当前位置: 仪器信息网 > 行业主题 > >

分子量标准物质窄分

仪器信息网分子量标准物质窄分专题为您提供2024年最新分子量标准物质窄分价格报价、厂家品牌的相关信息, 包括分子量标准物质窄分参数、型号等,不管是国产,还是进口品牌的分子量标准物质窄分您都可以在这里找到。 除此之外,仪器信息网还免费为您整合分子量标准物质窄分相关的耗材配件、试剂标物,还有分子量标准物质窄分相关的最新资讯、资料,以及分子量标准物质窄分相关的解决方案。

分子量标准物质窄分相关的资讯

  • 国家市场监督管理总局发布《多糖分子量及分子量分布的测定 高效凝胶渗透色谱-激光光散射法》等223项拟立项国家标准项目公开征求意见稿
    各有关单位:经研究,现对《电化学储能系统火灾监测预警系统通用技术要求》等223项拟立项国家标准项目公开征求意见,征求意见截止时间为2024年4月10日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001651,查询项目信息和反馈意见建议。2024年3月11日 相关标准如下:#项目中文名称制修订截止日期1地理标志产品质量要求 安吉白茶修订2024-04-102地理标志产品质量要求 坦洋工夫茶修订2024-04-103地理标志产品质量要求 武夷岩茶修订2024-04-104地理标志产品质量要求 政和白茶修订2024-04-105多糖分子量及分子量分布的测定 高效凝胶渗透色谱-激光光散射法制定2024-04-106标准数字化平台 第1部分:系统架构制定2024-04-107标准知识图谱 第1部分:实现指南制定2024-04-108蛋白检测 CRISPR Cas12a蛋白反式切割活性检测方法制定2024-04-109工业品电商平台供应商能力建设指南 总则制定2024-04-1010医疗装备运维服务 第1部分:通用要求制定2024-04-1011制药装备 生物反应器通用技术要求制定2024-04-1012智能消费品安全 第1部分 危害(源)识别制定2024-04-1013智能消费品安全 第2部分 风险评估制定2024-04-1014智能消费品安全 第3部分:风险控制制定2024-04-1015重组蛋白试剂 亲和力测定方法制定2024-04-10
  • 液相干货分享 | 如何正确测量聚合物的分子量
    当我们从上游厂家买回一批聚合物样品时,测得的分子量却与厂家提供的不同,那这是怎么回事呢?在弄清楚原因之前,不妨先来一起学习下凝胶渗透色谱/体积排阻色谱( GPC/SEC )的基本原理和应用。GPC 色谱柱为多孔填料,当样品与填料无吸附、排斥等相互作用时,分子体积越大的组分能够穿过的孔越少,行走的路程越短,也就越早从色谱柱中洗脱出来。图为 Agilent Infinity II 多检测器 GPC 系统图为 Agilent 高温 GPC系统 PL220根据 GPC 应用的方向,通常可以归纳为以下三种:样品前处理(去除大分子基质)组分分离定量聚合物分子量/结构检测表1. GPC 三种应用方向对比使用 GPC 来测量聚合物分子量和分子量分布,除了将不同聚合度的组分分离之外,我们还需要另外两点信息:不同保留时间流出组分的浓度和分子量。浓度的信息可以通过浓度型检测器得到,如示差折光检测器和紫外检测器。各保留时间流出组分的分子量信息的得到却不是特别容易,常规 GPC 是选用一组不同分子量的窄分子量分布标准品,来对色谱柱进行标注,得到保留时间 - 分子量的曲线,再由校正曲线来计算样品的分子量。常用的标准品种类很少,如果标准品和样品的化学结构、拓扑结构不同,得到的样品分子量就不是样品的绝对分子量,而是相对于标准品的相对分子量。图为常规 GPC 分子量计算原理示意图由此看来,标准品的选择是造成计算结果差异的可能原因之一。为了解决这部分带来的差异,确认与上游产家使用相同的标准品类型。当然如果上游厂家与我们都能得到样品的准确分子量,也可以减小数据的差异,普适校正是一种方式。普适校正就是通过 Mark-Houwink 方程和 Flory 特性粘度理论,建立起分子量与分子体积的数学关系,从而建立保留时间 - 分子体积的曲线。说起来有些复杂,操作很简单,只需要在 GPC 软件输入样品和标样的两个参数 K,α 就可以了。但这种方法不适用于所有样品,比如不同支化程度的样品是无法查到其在不同溶剂/温度下的K,α。图为不同支化程度样品的合成(控制 AB2 单体加入量)还有一个更加直接得到绝对分子量的方式,就是使用静态激光光散射检测器,根据瑞利散射原理直接得到样品的绝对分子量;如果再搭配特性粘度检测器,可同时得到样品的特性粘度信息,建立 Mark-Houwink 曲线,用于判断样品的支化情况。图为不同支化程度样品通过 Agilent 激光光散射-示差-粘度三检测器联用 GPC 得到的 Mark-Houwink 曲线(蓝色、红色、绿色曲线对应样品的支化度依次增高) 除了标准品的选择以外,色谱柱的选择、校正曲线的拟合次数以及积分起终点的判断等都可能引起结果的差异。扫描下方二维码,关注“安捷伦视界”公众号,获取更多资讯。
  • 单克隆抗体标准物质电荷异构体研究
    p style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 单克隆抗体药物(mAb)是通过基因工程生产的蛋白质药物,具有特异性高、作用机制明确、效果显著、经济效益大等优势,是近年来生物医药产业的重要增长点。br//pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "治疗性单克隆抗体(mAbs)的开发和制造是一个高度管制的过程,ICH的指导原则指出了相关产品质量参数允许的异质性水平。电荷异构体是单克隆抗体(mAb)的关键质量参数(CQA)之一,在药品稳定性研究、申报及放行等环节都必须检测、评估。抗体的电荷异构体是由细胞内的酶促和非酶促过程分泌到培养基后形成,电荷异构体可能具有明显不同的生物活性,影响单抗药物的功能、安全性及稳定性。导致电荷异质性的最常见变异之一是C末端赖氨酸剪切,随着一个或两个带正电荷的赖氨酸残基丢失,可导致碱性变异体的形成;另外,在N-和O-连接的聚糖上脱酰胺、糖化和带负电荷的唾液酸的存在都会导致负电荷增加和酸性变异体的形成。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "电荷异构体的检测方法有很多种,如:聚丙烯酰胺凝胶电泳,虽然仪器设备相对便宜,但其分辨率低、操作繁琐,目前应用较少;毛细管等电点聚焦(cIEF)电泳可进行蛋白的等电点测定,现已开发出毛细管电泳与质谱联用的技术,该方法可从完整蛋白水平进行分析,暂未推广使用;离子交换色谱(IEX)在电荷异构体的分析中使用较多,有盐洗脱与pH梯度洗脱两种方式,后续收集各个成分进行质谱检测分析其分子量及翻译后修饰。现已有在线的LC-MS方法,此方法不使用传统的盐缓冲液,改为质谱可以耐受的有机盐缓冲液来进行电荷异构体的分离,但其质谱图谱质量及普适性还有待考量,且不能实现肽段水平翻译后修饰的解析。中国计量科学研究院研制了人源化IgG1 κ型单克隆抗体标准物质,与军事科学院军事医学研究院钱小红、应万涛课题组合作,建立了cIEF-WCID及SCX-HPLC两种方法分离检测了单克隆抗体标准物质中的电荷异构体。运用蛋白质组学技术,从完整的分子量分布、肽图分析、进一步延伸到糖肽分析,建立了逐步深入的分析方法来研究单克隆抗体电荷异构体形成的影响因素,此方法可推广应用于其他单抗类药物的电荷异质性分析与评价。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em "img style="max-width: 100% max-height: 100% width: 600px height: 272px " src="https://img1.17img.cn/17img/images/202010/uepic/f26eb0c0-ed43-47b2-9965-eb69024d8360.jpg" title="图片1.png" alt="图片1.png" width="600" height="272" border="0" vspace="0"//pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "2020年11月10-12日,中国计量科学研究院和国际计量局拟联合举办span style="color: rgb(255, 0, 0) "strong第三届 “药物及诊断试剂研发与质控——测量与标准,质量与安全(TD-MSQS 2020)”/strong/span 国际研讨会,以期进一步促进该领域的学术交流和技术发展,提升企业的研发水平和产品质量。本次会议将在南京市政府的支持下,在江苏省南京市举行。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "本次会议可通过官方网站http://tdmsqs.ncrm.org.cn注册或扫描二维码注册,注册成功后请填写参会回执发送至会议邮箱pptd@nim.ac.cn。/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " /pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/11c12ff4-263b-48c2-aff9-f4640b0a1850.jpg" title="图片3.png" alt="图片3.png"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center "strongspan style="text-indent: 0em "欢迎各位专家、同仁报名参会!/span/strong/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "更多信息请关注会议官方网站:a href="http://tdmsqs.ncrm.org.cn。" _src="http://tdmsqs.ncrm.org.cn。"http://tdmsqs.ncrm.org.cn。/a /pp style="margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: right "供稿:崔新玲 胡志上span style="text-indent: 2em " /span/p
  • 第十五届全国青年分析测试学术报告会 化学计量与标准物质报告集锦
    p  strong仪器信息网讯/strong 2018年7月26-27日,由中国分析测试协会青年学术委员会主办的“第十五届全国青年分析测试学术报告会”在安徽合肥成功召开。会议开设生命科学、环境与食品安全、化学计量与标准物质三个专题的分会报告。以下是化学计量与标准物质专题报告集锦。/pp style="text-align: center "span style="text-align: center "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/cbdda643-ef84-48ff-817a-2a7596e09e31.jpg" title="李晓敏.jpg"//pp style="text-align: center "strong中国计量科学研究院化学所李晓敏主持26日上半段的专题报告/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/34410dce-148a-49b6-8707-66c8584ca95c.jpg" title="黄挺.jpg"//pp style="text-align: center "strong中国计量科学研究院化学所 黄挺/strong/pp style="text-align: center "strong报告题目:定量核磁共振新方法在有机物纯度定值中的应用/strong/pp  对于纯度较低或者分子量大于500的化合物,由于杂质峰可能与主要组分的峰不完全分离,因此qNMR具有较大的误差风险。课题组近年来建立了扣减杂质的直接qNMR法等五种新的方法来解决这个问题。方法消除了杂质峰对qNMR测定结果正确度的潜在影响,将进一步推动qNMR成为国际计量体系的基准定值方法。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/403f4915-1093-42dd-a1a9-3796d3d34a47.jpg" title="周剑.jpg"//pp style="text-align: center "strong农业科学院农业质量标准与检测技术研究所 周剑/strong/pp style="text-align: center "strong报告题目:桔皮素纯度标准物质研究/strong/pp  报告介绍桔皮素纯度标准物质的研究,如:采用反相硅胶纯化后旋蒸,采用烘箱及冷冻干燥法干燥,进行标准物质原料纯化。采用液相色谱面积归一化法、定量核磁法和差示扫描量热法进行标准物质定值。采用液相色谱面积归一化法、定量核磁法实现标准物质的不确定度评定。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/8513fb74-8dac-4a14-8509-9433815ea134.jpg" title="李明.jpg"//pp style="text-align: center "strong中国计量科学研究院化学所 李明/strong/pp style="text-align: center "strong报告题目:基于元素分析法的肽纯度定值技术/strong/pp  课题组建立了基于元素分析的肽纯度定值技术。采用元素分析仪测量肽中氮、硫等元素,扣减相关结构杂质中氮、硫等元素含量,根据氮、硫等元素在肽分子中的分子个数及肽分子量等信息,可完成肽的纯度测量 并根据样品准备和仪器分析过程中产生的A类不确定度和B类不确定度进行评价,最终建立元素分析法对肽纯度定值的计量学方法。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/2eeb44ff-a79b-46c4-9e02-7ecee5223374.jpg" title="李海斌.jpg"//pp style="text-align: center "strong中国疾病预防控制中心职业卫生与中毒控制研究所 李海斌/strong/pp style="text-align: center "strong报告题目:疾控领域标准物质研究介绍/strong/pp  报告介绍了课题组开展的疾控领域标准物质研究工作,包括食品和水4种放射性标准物质研制及相关规范、食品和水4种放射性标准物质研制及相关规范、环境卫生领域10种标准物质与应用技术规范研究、公共营养监测中4种标准物质的研制。并从标准物质制备、取样、均匀性检验、稳定性检验、标准物质定值方面介绍冻干牛血中铬成分分析标准物质研究路线。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/aa7924f4-1298-43dd-824f-c261eb1272da.jpg" title="孙鹏.jpg"//pp style="text-align: center "strong北京海光仪器有限公司 孙鹏/strong/pp style="text-align: center "strongHGA100固体测汞仪在土壤及沉积物中的应用/strong/pp  海光公司于2017年推出自主研发的HGA-100直接进样测汞仪,仪器配置自动进样器,具有电子天平数据接口,减轻实验员劳动强度,减少人为误差 实现了直接进样测量功能,简化前处理过程,提高了检测效率和分析准确度,适用于环境、食品等目标物的分析检测。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/3c082797-4f8b-48d9-bfa4-760c2e4e98c6.jpg" title="汪斌.jpg"//pp style="text-align: center "strong中国计量科学研究院化学所 汪斌/strong/pp style="text-align: center "strong报告题目:质量控制图在标准物质稳定性评估中的应用探索/strong/pp  报告以化妆品中的铅的含量稳定性监测数据为例,利用平均值-极差质量控制图对数据进行分析,并与数据正态分布检验、可疑值分析、线性趋势分析进行综合比较。通过分析可以发现,质量控制图是观察数据异常的一个非常直观的技术手段,可以与趋势分析方法相结合作为稳定性监测数据分析的补充。/ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/b499cf53-948a-41bc-9a2c-dd3812d50e8e.jpg" title="李明2.jpg"//pp style="text-align: center "strong中国计量科学研究院化学所李明主持26日下半段的专题报告/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/fb0ce8fe-5238-49c8-8aaa-2ace99827b70.jpg" title="周鑫.jpg"//pp style="text-align: center "strong style="text-align: center "中国测试技术研究院化学研究所 周鑫/strong/pp style="text-align: center "strong报告题目:环境空气监测用VOCs气体标准物质的研制和分析/strong/pp  VOCs是环境监测行业最受关注的污染物之一,而VOCs混标更是从业人员急需的,中国测试技术研究院研发出来多种VOCs标准物质,包括满足美国TO-14A和我国HJ644-2013规定的42组分VOCs标准气体、满足HJ759-2015规定的67组分VOCs标准气体和56组分臭氧前体物。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/74a08535-33d8-4259-afb6-a83867442bf9.jpg" title="李晓敏2.jpg"//pp style="text-align: center "strong中国计量科学研究院化学所 李晓敏/strong/pp style="text-align: center "strong报告题目:食品基体中污染物残留多组分准确定值方法研究/strong/pp  报告从分析物、前处理、定量、质量控制等角度介绍食品基体中污染物残留多组分准确定值方法研究。分析物应该关注多组分性质差异、定性确认及有效分离,前处理关注基质特点、化合物极性和机构,定量可采用同位素内标法,质量控制应留意溯源性、过程空白等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/45b469f4-f3e7-4afd-bca8-b7ee5eaafe0d.jpg" title="戴红军.jpg"//pp style="text-align: center "strong广州德标智能化工程有限公司 戴红军/strong/pp style="text-align: center "strong报告题目:用安全呵护生命,实验室气体安全隐患与规范操作处理/strong/pp  广州德标智能化工程有限公司成立于2004年,是德国哈锐斯设备(中国)有限公司的控股公司,致力于实验室安全改造及建设。报告回顾几个典型的气体泄漏事故案例,强调实验室气体安全隐患与规范操作处理。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/9583d270-326a-48bc-88cd-1c5bb5ff7859.jpg" title="杨梦瑞.jpg"//pp style="text-align: center "strong农业科学院农业质量标准与检测技术研究所 杨梦瑞/strong/pp style="text-align: center "strong报告题目:全蛋液中恩诺沙星残留分析基体标准物质研究/strong/pp  实验采用分散固相萃取(QuEChERS)法作为样品前处理方法,并系统优化并提取剂与净化剂等条件 采用液相色谱-同位素稀释质谱法,8家实验室联合定值,采用已有的纯度标准物质实现量值溯源,得到全蛋液中恩诺沙星基体标准物质定值结果。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/a8e1bec5-afb5-4ff3-a95b-91476b9e57e2.jpg" title="李先江.jpg"//pp style="text-align: center "strong中国计量科学研究员化学所 李先江/strong/pp style="text-align: center "strong报告题目:气相色谱-质谱法(GC-MS)测定鸡蛋中氟虫腈及三种代谢物残留/strong/pp  课题组首次建立了基于蛋白沉淀、液相萃取、液液反萃取、固相萃取的前处理方法,和气相色谱三重四级杆质谱的检测方法,实现了对鸡蛋集体中氟虫腈和代谢物的有效检测。实际鸡蛋样品分析结果表明,氟虫腈砜含量最高,证明了氧化为氟虫腈在鸡蛋中的主要代谢通路。/ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/1783000a-c463-4090-97fe-888e7269a46d.jpg" title="冯流星.jpg"//pp style="text-align: center "strong中国计量科学研究员化学所冯流星主持27日上半段的专题报告/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/3e55056a-69bf-4d3b-8b1f-039fef9dee8c.jpg" title="张见营.jpg"//pp style="text-align: center "strong中国计量科学研究员化学所 张见营/strong/pp style="text-align: center "strong报告题目:脉冲-辉光放电质谱定量分析稀土元素/strong/pp  -辉光放电质谱(GDMS)可以同时分析元素周期表中74种元素,具有固体直接分析 同时完成常量、微量、痕量、超痕量元素分析 检出限低(定量检出限 1ppd)等优势。脉冲模式的优点则有样品消耗少,可溅射时间长 稳定性更好,测量重复性更好 更适用于半导体测量的优点。报告重点介绍了将脉冲-辉光放电质谱定量分析技术用于稀土元素检测。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/2fa3b574-6cee-48b6-8a4d-31312bfdba99.jpg" title="叶金.jpg"//pp style="text-align: center "strong国家粮食局科学研究院 叶金/strong/pp style="text-align: center "strong报告题目:粮油中真菌毒素高通量自动化分析方法的研究/strong/pp  实验将样品提取液中的真菌毒素被特异性的吸附在磁珠表面,通过自动化仪器内置磁棒吸磁、转移、洗涤,最后使目标毒素释放在洗脱液中,即完成了样品前处理过程,直接上机进行检测,全部处理时间小于30分钟。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/1e8a82ef-32f7-4b5e-a4f9-098372777ae3.jpg" title="赵亚娴.jpg"//pp style="text-align: center "strong环境保护部标准样品研究所 赵亚娴/strong/pp style="text-align: center "strong报告题目:气相色谱-质谱法测定土壤中六溴联苯和多溴二苯醚不确定度研究/strong/pp  研究采用ASE、多层酸碱硅胶层析柱净化的前处理方法,通过优化离子源温度、电压等质谱条件,以13C标记PBDEs同位素作为定量内标,建立同时测定土壤样品中的PBBs和PBDEs的GC-EI/LRMS和GC-NCI/LRMS方法。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/f7828755-1615-4892-8cf9-028dd5bfbd11.jpg" title="宋善军.jpg"//pp style="text-align: center "strong中国计量科学研究员化学所 宋善军/strong/pp style="text-align: center "strong报告题目:多种色谱质谱联用技术在十溴二苯醚检测及标准物质研制中的应用/strong/pp  多溴二苯醚不易降解,具有疏水性、生物积累性和生物毒性,可直接或通过食物链的传递富集到人体内,会对甲状腺、肝组织、神经系统和免疫系统造成影响,并具有致癌作用。报告介绍多种色谱质谱联用技术在十溴二苯醚检测及标准物质研制中的应用,包括HPLC-UVD、GC-NCI-MS、GC-ICPMS、HPLC-ICPMS、GC-EI-MS等方法。/ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/403d1943-b093-47bc-af1f-25a882c43684.jpg" title="宋善军2.jpg"//pp style="text-align: center "strong中国计量科学研究员化学所宋善军主持27日下半段的专题报告/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/c2ebb063-e5e0-4e51-a166-e973873d0100.jpg" title="肖鹏.jpg"//pp style="text-align: center "strongspan style="text-align: center "中国计量科学研究员化学所 肖鹏/span/strong/pp style="text-align: center "strong报告题目:B型利钠肽在临床检验中的意义及其标准物质的研制/strong/pp  研究发现,BNP 1-32 native MS分析的最大优势是无需引入还原试剂,不产生衍生杂质,但CIO碎裂效果不理想 课题组后期会继续开展二硫键的在线碎裂工作,并同时结合其他类型质谱检测手段和离子碎裂模式。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/ec208cc6-f1d6-4304-85f4-f44c0174e01b.jpg" title="张鹏辉.jpg"//pp style="text-align: center "strong中国测试技术研究院化学所 张鹏辉/strong/pp style="text-align: center "strong报告题目:乙腈中16组分多环芳烃溶液标物制备技术研究/strong/pp  多环芳烃是分子中含有两个以上苯环的碳氢化合物,包含萘、蒽、菲、芘等150余种化合物。有些多环芳烃还含有氮、硫和环戊烷。唱的具有致癌作用的多环芳烃多为四到六环的稠环化合物。报告介绍了乙腈中16组分多环芳烃溶液标物制备技术研究。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/b6379f3f-eb70-48be-bc10-78c48acf154a.jpg" title="冯流星.jpg"//pp style="text-align: center "strong中国计量科学研究员化学所 冯流星/strong/pp style="text-align: center "strong报告题目:稀土溶液标准物质的研制/strong/pp  实验选择Dy、Ho、Er、Tm、Sc五种稀土溶液标准物质为研制对象,采用高纯稀土氧化物为原料,经LA-ICP-MS及XRD对纯度进行分析后,分别制备成浓度为1000μg/mL的稀土溶液标准物质。采用准确、可靠并能溯源的EDTA络合滴定法进行量值核对、均匀性及稳定性检验。对标准物质的不确定度进行了全面的评定。/p
  • 基质升华重结晶法进行低分子量代谢产物质谱成像分析
    p style="text-align: justify text-indent: 2em line-height: 1.75em "自质谱成像技术于二十世纪80年代前半期诞生以来,至今为止不断持续着技术改革,并被广泛运用于以新药研究和代谢产物研究领域为首的众多领域中。如今仍以提升灵敏度和空间分辨率、重现性等为目标,不断进行着技术改良。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "同时,也开发出多种离子化所需的基质,如何从这些基质中选出适用于检测目标化合物的基质成为重点。span style="text-indent: 2em "除基质选择外,其涂布方法也会对分析结果造成很大影响,因此,现有多个应用于检测目标化合物的基质涂布方法正在研究中。大致可分为喷雾法和升华法两种方法,两种涂布方法均有自己的优缺点,现阶段经常会同时使用两种方法。本公司开发了能控制基质膜厚的基质升华涂布装置iMLayer(图1),对涂布方法进行研究。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "我们针对以往难以重结晶的基质9AA,开发了升华后重结晶的方法,并在此进行报告。此外,还将对小鼠肝脏中低分子量代谢产物的MS成像结果示例进行介绍。/pp style="text-align: right text-indent: 2em line-height: 1.75em "——R.Yamaguchi, E.Matsuo, T.Yamamoto/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(0, 112, 192) "strong1、不同基质涂布方法对MS成像分析造成的影响/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "基质涂布方法对基质的结晶形成和MS成像分析造成的影响如表1所示。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "与升华法相比,通过喷雾法生成的基质的结晶较粗,并可能因样本中所含成分的渗漏导致空间分辨率降低。均匀性较差,基质溶液干燥后结晶时会依赖湿度和温度等周围环境,因此重现性也会变差。另一方面,样本中所含化合物的提取效果较好,可能提高检测灵敏度。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "相比之下,升华法具有结晶较细、难以渗漏、均匀性好、重现性良好的特点,是高空间分辨率成像所不可或缺的方法。但相对的,其样本中成分的提取效果不佳,在灵敏度上可能存在不利的一面。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "实际的测量灵敏度依赖于检测化合物的结构。例如,在分析磷脂质等时,采用升华法便具有足够的灵敏度,诸如胺碘酮等药物可以足够的灵敏度完成MS成像(参考应用文集B61)。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "另一方面,在检测小鼠肝脏等器官中含有的ADP 和ATP 等低分子量代谢产物时,通过升华法进行基质涂布,由于没有任何提取效果,无法得到足够的灵敏度。因此,绝大多数例子都是通过喷雾法涂布9AA来实施MS成像,但其空间分辨率相对较低。于是,我们对将DHB和CHCA上使用的升华后重结晶法涂布9AA所需的条件进行了研究。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/0178e2f4-5edd-42fd-ab37-3b27f1e3173b.jpg" title="微信截图_20200619165723.png" alt="微信截图_20200619165723.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "图1 基质升华装置iMLayer/pp style="text-align: center "表1 基质涂布方法对结晶形成和MS成像分析造成的影响/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/962223c2-c637-4894-9498-e953c6d6b688.jpg" title="2.png" alt="2.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(0, 112, 192) "strong2、基质升华后重结晶法/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "对9AA进行升华后重结晶。如图2所示,将含有5%甲醇的滤纸和升华处理后的样本放入相同容器中,于37℃的恒温环境下静置5分钟。此时,滤纸中的5%甲醇蒸发,渗入样本中,在提取样本中化合物的同时会使少许9AA结晶溶解。之后将其真空干燥器内干燥10分钟,使溶解的9AA进行重结晶。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/b1b946ad-81b9-4670-bd42-0b2b1b03f739.jpg" title="33333333333333.png" alt="33333333333333.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "图2 9AA升华后重结晶的方法/span/pp style="text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/8767d240-e8eb-44fc-8470-cff5822571a1.jpg" title="444444444.png" alt="444444444.png"//pp style="text-align: center "图3 成像质谱显微镜iMScopeTRIO/pp style="text-align: center "表2 iMScope iTRIO/i测量参数/pp style="text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/69636f83-0667-4f8a-a02b-4d1c757bc977.jpg" title="55555555555.png" alt="55555555555.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="color: rgb(0, 112, 192) "strong3、使用升华后重结晶法提高MS成像灵敏度/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "对9AA升华后重结晶的小鼠肝脏样本,使用成像质谱显微镜iMScope iTRIO/i(图3),根据表2的参数进行质谱成像分析。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "对比升华法进行基质涂布样本与升华后重结晶样本的分析结果、比较其分析区域的平均质谱图(图4)。仅采用升华法时、能强烈检测到基质9AA的峰(m/z 385.14)(图4▼),基本上检测不到低分子量代谢产物的峰,但通过实施升华后重结晶,使来自低分子量代谢产物的峰强度增加(图4▼等),确认其提升检测灵敏度的效果。此外,其他多个低分子量代谢产物的MS图像,通过升华后重结晶的处理,能够获得更为清晰的MS图像(图5)。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "针对难以重结晶的9AA开发的升华后重结晶方法,充分利用升华法的优势成功实现了无损且高灵敏度的MS成像分析。/ppspan style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/0bbf3127-6052-4b6a-af7e-a0c6fc57f542.jpg" title="6.png" alt="6.png"//pp style="text-align: center "图4 质谱图(升华法和升华后重结晶法的比较)/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/de208828-8702-40d6-8202-037e64b3f190.jpg" title="7.png" alt="7.png"//pp style="text-align: center "图5 MS图像(升华法和升华后重结晶法的比较)/ppbr//p
  • 小身材大智慧丨检测器级MS助力寡核苷酸和多肽药物分子量测定
    导读随着生物医药技术的发展,越来越多的生物药陆续上市,如治疗慢性疾病的寡核苷酸药物Leqvio,“一年只需注射两针”就可以长效持久的降低血液中胆固醇含量,以及用于治疗II型糖尿病的多肽类药物Mounjaro。在寡核苷酸和多肽药物的质量控制中,分子量测定是定性表征中不可缺少的一部分,而单四极杆液质联用仪(LCMS)是测定分子量的利器。但与小分子药物相比,多肽和寡核苷酸药物极性和分子量均较大,在LCMS中带多电荷,所以分子量测定时可能会存在分子量测定范围窄、灵敏度低等问题。小身材大智慧 LCMS-2050岛津最新款单四极杆质谱仪LCMS-2050兼顾小型化和高性能,其离子源为加热型ESI/APCI(DUIS)源,使得寡核苷酸和多肽药物等分子量较大的极性化合物更容易电离,所以LCMS-2050具有分析灵敏度高,分子量测定范围广的特点。此外,岛津LabSolutions软件自带分子量解卷积功能,可以快速对多电荷质谱图进行解卷积,获得分子量相关信息。分子量测定案例分享寡核苷酸药物本方案中寡核苷酸药物为小干扰核苷酸(siRNA),是一类双链RNA分子(正义链和反义链),长度为20-25个碱基对。通过流动相的调整和质谱参数的优化,LCMS-2050(负模式)检测得到了siRNA多电荷质谱图,质荷比为600~1700。此时质谱图中无其他加和离子干扰,且高质荷比也有明显响应。通过岛津LabSolutions软件自带的多电荷解卷积功能,计算得到siRNA正义链电荷数量为4~11,分子量为6631.64 Da,反义链电荷数量为4~10,分子量为6637.66 Da,与理论值的偏差均小于0.4 Da。siRNA色谱图正义链质谱图正义链分子量解卷积结果反义链质谱图反义链分子量解卷积结果多肽药物此多肽药物为一种生长抑素,其理论分子量为1637. 72 Da。LCMS-2050(正模式)检测得到质荷比为546.76~1638.47,通过LabSolutions解卷积功能计算得到分子量为1637.45 Da,与理论值偏差为0.27 Da。多肽药物色谱图多肽药物质谱图多肽药物分子量解卷积结果结语岛津最新款单四极杆质谱仪LCMS-2050兼顾小型化与高性能,适用于多肽、寡核苷酸等化合物分子量测定,具有灵敏度高、分子量测定范围广的优势。了解更多详情,敬请下载《LCMS测定小干扰核苷酸siRNA分子量》《LCMS-2050在多肽分子量定性分析检测中的应用》本文内容非商业广告,仅供专业人士参考。
  • 技术标准解析 - CDE纳米药物质量控制研究指导原则解读
    本文摘要本文将通过对马尔文帕纳科两款纳米颗粒表征设备NTA和DLS在测量颗粒粒径上的相同点和区别点,为您选择符合技术标准的不同技术用于纳米药物质量控制研究中的颗粒表征提供有意义的指导。相关技术标准中的粒度表征技术为规范和指导纳米药物研究与评价,在国家药品监督管理局的部署下,药审中心组织制定了《纳米药物质量控制研究技术指导原则(试行)》等三项关于纳米药物研究、质控、评价的技术指导原则。其中《纳米药物质量控制研究技术指导原则》主要内容是围绕着纳米药物的安全性、有效性以及质量可控性展开的。在这三个方面,质量的可控性显得尤为重要,它一定程度上决定了药物的安全性和有效性。在粒径表征方面,该指导意见关于粒径表征的相关表述如下:“应选择适当的测定方法对纳米药物的粒径及分布进行研究,并进行完整的方法学验证及优化。粒径及分布通常采用动态光散射法(Dynamic light scattering,DLS)进行测定……粒径分布一般采用多分散系数(Polydispersity index,PDI)表示。除此之外,显微成像技术(如透射电镜(Transmission electron microscopy,TEM)、扫描电镜(Scanning electron microscopy,SEM)和原子力显微镜(Atomic force microscopy,AFM)、纳米颗粒跟踪分析系统(Nanoparticle tracking analysis, NTA)、小角X射线散射(Small-angle X-ray scattering,SAXS)和小角中子散射(Small-angle neutron scattering,SANS)等也可提供纳米药物粒径大小的信息。”注:本文介绍的两种纳米颗粒表征技术如何选择合适的颗粒表征技术呢?那么,测量纳米级颗粒粒径该如何选择合适的技术呢?本文将着重给大家讲一下NTA和DLS在测量颗粒粒径上的相同点和区别点,方便大家更好的去选择不同的技术。DLS技术利用分散在溶液中的纳米颗粒的布朗运动测量颗粒粒径,其粒径检测范围在0.3nm-10μm之间。NTA技术利用激光照射溶液中的悬浮纳米颗粒,后者产生的散射光被高灵敏度的相机捕获并成像。由于该技术是单颗粒跟踪技术,所以能提供极高精度的颗粒粒度的数量分布,既适合分析粒度分布较窄,也适合分析粒度分布较宽的样本,其粒径检测范围在10-1000nm之间。我们以100nm和200nm的聚苯乙烯颗粒(PS)标准品为考察对象。研究NTA 和 DLS两种技术分别在粒径窄分布和宽分布的样品上的测量差异。图1 NTA和DLS测量窄分布样品合并图(上)和宽分布样品合并图(下)从图上可以看出,DLS和NTA都能很好的表征粒径窄分布的样品,且其平均值及主峰值都十分接近,但是NTA得到的粒径分布峰更窄,这也和其采用的单颗粒跟踪技术相符合。右图明显可以看到DLS对体系中的大颗粒更敏感,而NTA对体系中大、小颗粒的敏感程度较为接近。总体来说,NTA的粒径分辨率能达到1:1.3,而DLS的粒径分辨率最低只能到1:3。MADLS (多角度动态光散射)技术是马尔文帕纳科专为Zetasizer Ultra系列产品开发的新技术。MADLS可从多个光散射角度对样品进行自动全面分析,提供更高的分辨率,为样品提供更完整的视角。下图以脂质体为例,分别用NTA和MADLS技术测量样品粒度,可以看到二者测得的粒径均值及主峰值都十分接近,MADLS得到的粒径分布峰也和NTA同样窄。图2 脂质体样品的粒度分布,上图为马尔文帕纳科NanoSight的测量结果,下图为马尔文帕纳科Zetasizer 的测量结果。MADLS和NTA两种技术互补:MADLS可在较宽范围内快速获得包括粒径、颗粒浓度等信息,几乎不需要样品的前处理;NTA则可用于获得粒径分布更多的细节,用于颗粒浓度分析时,测量下限也更低。在两种技术重叠的测量范围内,获得的结果也高度一致。马尔文帕纳科MADLS和NTA技术今年又再添新品,Zetasizer 智能样品助手,可实现无人值守过夜测量,解放研究人员的双手;NanoSight Pro新一代纳米颗粒跟踪分析仪,通过神经网络人工智能算法加持,实现对脂质体(LNP)、外泌体和细胞外囊泡(EV)等样品的高分辨率的粒径和浓度检测。感兴趣的老师可观看新品发布回放,了解更多内容。 关注马尔文帕纳科微信公众号观看回放视频
  • 分析利器丨MALDI-TOF 高效表征小分子化合物的分子量
    MALDI-TOF对小分子化合物分子量的快速确认小分子通常指分子量小于1000 Da(尤其小于400 Da)的有机化合物,包括天然产物(生物体合成)及各类人工合成的有机小分子。质谱技术由于可以精确测量各类化合物的质量,被广泛应用于小分子的分子量表征及结构鉴定工作。通常小分子分子量表征常用手段是LCMS,实则MALDI-TOF同样可以用于小分子化合物的分子量确认,且具有更高的效率。MALDI-TOF MS表征小分子分子量的方案特点:1快!每天可分析数千个样品2直接上样分析,无需样品分离3所需样品量较少,单次上样体积只需1 μL以内4除可溶性样品外,还能够分析难溶性样品MALDI-TOF分析小分子的工作流程小分子测试案例分享01各类化合物(原料、物料、产品)分子量及杂质检测在药品、化工品等产品生产过程中,对投入的原料、物料以及终产品进行分子量和杂质检测,是生产质量控制的重要内容。下图中,通过质谱信息可以直接了解寡核苷酸合成原料亚磷酰胺单体的分子量及杂质信息。寡核苷酸合成原料亚磷酰胺单体质谱图02小分子有机合成反应跟踪、产物确认在有机合成中,鉴定反应产物和了解反应进程极其重要。MALDI-TOF MS可以快速测量化合物进行半定量反应跟踪和产物确认。通过化合物单同位素峰的分布,还能轻松识别出溴和氯的存在与否。下图中原料双(氯甲基)苯的信号强度在反应18小时后降低,产物双(溴甲基)苯在反应18小时后强度增加。反应不同时间获得的反应产物的质谱图比较03有机功能材料合成确认有机功能材料包括有机光电材料、有机导电材料、有机磁性材料、有机催化材料等。MALDI-TOF MS可以快速进行有机功能材料的合成确认。下图中,通过样品同位素分布模式及质量数的实际检测结果与理论值的比较,可以准确判断产品合成是否成功。半导体材料及有机发光二极管材料的质谱图04难溶性颜料分子量分析颜料通常不溶于水和一般有机溶剂,常见的颜料包括无机颜料、偶氮颜料、钛菁颜料等。由于颜料的难溶解性,不能使用传统LCMS或GCMS方法进行分子量检测,而MALDI-TOF MS由于不需要分离,分析时不受溶解性限制,可以检测不溶性颜料的分子量,用于鉴别颜料种类或者颜料生产合成质控。难溶性颜料钛菁红的质谱图结语MALDI-TOF MS具有前处理简单、能够快速获取从低分子量到高分子量各类样品的分子量信息,无需分离、不受样品溶解性限制等优点,为医药行业药物发现、有机合成产物确认、化工领域颜料、乳化剂等各类化工产品分子量分析、有机功能材料的合成确认提供快速检测手段。撰稿人:顿俊玲本文内容非商业广告,仅供专业人士参考。
  • 使用超高效聚合物色谱系统对低分子量聚合物进行快速高分辨率分析
    使用超高效聚合物色谱(APC)系统对低分子量聚合物进行快速高分辨率分析Mia Summers和Michael O&rsquo Leary沃特世公司(美国马萨诸塞州米尔福德)应用优势■ 既能对聚合物进行快速表征又不会降低性能水平■ 与常规GPC分析相比,可提高对低分子量低聚物的分辨率■ 与常规GPC分析相比,可提高校准水平并由此对低分子量低聚物进行更准确的测定■ 可对聚合物进行快速监测,从而能提早发现产品开发过程中出现的变化 沃特世提供的解决方案ACQUITY 超高效聚合物色谱(APC&trade )系统ACQUITY APC XT色谱柱沃特世聚合物标准品带有GPC选项的Empower 3色谱数据软件关键词聚合物、SEC、GPC、APC、聚合物表征、低分子量聚合物、低聚物、环氧树脂 引言凝胶渗透色谱(GPC)是一种广泛认可并行之有效的聚合物表征方法。然而,尽管使用此技术可获得大量信息,但这类分析本身仍存在缺陷。色谱柱通常填充苯乙烯-二乙烯基苯,同时需要进行适当老化并应在低背压下运行以确保其长期稳定。填充颗粒通常较大(&ge 5 &mu m),分辨率一般会因此而受影响。填充较小颗粒(5 &mu m)的色谱柱已投放市场,并能提高GPC分离速度,但分离速度会因色谱柱本身的最大工作压力偏低而受限。此外,常规GPC仪器的系统体积较大,这需要使用较大直径的色谱柱以减缓可能导致分辨率降低的系统峰展宽。沃特世ACQUITY超高效聚合物色谱(APC)系统与亚3 &mu m杂化颗粒色谱柱相结合,可增强系统稳定性并能在更高压力下确保流速准确性。此外,APC系统的总体扩散度低,能显著提升分辨率,在分析低分子量低聚物时尤为明显。提高分离低分子量低聚物的分辨率并缩短运行时间能对聚合物工艺开发进行快速监测,提早检测出新的聚合物类型并从总体上加快聚合物新产品的上市进程。这篇应用纪要将基于ACQUITY APC系统的分离与基于常规GPC的分离进行了比较。本文将会说明使用一种采用亚3 &mu m杂化颗粒技术色谱柱的低扩散系统能加快分析速度,提高分辨率并有助于对低分子量低聚物进行校正。综合使用这些技术能够更稳定、更精确地测定低分子量聚合物样品的分子量参数。提早识别某种聚合物所出现的甚至比较细微的改变都能明显加快化学和生物材料应用中聚合物的开发速度。 实验Alliance GPC系统条件检测器: 2414 RI (示差折光检测器)RI流通池: 35 ℃流动相: THF流速: 1mL/min色谱柱: Styragel 4e,2和0.5,7.8 x 300 mm(3根串联)柱温: 35 ℃样品稀释剂: THF进样量: 20 &mu LACQUITY APC系统条件检测器: ACQUITY RI(示差折光检测器)RI流通池: 35 ℃流动相: THF流速: 1 mL/min色谱柱: ACQUITY APC XT 200 Å 柱和两根45 Å 柱,4.6 x 150 mm(3根柱串联)柱温: 35 ℃样品稀释剂: THF进样量: 20 &mu L数据管理Empower 3色谱数据软件样品1 mg/mL的沃特世聚苯乙烯标准品(100K、10K和1K)环氧树脂(2 mg/mL)结果与讨论为了使用SEC对聚合物进行适当表征,重要的是要使用适当的标准品生成一条校准曲线以确定当前所用色谱柱的分离范围。使用常规GPC分析标准品和样品相当耗时,运行时间可长达1小时(或更长)。由于样品所产生的数据将与经校准的标准品进行比较以确定分子量,因此标准品分析结果的准确度对获得关于聚合物样品的准确结果而言具有至关重要的作用。除了GPC本身的运行时间较长之外,常规GPC系统的额外柱体积较大也会导致峰展宽,从而降低分辨率并由此降低校准数据点的准确度。与常规GPC系统相比,ACQUITY APC系统的扩散度更低,因此产生的峰展宽就更少,并且窄分布标准品的色谱峰也明显更清晰,如图1所示。此外,低扩散性APC系统与支持更高流速和背压的稳定的亚3 &mu m APC色谱柱柱技术相结合也能提高对1K聚苯乙烯标准品的分辨率,并使分析时间缩短至原来的1/5。图1. 比较在常规GPC系统和ACQUITY APC系统中分析聚苯乙烯标准品(Mp:100K、10K和1K)的运行时间和分辨率使用APC系统所提高的分辨率为确定1K聚苯乙烯标准品分子量增添了更多可识别的色谱峰。如图2所示,通过使用标准品供应商提供的数值或根据外部方法得出的标准品测定值而确定的分子量信息,更多的数据点由此可被添加到校准曲线上,从而为根据这条曲线所计算出的样品结果增加了可信度。图2. 使用ACQUITY APC系统时,因对1K低分子量标准品的分辨率提高而在校准曲线上得出关于聚苯乙烯标准品(100K、10K和1K)的更多数据点一般说来,需要运行一系列标准品以得出用来生成校准曲线的数据点。使用常规GPC时,平衡、配制并分析每种标准品可能需要数小时至数天的时间。因此,通常不进行校准并根据原有校准曲线确定分析结果。ACQUITY APC系统因其系统滞留体积低而使平衡速度明显加快,并且因在更高流速下使用更小的颗粒而使运行时间明显缩短。运行时间的缩短使得平衡和校准操作可在一小时内轻松完成。最后,得益于分辨率的提高,可能只需要配制并进样检测更少的标准品,就能获得一条可用来进行校准的稳定曲线。分析样品时,校准操作的稳定性提高使得对低分子量低聚物的分子量测定具有更高的可信度。图3显示出一份环氧树脂样品相对于用聚苯乙烯标准品校准的分析结果。该结果表明使用三根ACQUITY APC XT 4.6 x 150 mm串联柱可在不到5分钟的运行时间内分辨出不同低聚物。图3. 使用配有ACQUITY RI检测器的三根ACQUITY APC XT 4.6 x 150 mm串联柱对溶于四氢呋喃的一份环氧树脂样品进行分析。低分子量低聚物(显示为峰尖分子量)可在不到5分钟的时间内被分辨开来。APC可缩短运行时间的特点有助于在工艺开发过程中进行反应监测。分辨率提高能够促进对合成应用或降解研究中可能出现的聚合物改变进行更快速的鉴别。通过监测各种分子量而提早发现工艺改变有助于更好地了解聚合物及其预期属性,从而可促进新型聚合物的开发并加快产品上市进程。结论由于超高效聚合物色谱系统的扩散度更低并能承受更高的背压以允许使用更小的杂化颗粒,因此该系统明显优于常规GPC系统。通过与最新的色谱柱技术相结合,APC系统与常规GPC相比也提高了对低分子量低聚物的分辨率。APC在性能方面的优点包括校准结果更可靠,这对生成用于聚合物表征的准确测定值而言是必不可少的。低分子量聚合物检测速度和分辨率的同时提高可在开发过程中实现对聚合物的快速且可靠的表征,从而促进对新型聚合物进行密切的上市跟踪。
  • 技术标准解析 - CDE纳米药物质量控制研究技术指导原则解读(二)
    Hot政策解读纳米药物质量控制研究技术指导原则#本文由马尔文帕纳科应用专家张鹏博士供稿#2022 为规范和指导纳米药物研究与评价,在国家药品监督管理局的部署下,药审中心组织制定了《纳米药物质量控制研究技术指导原则(试行)》、《纳米药物非临床药代动力学研究技术指导原则(试行)》《纳米药物非临床安全性评价研究技术指导原则(试行)》三项关于纳米药物研究、质控、评价的技术指导原则。并由经国家药品监督管理局审查同意,8月27日予以发布通告,三项技术指导原则自发布之日起开始施行。其中《纳米药物质量控制研究技术指导原则》主要内容是围绕着纳米药物的安全性、有效性以及质量可控性展开的。在这三个方面,质量的可控性显得尤为重要,它一定程度上决定了药物的安全性和有效性。在粒径表征方面,该指导意见原文如下:原文关于粒径表征的相关表述“应选择适当的测定方法对纳米药物的粒径及分布进行研究,并进行完整的方法学验证及优化。粒径及分布通常采用动态光散射法(Dynamic light scattering,DLS)进行测定,需要使用经过认证的标准物质(Certified reference material,CRM)进行校验,测定结果为流体动力学粒径(Rh),粒径分布一般采用多分散系数(Polydispersity index,PDI)表示。除此之外,显微成像技术(如透射电镜(Transmission electron microscopy,TEM)、扫描电镜(Scanning electron microscopy,SEM)和原子力显微镜(Atomic force microscopy,AFM)、纳米颗粒跟踪分析系统(Nanoparticle tracking analysis, NTA)、小角X射线散射(Small-angle X-ray scattering,SAXS)和小角中子散射(Small-angle neutron scattering,SANS)等也可提供纳米药物粒径大小的信息。对于非单分散的样品,可考虑将粒径测定技术与其它分散/分离技术联用”上一期我们已经和大家介绍了基于DLS技术的粒径测量,这一期我们准备和大家讲一讲纳米颗粒跟踪分析技术(NTA)测量颗粒粒径。纳米颗粒跟踪分析技术原理是如何进行颗粒粒径测量的呢?激光照射溶液中的悬浮纳米颗粒,后者产生的散射光被高灵敏度的相机捕获并成像。为了得到观测区域每个颗粒的粒径大小,相机通过拍照的方式记录下每个颗粒的运动轨迹,并分析得到每个颗粒的运动速率,最终这些单个颗粒的运动速率通过斯托克斯-爱因斯坦方程转化为粒径值,整个样本的粒径分布就是由这些颗粒的粒径汇集而成(图1)。图1. 利用纳米颗粒跟踪分析技术(NTA)对纳米颗粒进行粒径分析(红色线条表示颗粒的布朗运动轨迹)由于该技术是单颗粒跟踪技术,所以能提供极高精度的颗粒粒度的数量分布,既适合分析粒度分布较窄,也适合分析粒度分布较宽的样本,其粒径检测范围大致在10-2000nm之间。此外,如果样品本身具有荧光,或者能够标记上荧光素,可以单独采集其荧光信号,进而对荧光颗粒进行粒度分析,不受溶液复杂体系的影响。NTA 和 DLS 对比实验测量纳米级颗粒粒径该如何选择?接下来通过粒径宽窄分布不同的样品的测量实例,着重给大家讲一下NTA和DLS在测量颗粒粒径上的相同点和区别点,方便大家更好的去选择不同的技术。 NTA & DLS 粒径窄分布样品NTA 和 DLS两种技术在粒径窄分布样品上的差异,我们以200nm的聚苯乙烯颗粒(PS)为考察对象。DLS:Z average: 217.7 nm PDI: 0.04827NTA: Mean: 199.7nm Mode: 196.2nm图2 DLS、NTA表征200 nm聚苯乙烯颗粒(PS)的粒径分布我们再将两种技术表征的结果合并到一块,看看有没有差异。图3 NTA和DLS测量窄分布样品合并图从图3中我们能够看到,NTA和DLS技术都能很好的表征粒径窄分布的样品,但是NTA得到的粒径分布图比DLS的更窄。通过图2、3我们得出如下结论:DLS和NTA都能很好的表征粒径窄分布的样品,且其平均值及主峰值都十分接近,但是NTA得到的粒径分布峰更窄,这也和其采用的单颗粒跟踪技术相符合。 NTA & DLS 粒径宽分布样品再来看看宽分布的样品。我们将100 nm和200 nm的PS标准品混合后,获得粒径宽分布样品,将其做为考察对象。分别利用NTA和DLS对他们进行粒径表征:DLS: Z average: 206.7 nm PDI: 0.002214NTA: Mean: 171.4 nm Mode: 194.8 nm图4 DLS、NTA表征100、200 nm聚苯乙烯颗粒(PS)混合体的粒径分布从图4我们可以看出来,DLS仍旧显示出一个单峰,其Z均值为206.7 nm;NTA成功将100 nm和200 nm的PS颗粒区分开来,在粒径分布图上呈现出两个明显的单峰(109 nm、195 nm),这说明NTA的粒径分辨率是要高于DLS的。图5 DLS和NTA测量100、200 nm聚苯乙烯颗粒(PS)混合体的粒径分布合并图通过图5,将两种技术得到的粒径分布图合并到一块,我们可进一步发现,DLS的结果更偏向于体系中的大颗粒,较小的100 nm的信号被较多的忽略了。这说明DLS对体系中的大颗粒更敏感,而NTA对体系中大、小颗粒的敏感程度较为接近。总体来说,NTA的粒径分辨率能达到1:1.3,而DLS的粒径分辨率最低只能到1:3。 DLS&NTA 示例:水包油乳剂在水包油乳剂的实际样品案例中,如图6,7 DLS和NTA的粒径分布图以及两项技术的合并图显示,DLS的分辨率较低,无法分辨出体系中存在的更小的颗粒。DLS: Z average: 151.9 nm PDI: 0.09714NTA: Mean size: 116.2 nm Mode size: 89.1 nm图6 DLS、NTA表征水包油乳剂的粒径分布图7 DLS和NTA测量水包油乳剂的粒径分布合并图 实际案例 NTA适用:细胞外囊泡(EV) 实际案例 NTA适用:脂质纳米颗粒(LNP) 实际案例 NTA适用:慢病毒 实际案例 蛋白聚集体实际案例NTA适用:纳米磁球
  • 2010北京标准物质国际研讨会通知
    各有关单位:  为进一步推动标准物质研制与应用领域的国际学术交流与合作,以及新兴、热点领域标准物质研制应用技术在全国范围内的推广,中国计量科学研究院拟定于2010年10月26日~29日组织召开2010标准物质国际研讨会。  会议将邀请标准物质和计量研究应用领域的国际顶级专家以及国内研究及应用领域著名专家学者做专题报告,同时,着眼于探讨具有现代技术特色的标准物质新理论和新发展,使之成为标准物质研制人员、使用人员、管理人员、分析测试人员发表学术思想和新观点、交流研究成果与管理经验的平台。会议期间将安排参观中国计量科学研究院昌平实验基地。  热忱欢迎国内外标准物质研制与应用相关技术人员参加本次会议!  会议初步安排如下:     2010年10月26日-29 日  10月26日下午2:00-7:00和10月27日上午8:00-9:00为会 议注册时间。  会议期间日程安排如下:  10月27日:开幕式、大会   10月28日:分会   10月29日:参观考察。     北京     主题:标准物质研究与应用技术发展趋势  专题一:公共安全与大众健康相关标准物质及准确测量技术的研发应用现状、进展与趋势,包括:  — 食品安全   — 环境安全   — 临床诊断与药物等。 专题二:材料与能源相关标准物质及准确测量技术的研发应用现状、进展与趋势,包括:  — 新材料如纳米材料、超高纯材料的研发、表征等   — 新能源开发、利用、节能降耗控制等。     英语,配中文PPT字幕。     150至200人。     网络注册:网址 www.ncrm.org.cn/rm2010  传真:010-64271639  Email:rm2010@nim.ac.cn  国内代表会议注册费为1200元人民币。会议期间食宿自理。为便于此次会议的筹备,请各参会人员务必于2010年4月30日前完成本轮注册或发送回执。请关注会议网页中有关会议安排最新情况。     论文摘要(英文)上传截止日期:2010年4月30日   论文全文上传截止日期:2010年7月31日。  请通过会议网址www.ncrm.org.cn/rm2010下载格式模版并完成上传。稿件评审采用后,将收入会议论文集,并推荐发表在《计量技术》、《分析测试学报》等国内外期刊上。     联系人:郭敬、李孟婉、卢晓华  电话:010-64271639、84290867  地址:北京市北三环东路18号中国计量科学研究院化学所,邮编:100013  中国计量科学研究院化学所
  • 食品中糖类物质国家标准检验方法的探讨
    一、背景介绍  糖类物质是多羟基醛和多羟基酮及其缩合物,或水解后能产生多羟基醛和/或多羟基酮的一类有机化合物。根据分子的聚合度,糖类物质一般分为单糖(如葡萄糖、果糖)、低聚糖(含2~10个单糖结构的缩合物,常见的是双糖,如蔗糖、乳糖和麦芽糖等)和多糖(含10个以上单糖结构的缩合物,如淀粉、纤维素、果胶等) 根据其还原性可分为还原糖(如葡萄糖、果糖、半乳糖、乳糖、麦芽糖)和非还原糖(蔗糖、淀粉) 根据其结构可分为醛糖(如核糖、葡萄糖、半乳糖、乳糖、甘露糖、麦芽糖)和酮糖(如果糖、木酮糖、核酮糖、辛酮糖)。糖的还原性主要基于分子中含有还原性的醛基,所以醛糖是还原糖。有些酮糖在碱性溶液中可发生差向异构化反应转化为醛糖,也具有还原性,属还原糖,比如果糖。单糖分子缩合为双糖或多糖后,若失去了还原性的醛基,就不具备还原性,称为非还原糖,如蔗糖(双糖)和淀粉(多糖)。蔗糖水解后生成1:1的葡萄糖和果糖,产物不是单一分子,称为转化糖。淀粉完全水解后产物为单分子葡萄糖。蛋白质、脂肪、碳水化合物(主要指糖类化合物)、钠是食品的4种核心营养素,所以食品中糖类物质的含量是食品检验的主要内容之一。  二、检验标准的探讨  现行的国家标准中糖类物质的检验方法一般涉及3个标准:GB/T 5009.7-2008 《食品中还原糖的测定》、GB/T 5009.8-2008《食品中蔗糖的测定》、GB/T 5009.9-2008《食品中淀粉的测定》。其中,蔗糖和淀粉含量的测定是基于测定二者水解后产生的还原糖,所以这3个标准实际上是有着密切联系,并且以还原糖容量法测定为基础的方法体系。  (一)样品的前处理  食品样品的组成相当复杂,对食品中某成分测定的策略是基于分离复杂背景和除去测试干扰物质后选择适宜的方法进行检测。食品中最普通的糖类物质包括葡萄糖、果糖、蔗糖和淀粉。葡萄糖和果糖是还原糖,易溶于水。食品样品用水充分浸提后,葡萄糖和果糖进入提取液,提取液中当然含有其他能溶于水的胶体物质,如蛋白质、多糖及色素等。这些胶体物质会干扰后续碱性铜盐法还原糖的测定或影响终点判定,所以必须加以分离。标准中是使用澄清剂共沉淀法除去胶体物质,过滤后的澄清液用于还原糖的测定。常用的食品澄清剂有多种,包括醋酸锌和亚铁氰化钾配合溶液、硫酸铜、中性醋酸铅、碱性醋酸铅、氢氧化铝、活性碳等。  (二)还原糖测定和结果计算  GB/T 5009.7-2008 《食品中还原糖的测定》直接滴定法的原理如下:碱性酒石酸铜甲液与乙液等量混合后,Cu2+与OH-生成天蓝色的Cu(OH)2沉淀物,该沉淀物与酒石酸钾钠反应,生成可溶性的酒石酸钾钠铜深蓝色络合物,该络合物遇还原糖反应后,产生红色Cu2O沉淀。为了便于终点的观察,直接滴定法在蓝—爱农法的基础上进行了改进,碱性酒石酸铜乙液中的亚铁氰化钾与Cu2O沉淀反应生成可溶性的淡黄色络合物。最终反应的终点由碱性酒石酸铜甲液中的亚甲蓝作为指示剂显示,亚甲蓝的氧化能力比Cu2+弱,故还原糖先与Cu2+反应。当碱性酒石酸铜甲液中的Cu2+全部被逐渐滴入的还原糖耗尽后,稍过量的还原糖立即把亚甲蓝还原,溶液颜色由蓝色变为无色,即为滴定终点。  直接滴定法首先由还原糖标准溶液(1.0mg/ml,即0.1%)标定来自碱性酒石酸铜甲液中的已知量的Cu2+,建立该已知量的Cu2+与还原糖的定量关系。试样测定时亦取等量的Cu2+溶液与试样中的还原糖反应。反应终点时,试样中的还原糖总量与标定步骤中加入的标准样液中的还原糖总量相同(A = CV,C为葡萄糖标准溶液的浓度,mg/ml V为标定时消耗葡萄糖标准溶液的总体积,ml)。由此,可以建立结果计算公式(1):  X=  其中,X:试样中还原糖的含量(以某种还原糖计,如常用的葡萄糖,g/100g) A:终点时加入的还原糖总量,mg m: 试样质量,g V: 试样消耗的体积,ml 1000:毫克换算成克的系数。  (三)计算公式的正确表达  1.还原糖计算公式。公式(1)中的250 ml是GB/T 5009.7-2008 《食品中还原糖的测定》样品处理过程中样液的最终定容体积。显然,该计算公式的建立与滴定方法的原理和操作过程密不可分。对于含大量淀粉的食品,根据样品的处理过程,公式(1)的适用性存在疑问。为了清楚地解释问题的根源所在,现将“含大量淀粉的食品”试样处理过程依标准摘录如下:“称取10g~20g粉碎后或混匀后的试样,精确至0.001g,置250ml容量瓶中,加水200ml,在45℃水浴中加热1小时,并时时振摇。冷后加水至刻度,混匀,静置,沉淀。吸取200ml上清液置另一250ml容量瓶中,慢慢加入5ml乙酸锌溶液及5ml亚铁氰化钾溶液,加水至刻度,混匀。静置30分钟,用干燥滤纸过滤,弃去初滤液,取续滤液备用。”问题出在样液的分取过程:“吸取200ml上清液置另一250ml容量瓶中,”照此,最后定容的250ml样液中仅含有原样品总量的4/5 ,即200ml/250ml,这一点在计算公式(1)中未有显示,由此会造成计算结果比实际结果低20%。综上所述,对于“含大量淀粉的食品”试样,公式(1)中试样质量应该乘以样品分取因子(等于 4/5),以保证计算公式(1)与实际操作过程相符和计算结果的正确性。  2.蔗糖标准中的计算公式。GB/T 5009.8-2008《食品中蔗糖的测定》的第二法酸水解法还原糖计算公式的错误更加严重。其错误在于样品的水解过程中溶液的分取体积未在计算公式中体现。按照标准的操作过程,正确的计算公式(2)应为:  X = (2)比较上述公式(2)与现行GB/T 5009.8-2008《食品中蔗糖的测定》的第二法酸水解法中还原糖的计算公式可知,现行国标的计算结果比正确结果小了整整一倍。如果国标的使用者未注意到该错误,报出的检验结果将会出现很大错误的。  (四)还原糖滴定法的注意事项  1.该法原理是基于还原糖标液与试样溶液滴定等量的碱性酒石酸铜甲乙混合液,因此,每次测定时,碱性酒石酸铜甲液(含Cu2+)的移取量(5.0ml)一定要精确,以保证结果的准确性和平行性。  2.滴定应按标准操作在沸腾条件下进行。其一,高温可以加快还原糖与Cu2+的反应速度,确保滴定反应正常进行 其二,保持反应液沸腾可防止空气进入,避免还原态的次甲基蓝和氧化亚铜被氧化而影响终点判定和增加还原糖消耗量。达终点后还原态的次甲基蓝(无色)遇空气中氧时又会被氧化为氧化态(蓝色)。同样,氧化亚铜也易被空气氧化回到二价态。因此,滴定时也不应过分摇动锥形瓶,更不能把锥形瓶从热源上取下来滴定,以防空气进入反应液中。  食品中糖类物资国标还原糖滴定法,其优点是快速、方便、准确,对仪器设备的依赖程度较低,所以它是实验室普遍采用的方法。现行的GB/T 5009.7-2008《食品中还原糖的测定》和GB/T 5009.8-2008《食品中蔗糖的测定》在标准转换过程中出现了计算公式的严重错误,中初级检验人员很难发现和自行纠正。因此,笔者建议国家相关部门尽快组织对现行食品中糖类物质(还原糖、蔗糖)国家检验标准的两个方法的修订工作,完善检测方法和标准,确保检测的准确度。
  • 国家市场监督管理总局关于对《蛋白质分子量测定 液相色谱-飞行时间质谱联用法》等225项拟立项国家标准项目公开征求意见的通知
    各有关单位:经研究,国家标准委决定对《焊缝无损检测 磁粉检测 验收等级》等225项拟立项国家标准项目公开征求意见,征求意见截止时间为2023年7月5日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001282,查询项目信息和反馈意见建议。2023年6月5日相关标准如下:#项目中文名称制修订截止日期1蛋白质分子量测定 液相色谱-飞行时间质谱联用法制定2023-07-052肝素酶活性的测定制定2023-07-053硫酸软骨素酶活性的测定制定2023-07-054葡萄糖氧化酶活性检测方法制定2023-07-055包装袋 试验条件 第1部分:纸袋制定2023-07-056产品几何技术规范(GPS) 坐标测量机(CMM)确定测量不确定度的技术第3部分:应用已校准工件或标准件修订2023-07-057产品召回 生产者安全管理韧性评价制定2023-07-058电梯、自动扶梯和自动人行道的电气要求 信息传输与控制安全制定2023-07-059电梯安全要求 第2部分:满足电梯基本安全要求的安全参数修订2023-07-0510工业废硫酸的处理处置规范修订2023-07-0511工作场所环境用气体探测器 第1部分:有毒气体探测器性能要求制定2023-07-0512工作场所环境用气体探测器 第2部分:有毒气体探测器的选型、安装、使用和维护制定2023-07-0513合格评定 管理体系审核认证机构要求 第 14 部分:文件管理体系审核与认证能力要求制定2023-07-0514化学品 快速雄激素干扰活性报告(READR)试验制定2023-07-0515化学品 水-沉积物系统中穗状狐尾藻毒性试验制定2023-07-0516化学品 液态粪肥中的厌氧转化试验制定2023-07-0517化学品 鱼类细胞系急性毒性:RTgill-W1细胞系试验制定2023-07-0518环境试验 第2部分:试验方法 试验:温度/湿度/静负载综合制定2023-07-0519家用燃气快速热水器 通用技术规范制定2023-07-0520腈水合酶纯度和活性的测定制定2023-07-0521跨境电子商务 海外仓服务质量评价指标制定2023-07-0522实验动物 动物模型鉴定与评价技术规范制定2023-07-0523塑料 丙烯腈-丁二烯-苯乙烯(ABS) 模塑和挤出材料 第1部分:命名系统和分类基础修订2023-07-0524塑料 聚醚醚酮(PEEK)模塑和挤出材料 第1部分:命名系统和分类基础制定2023-07-0525搪玻璃层试验方法 第6部分:高电压试验修订2023-07-0526无损检测仪器 超声检测设备的性能与检验 第1部分:仪器修订2023-07-0527无损检测仪器 超声检测设备的性能与检验 第2部分:探头修订2023-07-0528无损检测仪器 超声检测设备的性能与检验 第3部分:组合设备修订2023-07-0529项目、项目群和项目组合管理 项目管理指南修订2023-07-0530项目成本管理制定2023-07-0531消费品缺陷工程分析 危险温度点测量方法制定2023-07-0532消费品缺陷线索采集与评估规范制定2023-07-0533医疗器械 制造商的上市后监督制定2023-07-0534邮政业术语修订2023-07-0535真空技术 真空计 皮拉尼真空计的规范、校准和测量不确定度制定2023-07-05
  • 重磅压轴 | 第十二届中国第三方检测实验室发展论坛-标准物质&国际&实验室评审分论坛完美收官
    为进一步加强第三方检测实验室之间的相互了解和沟通,推广先进检测技术、产品和管理经验,推动检测水平的提高和发展,由中国检验检疫科学研究院主办的第十二届中国第三方检测实验室发展论坛,已于2022年9月8-9日,以线上线下相结合的方式举办。9月9日下午,中国认证认可协会承办、天津阿尔塔科技有限公司独家冠名的标准物质&国际&实验室评审分论坛,由中国认证认可协会周琦副秘书长主持,国家地质实验测试中心教授级高工王苏明、中国海关科学技术研究中心张朝晖研究员、天津阿尔塔科技有限公司首席科学家张磊博士、深圳职业技术学院食品质量与安全专业岳振峰主任和中国农业科学院蔬菜花卉研究所刘肃研究员带来精彩报告,线上总观看人数近5000人次,观众互动热烈。以下为专家报告的部分内容。主持人:周 琦 中国认证认可协会副秘书长报告人:国家地质实验测试中心教授级高工王苏明报告题目:标准物质的使用与验收国家地质实验测试中心教授级高工王苏明老师报告了标准物质的定义、使用和验收等内容。我国有证标准物质(GBW)/标准样品(GSB)是依据《计量法》和《标准化法》,按照《行政许可法》规定的程序开展的行政许可项目。选择和使用RM,需关注RM特性值的含量 、形态、基体、最小取样量、不确定度、有效期、计划数量等,应尽量与实际样品一致。王老师还详细介绍了RM和CRM在计量溯源、方法确认、质量控制、给未知物赋值等多方面的用途,给出了使用RM对精密度和正确度结果的多种评价方法。实验室应建立RM管理制度,优先选择满足ISO17034机构生产的CRM和RM,采用技术手段和与日常使用相结合的方法验收、核查RM。用于校准、方法确认和量值传递与溯源时,应尽可能使用有证标准物质/标准样品。报告人:中国海关科学技术研究中心研究员 张朝晖报告题目:标准物质在国家及地方标准评审中的一些考量因素张朝晖研究员就不同阶段现行有效和即将实施的国家检测标准和其他类型检测标准中就标准物质章节部分的陈述变化,结合国际标准在我国转化和实施的历史背景,从标准起草,审核和使用等多个角度,对商品化标准物质的选购,生产商的资质评估,产品证书或说明书识别,检测结果计量溯源等方面,利用实例结合相应的依据标准、规范等与参会人员进行了探讨和分析。报告人:天津阿尔塔科技有限公司首席科学家 张磊博士报告题目:标准物质和化学试剂的区别与应用张磊博士总结了标准物质/标准样品与化学试剂在生产企业的规模、生产资质、产品规格、标准体系、质量指标和应用领域的区别进行了总结。从检测实验室标准要求说明了化学试剂不能够代替标准物质/标准样品(RMs),更不能代替有证标准物质/标准样品(CRMs)。在实际工作中,优先选择国家标准物质/标准样品(NCRMs、CNRMs),当没有NCRMs时,选择具有ISO17034标准物质/标准样品生产者资质的企业生产的有证标准物质/标准样品CRMs;当没有CRMs时,可使用ISO17034体系下生产的RMs或本单位内部研制的QCMs;当没有RMs时,可使用市售化学试剂、自己合成或分离纯化的对照品,或者使用其他来源的参照物,但是要做许多实验来证明其适合自己的用途、满足检测要求,不是简单的拿来就用。报告人:深圳职业技术学院食品质量与安全专业主任、研究员 岳振峰报告题目:检测实验室耗材质量问题分享岳振峰研究员讲解了实验室认证认可对易耗品管理的要求。首先检验检测机构应建立和保持标准物质管理程序;标准物质应尽可能溯源到国际单位制(SI)单位或有证标准物质。检验检测机构应根据程序对标准物质进行期间核查。在采购上,检验检测机构应建立和保持选择和购买对检验检测质量有影响的服务和供应品的程序,明确服务、供应品、试剂、消耗耗材等购买、验收、存储的要求,并保存对供应商的评价记录。随后,岳振峰研究员分享了与易耗品相关的常见检测质量问题。报告人:中国农业科学院蔬菜花卉研究所研究员 刘肃报告题目:食品检测实验室评审常见问题汇总刘肃研究员围绕第三方检验检测机构中常见的原始记录不规范问题进行分析:记录是管理体系运行结果和记载检测/校准数据、结果的证实性文件,表明检测过程和质量管理体系的符合性及质量管理体系的有效性,是确保过程可追溯的重要依据。检测原始记录应包含足够的信息,能反映出检测过程中的各个环节,能再现和追溯。检测原始记录常见问题,如:检测结果报告关于“未检出”的正确表达方式,关于国家法定计量单位的表达方式和有效数字保留位数问题等。另外,天津阿尔塔科技有限公司在9日上午化妆品分论坛中也带来了精彩报告。报告人:天津阿尔塔科技有限公司标物中心总监 徐银报告题目:质控样在化妆品检测中的应用阿尔塔科技有限公司标物中心总监徐银介绍了质控样品相关概念、研制技术和在化妆品中的应用时,提到化妆品具有安全性、稳定性、使用性和功效性等基本属性。从《化妆品安全技术规范》、化妆品检测标准,以及防腐剂类、防晒剂类和禁用添加剂类化妆品质控样实例讲解了质控样、标准物质的质量控制和应用范例。
  • 9月份有87项标准将实施 医药卫生、食品环境领衔
    9月份有87项标准将实施我们通过国家标准信息平台查询到,在2022年9月份将有87项与仪器及检测行业的国家标准、行业标准和团体标准将实施。8月份新实施的标准主要集中在医药卫生、食品环境相关领域。主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓国家标准(6个)GB/T 2678.2-2021 纸、纸板和纸浆 水溶性氯化物的测定 GB/T 13214-2021 牛肉类、羊肉类罐头质量通则 GB/T 14215-2021 番茄酱罐头质量通则 GB 24539-2021 防护服装 化学防护服 GB 40554.1-2021 海洋石油天然气开采安全规程 第1部分:总则 GB 40162-2021 饲料加工机械卫生规范 行业标准(47个)JT/T 1428-2022 营运车辆后向碰撞预警系统性能要求和测试规程 LS/T 3549—2022 粮油储藏 横向通风风机技术要求 LS/T 1224—2022 花生储藏技术规范 LS/T 3270—2022 红米 LS/T 6140—2022 粮油检验 免疫亲和柱评价规范 LS/T 1301—2022GC/T 1801—2022 粮食和国家物资储备标准制定、修订程序和要求 YY/T 1809-2021 医用增材制造 粉末床熔融成形工艺金属粉末清洗及清洗效果验证方法 YY/T 1808-2021 医疗器械体外皮肤刺激试验 YY/T 1806.2-2021 生物医用材料体外降解性能评价方法 第2部分:贻贝黏蛋白 YY/T 1806.1-2021 生物医用材料体外降解性能评价方法 第1部分:可降解聚酯类 YY/T 1805.2-2021 组织工程医疗器械产品 胶原蛋白 第2部分:I型胶原蛋白分子量检测-十二烷基硫酸钠聚丙烯酰胺凝胶电泳法YY/T 1803-2021 聚乙烯醇止血海绵 YY/T 1802-2021 增材制造医疗产品 3D打印钛合金植入物金属离子析出评价方法 YY/T 1798-2021 一次性使用宫腔压迫球囊 YY/T 1797-2021 内窥镜手术器械 腔镜切割吻合器及组件 YY/T 1796-2021 医用干式胶片专用技术条件 YY/T 1788-2021 外科植入物 动物源性补片类产品通用要求 YY/T 1787-2021 心血管植入物 心脏瓣膜修复器械及输送系统YY/T 1782-2021 骨科外固定支架力学性能测试方法 YY/T 1781-2021 金属U型钉力学性能试验方法 YY/T 1778.1-2021 医疗应用中呼吸气体通路生物相容性评价 第1部分:风险管理过程中的评价与试验 YY/T 1764-2021 血管支架体外轴向、弯曲、扭转耐久性测试方法 YY/T 1748-2021 神经血管植入物 颅内弹簧圈 YY/T 1745-2021 自动粪便分析仪 YY/T 1708.6-2021 医用诊断X射线影像设备连通性符合性基本要求 第6部分:口腔X射线机 YY/T 1708.5-2021 医用诊断X射线影像设备连通性符合性基本要求 第5部分:乳腺X射线机 YY/T 1708.4-2021 医用诊断X射线影像设备连通性符合性基本要求 第4部分:数字减影血管造影X射线机 YY/T 1708.3-2021 医用诊断X射线影像设备连通性符合性基本要求 第3部分:数字化摄影X射线机 YY/T 1704.3-2021 一次性使用宫颈扩张器 第3部分:球囊式 YY/T 1629.6-2021 电动骨组织手术设备刀具 第6部分:锉刀 YY/T 0988.3-2021 外科植入物涂层 第3部分:贻贝黏蛋白材料 YY/T 0962-2021 整形手术用交联透明质酸钠凝胶 YY/T 0916.1-2021 医用液体和气体用小孔径连接件 第1部分:通用要求 YY/T 0910.1-2021 医用电气设备 医学影像显示系统 第1部分:评价方法 YY/T 0811-2021 外科植入物用大剂量辐射交联超高分子量聚乙烯制品 YY/T 0758-2021 医用激光光纤通用要求 YY/T 0719.9-2021 眼科光学 接触镜护理产品 第9部分:螯合剂测定方法 YY/T 0663.1-2021 心血管植入物 血管内器械 第1部分:血管内假体 YY/T 0617-2021 一次性使用人体末梢血样采集容器 YY/T 0616.6-2021 一次性使用医用手套 第6部分:抗化疗药物渗透性能评定试验方法 YY/T 0480-2021 诊断X射线成像设备 通用及乳腺摄影防散射滤线栅的特性 YY/T 0314-2021 一次性使用人体静脉血样采集容器 YY/T 0290.6-2021 眼科光学 人工晶状体 第6部分:有效期和运输稳定性 YY/T 0290.1-2021 眼科光学 人工晶状体 第1部分:术语YY/T 0106-2021 医用诊断X射线机通用技术条件 YY/T 1750-2020 超声软组织切割止血手术设备 YY/T 1749-2020 基于外部振动的肝组织超声弹性测量设备 地方/团体标准(34个)DB32/T 4331-2022 临床冠脉定量血流分数(QFR)检查技术规范 DB32/T 4330-2022 疫苗冷藏运输车厢体设计规范 DB32/T 4327-2022 化工消防救援站建设规范 DB32/T 4324-2022 河湖库利用变化高分遥感监测规范 DB1501/T 0028-2022 林业有害生物远程智能监测基站选址规范 DB15/T 2763—2022 一般工业固体废物用于矿山采坑回填和生态恢复技术规范 DB15/T 2762—2022 乳制品行业绿色工厂评价指南 DB2308/T 111-2022 水质 游离氯和总氯(便携式分光光度法)监测技术规范 DB2308/T 110-2022 黑臭水体监测技术规范 DB2308/T 109-2022 大气城市污染分布、污染时效性监测技术规范 DB15/T 2748—2022 绿色电力应用评价方法 DB37/T 4542—2022 固体废物 六价铬的测定 微波消解-电感耦合等离子体发射光谱法 DB42/T 1700.3-2022 化肥农药减施增效技术规程 第3部分:棉花 DB42/T 1901-2022 生物质供热系统工程设计规范 DB41/T 1268-2022 粮食作物施肥配方设计规范 DB41/T 1263-2022 甜高梁青粗饲料生产技术规程 DB41/T 2278-2022 矿山地质环境调查评价技术要求 DB50/T 1257-2022 动力环境监控系统现场监控设备智能化技术规范 DB50/T 1256-2022 动力环境监控系统智能化技术规范 DB14/T 2469—2022 煤化工建设项目文件归档规范 DB14/T 2467—2022 煤层气井采出水处理规范 DB50/T 1254-2022 山羊地方性鼻内肿瘤病毒EvaGreen荧光定量PCR检测方法 DB50/T 867.30-2022 安全生产技术规范 第30部分:有色金属铸造企业 DB50/T 867.29-2022 安全生产技术规范 第29部分:有色金属压力加工企业 DB50/T 1244-2022 基于plo基因的山羊化脓隐秘杆菌PCR检测方法 DB44/ 2367-2022 固定污染源挥发性有机物综合排放标准 DB52/T 1669.4-2022 气瓶质量安全追溯系统第4部分:充装读写控制设备 DB52/T 1669.3-2022 气瓶质量安全追溯系统第3部分:气瓶信息化标签 DB52/T 1669.2-2022 气瓶质量安全追溯系统第2部分:数据接口 DB52/T 1669.1-2022 气瓶质量安全追溯系统第1部分:通用要求 DB32/T 4246-2022 江苏省环境卫生信息化系统技术标准 DB32/T 4245-2022 城镇供水厂生物活性炭失效判别和更换标准 DB32/T 4244-2022 餐厨垃圾与生活垃圾焚烧协同处理技术标准 DB65/T 4402-2021 石榴测土配方施肥技术规程 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近75万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 中检院组织召开国家数字标准物质(DRS)二期启动会
    国家数字标准物质(DRS)平台二期开发启动会于2017年6月28日在乌鲁木齐市举行。本次会议由中国食品药品检定研究院主办,新疆维吾尔自治区食品药品检验所承办。共有来自全国省级食品药品检验院(所)、科迈恩(北京)科技有限公司以及上海诗丹德标准技术服务有限公司等在内的19家合作组成员单位的单位负责人及项目组成员共40余人参加了此次会议。  会议由新疆自治区食品药品检验所迪丽努尔沙比托夫所长致欢迎词,中国食品药品检定研究院中药民族药检定所马双成所长致开幕词。马双成所长首先回顾了在药品标准提高的新形势下中药所所开展的一系列中药标准物质替代研究工作,并对目前所取得的阶段性成果进行了肯定。并强调指出,将大数据概念和技术引入标准物质体系的顶层设计当中具有重要的基础性和引领性作用,为将来的标准物质和质量控制发展提供了新思路与新方法。  随后,中药民族药检定所孙磊副所长就数字标准物质平台第一阶段工作的成果进行了总结,并提出了二期工作的重点和难点,包括标准公开、替代实物对照品,兼容各类分析仪器数据,最终实现基于大数据样本的人工智能筛查等,并简要介绍了标准物质领域国际上的相关研究动向。最后,孙磊副所长明确了DRS二期开发工作的主要目标和进度节点安排。  接下来,来自甘肃省药品检验研究院、深圳市药品检验研究院、浙江省食品药品检验研究院、河北省药品检验研究院、四川省食品药品检验检测院、黑龙江省食品药品检验检测所、广东省药品检验所、新疆维吾尔自治区食品药品检验所、河南省食品药品检验所、山东省食品药品检验研究院、吉林省药品检验所、苏州市食品药品检验所以及安徽省食品药品检验研究院等参与单位的各位代表就一期DRS建设所承担的工作内容进行了汇报,并就目前开展工作中遇到的问题充分交流了经验和心得体会。此外,项目二期新增合作单位广西自治区食品药品检验所、重庆市药品检验检测研究院,以及上海诗丹德的代表也汇报了工作思路。  在会议的第二部分,由项目软件系统开发单位科迈恩(北京)科技有限公司的项目组分别就DRS大数据中心的二期项目实施方案和手机APP移动端及PC客户端的设计方案细则向与会专家进行了详细和深入的汇报。随后,各位与会代表也就该平台的系统设计和检测用户所关心的功能和应用“痛点”问题,展开了广泛和热烈的讨论。  各项目参加单位一致认为DRS大数据中心的开发,顺应了国家“互联网+”以及一体化大数据中心的建设方针,对于推动我国新形势下标准物质的研制和应用,乃至对于整个分析检测行业而言均具有重要的战略意义,预示着质量信息及检测标准在互联网+影响下新的发展趋势,并对以中药为代表的复杂体系质量及安全控制解决方案开拓了全新的研究思路和未来发展方向。国家数字标准物质(DRS)二期启动会会议现场新疆自治区食品药品检验所迪丽努尔沙比托夫所长致欢迎词中检院中药民族药所马双成所长致开幕词中检院中药民族药所孙磊副所长发言河北省药品检验研究院刘永利发言浙江省食品药品检验研究院马临科发言山东省食品药品检验研究院林永强发言河南省食品药品检验所王晓燕发言广东省药品检验所李华发言四川省食品药品检验检测院周娟发言深圳市药品检验研究院苏畅发言安徽省食品药品检验研究院胡冲发言重庆市药品检验检测研究院张毅发言广西自治区食品药品检验所罗轶发言黑龙江省食品药品检验检测所杨一荻发言吉林省药品检验所翟宏宇发言苏州市食品药品检验所张华峰发言甘肃省药品检验研究院张明童发言上海诗丹德公司谢天培发言科迈恩(北京)科技有限公司田润涛发言新疆维吾尔自治区食品药品检验所于新兰发言国家数字标准物质(DRS)二期启动会代表留影
  • 英国食品标准局对燃脂物质2,4-二硝基苯酚采取措施
    英国食品标准局(FSA)近日意识到,被称为DNP的2,4-二硝基苯酚(2,4-Dinitrophenol)物质,仍被健身领域的一些人和试图减肥的人使用。  DNP是一种工业化学品,对人类健康是及其危险的。根据其摄入量,急性中毒的迹象可能包括发热、脱水、恶心、呕吐、烦躁、皮肤发红、出汗、头晕、头痛、呼吸加速、心跳加速以及心跳不规则,可能导致昏迷甚至死亡。长时期摄入低含量的该物质也可能导致白内障和皮肤损伤,影响心脏、血液和神经系统。  FSA正在采取行动打击DNP非法销售,同时提高消费者对其使用危险性的意识。特别是:  • 该机构正与警察和地方当局合作,杜绝DNP非法出售给消费者,重点关注杜绝互联网销售。FSA将向地方当局提供相关支持,包括财政援助以完成这项工作。  • FSA提醒相关公司,包括网络贸易商,任何被发现向消费者供应DNP产品的个人或公司将交予法院进行刑事制裁。  FSA负责人Rod Ainsworth称,让消费者充分了解DNP的危险性是十分重要的。我们一直在努力提高人们对DNP的危险性的意识,鼓励民众在购买到含有DNP的产品时,应及时向FSA报告。若有人向你提供DNP,不应该接受,应立即联系FSA或地方当局。  任何人获悉非法销售DNP的信息应立即报给至:FoodIncidents@foodstandards.gsi.gov.uk。
  • 聚焦标准物质研发及量值溯源——CISILE2021标准物质论坛成功举办
    仪器信息网讯 2021年5月10日,第三届中国实验室发展大会(简称 CLC 2021)与第十九届中国国际科学仪器及实验室装备展览会(CISILE 2021)同期在北京国家会议中心盛大召开。大会由中国仪器仪表行业协会与世信国际会展集团主办,中国出入境检验检疫协会、珠海市出入境检验检疫服务行业协会、上海实验室装备协会协办,中国仪器仪表学会分析仪器分会、北京朗普展览有限公司、北京中仪雄鹰国际会展有限公司承办。大会以“智慧安全绿色”为主题,聚焦我国实验室建设与管理、实验室安全、智慧实验室、认可认证、试剂及实验动物、标准物质、实验室数据管理、危化品管理等话题,邀请国内外知名专家及企业代表,就广大实验室科研、管理人员所关注的热点、难点等关键问题展开讨论,为中国实验室发展带来前沿资讯和科学解决方案。本次会议,除了第一天的大会报告外,5月11日还绕围着实验室认可认证、标准品、生物安全实验室建设、高纯材料分析等不同专题开设了相应论坛。本次的标准物质研发论坛由北京计量院化学部主任沈正生研究员主持,并邀请到了中国计量院标准物质研究与管理中心主任马联弟研究员、中国计量院标准物质研究与管理中心副主任卢晓华研究员、上海市计量测试技术研究院刘刚博士、中国计量院化学所副所长张庆合研究员、中国计量院环境中心副主任王德发副研究员、上海测试中心李杰博士分别带来了精彩报告。北京计量院化学部主任沈正生研究员主持论坛测量是人类认识自然和改造自然的一种基本手段,是自然科学技术研究与发展的前提和基础。而计量则是关于测量的科学,是实现单位统一、量值准确可靠的活动。中国计量院标准物质研究与管理中心主任马联弟研究员报告题目:标准物质作用、现状与发展趋势不同的标准物质其作用不同,如纯度标准物质的作用是保证量值溯源源头的可靠性,而基体标准物质的作用则是评价分析方法、方法验证、质量控制等。马联弟研究员在报告中指出,目前国内国家一级标准物质共有2738种,国家二级标准物质则有10553种。其中国内有证标准物质生产单位累计296家,标准物质经营单位累计2191家。对于标准物质的发展,需进一步加强标准物质的溯源性和可比性,保证我国化学测量溯源体系的协调与统一;进一步提升标准物质的质量,如均匀性、稳定性、量值及不确定度;进一步规范标准物质的评审、监督检查和量值核查;进一步推进标准物质的应用。希望各领域检测实验室能正确选择和使用标准物质,保证测量结果的有效性、可比性和溯源性,服务于我国科技、经济、社会的高质量发展。中国计量院标准物质研究与管理中心副主任卢晓华研究员报告题目:标准物质(特性值)的(计量)溯源性计量溯源性是通过具备证明文件的不间断的校准链,将测量结果与参照对象联系起来的测量结果的特性,校准链中的每项校准都会引入测量不确定度。而计量溯源性是有证标准物质的关键特征。然而,计量溯源性的实施并不理想,ISO/REMCO TR16476起草工作组增对56份各国证书做调查,发现其中28份没有任何溯源性声明,而其他的有的是溯源至国家计量院,有的溯源至标准方法,并不统一。报告中,卢晓华针对此情况具体介绍了如何建立计量溯源以及其中需要注意的事项。上海市计量测试技术研究院 刘刚报告题目:核酸分析标准物质与生物计量校准目前,现有核算标准物质有两百多项,其中DNA有140项、RNA63项,形式包括质粒DNA、oligo、RNA、基因组、假病毒等。中国计量院化学所副所长张庆合研究员报告题目:我国食品检测标准物质需求与挑战检验是食品安全和食品工业发展的基础与保障。而食品科研、产业、监管对标准物质需求巨大。标准物质作为量值溯源和质量控制的载体,需要高水平队伍、设备、条件和严格的质量控制体系,才能保持数据的准确性、创新性。此外,市场上标准物质质量评估需要加强。中国计量院环境中心副主任王德发副研究员报告题目:气体标准物质的研制与量值溯源性的建立气体标准物质为各领域气体浓度测量提供计量溯源载体,为实现测量结果的可靠性和可比性发挥了重要作用。上海测试中心 李杰报告题目:高纯有机标准物质研制和分析实验室量值溯源
  • 标准物质——东西不大 市场不小!
    p  标准物质是具有一种或多种足够均匀和很好地确定了的特性,用以校准测量装置、评价测量方法或给材料赋值的一种材料或物质。由于标准物质的英文名称Reference Material(RM)在国际上也是标准样品的英文名称,所以本报告的调研范围既包括标准物质也包括标准样品。/pp  作为建立化学测量值溯源体系的有效工具,标准物质是生产检测中不可缺少的组成部分,也是质量管理体系的重要环节。目前,实验室通常利用标准物质开展校准仪器、日常分析、质量控制等活动,确保检测数据的准确可靠。加深对标准物质的了解,加强对标准物质的管理,是计量认证/实验室认可的要求,是实验室自身质量管理体系的重要内容,更是国家经济社会发展的需要。正因如此,《国家中长期科学与技术发展规划纲要(2006-2020年)》、《国务院印发的计量发展规划(2013-2020年)》、《“十三五”国家科技创新基地与条件保障能力建设专项规划》等政府文件都提出了标准物质研制的方向和工作内容。/pp  为了了解标准物质的市场现状及未来发展趋势,标准物质各主流品牌市场占有率、品牌认知度以及标准物质用户分布等内容,同时,也为各标准物质厂商在以后制定产品销售和市场推广策略时提供参考,仪器信息网特组织了“中国标准物质市场调研”活动。在此调研活动的基础上,我们撰写完成了《中国标准物质市场研究报告(2019版)》。/pp  通过本次调研,我们发现标准物质种类繁多,国内相关生产销售企业有几百家之多,鱼龙混杂。而且标准物质使用范围广泛,下游用户众多。目前,中国标准物质市场主要还是以外资品牌产品为主,国产品牌标准物质市场规模远远小于外资品牌市场规模。同时,不同于仪器等产品,标准物质作为一种消耗型产品,大量标准物质厂商为了增加用户黏性,在销售自有品牌标准物质的同时,也会经销其他品牌的标准物质。同时,随着用户消费习惯的变化,越来越多的标准物质厂商也开始建立电商渠道销售标准物质。/pp  报告节选:/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/f6c66fe4-80a7-4b94-9538-f124994ed4e0.jpg" title="标准物质news pic1.jpg" alt="标准物质news pic1.jpg"//pp style="text-align: center "strong标准物质主要品牌用户推荐度/strong/pp  在参与本次调研的用户当中,进口品牌用户愿意向其他人推荐其使用品牌产品的占比普遍更高。XXXX标准物质用户愿意向别人推荐该品牌的用户占比最高,达到XXXX,XXXX品牌的用户愿意推荐该品牌的用户占比为XXXX,XXXX品牌标准物质用户愿意向别人推荐该品牌的用户占比为80.8%。权威机构标准物质用户愿意推荐品牌的用户占比虽然比进口品牌用户占比略低,但也都在XXXX以上。由于这类机构的标准物质有一定的不可替代性,这也一定程度上促进了用户推荐的意愿度。值得注意的是,XXXX虽然在“产品质量”和“售后服务”方面用户感到满意的占比都在XXXX以下,但由于国内生产标准气体的标准物质厂商相对较少,所以愿意向其他用户推荐该品牌的相应用户占比达到了XXXX。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/dbb4b4ae-a563-4e30-9712-96671dc4530a.jpg" title="标准物质news pic2.jpg" alt="标准物质news pic2.jpg"//pp style="text-align: center "strong制药行业用户标准物质使用类型分布/strong/pp报告目录:br//pp  第一章... 标准物质相关基本概念及分类.. 1/pp  1.1 标准物质分类.. 1/pp  1.1.1 国家有证标准物质.. 1/pp  1.1.2 国家有证标准样品.. 2/pp  1.1.3 国家药品标准物质.. 2/pp  1.1.4 国际通用有证标准物质/样品.. 4/pp  1.2 标准物质生产者资质.. 5/pp  第二章... 标准物质市场综述.. 7/pp  第三章... 标准物质主要厂家及产品分析.. 9/pp  3.1 部分市场常见进口品牌分析.. 9/pp  3.1.1 艾吉析.. 9/pp  3.1.2 默克.. 10/pp  3.1.3 CATO.. 10/pp  3.2 部分市场常见国产品牌分析.. 11/pp  3.2.1 中国计量院.. 11/pp  。。。。。。/pp  3.2.7 国标检验.. 15/pp  3.2.8 山东德洋.. 16/pp  3.2.9 济南众标.. 16/pp  3.2.10 山冶.. 17/pp  3.2.11 北京振翔.. 17/pp  3.2.12 海岸鸿蒙.. 18/pp  3.3 汇总.. 19/pp  第四章... 主要品牌认知度.. 20/pp  4.1 产品质量满意度.. 20/pp  4.2 售后服务满意度.. 22/pp  4.3 用户品牌推荐度.. 24/pp  第五章... 标准物质用户分布分析.. 26/pp  5.1部分重点省份标准物质用户分析.. 26/pp  5.1.1山东省.. 26/pp  5.1.2 江苏省.. 28/pp  5.1.3广东省.. 30/pp  5.2 部分重点行业标准物质用户分析.. 32/pp  5.2.1 制药行业.. 32/pp  5.2.2 检测行业.. 34/pp  5.2.3 环境行业.. 36/pp  第六章... 标准物质未来发展趋势.. 39/pp  第七章... 总结.. 41/pp  特别鸣谢.. 42/pp  报告链接:a href="https://www.instrument.com.cn/survey/Report_Census.aspx?id=175" target="_blank"《中国标准物质市场研究报告(2019版)》/a/ppstrong  欢迎感兴趣的网友和我们联系购买报告事宜,电话:010-51654077转 销售部/strong/ppbr//p
  • 药典标准物质的那些事儿
    小编曾在前几期的推文中归纳了常见的标准品名称与类别,介绍了ISO国际标准体系、国内的国家计量技术规范体系和国家标准体系下标准品的区别,但是,医药行业的朋友需要使用的药典体系的标准品只是简单提及。由于药典体系对标准品的定义、分类、用途与上述规范体系定义的标准品不同,需要另外说明。“药典标准品”只是一个通称,由于“标准品”在药典体系中有明确定义,因此后续使用“标准物质”代替。那么接下来小编就来给大家说说药典标准物质的那些事儿。什么是药典标准物质?药典标准物质是由国际或各国家ji药典机构收录、研制提供的标准物质,主要分为“标准品”、“对照品”等,2015年版《中国药典》针对不同种类的药品有不同分类。根据品质与使用需要,药典标准物质在我国可大致分为三大类:1.进口标准物质由国际药典或其他国家药典机构如美国药典(USP)、英国药典(BP)、欧洲药典(EP)等收录并提供的现行批号的标准物质。高品质,可不经标定直接使用,可作为基准物质标定工作标准物质,但比较昂贵。2.国家药品标准物质在2015版《中国药典》中有明确定义,可作为基准物质标定工作标准物质。中国食品药品检定研究院(简称“中检院”)是研制、分装、分发、保存国家药品标准物质的唯yi单位。[以上二类属于法定的(药典)标准物质。]3.工作标准物质自行研制或市售的非药典机构的标准物质,成本较低,使用前须经法定药典标准物质标定。什么是国家药品标准品物质?《中国药典》2015年版 四部《0291国家药品标准物质通则》规定:“国家药品标准物质系指供国家法定药品标准中药品的物理、化学及生物学等测试用,具有确定的特性或量值,用于校准设备、评价测量方法、给供试药品赋值或鉴别用的物质。”根据定义与官方说明,国家药典标准物质具国家标准体系的“标准样品”的性质,是《中国药典》所收录的各类药品、杂质成分、辅料等文本标准对应的实物标准,是检查药品质量的特殊的专用量具,是测量药品质量的基准。在《中国药典》2015版中,我国药品主要被分为中药、化学合成药、生物制品三大类,分别收录于一部、二部、三部,在这三部的凡例中分别根据用途规定了三类药品标准物质的类别:??据一部《凡例》,中药标准物质分为:标准品、对照品、对照药材、对照提取物;??据二部《凡例》,化学合成药标准物质分为:标准品、对照品(又称化学对照品);??据三部《凡例》,生物制品标准物质分为标准品、对照品、参考品。这些分类在四部《0291国家药品标准物质通则》被总结为五类,定义如下:1.标准品系指含有单一成分或混合组分,用于生物检定、抗生素或生化药品中效价、毒性或含量测定的国家药品标准物质。其生物学活性以国际单位(IU)、单位(U)或以重量单位(g,mg,μg)表示。2.对照品系指含有单一成分、组合成分或混合组分,用于化学药品、抗生素、部分生化药品、药用辅料、中药材(含饮片)、提取物、中成药、生物制品(理化测定)等检验及仪器校准用的国家药品标准物质。在药典二部、四部《凡例》中提及,对照品用于理化分析,其特性量值一般按纯度(%)计。3.对照提取物系指经特定提取工艺制备的含有多种主要有效成分或指标性成分,用于中药材(含饮片)、提取物、中成药等鉴别或含量测定用的国家药品标准物质。4.对照药材系指基原明确、药用部位准确的优质中药材经适当处理后,用于中药材(含饮片)、提取物、中成药等鉴别用的国家药品标准物质。5.参考品系指用于定性鉴定微生物(或其产物)或定量检测某些制品生物效价和生物活性的国家药品标准物质,其效价以特定活性单位表示;或指由生物试剂、生物材料或特异性抗血清制备的用于疾病诊断的参考物质。怎么购买标准品呢?知道了上面的这些信息,对我们购买标准品有什么帮助呢?1.了解如何选购药典标准物质在需要严格按照药典方法进行试验的前提下,根据实际用途选择合适类型的标准物质;经费足够的情况下可直接购买中检院或各国药典机构研制的法定标准物质,经费不充裕亦可使用经法定标准物质标定且标定结果符合需求的工作标准物质。如仅需要满足某些检测指标比如只需要定性,也可使用其他体系的标准物质/标准样品。2.轻松区分药典标准物质与其他体系标准品药典体系对标准物质有独有的分类,比如“对照药材”、“对照提取物”、“中药对照品”、“杂质对照品”等,如是“标准品”“标准物质”此类容易混淆的类别,可通过单位、产品名称、证书内容与其他规范体系的“标准样品”、“标准物质”区分。参考资料:国家药典委员会. 《中华人民共和国药典》2015年版[M]// 中华人民共和国药典(2015年版). 2000.张晓松. 中国药典的化学对照品[J]. 中国药业, 2004, 13(5):24-25.朱霁虹. 药物标准物质的发展和应用概况[J]. 中国药品标准, 2000(1):15-16.牛剑钊, 宁保明, 张启明. 国内外化学药品标准物质的研究与应用[J]. 中国药学杂志, 2011, 46(11):877-879.
  • 119 种国家标准物质获批
    质检总局关于批准“锰硅合金成分分析标准物质”等119 种国家标准物质的通知  各直属检验检疫局,各省、自治区、直辖市及新疆生产建设兵团质量技术监督局,国务院有关部门,各有关单位:  根据《中华人民共和国计量法》和《标准物质管理办法》的有关规定,现批准“锰硅合金成分分析标准物质”等119 种标准物质为国家二级标准物质(见附件1),列入中华人民共和国标准物质目录(见附件2),并统一编号,颁发“国家标准物质定级证书”和“制造计量器具许可证”。  山西太钢不锈钢股份有限公司等3单位新复制的16种钢铁成分分析标准物质一并予以发布(见附件3)。  附件:1. 国家标准物质项目表  2. 中华人民共和国标准物质目录  3. 新复制的标准物质的定值数据表  质检总局  2013年8月30日
  • 全自动粘度仪—聚异丁烯粘均分子量测定
    聚异丁烯(Polyisobutylene,PIB)是由异丁烯经正离子聚合制得的聚合物,其分子量可从数百至数百万。它是一种典型的饱和线型聚合物。分子链主体不含双键,无长支链存在,其结构单元为-(CH2-C(CH3)2)-,其中无不对称碳原子,并且结构单元以首一尾有规序列连接。聚异丁烯可以耐酸碱。如氨水、盐酸、60%氢氟酸、乙酸铅水溶液、85%磷酸、40%氢氧化钠、饱和食盐水、800}硫酸、38%硫酸+14%硝酸的侵蚀,但不能抵抗强氧化剂、热的弱氧化剂(如60%的高锰酸钾)、某些热的浓有机酸(如373K的乙酸)和卤素(氟、氯、漠)的侵蚀。聚异丁烯的应用领域与其分子量密切相关切。通常,低分子量聚异丁烯和中分子量聚异丁烯可以用作油品添加剂、胶薪剂、密封剂、涂料、润滑剂、增塑剂和电缆浸渍剂。高分子量聚异丁烯叮用作塑料、生胶及热塑弹性体的抗冲击改性添加剂等。聚异丁烯具有饱和烃类化合物的化学特性,侧链甲基紧密对称分布,是一种性能独特的聚合物。聚异丁烯的聚集态和性质取决十其分子量和分子量分布,黏均分子量在70000~90000范围时,聚异丁烯发生由翻性液体到弹性固体的转变。通常,根据聚异丁烯分子量的大小分为以下系列:低分子量聚异丁烯(数均分子量=200-10000);中分子量聚异丁烯(数均分子量=20000-45000);高分子量聚异丁烯(数均分子量=75000-600000);超高分子量聚异丁烯(数均分子量大于760000)。 粘度法是测定聚合物分子量较为简捷的方法。特性粘度[η]是高分子溶液浓度趋近于零时的粘数值或对数粘数值(ηsp/C或Inηr/C)。在甲苯溶剂中,高分子物质的分子量和特性粘度的关系:用此计算公式计算得到分子量。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:甲苯、无水乙醇。(AR级)溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入甲苯,软件中启动测试任务待结束。粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。样品制备:在万分之一天平上称量到0.0001g,通过自动配液器将溶液浓度配制到**/ml,再将样品瓶放置到多位溶样器室温中溶解,溶解完毕后取出待用。样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。
  • 空气产品公司研制的艾必利® 环境气体标准物质取得国家标准物质定级证书,助力更精准的环保分析
    一氧化氮、二氧化氮、二氧化硫是大气中的主要污染物和雾霾前驱物,这些污染物的存在不仅对人体和动植物有直接危害,还是调控臭氧,形成酸雨和光化学烟雾的重要因子,因此,这些污染物是我国空气质量监测的关键参数。随着环保力度的加强,我国环境监测部门对微量环境气体标准物质,尤其是国家有证气体标准物质的需求量急剧增加。为应对我国环境监测用气体标准物质的市场需求,空气产品公司旗下的北京氦普北分气体工业有限公司于2018年立项开展“低含量环境气体标准物质关键技术研究”项目。该项目由技术专家赵俊秀、项目负责人唐亮带领技术团队历时近1年半进行关键技术攻关研究,攻克了气瓶内壁处理、原料气中微痕量关键杂质定值等关键技术,采用称量法成功研制了低含量氮中一氧化氮、氮中二氧化硫、氮中二氧化氮系列气体标准物质,并考察了组分在气瓶中的长期稳定性。通过与国内最高水平的国家实验室开展比对,验证了认定值的准确性,取得了很好的比对等效度,并于2020年正式推出拥有自主知识产权的3种环境监测用低含量气体标准物质系列新产品——艾必利环境气体标准物质。这三种艾必利环境气体标准物质经全国标准物质管理委员会组织专家评审,符合国家二级标准物质定级鉴定技术条件和相关技术规定要求,于近期顺利通过了国家标准物质定级审查,并取得了国家标准物质定级证书。 艾必利环境气体标准物质定值数据表名称国家标准物质编号量分数(×10-6)不确定度(%)氮中一氧化氮气体标准物质GBW(E)0840031.00~10.0210.0~50.01氮中二氧化硫气体标准物质GBW(E)0840041.00~10.0210.0~50.01氮中二氧化氮气体标准物质GBW(E)08400510.0~1002100~1.00×1031.5 艾必利环境气体标准物质能够顺利获得国家标准物质定级证书,是空气产品公司在微痕量环境监测用气体标准物质研究领域的一项重要突破。该成果将广泛应用于我国各省、市和重点地区的环境空气监测、汽车污染物排放限值监测、汽车排气分析仪等分析仪器计量性能评价等,为进一步构建和完善我国气体成分量值溯源体系以及相关国家标准的有效实施起到有力的基础支撑和保障作用。标准物质作为量值传递与溯源的载体,广泛应用于能源、环境、化工等领域各类产品研发、技术评价、校准与质量控制活动中,对各领域的有效分析测量起到十分重要的作用,是确保测量结果可靠与国际互认的核心与关键。作为全球领先的工业气体供应商,空气产品公司长期致力于向客户提供高品质艾必利特种气体产品。包括本次获得国家标准物质定级证书的新产品在内的所有艾必利特种气体产品均采用了严格品控的原料气体,精确控制和检测杂质含量,同时配合先进的充装系统,确保产品的高准确性、长期稳定性以及可追溯性。同时,我们的技术专家不断探索和研发前沿技术,以帮助客户应对环保合规方面的挑战。 如需进一步了解空气产品公司艾必利特种气体产品,可登录我们的展台进行了解。
  • 近千项国家标准征求意见 这43项与仪器相关!
    近日,国家标准委发布通知,对《化妆品中功效组分虾青素的测定高效液相色谱法》等977项拟立项国家标准项目公开征求意见,征求意见截止时间为2020年8月31日。本次征求意见的拟立项国家标准中,有43项与仪器相关,涉及液相色谱-串联质谱、小型便捷式质谱仪、高效液相色谱仪、气相色谱-质谱联用仪、红外光谱仪、电感耦合等离子体原子发射光谱仪、电位滴定仪等。43项标准摘录如下:序列项目中文名字修制订截止日期1精油水分含量的测定卡尔费休法制订2020/8/312化妆品中禁用组分酸性红73和溶剂红1的测定液相色谱-串联质谱法制订2020/8/313化妆品中功效组分虾青素的测定高效液相色谱法制订2020/8/314化妆品中功效组分辛酰水杨酸、苯乙基间苯二酚、阿魏酸的测定高效液相色谱法制订2020/8/315核仪器-闪烁体和闪烁探测器的命名(标识)以及闪烁体的标准尺寸制订2020/8/316超导纳米线单光子探测器暗计数率制订2020/8/317化妆品中甲丙氨酯、己丙氨酯、苯丙氨酯和环拉氨酯的测定气相色谱-质谱法制订2020/8/318美白祛斑化妆品中白藜芦醇的测定制订2020/8/319焦化油类产品全硫含量的测定红外光谱法制订2020/8/3110植物源产品中戊聚糖含量的测定气质联用法制订2020/8/3111石墨材料当量硼含量的测定电感耦合等离子体原子发射光谱法制订2020/8/3112家用纺织品织物遮光性的测定照度计法制订2020/8/3113水处理剂分析方法第1部分:磷含量的测定制订2020/8/3114钛铁钛含量的测定二安替吡啉甲烷分光光度法制订2020/8/315纺织品夜光余辉性能试验方法亮度计法制订2020/8/3116化妆品中禁用物质喹诺酮类抗生素的现场快速检测小型便携式质谱法制订2020/8/3117农药水分测定方法修订2020/8/3118醇醚基芳烃中含氧化合物的测定气相色谱法制订2020/8/3119碳化硅外延片表面缺陷的测试显微可见光法制订2020/8/3120多晶硅表面金属杂质含量测定酸浸取-电感耦合等离子体质谱法修订2020/8/3121纺织品己二酸酯的测定气相色谱-质谱法制订2020/8/3122纺织品多环芳烃的测定修订2020/8/3123纺织染整助剂产品中邻苯二甲酸酯的测定修订2020/8/3124铁矿石氯含量的测定X射线荧光光谱法制订2020/8/3125漆树中主要有效成分含量的测定--高效液相色谱法制订2020/8/3126肥料中植物生长调节剂的测定气相色谱-质谱联用法制订2020/8/3127钨铁钴、镍、铝含量的测定电感耦合等离子体原子发射光谱法制订2020/8/3128肥料中总氮含量的测定杜马斯燃烧法制订2020/8/3129润滑油和基础油中多种元素的测定电感耦合等离子体发射光谱法修订2020/8/3130焦化甲苯烃类杂质含量的测定气相色谱法修订2020/8/3131纺织染整助剂中有害物质的测定第9部分:丙烯酰胺类物质的测定修订2020/8/3132软钎剂试验方法第3部分:酸值的测定-电位滴定法和目视滴定法制订2020/8/3133饲料中维生素A的测定高效液相色谱法修订2020/8/3134饲料中维生素E的测定高效液相色谱法修订2020/8/3135饲料中林可胺类药物的测定液相色谱-串联质谱法修订2020/8/3136饲料中蛋白质同化激素的测定液相色谱-串联质谱法修订2020/8/3137生橡胶毛细管气相色谱测定残留单体和其他挥发性低分子量化合物热脱附(动态顶空)法制订2020/8/3138石灰石及白云石化学分析方法第13部分:硅、锰、磷、铝、钛、铁和镁含量的测定电感耦合等离子体原子发射光谱法制订2020/8/3139饲料中盐酸氨丙啉、乙氧酰胺苯甲酯和磺胺喹噁啉的测定修订2020/8/3140饲料中维生素D3的测定高效液相色谱法修订2020/8/3141饲料中二甲氧苄氨嘧啶、三甲氧苄氨嘧啶和二甲氧甲基苄氨嘧啶的测定修订2020/8/3142饲料中硝基咪唑类药物的测定液相色谱-串联质谱法修订2020/8/3143饲料中泰乐菌素、泰万菌素、替米考星的测定液相色谱-串联质谱法制订2020/8/31
  • 2024年6月份有377份标准将实施 ——农林牧渔食品及化工占据47%
    2024年6月份有377份标准将实施——农林牧渔食品及化工占据47% 我们通过国家标准信息平台查询到,在2024年6月份将有377项与科学仪器及检测行业的国家标准、行业标准和地方标准将实施,具体数量明细如下:6月份新实施标准一览表在6月份新实施标准中,农林牧渔及食品标准独占27%(有103条将要实施),涉及农业设备、农产品规范、蜂蜜饲料等检测,需要引起我们关注的是“GB/T 43448-2023 蜂蜜中 17- 三十五 烯 含量的测定 气相色谱质谱法 ”和“GB 7300. X -2023 饲料添加剂 系列标准 ”。有16条环境环保标准将实施,涉及气体、水质、土壤及废弃污染物标准,发布了气体取样标准“GB/T 43306-2023 气体分析 采样导则 ”、气体检测标准“GB/T 43362-2023 气体分析 微型热导气相色谱法 ”和水处理剂检测方法“GB/T 43098.2-2023 水处理剂分析方法 第 2 部分:砷、汞、镉、铬、铅、镍、铜含量的测定 电感耦合等离子体质谱法( ICP-MS ) ”。在医药卫生实施标准中,有医学实验室质量控制、分子体外诊断 检验、PCR 仪器 检测等。在冶金矿产实施标准中,涉及多款光谱仪器检测方法,如电感耦合等离子体原子发射光谱法 、原子吸收光谱法 、原子荧光光谱法 、分光光度法 ;除此之外还有滴定法、容量法、重量法、库仑法和X 射线荧光光谱法 等。还有19%的化工塑料标准(73条)也将实施,有气相色谱法 、拉曼光谱法 、原子吸收光谱法 、X 射线荧光光谱法 等大量的科学仪器检测方法。具体2024年6月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓仪器仪表与计量标准(6个)GB/T 26334-2023 燃气表安装配件 DL/T 1133—2023 钢弦式仪器 测量仪表 DL/T 1046—2023引张线式水平位移计DL/T 1047—2023水管式沉降仪DL/T 2687—2023 柔性测斜仪 GB/T 26794-2023 燃气表用计数器 农林牧渔食品标准(103个)GB/T 21397-2023 棉花收获机 GB/T 19794-2023农业灌溉设备 定量阀 技术要求和试验方法GB/T 24671-2023农业灌溉设备 承压灌溉系统图形符号GB/T 27612.1-2023 农业灌溉设备 喷头 第 1 部分:术语和分类 GB/T 18688-2023农业灌溉设备 灌溉阀的压力损失 试验方法GB/T 27612.3-2023 农业灌溉设备 喷头 第 3 部分:水量分布特性和试验方法 GB/T 8586-2023 探鱼仪工作频率分配及其防止声波干扰技术规范 GB/T 27612.4-2023 农业灌溉设备 喷头 第 4 部分:耐久性试验方法 GB/T 23191-2023 美味牛肝菌 GB/T 43448-2023 蜂蜜中 17- 三十五 烯 含量的测定 气相色谱质谱法 GB/T 20392-2023 棉纤维物理性能试验方法 大容量纤维 测试仪法 GB/T 43418-2023 亚麻纤维组成成分的检测方法 GB/T 10645-2023 电热食品烤炉分类和型号编制方法 GB/T 18690.4-2023 农业灌溉设备 微灌用过滤器 第 4 部分:颗粒介质过滤器 GB 7300.504-2023 饲料添加剂 第 5 部分:微生物 嗜酸乳杆菌 GB 7300.503-2023 饲料添加剂 第 5 部分:微生物 屎肠球菌 GB 7300.502-2023 饲料添加剂 第 5 部分:微生物 植物乳杆菌 LS/T 8014-2023 高标准粮仓建设标准 LS/T 1715-2023 粮食仓储基础代码 LS/T 1234-2023 植物油储存品质判定规则 GH/T 1447-2023 农业科技成果转化信息服务平台建设与运 维技术 规范 GH/T 1446-2023 农业科技成果转化信息服务平台资源共享技术指南 GH/T 1445-2023 桐柏玉叶茶 GH/T 1444-2023 速冻荠菜加工技术规程 GH/T 1443-2023 蛹 虫草粉 GH/T 1442-2023 青梗菜热风 干燥技术 规程 GH/T 1441-2023 冻干蛹虫草生产技术规程 GH/T 1440—2023 黑蒜 GH/T 1439—2023 小茴香 DB22/T 3636-2024 玉米品种 长单 551 DB22/T 3635-2024 番茄晚疫病诊断与防治技术规程 DB22/T 3634-2024 玉米 - 大豆轮作模式下大豆覆秸免耕生产技术规程 DB22/T 3633-2024 直播水稻萌发期耐低温和耐低氧性鉴定评价技术规程 DB22/T 3632-2024 花生耐低温绿色高效生产技术规程 DB5308/T 79—2024 普洱咖啡标准化种植示范园建设指南 DB5308/T 78—2024 咖啡鲜果集中加工厂建设规范 DB63/T 2281-2024 察尔汗水采盐田晒矿工艺 DB63/T 2279-2024 铁棒 锤 栽培技术规程 DB63/T 2278-2024 小叶黑柴胡栽培技术规程 DB63/T 2277-2024 五 脉绿绒 蒿 栽培技术规程 DB63/T 2275-2024 湟水河流域水生植物栽培技术规程 DB63/T 2274-2024 枸杞产业标准体系 DB63/T 2273-2024 森林资源保护发展标准体系 DB63/T 2272-2024 天然林数据库 DB63/T 2271-2024 高山天幕毛虫防治技术规范 DB3505/T 15—2024 中国番鸭(永春白番鸭) DB3505/T 13—2024 铁观音茶叶气候品质等级 DB3505/T 11—2024 晋江紫菜区域公用品牌管理规范 DB3505/T 9—2024 淡水养殖资源价值评估技术规范 DB41/T 2668-2024 玉米南方锈病综合防控技术规程 DB41/T 2663-2024 成熟蜂蜜生产技术规范 DB41/T 2661-2024 黄淮稻麦轮作 区灰飞虱 测报和防控技术规程 DB41/T 2659-2024 羊肚 菌 生产技术规程 DB41/T 2658-2024 药用菊花主要病虫害综合防治技术规程 DB41/T 2655-2024 桃 胚培养及移栽技术规程 DB41/T 2654-2024 苹果炭疽病综合防治技术规程 DB41/T 2653-2024 桃 省力化树形管理技术规程 DB41/T 2652-2024 卫矛造型树培育技术规程 DB41/T 2651-2024 花生 秧 青贮生产技术规程 DB41/T 2643-2024 农田地膜残留调查监测技术规程 DB41/T 2642-2024 规模化养猪场臭气防治技术规范 DB41/T 2641-2024豫西黑猪DB41/T 2640-2024 黄瓜杂交制种技术规程 DB41/T 2639-2024 朝天 椒 三系配套制种技术规程 DB41/T 2636-2024 露地韭菜病虫害绿色防控技术规程 DB41/T 2632-2024 小麦种质资源鉴定技术规程 DB41/T 2631-2024 小麦免(少) 耕沟播生产 技术规程 DB41/T 2630-2024 林地生态养鹅技术规范 DB41/T 2627.7-2024 望春玉兰 第 7 部分:花蕾采收贮藏技术规程 DB41/T 2627.6-2024 望春玉兰 第 6 部分:病虫害防治技术规程 DB41/T 2627.5-2024 望春玉兰 第 5 部分:用材林培育技术规程 DB41/T 2627.4-2024 望春玉兰 第 4 部分:药用林栽培技术规程 DB41/T 2627.3-2024 望春玉兰 第 3 部分:园林绿化苗木培育技术规程 DB41/T 2627.2-2024 望春玉兰 第 2 部分:苗木繁育技术规程 DB41/T 2627.1-2024 望春玉兰 第 1 部分:良种选育技术规程 DB41/T 2626-2024 主干树形苹果栽培技术规程 DB41/T 2623-2024 高标准农田气象保障标准体系建设指南 DB41/T 2622-2024 高标准农田示范区气象保障能力建设规范 DB53/T 1236-2024 大球盖菇栽培技术规程 DB53/T 1235-2024 夏播马铃薯栽培技术规程 DB53/T 1234-2024 草莓杂交育种技术规程 DB53/T 1233-2024 芦笋栽培技术规程 DB53/T 1232-2024 罗望子种质资源描述规范 DB53/T 1231-2024 鲟鱼养殖技术规程 DB53/T 1230-2024 烟田蛴螬类地下害虫防控技术规程 DB53/T 1229-2025 暗褐脉柄牛肝菌菌种生产技术规程 DB53/T 1228-2024 番茄潜叶蛾防控技术规程 DB53/T 1227-2024 番茄潜叶蛾监测调查技术规程 DB53/T 1226-2024 马铃薯块茎蛾防控技术规程 DB53/T 1225-2024 马铃薯块茎蛾监测调查技术规程 DB31/T 1039-2024 主要花坛花卉质量等级 DB31/T 348-2024 水产品池塘养殖通用技术规范 DB31/T 1463-2024 蟠桃冷链物流技术规程 DB 5103/T 42-2023 油茶低效林改造技术规程 DB36/T 910-2023 棉花板地精量播种种植技术规程 DB36/T 1909-2023 双季鲜食玉米复种下肥田萝卜栽培技术规程 DB36/T 1908-2023 番茄大棚春提早栽培技术规程 DB36/T 1907-2023 双季稻 “ 两减 一 抗 ” 栽培技术规程 DB36/T 1906-2023 丝瓜设施越夏栽培技术规程 DB36/T 1905-2023 大叶蕹菜良种繁育及早春栽培技术规程 DB36/T 1895-2023 食品生产企业体系检查工作规范 DB36/T 1894-2023 食品小作坊集中加工区建设管理规范 DB36/T 1891-2023 预制 菜冷链运输 配送管理规范 环境环保标准(16个)GB/T 43362-2023 气体分析 微型热导气相色谱法 GB/T 43361-2023 气体分析 道路车辆用质子交换膜燃料电池氢燃料分析方法的确认 GB/T 43098.2-2023 水处理 剂分析 方法 第 2 部分:砷、汞、镉、铬、铅、镍、铜含量的测定 电感耦合等离子体质谱法( ICP-MS ) GB/T 43359-2023 印染废水膜法集成装备 GB/T 28924-2023 钢铁企业 能效指数 计算导则 GB/T 43306-2023 气体分析 采样导则 GB/T 43305-2023 废弃化学品相容性试验规程 DB41/T 2666-2024 工业集聚区地下水环境监测技术规范 DB41/T 2665-2024 大气 挥发性有机物走航自动 监测技术规范 DB41/T 2664-2024 可渗透反应墙地下水监测技术规范 DB41/T 2644-2024 黑膜沼气废水处理工程运行与维护技术规程 DB41/T 2629-2024 污染场地地下水修复技术可行性评估规范 DB41/T 2628-2024 集体土地定级与基准地价评估技术规范 DB41/ 2575-2024 水产养殖尾水污染物排放标准 DB32/T 4630-2023 分散式污水 MBR 处理技术规程 DB63/T 2276-2024 建设项目占用湿地生态影响评价技术规范 医药卫生标准(19个)GB/T 43312-2023 医疗器械用钢丝绳 GB/T 18639-2023 狂犬病诊断技术 GB/T 43279.3-2023 分子体外诊断检验 静脉全血检验前过程的规范 第 3 部分:分离血浆循环游离 DNA GB/Z 43280-2023 医学实验室 测量不确定度评定指南 GB/T 43279.2-2023 分子体外诊断检验 静脉全血检验前过程的规范 第 2 部分:分离基因组 DNA GB/T 43279.1-2023 分子体外诊断检验 静脉全血检验前过程的规范 第 1 部分:分离细胞 RNA GB/T 43278-2023 医学实验室 风险管理在医学实验室的应用 GB/T 43449-2023 法庭科学 毒物分析实验室质量控制规范 GB/T 19267.1-2023 法庭科学 微量物证的理化检验 第 1 部分:红外吸收光谱法 GB/T 20405.1-2023 失禁者用尿液吸收剂 聚丙烯酸酯高吸水性粉末 第 1 部分: pH 值的测定方法 WS/T 828—2023 妊娠期糖尿病妇女体重增长推荐 值标准 YY/T 1818-2022 牙科学 口腔数字印模仪 DB41/T 2656-2024 医疗器械生产企业产品注册自检体系要求 DB36/T 1904-2023 实验动物 支原体荧光定量 PCR 检测方法 DB36/T 1903-2023 实验动物 小鼠肝炎病毒荧光定量 PCR 检测方法 DB36/T 1902-2023 实验动物 嗜肺巴斯 德杆菌荧光定量 PCR 检测方法 GB/T 11748-2023 激光治疗设备 二氧化碳激光治疗机 GB/T 12257-2023 激光治疗设备 氦氖激光治疗机 DB41/T 2657-2024 欧美杨细菌性溃疡病综合防治技术规程 石油天然气标准(3个)GB/T 29021-2023 石油天然气钻采设备 游梁式抽油机 GB/T 29549.1-2023 海上石油固定平台模块钻机 第 1 部分:设计 GB/T 43303-2023 石油天然气钻采设备 抽油杆 冶金矿产标准(51个)GB/T 43349-2023 石灰质材料 中和值的测定 滴定法 GB/T 43321-2023 铜及铜合金钎焊推荐工艺规范 GB/T 43320-2023 焊缝无损检测 超声检测 薄壁钢构件自动相控阵技术的应用 GB/T 25715-2023 离心铸造球墨铸铁 管用管模 GB/T 7731.17-2023 钨铁 钴、镍、铝含量的测定 电感耦合等离子体原子发射光谱法 GB/T 43311-2023 球墨铸铁管设计方法 GB/T 3653.3-2023 硼铁 硅含量的测定 高氯酸脱水重量法 GB/T 3654.8-2023 铌铁 钛含量的测定 变色酸光度法和二安替比林甲烷光度法 GB/T 5686.5-2023 锰铁、锰硅合金、氮化锰铁和金属锰 碳含量的测定 红外线吸收法、气体容量法、重量法和库仑法 GB/T 21837-2023 铁磁性钢丝绳电磁检测方法 GB/T 28417-2023 碳素轴承钢 GB/T 18115.6-2023 稀土金属及其氧化物中稀土杂质化学分析方法 第 6 部分: 铕 中 镧 、 铈 、 镨 、钕、钐、 钆 、 铽 、 镝 、 钬 、 铒 、 铥 、 镱 、 镥 和 钇 量的测定 GB/T 6150.1-2023 钨 精矿化学分析方法 第 1 部分:三氧化钨含量的测定 钨酸铵灼烧重量法 GB/T 2516-2023普通螺纹 极限偏差GB/T 9460-2023 铜及铜合金焊丝 GB/T 5686.9-2023 锰铁、锰硅合金、氮化锰铁和金属锰 锰、硅、磷和铁含量的测定 波长色散 X 射线荧光光谱法(熔铸玻璃片法) GB/T 43412-2023 金属薄板电阻点焊推荐工艺规范 GB/T 43411-2023 电子束选区 熔化增材制造 机床 通用技术条件 GB/T 16457.2-2023 金刚石圆锯片基体 第 2 部分:用于烧结锯片 GB/T 43432.3-2023 金属材料 巴氏硬度试验 第 3 部分:标准硬度块的标定 GB/T 43432.2-2023 金属材料 巴氏硬度试验 第 2 部分:硬度计的检验与校准 GB/T 3260.11-2023 锡化学分析方法 第 11 部分:铜、铁、铋、铅、锑、砷、铝、锌、镉、银、镍和 钴含量 的测定 电感耦合等离子体原子发射光谱法 GB/T 42513.2-2023 镍合金化学分析方法 第 2 部分:磷含量的测定 钼 蓝分光光度法 GB/T 42513.4-2023镍合金化学分析方法 第4部分:硅含量的测定 一氧化二氮-火焰原子吸收光谱法和钼蓝分光光度法GB/T 42513.3-2023镍合金化学分析方法 第3部分:铝含量的测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法GB/T 42513.5-2023镍合金化学分析方法 第5部分:钒含量测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法GB/T 4437.1-2023 铝及铝合金热挤压管 第 1 部分:无缝圆管 GB/T 3195-2023 铝及铝合金拉(轧)制圆线材 GB/T 32182-2023 轨道交通用铝及铝合金板材 GB/T 4324.2-2023 钨 化学分析方法 第 2 部分:铋和 砷含量 的测定 GB/T 26029-2023 镍钴锰三元素复合氧化物 GB/T 2054-2023 镍及镍合金板 GB/T 43360-2023 增材制造 用 锆及锆合 金粉 GB/T 2882-2023 镍及镍合金管 GB/T 3310-2023 铜及铜合金棒材超声检测方法 GB/T 6150.3-2023 钨 精矿化学分析方法 第 3 部分:磷含量的测定 磷 钼 黄分光光度法和电感耦合等离子体原子发射光谱法 GB/T 43358-2023 稀土矿及稀土产品 总 α 、总 β 放射性的测定 厚源法 GB/T 23947.3-2023 无机化工产品中砷测定的通用方法 第 3 部分:原子荧光光谱法 GB/T 43356-2023 钢筋腐蚀盐溶液周期浸润试验方法 GB/T 43354-2023 铜合金弹性带材平面弯曲疲劳试验方法 GB/T 13296-2023 锅炉、热交换器用不锈钢无缝钢管 GB/T 3286.12-2023 石灰石及白云石化学分析方法 第 12 部分:氧化钾和氧化钠含量的测定 火焰原子吸收光谱法 GB 175-2023 通用硅酸盐水泥 GB 25323-2023 有色重金属冶炼企业单位产品能源消耗限额 GB 21351-2023 变形铝及铝合金单位产品能源消耗限额 GB 21350-2023 铜及铜合金加工 材单位 产品能源消耗限额 GB/T 42536-2023 车用高压储氢气瓶组合阀门 GB/T 9816.1-2023 热熔断体 第 1 部分:要求和应用导则 GB/T 26330-2023 银、银合金 / 铜、铜合金复合带材 GB/T 43302-2023 增材制造 用钛及 钛合金丝材 GB/T 43301-2023 钼 及 钼合金管靶 化工塑料标准(73个)GB/T 43289-2023 塑料 实验室条件下测定暴露于海洋环境基质中塑料材料分解率和崩解程度的试验方法 GB/T 43288-2023 塑料 农业和园艺地膜用土壤生物降解材料 生物降解性能、生态毒性和成分控制的要求和试验方法 GB/T 43287-2023 塑料 在实际野外条件海洋环境中塑料材料崩解度的测定 GB/T 43313-2023 碳化硅抛光片表面质量和微管密度的测试 共焦点微分干涉法 GB/T 43309-2023 玻璃纤维及原料化学元素的测定 X 射线荧光光谱法 GB/T 43308-2023 玻璃纤维增强热塑性单向 预浸料 GB/T 43310-2023 玻璃纤维及原料化学元素的测定 电感耦合等离子体发射光谱法( ICP-OES ) GB/T 41312.2-2023 化工用设备渗透性检测方法 第 2 部分:纤维增强热固性塑料设备 GB/T 13465.12-2023 不透性石墨材料试验方法 第 12 部分:导热系数 GB/T 13871.3-2023 密封元件为弹性体材料的旋转轴唇形密封圈 第 3 部分:贮存、搬运和安装 GB/T 14795-2023 天然橡胶 术语 GB/T 3510-2023 未硫化橡胶 塑性的测定 快速塑性计法 GB/T 4202-2023 玻璃纤维产品代号 GB/T 23986.2-2023 色漆和清漆 挥发性有机化合物( VOC )和 / 或半挥发性有机化合物( SVOC )含量的测定 第 2 部分:气相色谱法 GB/T 23948-2023 无机化工产品 水不溶物测定通用方法 GB/T 7746-2023 工业无水氟化氢 GB/T 3392-2023 工业用丙烯中烃类杂质的测定 气相色谱法 GB/T 3394-2023 工业用乙烯、丙烯中微量一氧化碳、二氧化碳和乙炔的测定 气相色谱法 GB/T 17529.5-2023 工业用 丙烯酸及酯 第 5 部分:工业用丙烯酸 2- 乙 基己酯 GB/T 17529.2-2023 工业用 丙烯酸及酯 第 2 部分:工业用丙烯酸甲酯 GB/T 17529.3-2023 工业用 丙烯酸及酯 第 3 部分:工业用丙烯酸乙酯 GB/T 17529.1-2023 工业用 丙烯酸及酯 第 1 部分:工业用丙烯酸 GB/T 17529.4-2023 工业用 丙烯酸及酯 第 4 部分:工业用丙烯酸正丁酯 GB/T 29419-2023 塑木复合材料 铺板、护栏和围栏体系性能 GB/T 29418-2023 塑木复合材料 挤出型材性能测试方法 GB/T 1964-2023 多孔陶瓷 室温压缩强度试验方法 GB/T 43341-2023 纳米技术 石墨烯的缺陷浓度测量 拉曼光谱法 GB/T 43314-2023 硅橡胶 苯基和乙烯基含量的测定 核磁共振氢谱法 GB/T 43272-2023 唑 草酮原药 GB/T 43274-2023 无机土壤调理剂 总钙和镁含量的测定 GB/T 43273-2023 农药冻融稳定性测定方法 GB/T 22620-2023 联苯菊酯乳油 GB/T 22619-2023 联苯菊酯原药 GB/T 23554-2023 乙烯利可溶液剂 GB/T 24750-2023 乙烯利原药 GB/T 29381-2023 戊 唑 醇悬浮剂 GB/T 22176-2023 二甲戊 灵乳油 GB/T 30000.31-2023 化学品分类和标签规范 第 31 部分:化学品作业场所警示性标志 GB/T 43282.1-2023 塑料 暴露于海水中塑料材料需氧生物分解的测定 第 1 部分:采用分析释放二氧化碳的方法 GB/T 43251-2023 纳米技术 小尺寸纳米结构薄膜拉伸性能测定方法 GB/T 17530.2-2023 工业 丙烯酸及酯的 试验方法 第 2 部分:工业用丙烯酸酯有机杂质及纯度的测定 气相色谱法 GB/T 43282.2-2023 塑料 暴露于海水中塑料材料需氧生物分解的测定 第 2 部分:采用测定密闭呼吸计内需氧量的方法 GB/T 43363-2023 废弃化学品中铜、锌、镉、铅、铬等 12 种元素形态分布的测定 连续提取法 GB/T 43316.6-2023 塑料 耐环境应力开裂( ESC )的测定 第 6 部分 : 慢应变速率法 GB/T 43316.5-2023 塑料 耐环境应力开裂( ESC )的测定 第 5 部分 : 恒定拉伸变形法 GB/T 43316.4-2023 塑料 耐环境应力开裂( ESC )的测定 第 4 部分 : 球压或 针压法 GB/T 43316.3-2023 塑料 耐环境应力开裂( ESC )的测定 第 3 部分 : 弯曲法 GB/T 42918.2-2023 塑料 模塑和挤出用热塑性聚氨酯 第 2 部分:试样制备和性能测定 GB/T 43307-2023 精细陶瓷纤维 单丝室温拉伸性能的测定 GB/T 43296-2023 精细陶瓷室温弯曲疲劳性能试验方法 GB/T 43297-2023塑料 聚合物光老化性能评估方法 傅里叶红外光谱和紫外/可见光谱法GB/T 41312.3-2023 化工用设备渗透性检测方法 第 3 部分:塑料及其衬里设备 GB/T 1965-2023 多孔陶瓷 室温弯曲强度试验方法 GB/T 21461.1-2023 塑料 超高分子量聚乙烯( PE-UHMW )模塑和挤出材料 第 1 部分:命名系统和分类基础 GB/T 13871.4-2023 密封元件为弹性体材料的旋转轴唇形密封圈 第 4 部分:性能试验程序 GB/T 21461.2-2023 塑料 超高分子量聚乙烯( PE-UHMW )模塑和挤出材料 第 2 部分:试样制备和性能测定 GB/T 43450-2023 化学品 急性眼刺激体外细胞试验 TRPV1 活性检测法 GB/T 21617-2023 危险品 固体氧化性试验方法 GB/T 43355-2023 塑料和其他无孔材料表面抗病毒活性的测定 GB/T 43316.2-2023 塑料 耐环境应力开裂( ESC )的测定 第 2 部分 : 恒定拉伸负荷法 GB/T 15231-2023 玻璃纤维增强水泥性能试验方法 GB/T 3519-2023 微晶石墨 GB/T 31402-2023 塑料和其他无孔材料表面抗菌活性的测定 GB/T 43316.1-2023 塑料 耐环境应力开裂( ESC )的测定 第 1 部分 : 通则 GB/T 24692-2023 表面活性剂 家庭机洗餐具用洗涤剂 性能比较试验导则 GB/T 42474.6-2023 爆炸危险化学品汽车运输安全监控系统 第 6 部分:通信中心与监控客户端 间数据 接口 GB/T 42474.4-2023 爆炸危险化学品汽车运输安全监控系统 第 4 部分:监控客户端 GB/T 42474.1-2023 爆炸危险化学品汽车运输安全监控系统 第 1 部分:通用技术要求 GB/T 42474.5-2023 爆炸危险化学品汽车运输安全监控系统 第 5 部分:车载装置与通信中心间数据接口 GB/T 42474.2-2023 爆炸危险化学品汽车运输安全监控系统 第 2 部分:车载装置 GB/T 42474.3-2023 爆炸危险化学品汽车运输安全监控系统 第 3 部分:车载装置安装 GB/T 43300-2023 陶瓷平板膜 纯水通量试验方法 GB/T 4893.4-2023 家具表面漆膜理化性能试验 第 4 部分:附着力交叉切割测定法 轻工纺织标准(1个)GB/T 24168-2023 纺织染整助剂产品中邻苯二甲酸酯的测定 电力半导体标准(36个)DL/T 5869—2023 水电工程安全监测仪器封存与报废技术规程 DL/T 2700—2023 水电站泄水建筑物水力安全评价导则 DL/T 2702—2023 水电站大坝运行安全管理导则 DL/T 2701—2023 水电站水工建筑物水下检查技术规程 DL/T 2713—2023电力用便携式电动绞磨GB/T 43318-2023 燃气轮机联合循环电站 热力性能试验 GB/T 5008.3-2023 起动用铅酸蓄电池 第 3 部分:重载车辆产品品种规格和端子尺寸 GB/T 19520.22-2023 电气和电子设备机械结构 482.6 mm ( 19 in )系列机械结构尺寸 第 3-110 部分:智慧房屋用住宅机架和机柜 GB/T 5008.2-2023 起动用铅酸蓄电池 第 2 部分:产品品种规格和端子尺寸、标记 GB/T 19520.21-2023 电气和电子设备机械结构 482.6 mm ( 19 in )系列机械结构尺寸 第 3-109 部分:嵌入式计算设备的机箱尺寸 GB/T 19520.20-2023 电气和电子设备机械结构 482.6 mm ( 19 in )系列机械结构尺寸 第 3-108 部分: R 型插箱 和插件的尺寸 GB/T 43346-2023 起停用铅酸蓄电池 技术条件 GB/T 5008.1-2023 起动用铅酸蓄电池 第 1 部分:技术条件和试验方法 GB/T 30547-2023 高压直流输电系统滤波器用电阻器 GB/T 43344-2023 继电器用磁性材料(铁和钢)规范 GB/T 43342-2023 带有远程操作功能的家用和类似用途电器自动控制器的安全要求 GB/T 43343-2023 高压绝缘电阻表 GB/T 43334-2023 独立型微电网能量管理系统技术要求 GB/T 21218-2023电气用未使用过的硅绝缘液体GB/T 12940-2023 银 石墨电 触头技术条件 GB/T 30553-2023 基于电压源换流器的高压直流输电 GB/Z 6113.404-2023 无线电骚扰和抗扰度测量设备和测量方法规范 第 4-4 部分:不确定度、统计学和限值建模 投诉的统计和保护无线电业务的限值计算模型 GB/Z 40104.103-2023 太阳能光热发电站 第 1-3 部分:通用 气象数据集数据格式 GB/T 17626.11-2023 电磁兼容 试验和测量技术 第 11 部分: 对每相输入 电流小于或等于 16 A 设备的电压暂降、短时中断和电压变化抗扰度试验 GB/Z 17626.33-2023 电磁兼容 试验和测量技术 第 33 部分:高功率瞬态参数测量方法 GB/T 42731-2023 微电网技术要求 NB/T 11404-2023 火力发电工程执行概算编制导则 DL/T 5043-2023 换流站初步设计内容深度规定 NB/T 11403-2023 海上柔性直流换流站设计规程 NB/T 11402-2023 火力发电厂安全设施设计专篇编制导则 NB/T 11401-2023 热电厂储热系统设计规范 NB/T 11400-2023 电力数据中心设计规程 NB/T 11399-2023电源规划研究内容深度规定DL/T 5580.3-2023 燃煤耦合生物质发电生物质能电量计算 第 3 部分:农林废弃残余物蒸汽耦合 GB/T 43266-2023 永磁体磁偏角的测量方法 GB/T 43264-2023 永磁体表面磁场分布测试方法 能源标准(12个)NB/T 11470—2023 采煤工作面瓦斯抽采顶板高位定向长钻孔技术规范 NB/T 11469—2023 可解吸瓦斯含量测定装置 NB/T 11468—2023 水力驱动机械扩孔增 透技术 要求 NB/T 11467—2023 地面钻井 扩孔增抽卸压 瓦斯技术规范 NB/T 11466—2023 采动区 地面瓦斯抽采直井施工技术规范 NB/T 11465—2023 煤矿 采动区 地面 L 型顶板水平井抽采瓦斯技术方法 DB63/T 2282-2024 煤制甲醇二氧化碳尾气生产纯碱技术规程 GB/T 15558.5-2023 燃气用埋地聚乙烯( PE )管道系统 第 5 部分:系统适用性 GB/T 15558.3-2023 燃气用埋地聚乙烯( PE )管道系统 第 3 部分:管件 GB/T 15558.2-2023 燃气用埋地聚乙烯( PE )管道系统 第 2 部分:管材 GB/T 15558.4-2023 燃气用埋地聚乙烯( PE )管道系统 第 4 部分:阀门 GB/T 15558.1-2023 燃气用埋地聚乙烯( PE )管道系统 第 1 部分:总则 机械车辆标准(54个)GB/T 43404-2023 轻型汽车道路负载 底盘 测功机再现 GB/T 18329.1-2023 滑动轴承 多层金属滑动轴承 第 1 部分:合金厚度 ≥0.5mm 的结合质量超声无损检验 GB/T 43325-2023 铸造机械 铸件清理用切割、磨削和精整设备 安全技术规范 GB/T 43324-2023 箔片轴承 气体动压止推轴承性能 静态承载能力、摩擦力矩、摩擦因数和寿命测试 GB/T 25684.14-2023 土方机械 安全 第 14 部分:小型机具承载机的要求 GB/T 43323-2023 涂附磨具 通用安全要求 GB/T 43322-2023 气焊设备 空气焊 炬 GB/T 43319-2023 铸造机械 熔模和消失模铸造设备 安全技术规范 GB/T 43330.1-2023 船舶压载水处理系统 第 1 部分:要求 GB/T 12538-2023 道路车辆 质心位置的测定 GB/T 43232-2023 紧固件 轴向应力超声测量方法 GB/T 43234-2023 成型模 斜导柱 GB/T 25851.2-2023 流动式起重机 起重机性能的试验测定 第 2 部分:静载荷作用下的结构能力 GB/T 17758-2023 单元式空气调节机 GB/T 14910-2023 滑动轴承 厚壁多层轴承衬背技术要求 GB/T 10901-2023 离心机 性能测试方法 GB/T 10894-2023 分离机械噪声测试方法 GB/T 2484-2023 固结磨具 形状类型、标记和标志 GB/T 25622.1-2023 土方机械 司机手册 第 1 部分:内容和格式 GB/T 783-2023 起重机械 基本参数系列 GB/T 29712-2023 焊缝无损检测 超声检测 验收等级 GB/T 2493-2023 磨具回转强度试验方法 GB/T 29711-2023 焊缝无损检测 超声检测 焊缝内部不连续的特征 GB/T 23538-2023 普通磨料 球磨韧性测定方法 GB/T 11345-2023 焊缝无损检测 超声检测 技术、检测等级和评定 GB/T 25774.2-2023 焊接材料的检验 第 2 部分:钢的单面单道焊和双面单道焊焊接接头力学性能试样的制备 GB/T 15622-2023 液压缸 试验方法 GB/T 26949.7-2023 工业车辆 稳定性验证 第 7 部分:双向和多向运行叉车 GB/T 10827.5-2023 工业车辆 安全要求和验证 第 5 部分:步行式车辆 GB/T 18329.2-2023 滑动轴承 多层金属滑动轴承 第 2 部分:合金厚度 ≥2mm 的结合强度破坏性试验 GB/T 43081-2023道路车辆灯泡和光源 尺寸、光电性能要求GB/T 43254-2023 电动汽车用驱动电机系统功能安全要求及试验方法 GB/T 43248-2023电动汽车和混合动力汽车 无线电骚扰特性 用于保护30MHz以下车外接收机的限值和测量方法GB/T 15548-2023 往复式内燃机驱动的三相同步发电机通用技术条件 GB/T 16826-2023 电液伺服 万能试验机 GB/T 23921-2023 三轮汽车 半轴 GB/T 23930-2023 三轮汽车 转向器 GB/T 9081-2023 机动车燃油加油机 GB/T 43398-2023 乘用车行李移动对乘员伤害的安全要求 GB/T 24966-2023 光栅车辆检测器 GB/Z 41082.2-2023 轮椅车 第 2 部分:按 GB/Z 18029.5 测得的尺寸、质量和操作空间的典型值和推荐限制值 GB/T 43388-2023 家用汽车产品严重安全性能故障判断指南 GB/T 42612-2023 车用压缩氢气塑料内胆碳纤维全缠绕气瓶 GB/T 42610-2023 高压氢气瓶塑料内胆和氢气相容性试验方法 JT/T 1483-2023 公共汽车易燃挥发物监测及报警装置 DB41/T 2634-2024 充电设施信息互联互通规范 DB41/T 2633-2024 充电设施统一编码规则 DB41/T 2646-2024 绝缘起重机小车绝缘部件装配技术要求 DB41/T 2645-2024 起重机用防爆抓斗技术要求 DB36/T 743.1-2023 高速公路机电系统维护技术规范 第 1 部分:通用技术要求 DB36/T 596-2023 道路照明施工安装与验收技术规范 DB41/T 2635-2024 县域示范性公用集中式电动汽车充电站建设规范 GB/T 20914.5-2023 冲模 氮气弹簧 第 5 部分:氮气弹簧安全规范 GB/T 43299-2023机动车玻璃电加热性能试验方法其他标准(3个)DB36/T 1893-2023 检验检测数据资产评估认证指南 DB3505/T 10—2024 检验检测机构样品管理规范 GB/T 22553-2023 利用重复性、再现性和正确度的估计值评定测量不确定度的指南 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓ 扫码到APP免费下载 目前仪器信息网资料库 有近80万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 大连大特:国产标准物质的现状与新路
    标准物质是化学分析和成分测量过程中量值传递的载体,对于确保化学测量结果的一致和溯源性具有重要意义,因此被形象地称为“化学砝码”。近年来,国家政策大力扶持计量标准物质的产业发展,如国务院制定的《计量发展规划(2013-2020)》就明确指出开展基础前沿标准物质研究,扩大国家标准物质覆盖面,填补国家标准物质体系的缺项和不足。近几年,我国标准物质产业也迎来了快速发展期。2021年,十四五开局之年,标准物质领域将迎来怎样的新机遇?标准物质产业又将如何发展?基于此,仪器信息网特推出专题——标准物质:“化学砝码”的现状与未来。本期,我们邀请大连大特气体有限公司(以下简称“大特”),与大家聊聊标准物质的发展现状。 仪器信息网:今年初,国家市场监管总局发布了《国家标准物质专项监督检查方案》,提出将强化国家标准物质事中事后监管,督促落实国家标准物质研制和生产机构主体责任。您对这项政策有何看法?这将对行业尤其是标准物质企业产生怎样的影响?大特:《国家标准物质专项监督检查方案》的颁布,我们从中能得到最关键的信息是:落实国家标准物质研制和生产机构主体责任以及强化国家标准物质研制和生产机构现场监督检查。标准物质种类繁多,生产标准物质的企业所生产的产品更是良莠不齐,直接导致使用标准物质定性定量的目标组分偏差甚大,影响过程工艺或最终结论,所以国家提出该方案致力于解决当下标准物质混乱的局面。方案里着重强调了对食品安全、生产安全、生态环境、医疗卫生、贸易结算等方面监督监察力度,明确表示出对编造、假冒、滥用等一系列不法行为零容忍的态度,旨在提高国内标准物质生产水品,各企业提供更优质合格产品。仪器信息网:据了解,目前标准物质市场还是以进口产品居多,请问国产标准物质与进口产品相比主要技术差距有哪些? 大特:从技术层面,常规标准物质国内外技术基本没有差别,主要技术差异体现在类似VOCS类复杂组分的标准物质上,数值准确性、稳定性均跟国外标准物质有差距,主要原因在于国外大的气体公司像液空、普莱克斯、林德等均有超过百年的历史跟经验,跟国外气体企业相比,国内标准物质生产厂商有相对规模小、成立时间短、部分技术不成熟等缺点;从管理层面上,国内很多标准物质厂商还处于起步阶段,各项规章管理制度还有待完善。仪器信息网:研发离不开标准和分析测试规范,标准物质的相关标准及规程规范是产业发展的保障。请介绍下目前标准物质行业相关标准及规程规范情况?大特:目前我国关于气体标准物质研发的标准和规范有不少,如国标包括GB/T 5274.1-2018《气体分析 校准用混合气体的制备 第1部分:称量法制备一级混合气体》、GB/T 38521-2020《气体分析 纯度分析和纯度数据的处理》、GB/T 22279-2008《煤炭成分分析和物理特性测量标准物质研制导则》等;计量规范标准包括JJF 1855-2020《纯度标准物质定值计量技术规范 有机物纯度标准物质》、JJF 1006-1994《一级标准物质技术规范》、JJF 1186-2018《标准物质证书和标签要求》、JJF 1218-2009《标准物质研制报告编写规则》等。另外,目前气体领域分析检测用标准还包括GB/T 10628-2008《气体分析 校准混合气组成的测定和校验 比较法》、ISO 12963-2017《气体分析 基于单点和两点校准的混合气体成分测定 比较法》等。广大相应工作者在严谨的按标准和规范执行之余,还应不断开拓创新,完善相关规范和标准,使得我国的标准及规范再上新的台阶。仪器信息网:请问当前贵司主打产品有哪些?相较于其他品牌,贵司的产品优势有哪些?您能否介绍下贵司在研发设计方面为提升产品品质做了哪些举措?大特:大特产品的核心竞争力主要有以下几个方面:1、标准物质制备经验丰富,产品线齐。大特已经成立29年,一直以来始终专注于标准物质的研发、生产与销售,标准物质总出货量行业领先,且各类标准物质制备经验丰富;大特能为客户提供包含从标准物质、纯物质、管路工程一直到检测服务、咨询服务的完整产品配套能力。 2、具有覆盖全国的供货网络。除大连外,目前已成立包头、广东、新疆、上海、成都、山西6家子分公司,形成覆盖全国的销售及物流网络。3、研发能力雄厚,可满足绝大部分需求。每年公司将总收入的10%以上投入研发,目前已拥有136项国家二级标准物质,很多均为国内市场领先产品;拥有36项发明及新型专利;此外,大特还主持制定国际标准《气体分析 采样导则》、参与制定29项国家及行业标准。4、产品出厂质量有保证。大特在国内率先获得ISO 17034标准物质生产者能力认可,按国际领先的管理体系进行生产,相关产品全球互认,产品质量有保证;公司检测中心共有26名员工,均为本科以上学历,平均从事分析行业超过5年,中心拥有超过40台气相色谱仪和其它相关分析仪器,且已获得CNAS(ISO 17025)实验室认可,进一步保证出厂产品质量。5、生产能力强,供货周期有保证。拥有标准物质制备系统近30台,均由本公司自主研发,标准气产能超过15万瓶/年,供货周期有保证。6、优质的服务保障客户对产品使用。气体行业国内首家通过《商品售后服务评价体系》认证,在售前、售中、售后对产品相关咨询问题均由专人回复,售后无忧。仪器信息网:今年为十四五开局之年,“十四五”规划的出台给标准物质领域带来了哪些机遇?对于此,贵公司做了哪些准备?“十四五”期间贵司将在哪些方面重点布局?大特:在经济发展的前提下,随着“十四五”规划的出台,明确了重点方向为工业化、市场化、绿色化以及科技领域等,对“能源生产能力”也给出确切的指标,这对标准物质生产商无疑是提供了一个大展拳脚的机会,同时更是一个前所未有的挑战。在丰厚利润下,标准物质生产商会激增,给国内标准物质行业带了更大的可发展性,但随之也可能会产生一些负面影响,比如标准物质市场竞争激烈,势必导致价格降低,生产厂商如何在控制成本的同时保证标准物质的质量,使其起到指导生产等应有的作用;对于气体标准物质,其属于危化品,新入行厂家如何保证其安全性等等,值得标准物质厂商认真思考。
  • 【技术标准解析】CDE纳米药物质量控制研究技术指导原则解读(一)
    #本文由马尔文帕纳科应用专家张鹏博士供稿# 为规范和指导纳米药物研究与评价,在国家药品监督管理局的部署下,药审中心组织制定了《纳米药物质量控制研究技术指导原则(试行)》、《纳米药物非临床药代动力学研究技术指导原则(试行)》《纳米药物非临床安全性评价研究技术指导原则(试行)》三项关于纳米药物研究、质控、评价的技术指导原则。并由经国家药品监督管理局审查同意,8月27日予以发布通告,三项技术指导原则自发布之日起开始施行。 其中《纳米药物质量控制研究技术指导原则》主要内容是围绕着纳米药物的安全性、有效性以及质量可控性展开的。在这3方面,质量的可控性显得尤为重要,它一定程度上决定了药物的安全性和有效性。 该指导原则进一步将纳米药物细分为三类:药物纳米粒、载体类纳米药物以及其他类纳米药物,前两类药物适用于该指导原则。 在研发过程中,纳米药物的质量控制指标又可以分为纳米相关特性和制剂基本特性两大类。其中纳米相关特性是可能与药物在体内行为息息相关的重要质量指标。又包括例如平均粒径及其分布、纳米粒结构特征、微观形态、表面性质(电荷、比表面积等)包封率、载药量、纳米粒浓度、纳米粒稳定性等等。 质量控制指标涉及方面较多,本文重点关注以下三个方面的指标: 1. 粒径(平均粒径及其分布)2. 表面电荷3. 纳米粒浓度 在粒径表征方面,该指导意见原文如下:“应选择适当的测定方法对纳米药物的粒径及分布进行研究,并进行完整的方法学验证及优化。粒径及分布通常采用动态光散射法(Dynamic light scattering,DLS)进行测定,需要使用经过认证的标准物质(Certified reference material,CRM)进行校验,测定结果为流体动力学粒径(Rh),粒径分布一般采用多分散系数(Polydispersity index,PDI)表示。除此之外,显微成像技术(如透射电镜(Transmission electron microscopy,TEM)、扫描电镜(Scanning electron microscopy,SEM)和原子力显微镜(Atomic force microscopy,AFM)、纳米颗粒跟踪分析系统(Nanoparticle tracking analysis, NTA)、小角X射线散射(Small-angle X-ray scattering,SAXS)和小角中子散射(Small-angle neutron scattering,SANS)等也可提供纳米药物粒径大小的信息。对于非单分散的样品,可考虑将粒径测定技术与其它分散/分离技术联用。” 在了解动态光散射技术(DLS)之前,我们先来讲一讲粒径测量时的“等效球体”的概念。 想象一下,当我们完成颗粒粒径测试后,该如何用准确的数值来描述这些三维颗粒的大小呢?当颗粒是规则的形状时,比如说正方体、球体,我们可以用一个数值,例如:边长、直径,来表示这个颗粒的大小;但是,当颗粒呈现的形貌是无规则的话,我们就无法用一个数值来描述这个颗粒大小了,那有人会说,用一系列数值来描述这些颗粒不就行了吗,这个方法确实可行,但是随之带来了数据呈现的复杂度以及颗粒粒径大小比较的困难度。这个时候我们就必须引入“等效球体”概念了。 什么叫做等效球体呢? 当我们通过某种技术测量颗粒在某一方面的性质,并得到了一个具体的数值,如果一个刚性球体在该性质方面的数值和前者一样,那么我们就认为待测物的颗粒大小和这个刚性球的大小一致。 等效球体概念在粒径上的应用既能满足准确表示待测颗粒的粒径大小,又能使得这些数值能够被用来进行大小比较(单个数值)。 如图1所示,我们可以得知,当一个不规则的颗粒采用不同的测量技术(沉降法、电阻法、体积法等等)去进行测量时,往往会得到不同的粒径值。 而我们说的动态光散射技术测量的是颗粒的扩散速度,所以,具有同样大小扩散速度的刚性球体的直径就是待测颗粒的粒径大小,我们一般称之为流体力学直径。 动态光散射 接着我们进一步来了解一下什么是DLS技术: 分散在溶液相的纳米颗粒由于受到溶剂分子的撞击,呈现出无规则的运动,我们称之为布朗运动(Brownian motion),如果我们将一束激光照射至含有该纳米颗粒的溶液中,溶液相中的颗粒会产生散射光,随后在一定的角度收集相关的散射光,我们就能得到如图2所示的散射光强随时间的变化曲线,可以看出大颗粒布朗运动较为缓慢,散射光强的变化频率较慢(图2,上)。小颗粒则相反,由于其布朗运动剧烈,接收到的散射光强的变化频率较快(图2,下)。 而动态光散射技术则可以捕获上述散射光变化的频率,进而获得颗粒的布朗运动速率大小,最后通过反演算法获得颗粒的粒径和分布。 根据斯托克斯-爱因斯坦方程(Stokes-Einstein)的定义,我们可以看出,颗粒的运动速率是和它的粒径成反比的,运动速率越快,粒径越小,运动速率越慢,粒径越大。 该方程式:DH=KT/3πηD K:玻尔兹曼常数T:整个体系的绝对温度值η:溶剂粘度值D:颗粒平动扩散系数 那具体如何获得颗粒的布朗运动速率(D)呢? 接下来我们要引入“相关性”这个概念,如图3所示,如果我们将t时刻的散射光强度和其后较长时间的散射光强相比较,显然,他们没有什么相关性。但是,当我们将时间缩短至极短时间范围内,也就是将t和t+δt时刻的光强值进行比较,就能得到很强的相关性,随着时间的增加(δt, 2δt, 3δt, 等等),其散射光强值和t时刻的相关性不断衰减,最后接近0值,相关性通常用数值来描述(1→0),数值越靠近“1”代表相关性非常高,越接近“0”代表相关性很低。δt的时间非常短,一般在纳秒(nanosecond,ns)或者微秒(microsecond,μs)。 散射光强在不同时间点的相关性我们用G (τ)来表示:G (τ)=A[1+Bexp (-2Γτ)] τ代表着信号采集滞后时间Γ=Dq2,q=(4πn/λ0) sin(θ/2),散射矢量D:颗粒平动扩散系数n:溶液的折光指数λ0:入射光波长θ:散射光接收角度 最后,我们用相关方程来描述这种相关性随时间的变化(图4),大颗粒的散射光强的相关性随时间变化慢,信号衰减慢(左),小颗粒的散射光强的相关性随时间变化快,信号衰减快(右)。 聊完了DLS的基本原理,我们再来看看大家比较关注的几个问题: 1. 什么是Z-average size(平均粒径)、PI(polydispersity index,多分散指数)? Z-average size表示样品中颗粒的平均粒径大小,根据ISO 13321:1996,我们可以知道,该数据是通过累计分析法得到的。 PI代表着样品的粒径分布宽度,数值越小,说明体系里的粒径大小越一致,数值越大,说明体系里的粒径分布群体越多,粒径分布较宽,一般我们认为当PI值大于0.7时,表示这个体系不再适合用DLS这种技术进行表征了。 除了平均粒径和PI,我们还能得到颗粒的光强粒径分布图,在这个分布图里,我们能得到不同粒径下对应的散射光强占比数据,这些分布图是根据分布算法得到的。 2. 如何看待不同测量角度下得到的粒径数据? 市面上主要存在两种测量角度的纳米粒度仪,分别是90°和173°,前者我们称之为侧向角,后者我们称之为背向角。 当测试的样品为粒径窄分布时,例如聚苯乙烯标准样品,两种测量角度都能得到很好的粒径分布图,结果也非常一致(图5)。 当测试的样品为粒径宽分布时,比如一些生物样品,两种测量角度得到的粒径分布图就会有区别(见图6)。 这是为什么呢? 这其实是和颗粒的散射性质有关系的,当颗粒的粒径大小小于入射波段的1/10时,颗粒在各个方向上的散射光强度都一样,我们称之为各向同性,那么在这两个角度上进行测量,都能得到正确的数值。但是随着颗粒粒径的增加,颗粒在各个方向上的散射光强开始变得不一致,越靠近0度角,其散射光强增加越强烈,我们称之为各向异性。在绝大多数情况下,不同粒径的颗粒其散射强度在90°要比在173°要强一些,当体系中大颗粒开始变多时,来自于大颗粒的散射光强贡献度在90°角下就会比在173°角下要更多,因为粒径分布的数据是根据不同粒径的散射光强在整个体系的占比中得到的,所以在90°角下会使得颗粒的粒径分布更容易倾向于体系中存在的大颗粒。
  • 11月份有154个与检测相关的国家标准将实施
    11月份有154个与检测相关的国家标准将实施金秋桂飘香,11月份将要实施的仪器及检测行业相关的标准又有哪些呢?让我们一起随着小编来梳理一番吧。本期我们梳理出有154个标准将在11月份实施,涉及多个行业领域,其中机械、石油化工塑料、金属矿产、电力、食品农业新实施的标准比较多。11月份即将实施的标准如下,需要的可以收藏。点击链接即可下载收藏↓化妆品标准GB/T 39999-2021 化妆品中恩诺沙星等15种禁用喹诺酮类抗生素的测定 液相色谱-串联质谱法 GB/T 39993-2021 化妆品中限用防腐剂二甲基噁唑烷、7-乙基双环噁唑烷和5-溴-5-硝基-1,3-二噁烷的测定 食品农业标准GB/T 39991-2021 感官分析 橄榄油品评杯使用要求 GB/T 3883.209-2021 手持式、可移式电动工具和园林工具的安全 第209部分:手持式攻丝机和套丝机的专用要求 GB/T 40003-2021 感官分析 葡萄酒品评杯使用要求 GB/T 40076-2021 农业灌溉设备 过滤器 过滤等级验证 GB/T 6232-2021 农林拖拉机和机械 车轮在轮毂上安装尺寸 GB/T 40039-2021 土壤水分遥感产品真实性检验 GB/T 40038-2021 植被指数遥感产品真实性检验 GB/T 40034-2021 叶面积指数遥感产品真实性检验GB/T 39992-2021 感官分析 方法学 平衡不完全区组设计 GB/T 39914-2021 主要农作物品种真实性和纯度SSR分子标记检测 玉米 GB/T 39917-2021 主要农作物品种真实性和纯度SSR分子标记检测 稻 GB/T 40001-2021 食品包装评价技术通则 GB/T 27021.9-2021 合格评定 管理体系审核认证机构要求 第9部分:反贿赂管理体系审核与认证能力要求 环境标准GB/T 24674-2021 污水污物潜水电泵 GB/T 39986-2021 泵 试验 污水和类似应用的潜水搅拌器 GB/T 6165-2021 高效空气过滤器性能试验方法 效率和阻力 冶金标准GB/T 40084-2021 钢铁行业能源管理绩效评价指南 机械标准GB/T 40072-2021 潜水器金属框架强度试验方法 GB/T 25217.8-2021 冲击地压测定、监测与防治方法 第8部分:电磁辐射监测方法 GB/T 39982-2021 水润滑径向滑动轴承 承载能力测试方法 GB/T 12243-2021 弹簧直接载荷式安全阀 GB/T 40011-2021 低温先导式安全阀 GB/T 39983-2021 滚珠圆弧导轨副 验收技术条件 GB/T 19924-2021 流动式起重机 稳定性的确定 GB/T 2877.2-2021 液压二通盖板式插装阀 第2部分:安装连接尺寸 GB/T 3480.3-2021 直齿轮和斜齿轮承载能力计算 第3部分:轮齿弯曲强度计算 GB/T 40077-2021 往复式容积泵和泵装置 技术要求 GB/T 40078-2021 轮式拖拉机燃油经济性 评价指标 GB/T 40079-2021 阀门逸散性试验分类和鉴定程序 GB/T 40024-2021 实验室仪器及设备 分类方法 GB/T 40048-2021 木质结构材螺栓连接力学性能测试方法 GB/T 26077-2021 金属材料 疲劳试验 轴向应变控制方法 GB/T 24596-2021 球墨铸铁管和管件 聚氨酯涂层 GB/T 40080-2021 钢管无损检测 用于确认无缝和焊接钢管(埋弧焊除外)水压密实性的自动电磁检测方法 GB/T 11640-2021 铝合金无缝气瓶 GB/T 26667-2021 电磁屏蔽材料术语 GB/T 3093-2021 柴油机用高压无缝钢管GB/T 8361-2021 冷拉圆钢表面超声检测方法 GB/T 40013-2021 服务机器人 电气安全要求及测试方法GB/T 40073-2021 潜水器金属耐压壳外压强度试验方法 GB/T 39980-2021 机械式停车设备 设计规范 GB/T 39994-2021 聚烯烃管道中六种金属元素(铁、钙、镁、锌、钛、铜)的测定 GB/T 39704-2020 真空绝热板有效导热系数的测定 GB/T 39709-2020 动车组玻璃、车窗耐静压及车窗密封性能试验方法 GB/T 39710-2020 电动汽车充电桩壳体用聚碳酸酯/丙烯腈-丁二烯-苯乙烯(PC/ABS)专用料 GB/T 39705-2020 轨道交通用道床隔振垫 GB/T 29042-2020 汽车轮胎滚动阻力限值和等级 GB/T 39548-2020 真空绝热板湿热条件下热阻保留率的测定 GB/T 39702-2020 汽车轮胎力和力矩试验方法 石油、化工塑料标准GB/T 40169-2021 超高分子量聚乙烯(PE-UHMW)和高密度聚乙烯(PE-HD)模塑板材 GB/T 40009-2021 废轮胎、废橡胶热裂解技术规范 GB/T 39995-2021 甾醇类物质的测定 GB/T 40029-2021 液化天然气储罐用预应力钢绞线 GB/T 40062-2021 变性燃料乙醇和燃料乙醇中总无机氯的测定方法 离子色谱法 GB/T 6809.12-2021 往复式内燃机 零部件和系统术语 第12部分:排放控制系统 GB/T 40089-2021 石油和天然气工业用钢丝绳 最低要求和验收条件 GB/T 39998-2021 纸、纸板和纸制品 烷基苯酚聚氧乙烯醚类的测定 高效液相色谱质谱法 GB/T 17744-2020 石油天然气工业 钻井和修井设备 GB/T 39691-2020 塑料 折光率的测定 GB/T 39694-2020 氢化丙烯腈-丁二烯橡胶(HNBR) 通用规范和评价方法 GB/T 39692-2020 硫化橡胶或热塑性橡胶 低温试验 概述与指南 GB/T 39697.2-2020 橡胶或塑料包覆辊 规范 第2部分:表面特性GB/T 39693.6-2020 硫化橡胶或热塑性橡胶 硬度的测定 第6部分:IRHD法测定胶辊的表观硬度GB/T 39695-2020 橡胶烟气中挥发性成分的鉴定 热脱附-气相色谱-质谱法GB/T 39697.1-2020 橡胶或塑料包覆辊 规范 第1部分:硬度要求GB/T 39530-2020 热喷涂 纳米氧化锆粉末及涂层制备工艺技术条件 GB/T 39699-2020 橡胶 聚合物的鉴定 裂解气相色谱-质谱法GB/T 39544-2020 浓缩天然胶乳 总磷酸盐含量的测定 分光光度法矿业标准GB/T 13449-2021 金块矿取样和制样方法 GB/T 9966.15-2021 天然石材试验方法 第15部分:耐盐雾老化强度测定 GB/T 9966.14-2021 天然石材试验方法 第14部分:耐断裂能量的测定 GB/T 8151.24-2021 锌精矿化学分析方法 第24部分:可溶性锌含量的测定 火焰原子吸收光谱法 GB/T 9966.17-2021 天然石材试验方法 第17部分:盐结晶强度的测定 GB/T 9966.12-2021 天然石材试验方法 第12部分:静态弹性模数的测定 GB/T 9966.10-2021 天然石材试验方法 第10部分:挂件组合单元抗震性能的测定 GB/T 19346.3-2021 非晶纳米晶合金测试方法 第3部分:铁基非晶单片试样交流磁性能 GB/T 9790-2021 金属材料 金属及其他无机覆盖层的维氏和努氏显微硬度试验 GB/T 39952-2021 二氧化钛基光催化分散液GB/T 11066.11-2021 金化学分析方法 第11部分:镁、铬、锰、铁、镍、铜、钯、银、锡、锑、铅和铋含量的测定 电感耦合等离子体质谱法 GB/T 9966.16-2021 天然石材试验方法 第16部分:线性热膨胀系数的测定 GB/T 9966.18-2021 天然石材试验方法 第18部分:岩相分析 GB/T 39996-2021 烟花爆竹 烟火药发热量的测定 GB/T 39701-2020 粉煤灰中铵离子含量的限量及检验方法 GB/T 39708-2020 三氟化硼 GB/T 39706-2020 石膏中SO42-溶出速率、溶出量的测定方法 GB/T 39527-2020 实体面材产品中钙、铝、硅元素含量的测定 化学分析法 GB/T 39700-2020 硼泥处理处置方法 GB/T 39696-2020 精细陶瓷粉末流动性测定 标准漏斗法GB/T 39703-2020 波纹板式脱硝催化剂检测技术规范 纺织标准GB/T 39973-2021 纺织行业能源管理体系实施指南 医疗生物标准GB/T 40002-2021 牙膏对口腔硬组织的安全评价 GB/T 40049-2021 鸡肠炎沙门氏菌PCR检测方法 GB/T 39920-2021 蛙病毒感染检疫技术规范 GB/T 18642-2021 旋毛虫诊断技术 GB/T 18643-2021 鸡马立克氏病诊断技术 GB/T 37036.4-2021 信息技术 移动设备生物特征识别 第4部分:虹膜 电力标准GB/T 8897.1-2021 原电池 第1部分:总则GB/T 8897.2-2021 原电池 第2部分:外形尺寸和电性能GB/T 8897.3-2021 原电池 第3部分:手表电池 GB/T 40025-2021 24GHz车辆无线电设备射频技术要求及测试方法 GB/T 17215.321-2021 电测量设备(交流) 特殊要求 第21部分:静止式有功电能表 (A级、B级、C级、D级和E级) GB/T 17651.1-2021 电缆或光缆在特定条件下燃烧的烟密度测定 第1部分:试验装置 GB/T 40032-2021 电动汽车换电安全要求 GB/T 2900.36-2021 电工术语 电力牵引GB/T 17215.211-2021 电测量设备(交流) 通用要求、试验和试验条件 第11部分:测量设备 GB/T 33351.2-2021 电子电气产品中砷、铍、锑的测定 第2部分:电感耦合等离子体发射光谱法 GB/T 40031-2021 电子电气产品中多氯化萘的测定 气相色谱-质谱法 GB/T 40030-2021 电子电气产品中中链氯化石蜡的检测方法 GB/T 24202-2021 光缆增强用碳素钢丝 GB/T 40082-2021 风力发电机组 传动链地面测试技术规范 GB/T 7424.22-2021 光缆总规范 第22部分:光缆基本试验方法 环境性能试验方法 GB/T 15972.20-2021 光纤试验方法规范 第20部分:尺寸参数的测量方法和试验程序 光纤几何参数 GB/T 15972.43-2021 光纤试验方法规范 第43部分:传输特性的测量方法和试验程序 数值孔径 GB 24427-2021 锌负极原电池汞镉铅含量的限制要求 GB/T 15972.30-2021 光纤试验方法规范 第30部分:机械性能的测量方法和试验程序 光纤筛选试验 GB/T 15972.41-2021 光纤试验方法规范 第41部分:传输特性的测量方法和试验程序 带宽 GB/T 15972.34-2021 光纤试验方法规范 第34部分:机械性能的测量方法和试验程序 光纤翘曲 GB/T 15972.45-2021 光纤试验方法规范 第45部分:传输特性的测量方法和试验程序 模场直径 GB/T 17651.2-2021 电缆或光缆在特定条件下燃烧的烟密度测定 第2部分:试验程序和要求 GB/T 15972.54-2021 光纤试验方法规范 第54部分:环境性能的测量方法和试验程序 伽玛辐照 GB/T 15972.10-2021 光纤试验方法规范 第10部分:测量方法和试验程序 总则 GB/T 16895.32-2021 低压电气装置 第7-712部分:特殊装置或场所的要求 太阳能光伏(PV)电源系统 GB/T 17650.1-2021 取自电缆或光缆的材料燃烧时释出气体的试验方法 第1部分:卤酸气体总量的测定 GB/T 17650.2-2021 取自电缆或光缆的材料燃烧时释出气体的试验方法 第2部分:酸度(用pH测量)和电导率的测定 GB/T 39950-2021 LED灯用氧化铝陶瓷散热元件GB/T 7424.20-2021 光缆总规范 第20部分:光缆基本试验方法 总则和定义 建材标准GB/T 40083-2021 建筑材料行业能耗在线监测技术要求 GB/T 39712-2020 快速施工用海工硫铝酸盐水泥GB/T 39711-2020 海洋工程用硫铝酸盐水泥修补胶结料 GB/T 39526-2020 建筑幕墙空气声隔声性能分级及检测方法 GB/T 39528-2020 建筑幕墙面板抗地震脱落检测方法 GB/T 39525-2020 玻璃幕墙面板牢固度检测方法 其他标准GB/T 40151-2021 安全与韧性 应急管理 能力评估指南 GB/T 40063-2021 工业企业能源管控中心建设指南 GB/T 14909-2021 能量系统 分析技术导则 GB/T 40008.1-2021 热水制备系统绩效评价与计算方法 第1部分:户用及类似用途热水制备系统 GB/T 40046-2021 设施管理 质量评价指南 GB/T 40045-2021 氢能汽车用燃料 液氢 GB/T 31016-2021 样品采集与处理移动实验室通用技术规范 GB/T 40060-2021 液氢贮存和运输技术要求 GB/T 40061-2021 液氢生产系统技术规范 GB/T 13297-2021 精密合金包装、标志和质量证明书的一般规定 GB/T 40033-2021 地表蒸散发遥感产品真实性检验 GB/T 39755.2-2021 电子文件管理能力体系 第2部分:评估规范 GB/T 39663-2021 检验检测机构诚信报告编制规范 GB/T 39652.4-2021 危险货物运输应急救援指南 第4部分:遇水反应产生毒性气体的物质目录 GB/T 40012-2021 个性化定制 分类指南 GB/T 39919-2021 出境集装箱植物检疫规程 GB/T 39652.3-2021 危险货物运输应急救援指南 第3部分:救援距离 GB/T 39652.1-2021 危险货物运输应急救援指南 第1部分:一般规定 GB/T 39916-2021 进出境集装箱场站植物检疫防疫体系建立指南 GB/T 27021.10-2021 合格评定 管理体系审核认证机构要求 第10部分:职业健康安全管理体系审核与认证能力要求 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近70万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 积极参与国际互认 打造标准物质行业“领头羊”——访中国计量科学研究院标准物质研究与管理中心主任马联弟
    仪器信息网讯 2020年初,新冠疫情席卷全球,很多人都奋不顾身投入抗击疫情的战争中。彼时,中国计量科学研究院也投入到这场战役里,他们用最快的速度成功研发出核酸系列、免疫系列和分析仪器检定校准三大系列共21种新冠病毒检测相关的标准物质,并第一时间应用于包括武汉在内的全国25个省市的400多家疾控中心、医疗结构以及第三方检测机构。从而保证了核酸试剂盒检测的有效性、可靠性和溯源性。该系列标准物质的推出,也得到了全球各国的重视。在此基础上,中国计量院率先提出新冠核酸以及单抗蛋白的国际比对建议,并与美国、英国一起主导了这次比对,共计18个国家的22个实验室参与其中,相关成果被国际检验医学溯源联合会进行了专题报告。中国计量院的研究成果,不仅支撑了国内抗疫工作,还为推动国际共同进行核酸检测做出了贡献。近期,在第十九届北京分析测试学术报告会暨展览会(简称BCEIA2021)期间,我们特别采访了中国计量科学研究院标准物质研究与管理中心主任马联弟,请他跟我们介绍中国计量院标准物质的研发历程。马联弟介绍,中国计量科学研究院成立于1955年,隶属于国家市场监管总局,是我国最高级别的计量科学研究中心,也是国家级计量技术机构。1986年,国家标准物质研究中心成立,主要开展标准物质研究工作,并于2005年并入计量院。2020年,计量院成立标准位置研究与管理中心,用于提升标准物质的管理水平、管理效率和多学科的融合发展,来促进标准物质的研发与社会共享,以及开展与市场化对接的对外服务。作为国家最高级别的计量研究机构,中国计量院已经有40多年研制标准物质的历史,其产品更是成为量值溯源的源头保证。马联弟提到,1999年,中国计量院代表中国签署了国际计量委员会多边互认协议,并在此基础上建立了完善的标准物质管理体系。此后,中国计量院接受并通过了4次国际计量委员会组织的标准物质国际评审,其质量体系得到了国际认可。此外,中国计量院还先后参加和主导标准物质相关的国际比对约200多项,截止2021年3月,该院已经获得国际互认的标准物质相关校准检测能力达946项。“通过比对,足以说明我们标准物质研发定制的能力和水平已经达到国际等效,甚至在某些领域达到国际领先!”马联弟自豪地说。据了解,截止目前,计量院已经研制了2017种有证标准物质,其中一级标准物质800多项,占全国一级标物的30%;二级标准物质1100多项,占全国二级标物的9%,涉及环境、食品、临床医学等多个领域。在此基础上,计量院还积极完善了标准物质管理水平并开展了市场化应用和推广。近年来,随着国内对标准物质需求的剧增,国内标准物质种类增速迅猛。马联弟告诉我们,目前国内以及标准物质已经有近2900种,二级标准物质种类更是达到13000多种。虽然生产厂家众多,且其中不乏一些有实力的科研机构和生产企业,但仍然良莠不齐,尤其是在定值能力、研发能力和可持续供应能力方面。今年3月份,国家市场监管总局发布了《国家标准物质专项监督检查方案》,提出将强化国家标准物质事中事后监管,督促落实国家标准物质研制和生产机构主体责任。这在马联弟看来无疑是对标准物质行业一大利好。他提到,总局这项活动,有利于规范国家有证标准物质的体系,会打击那些伪劣造假,以及没有持续研发生产能力的这些企业。但是从另外一方面是促进保护和支持那些合格的标准物质研制和生产机构的利益,起到良币驱逐劣币的效果。他还提到,标准物质中心成立以来,就一直积极配合市场监管总局推动标准物质改革、监管和市场秩序的完善。当前我国正面临百年未有之大变局,新一轮的科技革命和全球产业变革兴起,特别是科技创新日益成为引发国际格局和政治治理的重构。“我国经济正在从高速发展进入高质量发展阶段,国家的战略特别强调产品的质量提升、生活质量提升以及生态环境质量提升,我想这些都离不开化学生物的检测,而检测又离不开标准物质,国家各行业高质量发展为今后标准物质的发展提供了一个前所未有的发展契机。下一步,计量院将在自身发展的基础上,带领全国标准物质研制机构一起合力做与国际接轨的、更高溯源量值等级的标准物质,构建出一个完整的国家标准物质体系及量值溯源体系。”更多详细内容,请点击视频查看:
  • 转基因植物标准物质研究进展
    转基因植物标准物质研究进展日期:2012-05-17 作者:董莲华 赵正宜 李亮 隋志伟 王晶 来源:《农业生物学报》.-2012,(2).-203-210 点击:107  近年来,随着转基因技术的飞速发展,转基因作物及其产品大量涌现。但是由于转基因作物及其产品对人体健康和生物多样性的影响未经过长期检验,所以一直以来其安全性都受到社会各界的关注。为了保护消费者对转基因产品的知情权、选择权和健康权,各国都建立了多种方法对转基因植物及其产品中的转基因特征分子进行检测,以期对转基因植物从源头到餐桌进行全程监控。目前,由于各国对于转基因产品的标识有不同的要求,有些国家规定必须标明转基因成分的含量,并且各个国家对所标识转基因含量的要求不尽相同,为了解决贸易争端等问题,转基因产品的定性、定量检测成为关键。但是,由于缺乏国际普遍认同的标准,所以检测结果不可比的问题尤为突出。转基因检测标准的制定是解决转基因产品检测结果不可比的根本。转基因检测标准包括标准检测方法和标准物质。而转基因标准物质在保汪转基因检测结果可比和可溯源方面起着重要作用。标准物质是具有高度均匀性、良好稳定性和量值准确性的一种测量标准。因此转基因生物标准物质的使用可以保证转基因产品检测缔果的有效和可比。 国外尤其是欧美国家自上个世纪起就已经开始转基因检测标准和标准物质相关研究。目前我国制定了一些急需的转基因安全检测标准和规范(GB/T19495.3~5-2004,NY/T719.l~719.3-2003,NY/T720.1~720.3-2003,NY/T 72l.1~721.3-2003),但是,转基因生物标准物质的缺乏,已成为制约我国转基因生物检测技术应用与发展的一个土要技术瓶颈。本文将对国内外转基因植物标准物质的研究现状及相关技术进行综述,以期为我国转基因植物标准物质研制和相关研究提供参考。1 转基因植物标准物质种类 目前国内外研制的转基因植物标准物质上要自基体标准物质(Gancberg et al.,2007;Trapmann et al.,2004a;Trapmann et al.,2004b)和核酸分子标准物质(Corbisier et al.,2007;AOCS 0306-A(http.//WWW.aocs org/LabServices))。基体标准物质是与被测样品具有相同或相近基体的实物标准,是给被测物质赋值的最有效的标准物质。目前所研制的基体标准物质根据存在形式不同主要有种子标准物质(AOCS 0304-B(http//WWW.aocs.org/yech/crm))和种子粉末标准物质(Trapmann et al.,2004b)。核酸分子标准物质是含有已知量值(目标基因拷贝数或含量)的植物基因组DNA或质粒DNA分子,目前已有的核酸分子标准物质主要有基因组DNA分子标准物质(Fluka69407(http//www. sigmaaldrich.com/etc/medialib/docs/Fluka/Datasheet/69407dat. Par. 0001 File.tmp/69407dat.pdf);AOCS 0306-A)和质粒DNA分子标准物质(Corbisiei et al.,2007),而基因组DNA分子标准物质主要有叶片DNA(AOCS 0306-A;AOCS 0208-A2(http://WWW aocs. org/tech/crm);AOCS 0306-H(Http://WWW. aocs org/tech/crm))和种子DNA(F1uka 69407)分子标准物质两种。每种类型的标准物质在制备、保存和使用中都有其优缺点。具体见表1略。 由表1略可知,基体标准物质由于具有与待测物相同司或相近的基体效应,而且可以用于核酸和蛋白两个水平的检测,应用相对较。但是其纯度和均匀性不容易保证,使用不方便、价格昂贵,而且原材料获得以及复制难度较大。核酸分子标准物质可以解决均匀性问题,其中质粒分子标准物质还有容易获得和使用方便等特点(Allnutt et al.,2006),但是因为其PCR扩增效率与基因组DNA的扩增效率可能存在差异,使用质粒分子标准物质对转基因产品定量时须谨慎。基因组DNA分予标准物质虽然不存扩增效率差异,但因为纯度难以控制,所以复制比较难,价格最高。2 转基因标准物质制备过程中关键点2.1 转基因基体标准物质 转基因植物基体标准物质的研制技术关键包括候选物品种纯度鉴定、标准物质均匀性研究,标准物质定值和不确定度评价等技术研究。基体标准物质候选物纯度鉴定非常关键,因为这直接关系到转基因成分含量的准确性,在目前所有基体标准物质研制报告中,都提供了该标准物质候选物纯度及鉴定方法(Clapper and Cantrill,2009;Trapmann et al.,2010a)。纯度鉴定分遗传背景纯度和基因型纯度鉴定。遗传背景纯度鉴定一般是标准物质候选物供应商(目前国际上主要的供应商为拜尔公司、先正达公司和孟山都公司)通过田间性状筛选、分子水平和蛋白水平的纯度检测完成。分子水平检测技术一般采用定性PCR(聚合酶链式反应)、荧光定量PCR、Southem杂交等技术。蛋白水平检测技术包括Western杂交和免疫试纸条法等(Trapmann et al.,2004b)。基因型纯度检测方法一般采用PCR、Invader(亲染探针法)和SNP Wave技术检测等位基因的纯合或杂合(Eijk et al.,2004;Twyman et al. 2005)。此外,标准物质生产者还要对标准物质候选物进行转化体特异性检测,如对转基因玉米NK603标准物质候选物进行转化体特异性鉴定时要排除转基因玉米其它的转化体(GA21、MON863和MON810)(Trapmann et a.,2005a)。不同的转化体特异性纯度鉴定水平依赖于该转化体特异性定量PCR方法的检测限(Limit of Detection,LOD),由于每个转化体特异性方法的检测限不同,因此对每种转化体的转基因标准物质候选物可检测的纯度水平不一致,如对转基因玉米GA21可鉴定纯度99.935%(LOD=0.065%,Trapmann et al.,2004c),对转基因玉米NK603可鉴定纯度99.970%(LOD=0.030%,Trapmann et al.,2005a)对转基因玉米TCl507可鉴定纯度99.960%(LOD=0.040%,Trapmann et al.,2005b),对转基因土豆EH92-527-1可鉴定纯度99.980%(LOD=0.020%,Trapmann et al.,2011)。 基体标准物质均匀性研究目前主要采用实时荧光定量PCR(Trapmann,et al.,2011)和金标记中子活化法(Trapmana et al.,2010a,b,c)。采用荧光定量PCR方法进行均匀性检验是通过测定目标基因与内标准基因的比值这一特性量值来考察瓶间与瓶内的一致性。利用这种方法进行均匀性检测的优点是测定的量值与标准物质特性量值一致,但缺点是PCR方法精密度低,从而导致均匀性检验对标准物质量值不确定度贡献较大。采用金标记中子活化法进行均匀性检测优点是灵敏度高,重复性好,但缺点是该方法的成本比较高。2.2 转基因植物质粒分子标准物质 转基因植物质粒分子标准物质的研制技术关键包括目标序列和内标准基因序列的选择和扩增、质粒分子标准物质定值和适用性验证等,其中对于质粒分子的定值和适用性验证是质粒分子标准物质研制的技术难点。内标准基因序列的选择一般取决于转基因检测时常用的基因,研制的玉米中常用的内标准基因有adh(Alcoholdehydrogenase,乙醇脱氢酶)、zSSIIB(淀粉合成酶基因)和hmg(High mobilitygroup,高迁移率族蛋白基因),转基因玉米Mon810质粒分子标准物质ERM-AD413的内标准基因为adh基因片段(Corbisier et al.,2007);报道的转基因玉米质粒分子pNK603和pUC57-Btll则选择zSSIIB基因作为内标准基因(董莲华等,201la;董莲华等,2011b)。水稻中常用的内标准基因有REB4(Starch branching enzymes,淀粉分枝酶基因)、SPS(Sucrose phosphate synthase,蔗糖磷酸合成酶)、GOS9和PLD(Phospholipdase D磷脂酶基因)(Ding et al.,2004;Wang et al.,2010)。Cao等(2011)在构建转基因水稻TT51-1质粒标准分子时选择了PLD基因作为标准基因。大豆中常用的内标准基因是Lectin(凝集素基因),棉花中常用的内标准基因是Sad(Steroyl-ACP desatuTase,硬脂酰-ACP脱饱和酶)(Yang et al.,2005)。 目标基因的选择可以是启动子或终止子基因序列,可以是转入的功能基因序列,也可以是转化体特异性边界序列基因(即一部分来源于植物基因组,一部分来源于转入的外源基因)。目前研究最多的是选择边界序列作为外源基因进行构建质粒分子,如Cao等(2011)构建的转基因水稻TT51-l质粒分子目标基因为3′端边界序列,Taveniers等(2005)等构建的Btl76和GA21质粒分子也选择了3′端边界序列作为目标基国。2.3 转基因植物基因组分子标准物质 转基因植物基因组分子标准物质的研制技术关键包括候选物纯度鉴定、基因绸DNA纯化和定值。对候选物纯度鉴定与和转基因基体标准物质研制中的候选物纯度鉴定一样关键,因为纯度直接决定了量值的准确性。基因组DNA的纯化同样至关重要,PCR抑制因子的存在会严重影响后续PCR的扩增,从而影响对待测样品的赋值。目前,基因组DNA纯度一般以A260/A280和A260/A230这两个比值的大小来进行评价:A260/A280比值要求在1.8~2.0之间,而A260/A230比值则要求2.0。PCR抑制因子的存在与否,可通过倍比稀释PCR扩增后比较测定的Ct值与推测Ct值之差进行确定(ENGL,2008)。3 转基因标准物质量值确定方法 基体标准物质定值方式目前主要有两种:第一是重量法,即以制备时的重量配比给标准物质进行赋值,单位一般为g/k或者以%表示,采用重量法进行量值时其不确定度来源主要包括称量引入的不确定度和标准物质的纯度引入的不确定度。目前欧洲标准物质和标准方法研究院(Institute for Reference Materials and Measuremnents,IRMM)所制备的转基因标准物质大部分都是使用这一方法进行量值(Trapmann et al.,2004a;TraPmann,et al.,2010b;Trapmann et al.,2004c;Trapmann et al.,2005a)。第二是采用定量PCR方法对目标基因与内标准基因的拷贝数进行测定,以拷贝数的百分数(%)表示。由于PCR方法为相对定量,而且精密度低,所以使用该方法进行量值时标准物质的不确定度较大。在IRMM最新发布的标准物质研制报告(Andade et al.,2011)采用了荧光定量PCR方法对转基因玉米NK603标准物质进行量值。 此外,数码PCR(digital PCR)技术是新发展起米的可应用于转基因检测及标准物质定值的方法,因为数码PCR技术不需要外标而可以进行绝对定量,因此在标准物质定值方面有很大的发展前景(Bhat etal,2009),如在BIPM组织的关键比对CCOM-K86中,有证据表明数字PCR对转基因盲样测定的结果与定量PCR测定结果一致(Corbisier et al.,2011),但该方法测定结果的不确定度和溯源途径还有待于进一步研究。最新出现的Droplet digital PCR(ddPCR)技术(Markey et al.,2010)也是一种不依赖于外标的绝对定量方法,用于转基因含量的测定和目标基因的绝对定量方面具有良好的发展满力。 对于转基因基因组和质粒分子标准物质的量值与基体标准物质不同,除了需要明确转基因成分含量外,还要明确DNA浓度。目前,对转基因基因组或质粒DNA标准物质浓度量值IRMM采用紫外分光光度法,还可用PicoGreen荧光染料法,但是这些方法在标准物质量值溯源性方面都不能满足要求(Haynes et al.,2009)。最近发展的超声波-高效液相色谱(董莲华等,2011c)和超声波一同位素稀释质谱法可以解决核酸浓度定量测定的溯源性问题。此外电感耦合等离子体发射光谱技术(ICP-OES)也是溯源清晰的核酸浓度定定量方法(English et al.,2006)。用于转基因成分含量或拷贝数量值确定的方法主要是荧光定量PCR方法。荧光定量PCR方法是发展起来比较成熟的转基因定量方法(Ronning et al.,2003;Holst-Jensen et al.,2003;Cankar et al.,2006),但由于该方法是依赖于外标的相对定量,且重复性较差,难以成为标准物质定值的绝对方法。目前对于质粒分子标准物质的量值方式还没有合理的模式,因为质粒分予标准物质不同于基体含量标准物质,首先质粒分子本身的量值为目标基因和内标准基因的比值,而这一比值可以通过基因测序法来确定,也可通过定量PCR方法来确定。通过测序方法对标准值进行确定,其不确定度基本可以忽略(董莲华等,201lb),而通过PCR方法进行定值,不确定度需要考虑PCR过程中的影响因素,一般不确定度都较大(董莲华等,2011b1)。 此外,质粒分子作为标准物质是要用于转基因成分含量检测的,检测对象是基因组DNA,因为分子大小差异可能会导致PCR扩增效率有差异,因此对质粒分子标准物质定值还要充分考虑质粒和基因组可替代性问题。可替代性是指标准相对于未知样品的行为。一般观点认为,质粒DNA与基因组DNA是否可以替代主要取决于PCR过程中两者产生的标准曲线,具体反应在两者标准曲线的斜率(与PCR扩增效率相关)、截据和线性相关系数。但笔者认为这些参数中最关键的是两者标准曲线的斜率,其次是截据,线性相关系数只是反应标准曲线自身的线性,该参数更多的是取决于标准曲线制备过程中的梯度稀释。如果斜率和截据这两个参数之间没有显著差异,那么两者基本就可以替代(Taverniers et al.,2009)。但是如果斜率没有差异,截据存在差异,不能简单的认为两者不可以替代,这种情况F可经过实际样品验证,如果两者对于已经标准值的物质或者有证标准物质进行定量测定的结果一致,也可以证明两者是可以替代的(董莲华等,2011a;董莲华等,2011b)。或者通过大量实验找出质粒分子与基因组分子扩增之间的系数,也是解决这一问题的方法。4 国内外转基因标准物质研究现状与展望 目前国际上主要由IRMM、美国油料化学会(American Oil Chemists’Society,AOCS)和Sigma公司等专业机构进行转基因标准物质的研制和销售。国外对转基因标准物质的研制多集中在基体标准物质,目前仅有一个质粒分子标准物质(MON810)申请了有证标准物质(Corbisier et al.,2007),具体见表2略。国内目前仅有一种转基因大豆粉二级标准物质(GB/W100042/43),还没有有证质粒分子标准物质。但是我国目前批准的转基因标准品已有20种,这些转基因标准也具有明确的量值,它们与标准物质的区别在于转基因标准品的研制以应用为首要目标和出发点,对溯源性并不关注,因此其溯源途径尚不明确。而转基因标准物质除了以应用为目的具有明确的量值和不确定度外,对量值的溯源性也要声明。我国自2009年启动转基因生物新品种培育重大专项以来,研制的转基因标准物质涉及的国内外16个转化体30多个基体和质粒分子标准物质,分别由中国计量科学研究院、上海交通大学、中国农科院油料所研制。目前的这些标准物质正在进行有证申报。预计这些转基因标准物质将很快能够服务于我国的进出口贸易和出入境检验检疫等,从而有效的避免贸易争端。5 展望 转基因标准物质的使用将有效地解决转基因检测不可比的问题,从而避免国际贸易争端。然而,只有转基因标准物质的量值得到国际互认,才可真正有效地避免贸易争端,消除贸易壁垒。而要达到国际互认最简便有效地方式是通过国际比对或各国协同定值。具有国际互认量值的标准物质才能够更好的服务于进出口贸易检测。此外,未来的转基因标准物质研制应以简单实用为主,由于基体标准物质会受其原材料的限制,而质粒分子标准物质自身的特点决定了其应用的广泛性和使用的方便性。况且,如果将多个转化体特异性检测片段同时构建在同一个质粒分子上,可达到一个标准物质进行多个转化体检测应用的目的,这样既可提高标准物质的利用率,又可节约成本,应是未来的转基因标准物质研制的发展方向。 作者单位:(中国计量科学研究院,北京 100013) 文章采集:caisy 注明:国家科技支撑项目(No.2008BAK41B01)和转基因生物新品种培育重大专项(No.2008ZX08012-003)。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制