长谢孟峡作了“跨学科交流与气体同位素科学研究的未来”的报告。他强调,实验室是科技创新活动的重要场所,是进行高水平研究及培养科技人才的重要基地 而跨领域的学术交流是科技创新活动的一个重要动力源,是学术不断创新的阶梯。他指出,气体同位素研究有关的跨学科领域交流内在潜力是不可估量的。 /p p   为更好地加强国内气体同位素实验室间的交流合作,更多地为科研提供技术支撑,本次会议期间将正式开始筹备建立“全国气体同位素实验室联盟”。西北研究院院长王涛表示,西北研究院将对筹建的“全国气体同位素实验室联盟”给予大力支持。 /p p   “全国气体同位素实验室联盟”的成立,将有助于全面提升我国气体同位素实验室的科技创新支撑能力,促进我国气体同位素实验技术跨越进入世界先进行列,促进科研和实验技术人员的紧密融合,为不断开拓学科前沿领域,并取得重要科研成果和突破做出贡献。该联盟将突破传统观念的束缚,探索新的改革之路和发展模式。 /p p   本届研讨会为期三天。期间,将举办多个分论坛。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/85c69fdf-2f35-4e8f-b9cb-d79283832c02.jpg" title=" 1.jpg" / /p p style=" text-align: center " 会议现场 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/b7225e4d-433e-4802-82be-d7f240cf0749.jpg" title=" 2.jpg" / /p p style=" text-align: center " 欧阳自远作报告 /p
  • 新型高灵敏度Sm-Nd同位素分析方法
    低本底高灵敏度Sm-Nd同位素分析方法对石榴子石Sm-Nd定年、陨石Sm-Nd年代学及地球化学、高度亏损超镁铁岩Sm-Nd同位素研究以及环境样品Sm-Nd同位素地球化学研究等领域具有重要的意义。   中国科学院地质与地球物理研究所科技支撑系统储著银副研究员及其合作者,利用固体同位素实验室IsoProbe-T质谱计,采用W灯丝和TaF5发射剂的涂样技术建立了一种新的高灵敏度Sm-Nd同位素分析方法。W灯丝和TaF5发射剂涂样技术通常被应用于低含量样品或微量样品的Sr同位素高精度分析,储著银等首次将该涂样技术应用于Sm-Nd同位素分析。其中,Nd同位素采用测定NdO+离子的方法进行测定,较传统的采用Re带+硅胶+磷酸的涂样技术的NdO+测定方法具有更高的离子发射效率及更稳定的离子流发射,同时不需要给离子源加氧 Sm同位素采用测定Sm+离子的方法进行测定,较传统的Re带点样方法,灵敏度和离子流稳定性均有大幅度的提高。采用该方法可对低至0.5-1ng的Nd获得高精度(内部精度可达10ppm)的同位素分析数据,可对低于0.2ng的Sm获得精确的同位素稀释分析结果。结合低本底的Sm-Nd同位素化学分离流程,可对低含量或微量地质样品进行高精度的Sm-Nd同位素分析。   该分析方法最近已发表于国际著名的分析化学刊物《分析原子光谱学杂志》(Journal of Analytical Atomic Spectrometry)(2008IF: 4.03)(Chu et al. Precise determination of Sm, Nd concentrations and Nd isotopic compositions at the nanogram level in geological samples by thermal ionization mass spectrometry. Journal of Analytical Atomic Spectrometry,2009, 24: 1534-1544)。该方法的建立将为超镁铁岩Sm-Nd同位素研究、石榴子石Sm-Nd定年、陨石Sm-Nd同位素研究及古海水Sm-Nd同位素研究等提供新的研究手段。
  • 这些科学家照亮同位素质谱发展之路
    p   质谱技术成为分析科学的重要组成部分是从同位素的发现开始,并伴随同位素分析、研究和应用而发展。从1912年汤姆逊研制第一台简易同位素质谱仪到现在,共有13个诺贝尔奖授予了在质谱技术的诞生、发展以及应用方面有杰出贡献的科学家。可见,质谱技术在推动人类社会进步中发挥了重要的作用。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 一.质谱技术相关的诺贝尔奖获奖人及其成就: /strong /span /p p style=" text-align: justify "   1. strong 约瑟夫· 约翰· 汤姆逊, /strong strong 1906年诺贝尔物理奖 /strong 。揭示了电荷在气体中的运动。 /p p style=" text-align: justify "   2. strong 威廉· 卡尔· 维尔纳· 奥托· 弗里茨· 弗兰茨· 维恩, /strong strong 1911年诺贝尔物理奖 /strong 。1893年,维恩提出波长随温度改变的定律,后来被称为维恩位移定律。1894年发表了一篇关于辐射的温度和熵的论文,将温度和熵的概念扩展到了真空中的辐射,在这篇论文中,他定义了一种能够完全吸收所有辐射的理想物体,并称之为黑体。1896年发表了维恩公式,即维恩辐射定律,给出了这种确定黑体辐射的关系式,提供了描述和测量高温的新方法。虽然后来被证明维恩公式仅适用于短波,但维恩的研究使得普朗克能够用量子物理学方法解决热平衡中的辐射问题。 /p p style=" text-align: justify "   3. strong 弗朗西斯· 威廉· 阿斯顿 /strong , strong 1922年诺贝尔化学奖 /strong ,汤姆逊和阿斯顿使用威廉· 维恩发明的方法,通过磁场使阳极射线的粒子发生偏转,并通过电场使具有不同电荷和质量的离子分隔开,发现了同位素。 /p p style=" text-align: justify "   4. strong 哈罗德· 尤里, /strong strong 1934年诺贝尔化学奖 /strong 1931年年底,尤里教授及其团队发现了重氢。根据尤里的建议,重氢被命名为DEUTERUM(中文译为氘),符号D,在希腊语中是“第二”的意思。后来英、美的科学家们又发现了质量为3的tritium,中文译为氚,符号T,是具有放射性的另一重要氢同位素。 /p p style=" text-align: justify "   5. strong 乔治· 佩杰特· 汤姆生 /strong strong , /strong strong 1937年诺贝尔物理学奖 /strong 证实电子是一种波而被授予诺贝尔物理学奖。 /p p style=" text-align: justify "   6. strong Hans Georg Dehmelt /strong , strong 1989年诺贝尔物理奖 /strong ,发明离子阱技术。 /p p style=" text-align: justify "   7. strong 沃尔夫冈· 鲍尔,1989年诺贝尔物理奖 /strong ,发明离子阱技术,并于1947年成功建成一台6mev的电子螺旋加速器。 /p p style=" text-align: justify "   8. strong 小罗伯特· 卡尔,1996年诺贝尔化学奖 /strong ,发现C60。1985年9月与美国人斯莫利(R.E.Smalley)、英国人克鲁托(H.W.Kroto)一起,在氦气中气化石墨,产生碳原子束。从气化中他们获得了一些与含40-100个以上偶数碳原子相应的未知形式碳的谱线。从而他们发现了碳元素的第三种存在形式—C60(又称“富勒烯”“巴基球”),他们命名为“富勒烯”。这种独特结构的发现创立了一个崭新的化学分支。为此,他与克罗托、斯莫利三人共获1996年诺贝尔化学奖。 /p p style=" text-align: justify "   9. strong 哈罗德· 克罗托,1996年诺贝尔化学奖 /strong ,发现C60)。 /p p style=" text-align: justify "   10. strong 里查德· 斯莫里,1996年诺贝尔化学奖 /strong ,发现C60)。 /p p style=" text-align: justify "   11. strong 中国化学家李远哲,1996年诺贝尔化学奖 /strong ,将交叉分子束实验方法应用于一般的化学反应,特别是研究较大分子的化学反应,并利用激光激发已被加速但尚未碰撞的分子或原子,以此控制化学反应的类型。 /p p style=" text-align: justify "   12. strong 约翰· 本内特· 费恩,2002年诺贝尔化学奖。 /strong 发明了对生物大分子进行确认和结构分析的方法。 /p p style=" text-align: justify " strong   13. strong 田中耕一 ,2002年诺贝尔化学奖 /strong ,发明基质辅助激光解吸离子化。 /strong /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 二. 有关同位素的基本概念 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 0, 0) " 1、同位素(Isotope): 具有相同质子数,不同中子数的同一元素的不同核素。 /span /p p style=" text-align: justify "   2、稳定同位素(Stable isotope) /p p style=" text-align: justify "   同位素可分为两大类:放射性同位素(radioactive isotope)和稳定同位素(stable isotope)。凡能自发地放出粒子并衰变为另一种同位素者为放射性同位素,无可测放射性的同位素是稳定同位素其中一部分是放射性同位素衰变的最终稳定产物。 /p p style=" text-align: justify "   3、同位素丰度(Isotope abundance) /p p style=" text-align: justify "   ①绝对丰度:指某一同位素在所有各种稳定同位素总量中的相对份额。 /p p style=" text-align: justify "   ②相对丰度:指同一元素各同位素的相对含量。例如12C=98.892%,13C=1.108%。大多数元素由两种或两种以上同位素组成, 少数元素为单同位素元素 例如19F=100% /p p style=" text-align: justify "   4、R值和δ值 /p p style=" text-align: justify "   ①一般定义同位素比值R为某一元素的重同位素原子丰度与轻同位素原子丰度之比.例如D/H、13C/12C、34S/32S等,由于轻元素在自然界中轻同位素的相对丰度很高,而重同位素的相对丰度都很低,R值就很低且冗长繁琐不便于比较,故在实际工作中通常采用样品的δ值来表示样品的同位素成分。 /p p style=" text-align: justify "   ②样品(sq)的同位素比值Rsq与一标准物质(st)的同位素比值(Rst)比较。比较结果称为样品的δ值其定义为: /p p style=" text-align: justify "   δ(‰)=(Rsq/Rst-1)× 1000 /p p style=" text-align: justify "   即样品的同位素比值相对于标准物质同位素比值的千分差 /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 三. 常见同位素质谱仪分类: /strong /span /p p style=" text-align: justify " span style=" color: rgb(0, 112, 192) " /span & nbsp img title=" 同位素质谱仪分类.png" alt=" 同位素质谱仪分类.png" src=" https://img1.17img.cn/17img/images/201812/uepic/7e26b4f3-9621-458b-b490-ee4ea2da4065.jpg" / /p p style=" text-indent: 2em " 此处列出部分在仪器信息网参展同位素仪: /p p style=" text-align: center " img title=" 赛默飞Delta V.jpg" alt=" 赛默飞Delta V.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/3044fd02-6b97-427e-b37e-765456c1a477.jpg" / /p p style=" text-align: center " 赛默飞 DELTA V Advantage气体同位素质谱仪 /p p   可与元素分析仪、GasBench、气相色谱或液相色谱等装置联用,用于测定C、N、S、H、O等多元素的稳定同位素比值,可用于食品安全、农业、环境、地质、海洋等领域,进行食品真实性鉴定、原产地判别以及环境污染物溯源等研究。 /p p 详情请点击: a href=" https://www.instrument.com.cn/netshow/C112805.htm" target=" _blank" https://www.instrument.com.cn/netshow/C112805.htm /a /p p style=" text-align: center "   img title=" Elementar isoprime.jpg" alt=" Elementar isoprime.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/32f67b6c-2e35-4b2a-8f7d-810262f5faad.jpg" / /p p style=" text-align: center " Elementar isoprime 100r稳定同位素质谱& nbsp /p p   100V超宽动态范围信号放大器,有利于高C:N, C:S 比样品的测定 离子源底置分子涡轮泵、源内磁铁以及氧化钍保护灯丝,确保离子源长期在零交叉污染、高灵敏度、长寿命下连续工作,提高质谱耐用性 可扩展多杯接收器,最多可扩展至10杯,用于二元同位素特征表征(clumped Isotope) 快速质谱峰跳跃,可以胜任CHNS四元素同时测定 标配皮拉尼真空规和潘宁真空规,实时反馈系统真空状态,进行自动诊断以及安全锁定保护 IonVantage质谱工作站软件,兼容可控全部外设,项目组管理模式,方法设定简便易行,支持脚本控制,增加第三方外设。 /p p 详情请点击: a href=" https://www.instrument.com.cn/netshow/C181402.htm" target=" _blank" https://www.instrument.com.cn/netshow/C181402.htm /a /p p style=" text-align: justify " span style=" color: rgb(0, 112, 192) " /span & nbsp 其他未列入本文的仪器信息可点击此处了解: a href=" https://www.instrument.com.cn/zc/49.html" target=" _blank" https://www.instrument.com.cn/zc/49.html /a /p p style=" text-align: justify " span style=" color: rgb(0, 112, 192) " strong & nbsp & nbsp & nbsp & nbsp & nbsp /strong /span /p p style=" text-align: justify " & nbsp /p
  • 强强联合打造前沿科研平台|上海凯来与南京大学国际同位素效应研究中心成立飞秒原位同位素技术合作实验室
    2024年8月15日,上海凯来仪器有限公司与南京大学国际同位素效应研究中心达成战略合作,正式成立《飞秒原位同位素技术合作实验室》,揭牌仪式在南京大学国际同位素效应研究中心(现代工程与应用科学学院大楼)三楼举行。 上海凯来仪器有限公司与南京大学国际同位素效应研究中心成立的《飞秒原位同位素技术合作实验室》,聚焦地球科学和行星科学中在高空间分辨率上亟待解决的关键科学问题,将联合研发飞秒原位同位素测试技术,包括碳酸岩碳氧同位素,有机碳同位素,黄铁矿硫同位素,叁氧和多硫同位素的微米级高空间分辨率原位高精度同位素分析测试方法。中心主任鲍惠铭教授、彭永波教授、上海凯来总经理胡勇刚、副总经理梁燕共同为联合实验室揭牌。 揭牌仪式现场中心主任鲍惠铭教授表示:“飞秒原位同位素技术合作实验室旨在加强原位同位素分析技术发展和方法开发。未来双方需要共同努力,推动技术创新和科研发展,为同位素效应理论与应用研究打开新的大门。”中心彭永波教授表示:“目前对全样样品的同位素研究已经到达极限,需要从微米级空间分辨率进行原位分析,从而寻求空间分辨率和分析精度之间的平衡发展。上海凯来全自研的国产飞秒激光剥蚀系统性能远超国际水平,与上海凯来的合作将为中心提供更多技术支持和创新动力,双方将共同努力打造前沿科研平台。”上海凯来胡勇刚总经理表示:“飞秒激光剥蚀系统短脉宽、低分馏的特点在原位同位素分析的应用前景广阔。GenesisGEO新型飞秒激光剥蚀系统是全国首台全自研国产飞秒激光系统,我们一直坚持创新自主研发,做靠谱的高端国产仪器。公司与南京大学国际同位素效应研究中心达成正式合作,期待通过双方在仪器开发优化、原位同位素技术方法开发等方面的紧密合作,在飞秒原位同位素研究领域取得创新和突破性成果。” 仪式适逢2024同位素效应研学营召开,本次课程为期两天,来自全国各个高校及研究机构的近百名参会代表参加课程,并共同见证了合作仪式。揭牌仪式结束后,中心实验室负责老师和上海凯来工程师带领现场参加揭牌仪式和参加暑期同位素效应研学营的老师同学们参观了中心实验室,并现场演示上海凯来自主研发的新型飞秒激光剥蚀系统。南京大学国际同位素效应研究中心国际同位素效应研究中心(ICIER)是国家级引进人才鲍惠铭教授全职回国在南京大学创立的跨学科的独立的研究中心。中心以研究同位素效应为核心,促进各学科的交叉,融合和突破,解决重大交叉科学问题为使命,涉及的主要学科包括:地球、行星,大气、海洋,环境,考古,生态,材料,生命等科学。凯来上海凯来成立于2004年,起始于专业代理国际先进分析仪器,定位为专业技术服务商,聚焦专业细分市场,目前已经成为多个领域的领导者。上海凯来总部位于上海临港新片区海洋科技创业园,设有应用演示及服务实验室,客户定制产品及研发中心,专注于推广和研发前沿的元素分析测试解决方案。目前在北京,武汉,成都,青岛设有应用实验室,并处于快速扩展中。公司文化:“只有精英才能生存”。
  • 2013年全国无机及同位素质谱会议日程公布
    2013年全国无机及同位素质谱学学术会议   (第三轮通知)   报到时间:11月22日(8:00-22:00)   报告时间:11月23日-24日上午   参观考察时间:11月24日下午-25日   会议日程安排 (以会议手册为准) 时间 会议日程 地点及主持人 11月22日 08:00-22:00 注册报到 昆山宾馆 15:00-18:00 厂家仪器及墙报布展 三楼琼花厅 16:30-17:30 学术委员会会议 三楼秦峰厅 18:30-20:30 欢迎晚宴(天瑞) 二楼宴会厅 11月23 日 上午 8:30-8:50 开幕式 谢孟峡 8:50-9:20 陈洪渊 质谱分析与生命科学 张新荣 9:20-9:50 庄乾坤 中国分析化学状况与创新研究 9:50-10:10 照相及媒体采访 10:10-10:30 周 立 电感耦合等离子体质谱仪在环境土壤监测中的应用 李 冰 10:30-11:00 陈焕文 提高质谱仪器可靠性的可能途径 11:00-11:20 陈玉红 ICP-MS技术的发展趋势及应用 刘敦一 11:20-11:50 侯贤灯 电感耦合等离子体质谱分析中的进样技术研究 11:50-12:10 荆 淼 Icap Q 型电感耦合等离子体质谱仪器结构介绍 12:10-14:00 午餐+休息 一楼咖啡厅 11月23 日 下午 14:00-14:30 王海舟 待 定 张玉海 14:30-15:00 张新荣 ICP-MS 在生命科学分析中的应用潜力 15:00-15:20 朱 敏 UCT-ICP-MS测定海水中铜、铅、锌、镉、铁、锰等元素 郭冬发 15:20-15:50 刘敦一 牙形石SHRIMP微区原位氧同位素分析 &mdash 二叠 &mdash 三叠界限海水温度变化 15:50-16:10 杨列坤 多接收同位素质谱新技术进展与应用 16:10-16:30 仪器展及墙报展   续上表   16:30-16:50 杭 伟 电感耦合等离子体质谱的固体采样技术 崔建勇 16:50-17:20 邓 磊 质谱应用中的全新真空解决方案 17:20-17:40 蒋少涌 复杂基体高精度硼同位素质谱测定方法改进及其地质应用 17:40-18:10 牟凤展 爱德华分子泵和干式真空泵在质谱仪中的应用 丁传凡 18:10-18:40 柴之芳 待 定   18:40-19:30  李金英 中国质谱学会开幕晚宴     8:00-11:30 分组报告(一) 三楼琼花厅   8:00-11:30 分组报告(二) 三楼玉峰厅 11月24 日 11:10-11:40 杨芃原 离子轨迹的调控硬件技术和模块化 蒋少涌   11:40-11:50 沈 莹 质谱学报情况通报   11:50 闭幕式 三楼琼花厅   优秀青年论文颁奖   12::00-13:00 午 餐 一楼咖啡厅   13:00-15:00 参观天瑞仪器公司(宾馆门口上车)     15:00-18:30 参观周庄古镇     18:30-19:30 晚 餐一楼咖啡厅   分组报告分会列表 11月24日上午 第一分会场 主题 报告时间 报告人 单位 报告题目 主席/地点 08:00-08:20 郭冬发 核工业北京地质研究院 国产质谱仪应用实践 宋志远 邢 志 三楼琼花厅 08:20-08:40 邢 志 清华大学 基于低温等离子体与无机质谱在元素成像中的研究 08:40-08:55 胡芳菲 北京有色金属研究总院 直流辉光放电质谱法测定氧化铝中杂质元素 08:55-09:10 陈绍占 北京市疾病预防控制中心 雄黄在大鼠肾脏中代谢后的砷形态研究 09:10-09:25 张 磊 中国原子能科学研究院 电感耦合等离子体质谱法直接测定有机相中痕量锆 09:25-9:40 王 姜 东华理工大学 中性解吸化学电离淌度谱检测肉制品的研究 09:40-09:55 徐福兴 复旦大学 基于数字离子阱的偶极激发频率碰撞诱导解离技术 汪 正 刘丽萍 三楼琼花厅 09:55-10:10 朱小兵 东华理工大学 表面解吸常压化学电离源用于离子迁移谱快速检测爆炸物的研究 10:10-10:25 武中臣 山东大学(威海) 火星探测中的质谱技术应用现状 10:25-10:40 魏海珍 南京大学 校正质谱法绝对氯原子量高精度测定 10:40-10:55 汪 正 中科院上海硅酸盐研究所 激光剥蚀电感耦合等离子体质谱应用于碳化硅陶瓷中痕量元素分析 10:55-11:10 姜 山 中国原子能科学研究院 CIAE的加速器质谱技术及其应用研究新进展 11月24日上午 第二分会场主题 报告时间 报告人 单位 报告题目 主席/地点 08:00-08:20 丁传凡 复旦大学 栅网电极离子阱质量分析器 杭 伟 漆 亮 三楼玉峰厅 08:20-08:40 崔建勇 核工业北京地质研究院 同位素稀释测量的质量分馏校正方法 08:40-08:55 漆 亮 中科院地球化学研究所 改进的卡洛斯管溶样ICP-MS分析硫化物中低含量Re-Os同位素 08:55-09:10 董晓峰 东华理工大学 电喷雾萃取电离源调节装置的研制 09:10-09:25 赵占锋 哈尔滨工业大学 低真空或常压环境中质谱分析的机理研究 09:25-9:40 黄龙珠 东华理工大学化妆品中邻苯二甲酸酯的快速直接质谱分析技术的研究 09:40-09:55 韦冠一 西北核技术研究所 磁-电-四极杆级联质谱中的离子光学设计 周志权 李力力 三楼玉峰厅 09:55-10:10 贺茂勇 中科院地球环境研究所 Isotope Ratio Measurements for Boron by ICP-QMS 10:10-10:25 杨之青 中国地质科学院地质研究所 超高真空中的三维样品台 10:25-10:40程 平 上海大学 挥发性有机物(VOCs)实时、在线检测的质谱仪器的研制和应用 10:40-10:55 周 立 天瑞仪器 气相色谱-质谱联用仪在环境VOC监测中的应用 10:55-11:10 周志权 哈尔滨工业大学(威海) 质谱仪模块化电子系统设计   一、 报告:   大会报告(30分钟),邀请报告(20分钟),口头报告(15分钟),以上三种形式的报告时间均包括讨论时间。因报告安排非常紧凑,请大家不要超时,会议主持人要严格控制时间。   具体的报告安排见报到时发的会议指南。   会务组将提供多媒体设备,报告人只需要准备PowerPoint 文件,并在报到时将文件电子版交到会务组即可。如有特殊要求,请提前与我们联系。   二、 墙报展   会议提供Poster 展示场所和展板,请您在报到时务必将您的Poster (高110 CM× 宽80 CM)交给会务组,以方便工作人员代其布展。   三、 优秀青年论文评选   会议将组织对墙报和口头报告进行优秀论文评选。并给青年优秀论文获奖者颁发荣誉证书和奖金。   对于墙报的评选,要求墙报作者在规定的墙报展示时间内,在自己的墙报前根据评选评委要求讲解自己的工作内容。   四、 食宿   会议期间食宿由大会统一安排,费用自理。因房源有限,参会人数多,如果您对食宿有特殊要求,请提前与会务组人员联系,我们会在尽可能照顾参会者注册意愿的情况下进行食宿安排。   请参会人员务必携带身份证原件,学生同时还要带齐学生证。   五、 参观考察   会议组织在24日下午参观天瑞仪器和周庄古镇,25日考察苏州,请大家遵守时间和安排。苏州介绍见如下链接:   http://www.sinospectroscopy.org.cn/readnews.php?nid=14952  六、接站安排   酒店信息及路线:   酒店名称:昆山宾馆   地址:江苏省昆山市人民北路99号   酒店联系人:浦建强   手机:189 6268 3282   酒店线路图:   线路一:乘高铁至昆山南站   公交:步行至 昆山南站 乘坐 昆山33路、3路公交, 在 昆山宾馆北站、西站 下车步行至 昆山宾馆   的士:出站打的至昆山宾馆,约5.3公里/11分钟   线路二:乘飞机至上海虹桥机场   高铁:从上海虹桥机场 至 上海虹桥火车站至 昆山南站(15分钟)至 昆山宾馆   的士:从上海虹桥机场 打的至昆山宾馆 约56.5公里/49分钟   线路三:乘汽车至昆山汽车客运南站   公交:步行至 汽车客运南站 乘坐 昆山33路、3路, 在 昆山宾馆北站/西站 下车步行至 昆山宾馆   的士:出站打的至昆山宾馆,约6.1公里/12分钟   会议22日将安排车辆在昆山南站接站,其他时间到达的代表请自行前往昆山宾馆。   乘飞机到上海虹桥机场需要接站的代表,请提前把航班班次和到达时间告知会务组。董正新,电话0512-57018653 15995469909 E-mail:dzx@skyray-instrument.com   六、会务组联系人及联系方式:   肖国平,电话 010-69357572, 138 1159 7264 E-mail:xiaoguoping@vip.163.com   董正新,电话0512-57018653 15995469909 E-mail:dzx@skyray-instrument.com   中国质谱学会   无机质谱专业委员会   同位素质谱专业委员会   质谱仪器与教育专业委员会
  • 同位素 | 三种不同气候下露水的稳定同位素变化
    全球变暖增加了当地大气对水分的需求,导致许多地区降水减少,两者都会导致干旱。水汽可以在辐射冷却到露点温度以下的表面凝结成露水。露水因其对地表水平衡的重要贡献而被认为是一个重要水源,尤其是在半干旱和干旱地区。干旱地区,年露水量占降雨量的9%-23%。在热带岛屿旱季,露水可以作为一种替代水源。露水对干旱地区或干旱期植物的生存、生长和发育十分重要,例如带来夜间水分以及通过植物气孔或特殊的物理特征(如气生植物)直接被叶片吸收利用。因此,露水可以增加叶片的净光合产物积累,提高植物水分利用效率。露水还参与了大气中的化学过程,例如亚硝酸盐氧化物的昼夜(和夜间)循环。从1961-2010,中国露水频率降低了5.2天/10年,这主要是因为近地表增温和相对湿度(RH)下降。此外,中国干旱区露水频率下降率(50%)高于半湿润和湿润地区(40%和28%)。因此,随着全球气候变化,不同地区露水具有不同的趋势,需了解不同气候区域的露水特征以更好地预测未来露水动态变化。图片来源于网络,如有侵权请联系删除δ2H和δ18O是天然和传统的水文示踪剂,在追踪与不同类型水(例如降雨、降雪、露水、雾、地表水、植物水和冰芯)相关的不同水文气象过程中发挥着重要作用。两种质量分馏过程,平衡分馏和动力学分馏,是水相变过程中同位素差异的根本原因。它们分别由饱和水汽压和不同同位素的扩散速率决定。17O-excess(17O-excess = ln(δ17O + 1)-0.528×ln (δ18O + 1)),作为一种新的示踪剂,可用来提供有关水分输送、降雨和蒸发的额外限制,以探测水文和气象过程。与传统的依赖于温度和RH的同位素相比,17O-excess主要对10-45℃的RH敏感。δ′18O(δ′18O = 1000×ln(δ18O + 1))和 δ′17O(δ′17O = 1000×ln (δ17O + 1))之间的关系可用来更好的解释自来水和降水形成机制,区分干旱类型和纳米布沙漠不同类型的凝结。此外,利用17O-excess与δ′18O(或 d-excess)之间的关系(如实验室模型试验、降水和天然水体(河流、渠道、水井、泉水、地下水、湖泊和池塘))来推断经历平衡分馏或动力学分馏的不同水分蒸发过程是一种有效的方法。然而,到目前为止,还没有公布δ2H,δ18O,δ17O,d-excess和17O-excess日露水同位素记录。图片来源于网络,如有侵权请联系删除基于此,在本文中,作者于2014年7月-2018年4月从3个不同的气候区域(纳米布沙漠中部的戈巴布(沙漠气候)、法国尼斯(地中海气候)、美国中部印第安纳波利斯(湿润大陆性气候))收集了黎明前日露水。利用基于离轴积分腔输出光谱技术的三参数水汽同位素分析仪(T-WVIA-45-EP)同时分析了露水的δ2H,δ18O,δ17O,然后计算了d-excess和17O-excess。该报告介绍了3个气候区域的日露水同位素数据集。在研究全球露水动力学和露水形成机制时,研究者可以利用该数据集作为参考。【结果】表1 戈巴布(2014年7月-2017年6月)、尼斯(2017年12月-2018年4月)和印第安纳波利斯(2017年1月至2017年10月)的每日露水记录汇总。图1 戈巴布(紫色)、尼斯(蓝色)和印第安纳波利斯(红色)露水的稳定同位素变化。图2 基于戈巴布、尼斯和印第安纳波利斯每日露水的δ18O和δ2H之间的关系及δ′18O和 δ′17O之间的关系(b)。请点击下方链接,阅读原文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650310465&idx=2&sn=e1d3675059e7a6e4221f5633291cd304&chksm=bee1abbe899622a8ec8b2b200b841a8a8def0dc591af3b2ae6543b52a6c03d08f7ce4fd95b10&token=234254584&lang=zh_CN#rd
  • 第三届华人质谱研讨会:无机同位素及质谱技术专场
    2010年全国质谱大会曁第三届世界华人质谱研讨会--无机同位素及质谱技术专场   由中国质谱学会、美国华人质谱学会、台湾质谱学会、香港质谱学会共同举办的“2010年全国质谱大会曁第三届世界华人质谱研讨会”的分会“无机同位素及质谱技术专场”于8月1日上午召开,由于会议内容涉及到新型质谱技术的开发、质谱技术的新应用而吸引了众多的观众,现将主要报告内容摘录如下。   中国计量科学研究院 王军   报告题目:非传统同位素体系计量标准研究   国外有证非传统同位素标准物质因其研制时间早,在应用中占主导地位。目前非传统同位素标准物质存在的问题:有限的元素同位素标准物质商品化 部分已经供应不足 质谱仪测量精密度的提高(0.0002%)推荐同位素组成变异研究,传统的测量模式导致标准物质的不确定度0.2%-0.02% 提高同位素标准物质的品质,关键是提高研制的技术含量 在目前的同位素标准物质不确定度水平上,在降低1-2个数量级。    PerkinElmer公司 姚继军   报告题目:ICP-MS分析复杂样品长期稳定性的影响因素   复杂样品涉及土壤、矿石、冶金材料、高盐样品、生物样品、有机样品等。姚继军分析了进样的各个环节影响长期稳定性的影响因素,如泵管、锥、控温、离子透镜等方面。“锥”是影响长期稳定及检测结果的重要因素之一,在检测过程中,Na、K、Mg等易电离元素很难沉积在锥口上,而金属基体以及硅酸盐德国那则容易沉积在锥口上,导致锥口变小,从而影响到仪器的稳定性。姚继军还介绍了各种锥的适用范围。    西安核技术研究所 朱凤蓉   报告题目:钚气溶胶直接进样ICP-MS快速分析技术-6级高效过滤器后钚气溶胶的定量   经典理论认为,气溶胶通过虑材时,微粒被捕集的机理主要有惯性碰撞、拦截、扩散、重力沉积及静电吸引等。气溶胶直接进样,由ICP-MS进行钚的识别容易,但是要定量分析气溶胶则困难较多,主要时效率标定困难。朱凤蓉所在实验室研发了钚气溶胶直接进样ICP-MS快速分析技术,用外加雾化气溶胶实时标定ICP-MS的灵敏度,用天然铀单粒子验证了方法的可靠性。    岛津分析技术研发(上海)有限公司 蒋公羽   报告题目:Tandem Mass Analysis using Quadrupole and Linear Ion Trap Analyzers   在报告中展示了一种利用离子阱前的四级杆对样品离子初步筛选,利用四极杆与离子阱间的的直流电位差加速离子使其碎裂的串联质谱方法。高能量条件下本方法所得子离子谱与三重四极杆仪器子离子谱图相似,有利于进行谱库查询及定性、定量检测。    中国原子能科学研究院 赵永刚   报告题目:核取证--质谱技术应用新领域   核能利用主要在两个方面:核子武器和核能发电。“核不扩散条约”是核能利用的国际规则。质谱技术在核取证过程具有非常重要的作用,主要有TIMS、ICP-MS、GD-MS、GC-MS。核取证的作用正被越来越多国家和国际组织认可,相关投资正逐步加大,核取证是需要多学科共同介入的技术过程,质谱技术有明确的应用需求。    核工业北京地质研究院 郭冬发   报告题目:铀资源勘查质谱技术新进展   铀资源勘查需要高效的灵敏的技术,涉及到多种质谱技术,ICP-MS、GC-MS、二次离子质谱、热电离离子质谱等、稳定同位素、惰性气体质谱等。典型的应用是铀分量地球化学勘探,铀浓缩物微量元素分析 判定工艺质量和取证。难溶元素的分析使用激光ICP-MS,同位素示踪用TIMS和GMS。   西安核技术研究所 翟利华   报告题目:欧姆加热的热腔离子源与磁质谱的匹配及初步实验结果   报告中主要介绍了热腔离子源的主要特点和可能的用途、欧姆加热+磁质谱的利弊、离子源的设计、离子透镜的优化、以及初步的离子源效率实验。对铀的系统探测和离子源效率实验结果表明:离子源对铀的效率约为4-8%,通过扫描离子束大致判断通过率约为20-30%,通过率还有较大的改进余地。    中国计量科学研究院 江游   报告题目:大气压接口-单四极杆和线性离子阱质谱仪的研制   报告中主要介绍了大气压接口-单四极杆和线性离子阱质谱仪的研制两种仪器的研制情况。大气压接口-单四极杆应用范围:(1)液相色谱-质谱联用:ESI、nano-ESI、APCI、APPI等离子源。(2)常压原位分析:DESI、DBDI、DART等。(3)质量分析器:Ion Trap、Qaudrupole、TOF等。    中国计量科学研究院化学所 黄泽健   报告题目:基于离子阱技术的便携式质谱仪研制   报告中介绍了课题组关于气相色谱四极杆质谱联用仪的研制情况,经过原理样机、科研样机,已经研制出了产品样机。便携式叠型场离子阱质谱仪已经发布,涉及的关键部件和关键模块:RF电源、测控系统、小信号放大器AC驱动模块等 在机械部分成功研制了RIT离子阱、四极杆、离子源(EI、ESI、CI、GDEI、DESI、DBDI等)。    广州禾信分析仪器有限公司 周振   报告题目:气溶胶质谱及飞行时间质谱技术新进展   单颗粒气溶胶质谱检测技术优势:(1)基于单颗粒分析技术:颗粒物的粒径信息、化学成分信息同时得到测量 (2)分析速度快:多种成分同时测量 (3)高时间分辨率:现场实时分析,可以捕捉气溶胶的舜时变化 (4)更完整的反映颗粒物信息:不会造成易挥发性和强吸附性组分造成的误差。周振在报告中展示了最新研发成功的单颗粒气溶胶质谱仪SPAMS,该仪器具有体积小、实现野外检测、按要求做功能定制、维护方便。已积累了70万个同时含有颗粒物粒径和正负图谱颗粒信息。    华质泰科生物技术有限公司 刘春胜   报告题目:DART® -MS 实时直接分析质谱:升级您的液质联用LC/MS   报告中首先介绍了DART这一新型具有突破性的离子化技术的基本原理。目前用户要求样品的检测越快越好,但是中间包括了样品的制备、分离以及各种参数的调整,对于现场的操作人员,使用起来相对困难。相对于电喷雾,DART具有更多的优点,甚至不需要样品前处理,实验过程中只需要便宜的氮气就可以。DART和质谱仪之间,能够在大气压下直接分析固体、液体、或气体样品。 DART® -MS 实时直接分析质谱具有高分辨率、高特异性,能直接分析货币、食物、药片和衣物等样品。目前商品化的只有DESI和DART。操作非常简便,DART® -MS可以用有线或者无线,Iphone或Ipod进行控制。
  • 同位素 | 利用稳定同位素研究亚高山生境植物水源差异
    水分是植物生长不可或缺的因素,水分有效性的波动直接影响植物的生长、数量和空间分布。在全球气候变化下,区域降水格局已经发生了改变。植物不同水源的贡献率反映了生态系统对气候变化的响应程度。因此,追踪和分析植物水源可以为研究全球气候变化提供参考。祁连山位于青藏高原东北缘,是中国西北地区重要的生态屏障。因此,研究亚高山生境植物水源对于理解祁连山生态和水文过程具有重要意义。已有很多学者利用氢氧稳定同位素(δ2H和δ18O)进行了诸如此类的研究,但关于亚高山生境不同坡向植物水源的研究鲜少报道。基于此,在本研究中,来自西北师范大学和中科院西北生态环境资源研究所的研究团队监测了青藏高原东北缘祁连山东段冷龙岭北坡的上池沟(37°38′10″N,101°51′9″E,3080 m a.s.l.,图1)的降水、土壤水、木质部水、降水和泉水的稳定同位素组成以及相关环境变量(气象和土壤水变量),利用LI-2100全自动真空冷凝抽提系统(北京理加联合科技有限公司)提取土壤和木质部中的水分,并利用ABB LGR T-LWIA-45-EP液态水同位素分析仪测定所有水样的δ2H值和δ18O值。基于这些数据,分析了不同水体稳定同位素的变化,并利用多源线性混合模型(IsoSource)计算不同水源对植物的相对贡献率。本研究目标是:(1)观察相同和不同生境下亚高山灌木的水源以及(2)研究亚高山灌木对水源变化的适应性。图1 研究区和采样点位置。【结果】图2 不同水体δ2H和δ18O之间的关系。图3 半阳坡和半阴坡不同亚高山灌木的水源。表1 亚高山灌木主要水源及其贡献率。图4 5-12月半阳坡不同亚高山灌木的植物水源。图5 5-12月半阴坡不同亚高山灌木的植物水源。【结论】青藏高原东北缘的亚高山生境中灌木的水分吸收特征相似。特别是灌木木质部水分主要来源于0-30cm土壤水。在降水量少或需水量大的月份,同一生境的亚高山灌木争夺浅层土壤水。在此期间,为了满足生长所需的水分,一些亚高山灌木增加了对深层土壤水的利用,导致同一生境中亚高山灌木水源存在明显差异。同样,在旱季或生长季,半阳坡或半阴坡的亚高山灌木对深层土壤水的利用增加,导致不同生境中同一亚高山灌木物种水源存在显著差异。与其他亚高山灌木相比,杯腺柳(Salix cupularis),山生柳(Salix oritrepha),金露梅(Potentilla fruticosa),硬叶柳(Salix sclerophylla),烈香杜鹃(Rhododendron anthopogonoides)和 陇蜀杜鹃(Rhododendron przewalskii)根据降水和土壤水条件改变了其水分利用模式,表明其具有较强的环境适应性。在全球变化背景下,为了恢复亚高山生态环境,应选择能够在旱季或生长季调整其水分利用策略的灌木树种。请点击下方链接,阅读原文https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650310499&idx=1&sn=50381317af5c0f25d0739b6cbcdcfa3f&chksm=bee1ab9c8996228a367dd8cc6f778f80a7deff7b49c807bac194f912428231318b4544693e27#rd
  • 同位素地质研究专用仪器成功研发
    我国大型高端质谱仪器一直以引进为主,受国外技术封锁,一些用于高精度同位素分析和核科学研究的质谱仪器引进十分困难,且价格高昂。  为了推动我国高端质谱仪器的自主研发,针对目前宇宙样品及地球化学珍贵样品稳定同位素、稀土元素微区原位分析的难题,国家重大科学仪器设备开发专项设立“同位素地质学专用 TOF-SIMS(飞行时间二次离子质谱)科学仪器”项目,由中国地质科学院地质研究所国家科技基础条件平台北京离子探针中心牵头实施。  据了解,根据记者掌握的情况,项目研制的两台分别用于稳定同位素分析和稀土元素分析的TOF-SIMS-SI和TOF-SIMS-REE仪器,将为岩石成因学、矿床成因学、地球环境、气候变化、月球及行星演化等热点研究领域提供最先进的技术支撑。  专家称,用于高精度同位素丰度分析的TOF-SIMS 是一项全新的技术,它的成功研制,将是质谱学技术划时代的里程碑,同时将进一步推动地球化学和宇宙化学向更微的空间发展。像 SHRIMP 的诞生一样,这项新技术的诞生将带来一系列重要的科学成果,特别是将直接为我国探月工程在获得月球样品后的分析研究工作奠定坚实的技术基础。  据介绍,经过近4年的技术攻关,北京离子探针中心联合中国科学院大连化学物理研究所和吉林大学等单位完成了两台TOF-SIMS仪器的整体设计,对一次离子源等关键部件进行了设计加工和单独调试,并完成了TOF-SIMS专用系统控制软件和数据处理软件的开发和优化。  自2014年8月起,项目组开始对两台TOF-SIMS整机进行总装配和总调试工作。2015年6月,TOF-SIMS整机的质量分辨率可达12000(m=106)。截至2015 年初,项目共取得新装置 12套、核心部件20个;新申请专利 33项,获专利授权8项(其中发明专利2项);登记软件著作权3项;发表论文24篇,取得了重要的阶段性成果。  一是首次将飞行时间二次离子质谱(TOF-SIMS)技术应用于精密同位素分析和元素丰度测定。近年来,随着离子接收系统在技术上取得突破性进展,北京离子探针中心和相关合作单位在国内率先尝试将 TOF技术应用于高精度同位素分析仪器的研发。  二是开发了一套适用于珍贵地质样品(如月岩、宇宙颗粒等)高灵敏度、高分辨率同位素分析的小束斑氧离子一次源和离子光学系统。  三是开发了提高地学样品分析灵敏度的二次中性粒子激光后电离技术。实验结果表明,在优化条件下,飞秒后电离技术可使信号提高60 倍。  四是研发了高分辨TOF质量分析器。有效解决了双聚焦SIMS质谱的低离子通过率、体积庞大、成本高昂的不足。  五是开发了一套满足超高真空环境下高精度同位素分析要求的创新型三维样品台及样品传送系统。  项目组专家表示,该科研项目尽管取得了一定的成效,但该仪器目前尚处于研发阶段,待目标仪器的技术指标达到任务书的设计要求后,项目组将启动以下两项应用示范研究工作:一是应用TOF-SIMS-SI仪器分析金属硫化物(黄铁矿、闪锌矿等)的硫同位素,探讨典型铜矿床铜的富集和矿床形成机理 二是应用TOF-SIMS-REE仪器对月岩和月球陨石样品中锆石的稀土含量和配分模式进行分析,以探讨月岩中锆石的成因 测定月岩样品和月球陨石中锆石的Ti元素含量,估算其结晶时的温度,从而推算撞击事件的温度。  据中国矿业报记者了解到,2015年8月,项目组已将TOF-SIMS-REE仪器应用于纯金属样品铜和银的同位素丰度分析,分析精度可达 1%。
  • 2017中国质谱学会无机及同位素质谱学术会议召开
    p    strong 仪器信息网讯& nbsp /strong 2017年8月19日,2017年中国质谱学会无机及同位素质谱学术会议在四川成都开幕。来自高校、科研院所、以及相关企业的200余人参加了本次会议。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/fbe72459-871a-403b-b3ab-298110f157e8.jpg" title=" 现场.jpg" / /p p style=" text-align: center " 2017年中国质谱学会无机及同位素质谱学术会议现场 /p p   中国质谱学会无机和同位素质谱学术会议一般由无机、同位素、仪器与教育3个专业委员会合办,每1-2年举办一次。此次会议由中国质谱学会联合表面物理与化学重点实验室举办,中国工程物理研究院材料研究所、四川省氢同位素工程技术研究中心承办。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/e451dff9-d492-439f-9dc9-e60fbef497c8.jpg" title=" 谢孟峡.jpg" / /p p style=" text-align: center " 此次会议组织委员会主任、北京师范大学教授谢孟峡主持开幕式 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/e5a6d3ba-f5c4-4509-a05f-d02f60575f65.jpg" title=" 郭冬发.jpg" / /p p style=" text-align: center " 中国质谱学会副理事长、核工业北京地质研究院研究员郭冬发致开幕词 /p p   郭冬发在致词中谈到,从1912年汤姆逊研制第一台简易同位素质谱仪到现在,共有11个诺贝尔奖授予了在质谱技术的诞生、发展以及应用方面有杰出贡献的科学家。可见,质谱技术在推动人类社会进步中发挥了重要的作用。 /p p   无机、同位素质谱技术发展历史最为悠久,经过近百年的发展,从最早的简单同位素质谱测量技术发展到现在的高精度、高灵敏度、高通量的无机及同位素质谱学科。广泛用于各类检测对象中元素含量及其形态、同位素组成的分析,以及成像分析等,很多质谱分析方法已经实现了标准化。 /p p   到目前,检测对象已经涵盖核工业、地矿、环境、农业食品、生命科学、国土安全等诸多领域。例如,以电感耦合等离子体质谱为代表的无机质谱分析技术在地矿行业已经普及到基层实验室,每年为社会提供大量的检测数据。以核质谱(热电离质谱、气体同位素质谱、加速器质谱等)为代表的高精度同位素质谱技术为核科学与核工业的发展提供了关键的技术支撑。以二次离子质谱为代表的质谱成像技术为材料科学提供了很好的研究诊断工具。可见,质谱技术已“无孔不入”。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/862ea939-daac-4a70-bd22-8d60d47db8b8.jpg" title=" 王宝瑞.jpg" / /p p style=" text-align: center " 中国工程物理研究院机械制造工艺研究所所长王宝瑞代表承办方致欢迎词 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/3657b311-e7b7-487a-ab7a-a4fb01e8fdb4.jpg" title=" 李金英.jpg" / /p p style=" text-align: center " 中国核工业建设集团公司研究员李金英发言 /p p   此次会议既有口头报告和展报,也有质谱相关的实物展示,为大家带来了最新的无机及同位素质谱的研究成果与进展,为大家提供了一个良好的面对面交流的机会,这必将推动无机和同位素质谱技术的发展与进步。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/a0255c8e-d40f-4ab7-b3fc-1bc711c8922e.jpg" title=" 王海舟.jpg" / /p p style=" text-align: center " 中国钢研科技集团有限公司 王海舟院士 /p p style=" text-align: center " 报告题目:中国材料与试验标准的发展 /p p   王海舟院士首先感恩质谱技术为冶金及材料表征重大问题解决提供了有效的解决方向,如,激光剥蚀+ICP-MS+金属原位分析技术用于跨尺度高通量原位统计分布分析等。王海舟院士的报告介绍了材料与试验标准体系现状,以及中国材料与试验团体标准CSTM的情况。他说到,虽然此次报告的内容与质谱不相关,而是关于标准化建设的,但是,标准应该是前端的、与技术同步的,所以也可以说是相关的。 /p p   在19日上午的5个大会报告中,与“核”相关的报告有3个之多,分别是中国核工业建设集团公司研究员李金英的报告《质谱技术在核工业中的应用及发展趋势》、核工业北京地质研究院研究员郭冬发的报告《铀矿物质谱成像分析》、中国工程物理研究院材料研究所研究员廖俊生的报告《核材料研究中的无机质谱应用技术》,可见,无机及同位素质谱技术在核工业领域的广泛应用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/c29ad154-0780-4ee8-9e06-5c9504199a9a.jpg" title=" 李金英1.jpg" / /p p style=" text-align: center " 中国核工业建设集团公司研究员 李金英 /p p style=" text-align: center " 报告题目:质谱技术在核工业中的应用及发展趋势 /p p   质谱分析技术在核工业中的应用范围包括了铀矿地质勘察、铀矿水冶、反应堆材料、核电站水化学及环境监测、铀浓缩、三废及退役治理、乏燃料后处理等。而核质谱分析技术具有取样量小、高选择性、高灵敏度、快速、封闭式操作等特点。核工业中常见的无机与同位素质谱分析技术有:TIMS、ICP-MS、LA-ICP-MS、GDMS、LIMS、SIMS、SSMS、SNMS等。 /p p   李金英介绍了ICP-MS、TIMS、GD-MS、SIMS的研究现状及发展趋势,并表示,对于重要同位素的高精密度测量,TIMS是有力的手段,在无机、同位素测量过程中有着不可替代的优势,主要应用在核科学以及地质领域,尤其在标准物质研制,关键样品的分析等方面;而MC-ICP-MS在某些元素测量方面,如难电离元素等,甚至优于TIMS,但短时期尚不能取代TIMS。 /p p   报告中,李金英还特别介绍了封闭式核质谱仪器在核工业、防化系统、环境监测等特殊样品测量中的应用。最后,他指出,我国核电的发展面临许多机遇与挑战,质谱技术可以发挥重要作用,而我国核电产业的发展,也将给质谱技术带来新的发展机遇。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/1cd3f02d-65ee-4cce-99e9-6c33f57a7b77.jpg" title=" 郭冬发.jpg" / /p p style=" text-align: center " 核工业北京地质研究院研究员 郭冬发 /p p style=" text-align: center " 报告题目:铀矿物质谱成像分析 /p p   铀矿物可以保存与成因、年代和地点有关的有用信息。利用包括LA-ICP-MS、FIB-TOF-SIMS、LG-SIMS等在内的现代质谱成像技术,实现单点成像、2维成像和3维成像,并用于铀矿勘查和铀基材料的加工研究。 /p p   郭冬发在报告中介绍了利用LA-ICP-MS、FIB-SEM、LG-SIMS三种仪器进行的实验和结果分析。其中,LG-SIMS更适用于点成像,FIB-SEM-TOF-SIMS更适用于界面成像,LA-ICP-MS MSI更适用于元素成像。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/b5d02ba2-cdc8-4bf5-bbb8-d64afca1f54c.jpg" title=" 林金明.jpg" / /p p style=" text-align: center " 清华大学教授 林金明 /p p style=" text-align: center " 报告题目:微流控芯片-质谱联用细胞分析方法研究 /p p   多通道微流控芯片质谱联用细胞分析的三项主要难点分别是:多通道芯片与质谱联用、细胞共培养、细胞形态观察。林金明与其团队成功研制了多通道微流控芯片质谱联用装置,实现了多通道微流控芯片-细胞代谢物富集分离-质谱检测的联用,仪器的功能得到了显著的提升。 /p p   多通道微流控芯片质谱联用技术应用于细胞的药物代谢研究、环境污染物对细胞成长过程的影响、营养物质对细胞培养过程的影响、疾病机理研究、细胞的分选和检测等多个领域。林金明表示,未来几年内将不断改善和提高多通道微流控芯片质谱联用装置的性能与自动化水平,并加大力度推广仪器的应用范围。 /p p br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/6506fbed-630b-4eee-8cb0-dfe3816ac4be.jpg" title=" 廖俊生.jpg" / /p p style=" text-align: center " 中国工程物理研究院材料研究所研究员 廖俊生 br/ /p p style=" text-align: center " 报告题目:核材料研究中的无机质谱应用技术 /p p   核材料是军事与能源中的基础原料,基于核材料各项理化特征的研究对于提升其性能具有重要意义。无机质谱技术能够提供特定元素含量、同位素丰度及其他化学信息,因此在核材料研究中发挥了重要作用。 /p p   廖俊生在报告中介绍了二次离子质谱技术在核材料表面分析中的应用,通过原位分析准确获得了目标元素在核材料表面的分布情况,并对其产生机制进行了讨论;随后介绍了辉光放电质谱中通用灵敏度因子校正方法的建立,并成功用于核材料表面元素的直接定量分析;此外,廖俊生还介绍了钚的多个衰变子体(铀、镅、铅等)的质谱分离分析方法。 /p p   质谱技术为圆满完成国家任务提供了必要的技术保证,加深了对核材料物理化学性能的认知水平,为科学评价战略武器的性能提供了依据,核材料的分析研究极具挑战性,也推动了质谱技术不断发展。 /p p   此次会议也得到了岛津、赛默飞、珀金埃尔默、天瑞仪器、安捷伦、德国耶拿、TESCAN、吉天仪器、派艾斯、钢研纳克、CAMECA等仪器设备厂商的大力支持。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/7f4daaa6-32ac-4419-bd83-71d7822a19a4.jpg" title=" 合影.jpg" / /p p style=" text-align: center " 2017年中国质谱学会无机及同位素质谱学术会议参会代表合影 /p p br/ /p
  • 聚焦地矿微区原位分析新技术——2019中国质谱学会无机及同位素质谱会分会报告集锦
    p style=" text-align: justify text-indent: 2em line-height: 1.5em " strong span style=" text-indent: 2em " 仪器信息网讯 /span /strong span style=" text-indent: 2em " 2019年9月21日, 2019年中国质谱学会无机及同位素质谱学术会议在贵阳隆重召开。大会共邀请18位专家做大会报告并开设主题为激光剥蚀等离子体质谱、生命科学与医学、同位素质谱、仪器研发与应用、环境与食品等多个分会场。会议同期还设置了青年论坛专场和学术墙报展示,以促进我国无机及同位素质谱分析技术的快速发展,展示我国在该领域取得的成绩及增进同行间的学术交流。仪器信息网对本次会议中针对地矿领域样品的微区原位分析新技术及应用新进展进行了整理,以飨读者。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 21日下午,大会报告及激光剥蚀等离子体质谱专场中,厦门大学杭纬、中国地质大学(武汉)胡圣虹、胡兆初、西北大学袁洪林、中科院地质与地球物理研究所杨岳衡等众多专家针对地矿领域样品分析进展及应用进行了专题分享。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/d4328ef7-ef81-48a2-b3cd-363654573ba8.jpg" title=" 杭纬1.jpg" alt=" 杭纬1.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 厦门大学化学化工学院 杭纬 /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告题目《无机质谱的矿物直接分析方法》 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 杭纬在报告中介绍到,目前地质领域中的85%的样品前处理是以强酸或强碱消解并配合光谱/质谱分析,15%的样品多使用熔融或粉碎法处理再使用X射线光谱仪分析,因而缺乏对岩矿样品的直接定性定量的分析方法。在现有的无机质谱技术中,辉光放电、火花放电、激光溅射电感耦合等离子体、二次离子质谱技术可用于固体的直接分析,但都具有其缺憾之处。杭纬提出,相对而言基于激光的溅射最适合于矿物的直接分析,同时激光溅射电感耦合等离子体质谱法也是目前最为常用的矿物直接分析质谱法。杭纬在报告中详细介绍了其课题组对基于该方法进行的技术优化以及仪器的研制,并介绍了相关应用的新进展。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/9f80fccf-338d-4f3a-8c4a-0e1fd4971b29.jpg" title=" 胡圣虹1.jpg" alt=" 胡圣虹1.jpg" / /p p style=" text-align: center " 中国地质大学(武汉) 胡圣虹 /p p style=" text-align: center " 报告题目《微体化石LA-ICP-MS元素定量成像》 /p p style=" text-align: justify text-indent: 2em " 沉积地层中生物/微生物化石的地球化学信息对研究古海洋、古气候、古环境变化及重建具有重要意义。而单个微化石原位微区或成像信息,是用于判别后期陆源交代程度、探究地质历史时期重要突变事件的古海洋环境的重要手段。 /p p style=" text-align: justify text-indent: 2em " 生物成因化石主要基质为碳酸盐岩和磷酸盐岩,胡圣虹课题组因此分别采用共沉淀-高温高压熔融及共沉淀块状晶体策略制备碳酸盐、磷酸盐基体匹配固体校正标准,实现准确定量化石微区的微量元素。此外,其团队建立了微化石LA-ICP-MS元素定量成像方法,获取了有空虫、牙形石、牙齿以及结石等元素或元素比空间分布及成像,为古海洋气候环境的重建提供了新的手段。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/96f92bf9-86d5-4523-94bb-19fafa1c6996.jpg" title=" 胡兆初1.jpg" alt=" 胡兆初1.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 中国地质大学(武汉) 胡兆初 /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告题目《激光剥蚀等离子体质谱在地质样品分析中的新进展》 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " LA-ICP-MS可进行固体微区原位微量元素和同位素准确分析,是地球化学及无机分析科学领域中重要的分析方法之一。胡兆初在报告中介绍了其团队采用激光剥蚀引入溶液样品的进样方法,可克服传统溶液雾化法中与溶剂有关的多原子离子干扰及样品基体效应等问题。也介绍了其课题组建立的激光剥蚀等离子体质谱测定锆石中锆同位素的新方法,其建立的LA-MC-ICP-MS锆石Zr稳定同位素分析技术可以准确识别锆石颗粒中Zr同位素组成的变化。最后,胡兆初还介绍了黑钨矿激光剥蚀等离子体质谱U-Pb定年方法,采用水蒸气辅助非基体匹配U-Pb定年方法,相比引入其他的活性气体,该方法可讲仪器增敏2-3倍,并准确分析黑钨矿U-Pb年龄。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/0c574e56-576e-4c9c-89de-52729cd24d1d.jpg" title=" 袁洪林1.jpg" alt=" 袁洪林1.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 西北大学地质学系 袁洪林 /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告题目《激光剥蚀等离子体质谱技术在地球科学中的应用》 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 袁洪林提出,激光-无机质谱(LA-ICP-MS)方法在地质学、矿物学、人类学、考古学、环境科学等不同学科中应用广泛,并且相对整体分析来说,微区分析技术包括微米区域、原位分析等。激光剥蚀系统联用四极杆ICP-MS可测定U-Pb、微量元素,联用MC-ICP-MS可进行Li、Mg、Fe、Cu、Zn、Sr、Nd、Hf、Pb等同位素分析,联用大型MC-ICP-MS则可对S、Si、Fe进行同位素分析。袁洪林提到,影响激光-质谱同位素分析精准度的因素包括激光(波长/脉宽)、样品室、传输管道、辅助试剂以及离子化效率等。基于此,其团队开发了两阶段剥蚀法分析锆石的方法,以及利用激光“分束分析”(激光-双质谱联机)技术对S、Pb以及多元同位素进行了原位微区分析, 以研究矿床过程与硫的来源以及多期次成矿的Pb-Pb定年和岩石圈地幔及下地壳演化。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/4847e809-0a4f-4b53-a1bf-8b2773d2ac2a.jpg" title=" 杨岳衡1.jpg" alt=" 杨岳衡1.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 中科院地质与地球物理研究所 杨岳衡 /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告题目《激光原位氟碳铈矿U-Th-Pb定年与Sr-Nd同位素分析》 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 稀土以其独特的物理化学性质,广泛应用于电子、信息、通讯、能源、汽车、航空航天等诸多高技术领域,也被称为工业维生素。而在地质学领域中,稀土成矿也是研究矿床成因和地球动力学的关键,同时氟碳铈矿作为稀土矿床矿石矿物,是开展成矿年代学和成矿源区研究的直接对象。 span style=" text-indent: 2em " 基于此,杨岳衡团队开发了原位微区氟碳铈矿U-Th-Pb激光原位定年与Sr-Nd同位素标样分析的方法,为今后更好地开展稀土矿床年代学研究提供了重要的直接研究手段。 /span /p p br/ /p p br/ /p
  • 东华理工同位素技术应用取得重要突破
    生命起源与热水有关吗?地震预报中同位素技术会有新招?江西温泉有什么特点?南昌市酸雨有何规律?这些涉及人类起源和江西发展前沿的科学问题,东华理工大学孙占学教授课题组给出了答案。因取得重要突破和应用创新,该校"同位素技术在资源与环境研究中的应用"研究成果,荣获"江西省自然科学二等奖"(排名第一),受到2009年江西省科技奖励大会的表彰和国内外专家的高度评价。   探索生命起源与自然之谜   所谓同位素,是指质子数相同而中子数不同,在元素周期表中占有同一位置的各核素称为该元素的同位素。同位素技术在地球与环境科学研究领域中广泛应用,是探索生命起源与自然之谜的重要手段。   "我们研究发现,寒武纪生命大爆发的起因与大气氧浓度增高及海平面上升有关,并证实生命起源和演化与热水作用密切相关。"孙占学教授说:"该成果对研究生物的起源与演化,具有重要的理论意义。"   通过对江西省及其邻区地热系统的稀有气体研究,课题组不仅发表了该省第一批9个稀有气体同位素数据,填补了该区研究的空白,而且得到了稀有气体同位素可作为构造(地震)活动的指示剂的新认识。孙占学教授解释:"地震爆发前,一般岩层会变形、产生裂缝,断裂构造会趋于活跃,这有利于地球深部气体的逸出,通过同位素示踪技术,我们可以查明气体组份的起源,并有望为预测地震提供辅助判据。"   发现江西地热和酸雨的奥秘   通过同位素技术,课题组对古环境与古气候、现代生态环境、矿床成因、资源勘查与地热等五个方面开展的深入研究,取得了系列创新性成果。   以江西地热资源为例,课题组对江西赣北庐山温泉、赣中马鞍坪温泉、赣南横迳温泉等温泉的起源进行了研究,发表了江西省首批45个天然水的H、O同位素基础数据。他们还发现江西地下热水属大气降水深循环补给,年龄为数十至数百年,深部温度为70-120℃的中低温热水资源,具有良好的医疗价值,适合作为医疗保健、疗养、休闲、娱乐等方面的开发利用。   此外,南昌市为我国重要的酸雨地区之一,硫是酸雨形成主要因素。经过对南昌地区大气降水的硫同位素研究,课题组发现,大气降水中硫同位素的季节变化规律:南昌地区酸雨中硫既有人为成因硫(主要是燃煤产生),又有生物成因硫。在夏秋季节以生物成因硫为主,而冬春季节以人为成因硫为主。该研究为南昌的大气治理提供又一重要的科学依据。   研究成果受国内外广泛关注   创建于1956年的东华理工大学具有鲜明的核特色和地学优势,现设有"核资源与环境"教育部重点实验室、国际原子能机构铀矿地质和同位素水文学高级培训中心。2001年,该校孙占学、潘家永、杨亚新、王光辉等10多位教授组成的课题组,依托教育部重点实验室先进的同位素质谱仪等设备,在"江西省碳酸温泉气体的演化及其水文地质意义"等4项国家自然科学基金项目资助下,在同位素研究领域进行了长达八年的系统研究和协同攻关。   近年来,孙占学教授课题组共发表论文110篇,其中SCI、EI、ISTP论文57篇,这些论文中有66篇次被国内外重要SCI刊物上的论文所引用,并有3篇论文被刊登在国际最著名的刊物《Nature》上的论文应用,160多篇次被国内刊物上的有关论文所引用。   中科院院士汪集旸研究员、中国工程院院士钱七虎教授等对此高度评价:"孙占学教授课题组进行同位素技术应用的开拓研究,取得重要突破,在许多方面的研究填补了国内空白。"
  • 阿尔塔科技稳定同位素标记物产业化基地建设成果系列报道之二:稳定同位素标记磺胺类化合物
    建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障是十三五国家重点研发计划“食品安全关键技术研发”重点专项的任务之一。作为任务承接单位,阿尔塔科技有限公司开展科研攻关,已开发十余种稳定同位素标记物制备共性关键技术,实现了上百种的稳定性同位素标记农药、兽药、食品添加剂的量产和可持续供应,提前超额完成课题指标,稳定同位素标记物产业化基地建设成果斐然,国产化和替代进口成绩显著。阿尔塔科技将陆续推出稳定同位素标记物产业化基地建设成果系列报道,展示阿尔塔科研团队的研发成果,包括但不限于十三五项目开发的稳定同位素标记RM。产品的化学结构、化学纯度和同位素丰度、均匀性和稳定性均经过严格的检测和评估,质量媲美进口产品,价格较进口产品大幅降低。阿尔塔科技期待与更多的科研机构、检测实验室进行合作,持续开发市场需求的高品质产品,为我国食品安全检测提供助力。本期向您推荐稳定同位素标记的磺胺类化合物。部分稳定同位素标记磺胺类化合物:产品号中文名称英文名称推广规格溶剂1ST4018磺胺嘧啶-D4Sulfadiazine-D4100μg/mL,1mL甲醇1ST4026磺胺邻二甲氧嘧啶-D3Sulfadoxine-d3100μg/mL,1mL甲醇1ST4025磺胺间二甲氧嘧啶-D6Sulfadimethoxine-d6100μg/mL,1mL甲醇1ST4022D4磺胺二甲基嘧啶-D4Sulfamethazine-D4100μg/mL,1mL甲醇1ST4033磺胺间甲氧基嘧啶-D4Sulfamonomethoxine-d4100μg/mL,1mL甲醇1ST4043D4磺胺脒-D4Sulfaguanidine-d45mg100μg/mL,1mL甲醇1ST4037磺胺对甲氧嘧啶-D4Sulfameter-D4100μg/mL,1mL甲醇1ST4006D4磺胺邻二甲氧嘧啶-D4Sulfadoxine-d45mg100μg/mL,1mL乙腈1ST4057磺胺苯吡唑-D4Sulfaphenazole-d4100μg/mL,1mL甲醇1ST4051磺胺噻唑-D4Sulfathiazole-d45mg100μg/mL,1mL甲醇1ST4048磺胺间二甲氧嘧啶-D4Sulfadimethoxine-d45mg100μg/mL,1mL甲醇1ST4050磺胺甲恶唑-D4Sulfamethoxazole-d45mg100μg/mL,1mL乙腈1ST4008D4磺胺甲噻二唑-D4Sulfamethizole-d45mg100μg/mL,1mL甲醇1ST4003D4磺胺吡啶-D4Sulfapyridine-d45mg100μg/mL,1mL甲醇了解更多产品或需要定制服务,请联系我们
  • 基于碰撞反应池多接收等离子体质谱的K-Ca-Fe同位素高精度分析
    以Nu Sapphire为代表的最新一代含碰撞池CC-MC-ICP-MS,配有传统MC-ICP-MS的高能通道(6kV加速电压)和基于碰撞池技术的低能通道(4kV加速电压),其中六级杆碰撞反应池使用氢气和氦气,能够有效去除各种含氩基团对41K+、40Ca+和56Fe+等造成的干扰(图1),因此可以在低分辨模式下对K、Ca及Fe同位素开展高精度分析,可有效降低样品测试含量,有利于珍贵样品和低含量样品分析。   中国科学院地质与地球物理研究所成矿元素与同位素分析实验室于2021年4月安装了Nu Sapphire,实验室人员李文君、高炳宇、王静和苏本勋等通过系统优化新一代碰撞反应池(CC)-MC-ICP-MS(Nu Sapphire)的低能路径参数,使用低分辨+碰撞反应池技术,相继建立K、Ca及Fe同位素分析测试方法。 图1 碰撞反应池多接收等离子体质谱工作原理(以K为例)   K同位素:K溶液上机浓度降低至200 ng/g,δ41K的长期精度小于0.04‰ (2SD);在标样-样品间插法的测试分析中,样品和标样的K浓度匹配可扩大至20%,大大提高分析效率;10种地质标样的K同位素分析结果与文献报导一致(图2),并首次报道了锰结核(NOD-P-1)和铁建造(FeR-2,FeR-4)的K同位素组成,为铁、锰样品的实验室数据比对提供新的依据。 图2 地质标样与文献中δ41K值的比对   Ca同位素:实现了40Ca、42Ca和44Ca的同时测定,将Ca测试浓度降低至100 ng g-1,δ44/40Ca的长期精度与TIMS相似(2SD 图4 地质标样与文献中δ56Fe的比对   以上研究成果发表于Science China Earth Sciences和Journal of Analytical Atomic Spectrometry上。本研究受中国科学院地质与地球物理研究所实验技术创新基金(批准号:TEC 202103)和中国科学院青年创新促进会共同资助。   1. Li W, Cui M, Pan Q, et al. High-precision potassium isotope analysis using the Nu Sapphire collision cell (CC)-MC-ICP-MS[J]. Science China Earth Sciences, 2022, 65(8): 1510-1521. DOI: 10.1007/s11430-022-9948-6. [李文君*, 崔梦萌, 潘旗旗, 王静, 高炳宇, 刘善科, 袁梦, 苏本勋*, 赵野, 滕方振, 韩贵琳. 碰撞反应池MC-ICP-MS(Nu Sapphire)高精度钾同位素分析. 中国科学: 地球科学, 2022, 52(9): 1800-1812.]   2. 高炳宇*, 苏本勋*, 李文君, 袁梦, 孙剑, 赵野, 刘霞. High-precision analysis of calcium isotopes using the Nu Sapphire collision cell (CC)-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2022. DOI: 10.1039/D2JA 00150k.   3. 王静*, 唐冬梅, 苏本勋*, 袁庆晗, 李文君, 高炳宇, 陈开运, 包志安, 赵野. High-precision iron isotopic measurements in low resolution using collision cell (CC)-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(9): 1869-1875. DOI: 10.1039/D2JA00084A.
  • 大气降水氢氧稳定同位素测试方法
    一、研究背景与意义大气降水作为内陆水循环的重要水分输入项,其形成过程中,伴随着地表蒸发、植物蒸腾以及水汽凝结等平衡分馏或动力分馏过程,使降水中的氢氧稳定同位素组成有不同的特征。因此降水氢氧稳定同位素常被视为良好的示踪剂,被广泛应用于水汽源地示踪、古气候重建、蒸发量及局地水汽再循环的估算等研究。降水氢氧稳定同位素的研究始于上世纪五十年代,以国际原子能机构(IAEA)和世界气象组织(WMO)建立了全球大气降水同位素观测网(Global Network of Isotopes in Precipitation, GNIP)为标志,开始了全球性的降水氢氧稳定同位素的长期监测;随后研究者们在国家、区域或单站点尺度上也开展了大气降水氢氧稳定同位素的监测,这些观测数据促进了我们对于复杂水循环过程的认识。因此,高时间和空间分辨率的降水氢氧稳定同位素的监测是一项非常重要的工作。二、测量原理降水氢氧稳定同位素组成的测定采用的是基于光腔衰荡光谱(Cavity Ring-Down Spectrospecopy, CRDS)技术的Picarro高精度水同位素分析仪。同其它光谱技术相同,CRDS技术也是基于气态分子独特的红外吸收光谱来量化稳定同位素组成的方法,但不同于其它光谱技术基于吸收强度的测量,CRDS技术是基于时间的测量,其测量结果对激光源本身的变动不敏感,从而可以保证仪器的噪声更小,且精度更高。Picarro高精度水同位素分析仪的光腔采用三镜片小光腔(体积约35 ml,长度约为25 cm)的设计,可以保证更快的腔室内气体更新速率,使仪器的响应时间更快;同时小光腔的设计可以实现对光腔内温度和压强的控制(温度:± 0.005 ℃;压强:±0.0002 大气压),使仪器具有更好的漂移性能。光腔内采用高反射率镜面可以有效的减少由于激光透射所引起激光强度的减弱,从而可以使激光穿过的更大的气体厚度,即更大的有效长光程( 10公里),从而使仪器拥有更低的检测下限。三、仪器介绍基于CRDS技术的Picarro高精度水同位素分析仪可以用于液态水样品中稳定氢氧同位素比率(δ2H,δ17O和δ18O)的测量,如降水、河水、湖水、地下水、冰川水、土壤水和植物水等液态水。仪器的典型精度:δ2H: <0.1‰,δ17O: <0.025‰,δ18O: <0.025‰;测量速度:每9分钟可以完成一针测量,每天可以完成160针(即27个样品)的测量;测量范围:满足同位素标记的重氘样品测量,δ2H的测量上限≥50000‰(或≥8500ppm);取样温度:0-50 ℃;样品体积:<2 μL/针(可调)。四、取样方法根据国际原子能机构和世界气象组织的要求,采用标准雨量器进行降水样品的收集。如需测定月尺度上的降水氢氧稳定同位素组成,可在室内准备一个足够大的容器,每次降水后,将在室外通过雨量器收集到的降水倒入该容器,低温密封保存,每个月的最后一天取10毫升过滤后的样品装入样品瓶中,使用封口膜密封,并冷藏保存。如需测定降水事件尺度上的降水稳定氢氧稳定同位素,则在每次降水后取10毫升过滤后的样品装入样品瓶中,使用封口膜密封,并冷藏保存。各观测点收集的降水样品可寄送至北京松盛华嘉检测技术有限公司使用基于CRDS技术的Picarro高精度水同位素分析仪进行集中测试。五、公司介绍北京松盛华嘉检测技术有限公司,为北京理加联合科技有限公司的全资子公司,致力于为用户提供更高质量的稳定同位素样品测试服务。已先后为中国科学院生态环境研究中心、中国科学院地理科学与资源研究所、中国科学院西北生态环境资源研究院、中国林业科学研究院林业研究所、中国科学院植物研究所、中国科学院遗传与发育生物学研究所和中国水利水电科学研究院等近百家单位提供快速、精确的稳定同位素测试服务和技术咨询服务。北京松盛华嘉检测技术有限公司拥有专业的测试团队,提供快速、精确的测试服务,可以为您提供及时的数据测样服务,助力您科研成果的尽快发布。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制