当前位置: 仪器信息网 > 行业主题 > >

水合氯醛标准品于乙

仪器信息网水合氯醛标准品于乙专题为您提供2024年最新水合氯醛标准品于乙价格报价、厂家品牌的相关信息, 包括水合氯醛标准品于乙参数、型号等,不管是国产,还是进口品牌的水合氯醛标准品于乙您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水合氯醛标准品于乙相关的耗材配件、试剂标物,还有水合氯醛标准品于乙相关的最新资讯、资料,以及水合氯醛标准品于乙相关的解决方案。

水合氯醛标准品于乙相关的资讯

  • 加州65提案又添4种新物质
    2013年9月13日,加州65提案又添4种新物质,分别是:三氯乙醛、水合氯醛、1,1,1,2-四氯乙烷、三氯乙酸,这些物质早前在2013年7月已向公众进行咨询。自2013年9月13日生效。具体情况如下: 化学品 CAS号 毒性 提交机制 三氯乙醛 75-87-6 致癌 LC 水合氯醛 302-17-0 致癌 LC 1,1,1,2-四氯乙烷 630-20-6 致癌 LC 三氯乙酸 76-03-9 致癌 LC   详情:http://www.oehha.ca.gov/prop65/CRNR_notices/list_changes/091313P65list.html
  • 用六年,讲好“吸入麻醉”的故事
    2021年11月27日,瑞沃德生命科技有限公司成立19周年,与此同时瑞沃德第 一台自研麻醉机的问世也有六余年。吸入式麻醉机作为瑞沃德的经典产品,始终如一坚持高质量的出品,不断倾听实验人员的心声,加大研发投入加速产品升级迭代。1让国内实验室都能用上吸入麻醉以往利用水合氯醛进行注射麻醉,是我国动物实验中所采用的最为普遍的麻醉手段,操作简单成本低,只需要注射器就能完成,但由于注射麻醉剂量不好把控,以及药物水合氯醛本身使用时镇痛效果较差,并且有导致腹膜炎等的副作用,动物往往在麻醉过程中会感觉到痛苦、滞后苏醒,甚至麻醉过深出现死亡的现象,这些不但相悖于动物福利,还极大的影响了实验的正常进行。2009年麻醉学杂志 (Anesthesiology)明确表示将竭力关注动物保护问题,并且不再发表使用水合氯醛进行麻醉或安 乐 死的文章。 图:国内一位科研人员使用水合氯醛麻醉向《Scientific Reports》投稿遭拒吸入式麻醉相较于采用水合氯醛进行麻醉,有着苏醒迅速、安全可控的优点,也符合动物福利体系,所以吸入式麻醉在欧美地区非常普遍,但在前几年,一套海外知名品牌的小动物麻醉机在国内售价高达四五万人民币,这不是一般实验室能够负担的。瑞沃德便意识到:在吸入式麻醉成为必然趋势的当下,瑞沃德要自主研发出高性价比的动物麻醉机,让国内实验室都能用上吸入麻醉。这便是瑞沃德自主研发动物麻醉机的初心,由此,瑞沃德便投入大量人力物力,通过多年的研发和技术攻关,推出了质量过硬、性价比高的动物麻醉机及其配件。 2以客户为本,持续进步2015年,瑞沃德正式推出了R510等一系列麻醉机产品。蒸发器作为麻醉机的核心部件,其质量和输出浓度的稳定性直接关联着麻醉的效果,瑞沃德特采取适合临床应用的蛇形管路设计,来保证蒸发罐的高密闭性、高稳定性,使输出气体浓度不受流量、温度、流速、压力变化的影响,并且对每只蒸发罐的浓度进行精 准测定,全罐质检,助力实验乃至手术的成功进行。同时推出的还有一系列附配件,满足客户多种气源、多种动物、多种场景的工作需求,达成“一站式”选配体验。图:2015年的R510麻醉机,直到2021客户仍在稳定使用2016年,瑞沃德又全新上线了五通道麻醉机R550和气体回收器R546W。五通道麻醉机可同时麻醉五只动物,且诱导麻醉可以根据动物数量对气流量进行独立调节,极大地提高了科研实验的效率;而气体回收器利用负压抽吸原理,取代传统低效的废气吸收装置,抽吸力量大,可同时吸收五个面罩排出的麻醉废气,此外还具备称重报警功能,可随时称量和显示气体过滤罐的重量,提醒用户及时更换,让实验更安全高效。R550多通道麻醉机R546Pro气体回收器“快速充氧”功能不仅可以对麻醉动物施行给氧急救,也可以快速冲洗气路,防止麻药气体逸散造成污染,作为一个附加功能它以往只存在于增强型麻醉机,而在2018年,瑞沃德发布了R500通用型小动物麻醉机,此款麻醉机结构紧凑,含有快速充氧功能,但价格却更低廉,真正的性价比之 王。在2020年,考虑到部分客户实验室空间有限,瑞沃德又对气体回收器R546W做了“瘦身” ,改良为全新的R546Pro… … 六年以来,瑞沃德麻醉机始终以客户实际需求为导向不断进行自我革新,逐渐在国内科研麻醉机市场达到60%的占有率。3心怀感恩,回馈社会在产品取得了一定成绩的同时,瑞沃德也不忘初心"为生命品质的提升贡献智慧和力量"。公司成立以来,瑞沃德已向多所农业高校捐赠了动物麻醉机,在2020年初疫情席卷全国之时,作为可可西里野生动植物保护协会的副会长单位,瑞沃德的同事们放弃休息时间,通过各个渠道紧急联系全球供应商,努力克服运力困难,将防疫物资送达一线医护人员的手中。同年8月,瑞沃德又携手可可西里野生动植物保护协会和中国环境监察杂志社,向大熊猫国家公园管理局捐赠包含麻醉机在内的价值一百余万元的设备,为大熊猫保护工作尽了一份绵薄之力。疫情期间防疫物资捐赠瑞沃德员工正在给小熊猫做麻醉手术如今,瑞沃德麻醉机产品已覆盖海内外1000余家医院及科研单位(800+国内,300+国外),已助力发表文献数量多达340+,这不仅是对瑞沃德麻醉机产品稳定性可靠性的肯定,更是对多年来持续投入麻醉机产品研发及改进的鼓励。瑞沃德从15年自主研发的麻醉机面世以来,遇上了国家对国产设备支持力度加大的政策利好,随之而来市面上的国产麻醉机品牌也逐年增多,显然,我们迎来了机遇与挑战并存的新风口。未来,瑞沃德将会继续秉承着奋斗精神,继续写好"吸入麻醉"的故事,为动物麻醉保驾护航,为生命科学贡献力量,让我们共同期待麻醉机的下一段故事吧。 关于瑞沃德深圳市瑞沃德生命科技有限公司成立于 2002年,是一家专业服务于生命科学、动物健康以及临床医疗领域的国家高新技术企业。现有在职员工700多人,其中研发人员占比25%左右,每年投入营业额的15%进行研发,已获得近百项国内外发明专利。瑞沃德致力于为生命品质的提升贡献智慧和力量,希望成为生命科学"产学研用"的有力使能平台, 做基础研究的使能者、应用研究的促进者、产业化的推动者、临床诊断与治疗的积极贡献者。通过持续不断研发创新投入,瑞沃德已搭建七大解决方案,涵盖动物手术与造模、动物行为学研究、微循环监测与活体成像、神经信号研究、组织与分子病理、细胞与分子生物研究和动物诊疗领域,可满足不同领域客户的专业化研究设备配置需求。目前产品及服务覆盖海内外 100 多个国家和地区,已助力全球700+医院,1000+科研院所,6000+高等院校,11000+宠物医疗机构取得成功,助力发表SCI文章12000+篇,赢得了数万家客户的信赖和支持。
  • 泰安市纺织服装产业链商会(协会)下达《氢水合物 氢气含量的测定 气相色谱法》等7项团体标准计划项目
    各单位:经有关单位申报,泰安市纺织服装产业链商会(协会)标准化技术委员会通过初审、立项评审等程序,对《氢水合物水溶液 氢气含量的测定 气相色谱法》等7项TGIC团体标准计划项目予以立项。请各项目牵头单位按照《泰安市纺织服装产业链商会(协会)团体标准管理办法》的有关规定认真组织落实,并做好以下工作:一、成立标准起草工作组,制定工作计划,确保项目按期完成。二、加强调查研究和试验验证,试验方法要至少3家实验室比对,确保方法科学合理。征求意见稿送秘书处前,应先征求业内专家意见,并将专家意见汇总后一并报秘书处。三、请各项目牵头单位指定一名联系人(姓名、单位、手机、微信)报秘书处邮箱:zkgcbwh@163.com,并与秘书处保持密切沟通。欢迎与此批团标计划项目相关的企事业单位或个人参与标准编制工作。如有意向请联系秘书处,秘书处将根据填报情况进行协调和确定。关于下达《氢水合物 氢气含量的测定 气相色谱法》等 7项团体标准计划项目的通知.pdf
  • 自来水合格率50%?悬疑不能一直稀里糊涂
    开栏的话:大家好,我是小蒋。国事,家事,天下事,天天都有新鲜事。你评,我评,众人评,百花齐放任君看。观点各有不同,角度各有侧重,只要我们尊重客观、理性公正。   自来水合格率50%?悬疑不能一直稀里糊涂   背景:有媒体披露,2009年下半年,住建部水质中心作了被认为是近十几年来最大规模的一次普查,但结果至今都没有对外公开,据参与的知情人透露,合格率也就50%左右。   华商报发表杨鹏的文章:消息一出,南京、广州等牵扯在内的城市就公开“辟谣”,称各自区域内的水质达标。显然,这种嘴巴上的自证清白,是很难服众的。自来水水质不合格,说起来,原因无非三个方面:水源地不合格 自来水厂处理工艺跟不上污染 老旧管道的二次污染。目前,已经很难找到毫无污染的水源地,这是个无奈的现实。在令人忧虑的用水安全面前,自来水厂的价值更为重要。但据媒体披露,“我国现在99%的自来水厂用的仍然是100年前的常规工艺。”而专家认为,“自来水安全问题不能不归于国家水质标准的长期落后。内地长期使用的饮用水标准是1984年制定的。”“2007年7月1日,国家颁布了新的饮用水水质标准,检测指标从35项提高到了106项。但目前除了北京等个别超大城市外,绝大部分城市没有检测106项指标的能力。”技术是百年前的,管道是几十年前的,殊不知,上游的污染程度早已今非昔比,这样的硬件根本不足以应付今日之局面,自来水能真正合格吗?水质的问题,就是个钱的问题,就是谁来承担因更新工艺、改造管道而带来的终端成本上涨压力?专家测算每年的用水成本增加约200亿元左右。对于我们这个经济实力已经跃居全球第二的国家,每年200亿相当于个零头而已,即便相较于每年动辄上千亿的三公消费而言,省下这点钱也不是什么难事,或者说,每年200亿,于今日而言,不是个能力问题,某种程度上,更是个良心问题、责任问题、伦理问题。   小蒋随想:自来水的合格率究竟是多少?2007年底,国家发改委、水利部、卫生部、建设部、环保总局等多部委联合印发《全国城市饮用水卫生安全保障规划》称“全国城市供水单位监督抽检集中式供水水质合格率仅为83.4%”。而近期某媒体披露的“未公开的合格率”只有50%左右。这两个数据不可能都是真实的,至于哪个数据“不真”,恐怕不能稀里糊涂。或者说,这已不是“数据误差”的问题,而是关系到行政公信力与媒体底线操守的问题。有人可能会说“这种事很敏感”。其实呢,在一些统计数据与居民切身感受不符的背景下,在虚假新闻不时让人大跌眼镜的时候,无论是行政者,还是公众,都有相应的心理承受力。人们需要的是真相,而不是看上去不错的数据或耸人听闻的猛料。只有在获得真相的基础上,宏观决策与民主监督,才能制定并实施针对性的举措。除了合格率,人们同样关注自来水价格。不得不说,近年各地的水价听证会往往成了“听涨会”。经营成本上涨、水资源紧张、运用价格杠杆……这些说辞人们听得都腻了。如果能喝上合格的水,人们至少觉得没白涨价。倘若水真的存在不合格的可能,“质次价高”让人情何以堪?水是生命之源,水的合格与否不能稀里糊涂。
  • 科技部批准建设天然气水合物等企业国家重点实验室
    p style=" text-align: center " strong 科技部关于批准建设天然气水合物、认知智能2个企业国家重点实验室的通知 /strong /p p style=" text-align: center " 国科发基〔2017〕386号 /p p   国务院国有资产监督管理委员会、安徽省科技厅: /p p   企业国家重点实验室是国家创新体系的重要组成部分,主要任务是面向战略性新兴产业和行业发展需求,以提升企业自主创新能力和核心竞争力为目标,开展基础和应用基础研究及共性关键技术研发,研究制定国际标准、国家和行业标准,聚集和培养优秀人才,引领和带动行业技术进步。 /p p   为进一步完善企业国家重点实验室布局,科技部启动天然气水合物、认知智能企业国家重点实验室的建设工作。根据专家评审结果,经研究,现决定批准建设“天然气水合物国家重点实验室”、“认知智能国家重点实验室”2个实验室(名单见附件)。 /p p   请你们抓紧组织实验室依托单位编制《企业国家重点实验室建设与运行实施方案(2018 2022年)》 按照《依托企业建设国家重点实验室管理暂行办法》(国科发基〔2012〕716号)的规定和要求,落实有关政策和建设经费,组织相关单位凝练实验室发展目标、明确主要研究方向和重点、组织科研队伍、引进和培养优秀人才、完善和提升实验研究条件、建立“开放、流动、联合、竞争”的运行机制,做好企业国家重点实验室建设与运行管理工作。 /p p   特此通知。 /p p   附件:批准建设的企业国家重点实验室名单 /p p style=" text-align: right " 科 技 部 /p p   附件 /p p style=" text-align: center " strong 批准建设的企业国家重点实验室名单 /strong /p p style=" text-align: center " img title=" 001.png" src=" http://img1.17img.cn/17img/images/201712/insimg/e5e38231-dfe9-46f0-838b-820c434027ca.jpg" / /p p & nbsp /p
  • 自来水合格率危机呼唤水务行业市场化改革
    “自来水合格率仅有50%”的消息在网上迅速流传。这条消息源自《新世纪周刊》最新一期封面报道——《自来水真相》。据悉,2009年下半年,为了大致搞清全国城市饮用水的水质状况,住建部水质中心曾做了一次全国普查,数据却一直没有对外正式公布。多位接近权威部门的业内人士透露,他们所获知的该次检测结果,实际合格率也就是50%左右。(5月8日《新世纪周刊》)   自来水水质问题由来已久,即便没有统计数据作为佐证,人们从日常生活中也能发现一些端倪。有人说,自来水的漂白粉味儿比较重,连鱼都养不活,人怎么能喝?还有人发现自来水烧开后水垢很多,于是也怀疑自来水的水质。   这样的怀疑也有道理,在自来水出厂之后,要经过庞大的供水系统输送到各家各户,这中间自来水要经过管线和水箱等很多设施,由于城市很多的水箱等设施的清洁检测工作存在着不足,使得自来水受到铁锈、细菌等污染,我国自来水企业目前普遍采用的加氯消毒等传统工艺还存在着一定的缺陷,也会带来更多水质污染的隐患。   而2009年以来,大量的学者与专家开始宣传我国自来水行业亏损论,要求自来水涨价。《中国证券报》报道表明,截止到2011年9月,全国自来水生产企业的亏损比例还有36.35%,销售毛利率只有2.03% 全国污水处理企业的亏损比例还有23.37%,销售毛利率只有8.43%。   亏损问题、水质问题、涨价问题这两者之间是不是存在某种联系?笔者以为水务具有天然垄断性,垄断造成的管理低效和服务水平低下,以及对价格的非市场调控。这造成不少城市供水行业一直处于亏损状态,依靠国家财政补贴运营。由此自来水公司也没有必要采取新的技术和方法。   我国早已正式加入WTO,作为市政公用领域内的水务行业走向开放、走向市场化已经成为必然趋势,但是涨价不是解决之道。   不过,市场化不代表着涨价,由于公用事业单位一般在特定的地区范围内具有独家垄断经营权,不存在由多家企业的平均成本决定的社会成本,这样,企业的实际成本就成为“社会成本”。以此作为定价的基础,企业增加的成本可轻易转嫁出去,而政策性亏损掩盖经营性亏损,掩盖管理薄弱和经营不善,这样就不可能刺激企业努力降低成本,从而不能促使企业提高生产效率。   水务行业市场化改革不能只依靠行政手段,应该以法律手段和经济手段为主,汲取现代经济管理的最新理论和方法,实现科学管理,优化资源配置,提高生产效率,这样才能改变亏损,质量低下,一味求涨价,而又被低下管理消耗的怪现象。   当然,公众有权要求相关部门立即公布真实的普查结果,没有权威的可信的调查结果也难以使流言止于智者,反而倒逼公众依据常识而得出的猜测。
  • 200万!茂名市电白产业园投资开发有限公司电白沉香检测中心项目
    项目编号:GDZY-DB2022002项目名称:电白沉香检测中心项目(仪器设备、耗材采购)采购方式:询价预算金额:200.0000000 万元(人民币)采购需求:(一)设备清单(具体参数、配置要求见第二部分)序号设备名称数量序号设备名称数量1生物显微镜118净气型储药柜12体式显微镜119冷藏箱13超声波清洗仪120冰箱14紫外分析仪121UPS15千分之一电子天平122稳压器16十万分之一电子天平123数码相机17高效液相色谱仪124真空干燥箱18水浴锅125气相色谱-质谱联用仪19水浴锅126电热套310低温冷却循环泵227电热套311粉碎机128电热套312粉碎机129旋光仪113隔膜真空泵130折光仪114电热恒温鼓风干燥箱131超纯水仪115气流烘干器132激光打印机116旋转蒸发仪133电脑617微量移液器1 (二)耗材清单(具体规格要求见第二部分)序号耗材名称数量序号耗材名称数量1生物解剖工具套装数量36滤膜2盒2载玻片1套37滤膜2盒3盖玻片5盒38一次性注射器1包4刀片5盒39量筒5个5牙签10盒40量筒各2个6擦镜纸1盒41具塞锥形瓶20个7离心管5包42漏斗10个8离心管盒1包43烧杯各10个9载玻片盒2个44试剂瓶各10个10一次性塑料滴管2个45玻璃棒5根11称量纸2包46球形冷凝管10个12长柄药匙2包47干燥器2个13样品筛4个48具塞试管20个14定性滤纸1套49容量瓶各10个15点样毛细管10盒50刻度管各2个16硅胶薄层色谱板2管51液相进样瓶3盒17镊子5盒52样品瓶各2包18玻璃刀3把53蒸发皿20个19酒精灯1把54水合氯醛2瓶20铁架台2个55香草醛1瓶21石棉网10个5695%乙醇2箱22O型圈夹4个57色谱乙腈1箱23表面皿4GE58色谱甲醇1箱24硅胶管1盒59甲酸1瓶25冷凝夹10米60沉香四醇5瓶26万向夹10个61沉香对照药材10瓶27烧瓶夹10个62蓝色变色硅胶5瓶28木制漏斗架10个63冷却防冻液5桶29试管架3个64五氧化二磷2瓶30吸耳球2个65称量瓶10个31移液器枪头4个66无水氯化钙干燥管2个32色谱柱1包67移液管各233玻璃器皿清洗刷子各2根68刻度尺234封口膜1批69层析缸各235标签纸2卷合同履行期限:/本项目( 不接受 )联合体投标。
  • 《食品安全国家标准 食品营养强化剂 花生四烯酸油脂(发酵法)》(GB 1903.65-2024)等7项食品营养强化剂标准解读
    根据《食品安全法》规定,国家卫生健康委、市场监管总局联合印发2024年第1号公告,发布47项新食品安全国家标准和6项修改单。(可点击相关话题:47项食品国家标准解读)本次发布的《食品安全国家标准 食品营养强化剂 花生四烯酸油脂(发酵法)》等7项食品营养强化剂质量规格标准包括2项修订标准和5项制定标准,规定了各类食品营养强化剂的范围(包括生产工艺等)、化学名称、分子式、结构式、相对分子质量、感官要求、理化指标以及配套的检验方法等内容。标准名称检测方法相关仪器GB 1903.65-2024  食品安全国家标准 食品营养强化剂 花生四烯酸油脂(发酵法)含量(以 C20H32O2甘油三酯计),w/% ;检验方法采用GB5009.168 食品安全国家标准食品中脂肪酸的测定。匀浆机、气相色谱仪、恒温水浴锅、电子天平、、离心机、旋转蒸发仪。GB 1903.66-2024  食品安全国家标准 食品营养强化剂 二十二碳六烯酸油脂(发酵法)GB 1903.67-2024  食品安全国家标准 食品营养强化剂 植物甲萘醌(维生素K1)含量以总植物甲萘醌和顺式植物甲萘醌计;检测方法采用该标准附录A3方法。电子天平、 液相色谱仪。GB 1903.68-2024  食品安全国家标准 食品营养强化剂 钼酸铵含量以(NH4)6Mo7O244H2O 计],w/%;检测方法采用GB/T657 化学试剂四水合钼酸铵(钼酸铵)中5.3方法。电子天平、烘箱。GB 1903.69-2024  食品安全国家标准 食品营养强化剂 5'-单磷酸尿苷含量以5'-单磷酸尿苷(以干基计),w/%;检测方法采用该标准附录 A 中 A.4方法。电子天平、 紫外分光光度计。液相色谱仪、pH计。GB 1903.70-2024  食品安全国家标准 食品营养强化剂 电解铁含量以铁(Fe),w/%计;检测方法采用该标准附录 A 中 A.4方法。电子天平、 恒温水浴锅GB 1903.71-2024  食品安全国家标准 食品营养强化剂 全反式视黄醇含量以全反式视黄醇计。检测方法采用该标准附录中 A.4方法。电子天平、 液相色谱仪。上述标准均为与《食品安全国家标准 食品营养强化剂使用标准》(GB 14880-2012)配套的食品营养强化剂质量规格标准。标准发布能够更好地适应我国食品营养强化剂生产和使用需求,促进相关行业的健康发展。点击图片获取更多标准解读 》》》》》》
  • 2013年3月1日起实施的食品及相关标准汇总
    2013年3月1日起实施的食品及相关标准汇总,根据国家标准委、工信化部公告筛选整理完成,供参考。 序号 标准号 标准名称 代替标准号 实施日期 1 GB/T 28803-2012 消费品安全风险管理导则   2013-3-1 2 HG/T 4320-2012 无机化工产品 气相色谱分析方法通用规则   2013-3-1 3 HG/T 3519-2012 工业循环冷却水中苯骈三氮唑测定 HG/T 3519-2003 2013-3-1 4 HG/T 3530-2012 工业循环冷却水污垢和腐蚀产物试样的采取和制备 HG/T 3530-2003 2013-3-1 5 HG/T 3539-2012 工业循环冷却水中铁含量的测定 邻菲啰啉分光光度法 HG/T 3539-2003 2013-3-1 6 HG/T 4322-2012 工业循环冷却水污垢和腐蚀产物中硅酸盐的测定   2013-3-1 7 HG/T 4323-2012 循环冷却水中军团菌的检测与计数   2013-3-1 8 HG/T 4325-2012 再生水中钙、镁含量的测定 原子吸收光谱法   2013-3-1 9 HG/T 4326-2012 再生水中镍、铜、锌、镉、铅含量的测定 原子吸收光谱法   2013-3-1 10 HG/T 4327-2012 再生水中总铁含量的测   2013-3-1 11 HG/T 4328-2012 水处理剂 氨基三亚甲基膦酸钠盐   2013-3-1 12 HG/T 4329-2012 水处理剂 乙二胺四亚甲基膦酸五钠   2013-3-1 13 HG/T 4330-2012 水处理剂 二亚乙基三胺五亚甲基膦酸钠盐   2013-3-1 14 HG/T 4331-2012 水处理剂混凝性能的评价方法   2013-3-1 15 HG/T 4367-2012 化学试剂 苯酚   2013-3-1 16 HG/T 3449-2012 化学试剂 甲基红 HG/T 3449-1999 2013-3-1 17 HG/T 3461-2012 化学试剂 一水合α-乳糖(α-乳糖) HG/T 3461-1999 2013-3-1 18 HG/T 3453-2012 化学试剂 一水合草酸铵(草酸铵) HG/T 3453-1999 2013-3-1 19 HG/T 3466-2012 化学试剂 磷酸二氢铵 HG/T 3466-1999 2013-3-1 20 HG/T 3465-2012化学试剂 磷酸氢二铵 HG/T 3465-1999 2013-3-1 21 QB/T 2571-2012 饮料混合机 QB/T 2571-2002 2013-3-1 22 QB/T 4356-2012 黄酒中游离氨基酸的测定 高效液相色谱法   2013-3-1 23 QB/T 4357-2012 营养强化剂 5′-胞苷酸   2013-3-1 24 QB/T 4358-2012 营养强化剂 5′-腺苷酸   2013-3-1
  • 335项国家标准批准发布,农林牧渔与食品领域有哪些?
    近日,2024年第17号国家标准公告发布,国家市场监督管理总局(国家标准化管理委员会)批准《化学试剂 三水合乙酸钠(乙酸钠)》等335项国家标准。这次国家标准的批准发布涉及农林牧渔与食品领域的有13项,仪器信息网整理如下:335项国家标准清单中农林牧渔与食品领域标准序号标准编号标准名称代替标准号实施日期34GB/T 15688-2024动植物油脂 不溶性杂质含量的测定GB/T 15688-20082025/3/176GB/T 24304-2024动植物油脂 茴香胺值的测定GB/T 24304-20092025/3/1215GB/T 44336-2024素肉制品术语与分类2024/8/23217GB/T 44338-2024橘小实蝇检疫处理技术要求2025/3/1218GB/T 44339-2024大宗粮食收储信息管理技术通则2025/3/1219GB/T 44340-2024粮食储藏 玉米安全储藏技术规范2025/3/1220GB/T 44341-2024肥料中总硫含量的测定 高温燃烧法2025/3/1221GB/T 44342-2024苏铁叶枯病菌检疫鉴定方法2025/3/1222GB/T 44343-2024土壤质量 土壤中22种元素的测定 酸溶-电感耦合等离子体质谱法2024/12/1240GB/T 44368-2024进口冷链食品追溯 追溯系统数据交换应用规范2025/3/1310GB/T 44446-2024生产过程质量控制 质量追溯系统2025/3/1330GB/Z 44313-2024生物技术 生物样本保藏 用于研究和开发用途的植物生物样本保藏要求2024/8/23334GB/Z 44383-2024检测方法开发 物质选择指南2024/12/1附件:关于批准发布《化学试剂 三水合乙酸钠(乙酸钠)》公告 (2024【17】号).pdf 信息来源:https://www.sac.gov.cn/xw/tzgg/art/2024/art_8d842bf080f94d75ad0d87f4ec079180.html
  • 所见即所测!当拉曼光谱仪遇上混凝土水合过程!
    当拉曼光谱技术遇上混凝土的水合过程,会发生什么?麻省理工学院的这一研究成果,给你惊喜!拉曼光谱需要将高强度激光照射到材料上,并测量其被构成材料的分子散射时的强度和波长,来创建出一幅特殊的图像。由于不同的分子和分子键,都具有各自独特的散射“指纹”,因而这项技术也可用于制作有关创建材料内部分子结构和动态化学反应的图像。有关报告指出,混凝土中使用的水泥,占据了全球二氧化碳排放总量的8%左右,已经与大多数国家产生的排放量不相上下,降低碳排放是当今时代及未来的发展趋势。今年两会上,“碳达峰”、“碳中和”被首次写入政府工作报告。“碳达峰”是指我国承诺2030年前,二氧化碳的排放不再增长,达到峰值之后逐步降低。“碳中和”是指通过各种节能减排的形式,抵消自身产生的二氧化碳排放量,实现二氧化碳“零排放”。随着对水泥化学性质的深入了解,科学家们就能够改进生产流程或配方成分,从而让混凝土产生更少的排放,或者添加其它能够主动吸收二氧化碳的成分。为达成这一目标,麻省理工学院使用了显微拉曼光谱技术,来仔细观察混凝土在水合期间发生的特定化学反应的动态过程。研究期间,MIT科学家们使用这套装置观察了一个放置在水下的普通混凝土样品,并努力模拟了真实世界的环境条件。该团队总结道:通常情况下,混凝土的水合过程,是从硅酸盐水合产物的无序相开始的,之后它会渗透到整个材料并产生结晶。此前,科学家们只能研究具有平均体积特征、或某个时间节点的混凝土水合快照。但在拉曼光谱仪新技术的加持下,他们几乎可以连续地观察所有变化,并提升了他们的时间和空间尺度上的图像分辨率。如上图所示,水合作用期间,白色的硅酸三钙(alite)形成了蓝色的水合硅酸钙(CSH)与红色的硅酸盐(portlandite)。剩余绿色部分为二钙硅酸盐(belite),而黄色部分则是方解石(calcite)。
  • 质检总局、标准委批准发布192项国家标准
    5月12日,国家质检总局、国家标准委发布了192项国家标准。该批国家标准中,制定128项,修订64项 强制性标准29项,推荐性标准163项。标准名称、编号及实施日期在《中华人民共和国国家标准公告》(2011年第6号)中向社会发布。序号国家标准编号国  家  标  准  名  称代替标准号实施日期1GB/T 620-2011化学试剂 氢氟酸GB/T 620-19932011-12-012GB/T 623-2011化学试剂 高氯酸GB/T 623-19922011-12-013GB/T 628-2011化学试剂 硼酸GB/T 628-19932011-12-014GB/T 636-2011化学试剂 硝酸钠GB/T 636-19922011-12-015GB/T 641-2011化学试剂 过二硫酸钾(过硫酸钾)GB/T 641-19942011-12-016GB/T 644-2011化学试剂 六氰合铁(Ⅲ)酸钾(铁氰化钾)GB/T 644-19932011-12-017GB/T 645-2011化学试剂 氯酸钾GB/T 645-19942011-12-018GB/T 646-2011化学试剂 氯化钾GB/T 646-19932011-12-019GB/T 647-2011化学试剂 硝酸钾GB/T 647-19932011-12-0110GB/T 648-2011化学试剂 硫氰酸钾GB/T 648-19932011-12-0111GB/T 651-2011化学试剂 碘酸钾GB/T 651-19932011-12-0112GB/T 653-2011化学试剂 硝酸钡GB/T 653-19942011-12-0113GB/T 655-2011化学试剂 过硫酸铵GB/T 655-19942011-12-0114GB/T 657-2011化学试剂 四水合钼酸铵(钼酸铵)GB/T 657-19932011-12-0115GB/T 659-2011化学试剂 硝酸铵GB/T 659-19932011-12-0116GB/T 661-2011化学试剂 六水合硫酸铁(Ⅱ)铵(硫酸亚铁铵)GB/T 661-19922011-12-0117GB/T 664-2011化学试剂 七水合硫酸亚铁(硫酸亚铁)GB/T 664-19932011-12-0118GB/T 666-2011化学试剂 七水合硫酸锌(硫酸锌)GB/T 666-19932011-12-0119GB/T 675-2011化学试剂 碘GB/T 675-19932011-12-0120GB/T 677-2011化学试剂 乙酸酐GB/T 677-19922011-12-0121GB/T 687-2011化学试剂 丙三醇GB/T 687-19942011-12-0122GB/T 688-2011化学试剂 四氯化碳GB/T 688-19922011-12-0123GB/T 1156-2011旋套式注油油杯GB/T 1156-19792011-10-0124GB/T 1271-2011化学试剂 二水合氟化钾(氟化钾)GB/T 1271-19942011-12-0125GB/T 1274-2011化学试剂 磷酸二氢钾GB/T 1274-19932011-12-0126GB/T 1281-2011化学试剂 溴GB/T 1281-19932011-12-0127GB/T 1288-2011化学试剂 四水合酒石酸钾钠(酒石酸钾钠)GB/T 1288-19922011-12-0128GB/T 1479.1-2011金属粉末 松装密度的测定 第1部分:漏斗法GB/T 1479-19842012-02-0129GB/T 1479.2-2011金属粉末 松装密度的测定 第2部分:斯柯特容量计法GB/T 5060-19852012-02-0130GB/T 3683-2011橡胶软管及软管组合件 油基或水基流体适用的钢丝编织增强液压型 规范GB/T 3683.1-20062011-12-0131GB/T 3915-2011工业用苯乙烯GB 3915-19982011-11-0132GB/T 4698.2-2011海绵钛、钛及钛合金化学分析方法 铁量的测定GB/T 4698.2-19962012-02-0133GB/T 4698.7-2011海绵钛、钛及钛合金化学分析方法 氧量、氮量的测定GB/T 4698.7-1996,GB/T 4698.16-19962012-02-0134GB/T 4698.14-2011海绵钛、钛及钛合金化学分析方法 碳量的测定GB/T 4698.14-19962012-02-0135GB/T 4698.15-2011海绵钛、钛及钛合金化学分析方法 氢量的测定GB/T 4698.15-19962012-02-0136GB/T 5158.1-2011金属粉末 还原法测定氧含量 第1部分:总则 2012-02-0137GB/T 5158.2-2011金属粉末 还原法测定氧含量 第2部分:氢还原时的质量损失(氢损)GB/T 5158-19992012-02-0138GB/T 5158.3-2011金属粉末 还原法测定氧含量 第3部分:可被氢还原的氧 2012-02-0139GB/T 5158.4-2011金属粉末 还原法测定氧含量 第4部分:还原-提取法测定总氧量GB/T 5158.4-20012012-02-0140GB 6249-2011核动力厂环境辐射防护规定GB 6249-19862011-09-0141GB/T 6548-2011瓦楞纸板粘合强度的测定GB/T 6548-19982011-09-1542GB 7063-2011汽车护轮板GB 7063-19942012-01-0143GB/T 8005.2-2011铝及铝合金术语 第2部分:化学分析 2012-02-0144GB/T 9082.1-2011无管芯热管GB/T 9082.1-19882011-10-0145GB/T 9082.2-2011有管芯热管GB/T 9082.2-19882011-10-0146GB/T 10597-2011卷扬式启闭机GB/T 10597.1-1989,GB/T 10597.2-19892011-12-0147GB 11291.1-2011工业环境用机器人 安全要求 第1部分:机器人GB 11291-19972011-10-0148GB 11557-2011防止汽车转向机构对驾驶员伤害的规定GB 11557-19982012-01-0149GB 11568-2011汽车罩(盖)锁系统GB 11568-19992012-01-0150GB/T 12688.1-2011工业用苯乙烯试验方法 第1部分:纯度和烃类杂质的测定 气相色谱法GB/T 12688.1-19982011-11-0151GB/T 12688.3-2011工业用苯乙烯试验方法 第3部分:聚合物含量的测定GB/T 12688.3-19902011-11-0152GB/T 12688.4-2011工业用苯乙烯试验方法 第4部分:过氧化物含量的测定 滴定法GB/T 12688.4-19902011-11-0153GB/T 12688.5-2011工业用苯乙烯试验方法 第5部分:总醛含量的测定 滴定法GB/T 12688.5-19902011-11-0154GB/T 12688.8-2011工业用苯乙烯试验方法 第8部分:阻聚剂(对-叔丁基邻苯二酚)含量的测定 分光光度法GB/T 12688.8-19982011-11-0155GB/T 12688.9-2011工业用苯乙烯试验方法 第9部分:微量苯的测定 气相色谱法 2011-11-0156GB/T 13306-2011标牌GB/T 13306-19912011-10-0157GB/T 14405-2011通用桥式起重机GB/T 14405-19932011-12-0158GB/T 14406-2011通用门式起重机GB/T 14406-19932011-12-0159GB 14569.1-2011低、中水平放射性废物固化体性能要求 水泥固化体GB 14569.1-19932011-09-0160GB 14587-2011核电厂放射性液态流出物排放技术要求GB 14587-19932011-09-0161GB/T 14627-2011液压式启闭机GB/T 14627-19932011-12-0162GB/T 15354-2011化学试剂 磷酸三丁酯GB/T 15354-19942011-12-0163GB 15580-2011磷肥工业水污染物排放标准GB 15580-19952011-10-0164GB 17930-2011车用汽油GB 17930-20062011-05-1265GB/T 18623-2011地理标志产品 镇江香醋GB 18623-20022011-11-0166GB/T 18691.1-2011农业灌溉设备 灌溉阀 第1部分:通用要求 2011-10-0167GB/T 18691.2-2011农业灌溉设备 灌溉阀 第2部分:隔离阀 2011-10-0168GB/T 18691.3-2011农业灌溉设备 灌溉阀 第3部分:止回阀GB/T 18691-20022011-10-0169GB/T 18691.4-2011农业灌溉设备 灌溉阀 第4部分:进排气阀GB/T 18693-20022011-10-0170GB/T 18691.5-2011农业灌溉设备 灌溉阀 第5部分:控制阀GB/T 19793-20052011-10-0171GB/T 26124-2011临床化学体外诊断试剂(盒) 2011-11-0172GB/T 26125-2011电子电气产品 六种限用物质(铅、汞、镉、六价铬、多溴联苯和多溴二苯醚)的测定 2011-08-0173GB/T 26378-2011粗梳毛织品 2011-09-1574GB/T 26379-2011纺织品 木浆复合水刺非织造布 2011-09-1575GB/T 26380-2011纺织品 丝绸术语 2011-09-1576GB/T 26381-2011合成纤维丝织坯绸 2011-09-1577GB/T 26382-2011精梳毛织品 2011-09-1578GB/T 26383-2011抗电磁辐射精梳毛织品 2011-09-1579GB/T 26384-2011针织棉服装 2011-09-1580GB/T 26385-2011针织拼接服装 2011-09-1581GB 26386-2011燃香类产品安全通用技术条件 2011-09-1582GB 26387-2011玩具安全 化学及类似活动的实验玩具 2011-09-1583GB/T 26388-2011表面活性剂中二噁烷残留量的测定 气相色谱法 2011-09-1584GB/T 26389-2011衡器产品型号编制方法 2011-09-1585GB/T 26390-2011浸渍纸层压木质地板用表层耐磨纸 2011-09-1586GB/T 26391-2011马桶垫纸 2011-09-1587GB/T 26392-2011慢回弹泡沫 复原时间的测定 2011-09-1588GB/T 26393-2011燃香类产品有害物质测试方法 2011-09-1589GB/T 26394-2011水性薄膜凹印复合油墨 2011-09-1590GB/T 26395-2011水性烟包凹印油墨 2011-09-1591GB/T 26396-2011洗涤用品安全技术规范 2011-09-1592GB/T 26397-2011眼科光学 术语 2011-09-1593GB/T 26398-2011衣料用洗涤剂耗水量与节水性能评估指南 2011-09-1594GB/T 26407-2011初级农产品安全区域化管理体系 要求 2011-09-0195GB/T 26408-2011混凝土搅拌运输车 2012-01-0196GB/T 26409-2011流动式混凝土泵 2011-07-0197GB 26410-2011防爆通风机 2012-01-0198GB 26451-2011稀土工业污染物排放标准 2011-10-0199GB 26452-2011钒工业污染物排放标准 2011-10-01100GB 26453-2011平板玻璃工业大气污染物排放标准 2011-10-01101GB/T 26454-2011造纸用单层成形网 2011-09-15102GB/T 26455-2011造纸用多层成形网 2011-09-15103GB/T 26456-2011造纸用异形丝干燥网 2011-09-15104GB/T 26457-2011造纸用圆丝干燥网 2011-09-15105GB/T 26458-2011脂肪烷基二甲基氧化胺 2011-09-15106GB/T 26459-2011纸、纸板和纸浆 返黄值的测定 2011-09-15107GB/T 26460-2011纸浆 零距抗张强度的测定(干法或湿法) 2011-09-15108GB/T 26461-2011纸张凹版油墨 2011-09-15109GB/T 26462-2011种子发芽纸 2011-09-15110GB/T 26463-2011羰基合成脂肪醇 2011-09-15111GB/T 26464-2011造纸无机颜料亮度(白度)的测定 2011-09-15112GB 26465-2011消防电梯制造与安装安全规范 2012-04-01113GB/T 26466-2011固定式高压储氢用钢带错绕式容器 2011-12-01114GB/T 26467-2011承压设备带压密封技术规范 2011-12-01115GB/T 26468-2011承压设备带压密封夹具设计规范 2011-12-01116GB 26469-2011架桥机安全规程 2012-04-01117GB/T 26470-2011架桥机通用技术条件 2012-04-01118GB/T 26471-2011塔式起重机 安装与拆卸规则 2011-12-01119GB/T 26472-2011流动式起重机 卷筒和滑轮尺寸 2011-12-01120GB/T 26473-2011起重机 随车起重机安全要求 2011-12-01121GB/T 26474-2011集装箱正面吊运起重机 技术条件 2011-12-01122GB/T 26475-2011桥式抓斗卸船机 2011-12-01123GB/T 26476-2011机械式停车设备 术语 2011-12-01124GB/T 26477.1-2011起重机 车轮和相关小车承轨结构的设计计算 第1部分:总则 2011-12-01125GB/T 26478-2011氨用截止阀和升降式止回阀 2011-10-01126GB/T 26479-2011弹性密封部分回转阀门 耐火试验 2011-10-01127GB/T 26480-2011阀门的检验和试验 2011-10-01128GB/T 26481-2011阀门的逸散性试验 2011-10-01129GB/T 26482-2011止回阀 耐火试验 2011-10-01130GB 26483-2011机械压力机 噪声限值 2012-01-01131GB 26484-2011液压机 噪声限值 2012-01-01132GB 26485-2011开卷矫平剪切生产线 安全要求 2012-01-01133GB/T 26486-2011数控开卷矫平剪切生产线 2012-01-01134GB/T 26487-2011壳体钣金成型设备 通用技术条件 2011-10-01135GB 26488-2011镁合金压铸安全生产规范 2012-05-01136GB/T 26489-2011纳米材料超双亲性能检测方法 2012-02-01137GB/T 26490-2011纳米材料超双疏性能检测方法 2012-02-01138GB/T 26491-20115XXX系铝合金晶间腐蚀试验方法 质量损失法 2012-02-01139GB/T 26492.1-2011变形铝及铝合金铸锭及加工产品缺陷 第1部分:铸锭缺陷 2012-02-01140GB/T 26492.2-2011变形铝及铝合金铸锭及加工产品缺陷 第2部分:铸轧带材缺陷 2012-02-01141GB/T 26492.3-2011变形铝及铝合金铸锭及加工产品缺陷 第3部分:板、带缺陷 2012-02-01142GB/T 26492.4-2011变形铝及铝合金铸锭及加工产品缺陷 第4部分:铝箔缺陷 2012-02-01143GB/T 26492.5-2011, , , , DIV变形铝及铝合金铸锭及加工产品缺陷 第5部分:管材、棒材、型材、线材缺陷 2012-02-01144GB/T 26493-2011电池废料贮运规范 2012-02-01145GB/T 26494-2011轨道列车车辆结构用铝合金挤压型材 2012-02-01146GB/T 26495-2011镁合金压铸转向盘骨架坯料 2012-02-01147GB/T 26496-2011钨及钨合金废料 2012-02-01148GB/T 26497-2011电子天平 2011-10-01149GB/T 26498-2011工业自动化系统与集成 物理设备控制 尺寸测量接口标准(DMIS) 2011-10-01150GB/T 26499.1-2011机械 科学数据 第1部分:分级分类方法 2011-10-01151GB/T 26499.2-2011机械 科学数据 第2部分:数据元目录 2011-10-01152GB/T 26499.3-2011机械 科学数据 第3部分:元数据 2011-10-01153GB/T 26499.4-2011机械 科学数据 第4部分:交换格式 2011-10-01154GB/T 26500-2011氟塑料衬里钢管、管件通用技术要求 2011-10-01155GB/T 26501-2011氟塑料衬里压力容器 通用技术条件 2011-10-01156GB/T 26502.1-2011传动带胶片裁断拼接机 2011-10-01157GB/T 26502.2-2011传动带成型机 2011-10-01158GB/T 26502.3-2011多楔带磨削机 2011-10-01159GB/T 26502.4-2011同步带磨削机 2011-10-01160GB 26503-2011快速成形机床 安全防护技术要求 2012-04-01161GB 26504-2011移动式道路施工机械 通用安全要求 2012-04-01162GB 26505-2011移动式道路施工机械 摊铺机安全要求 2012-04-01163GB/T 26506-2011悬臂筛网振动筛 2011-10-01164GB/T 26507-2011石油天然气工业 钻井和采油设备 地面油气混输泵 2011-10-01165GB 26508-2011园林机械 坐骑式草坪割草机 安全技术要求和试验方法 2012-04-01166GB 26509-2011园林机械 以汽(柴)油机为动力的步进式草坪割草机 安全技术要求和试验方法 2012-04-01167GB/T 26510-2011防水用塑性体改性沥青 2011-09-01168GB 26511-2011商用车前下部防护要求 2013-01-01169GB 26512-2011商用车驾驶室乘员保护 2012-01-01170GB/T 26513-2011润唇膏 2011-12-01171GB/T 26514-2011互叶白千层(精)油,松油烯-4-醇型[茶树(精)油] 2011-11-01172GB/T 26515.1-2011精油 气相色谱图像通用指南 第1部分:标准中气相色谱图像的建立 2011-11-01173GB/T 26515.2-2011精油 气相色谱图像通用指南 第2部分:精油样品气相色谱图像的利用 2011-11-01174GB/T 26516-2011按摩精油 2011-10-01175GB/T 26517-2011化妆品中二十四种防腐剂的测定 高效液相色谱法 2011-10-01176GB/T 26518-2011高分子增强复合防水片材 2011-12-01177GB/T 26519.2-2011工业过硫酸盐 第2部分:工业过硫酸钾 2011-12-01178GB/T 26520-2011工业氯化钙 2011-12-01179GB/T 26521-2011工业碳酸镍 2011-12-01180GB/T 26522-2011精制氯化镍 2011-12-01181GB/T 26523-2011精制硫酸钴 2011-12-01182GB/T 26524-2011精制硫酸镍 2011-12-01183GB/T 26525-2011精制氯化钴 2011-12-01184GB/T 26526-2011热塑性弹性体 低烟无卤阻燃材料规范 2011-12-01185GB/T 26527-2011有机硅消泡剂 2011-12-01186GB/T 26528-2011防水用弹性体(SBS)改性沥青 2011-09-01187GB 26529-2011宗教活动场所和旅游场所燃香安全规范 2011-10-01188GB/T 26530-2011地理标志产品 崂山绿茶 2011-11-01189GB/T 26531-2011地理标志产品 永春老醋 2011-11-01190GB/T 26532-2011地理标志产品 慈溪杨梅 2011-11-01191GB/T 26533-2011俄歇电子能谱分析方法通则 2011-12-01192GB/T 26572-2011电子电气产品中限用物质的限量要求 2011-08-01   注: 1. GB 6249-2011《核动力厂环境辐射防护规定》、GB 14569.1-2011《低、中水平放射性废物固化体性能要求水泥固化体》、GB 14587-2011《核电厂放射性液态流出物排放技术要求》、GB 15580-2011《磷肥工业水污染物排放标准》、GB 26451-2011《稀土工业污染物排放标准》、GB 26452-2011《钒工业污染物排放标准》、GB 26453-2011《平板玻璃工业大气污染物排放标准》等7项国家标准由环境保护部、国家质量监督检验检疫总局发布。  2. 更正:2011年第2号《中华人民共和国国家标准公告》中,第512项GB/T 26326.2-2010《离线编程式机器人柔性加工系统第2部分:砂带磨削加工系统》的标准编号调整为:GB/T 26153.2-2010。
  • 《絮用纤维制品余氯测试方法(水萃取法)》标准立项
    由浙江省纤检局独立起草的《絮用纤维制品余氯测试方法(水萃取法)》国家标准已于近日立项。   据悉,絮用纤维制品是一种涉及百姓衣食住行各方面,使用范围广,使用量大的产品,其质量的好坏,直接关系消费者的身体建康。由于我国现行的标准体系中缺乏对脱色漂白处理的絮用纤维制品的鉴别方法,给絮用纤维制品的产品质量监管带来了一定的困难。据悉,《絮用纤维制品余氯测试方法(水萃取法)》适用于生活用絮用纤维制品和非生活用絮用纤维制品,能检测作为脱色漂白后残留物质的余氯,从而有效鉴别絮用纤维制品是否使用了经脱色漂白处理的原料。该标准的制定出台将有利于健全和完善我国絮用纤维制品质量监督检测技术水平,加强对絮用纤维制品行业的管理和规范,促进絮用纤维制品产业的健康发展。
  • 中科院水合物中心与美国家实验室合作研究
    中科院网站报道:应美国Lawrence Berkeley国家实验室的邀请,中科院可再生能源与天然气水合物重点实验室博士李刚和苏正于8月2日起程到美国Lawrence Berkeley国家实验室地球科学部开展为期三个月的合作研究,并于11月1日顺利返回广州。   在美期间,李刚和苏正与该实验室George Moridis教授和Keni Zhang博士合作开展了南海北部陆坡天然气水合物开采潜力数值模拟研究,同时进行了深入的学术交流活动。此次合作研究是前期双方达成共识的基础上开展合作研究和交流的第一步。李刚和苏正采用美国Lawrence Berkeley国家实验室开发的TOUGH+Hydrate数值模拟软件分别对2007年成功取样的南海北部神狐海域SH2站位和SH7站位海底天然气水合物藏进行了开采潜力的数值模拟研究。数值模拟过程中主要采用降压法和注热法相结合的开采方法,对垂直井和水平井开采海底天然气水合物的异同进行了比较,根据现有的海底水合物实地数据对井口产气产水速率进行了评价,并对海底沉积物的渗透率、水合物饱和度、海底温压条件以及盖层情况进行了参数敏感性分析,比较全面地评价了神狐海域天然气水合物藏的开采前景。合作研究期间,两人分别完成了题为Evaluation of Gas Production Potential from Marine Gas Hydrate Deposits in the Shenhu Area of the South China Sea: Depressurization and Thermal Stimulation Methods和Numerical Investigation of Gas Production Strategy for the Hydrate Deposits in the Shenhu area的学术论文。   合作结束后,重点实验室副主任吴能友和George Moridis教授就未来双方进一步合作的方式、方向和内容进行深入讨论。
  • 毕井泉:药品标准工作责任重大、使命光荣
    p   8月29日上午,第十一届药典委员会成立大会暨第一次全体会议在京召开。全国人大常委会副委员长、第十届药典委员会主任委员陈竺出席会议,并向第十届药典委员会委员代表颁发感谢信。国家食品药品监督管理总局局长、第十一届药典委员会主任委员毕井泉为新一届药典委员会委员代表颁发聘书,并发表讲话。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/bad5729f-30e8-49c1-9bd4-7fcfccaa08cd.jpg" title=" 1_副本.jpg" / /p p   “今天,我们在这里隆重举行第十一届药典委员会成立大会暨第一次全体会议。我代表食品药品监管总局对大会的召开表示热烈的祝贺!向全体委员,特别是新当选的委员表示诚挚的问候! /p p   这次会议的主要任务是:部署2020年版《中国药典》编制工作,推进药品标准改革,加强药品标准全程管理,推动药品质量水平进一步提高。下面,我讲几点意见。” /p p    strong span style=" color: rgb(0, 112, 192) " 一、充分认识药品标准的极端重要性 /span /strong /p p   药典是药品科学技术发展成果的结晶,是一个国家药品产业发展水平的标志,是药品生产经营者的基本遵循,是药品监管工作的准绳。党的十八大以来,习近平总书记多次强调,要把“最严谨的标准、最严格的监管、最严厉的处罚、最严肃的问责”落到实处,确保人民群众饮食用药安全。习近平总书记把“最严谨的标准”放在首位,突显了标准对于药品监管工作的极端重要性。习近平总书记还强调,“谁制定标准,谁就拥有话语权 谁掌握标准,谁就占据制高点”,深刻阐述了标准对于产品质量的决定性作用。李克强总理多次强调要下决心提高药品质量,严守从实验室到医院的每一道防线。 /p p   党中央、国务院十分重视药品标准工作。1949年,新中国刚刚成立,就组织专家研究编制新中国药典,把药品标准化建设作为改变我国医药产业基础薄弱、人民群众缺医少药落后局面的战略措施。1950年,中华人民共和国药典委员会成立,这是新中国最早的标准化组织。1953年,国家颁布第一版《中国药典》。改革开放以后,药品管理法明确了药品标准的法定地位和药典委员会的法定职责,每五年编制一版药典,药品标准工作和《中国药典》制修订工作步入法治化轨道。 /p p   迄今为止,我国已经颁布实施十版药典,药品标准从无到有、收载品种从少到多、标准水平从低到高,对提高我国药品质量水平、促进医药产业转型升级发挥了重要作用。历届药典委员会功不可没。我们大力提高药品安全性标准,加强药品安全监管,近几年没有发生大的、影响恶劣的药害事件。这些都要充分肯定。但是,我们也要看到,由于历史条件所限,产业发展起步较晚,政府监管能力较弱,药品标准还不能适应监管的需要,与人民群众的期待还有差距。药品质量疗效与美欧日国家有差距,很大程度上是药品上市标准不高,市场上缺乏原研产品作为参比对照。标准缺失、标准落后、标准不管用、标准执行不到位等问题也不同程度存在。我们要认真贯彻落实习近平总书记关于药品监管工作的重要指示,加快标准制修订工作,建立科学、全面、可检验、能执行的标准体系,用“最严谨的标准”提高药品质量疗效,防范药品安全风险,为药品监管工作打下坚实的基础。 /p p   strong span style=" color: rgb(0, 112, 192) "  二、希望认真研究的几个问题 /span /strong /p p   在新一届药典委员会成立、2020年版药典全面启动编制的时候,我想请药典委员会各位委员共同研究几个问题。这几个问题,对于制订标准、修订法律、推进改革、加强监管,都具有重要意义。 /p p   (一)研究药典工作的定位。药典编制工作要贯彻以人民为中心的发展思想,服务于药品监管工作,服务于改革创新,服务于制药产业的发展。编制药典的目的是鼓励好药、淘汰差药、识别劣药假药。 /p p   (二)研究现代药的本质特征和传统药的本质特征,以及现代药与传统药的区别。中华人民共和国宪法和药品管理法都提出了国家发展现代医药和传统医药的要求。要研究现代药与传统药的基本概念,明确界定其内涵和外延。 /p p   药的概念自古有之。各民族历史上都有自己的传统药。我国的中医药文化更是博大精深,在中华民族繁衍生息、与疾病作斗争方面发挥了重要作用。说我们曾经历过缺医少药的年代,主要指的是缺现代医药。 /p p   现代药伴随着现代医学传入中国。现代药是在传统药的基础上,结合现代循证医学,逐步完善形成了今天的基本特征:以医学、化学、生物学等理论为基础 一般都具有明确的活性成分,并不断研究完善其作用机理 经过随机双盲大样本的临床试验,通过试验数据证明对某种适应症有效,对病人个人或人类社会特定疾病的预防或治疗获益大于风险。所以药品审评要临床主导,由临床医生背景的审评员作审评组长。此外,还有经过监管部门审批的制作方法和工艺,确保质量均一、稳定 对药品的全面监督,由药品上市许可持有人履行全生命周期的责任,开展上市后研究,监测不良反应,完善对药品的认识,包括药品说明书中载明的副作用、禁忌、注意事项等 对已上市药品不断评价、退出市场的规范制度。 /p p   传统药是传统的医学理论、传统的制备方法指导下,采取传统的剂型和使用方式、传统的适应症表述、传统的循证方法,有多年使用历史、公众认可的药品。传统的中医药理论是中华民族的文化瑰宝,我们必须发扬光大,继承发展。现代药与传统药最重要的区别就是双盲随机大样本的临床试验证据,获益大于风险的适应症结论,产品均一、稳定的质量控制。如果用现代医学、现代药学理论,现代制备方法、现代循证方法研究传统药,其成果应按现代药申报、审评和监管。这些年,我们在用现代药方法研究开发传统药方面,取得过重要成果。青蒿素、黄连素、麻黄素的发现,特别是青蒿素的发现,是我们对人类社会的重大贡献。用三氧化二砷治疗白血病作用的研究,也是举世瞩目的成果。我们要认真总结这些年天然药物开发研究的经验教训,有哪些临床接受、国际公认的成果,又有哪些教训,走了哪些弯路,对我们继承发展传统药意义重大。 /p p   (三)研究新药上市标准、橙皮书和药典的关系。按照现代药品监管的理念和实践,批准上市一种创新药,就是批准一种药品的标准,包括活性成分、配方、用药途径、剂型、规格、使用方法、制作工艺及作为企业商业秘密的工艺参数。这些也是产品上市后的监管依据。企业必须按照批准的标准生产,整个生产过程的数据都要做到真实、完整,及时记录,可以溯源,否则就要以掺假药品论处。这种经监管部门审批上市的新药带有原创性、标杆性,其申请的专利受专利法保护。专利到期后,企业申报仿制药生产上市可以借用原研企业的成果和数据,免于重新做大样本临床试验,监管部门按原研药的标准审查其药学等效性和生物等效性,二者等效即视为疗效等效,可以在临床上相互替代。上述经批准上市的作为参比制剂的原研药与经评价疗效等效的仿制药载入一个目录集,及时更新,这就是国际上的橙皮书制度。我们也要建立中国的橙皮书制度。我们要研究批准上市新药的标准、橙皮书和药典之间的关系,各自发挥什么作用。 /p p   编制修订药典,一定意义上是对已上市药品的再次审查和确认。药典编制过程中,要对收载、更新、修订的内容进行真实性、可靠性、科学性的审核,评估其安全性、有效性和质量可控性。真实性、可靠性、科学性存疑的,安全性、有效性、质量可控性存疑的,要向监管部门提出处理意见和建议 多年不生产的药品,要提出处理意见和建议 上市后多年没有进行不良反应监测、不良反应不详的药品也要提出处理意见和建议。委员们要在修订药典时严格把关,这是对公众负责,也是专家委员会的责任。 /p p   (四)在药典修订中体现改革成果,为改革创新服务。2015年以来,总局认真贯彻落实党中央、国务院决策部署,会同相关部门全面推进药品审评审批制度改革。改革已不限于审评审批,逐步拓展为药品监管制度的全面变革。 /p p   为什么要改革?一是药品可及性基本解决,但质量疗效上有差距。二是药品研发、生产、经销生态出了问题。研发中数据不真实、不完整的现象 生产加工过程中擅自更改工艺、掺杂使假、偷工减料的现象,数据不完整、不真实、不可靠、不可溯源的现象 经销过程中夸大宣传、无科学依据地乱吹牛的现象,屡见不鲜,屡禁不止。三是审评和监管力量薄弱。与制药产业的迅猛发展相比,我们的监管队伍人员严重缺乏,能力不足,难以实施有效监管,漏洞死角很多。对存在的问题认识到了,但解决起来困难重重,心有余力不足。四是申请积压,效率低下。这是前三个问题交织的必然结果。 /p p   怎么改革?党中央、国务院已经作了一系列重大决策。2015年8月国务院印发《关于改革药品医疗器械审评审批制度的意见》(国发〔2015〕44号),2015年11月全国人大常委会批准在10个省市开展药品上市许可持有人制度试点,2016年2月国务院办公厅印发《关于开展仿制药质量和疗效一致性评价的意见》(国办发〔2016〕8号),2017年2月国务院印发《“十三五”国家药品安全规划》(国发〔2017〕12号),2017年7月中央全面深化改革领导小组审议通过了《关于深化审评审批制度改革鼓励药品医疗器械创新的意见》。经国务院批准,我们加入了国际人用药品注册技术协调会(ICH),下一步还要争取加入国际药品认证合作组织(PIC/S)。 /p p   改革总的目标就是与国际接轨。药品上市的基本标准就是新药要“全球新”,仿制药要与原研药质量疗效一致。要研究建立药品数据保护制度、专利补偿制度、药品审评与专利链接制度,把专利纠纷解决在药品上市之前,既鼓励药品创新,使创新者受到激励 也鼓励仿制,降低企业仿制成本和法律风险。要建立临床主导的团队审评制度、与申请人会议沟通制度、项目管理员与申请人联系制度、专家咨询委员会公开论证重大争议制度、审评结论和依据向社会公开制度,保证审评的公平公正。要实现药品全生命周期管理,实现药品研发、加工、经销、使用全链条的监管。药品批准文件持有人要承担研发、加工、经销、不良反应监测、完善药品质量等全生命周期的法律责任。临床试验数据不真实、不完整、不可溯源的申请,一律予以退回。生产加工过程违反GMP规范,数据不真实、不完整、不可溯源的,要严肃处理,并向社会公开处理结果。对造假等严重违法者,要依法追究刑事责任。要建立审评员、检查人员、检验人员、执法人员保守企业商业秘密制度,建立禁止工作人员私下透露药品审评信息制度。严禁工作人员以审评谋私、以检查谋私、以企业商业秘密谋私。通过保密责任的落实取信于民,保证监管权威。 /p p   改革既包括今后上市药品如何审评审批,也包括对以前批准上市药品的评价和清理。规定期限通不过评价的要退市。长期不生产的、自行改变工艺的、没有履行上市后研究和药物警戒责任的、安全性有效性质量稳定性存在问题的,要清理、纠正,性质严重的要退市。要研究制定药品退市的标准、条件与程序。 /p p   新一版药典编制,正处于改革关键时期,情况会有很多变化。药典编制工作要落实党中央、国务院关于药品审评审批、药品监管改革的一系列要求,体现改革的成果,及时反映药品质量疗效的提高。希望新一届药典委员会的每一位委员都秉持严谨、科学、公正、客观的态度,积极参与改革,推动改革,服务改革。我们每一位制药业的从业人员、药学研究工作者、监管者,都是改革的参与者、推动者。符合广大人民群众利益的,有利于促进公众健康的事情,都要积极推动 不符合人民群众利益,不利于促进公众健康的事情,就要果断放弃。我们所有的工作,都要经得起历史的检验。在改造客观世界的同时,也要改造我们的主观世界,学习新知识,掌握新技能,创新体制机制,加强能力建设。 /p p   (五)研究药典编制如何为破解掺假、造假的“潜规则”服务,为监管服务。当前有一种现象,药典中规定检验哪些指标,就有人研究如何骗过这些指标的掺假造假方法。请各位专家结合自己专长研究如何解决这个问题,及时堵住漏洞,破解“潜规则”。 /p p    strong span style=" color: rgb(0, 112, 192) " 三、提几点要求 /span /strong /p p   药典委员会是我国药学领域最具权威性的技术机构,承担着党和国家赋予的制定国家药品标准的神圣使命。编制药典,是现代“悬壶济世”的功业。第十一届药典委员会今天正式成立了,各位作为国家的一名药典委员,不仅仅是响当当的荣誉,更是沉甸甸的责任。我们每一位药典委员都要把使命和责任铭刻在心,以高度负责的精神圆满完成药典编制工作。 /p p   第一,坚持科学态度。各位委员来自不同的领域和专业,要互相尊重,互相学习,取长补短,平等讨论。以科学严谨的作风、求真务实的态度、勇于创新的精神努力工作。 /p p   第二,勇于担当作为。每一个标准的修订都会遇到各种矛盾、困难和问题,任何一种选择都可能有不同意见。我们要以人民利益、公众健康为基本出发点,敢于直面问题,勇于担当作为,化解工作难题,做出“仰不愧于天,俯不怍于人”的工作业绩。 /p p   第三,加强制度建设。要修订标准工作规章制度,完善标准工作程序,建立利益冲突回避制度、公开论证重大分岐制度、公开回应未采纳的实质性意见制度,民主决策,科学决策,公开决策,接受社会监督。 /p p   第四,坚守清正廉洁的职业道德。制修订标准是履行国家的公权力。药典委员必须遵守国家公职人员的法律、纪律。党员委员在履职过程中,还要遵守中央八项规定精神和党员的各项纪律,非党员委员也要按照中央八项规定精神严格要求自己,坚持原则,不为利益所惑,不为私情所动。如有违反国家法律和职业道德的行为,要从严查处并公开处理结果。 /p p   各位委员、同志们,药品标准工作责任重大、使命光荣。我们要更加紧密地团结在以习近平同志为核心的党中央周围,坚持以人民为中心的发展思想,认真落实“四个最严”要求,用更科学的标准保障药品质量,支撑药品监管,引领产业发展,以优异的经得住历史检验的工作成果,为中华民族健康事业作出新的贡献。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/c1f7746c-b26f-4016-92d0-c4bc28568d59.jpg" title=" 2_副本.jpg" / /p p br/ /p
  • GB/T 603-2023《化学试剂 试验方法中所用制剂及制品的制备》等系列标准 ——将于2024年4月份实施
    GB/T 603-2023《化学试剂 试验方法中所用制剂及制品的制备》等系列标准——将于2024年4月份实施我们从全国标准信息公共服务平台查询发现,GB/T 603-2023《化学试剂 试验方法中所用制剂及制品的制备》于2023年8月6日经国家市场监督管理总局(国家标准化管理委员会)批准发布,代替GB/T 603-2002《化学试剂 试验方法中所用制剂及制品的制备》,自2024年3月1日起实施。除此之外,还有这些化学试剂标准将于2024年3月1日实施: GB/T 9722-2023 化学试剂 气相色谱法通则 GB/T 669-2023 化学试剂 硝酸锶 GB/T 667-2023 化学试剂 六水合硝酸锌(硝酸锌) GB/T 684-2023 化学试剂 甲苯 GB/T 603-2023 化学试剂 试验方法中所用制剂及制品的制备 GB/T 686-2023 化学试剂 丙酮 GB/T 678-2023 化学试剂 乙醇(无水乙醇) GB/T 1270-2023 化学试剂 六水合氯化钴(氯化钴) GB/T 649-2023 化学试剂 溴化钾本标准(以下代指GB/T 603-2023)规定了化学试剂试验方法中所用制剂及制品的制备方法。本标准适用于化学试剂分析中所需制剂及制品的制备,其他领域也可选用。本标准和其它另外三个标准号称实验室里化学分析的“四剑客”,分别为:GB/T 603-2023 《化学试剂 试验方法中所用制剂及制品的制备》 、GB/T 601-2016 《化学试剂 标准滴定溶液的制备》 、GB/T 602 -2002 《化学试剂 杂质测定用标准溶液的制备》 和GB/T 6682 《分析实验室用水规格和试验方法》 。
  • 中国科学家利用自主显微镜首次揭示水合离子微观结构
    center img style=" width: 285px height: 300px " title=" " alt=" " src=" http://upload.jxntv.cn/2018/0515/1526343227397.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 285" / /center p   钠离子水合物的亚分子级分辨成像。从左至右,依次为五种离子水合物的原子结构图、扫描隧道显微镜图、原子力显微镜图和原子力成像模拟图。图像尺寸:1.5 nm × 1.5 nm。 /p center img style=" width: 402px height: 300px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img002.21cnimg.com/photos/album/20180515/m600/35DDA1DE9EDE6FF980557BE1E5589178.jpeg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 402" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥(右)在回答记者提问。新华社记者 金立旺 摄 /p p   5月14日电,北京大学和中国科学院的一支联合研究团队日前利用自主研发的高精度显微镜,首次获得水合离子的原子级图像,并发现其输运的“幻数效应”,未来在离子电池、海水淡化以及生命科学相关领域等将有重要应用前景。该成果于北京时间14日由国际顶级学术期刊《自然》在线发表。 /p p   水是人类熟悉但并不真正了解的一种物质。水与溶解其中的离子结合在一起形成团簇,称为水合离子,盐的溶解、大气污染、生命体内的离子转移等都与水合离子有关。19世纪末科学家就开始相关研究,但由于缺乏原子尺度的实验手段以及精准可靠的计算模拟方法,水合离子的微观结构和动力学一直是学术界争论的焦点。 /p p   中科院院士、北京大学讲席教授王恩哥与北京大学物理学院教授江颖带领课题组,在实验中首次获得了单个的水合离子,随后通过高精度扫描探针显微镜,得到其原子级分辨图像。这是一百多年来人类首次直接“看到”水合离子的原子级图像。 /p p   “观测到了最小的原子——氢原子,几乎已经达到极限,可以对原子核与电子的量子效应同时进行精确描述。”王恩哥说。 /p p   经过高精度观测,中国科学家还发现了水合离子的“幻数效应”,即包含3个水分子的钠离子水合物在表面上具有异常高的扩散能力。江颖介绍,该研究结果意味着,可以选择性增强或减弱某种离子的输运能力,在离子电池、防腐蚀、电化学反应、海水淡化、生物离子通道等应用领域具有重要的潜在意义。 /p p   “比如,可以通过对离子电池的电极材料进行界面调控,借助‘幻数效应’提高离子的传输速率,从而缩短充电时间和增大电池功率。”江颖说。 /p p   strong  1.研发显微镜核心部件和方法,达到原子水平观测的极限 /strong /p p   这项工作的突破之一,是在国际上首次得到了水合钠离子的原子级分辨图像。中国科学院院士、北京大学讲席教授王恩哥说:“这可能就是原子水平观测的极限了。” /p p   为了得到这幅图像,科学家们面临着两个挑战:第一步,如何人工制备单个离子水合物?制作离子水合物非常容易——把盐倒入水中溶解就可以了——但它们相互聚集、相互影响,水合结构也在不断变化,要得到适合扫描探针显微镜研究的单个离子水合物是一件非常困难的事。 /p p   第二步,如何给离子水合物拍个原子级照片?实验制备出单个离子水合物团簇后,接下来需要通过高分辨成像弄清楚其几何吸附构型,也就是给它们拍个“原子照片”——由于离子水合物属于弱键合体系,比水分子团簇更加脆弱,因此针尖很容易扰动离子水合物,从而无法得到稳定的图像。 /p p   科学家们在之前研究的基础上,对扫描探针显微镜做了改造,自主研制了关键核心设备。这一研究的主要完成人、北京大学物理学院教授江颖介绍,为了制备单个离子水合物,他们基于扫描隧道显微镜发展了一套独特的离子操控技术,以制备单个离子水合物。江颖说:“首先用非常尖锐的金属针尖在氯化钠薄膜表面吸取一个氯离子,这样便得到氯离子修饰的针尖和氯离子缺陷。然后用氯离子针尖将一个水分子拉入到氯离子缺陷中,再将针尖靠近缺陷最近邻的钠离子,水平拉动钠离子,将钠离子拔出吸附在针尖上。最后用带有钠离子的针尖扫描水分子,从而使钠离子脱离针尖,与水分子形成含有一个水分子的钠离子水合物。通过拖动其他水分子与此水合物结合,即可依次制备含有不同水分子数目的钠离子水合物。” /p p   为得到离子水合物的“原子照片”,并保证不对其产生扰动,研究人员发展了基于一氧化碳针尖修饰的非侵扰式原子力显微镜成像技术,可依靠极其微弱的高阶静电力扫描成像。江颖给记者展示了图片:“这是国际上首次在实空间得到离子水合物的原子层次图像,从图中可以看到,不仅水分子和离子的吸附位置可以精确确定,就连水分子取向的微小变化都可以直接识别。” /p p    strong 2.离子水合物的幻数效应有什么用 /strong /p p   江颖介绍,为了进一步研究离子水合物的动力学输运性质,研究人员利用带电的针尖作为电极,通过非弹性电子激发控制单个水合离子在氯化钠表面上的定向输运,发现了一种有趣的幻数效应:包含有特定数目水分子的钠离子水合物具有异常高的扩散能力,迁移率比其他水合物要高1~2个量级,甚至远高于体相离子的迁移率。 /p p   结合第一性原理计算和经典分子动力学模拟,他们发现这种幻数效应来源于离子水合物与表面晶格的对称性匹配程度。具体来说,包含1、2、4、5个水分子的离子水合物总能通过调整找到与氯化钠衬底的四方对称性晶格匹配的结构,因此与衬底束缚很紧,不容易运动 而含有3个水分子的离子水合物,却很难与之匹配,因此会在表面形成很多亚稳态结构,再加上水分子很容易围绕钠离子集体旋转,使得离子水合物的扩散势垒大大降低,迁移率显著提高。 /p p   江颖说:“我们可能都给孩子玩过按照空洞填积木的游戏,这个实验有点类似。氯化钠衬底就是预留好不同几何形状空洞的底板,而离子水合物就是这些积木,它周围结合的水分子数目决定了积木的几何形状。我们发现,包含1、2、4、5个水分子的水合物总能在底板上找到对应的空洞稳定下来,但含有3个水分子的离子水合物却没有合适的地方,只能浮在表面不停运动。” /p p   有评论认为,这一发现会在很多领域得到应用,“会马上引起理论和应用表面科学领域的广泛兴趣”“为在纳米尺度控制表面上的水合离子输运提供了新的途径,并可以拓展到其他水合体系”。 /p p   江颖举了几个例子。比如生物离子通道的研究,“我们知道,人类的嗅觉、味觉、触觉等是靠生物离子通道来实现的。离子在这些通道中的输运速度非常高,而且在离子的筛选上有很强的特定性,从来不会乱套。过去我们认为这种高速度和特定性主要是由离子通道的大小决定的,但我们的研究结果对这个认知提出了挑战。生物离子通道的内壁结构有很多微观细节,或许是因为细节的不同,导致了不同的幻数效应,才出现了离子输运的选择性和高效性。”再比如离子电池的研究,“我们可以通过对电极材料表面的调控和裁剪,提高离子的传输速度,实现缩短充电时间、提升电池功率等目标。” /p p   王恩哥表示,这一研究是理论与实验相结合的范例,是科学家们在一个方向上持续不断研究的结果,“我们将在这个方向上持续努力下去,也希望其他学者参与进来,让我们对水、对水合物体系有更深入的了解”。 /p p   strong  3.水合离子变得可以操控,能为我们带来什么? /strong /p p   据了解,这项研究工作得到了《自然》杂志三个不同领域审稿人的一致好评和欣赏。他们认为,该工作“会马上引起理论和应用表面科学领域的广泛兴趣”,“为在纳米尺度控制表面上的水合离子输运提供了新的途径并可以拓展到其他水合体系”。 /p p   王恩哥院士介绍,“该项研究的结果表明,我们可以通过改变材料表面的对称性和周期性,来实现选择性增强或减弱某种离子输运能力的目的。这对很多相关的应用领域都具有重要的潜在意义。” /p p   比如可以研发出新型的离子电池。江颖告诉记者,现在我们所使用的锂离子电池,其电解液一般是由大分子聚合物组成,而基于这项最新的研究,将有可能开发出一种基于水合锂离子的新型电池。“这种电池将大大提高离子的传输速率,从而缩短充电时间和增大电池功率,更加环保、成本也将大幅降低。” /p p   另外,这项成果还为防腐蚀、电化学反应、海水淡化、生物离子通道等前沿领域的研究开辟了一条新的途径。同时,由该工作发展出的高精度实验技术未来还有望应用到更多更广泛的水合物体系。 /p center img style=" width: 450px height: 292px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img001.21cnimg.com/photos/album/20180515/m600/54A9FE512CB7D9448952615F391BE431.jpeg" height=" 292" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,中科院院士、北京大学讲席教授王恩哥在介绍研究成果。新华社记者 金立旺 摄 /p center img style=" width: 450px height: 338px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img003.21cnimg.com/photos/album/20180515/m600/EAAEBB34B6CC5E08C49B2CBB7DE0F7A0.jpeg" height=" 338" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥在回答记者提问。新华社记者 金立旺 摄 /p center img alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img003.21cnimg.com/photos/album/20180515/m600/A35A5DB342D4F1E05F79EE99F887BD42.jpeg" height=" 600" width=" 439" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖在介绍研究成果。新华社记者 金立旺 摄 /p
  • 工业和信息化部关于111项行业标准、9项行业标准外文版及2项行业标准修改单报批公示
    根据行业标准制修订计划,相关标准化技术组织已完成《橡胶家用手套》等55项化工行业标准、《金刚石线母线钢丝》等18项黑色冶金行业标准、《电喷枪》等38项机械行业标准的制修订工作,《海藻酸类肥料》等9项化工行业标准外文版的编制工作,《肥料级磷酸二氢钾》1项化工行业标准及《焦炭孔隙构造及原料煤岩相显微分析方法》1项黑色冶金行业标准的修改工作。在以上标准、标准外文版及标准修改单发布之前,为进一步听取社会各界意见,现予以公示,截止日期2023年5月19日。以上标准报批稿请登录“标准网”(www.bzw.com.cn)“行业标准报批公示”栏目阅览,并反馈意见。公示时间:2023年4月19日-2023年5月19日附件:1.111项行业标准名称及主要内容等一览表2.9项行业标准外文版名称及主要内容等一览表3.1项化工行业标准修改单4.1项黑色冶金行业标准修改单工业和信息化部科技司2023年4月19日附件1111项行业标准名称及主要内容等一览表序号标准编号标准名称标准主要内容代替标准采标情况化工行业1 HG/T 2888-2023橡胶家用手套 本文件规定了橡胶家用手套的要求、试验方法、检验规则以及标识、包装、运输和贮存。手套的安全和正确使用方法不在本文件范围之内。 本文件适用于以天然橡胶胶乳或丁腈橡胶胶乳、天然橡胶胶乳与丁腈橡胶胶乳并用为主体材料制成的可作为家用的绒里及光里手套。HG/T 2888-20102 HG/T 2821.1-2023V带和多楔带用浸胶聚酯线绳 第1部分:硬线绳 本文件规定了V带和多楔带用浸胶聚酯硬线绳的产品分类、技术要求、试验方法与试验环境、检验规则以及标志、包装、贮存和运输。 本文件适用于V带和多楔带用浸胶聚酯硬线绳的品质鉴定和验收,其他橡胶制品用浸胶聚酯硬线绳也可以参照执行。HG/T 2821.1-20133 HG/T 2737-2023非金属化工设备 丙烯腈-丁二烯-苯乙烯、聚氯乙烯、均聚聚丙烯、聚偏氟乙烯和玻璃纤维增强聚丙烯球阀 本文件规定了丙烯腈-丁二烯-苯乙烯(ABS)、聚氯乙烯(PVC-U、PVC-C)、均聚聚丙烯(PPH)、聚偏氟乙烯(PVDF)和玻璃纤维增强聚丙烯(FRPP)球阀的材料、设计、零部件设计、制造和装配、要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于公称压力小于或等于1.6MPa,使用温度:ABS为-40℃~70℃、 PVC-U为-5℃~60℃、PVC-C为-5℃~95℃、PPH为-10℃~90℃、PVDF为-40℃~120℃、FRPP为-14℃~100℃,公称通径大于或等于DN15mm至DN300mm的法兰连接和对接连接式球阀。HG/T 2737-20044 HG/T 2643-2023非金属化工设备 丙烯腈-丁二烯-苯乙烯、聚氯乙烯、均聚聚丙烯、聚偏氟乙烯和玻璃纤维增强聚丙烯隔膜阀 本文件规定了丙烯腈-丁二烯-苯乙烯(ABS)、聚氯乙烯(PVC-U、PVC-C)、均聚聚丙烯(PPH)、聚偏氟乙烯(PVDF)和玻璃纤维增强聚丙烯(FRPP)屋脊式隔膜阀的材料、设计、要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于公称压力小于或等于1.0MPa,使用温度:ABS隔膜阀为-40℃~70℃;PVC-U隔膜阀为-5℃~60℃、PVC-C隔膜阀为-5℃~95℃;PPH隔膜阀为-10℃~90℃;PVDF隔膜阀为-40℃~120℃;FRPP隔膜阀为-14℃~100℃,公称通径大于或等于DN15mm至DN250mm的法兰连接式和对接连接式隔膜阀。公称通径大于DN250mm的隔膜阀可参照使用。HG/T 2643-19945 HG/T 3731-2023非金属化工设备 玻璃纤维增强聚氯乙烯复合管和管件 本文件规定了玻璃纤维增强聚氯乙烯复合管和管件的原材料、设计、制造、要求、试验方法、检验规则、标志、包装、运输、贮存及随行文件。 本文件适用于以硬聚氯乙烯(PVC-U)或氯化聚氯乙烯 (PVC-C)热塑性塑料为内衬,以不饱和聚酯树脂、环氧乙烯基酯树脂为基体,以玻璃纤维纱或其织物为增强材料,公称直径大于或等于20mm至1 200 mm,工作温度:以PVC-U为内衬时,为-5℃~70℃,以PVC-C为内衬时,为-5℃~95℃;设计压力小于或等于1.6MPa的玻璃纤维增强聚氯乙烯复合管和管件。HG/T 3731-20046 HG/T 6158-2023硫化促进剂 二异丁基二硫代氨基甲酸锌(ZDIBC) 本文件规定了硫化促进剂二异丁基二硫代氨基甲酸锌(简称硫化促进剂ZDIBC)的理化性能等技术要求,描述了相应的组批规则、采样、试验方法,规定了标志、包装、运输和贮存等方面的内容。 本文件适用于以二异丁胺、二硫化碳、含锌化合物为主要原料经反应制得的硫化促进剂ZDIBC。7 HG/T 6159-2023橡胶防老剂 2-巯基-4(或5)-甲基苯并咪唑锌(ZMMBI) 本文件规定了橡胶防老剂2-巯基-4(或5)-甲基苯并咪唑锌(简称橡胶防老剂ZMMBI)的理化性能等技术要求,描述了相应的组批规则、采样、试验方法,规定了标志、包装、运输和贮存等方面的内容。 本文件适用于以2-巯基-4(或5)-甲基苯并咪唑、液碱、硫酸锌(或氯化锌)等为主要原料制得的橡胶防老剂ZMMBI。8 HG/T 3062-2023橡胶配合剂 沉淀水合二氧化硅 二氧化硅含量的测定 本文件规定了橡胶配合剂沉淀水合二氧化硅中二氧化硅含量的测定方法。 本文件适用于橡胶配合剂沉淀水合二氧化硅。HG/T 3062-2008ISO 3262-19:2000,MOD9 HG/T 6160-2023橡胶配合剂 硅橡胶用气相二氧化硅 本文件规定了硅橡胶用气相二氧化硅技术要求、测试方法、检验判定规则、取样及包装、标识、贮存与运输。 本文件适用于硅橡胶用气相二氧化硅。ISO 18473-3:2018,MOD10 HG/T 6161-2023硫化促进剂 N-环己基-双(2-苯并噻唑)次磺酰亚胺(CBBS) 本文件规定了硫化促进剂N-环己基-双(2-苯并噻唑)次磺酰亚胺(简称硫化促进剂CBBS)的理化性能等技术要求,描述了相应的组批规则、采样、试验方法,规定了标志、包装、运输和贮存等方面的内容。 本文件适用于以苯胺、环己胺、二硫化碳为主要原料经氧化反应制得的硫化促进剂CBBS。11 HG/T 6181-2023发动机油底壳橡胶密封垫 本文件规定了发动机油底壳橡胶密封垫的符号、要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于发动机油底壳橡胶密封垫。12 HG/T 6183-2023球墨铸铁管接口防滑止脱橡胶密封圈 本文件规定了球墨铸铁管及管件柔性接口防滑止脱橡胶密封圈的术语和定义、要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于球墨铸铁管及管件柔性接口防滑止脱橡胶密封圈。13 HG/T 6162-2023复配抗氧剂试验方法 本文件规定了复配抗氧剂的外观、加热减量、细粉含量、颗粒长度符合率、颗粒直径、堆积密度、溶解性、透光率、组分含量的试验方法。 本文件适用于复配抗氧剂产品的检测。 本方法中组分含量的测定方法适用于抗氧剂含量大于5%的复配抗氧剂。14 HG/T 6163-2023橡胶助剂 预分散母料试验方法 本文件规定了橡胶助剂预分散母料的术语和定义、试验方法。 本文件适用于表面不粘连、橡胶助剂含量大于40%、载体是聚合物的橡胶助剂预分散母料。15 HG/T 2490-2023疏浚用钢丝或织物增强的橡胶软管和软管组合件 规范 本文件规定了二个型别、七个类别和三个级别的公称内径从100到1300的疏浚用钢丝或织物增强的橡胶软管和软管组合件的要求。在每一个类别内,所有级别和尺寸都具有相同的最大工作压力。本文件适用于在-20℃到+40℃环境温度下输送或吸引的相对密度介于1.0到2.3之间的混有泥浆、沙砾、珊瑚和小石头的海水或淡水的橡胶软管。本文件适用的软管分为以下两个型别:Ⅰ型 漂浮型,仅用于输送,包括为软管提供浮力的漂浮材料;Ⅱ型 非漂浮型,用于输送和吸引。本文件没有对软管或软管组合件的使用寿命作出规定。用户如有此要求,应与软管制造商协商。HG/T 2490-2011ISO 28017:2018,MOD16 HG/T 3038-2023吸油和排油用橡胶软管及软管组合件 规范 本文件规定了4种型别的用于输送石油包括原油和其它液体石油产品的排吸油软管及软管组合件的性能。每种型别依据芳烃含量划分为3个组别。本文件不适用于输送液化石油气和液化天然气。 符合本文件的软管组合件能够在-20 ℃~+80 ℃温度范围内使用。 所规定的软管公称内径范围从50~500,可为光滑内壁、粗糙内壁、铠装粗糙内壁和轻量型。HG/T 3038-2008、HG/T 3039-2008ISO 1823:2015,IDT17 HG/T 3041-2023油槽车输送燃油用橡胶软管和软管组合件 本文件规定了两组最大工作压力为1.0 MPa的装、卸液态烃类燃油用橡胶软管和软管组合件的要求。 两组软管都设计用于: a) 芳烃体积含量不超过50%、含氧化合物含量达到15%的烃类燃油。 b) 工作温度范围为-30 ℃~+70 ℃,静态贮存温度为-50 ℃~+70 ℃。注:若软管用于-30 ℃以下的温度,最终用户宜向制造商咨询。本文件不适用于LPG系统、航空燃油系统、燃油站系统或海上使用的软管和软管组合件。HG/T 3041-2009ISO 2929:2021,IDT18 HG/T 6164.1-2023流体传输用大口径扁置橡胶软管规范 第1部分:输水软管 本文件规定了流体传输用大口径扁置输水橡胶软管的结构、技术要求、检验规则、标志、包装、运输、贮存。 本文件适用于公称内径不小于100、输送不超过70 ℃的压裂液、油气田供排水、农业灌溉、应急(消防、抢险)供排水、管道修复等系统用扁置软管。19 HG/T 6165-2023汽车发动机点火线圈橡胶护套 本文件规定了汽车发动机点火线圈橡胶护套的术语和定义、技术要求、试验方法、检验规则、标志、包装、运输及贮存。 本文件适用于以汽油、乙醇汽油、天然气及氢气为燃料的汽车发动机点火线圈橡胶护套。20 HG/T 4116-2023滚筒洗衣机观察窗橡胶密封垫 本文件规定了滚筒洗衣机观察窗橡胶密封垫的结构、要求、检验规则、标志、包装、运输和贮存,描述了滚筒洗衣机观察窗橡胶密封垫的性能试验方法。 本文件适用于烘干型和非烘干型滚筒洗衣机用喷涂或非喷涂观察窗橡胶密封垫。HG/T 4116-200921 HG/T 6166-2023织物浸渍聚氨酯胶乳手套 本文件规定了织物浸渍聚氨酯胶乳手套的术语与定义、分类、要求、检验规则、试验方法、包装、标志、运输和贮存。 本文件适用于以织物为内衬、表面经过浸渍聚氨酯胶乳而制成的手套。22 HG/T 4786-2023胶乳色浆 本文件规定了胶乳制品用水性色浆的要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于天然胶乳和丁苯胶乳、丁腈胶乳、丁基胶乳、氯丁胶乳等合成胶乳制品用水性色浆。HG/T 4786-201423 HG/T 4666-2023胶乳海绵 本文件规定了胶乳海绵的要求、试验方法、检验规则和包装、标志、运输和贮存。 本文件适用于由天然胶乳、丁苯胶乳、氯丁胶乳、天然胶乳和丁苯胶乳并用、氯丁胶乳和丁苯胶乳并用以及氯丁胶乳和天然胶乳并用制成的海绵。HG/T 4666-201424 HG/T 2949-2023电绝缘橡胶板 本文件规定了电绝缘橡胶板的外观质量、规格尺寸、电性能、物理性能等技术要求,描述了相应的试验方法和检验规则,规定了标志、包装、运输与贮存等方面的内容,同时给出了便于技术规定的产品分类。 本文件适用于以橡胶为主体材料制成的,作为电气设备辅助安全用具的电绝缘橡胶板的合格评定。HG/T 2949-199925 HG/T 2793-2023工业用导电和抗静电橡胶板 本文件规定了工业用导电和抗静电橡胶板的规格尺寸及公差、外观、性能等技术要求,描述了相应的试验方法和检验规则,规定了标志、包装、运输与贮存等方面的内容,同时给出了便于技术规定的产品分类。 本文件适用于以橡胶为主体材料制成,用于需要采取预防措施防止静电积累场所,对人员和物体起到安全防护作用的胶板的合格评定。HG/T 2793-199626 HG/T 4615-2023增塑剂 柠檬酸三丁酯(TBC) 本文件规定了增塑剂柠檬酸三丁酯的理化性能等技术要求,描述了相应的组批规则、采样、试验方法,规定了标志、包装、运输和贮存等方面的内容。 本文件适用于以柠檬酸和正丁醇经酯化法制得的增塑剂TBC。HG/T 4615-201427 HG/T 4616-2023增塑剂 乙酰柠檬酸三丁酯(ATBC) 本文件规定了增塑剂乙酰柠檬酸三丁酯的理化性能等技术要求,描述了相应的组批规则、采样、试验方法,规定了标志、包装、运输和贮存等方面的内容。 本文件适用于以柠檬酸和正丁醇经酯化,用乙酸酐乙酰化制得的增塑剂ATBC。HG/T 4616-201428 HG/T 6137-2023摆锤式轿车轮胎撞击试验机 本文件规定了摆锤式轿车轮胎撞击试验机的结构、要求、检验方法、检验规则、标志、包装、运输、贮存及随机文件。 本文件适用于采用摆锤法进行轿车轮胎耐撞击性能测试的设备。29 HG/T 6138-2023比表面积及孔径分析仪 本文件规定了比表面积及孔径分析仪的术语和定义、结构、要求、检验方法、检验规则、标志、包装、运输、贮存及随机文件。 本文件适用于根据静态气体吸附法对橡胶添加剂如炭黑或其他粉体材料进行比表面积及孔径分布测试的分析仪。39 HG/T 4501-2023工业氯化锶 本文件规定了工业氯化锶的要求、试验方法、检验规则、标志和随行文件、包装、运输、贮存。 本文件适用于工业氯化锶。&nbs
  • 我国已颁布152项绿色食品标准
    记者从中国绿色食品发展中心于6月19日在京召开的绿色食品20周年座谈会上获悉,经过20年发展,我国绿色食品逐步成为农业农村经济中的一个“亮点”,创立了一个具有鲜明特色的新兴产业,打造了一个代表我国安全优质农产品的精品品牌,创建了一套符合我国农业和食品工业的发展模式,构建了一套具有国际先进水平的技术标准体系。   中国绿色食品发展中心主任王运浩介绍,从1990年到2009年,我国绿色食品产品总量规模扩大,企业由63家发展到6003家,产品由127个发展到15707个,年均增长率分别达到27%和29% 生产总量由50万吨增加到近1亿吨,产地环境监测面积由60万亩扩大2.5亿亩 产品覆盖农产品及加工食品的1000多个品种。品牌公信力和影响力增强,产品质量抽检合格率一直稳定保持在98%以上,部分大中城市消费者对品牌的认知度和信任度已分别超过70%和80% 标志商标已在香港、日本、美国、俄罗斯、法国、澳大利亚等9个国家和地区成功注册,绿色食品出口额已占全国农产品出口总额的5.6%。产业发展水平不断提高,通过认证的国家级、省级农业产业化龙头企业分别达到263家和1090家,25个省(区、市)建成绿色食品大型原料标准化基地432个,对接龙头企业1138家,带动农户1297万个,直接增加农民收入6.5亿元以上 部分大中城市已建立了绿色食品专业营销网络和渠道。质量保障体系不断完善,农业部已累计发布绿色食品标准152项,形成了产地环境、生产过程、产品质量和包装贮运全程控制的标准体系 已建立起了一套较为完善的认证制度,通过落实企业年检、产品抽检、市场监察、产品公告等监管措施,强化淘汰退出机制等,维护了品牌的信誉。已建立了覆盖全国的工作体系,工作队伍发展到4000多人。   农业部副部长陈晓华、农业部原部长何康应邀出席座谈会并讲话,来自中国绿色食品协会、中国农科院、黑龙江省农委、黑龙江省完达山乳业股份有限公司、山东省沂源县的代表做了发言。座谈会提出,当前和今后一个时期,围绕以绿色食品品牌引领农业品牌化、带动农业标准化、提升农产品质量安全水平、促进农业生产经营方式转变、实现农业增效农民增收的战略目标和任务,绿色食品事业推进的基本方向为努力实现可持续发展,不断提升品牌的公信力和加快市场流通体系建设。
  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • Picarro | 基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永
    青藏高原是地球上海拔最高的高原,被称为“世界屋脊”、“第三极”。青藏高原光照和地热资源充足。高原上冻土广布,植被多为天然草原。它扮演着重要的生态角色,影响着全球气候变化。这个区域的碳循环系统尤其引人注目。图片来源于网络,如有侵权请联系删除随着全球气候变暖,青藏高原的永冻层正在消融,导致大量的甲烷和其他温室气体被释放到大气中,从而影响了全球气候变化的速度。这种现象对人类社会和生态系统都产生了深远的影响,今天想向大家介绍的文章,正好与此相关。基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永冻层湿地甲烷排放的影响湿地甲烷排放是全球收支中最大的自然来源,在推动21世纪气候变化方面发挥着日益重要的作用。多年冻土区碳库是受气候变化影响的大型储层,对气候变暖具有正反馈作用。在与气候相关的时间尺度上,融化的永久冻土中的甲烷排放是温室气体收支的关键。因此,多年冻土区湿地甲烷排放过程与湿地碳循环密切相关,对理解气候反馈、减缓全球变暖具有重要意义。青藏高原是地球上最大的高海拔永久冻土区,储存了大量的土壤有机碳和天然气水合物中的热生烃。湿地甲烷排放源识别是了解青藏高原湿地甲烷排放和碳循环过程与机制的重要问题。基于此,来自中国地质调查局的研究团队于2017年测量青藏高原木里永冻层近地表和天然气水合层钻井(DK-8)的CH4和CO2排放量及其碳同位素组成(Picarro G2201-i碳同位素分析仪)。并计算CH4和CO2碳同位素分馏( Ԑ C:δ13CCO2- δ13CCH4)。旨在为木里多年冻土湿地甲烷排放的重要来源-天然气水合物释放提供新的证据,揭示天然气水合物释放对湿地甲烷季节性排放的影响,进一步揭示钻井等人为活动对青藏高原多年冻土湿地甲烷排放的影响。研究区域位置【结果】DK-8中CH4含量、δ13CCH4 及Ԑ C土壤层中CH4含量、δ13CCH4 及Ԑ C【结论】热成因天然气水合物分解是湿地甲烷排放重要的源季节性湿地甲烷排放受人类钻井活动的影响天然气水合物释放的甲烷特征:【δ13CCH4】 -25.9±1.4‰~-26.5±0.5‰,【Ԑ C】-25.3‰~ -32.1‰δ13CCH4和Ԑ C值可以区分复杂环境中的热成因和微生物成因甲烷秋冬季节以热成因甲烷为主导,春夏季节微生物成因甲烷贡献较大随着天然气水合物资源的进一步探索和开采,天然气水合物分解对永冻层湿地甲烷排放的影响会更显著
  • 独家新品| 5项食品补充检验方法标准物质新鲜出炉!
    近日,市场监管总局2022年第4号公告发布了5项食品补充检验方法,分别为《食品中爱德万甜的测定》《柑橘和苹果中顺丁烯二酸松香酯等5种化合物的测定》《饮料中香豆素类化合物的检测》《豆制品中碱性嫩黄等11种工业染料的测定》《甘蔗及甘蔗汁中3-硝基丙酸的测定》。《食品中爱德万甜的测定》规定了食品中爱德万甜的两种测定方法,第一法为高效液相色谱—串联质谱法,适用于饮料、酒类、焙烤食品、可可制品、巧克力和巧克力制品以及糖果、发酵乳和风味发酵乳、果冻、冷冻饮品、蛋制品、复合调味料中爱德万甜的测定。第二法为高效液相色谱—荧光检测法,适用于加工水果(水果干类、水果罐头、果酱、果泥、蜜 饯凉果等)中爱德万甜的测定。《柑橘和苹果中顺丁烯二酸松香酯等5种化合物的测定》规定使用液相色谱-串联质谱测定柑橘类水果、苹果中顺丁烯二酸松香酯、油酰一乙醇胺、油酰二乙醇胺、三乙醇胺油酸皂、癸氧喹酯。《饮料中香豆素类化合物的检测》规定饮料中香豆素、7-甲氧基香豆素、二氢香豆素、7-甲基香豆素、7-乙氧基-4-甲基香豆素、醋硝香豆素、环香豆素、3,3' -羰基双(7-二乙胺香豆素)等8种香豆素类化合物应采用高效液相色谱-串联法进行检测。《豆制品中碱性嫩黄等11种工业染料的测定》也同样规定豆腐、豆皮、腐竹、油豆皮、油豆腐等豆制品中的分散橙11、分散橙1、分散橙3、分散橙37、分散黄3、二甲基黄、二乙基黄、碱性橙22、碱性橙21、碱性嫩黄、苏丹橙G的测定方法为高效液相色谱—串联质谱法。《甘蔗及甘蔗汁中3-硝基丙酸的测定》规定了甘蔗及甘蔗汁中3-硝基丙酸高效液相色谱法的测定方法。并补充当样品中检出3-硝基丙酸时,可用高效液相色谱—串联质谱联用法进行确证。日常监管和案件查办中发现食品中出现非食品原料或在食品中添加其他风险物质时,食品补充检验方法可以作为食品安全标准的重要补充,可以用于对食品的抽样检验、食品安全案件调查处理和食品安全事故处置。阿尔塔科技有限公司与制标单位密切合作,成功研制出食品安全风险物质标准品,解决了标准制定过程中没有标准物质可用、无法准确定性定量的技术难题,协助制标单位构建准确可靠、技术先进的食品检验方法体系,为食品抽样检验、案件调查处理和食品安全事故处置等监管工作提供强有力的技术支撑。5项食品补充检验方法相关标准物质现货上架:标准号产品号产品名称包装规格BJS 2022011ST5115W爱德万甜一水合物10mgBJS 2022021ST159625油酰二乙醇胺10mg1ST159626三乙醇胺单油酸酯10mg1ST5710癸氧喹酯10mg1ST159624N-油酰乙醇胺10mg1ST160461松香酸马来酰酐10mgBJS 2022031ST45260-100A乙腈中8种香豆素混标溶液100μg/mL, 1mLBJS 2022041ST50977-100M甲醇中11种色素混标溶液100μg/mL, 1mLBJS 2022051ST9132-100W水中β-硝基丙酸溶液100μg/mL, 1mL
  • 广州能源所用原位拉曼测量技术揭示气体水合物中气体分子特性 | 前沿用户报道
    供稿:周雪冰成果简介中国科学院广州能源研究所天然气水合物重点实验室近期发布最新研究成果,利用高压原位拉曼测量技术成功获得了多种水合物形成/分解过程的原位拉曼图,揭示了气体水合物中气体分子的吸附和扩散特性。相关成果已在Energy Fuels, J. Phys. Chem. C, Chemical Engineering Journal, scientific reports等期刊上发表。背景介绍气体水合物是在一定压力和温度条件下在气-水混合物中自然形成的冰状固体化合物。在气体水合物晶体中,水分子依靠氢键相互结合在一起形成笼状晶格,而气体分子作为客体分子分布在晶格中并对水其稳定作用。例如,天然气水合物是人们在自然环境中发现的一类常见的笼状水合物,在科学和工业领域有着广泛的创新应用,有研究者就利用在海洋下形成的气体水合物来封存烟气中的二氧化碳。图1 气体水合物的三种主要的晶体结构。结构I(sI),通常由较小的客体分子(0.4–0.55nm)形成,是地球上最丰富的天然气水合物结构;结构II(sII),通常由较大的客体分子(0.6–0.7nm)和结构H(sH)形成,通常需要小分子和大客体分子形成。气体水合物的水合物热力学和动力学特性会直接受两种因素的影响:水合物中的气体种类、气体对水合物笼型结构的占有率。这也是气体水合物表征的重点。然而,由于晶体生长的环境条件比较苛刻,常规测量手段难以对上述表征重点直接观测。拉曼光谱能够根据气体水合物中客体分子的拉曼光谱特征峰和特征峰的峰面积来确定气体水合物的晶体结构,以及定量计算不同笼型结构中气体的孔穴占有率。近年来,耐低温高压的拉曼辅助测量装置的研发成功,水合物原位测量技术得以应用,这为研究气体水合物的形成/分解/置换等晶体结构的动力学行为提供了重要的研究途径。图文导读广州能源所天然气水合物重点实验室采用共聚焦拉曼光谱仪和原位拉曼光谱测量装置对甲烷、二氧化碳及其混合气体水合物的形成、分解和置换过程进行了测量和分析。实验中使用HORIBA LabRAM HR拉曼光谱仪,配备有开放式显微镜系统和高精度三维自动平台及Linkam BSC型冷热台,冷热台采用液氮冷却。图2 原位拉曼光谱测量装置1. 纯CO2、烟气和沼气中水合物的形成过程在271.6K温度下,以2800~3800cm-1的水分子拉曼特征峰为参考,对水合物相中气体的拉曼峰进行了表征和归一化。结果表明,水合物的形成过程首先是不饱和水合物核的形成,然后是气体持续吸附。在三种水合物形成过程中均发现,水合物核中的CO2浓度仅为对应饱和状态时的23-33%。在烟气合成水合物过程中,N2水合物相中的浓度在晶核形成时就达到饱和状态。在沼气合成水合物过程中,CH4和CO2分子会发生竞争吸附,而N2分子在水合物形成过程中几乎不发生演化。研究认为N2和CO2等小分子在水合物晶核形成过程中更为活跃,而CO2分子则在随后的气体吸附过程中发生优先吸附。[1]图3 271.6K下通过原位拉曼测量方法观察到的CO2、N2和CH4的特征峰图4 纯CO2水合物生长过程中的原位拉曼光谱。(a)CO2分子在水合物和气相中的拉曼特征峰 (b)水分子的拉曼特征峰2. CO2-CH4置换过程在273.2~281.2 K温度范围内对气态CO2置换CH4的过程进行了多尺度研究,并根据测量结果对基于气体扩散理论的水合物置换动力学模型进行了修正。原位拉曼测量发现,水合物大笼和小笼中的CH4连续下降,没有显著波动,这表明CH4的置换反应并非先分解再生成的过程。800小时的测量结果表明,置换过程首先是快速表面反应,随后是缓慢的气体扩散。温度的升高能有效提高水合物相的气体交换速率,增强水合物相的气体扩散。修正后的水合物置换反应动力学模型揭示了水分子的迁移率是限制了置换反应速率的主要因素。[2]图5 置换过程中CH4在水合物大笼和小笼中的比例变化图6 CO2置换水合物中CH4的原位拉曼光谱图7 水合物CO2-CH4置换反应机理示意图3. CH4-CO2混合气体水合物的分解过程对CH4-CO2混合气体水合物的分解过程进行了原位拉曼光谱测量并与纯CH4和纯CO2水合物的熔融过程进行了对比分析。研究结果发现,混合CH4-CO2水合物的晶体结构为Ⅰ型结构,且不随气体浓度的改变而发生变化。分解过程中,气体在水合物大笼和小笼中的特征峰强均会下降,同时峰面积之比始终保持稳定,表明水合物晶体以晶胞为单位解离。水合物晶体的分解时间具有随机性,与水合物粒子的多晶性质一致。有趣的是,在含有CH4的水合物中,水合物相中CH4和CO2的拉曼特征峰在水合物分解过程中出现了短暂的连续上升,表明位于样品颗粒内部的水合物发生了气体迁移扩散,这种现象的产生可以归因于水合物在样品颗粒内部的部分分解和“自保护”效应。[3]图8 CH4-CO2混合气体水合物在253K常压环境下分解过程的原位拉曼光谱图9 CH4(大笼: 2906cm-1)和CO2的在水合物中的特征峰(1383cm-1)随水合物分解的变化曲线。根据时间零点拉曼峰的强度,峰被归一化。总结展望拉曼光谱与表面增强拉曼光谱都是是非常强大的分析手段,凭借快速获取样品表面光谱信息的能力,拉曼测量技术在天然气水合物等矿物学领域颇受青睐。据了解,在接下来的研究中,天然气水合物重点实验室将应用原位拉曼测量技术对天然气水合物在多孔介质和添加剂等复杂环境中的反应动力学过程展开研究,以进一步揭示它的形成/分解/置换过程的动力学机理。中国科学院天然气水合物重点实验室简介中国科学院天然气水合物重点实验室是国内天然气水合物研究的重要基地。重点研究天然气水合物的物理化学性质、生长动力学、生成/分解过程等相关基础问题以及水合物开采、天然气固态储运、天然气水合物管道抑制、二氧化碳捕集与封存。联系作者周雪冰 Phone: 15002016003仪器推荐工欲善其事,必先利其器。本实验中全程使用了HORIBA LabRAM HR拉曼光谱仪进行原位拉曼光谱测量。作为升级版,LabRAM HR Evolution 高分辨拉曼光谱仪在保留了LabRAM HR所有性能的同时,实现了高度自动化。配备科研级正置/ 倒置显微镜,可实现UV-VIS-NIR 全光谱范围拉曼检测。焦长达到800mm,具有超高的光谱分辨率和空间分辨率。LabRAM HR Evolution 高分辨拉曼光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息[1] Zhou, X., Zang, X., Long, Z. et al. Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide. Sci Rep 11, 9197 (2021). 文章链接:https://doi.org/10.1038/s41598-021-88531-x[2] Xuebing Zhou, Fuhua Lin, and Deqing Liang. Multiscale Analysis on CH4–CO2 Swapping Phenomenon Occurred in Hydrates. The Journal of Physical Chemistry C 2016 120 (45), 25668-25677. 文章链接:https://pubs.acs.org/doi/10.1021/acs.jpcc.6b07444[3] Xuebing Zhou, Zhen Long, Shuai Liang et al. 1. In Situ Raman Analysis on the Dissociation Behavior of Mixed CH4–CO2 Hydrates. Energy & Fuels 2016 30 (2), 1279-1286. 文章链接:https://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b02119[4] Xuebing Zhou, Deqing Liang, Enhanced performance on CO2 adsorption and release induced by structural transition that occurred in TBAB26H2O hydrates, Chemical Engineering Journal, Volume 378, 2019, 122128, ISSN 1385-8947,文章链接:https://www.sciencedirect.com/science/article/pii/S1385894719315220?via%3Dihub
  • 《生活饮用水卫生标准》难解饮用水安全之忧
    专家指出,近20年来北京自来水水质逐年下降   由绿家园主办的“饮水安全”专家与媒体对话会日前在中国科技会堂举行。已颁布5年之久的《生活饮用水卫生标准》7月1日起开始正式强制执行的问题成为与会者关注的焦点。   民以食为天,食以水为先。与会者都有一个共同的疑问:新标准强制执行后,我们的饮用水是否就能真正做到安全?   国家发展和改革委员会公众营养发展中心饮用水产业委员会主任李复兴介绍说,该标准于2006年颁布,2007年7月1日开始实施。与1985年的旧版国标相比,新国标的指标由35项提高到106项。   “我们的新标准已基本与国际标准相吻合。”李复兴表示,新标准最大的特点是与国外标准相接轨,农村饮水标准与城市饮水标准相接轨。   然而,当面对“新标准的执行能否真正确保饮用水安全”的质疑时,与会专家并未表现出太多的乐观。   中国疾病预防控制中心环境所研究员凌波认为,目前我国饮用水面临的主要问题是源头水质差、处理工艺落后。   以北京为例,绿家园志愿者王京京从2011年6月到2012年5月对北京市主要河流水系水质开展的实地调查显示,近年来,北京水体污染日益严重,五大水系皆受到不同程度的污染,东南地区河流水质几乎都是劣V类。   调查结果中引人注目的是,官厅水库已不能作为饮用水源,京密引水渠中的水则出现铅含量升高的现象。   “近20年来,北京市自来水的水质在逐年下降,污染指标在增加。”经常监测北京市自来水的北京公众健康饮用水研究所所长赵飞虹坦言。   而在自来水处理工艺方面,我国仍显落后。   凌波介绍说,中国90%以上的水厂仍在采用沉淀——加药反应、混凝沉淀——过滤——消毒——输配水的净水工艺。   “该净水工艺沿用了数十年,虽然局部有所改进,但原理和功用大抵不变。”凌波说,而由于水源的持续恶化,许多水厂不得不加大液氯的使用量来净化水质。   “这种沉淀加消毒的工艺只能对细菌和微生物起作用,以此杜绝传染病,但对于有机物、化学物、重金属等却无能为力。”凌波表示。   据了解,目前90%的水厂只能对物理污染和微生物污染进行净化处理,而无法对化学污染,诸如农药、杀虫剂、重金属、各种有机和无机化合物及其他有害毒素,进行深度处理。   此外,自来水输送环节的清洁保障同样是一个难解之题。目前,自来水的安全隐患很多都来自输配水管道的二次污染。虽然国家已下大力气改善供水条件,但浩大的输水管网改造工程绝非短时间内就能奏效。   凌波认为,尽管饮用水新标准已于2006年年底出台,但相对于国外的高频率检测,国内自来水往往通过相关部门低频率的检测,就可以被贴上“达标”的标签,顺利进入城市供水管道。同时,新标准出台后,由于需要一系列的技术改造,自来水公司的技术投入增加,这将导致水价上涨,进而对水业格局、水权分配等带来冲击。   “《标准》发布至今,研究虽作了不少,但工程层面的行动却非常欠缺。县级以上的城镇中,约一半以上甚至至今还未能达到1985年的标准。”凌波介绍说,西部一些小城镇的水厂缺少消毒和检测设备,因此出厂水水质基本只能取决于水源的状况。   而根据新标准的时间表,到2015年,各省(区、市)和省会城市106项指标要实现全覆盖。   对此,赵飞虹认为,要解决饮水安全问题,最关键的是应当对水源进行保护,建立起水源的安全保障体系、城市供水安全保障体系以及家庭饮水自我安全保障体系。   李复兴则建议,应制定“饮水安全法”及“健康水标准”,政府还要定期公布地方的自来水合格率,以增加信息透明度。
  • 2022年4月份将要实施的那些标准
    2022年4月份将要实施的标准2022年4月份将要实施的科学仪器及检测相关的国家标准仅有8条。但将要实施的行业标准较多,一共有99条,其中主要包括轻工、气象、环境、机械、化工、卫生医药等。另外还有20条与仪器及检测相关的团体标准也将实施。需要相关标准的,点击链接即可下载收藏↓国家标准GB/T 41072-2021 表面化学分析 电子能谱 紫外光电子能谱分析指南 GB/T 10782-2021 蜜饯质量通则 GB/T 19702-2021 体外诊断医疗器械 生物源性样品中量的测量 参考测量程序的表述和内容的要求 GB/T 10781.1-2021 白酒质量要求 第1部分:浓香型白酒 GB/T 39849-2021 无损检测仪器 超声衍射声时检测仪 性能测试方法 GB/T 39948-2021 食品热力杀菌设备热分布测试规程 GB/T 10781.11-2021 白酒质量要求 第11部分:馥郁香型白酒 GB/T 39945-2021 罐藏食品热穿透测试规程 行业标准交通标准JT/T 1386.10-2022 海事电子证照 第10部分:危险化学品水路运输从业资格证书 JT/T 316-2022 货运挂车产品质量检验评定方法 JT/T 1411-2022 天然气营运货车燃料消耗量限值及测量方法 气象标准QX/T 636—2022 气候资源评价 气候生态环境 QX/T 637—2022 气候预测检验 热带气旋 QX/T 638—2022 气候预测检验 热带大气季节内振荡 QX/T 639—2022 中国雨季监测指标 东北雨季 QX/T 640—2022 气象业务综合监视数据要求 QX/T 641—2022 称重式电线横向积冰自动观测仪 QX/T 642—2022 自动标准气压发生器技术要求 QX/T 643—2022 气象用水电解制氢设备操作规范 QX/T 644—2022 气象涉氢业务设施建设要求 QX/T 645—2022 风电机组测风资料质量审核与订正 QX/T 646—2022 雷电防护装置检测资质认定现场操作考核规范 QX/T 41—2022 空气质量预报 食品 轻工标准JJF 1070.3-2021 定量包装商品净含量计量检验规则 大米 QB/T 5636-2021 品牌培育管理体系实施指南 食品行业 QB/T 2968-2021 口腔清洁护理用品 牙膏中锶含量测定的方法 QB/T 2623.10-2021 肥皂试验方法 肥皂中甘油含量的测定 QB/T 5638-2021 口腔清洁护理用品 牙膏中叶绿素铜钠盐含量的测定高效液相色谱法 QB/T 1915-2021 阳离子表面活性剂 脂肪烷基三甲基卤化铵及脂肪烷基二甲基苄基卤化 铵 QB/T 5656-2021 油墨中苯类溶剂含量测定方法 QB/T 5637-2021 口腔清洁护理用品羟基磷灰石 牙膏用 QBT 5636-2021品牌培育管理体系实施指南 食品行业(报批征求意见稿) 有色金属YS/T 3042-2021 氰化液化学分析方法 金量的测定 YS/T 3041.1-2021 火试金法测定金属矿石、精 矿及相应物料中银量的 校正方法 第 1 部分:全流程回收率法 YS/T 3041.2-2021 火试金法测定金属矿石、精 矿及相应物料中银量的校正 方法 第 2 部分:熔渣和灰 皿回收法 YS/T 3041.3-2021 火试金法测定金属矿石、精 矿及相应物料中银量的校正 方法 第 3 部分:熔渣回收 和灰吹校准法 环境标准HJ 1230—2021 工业企业挥发性有机物泄漏检测与修复 技术指南 HJ 1189-2021 水质 28种有机磷农药的测定 气相色谱-质谱法 HJ 1190-2021 水质 灭菌生物指示物(枯草芽孢杆菌黑色变种)的鉴定 生物学检测法 HJ 1191-2021 水质 叠氮化物的测定 分光光度法 HJ 1192-2021 水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法 化工标准HG/T 5912-2021 导电胶粘剂 HG/T 5911-2021 LED 照明器件用加成型有机硅密封胶 HG/T 5913-2021 高分子防水卷材用热熔压敏胶粘剂 HG/T 5914-2021 无衬纸铝箔压敏胶粘带 HG/T 5915-2021 热成像银盐打印胶片 HG/T 5916-2021 照相化学品 防灰雾剂2,5-二羟基-5-甲基-3-(4-吗啉基)-2-环戊烯-1-酮 HG/T 5918-2021 电池用硫酸钴 HG/T 5919-2021 电池用硫酸镍 HG/T 5920-2021粗碳酸锰 HG/T 5931-2021 肥料增效剂 腐植酸 HG/T 5932-2021 肥料增效剂 海藻酸 HG/T 5933-2021 腐植酸有机无机复混肥料 HG/T 5934-2021 黄腐酸中量元素肥料 HG/T 5935-2021 黄腐酸微量元素肥料 HG/T 5936-2021 腐植酸碳系数测定方法 HG/T 5937-2021 腐植酸与黄腐酸含量的快速 测定方法 HG-T 5938-2021 腐植酸肥料中氯离子含量的 测定自动电位滴定法 HG/T 5917-2021 黑白感光材料涂层溶解测定方法 HG/T 5921-2021 碳化法工业重铬酸钠 HG/T 2427-2021 肥料级氰氨化钙 HG/T 5939-2021 肥料级聚磷酸铵 HG/T 5941-2021 稳定同位素13C标记的辛酸 HG/T 5942-2021 稳定同位素15N标记的氨基 酸 HG/T 5943-2021 C.I.分散红152 HG/T 5944-2021 液体C.I.直接红254 HG/T 5945-2021 液体C.I.直接蓝290 HG/T 5909-2021 美罗培南合成催化剂化学成分分析方法 HG/T 5910-2021 双金属负载型聚醚多元醇合成催化剂化学成分分析方法 HG/T 4701-2021 电池用磷酸铁 HG/T 4133-2021 工业磷酸二氢铵 HG/T 4132-2021 工业磷酸氢二铵 HG/T 2568-2021 工业偏硅酸钠 HG/T 5922-2021 工业氰氨化钙 HG/T 5923-2021 化纤用二氧化钛 HG/T 5924-2021 废(污)水处理用生物膜载体 HG/T 3926-2021 水处理剂 2-羟基膦酰基乙酸(HPAA) HG/T 5925-2021 水处理用生物药剂 硝化菌剂 HG/T 5926-2021 水处理用生物药剂 反硝化菌剂 HG/T5927-2021 生物化学试剂 L-白氨酸(L-亮氨酸) HG/T 5928-2021 生物化学试剂 L-胱氨酸 HG/T 5929-2021 化学试剂 色谱用一水合庚 烷磺酸钠 HG/T 5930-2021 化学试剂 色谱用一水合辛烷磺酸钠 HG/T 5946-2021 1-(3-磺酸苯基)-3-甲基-5-吡唑酮 HG/T 5947-2021 1-(4-磺酸苯基)-3-甲基-5-吡唑酮 HG/T 5948-2021 1-(4-甲基苯基)-3-甲基-5-吡唑啉酮 HG/T 5949-2021 红色基KD(3-氨基-4-甲氧基-苯甲酰替苯胺) HG/T 5950-2021 色酚AS-IRG(4-氯-2,5-二甲氧基乙酰乙酰苯胺) HG/T 5951-2021 邻甲氧基乙酰乙酰苯胺 HG/T 5952-2021 邻氯乙酰乙酰苯胺 HG/T 5953-2021 纺织染整助剂 涤棉一浴皂洗剂 净洗效果的测定 HG/T 5954-2021 纺织染整助剂产品中异噻唑啉酮类化合物的测定 机械交通标准JB/T 14223-2021 无损检测仪器充电式交流磁轭探伤仪 JB/T 14155-2021 偏轴菲涅尔透镜 JB/T 14156-2021 投影光学非球面超短焦物镜 JB/T 14140-2021 食品机械 化糖设备 JB/T 14141-2021 食品机械 调配设备 JB/T 14142-2021 淀粉降解母粒生产线 JB/T 14144-2021 夹心软糖生产线 JB/T 14145-2021 全自动花色硬糖生产线 JB/T 4297-2021 泵产品涂漆 技术条件 JT/T 1393—2021 船舶压载水指示性分析取样与检测要求 卫生医药标准WS/T 787-2021 国家卫生信息资源分类与编码管理规范 WS/T 788—2021 国家卫生信息资源使用管理规范 WS/T 789—2021 血液产品标签与标识代码标准 YY/T 1416.5—2021 一次性使用人体静脉血样采集容器中添加剂量的测定方法 第5部分:甘氨酸 YY/T 1416.6—2021 一次性使用人体静脉血样采集容器中添加剂量的测定方法 第6部分:咪唑烷基脲 YY/T 1465.7—2021 医疗器械免疫原性评价方法 第7部分:流式液相多重蛋白定量技术 YY/T 1735-2021 丙型肝炎病毒抗体检测试剂(盒)(化学发光免疫分析法) YY/T 1771-2021 弯曲-自由恢复法测试镍钛形状记忆合金相变温度 YY/T 1772-2021 外科植入物 电解液中电偶腐蚀试验方法 YY/T 1775.1-2021 可吸收医疗器械生物学评价 第1部分:可吸收植入物指南 YY/T 1776-2021 外科植入物聚乳酸材料中丙交酯单体含量的测定 团体标准DB12/T 3027-2022 液氨贮存使用单位环境风险防控技术规范 T/CSTM 00470-2022生物炭膨润土复合污水处理剂 T/CSTM 00469-2022 生物炭凹凸棒石土壤重金属钝化剂 T/CPCIF 0168-2021 水中亚硝酸盐、硝酸盐、氨氮的快速检测试剂盒 T/GZSXH 02-2022 饮用天然泉水 T/CIESC 0033-2022 工业用四氢糠醇 T/CIESC 0032-2022 工业用丙二酸二乙酯 T/CIESC 0031-2022 工业用氰乙酸乙酯 T/CIESC 0030-2022 工业用N-乙基吡咯烷酮 T/CIESC 0029-2022 工业用原甲酸三乙酯 T/CIESC 0028-2022 工业用羟乙基甲基纤维素 T/CIESC 0027-2022 工业用乙基纤维素 T/JATEA 001-2022 农田地膜残留量调查与监测DB11/T 374-2021 水生动物疫病检测实验室管理规范 DB11/T 455-2021 动物疫病紧急流行病学调查技术规范 DB11/T 456-2021 动物防疫员防护技术规范 DB11/T 1000.2-2021 企业产品标准编写导则 第2部分:主要技术内容 DB51/T 2874-2022 检验检测机构保护客户秘密实施指南 DBS33/ 3013-2022 食品安全地方标准 酥饼生产卫生规范 DB31 2026-2021 食品安全地方标准 预包装冷藏膳食生产经营卫生规范 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近70万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 美国消费品安全委员会拟修改全地形车安全标准
    美国消费品安全委员会(CPSC)近日提议,对全地形车(all-terrain vehicles,ATV)的强制性安全标准进行修订,修订依据为2010年版的美国国家标准学会(ANSI)/美国特种车辆学会(SVIA)的标准。   CPSC标准最初于2008年发布,其中包含了SVIA制定的2007年版的《美国四轮全地形车设备配置和性能要求国家标准》。   根据CPSC的消息,对2008年版标准的实质性修订包括:(1)从规定范围的章节中,删除要求在2011年7月28日终止对Y-12+类(供12岁以上少年使用的少年型全地形车)的定义和要求的规定 (2)变更在青少年型全地形车刹车测试中的速度测试办法 (3)对乘客扶手测试中施用的力度进行变更 (4)增加青少年型全地形车不能有装有动力输出装置的规定 (5)增加青少年型全地形车脚踏板区不能有可折叠、可移动或可伸缩的结构的规定 (6)增加关于刹车控制系统操作位置和方法的规定 (7)通过在测试中要求变速器处于空档位而非在空档位或停车位间选择,提高对停车刹车性能的要求 (8)要求胎压信息须在标签上显示,而之前的要求可允许该信息显示在标签、用户手册或轮胎上。   利益相关方可在2011年9月10日之前提交意见。
  • 乳制品有机氯农残检测唯一强制标准GB 23200.86-2016来啦 您准备好了吗?
    GB 23200.86-2016食品安全国家标准 乳及乳制品中多种有机氯农药残留量的测定气相色谱-质谱/质谱法由国家卫生和计划生育委员会、中华人民共和国农业部、国家食品药品监督管理总局2016-12-18日发布,并由国家卫生计生委、农业部、食品药品监管总局发布公告(2016年第16号),具体链接地址为:http://bz.cfsa.net.cn/staticPages/AD020A05-CD5C-406A-8A85-02BEF0806E7B.html 至此,乳及乳制品中多种有机氯农药残留量的唯一GB标准正式出炉,且该标准于2017年6月18日开始正式实施。 与以往有关有机氯的检测方法GB/T 5009.19-2008 食品中有机氯农药多组分残留量的测定(GC-ECD)和GB/T 5009.162-2008 动物性食品中有机氯农药和拟除虫菊酯农药多组分残留量的测定(GC-MS和GC-ECD)方法相比, GB 23200.86-2016对最终结果判断的权威性更高。同时,GB 23200.86-2016还具有如下优势:1. 方法学优势:高选择性、高灵敏度、高通量 GB 23200.86-2016(GC-MSMS)的选择性,灵敏度,高通量性更好,GB/T 5009.19-2008(GC-ECD)的定性能力相对较弱,容易受基质干扰;GB/T 5009.162-2008 (第一法GCMS) 选择性不足,灵敏度不够好,容易受基质干扰,给定量和定性都会带来困扰,检测结果更有信心。 如下图,同时食品中5ppb的马拉硫磷(GC-MSMS和GC-MS方法相比灵敏度更高,选择性更好)GC-MS: SIM m/z 173 GC-MSMS:SRM m/z 173992. GC-MSMS更代表未来标准发展的趋势 即使在较早时候GC-MSMS的标准很少时,很多实验室前瞻性配置了GC-MSMS,为检测结果的准确性提供了更好的技术保障,也极大提高了实验室检测能力,把握了实验室技术领先的优势。现今,已经有GC-MSMS的标准连续出台(GB 23200.86,GB 23200.4,2015版中国药典),随着时间推移,也必然会有更多的GC-MSMS的标准方法出台,逐步被纳入到各种限量标准的指定方法当中,在农残检测等领域,GC-MSMS方法取代GC-MS和GC的方法已是大势所趋。
  • 中国认证认可协会立项《食品中环氧乙烷及2-氯乙醇残留量的测定》等10项团体标准
    各有关单位:根据《中国认证认可协会团体标准管理办法》(以下简称“办法”)规定,经专家评审,中国认证认可协会决定对《环境、社会及治理(ESG)报告核查机构要求》等10 项团体标准项目予以立项(详见附件)。请各项目承担单位按照《办法》要求,及时组建标准起草组。标准起草组应按照市场化原则自筹项目工作经费,充分吸收有关行业学协会、认证认可检验检测机构、科研院所和相关企业等标准利益相关方广泛参与,并按照评审专家意见和建议完成工作。请协会会员单位积极参与有关团体标准制修订工作,共同推动认证认可检验检测等合格评定领域创新发展。附件:2024 年第二批团体标准制修订计划项目.pdf中国认证认可协会2024 年8 月5 日相关标准如下:环境、社会及治理(ESG)报告核查机构要求产品碳足迹审定与核查机构要求产品碳足迹核查方案制定指南鱼胶(花胶)及其制品中胶原蛋白的测定食品中环氧乙烷及2-氯乙醇残留量的测定食品中酒石酸的测定
  • 国家市场监督管理总局批准发布《氨基酸产品和添加剂预混合饲料中赖氨酸、蛋氨酸和苏氨酸含量的测定》等431项推荐性国家标准和2项国家标准修改单
    国家市场监督管理总局(国家标准化管理委员会)批准《液压传动连接 金属管接头 第1部分:24°锥形》等431项推荐性国家标准和2项国家标准修改单,现予以公告。国家市场监督管理总局 国家标准化管理委员会2023-08-06附件相关标准如下:序号标准编号及标准名称代替标准号实施日期1GB/T 20706-2023 可可粉质量要求GB/T 20706-20062024-03-012GB/T 20705-2023 可可液块及可可饼块质量要求GB/T 20705-20062024-03-013GB/T 22427.7-2023 淀粉黏度测定GB/T 22427.7-20082024-03-014GB/T 26174-2023 厨房纸巾GB/T 26174-20102024-09-015GB/T 42957-2023氨基酸产品和添加剂预混合饲料中赖氨酸、蛋氨酸和苏氨酸含量的测定2024-03-016GB/T 42762-2023 杯壶类产品通用技术要求2024-03-017GB/T 42821-2023 贝类包纳米虫病诊断方法2024-03-018GB/T 15000.5-2023 标准样品工作导则 第5部分:质量控制样品的内部研制2023-08-069GB/Z 42962-2023 产业帮扶 猪产业项目运营管理指南2023-08-0610GB/Z 42963-2023 产业帮扶 竹产业项目运营管理指南2023-08-0611GB/T 42893-2023 电子商务交易产品质量监测实施指南2023-12-0112GB/T 41247-2023 电子商务直播售货质量管理规范2023-10-0113GB/T 42958-2023 肥料产品使用说明编写指南2024-03-0114GB/T 42954-2023 肥料中植物生长调节剂的测定 气相色谱-质谱联用法2024-03-0115GB/T 42955-2023 肥料中总氮含量的测定 杜马斯燃烧法2024-03-0116GB/T 27021.12-2023 合格评定 管理体系审核认证机构要求第12部分:协作业务关系管理体系审核与认证能力要求2023-08-0617GB/T 27000-2023 合格评定 词汇和通用原则GB/T 27000-20062023-08-0618GB/T 1270-2023 化学试剂 六水合氯化钴(氯化钴)GB/T 1270-19962024-03-0119GB/T 667-2023 化学试剂 六水合硝酸锌(硝酸锌)GB/T 667-19952024-03-0120GB/T 669-2023 化学试剂 硝酸锶GB/T 669-19942024-03-0121GB/T 686-2023 化学试剂 丙酮GB/T 686-20082024-03-0122GB/T 684-2023 化学试剂 甲苯GB/T 684-19992024-03-0123GB/T 9722-2023 化学试剂 气相色谱法通则GB/T 9722-20062024-03-0124GB/T 603-2023 化学试剂 试验方法中所用制剂及制品的制备GB/T 603-20022024-03-0125GB/T 649-2023 化学试剂 溴化钾GB/T 649-19992024-03-0126GB/T 678-2023 化学试剂 乙醇(无水乙醇)GB/T 678-20022024-03-0127GB/T 26176-2023 家用和类似用途豆浆机GB/T 26176-20102024-03-0128GB/T 42812-2023 连作障碍土壤改良通用技术规范2024-03-0129GB/T 29344-2023 灵芝孢子粉采收及加工技术规范GB/T 29344-20122024-03-0130GB/T 22638.11-2023 铝箔试验方法 第11部分:力学性能的测试2024-03-0131GB/T 42916-2023 铝及铝合金产品标识2024-03-0132GB/T 22648-2023 铝塑复合软管、电池软包用铝箔GB/T 22648-20082024-03-0133GB/T 42817-2023 农产品产地土壤改良剂使用技术规范2024-03-0134GB/T 42819-2023 农产品产地重金属污染土壤钝化通用技术规程2024-03-0135GB/T 29490-2023 企业知识产权合规管理体系 要求GB/T 29490-20132024-01-0136GB/T 42936-2023 设施管理 过程管理指南2023-08-0637GB/T 42931-2023 设施管理 基准比较分析指南2023-08-0638GB/T 42935-2023 设施管理 信息化管理指南2023-08-0639GB/T 14699-2023 饲料 采样GB/T 14699.1-20052024-03-0140GB/T 42959-2023 饲料微生物检验 采样2024-03-0141GB/T 22260-2023 饲料中蛋白质同化激素的测定 液相色谱-串联质谱法GB/T 22260-20082024-03-0142GB/T 13882-2023 饲料中碘的测定GB/T 13882-20102024-03-0143GB/T 8381.3-2023 饲料中林可胺类药物的测定 液相色谱-串联质谱法GB/T 8381.3-20052024-03-0144GB/T 42956-2023饲料中泰乐菌素、泰万菌素、替米考星的测定 液相色谱-串联质谱法2024-03-0145GB/T 13883-2023 饲料中硒的测定GB/T 13883-20082024-03-0146GB/T 13093-2023 饲料中细菌总数的测定GB/T 13093-20062024-03-0147GB/T 12956-2023 卫生间配套设备要求GB/T 12956-20082024-03-0148GB/T 10510-2023 硝酸磷肥、硝酸磷钾肥GB/T 10510-20072024-03-0149GB/T 42828.1-2023 盐碱地改良通用技术 第1部分:铁尾砂改良2024-03-0150GB/T 42828.2-2023 盐碱地改良通用技术 第2部分:稻田池塘渔农改良2024-03-0151GB/T 42828.3-2023 盐碱地改良通用技术 第3部分:生物改良2024-03-0152GB/T 13217.7-2023 油墨附着力检验方法GB/T 13217.7-20092024-03-0153GB/T 42944-2023 纸、纸板和纸制品 有效回收组分的测定2024-03-0154GB/T 42945-2023 纸浆 细小纤维质量分数的测定2024-03-0155GB/T 42943-2023 纸浆模塑制品技术通则2024-03-0156GB/T 42748-2023 专利评估指引2023-09-0157GB/T 22461.1-2023 表面化学分析 词汇 第1部分:通用术语及谱学术语GB/T 22461-20082024-03-0158GB/T 27921-2023 风险管理 风险评估技术GB/T 27921-20112023-08-0659GB/T 27914-2023 风险管理 法律风险管理指南GB/T 27914-20112023-08-0660GB/T 7139-2023 塑料 氯乙烯均聚物和共聚物 氯含量的测定GB/T 7139-20022024-03-01
  • 号外!坛墨质检新品-水质色度标准溶液 问世了!
    产品名称:水质色度标准溶液产品编号:BW20030-500-C-20技术指标:500度包装规格:20mL(安瓿瓶)应用领域:水质检测中色度指标监测相关国标:GB 11903-89及《水和废水监测分析方法》一 概念普及 水的颜色定义为“改变透射可见光光谱组成的光学性质”,可区分为“表观颜色”和“真实颜色”。水的表观颜色,指由溶解物质及不溶解性悬浮物产生的颜色,用未经过滤或离心分离的原始样品测定。而水的真实颜色,是指仅由溶解物质产生的颜色,用经0.45μm滤膜过滤器过滤的样品测定。没听过的,自行脑补。 色度的标准单位是度:在每升溶液中含有2mg六水合氯化钴(Ⅱ)和1mg铂[以六氯铂(Ⅳ)酸的形式]时产生的颜色为1度。二 产品介绍1.名称及配制 本产品《色度标准溶液》,依据国标GB 11903-89及《水和废水监测分析方法》相关指标,购买昂贵的含铂原料,配制成Pt-Co标准溶液,以供水质监测市场需求。2.应用范围 适用于黄色色调的天然水、饮用水、受工业废水污染的地表水以及纺织、印刷、造纸、食品、有机合成工业的废水等的测定,以满足水质监测领域的需求。不适用于非黄色的其他颜色种类的测定。3.产品特点 本产品为深黄色液体,用20mL安瓿瓶包装,推荐避光冷藏储存,配制所用原料均为溶解性物质,故溶液颜色稳定,透明,为均相体系,均匀性可靠,用户可放心使用。三 测试结果1.仪器与材料 哈希DR3900分光光度计;20mL比色皿;2.测试结果 采用分光光度法测定,使用计量院的色度标准溶液(GBW(E)080345)为参考基准,测试结果相对偏差均在2%以下或1度以下,表明此产品的色度值准确可靠。四 探讨延伸 分光光度法测水质色度准确度高,灵敏度、精密度好,最低适宜测试度数为2.2度,最高测试度数可达70度以上,可以避免因分析人员的视觉差异而带来的误差。用户也可根据情况借鉴引用。 传统的铂钴标准比色法和稀释倍数法,肉眼凡胎直接观察,易造成较大误差,而且不同人员不同环境下观察,误差大小也会有所不同。相对而言,使用仪器比色可以大幅度提高色度测定的灵敏度准确度。 但是,分光光度法测定色度值毕竟只测试单点波长的吸光度,从而计算出色度值,万不能代替人眼的可见光范围,所以国标方法适用范围会更广。如果水样浑浊,或者水样显现其他颜色种类,则不能使用此种方法定值。 此外,笔者查阅大量资料发现,某些学者老师采用紫外可见分光光度计,在350~600nm的波长范围内求出峰面积,然后以峰面积对色度绘制标准曲线,从而得出色度值。据文献介绍,此种方法比最大吸收波长法更为准确,有兴趣的用户也可以试验对比。在分析检测方法中,可使用重铬酸钾来代替氯铂酸钾配制标准色列,但此溶液不宜久存,具体见《水和废水监测分析方法》。故在此寻求讨论学习,望有志之士、有识之师留言交流。请赐教!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制