当前位置: 仪器信息网 > 行业主题 > >

亚氨基乙基赖氨酸双

仪器信息网亚氨基乙基赖氨酸双专题为您提供2024年最新亚氨基乙基赖氨酸双价格报价、厂家品牌的相关信息, 包括亚氨基乙基赖氨酸双参数、型号等,不管是国产,还是进口品牌的亚氨基乙基赖氨酸双您都可以在这里找到。 除此之外,仪器信息网还免费为您整合亚氨基乙基赖氨酸双相关的耗材配件、试剂标物,还有亚氨基乙基赖氨酸双相关的最新资讯、资料,以及亚氨基乙基赖氨酸双相关的解决方案。

亚氨基乙基赖氨酸双相关的资讯

  • 中国生化制药工业协会发布《重组双碱性氨基酸内肽酶质量标准》、《重组赖氨酸内肽酶质量标准》团体标准
    各会员单位、相关单位:根据《中国生化制药工业协会团体标准制定工作程序(试行)》规定,中国生化制药工业协会批准并发布团体标准T/CBPIA 0004-2023 《重组双碱性氨基酸内肽酶质量标准》、团体标准T/CBPIA 0005-2023 《重组赖氨酸内肽酶质量标准》。标准发布日期2023年5月23日,自2023年5月23日起实施。现予公告。中国生化制药工业协会2023年5月23日
  • 科研人员利用红外和拉曼光谱识别赖氨酸乙酰化特征
    近期,中科院合肥研究院智能所黄青研究员课题组利用红外和拉曼光谱识别赖氨酸乙酰化特征,为生物系统中蛋白质乙酰化结构分析提供了理论和实验基础。相关研究成果发表在国际光谱专业期刊Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy上。 乙酰化是生物学中常见且极其重要的蛋白质修饰,在细胞代谢中都起着关键性的调节作用。蛋白质乙酰化有两种方式,一是赖氨酸残基特有的乙酰化,二是多种氨基酸残基都可发生的N-末端乙酰化。目前一般用N-末端乙酰转移酶来标记判断赖氨酸残基是否发生乙酰化,但该方法的准确性仍存在争议。在分子水平识别蛋白质乙酰化是目前研究挑战之一,其关键是对赖氨酸的乙酰化进行准确定位表征,由此获得清晰和系统的认识。 针对这种情况,研究团队通过红外和拉曼光谱实验以及密度函数理论(DFT)计算,系统地研究L-赖氨酸三种乙酰化类型(、和)的结构变化及相应的振动光谱特征,发现酰胺基、羧基等基团的红外和拉曼特征谱带能用于有效识别不同的乙酰化类型。换言之,从红外和拉曼光谱特征即可判断赖氨酸是否乙酰化,也可判断赖氨酸发生了 乙酰化,还是 乙酰化,或者同时乙酰化。同时,研究团队对乙酰化的振动光谱识别策略在多肽模型中也得到验证。基于此,该项研究工作提供乙酰化赖氨酸的振动模式解析,并提出赖氨酸乙酰化的光谱识别和新的表征方法,为生物系统中蛋白质乙酰化结构分析提供了理论和实验基础。   该研究工作得到了国家自然科学基金和安徽省自然科学基金的资助。赖氨酸和三种乙酰化赖氨酸的分子结构Lys-G4多肽及其赖氨酸残基乙酰化的理论计算红外光谱(红色为乙酰基,蓝色为乙酰基)
  • 国家市场监督管理总局批准发布《氨基酸产品和添加剂预混合饲料中赖氨酸、蛋氨酸和苏氨酸含量的测定》等431项推荐性国家标准和2项国家标准修改单
    国家市场监督管理总局(国家标准化管理委员会)批准《液压传动连接 金属管接头 第1部分:24°锥形》等431项推荐性国家标准和2项国家标准修改单,现予以公告。国家市场监督管理总局 国家标准化管理委员会2023-08-06附件相关标准如下:序号标准编号及标准名称代替标准号实施日期1GB/T 20706-2023 可可粉质量要求GB/T 20706-20062024-03-012GB/T 20705-2023 可可液块及可可饼块质量要求GB/T 20705-20062024-03-013GB/T 22427.7-2023 淀粉黏度测定GB/T 22427.7-20082024-03-014GB/T 26174-2023 厨房纸巾GB/T 26174-20102024-09-015GB/T 42957-2023氨基酸产品和添加剂预混合饲料中赖氨酸、蛋氨酸和苏氨酸含量的测定2024-03-016GB/T 42762-2023 杯壶类产品通用技术要求2024-03-017GB/T 42821-2023 贝类包纳米虫病诊断方法2024-03-018GB/T 15000.5-2023 标准样品工作导则 第5部分:质量控制样品的内部研制2023-08-069GB/Z 42962-2023 产业帮扶 猪产业项目运营管理指南2023-08-0610GB/Z 42963-2023 产业帮扶 竹产业项目运营管理指南2023-08-0611GB/T 42893-2023 电子商务交易产品质量监测实施指南2023-12-0112GB/T 41247-2023 电子商务直播售货质量管理规范2023-10-0113GB/T 42958-2023 肥料产品使用说明编写指南2024-03-0114GB/T 42954-2023 肥料中植物生长调节剂的测定 气相色谱-质谱联用法2024-03-0115GB/T 42955-2023 肥料中总氮含量的测定 杜马斯燃烧法2024-03-0116GB/T 27021.12-2023 合格评定 管理体系审核认证机构要求第12部分:协作业务关系管理体系审核与认证能力要求2023-08-0617GB/T 27000-2023 合格评定 词汇和通用原则GB/T 27000-20062023-08-0618GB/T 1270-2023 化学试剂 六水合氯化钴(氯化钴)GB/T 1270-19962024-03-0119GB/T 667-2023 化学试剂 六水合硝酸锌(硝酸锌)GB/T 667-19952024-03-0120GB/T 669-2023 化学试剂 硝酸锶GB/T 669-19942024-03-0121GB/T 686-2023 化学试剂 丙酮GB/T 686-20082024-03-0122GB/T 684-2023 化学试剂 甲苯GB/T 684-19992024-03-0123GB/T 9722-2023 化学试剂 气相色谱法通则GB/T 9722-20062024-03-0124GB/T 603-2023 化学试剂 试验方法中所用制剂及制品的制备GB/T 603-20022024-03-0125GB/T 649-2023 化学试剂 溴化钾GB/T 649-19992024-03-0126GB/T 678-2023 化学试剂 乙醇(无水乙醇)GB/T 678-20022024-03-0127GB/T 26176-2023 家用和类似用途豆浆机GB/T 26176-20102024-03-0128GB/T 42812-2023 连作障碍土壤改良通用技术规范2024-03-0129GB/T 29344-2023 灵芝孢子粉采收及加工技术规范GB/T 29344-20122024-03-0130GB/T 22638.11-2023 铝箔试验方法 第11部分:力学性能的测试2024-03-0131GB/T 42916-2023 铝及铝合金产品标识2024-03-0132GB/T 22648-2023 铝塑复合软管、电池软包用铝箔GB/T 22648-20082024-03-0133GB/T 42817-2023 农产品产地土壤改良剂使用技术规范2024-03-0134GB/T 42819-2023 农产品产地重金属污染土壤钝化通用技术规程2024-03-0135GB/T 29490-2023 企业知识产权合规管理体系 要求GB/T 29490-20132024-01-0136GB/T 42936-2023 设施管理 过程管理指南2023-08-0637GB/T 42931-2023 设施管理 基准比较分析指南2023-08-0638GB/T 42935-2023 设施管理 信息化管理指南2023-08-0639GB/T 14699-2023 饲料 采样GB/T 14699.1-20052024-03-0140GB/T 42959-2023 饲料微生物检验 采样2024-03-0141GB/T 22260-2023 饲料中蛋白质同化激素的测定 液相色谱-串联质谱法GB/T 22260-20082024-03-0142GB/T 13882-2023 饲料中碘的测定GB/T 13882-20102024-03-0143GB/T 8381.3-2023 饲料中林可胺类药物的测定 液相色谱-串联质谱法GB/T 8381.3-20052024-03-0144GB/T 42956-2023饲料中泰乐菌素、泰万菌素、替米考星的测定 液相色谱-串联质谱法2024-03-0145GB/T 13883-2023 饲料中硒的测定GB/T 13883-20082024-03-0146GB/T 13093-2023 饲料中细菌总数的测定GB/T 13093-20062024-03-0147GB/T 12956-2023 卫生间配套设备要求GB/T 12956-20082024-03-0148GB/T 10510-2023 硝酸磷肥、硝酸磷钾肥GB/T 10510-20072024-03-0149GB/T 42828.1-2023 盐碱地改良通用技术 第1部分:铁尾砂改良2024-03-0150GB/T 42828.2-2023 盐碱地改良通用技术 第2部分:稻田池塘渔农改良2024-03-0151GB/T 42828.3-2023 盐碱地改良通用技术 第3部分:生物改良2024-03-0152GB/T 13217.7-2023 油墨附着力检验方法GB/T 13217.7-20092024-03-0153GB/T 42944-2023 纸、纸板和纸制品 有效回收组分的测定2024-03-0154GB/T 42945-2023 纸浆 细小纤维质量分数的测定2024-03-0155GB/T 42943-2023 纸浆模塑制品技术通则2024-03-0156GB/T 42748-2023 专利评估指引2023-09-0157GB/T 22461.1-2023 表面化学分析 词汇 第1部分:通用术语及谱学术语GB/T 22461-20082024-03-0158GB/T 27921-2023 风险管理 风险评估技术GB/T 27921-20112023-08-0659GB/T 27914-2023 风险管理 法律风险管理指南GB/T 27914-20112023-08-0660GB/T 7139-2023 塑料 氯乙烯均聚物和共聚物 氯含量的测定GB/T 7139-20022024-03-01
  • 一种可用于3D生物打印的抗菌ε -聚赖氨酸衍生生物墨水
    凭借其个性化定制的优势,3D生物打印受到了组织工程研究人员的广泛关注。生物墨水在打印过程中起着保护细胞,并在打印后提供促进细胞生长和组织再生的支架的作用。此外,不同的3D生物打印方法需要具有不同特性的生物墨水。然而目前用于3D生物打印的生物墨水是不足的,这限制了3D生物打印在组织工程中的应用。另一方面,细菌感染严重威胁着3D生物打印及后续组织工程技术的实现,并可能导致移植物植入失败和术后严重并发症。因此,引入一种具有固有抗菌特性的新型生物墨水用于组织工程,将促进3D生物打印在组织工程中的发展。近日,湖南大学刘海蓉教授课题组提出了一种新型可用于3D生物打印的抗菌ε-聚赖氨酸衍生生物墨水。体外抗菌实验表明,基于ε-聚赖氨酸的水凝胶对大肠杆菌和金黄色葡萄球菌均具有较强抗菌性能。通过使用面投影微立体光刻技术(nanoArch S140, 摩方精密),该研究成功打印了不同形状的高保真载软骨细胞水凝胶。在体内异位成软骨实验中,载细胞水凝胶经过4周培养形成了软骨样组织。总的来说,此项研究提出了一种很有前景的3D生物打印抗菌生物墨水,为3D生物打印在组织工程中的应用提供了一个新的选择。相关论文在线发表在《Journal of Materials Chemistry B》,湖南大学何亚辉为本文第一作者,刘海蓉、周征为通讯作者,韩晓筱课题组为本文3D生物打印提供了支持。图1 (a)EPLGMA-H水凝胶制备工艺示意图。(b)EPLGMA-1、EPLGMA-2和EPLGMA-3在D2O中的1H NMR谱。(c)蓝光照射后的EPLGMAs凝胶化照片。(d)EPLGMA-H凝胶过程的动态实时流变学分析。图2 大肠杆菌和金黄色葡萄球菌分别与PBS、EPLGMA-1H、EPLGMA-2H、EPLGMA-3H共混后的(a)生长情况,(b)细菌存活率,(c)活/死细菌染色照片。图3 (a-c)3D生物打印制备的细胞负载EPLGMA-3H的3种不同形状的俯视图。(d-i)3D生物打印载细胞EPLGMA-3H培养3天后的活细胞照片,(g-i)分别为(d-f)的放大照片。 原文链接:https://doi.org/10.1039/D1TB02800F
  • 全国饲料工业标准化技术委员会发布国家标准《饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速测定 近红外光谱法》征求意见稿
    国家标准计划《饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速测定 近红外光谱法》由 TC76(全国饲料工业标准化技术委员会)归口 ,主管部门为国家标准化管理委员会。主要起草单位 四川威尔检测技术股份有限公司 、中国农业科学院农业质量标准与检测技术研究所[国家饲料质量监督检验中心(北京)] 、通威股份有限公司 。附件:国家标准《饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速测定 近红外光谱法》编制说明.pdf国家标准《饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速测定 近红外光谱法》征求意见稿.pdf
  • 岛津DL氨基酸分析方法包,直击氨基酸异构体分离难点
    ☆ 导读 ☆对于多肽类药物而言,在药物的研发、生产、质量控制等环节,清楚地了解氨基酸的具体构型,把控氨基酸异构化现象,对于最终药物的质量与药效至关重要,也是多肽药物企业严格监控的重点之一。因此,氨基酸异构体的分离检测,在整个研发管线中必不可少。然而,D/L两种氨基酸成分分析经常遇到的难点有:分析难度大:各种各样的肽或氨基化合物的背景干扰较多分析时间长:传统的氨基酸异构体分析必需进行氨基酸的衍生化处理,通常分析时间超过10小时面对氨基酸异构体的分析难点,岛津公司推出LC/MS/MS DL氨基酸分析方法包(内含分析方法、报告模板和使用说明书)。结合LCMS-8045/8050/8060的高灵敏度分析能力,为DL氨基酸异构体分离提供准确、高效、简便的解决方案。 ☆ 什么是D/L氨基酸 ☆ 大部分氨基酸(除甘氨酸外)具有与羧基(COO-)相邻的手性碳原子,该手性中心存在彼此互为镜像的立体异构,分别称为D型氨基酸和L型氨基酸。L型氨基酸属于天然存在的氨基酸构型,可合成蛋白质,作为营养物质在人体内大量存在。D型氨基酸体内含量极低,多为人工合成,有研究发现,体内极微量的D型氨基酸,存在于肠腔或生物体肾脏。 ☆ 氨基酸名录 ☆☆ 方法包特点 ☆ l 同时分析42种D/L型氨基酸 可实现批处理分析,快速分析42种D/L氨基酸。l 快速分析检测(10min) 仅需10分钟即可完成高灵敏度的氨基酸分析。l 高灵敏度分析 结合LCMS-8045/8050/8060高灵敏度分析能力,可省去氨基酸衍生化实验流程。l D/L型氨基酸均可以实现柱上分离和定量分析 充分发挥手性分离优势,对于理化性质相近氨基酸(如谷氨酸和赖氨酸,苏氨酸,异亮氨酸和别异亮氨酸),本方法支持两种手性色谱柱同时分析,可以由两种数据结果共同确认组分,提供高准确性数据。☆ 典型应用 ☆ 利用岛津DL氨基酸分析方法包对某多肽药物水解样品进行检测分析,准确测定出L型氨基酸与极微量的D型氨基酸含量,并得出相关比例。 岛津独特的DL氨基酸构型分析方法结合三重四极杆质谱仪高精准的特点,可较完美解决D型与L型氨基酸异构体的分离难点,为多肽类或氨基酸类药物研发与质量控制、D-氨基酸机能研究及更具附加值的机能性食品或药物开发提供新型技术手段。 本文内容非商业广告,仅供专业人士参考。
  • 全新上线!曼哈格氨基酸/神经递质/儿茶酚胺检测试剂盒(液相色谱-串联质谱法)
    今日,曼哈格和博莱克联合研发生产的蛋白质氨基酸/神经递质/儿茶酚胺检测试剂盒(液相色谱-串联质谱法)隆重推出。本次推出的3套kit是建立在高效液相色谱质谱平台上,可针对实验动物和人体血样、尿样中的20种蛋白质氨基酸、12种神经递质和6种儿茶酚胺进行精准定量检测。检测试剂盒检测指标▣ 20种蛋白质氨基酸Asparagine天冬酰胺proline脯氨酸Histidine组氨酸Tyrosine酪氨酸Serine丝氨酸Methionine甲硫氨酸Glycine甘氨酸Lysine赖氨酸Glutamine谷氨酰胺Valine缬氨酸Arginine精氨酸Isoleucine异亮氨酸Aspartic acid天冬氨酸Leucine亮氨酸Glutamic acid谷氨酸Phenylalanine苯丙氨酸Threonine苏氨酸Tryptophan色氨酸Alanine丙氨酸Cysteine半胱氨酸▣ 12种神经递质Norepinephrine去甲肾上腺素γ-Aminobutyricacid4-氨基丁酸Metanephrine甲氧基肾上腺素Octopamine章鱼胺Epinephrine肾上腺素Tyramine酪胺Dopamine多巴胺Agmatine胍丁胺Serotonin5-羟色胺Methoxytyramine甲氧酩胺Tryptamine色胺Histamine组胺▣ 6种儿茶酚胺Normetanephrine甲氧基去甲肾上腺素Epinephrine肾上腺素Norepinephrine去甲肾上腺素Dopamine多巴胺Metanephrine甲氧基肾上腺素Methoxytyramine甲氧酪胺产品优势
  • 岛津推出LC/MS/MS DL-氨基酸分析方法包
    岛津公司即日起推出 LC/MS/MS DL-氨基酸分析方法包。 L-氨基酸是体内存在大量的蛋白质和营养成分,而 D-氨基酸含量极低,但它对于发酵食品成分分析、生理功能分析、颅神经系统分析和生物标志物检索等各个领域中起着至关重要的作用,甚至关乎人类的健康和美丽。氨基酸(除了甘氨酸)都有一个手性碳原子相邻的羧基(CO2-)。氨基酸手性中心的立体异构会形成一对以彼此为镜像的立体异构。结构彼此十分相似,就好像的左手、右手。这些镜像被称为对映异构体。然而,D/L 两种氨基酸成分分析经常受到各种各样的肽或氨基化合物的背景干扰,分析难度很大。因此急需建立高度敏感和高度、高选择性的液质联用仪分析方法。在此方法包发售之前,研究者大多使用传统的 HPLC 分析方法需要进行氨基酸的衍生化处理,分析时间长(通常分析时间超过 10 小时)。 本方法包优势是采用手性色谱柱实现在 10 分钟之内完成高灵敏度的氨基酸分析,同时LCMS-8045/8050/8060 的高灵敏度分析能力可减少无氨基酸衍生化的实验流程。本方法包可用于发酵食品成分分析、D-氨基酸生化领域分析。本方法包需配合岛津 LCMS-8045/8050/8060 三重四极液质联用仪使用。产品特点1.可实现批处理分析,10 分钟内单次分析 21 种 DL 氨基酸。分析过程无需衍生化,使用质联用仪和 CROWNPAK CR-I 系列手性色谱柱高灵敏度的分析手性氨基酸成分。2.采用 CROWNPAK CR-I(+)或(-)色谱柱可分离 D/L 型氨基酸。CROWNPAK CR-I(+)色谱柱时 D 型氨基酸流出速度要高于 L 型氨基酸;CROWNPAK CR-I(-)色谱柱的流出顺序与 CROWNPAK CR-I(+)相反。谷氨酸和赖氨酸,苏氨酸,异亮氨酸和异体异亮氨酸有非常相似的理化性质。因此,几乎相同的 MRM 离子对使得在三重四极型质谱仪难以筛分共流出的氨基酸组分,需要通过 CR - I (+),和 CR - I (-) 两组数据结果进行综合的数据分析。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 岛津公司推出 LC/MS/MS DL-氨基酸分析方法包
    l-氨基酸是体内存在大量的蛋白质和营养成分,而 d-氨基酸含量极低,但它对于发酵食品成分分析、生理功能分析、颅神经系统分析和生物标志物检索等各个领域中起着至关重要的作用,甚至关乎人类的健康和美丽。氨基酸(除了甘氨酸)都有一个手性碳原子相邻的羧基(co2-)。氨基酸手性中心的立体异构会形成一对以彼此为镜像的立体异构。结构彼此十分相似,就好像的左手、右手。这些镜像被称为对映异构体。然而,d/l 两种氨基酸成分分析经常受到各种各样的肽或氨基化合物的背景干扰,分析难度很大。因此急需建立高度敏感和高度、高选择性的液质联用仪分析方法。在此方法包发售之前,研究者大多使用传统的 hplc 分析方法需要进行氨基酸的衍生化处理,分析时间长(通常分析时间超过 10 小时)。 本方法包优势是采用手性色谱柱实现在 10 分钟之内完成高灵敏度的氨基酸分析,同时lcms-8045/8050/8060 的高灵敏度分析能力可减少无氨基酸衍生化的实验流程。本方法包可用于发酵食品成分分析、d-氨基酸生化领域分析。本方法包需配合岛津 lcms-8045/8050/8060 三重四极液质联用仪使用。产品特点? 可实现批处理分析,10 分钟内单次分析 21 种 dl 氨基酸。分析过程无需衍生化,使用质联用仪和 crownpak cr-i 系列手性色谱柱高灵敏度的分析手性氨基酸成分。? 采用 crownpak cr-i(+)或(-)色谱柱可分离 d/l 型氨基酸。crownpak cr-i(+)色谱柱时 d 型氨基酸流出速度要高于 l 型氨基酸;crownpak cr-i(-)色谱柱的流出顺序与 crownpak cr-i(+)相反。谷氨酸和赖氨酸,苏氨酸,异亮氨酸和异体异亮氨酸有非常相似的理化性质。因此,几乎相同的 mrm 离子对使得在三重四极型质谱仪难以筛分共流出的氨基酸组分,需要通过 cr - i (+),和 cr - i (-) 两组数据结果进行综合的数据分析。
  • LUMEX诚邀您5月15日参加网络讲堂:《饲料中氨基酸及营养指标的快速测定-LUMEX毛细管电泳法》
    讲堂议题:饲料中氨基酸及营养指标的快速测定-LUMEX毛细管电泳法  时间:2017年05月15日 10:00  主讲人:张超 LUMEX资深应用工程师,负责中国区应用方法开发和技术支持,全面参与《NY/T3001-2016 饲料中氨基酸的测定 毛细管电泳法》标准制定 饲料中的氨基酸是畜禽的重要营养物质,动物对蛋白质的需求实际上是对氨基酸的需求。饲料中含有的氨基酸种类和含量是判定饲料质量高低的重要指标。饲料由于其成分复杂、干扰物多等特点,因此,饲料中氨基酸的准确分析、测定十分重要。 农业部饲料所编制的《NY/T3001-2016 饲料中氨基酸的测定 毛细管电泳法》已被批准发布为中华人民共和国农业行业标准,2017年4月1日正式执行。针对该标准方法和当前行业氨基酸及营养指标测定的需求,本次网络讲堂将详细介绍该最新出炉的行业标准及相关方法的应用。 本次网络讲堂主要与大家分享18种氨基酸的测定,包括饲料原料、预混饲料中的氨基酸,如精氨酸、赖氨酸、 酪氨酸、苯丙氨酸、组氨酸、亮氨酸和异亮氨酸(总量)、蛋氨酸、缬氨酸、脯氨酸、苏氨酸、丝氨酸、丙氨酸、甘氨酸、半胱氨酸、色氨酸、谷氨酸和天门冬氨酸等。同时毛细管电泳还可用于农药及兽药残留检测,维生素及有机酸等营养指标的监控,为畜禽类企业,饲料原料品控及相关质检部门提供有效经济的检测和分析手段。 Lumex通过毛细管电泳方法进行饲料中氨基酸指标的检测和分析,快速简便,分析效率高,能够检测多种综合指标,仪器结构检测,操作便捷,在相关的指标检测方面有多种检测优势。Lumex公司现已成功的将毛细管电泳法发展为实验室常规的分析方法,成熟的仪器和优化的配置,配备大量的应用发法包于一体。被用户称为目前性价比最优的毛细管电泳。毛细管电泳法符合多项国内外标准,如EPA6500,ASTMD6508-00;ASTMD7881/2;ЕU № 1234/2007;OIV MA–AS313-19 等。国内外20多项毛细管相关标准均由LUMEX公司参与制定或修订。其中很多标准已发展成为国际通用标准。(来源:LUMEX分析仪器)
  • 《NY/T 3001-2016 饲料中氨基酸的测定 毛细管电泳法》发布-农业部公告第2466号
    《NY/T 3001-2016 饲料中氨基酸的测定 毛细管电泳法》等83项标准业经专家审定通过,现批准发布为中华人民共和国农业行业标准,自2017年4月1日起实施。本分析方法用于测定饲料和饲料原料中的下列氨基酸:精氨酸、赖氨酸、 酪氨酸、苯丙氨酸、组氨酸、亮氨酸和异亮氨酸(总量)、蛋氨酸、缬氨酸、脯氨酸、苏氨酸、丝氨酸、丙氨酸、甘氨酸、半胱氨酸、色氨酸、谷氨酸和天门冬氨酸。 高效毛细管电泳仪是一种快速、简便的分析仪器,可应用于该标准采用LUMEX的毛细管电泳仪及等。多个行业,可进行定性和定量分析。仪器性价比高,无需要色谱柱,维护成本趋于零。俄罗斯已有多家企业顺利应用。农业部标准链接:http://www.moa.gov.cn/zwllm/tzgg/gg/201611/t20161103_5348351.htm
  • 老板再也不用担心我的多肽合成 ---来阿拉丁一站式购齐所需试剂和容器
    ALADDIN的优势多肽在基础生理学、生物化学和医药研究,尤其是医药行业新药筛选中起关键作用,新的短链肽和模拟肽在新药研发中为新药提供了较强的生物活性和蛋白酶水解抗性。短肽还可以作为分子探针,更好的阐述生物系统的功能。因此肽合成在化学生物学领域所占份额越来越大。阿拉丁为你提供高质固相和液相肽合成的一站式服务,包括带有Fmoc、Boc和Cbz保护基团的天然或非天然氨基酸合成砌块、偶联试剂、预装树脂、Linker、N-保护试剂。产品列表多肽固相合成管固相多肽合成预装树脂N-保护试剂耦合试剂Fmoc修饰的氨基酸及氨基酸衍生物列表Boc修饰的氨基酸及氨基酸衍生物列表更多相关产品耗材产品列表多肽固相合成管货号品名包装容量外径螺纹口砂板孔隙度P3597-01-1EAP3597-01 多肽固相合成管1个25ml25mm25G2P3597-02-1EAP3597-02 多肽固相合成管1个25ml25mm25G3 试剂产品列表固相多肽合成预装树脂货号品名规格包装 A116077Fmoc-Arg(Pbf)-Wang resin100-200 mesh, 1%DVB1g,5g,25g A116080Fmoc-Asn(Trt)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.41g,5g,25g A116082Fmoc-Asp(OtBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.1g,5g,25g A118255Fmoc-氨基酸-王树脂100-200 mesh, 1%DVB,Substitution 0.3-0.8mmol/g5g,25g A118270AminoMethyl Polystyrene Resin0.5~1.5mmol/g, 100~200 mesh5g,25g,100g C110262氯甲基化聚苯乙烯树脂1% DVB交联 1.0~1.24mmol/g , 100~200 mesh, 1% DVB5g,25g,100g C1182692-Chlorotrityl Chloride Resin0.8-1.5mmol/g, 100~200 mesh5g,25g,100g G116092Fmoc-Glu(OtBu)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.1g,5g G116094Fmoc-Gly-Wang resin100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116104Fmoc-Leu-王氏树脂100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116107Fmoc-Lys(Boc)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-1g,5g,25g M118256Fmoc-Met-王氏树脂100-200 mesh, 1%DVB,Substitution 0.3-0.1g,5g,25g M118275MBHA Resin0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g P118257Fmoc-D-Phe-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.5g,25g P118258Fmoc-Phe(4-Cl)-Wang resin100-200 mesh, 1%DVB1g,5g,25g P118261Fmoc-Pro-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.8m5g,25g R118279Rink Amide-AM Resin 0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g R118280聚合物键合型 Rink 酰胺 4-甲基二苯甲胺0.3~0.8mmol/g, 100~2001g,5g,25g S118282Sieber 酰胺树脂0.3~0.8mmol/g, 100~200 mesh, 1% DVB5g,25g,100g T118264Fmoc-Thr(tBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.31g,5g,25g T118267Fmoc-Tyr(tBu)-Wang resin100-200 mesh, 1%DVB,Substitution 0.5g,25g T118281Fmoc-Threoninol(tBu) DHP HM Resin 0.3~0.8mmol/g, 100~200 mes5g,25g V118268Fmoc-Val-Wang resin100-200 mesh, 1%DVB,Substitution 0.3-0.85g,25gN-保护试剂氨基保护是合成化学和肽合成中必须部分,有效的保护基团可以从合成的化合物易于添加和除去。货号品名规格cas号包装 B105737氯甲酸苄酯 96%,含约 0.1% 碳酸钠稳定剂501-53-125g,100g,500g,2.5kg D106158二碳酸二叔丁酯 98%24424-99-525g,100g,500g,1kg D106159二碳酸二叔丁酯 99%24424-99-525g,100g,1kg D106160二碳酸二叔丁酯 96%24424-99-5100g,500g F1061739-芴甲基-N-琥珀酰亚胺基碳酸酯 98%82911-69-15g,25g,100g F113338芴甲氧羰酰胺 99%84418-43-95g,25g,100g I105738氯甲酸异丁酯 98%543-27-125g,100g,500g耦合试剂由于肽合成中较低的消旋化是固相肽合成的一个关键指标,阿拉丁为你提供各种高质量偶联试剂,包括碳化二亚胺、脲类和磷型的偶联试剂,可以快速、有效和无消旋的缩合货号品名规格cas号包装 A1133452-(7-氮杂苯并三氮唑)-N,N,N' ,N' -四甲基脲四氟硼酸盐 98%873798-09-55g,25g,100g B106161卡特缩合剂 98%56602-33-65g,25g,100g,500g B1093122-溴-1-乙基吡啶四氟硼酸盐 98%878-23-95g,25g B113336溴代三(二甲基氨基)磷鎓六氟磷酸盐 98%50296-37-21g,5g,25g B113343三吡咯烷基溴化鏻六氟磷酸盐 98%132705-51-21g C109314N,N' -羰基二咪唑 &ge 97.0% (T)530-62-12.5kg,25g,100g,500g C109315N,N' -羰基二咪唑 99%530-62-11kg C113337N,N' -羰基二(1,2,4-三氮唑) 96%41864-22-65g,25g,100g H1061761-羟基苯并三唑一水合物 &ge 97.0%123333-53-925g,100g,250g,500g H1061773-羟基-1,2,3-苯并三嗪-4(3H)-酮 98%28230-32-25g,25g,100g H106354N-羟基邻苯二甲酰亚胺 98%524-38-92.5kg,25g,100g,500g H1093281-羟基-7-偶氮苯并三氮唑 99%39968-33-75g,25g,100g,500g H109329N-羟基-5-降冰片稀-2,3-二酰亚胺 99%21715-90-210g,50g,250gH109330N-羟基琥珀酰亚胺 98%6066-82-62.5kg,25g,100g,500g H109337N-羟基硫代琥珀酰亚胺 钠盐 98%106627-54-71g,5g,25g N102772N-琥珀酰亚胺基-N-甲基氨基甲酸酯 97%18342-66-05g,25g N113351TNTU 98%125700-73-41g,5g,25g,100g C113347多肽试剂TCTU 98%330641-16-25g,25g,100g C1171602-氯-1,3-二甲基咪唑六氟磷酸盐 98%101385-69-71g,5g,25g D1028482-(2-吡啶酮-1-基)-1,1,3,3-四甲基脲四氟硼酸盐 99%125700-71-21g,5g,25g D106162N,N' -二异丙基碳二酰亚胺(DIC) 98%693-13-010ml,25ml,100ml,500ml D106171N,N' -琥珀酰亚胺基碳酸酯 98%74124-79-15g,25g,100g D106284N,N-二甲基丙烯基脲(DMPU) 99%7226-23-525g,100g,500g D109331二吡咯烷基(N-琥珀酰亚氨氧基)碳六氟磷酸盐 98%207683-26-91g,5g,25g O113352TOTT 98%255825-38-85g,25g,100g P1091051-苯基-3-甲基-5-吡唑啉酮 99%89-25-82.5kg,100g,500g W111795伍德沃德氏试剂K 98%4156-16-51gFmoc修饰的氨基酸及氨基酸衍生物列表货号品名规格cas号包装 A107817Fmoc-L-天冬氨酸 4-烯丙酯 98%146982-24-31g,5g,25g A140203N-Fmoc-8-氨基辛酸 &ge 98.0%(HPLC)126631-93-41g,5g B116715N-Boc-N' -Fmoc-D-赖氨酸 97%115186-31-75g,25g B121679N-Boc-顺式-4-Fmoc-氨基-L-脯氨酸 97%174148-03-91g,5g C115874FMOC-&beta -环己基-L-丙氨酸 98%135673-97-11g,5g,25g C115932Fmoc-Cys(Mbzl)-OH 98%136050-67-41g,5g,25g D115880N&alpha -Fmoc-L-2,3-二氨基丙酸 97%181954-34-71g,5g,25g F100409Fmoc-S-三苯甲基-L-半胱氨酸 98%103213-32-75g,25g F100413Fmoc-O-叔丁基-L-谷氨酸 98%71989-18-95g,25g F100419Fmoc-L-谷氨酸 98%121343-82-65g,25g F100746N-Fmoc-N' -Boc-L-鸟氨酸 96%109425-55-01g,5g,25g F100759Fmoc-Val-OSu 97%130878-68-15g,25g F100801Fmoc-L-天冬氨酸 98%119062-05-41g,5g,25g,100g F100805Fmoc-L-缬氨酸 98%68858-20-85g,25g,100g F100808Fmoc-L-亮氨酸 98%35661-60-05g,25g,100g F101115FMOC-L-炔丙基甘氨酸 98%198561-07-81g,5g,250mg F101121FMOC-D-炔丙基甘氨酸 96%220497-98-31g,250mg F101195Fmoc-D-烯丙基甘氨酸 96%170642-28-11g,250mgF101202FMOC-D-3-(4-吡啶基)-丙氨酸 98%205528-30-91g,5g F101214Fmoc-3-(3-吡啶基)-L-丙氨酸 98%175453-07-31g,5g,250mg F101220FMOC-L-3-(2-吡啶基)-丙氨酸 97%185379-40-21g,250mg F101223FMOC-D-3-(2-吡啶基)-丙氨酸 98%185379-39-91g,5g F101459Fmoc-2-氨基异丁酸 97%94744-50-05g,25g F101574FMOC-L-4-甲基苯丙氨酸 98%199006-54-71g,250mg F101598FMOC-L-3-甲基苯丙氨酸 98%211637-74-01g,250mg F101600FMOC-D-3-甲基苯丙氨酸 98%352351-64-51gBoc修饰的氨基酸及氨基酸衍生物列表td style="padding-left: 12px "98%货号品名规格cas号包装 B100726BOC-O-苄基-L-酪氨酸 98%2130-96-35g,25g,100g B100799Boc-L-谷氨酰胺 98%13726-85-75g,25gB101207BOC-D-3-(3-吡啶基)-丙氨酸 98%98266-33-21g,5g,250mg B101451BOC-D-丙氨酸 98%7764-95-65g,25g B101478Boc-D-酪氨酸 70642-86-31g,5g,25g,100g B101548BOC-L-4-甲基苯丙氨酸 98%80102-26-71g,5g,250mg B101595BOC-L-3-甲基苯丙氨酸 98%114873-06-21g,5g B101597BOC-D-3-甲基苯丙氨酸 98%114873-14-21g,5g B101616BOC-L-2-甲基苯丙氨酸 98%114873-05-11g B101623BOC-D-2-甲基苯丙氨酸 98%80102-29-01g B101627BOC-D-4-溴苯丙氨酸 98%79561-82-31g B101633BOC-L-2-溴苯丙氨酸 98%261165-02-0500mg B101661BOC-L-3,4-二氯苯丙氨酸 98%80741-39-51g,5g,250mg B101686BOC-L-2-氯苯丙氨酸 98%114873-02-81g,5g B101696BOC-D-2-氯苯丙氨酸 98%80102-23-45g B102424Boc-L-脯氨酸酰胺 97%35150-07-31g,5g B102427N-BOC-L-苯丙氨醛 97%72155-45-41g,250mg B102428Boc-L-脯氨醛 97%69610-41-91g,5g B1024361-(Boc-氨基)环戊烷羧酸 98%35264-09-61g,5g B102447N(&alpha )-Boc-L-2,3-二氨丙酸 97%73259-81-11g,5g B102996BOC-L-异亮氨酸 99%13139-16-75g,25g,100g B103072N-Boc-N' -Cbz-L-赖氨酸 98%2389-45-95g,25g,100g B103084N-Boc-4-氧-L-脯氨酸甲酯 97%102195-80-21g,5g,250mg B103160(S)-N-BOC-4-溴苯丙氨酸 98%62129-39-91g,5g,25g更多产品请访问阿拉丁官网
  • 未来已来:ADC药物精准制导癌症治疗
    抗体药物偶联物(ADC)作为一类新型靶向抗癌药物,近年来在抗癌药物研发领域备受关注。ADC药物由单克隆抗体、细胞毒素、连接子和偶联位点组成。单克隆抗体能够特异性识别并结合癌细胞表面的抗原,连接子则起到将抗体和细胞毒素结合在一起的作用。当ADC药物进入体内并结合靶细胞后,通过内吞作用进入细胞内,连接子在细胞内被降解,从而释放出细胞毒素,最终导致靶细胞的死亡,从而实现高效杀伤肿瘤细胞并减少对正常组织的损伤。据统计截止到今年5月底,全球有超过800款ADC药物处于不同的研发阶段,其中国产ADC新药研发项目占到了519项,充分体现了我国在ADC药物研发领域的强劲实力。一般的,用于ADC生产的偶联方法可分为三类。第一类是天然赖氨酸偶联或半胱氨酸偶联;第二类是通过半胱氨酸残基进行抗体工程和修饰,或结合非天然氨基酸残基作为有效载荷偶联的反应标签;第三类是使用酶催化偶联;目前,商业市场上所有的ADC都是通过化学偶联进行生产的,化学定点偶联的方法有高DAR值偶联、天然半胱氨酸重桥接、Fc亲和肽结合三种。高DAR值偶联在工艺稳健性和跟踪记录方面具有显著优势,天然半胱氨酸重桥接在偶联反应条件方面具有很高的灵活性,Fc亲和肽结合则能够应用于各种抗体和药物接头,该方法能提供位点特异性DAR2的ADC。从ADC药物的发展可以看出,随着技术的变革,ADC药物的开发逐渐从初期的探索性阶段进入到临床应用与优化阶段。以下是目前研究中ADC药物的研究热点内容:新型连接子的开发与优化ADC药物的疗效与安全性在很大程度上取决于连接子的设计。传统的连接子设计较为简单,但在体内稳定性和靶细胞内的释放效率方面存在不足。为了提高ADC药物的疗效,研究者们正在开发更加智能和高效的连接子,例如酸敏感连接子和酶敏感连接子。这些新型连接子能够在肿瘤微环境中或特定酶的作用下被特异性降解,从而提高药物的靶向性与毒性释放效率。抗体工程技术的发展抗体工程是ADC药物开发中的另一项关键技术。通过抗体工程技术,研究人员可以优化抗体的结构,以提高其与目标抗原的结合力,同时减少免疫原性。目前,双特异性抗体和抗体片段等新型抗体形式正逐渐进入ADC药物开发的视野,靶向同一抗原上不同位点的双特异性ADC可以改善受体聚集并导致靶标的快速内化。此外,抗体片段由于其较小的分子量,可以更容易地渗透到肿瘤组织中,增加药物的治疗效果。高效细胞毒素的筛选细胞毒素是ADC药物的核心杀伤成分,其毒性和选择性直接影响药物的疗效与安全性。传统的细胞毒素如卡瑞里霉素和美登素虽然毒性强,但对正常细胞也具有较大的杀伤作用。为了提高ADC药物的安全性与降低耐药性,研究者们使用两种不同的细胞毒性药物作为有效载荷的双有效载荷ADC,通过精确控制两种药物的比例,通过将两种协同有效载荷递送入癌细胞,可以达到更有效的治疗效果。并且随着两种不同机制的有效载荷的应用,耐药性的发生率将大大降低。质谱技术在ADC药物研发中的应用质谱技术是当前ADC药物研究中的重要工具,主要用于分析和表征ADC药物的化学结构及其代谢产物。在ADC药物的研发过程中,研究者将LC-MS/MS技术用于深入表征ADC药物的偶联位点异质性,评估药物抗体比(DAR)和偶联位点的载荷分布,从而保证药物的安全性和有效性。将高分辨质谱技术用于ADC药物的分子量及DAR值检测、肽图分析、HCP的鉴别和定量等方面,为药物的质量控制和表征提供了重要信息。同时,基于高分辨质谱的完整蛋白质谱分析技术,可以在不进行酶解或碎片化的情况下,直接对蛋白类药物进行表征。另外,质谱成像技术还可以用于分析ADC药物在肿瘤组织中的分布情况,从而帮助优化药物的设计和给药方案。单细胞分析技术的引入单细胞分析技术近年来逐渐在ADC药物研究中崭露头角。通过单细胞分析,可以更精确地识别和选择在肿瘤细胞表面高表达、而在正常组织低表达或不表达的靶点,这对于提高ADC药物的特异性和减少副作用非常重要。这项技术有助于更准确地理解药物在肿瘤组织中单个细胞水平上的作用,这对于优化ADC药物的设计和效果至关重要。目前,越来越多的ADC药物进入临床试验,并展现出良好的治疗前景。随着ADC药物技术的不断进步以及研究人员的努力,未来ADC药物在癌症靶向治疗中会展现出更多的惊喜。
  • 破译蛋白质结构的秘诀:利用富含炔基的羧基选择性交联剂增加交联覆盖率
    大家好,本周为大家分享一篇发表在Anal. Chem.上的文章,Alkynyl -Enrichable Carboxyl-Selective Crosslinkers to Increase the Crosslinking Coverage for Deciphering Protein Structures,该文章的通讯作者是中国科学院大连化学物理研究所的赵群和张丽华研究员。化学交联结合质谱技术 (CXMS) 的交联覆盖范围对于决定其破译蛋白质的结构的能力具有重要意义。目前,交联质谱技术中最常用的交联剂的类型为针对赖氨酸侧链的N-羟基琥珀酰亚胺 (NHS) 酯基交联剂。然而,此种交联剂存在一定的局限性,尤其是对于含有赖氨酸数目较少的蛋白质;其他类型的氨基酸残基,如羧基等,也可以进行交联反应,以补充赖氨酸残基的局限性并提高 CXMS 的交联覆盖率,然而,羧基的低固有化学反应活性损害了羧基选择性交联剂在复杂样品中的应用。鉴于此,本文开发了三种具有不同反应基团(如酰肼、氨基和氨氧基)的富含炔基的羧基选择性交联剂,以此提高针对酸性残基的交联效率并实现复杂样品的深入交联分析。文章要点:(1)本工作系统地评估了三种交联剂的交联效率,给出了氨基功能化交联剂 BAP 的最佳反应性。此外,结合BAP交联剂于高效的交联富集策略对大肠杆菌裂解物进行交联分析。在 ≤1% 的错误发现率 (FDR) 下,共鉴定出 392 种蛋白质中涉及到的 1291 个 D/E-D/E 交联。(2) 研究结果显示,BAP 与赖氨酸靶向交联剂具有明显的结构互补性,这提高了CXMS 进行蛋白质结构解析的能力。本工作是羧基选择性交联剂首次实现全细胞裂解物的全蛋白质组交联分析。总的来说,这项工作不仅扩展了一个针对酸性残基的十分具有前途的 CXMS 工具包,同时还为提高羧基选择性交联剂的性能提供了有价值的指导。图1 三种交联剂BHP、BAP和BOP的化学性质。(A) 三功能交联剂的化学结构:两个反应性基团用红色表示,一个可修饰的手柄用橙色表示。三种交联剂的Cα原子之间的最大距离约束利用软件Chem3D 19.0计算得出。(B) 利用软件pLink 2.0分析三种交联剂与蛋白质进行交联质谱实验的MS/MS谱。(C) 三种交联剂的反应效率直方图。(D) 酰胺化反应的机理。图2 三种交联剂BHP、BAP和BOP在BSA蛋白质、六蛋白混合物和E. coli 70S ribosome结构分析中的性能。(A) 三种交联剂与BSA的反应中鉴定出的交联的维恩图。(B) 交联的Cα−Cα 距离分布的直方图,通过映射到BSA的晶体结构来验证。(C) BSA中交联残基分布的二维 (2D) 热图。颜色插入表示交联的距离分布。(D) 六蛋白混合物的环形二维交联图。黑线表示蛋白质内的交联,红线表示蛋白质间的交联。(E) 将交联映射到TXN2 (UniProtID:Q99757,PDB:1W4V)、CA2 (UniProtID:P00921,PDB:6SKS)和E. coli 70S ribosome (PDB:5KCS)的X射线晶体结构上,由BAP(红线)和BSP(黄线)鉴定。图3 基于BAP的交联平台,用于大肠杆菌裂解液的全蛋白质组分析,包括蛋白质复合物交联、点击化学、链霉亲和素富集、分馏和LC-MS/MS分析。图4 通过BAP对大肠杆菌裂解液的全蛋白质组分析。(A)富集前后鉴定的谱图数目的比较。黑色和红色分别对应于常规肽和交联肽的谱图。(B)将由BAP(红线)和BSP(黄线)鉴定的交联映射到蛋白质的X射线晶体结构上。(C)将交联映射到由BAP专门鉴定的蛋白质的X射线晶体结构上。 (D)使用Xplor-NIH软件包对hns (UniProtID:P0ACFID) 和grcA (UniProtID:P68066) 的AF2预测结构进行细化。用BAP和BSP鉴定出的交联分别用红色和黄色标记。在本工作中,作者开发并表征了三种新的可富集的羧基选择性交联剂,它们具有不同的反应基团酰肼、氨基和氨基氧基。其中,氨基功能化交联剂 BAP 对于所有不同复杂度的蛋白质样品均表现出最佳的交联反应活性和鉴定覆盖率。此外,BAP扩展到大肠杆菌裂解液的交联分析与高效的交联富集相结合。本工作首次使用羧基选择性交联剂,以实现全细胞裂解液的全蛋白质组范围内的交联分析。因此,以上所有结果表明,本工作开发的 BAP 是一个很有前途的工具包,可以提高蛋白质结构分析的交联覆盖率。此外,本项工作还可以为提高羧基选择性交联剂的性能提供有价值的指导。参考文献:Gao H, Zhao Q, Gong Z, et al. Alkynyl-Enrichable Carboxyl-Selective Crosslinkers to Increase the Crosslinking Coverage for Deciphering Protein Structures [published online ahead of print, 2022 Aug 29]. Anal Chem.2022 10.1021/acs.analchem.2c02205. doi:10.1021/acs.analchem.2c02205
  • 粮食收购旺季,黑龙江伊品生物采用“冠亚水分仪”,测试粮食水分!
    粮食收购旺季,黑龙江伊品生物采用“冠亚水分仪”,测试粮食水分! 黑龙江伊品生物科技有限公司是宁夏伊品生物科技股份有限公司在杜尔伯特蒙古族自治县投资设立的有限公司。公司规划分二期投资建设180万吨玉米深加工项目,主要生产饲料级L-赖氨酸、L-苏氨酸、尼龙盐以及玉米副产品等产品。 2018年粮食收购旺季到来之际,大庆市杜尔伯特县新闻电视台专访大庆伊品生物。特别报到收购粮食情况,将冠亚粮食水分仪操作简便,快速检测水分的实用性向群众展示: 冠亚WL系列型快速水分测定仪在继承了冠亚以往设备优异性能的同时,更多是集合了现代化的科技亮点,实现了高智能化的设计理念。对于不同行业的高低水份样品都能进行准确、快速的测量分析,为不同的行业产品水份检测的研究提供了新的科学依据。
  • 李灵军合作成果:mNeuCode支持精氨酸二甲基化的靶向蛋白质组分析
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation1,文章的通讯作者是威斯康星大学麦迪逊分校的李灵军教授和国家蛋白质科学中心的常乘、贾辰熙教授。  蛋白质精氨酸甲基化是一种广泛存在于真核生物中且相对保守的翻译后修饰,参与包括RNA加工、DNA修复、染色体组织、蛋白质折叠和基因表达在内的多种生物学过程。蛋白质精氨酸二甲基化在生物过程和人类疾病中发挥着重要作用,但与此同时,精氨酸二甲基化的相对丰度和化学计量通常很低,并且表现出较宽的动态变化范围,这些问题都给分析带来了巨大的挑战。在这篇文章中,作者设计了一种用于二甲基精氨酸代谢标记的mNeuCode标签,并开发了一个名为NeuCodeFinder的软件工具,用于在MS全扫描中筛选NeuCode信号,从而能够在蛋白质组范围内对蛋白质二甲基化进行靶向LC-MS/MS分析。作者将该方法应用到HeLa细胞精氨酸二甲基化的全蛋白质组分析中,证实了该方法的有效性:在70种蛋白质上鉴定到176个精氨酸二甲基化位点,其中38%是新位点。  图1 用于细胞培养代谢标记的mNeuCode的化学设计。含有由稳定同位素标记的甲硫氨酸和精氨酸的不同组合的mNeuCode-I(红色)和mNeuCode-II(蓝色)分别用于两组细胞培养。同位素标记的甲硫氨酸经过代谢转化为甲基供体S-腺苷甲硫氨酸(AdoMet ),随后由蛋白质精氨酸甲基转移酶(PRMT)催化转移到精氨酸侧链的甲基上。细胞裂解后,将两种样品混合并制备用于高分辨率LC-MS分析。含有二甲基精氨酸的肽的NeuCode同源物被解析后,将显示出43 mDa的质量差异并作为诊断峰。  图2 基于mNeuCode的精氨酸二甲基化靶向蛋白质组分析。(A)NeuCodeFinder从高分辨率质谱数据中筛选NeuCode同位素峰对的工作流程。从原始数据文件中提取全扫描质谱。单峰被配对以形成NeuCode等值线簇。最终的NeuCode对列表与提取的离子色谱(XIC)值一起导出。(B)靶向LC-MS/MS分析的工作流程,包括样品制备、富集以及MS1和MS2分析。  在mNeuCode-I标记组中,使用含有正常L-精氨酸和同位素标记L-蛋氨酸[D3]的培养基 在mNeuCode-Ⅱ标记组中,则使用同位素标记的L-精氨酸[15N4]和L-甲硫氨酸[13C]进行培养(图1)。收集两组全细胞蛋白提取物并等量混合,蛋白经还原烷基化与酶切后,得到的肽段通过StageTip分级分离和HILIC tip富集,以提高样品肽段的识别率。处理的样品先进行LC-MS全扫描,通过作者的自制软件NeuCodeFinder生成包含列表,此包含列表用于辅助进一步的平行反应监测(PRM)模式分析(图2)。    图3 已鉴定的精氨酸甲基化位点的生物信息学分析。(A)鉴定的精氨酸二甲基化位点和(B)精氨酸二甲基化蛋白质。橙色柱表示未报道的精氨酸二甲基化位点或蛋白质。绿色柱表示只有单甲基化是已知的,但是二甲基化还没有报道。(C)韦恩图显示,通过使用胰蛋白酶和镜像胰蛋白酶作为消化试剂,从两组实验中鉴定的精氨酸二甲基化位点。(D)蛋白质上位点数目的分布。每个蛋白质上精氨酸二甲基化位点的数量显示在饼图周围,蛋白质的数量列在饼图中。鉴定的精氨酸-二甲基化蛋白质的(E) GO富集和(F)KEGG途径分析。(G)使用STRING数据库将二甲基化蛋白质映射到蛋白质相互作用网络上。综合得分 0.4。(H)已鉴定的精氨酸二甲基化位点中-6和+6氨基酸残基的序列标志。  通过对数据结果的分析,最终共鉴定到70种蛋白质上的176个精氨酸二甲基化位点,其中37-38%的精氨酸二甲基化位点是新的修饰位点,29%的精氨酸二甲基化蛋白没有被报道过,这证明了mNeuCode方法的有效性。与常规的鸟枪法蛋白质组学策略所获得的数据相比,mNeuCode方法在鉴定低丰度精氨酸二甲基化肽方面具有独特的优势,并且能够补充许多传统鸟枪法蛋白质组学所无法鉴定到的精氨酸二甲基化位点。对mNeuCode方法鉴定到的精氨酸二甲基化蛋白进行生物信息学分析后,发现这些蛋白质主要与RNA的加工、剪接和稳定性相关,参与了RNA的代谢过程。  图4 FAM98A上精氨酸二甲基化位点的突变抑制了细胞迁移。(A)通过蛋白质印迹检测FAM98A在HeLa细胞中敲除和重建的效果。用siFAM98A-1和siFAM98-2沉默HeLa细胞,然后用Flag标记的WT或突变的FAM98A质粒重建。Anti-FAM98A显示内源性FAM98A的干扰。Anti-Flag显示外源FAM98A的重建。(B)图像和(C)柱状图显示了HeLa细胞的细胞迁移。  FAM98A是一种微管相关蛋白,与结直肠癌和非小细胞肺癌的增殖有关。有研究者发现FAM98A是PRMT1的底物,但未能确定确切的甲基化位点。而在作者的研究结果中,成功鉴定到FAM98A上五个新的精氨酸二甲基化位点。为了验证这些二甲基化位点是否参与细胞迁移的调节,作者使用FAM98A敲除和FAM98A WT或突变重建细胞系进行了伤口愈合试验。将HeLa细胞的FAM98A基因敲除后,分别用WT或突变的flag-FAM98A重建FAM98A沉默细胞,其中突变的flag-FAM98A将二甲基化位点R351、R360、R363、R371和R375突变为赖氨酸以抑制甲基化。实验结果显示,当FAM98A基因被敲除时,细胞的迁移能力受到抑制,WT FAM98A的重建挽救了FAM98A敲除导致的细胞迁移缺陷,但是突变型FAM98A的重建却不能挽救。该结果证实了FAM98A上的二甲基化位点在细胞迁移中起到的作用。  总之,在这篇文章中作者发明了一种mNeuCode方法,并开发了NeuCodeFinder软件,使得能够以全蛋白质组的方式进行精氨酸二甲基化的靶向MS/MS分析。实验结果证明了mNeuCode技术对于精氨酸二甲基化的靶向蛋白质组分析的能力和有效性,并证实HeLa细胞FAM98A上新的精氨酸二甲基化位点在细胞迁移调节中的功能,有助于更好地理解癌症发展的潜在机制,为蛋白质组分析的方法学提供了新的思路。  撰稿:梁梓欣  编辑:李惠琳  文章引用:mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Wang, Q., Yan, X., Fu, B., Xu, Y., Li, L., Chang, C., & Jia, C. (2023). mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation. Analytical chemistry
  • 青年才俊上演计算蛋白质组学头脑风暴——记CNCP 2016新技术
    记第四届中国计算蛋白质组学研讨会(CNCP-2016)新技术  仪器信息网讯 2016年8月10日-11日,第四届中国计算蛋白质组学研讨会(CNCP-2016)在中国科学院大连化学物理研究所盛大召开。(相关新闻:第四届中国计算蛋白质组学研讨会(CNCP-2016)在大连开幕)。本届研讨会邀请了26个大会报告,报告嘉宾是来自国内外的计算蛋白组学领域专家和奋战在第一线的青年科研工作者,嘉宾中的绝大多数是首次登上CNCP讲坛。报名参加本届会议的人员首次超过了200人。CNCP2016C参会代表合影张丽华研究员为研讨会致开幕辞  本届会议的开幕式只有简短的5分钟,没有领导讲话,没有任何仪式,充分体现了会议的简洁办会特色。开幕式由中国科学院大连化学物理研究所的张丽华研究员致欢迎词,她提到:“中国计算蛋白质组学研讨会在业界享有很高盛誉。每次会议的演讲嘉宾都是由会议发起者和主办方——中国科学院计算技术研究所贺思敏研究员、北京蛋白质组研究中心徐平研究员、北京生命科学研究所董梦秋研究员等资深学者以及往届会议报告人鼎力推荐的。本次研讨会的26个报告将由来自国内外相关领域的顶级专家和奋战在科研第一线的青年才俊精彩呈现。相信在这两天的会议中,大家不仅能够收获知识,也能收获友谊。”研讨现场  CNCP-2016会议邀请的26个报告多数都是最近一两年的研究成果,部分还没有发表,新技术频繁现身,特别是在交联质谱技术与蛋白质复合体,蛋白质相互作用、翻译后修饰技术、蛋白质鉴定数据处理、定量蛋白质组技术等领域报告较多,下面对这26个报告的内容逐一进行简介总结。  UCI(美国加利福尼亚大学尔湾分校)黄岚博士 报告题目《Developing Cross-Linking Mass Spectrometry (XL-MS) Strategies to Define Interaction and Structural Dynamics of Protein Complexes》  了解蛋白质复合物的相互作用和结构动力学对于揭示病理的分子学细节非常有帮助。交联质谱(XL-MS) 是目前研究大量多亚基蛋白复合物PPIs的重要技术,而精确的肽段鉴别是XL-MS分析一直以来面临的挑战。为了促进这方面的研究,黄岚博士研究组研发了DSSO 及一系列含亚砜(sulfoxide-containing)可分裂质谱交联剂以揭示蛋白质复合物表面相互作用机理。研究者通过这些(MS-cleavable reagents)质谱可分裂试剂在多级串联质谱上建立了实用的XL-MS工作流,快速、准确的鉴别交联肽段去研究体内和体外的PPIs。同时,研究者也研发了新的定量XL-MS途径,用以分析多种生理条件下蛋白质间的相互作用和蛋白质复合体的结构动态变化。据介绍,该课题组最近研发了新的羧基交联剂DHSO主要用来与酸性氨基酸反应,反应中需要DMTMM共同作用。 这样可以得到更广的蛋白相互作用信息。北京生命科学研究所 谭丹博士 报告题目《Trifunctional Cross-Linker for Mapping Protein-Protein Interaction Networks and Comparing Protein Conformational States》  该研究组最近有一项研究工作围绕一种含生物素标签的赖氨酸富集交剂Leiker,谭丹博士在报告中详细展示了课题组的相关研究,研究表明Leiker能够有效改进蛋白质化学交联质谱技术(CXMS)。研究组将以Leiker为交联剂的CXMS用于E.coli全细胞裂解液的分析,发现了3656种相互作用,是之前已有研究方法的10倍。Leiker CXMS比BS3得到的信息要立体很多,能得到更全面的蛋白质相互作用网络。研究者还将Leiker为基础的CXMS用于RNA结合位点鉴定与定量,该方法能够深入揭示蛋白质构象变化。在将Leiker CXMS用于大肠杆菌和秀丽线虫裂解液中的研究中,分别鉴定出3130和893个互补赖氨酸对,并各自发现了677和121种PPIs。Utrecht University (荷兰乌德勒支大学) 刘凡博士 报告题目《Charting the Cellular Interactome by Proteome-Wide Cross-Linking Mass Spectrometry》  据刘凡博士介绍,针对交联数据分析的n-square和交联肽段低效裂解这两大难题,该研究组建立了一种新XL-MS工作流-质谱可分裂交联剂法。该法是一种混合MS2-MS3裂解途径与专用的交联搜索数据库结合的方法。研究者将质谱裂解交联剂DSSO应用于测定每个交联肽段的前体质量,解决了n-square问题。交联裂解前体离子可通过质量差异确定数据的MS3采集方向,这些工作都可以在Oribitrap Fusion 和 Lumos Tribrid质谱上完成。这种采集途径提高了MS3实验的成功率,能够解决低效裂解问题和显著改善数据质量。与先前方法相比,报告中介绍的新方法包含以下三个优势。1)能够完成整体蛋白组数据库的交联鉴别 2)包括多种翻译后修饰的交联鉴别 3)在MS2和 MS3水平都有高质量范围。该研究组将此新XL-MS方法用于多种复杂样本,包括大肠杆菌裂解物、HeLa裂解物、排阻色谱分馏的HeLa细胞核提取物与细胞器。采用这种方法能够从每种样本得到成千上万个交联点。中国科学院计算技术研究所 刘超博士 报告题目《Development of the Cross-Linked Peptides Identificationin Large Scales》  由于检索空间过于庞大,蛋白组范围内交联肽段(双肽)的鉴定一直都是一项挑战。刘超博士和其团队考察了用于大范围交联肽段鉴定的普通搜索工具的应用效果,并开发了一种新的计算软件技术pLink 2.0。此技术比先前技术有三方面的改进:1)提高了双肽中单同位素鉴定的精度 2)由肽段索引升级为离子索引 3)引入机器学习(SVM在线训练)。该团队研究表明,通过使用离子索引pLink2.0检索人类数据库,在一小时以内可以完成5000张谱图的检索。干湿结合方法在人库检索1万张二级谱图仅用时不到2分钟。将pLink 2.0与美国西雅图研究人员研发的Kojak相比较,pLink2.0的分析速度约为Kojak的6倍,在精度方面也有一定优势。pLink2.0支持可碎裂交联,可减少可搜索空间和减少谱图数目。华中师范大学 万翠红博士 报告题目《Mapping Conserved Metazoan Protein Complexes with Biochemical Fractionationand LC/MS/MS》  对多蛋白复合物的了解对于生理进程探索非常重要。然而,对多蛋白复合物种类的分布特别是大规模网状图的发现比较困难。万翠红博士研究组通过高分辨生化分离与定量质谱直接分析了可溶性多蛋白复合物的组成,分析C.elegans、D.melanogaster、M.musculus、S.purpuratus和人类的可溶性细胞提取物。研究组采用以人类为中心的综合计算分析,鉴别出2153种蛋白,并新鉴定出7699种成对相互作用和981种共复合作用。这些相互作用能够反映后生动物生理过程相关的核心生理基础。重建的生理作用网有助于深入了解特殊的分子生物机理以及动物细胞的进化。国家蛋白质科学中心 郑勇博士 报告题目《Scaffold Protein-Mediated Dynamic Assembly of Protein Complexes in Normal and Cancer Cells》  很多细胞表面受体通过催化多组分蛋白复合物的形成开始信号传导过程。这个过程通过与受体结合的scaffold蛋白来传导。然而,目前这种scaffold的生物学基本原理仍不明晰。针对这个问题,郑勇博士研究组通过以IP-MRM为基础的方法,根据Shc1复合信号跟踪其空间和实时变化。研究人员进一步将这种方法与生化和基因技术结合,研究组发现Shc1以特殊的方式对EGF有即时的反应,包括明显的磷酸化和蛋白质相互作用。研究人员成功发现Shc1与一种抑制蛋白产生相互作用,是一种快速绑定蛋白基团能够激活促有丝分裂/存活通路,蛋白复合物围绕Shc1的装配变化在细胞间非常显著。对EGFR/Shc1复合物蛋白组分析能为以pTyr为基础的致肿瘤信号导致的乳腺癌提供诊断依据。暨南大学 张弓博士 报告题目《High-Throughput De Novo Proteome Identification Aided by Translatome Sequencing》  De novo肽段序列鉴定能够避免依赖数据库的检索法的缺点,但由于由于没有背景库,无法评估FDR,且极易受到干扰信号误导,因此长期以来无法应用于复杂样品的大规模鉴定。张弓教授介绍了研究团队研发的利用翻译组测序数据作为蛋白质de novo鉴定质量控制新方法,使肽段de novo鉴定能首次应用在蛋白质组复杂样品的实用化鉴定。研究人员在HCD质谱上应用此方法检测三种肝癌细胞(Hep3B, MHCC97H, MHCCLM3),单次实验鉴定出12000-13000种蛋白质,其灵敏度几乎达到了翻译组测序的水平 而用6种搜库软件鉴定到的真阳性蛋白并集也才7000-8000种。只能用新策略鉴定的4000余蛋白中随机挑选几十个进行MRM验证,几乎都能验证成功。这证明翻译组指导的de novo鉴定效能很高,能鉴定到大量搜索库法无法鉴定到的肽段和蛋白。De novo鉴定的大规模化可引致一系列新的蛋白质组应用。上海生命科学院 李辰博士 报告题目《De Novo Identification and Quantification of Single Amino-Acid Variants in Human Hepatocellular Carcinoma Tissues》  肿瘤蛋白质组-基因组学研究非常关注变异的发现。单核苷酸的多变性(SNPs) 数据库能够给单个氨基酸变体(SAVs)的检测提供依据。李辰博士在报告中介绍了一种在蛋白组水平发现SAVs的新方法。该法基于de novo算法,肽段的可能候选者可被鉴别并与理论蛋白数据库比较。在人类肝癌(HCC)组织中,研究者成功的应用此方法鉴别和定量已知和新的突变蛋白。在肝组织当中,在细胞核内的突变比较低,突变在内质网和线粒体的富集比例较高。这种新方法为病人提供了高通量的定制检测途径,可能为潜在临床生物标志物发现和机理研究提供帮助。中山大学 肖传乐博士 报告题目《Improving Peptide Identification for Tandem Mass Spectrometry by Incorporating Translatomics Informatio》  目前很多数据库检索方法是利用谱学数据而忽略能用于肽段鉴定的生物系统的其他信息。最近,转录物组RNA-seq的界面信息能提高肽段鉴别的灵敏度已经证实。与转录物组信息相比,翻译物组体现出与蛋白质的关系更为紧密,所以其可能对肽段鉴别更有效。在此报告中,肖传乐博士介绍了该研究组设计的高灵敏度肽段鉴定手段IPomics,其以翻译组学信息为主要蛋白鉴定参考。方法得到的推荐蛋白质优先性整合进了新的评分功能。与Mascot和pFind相比,IPomics方法蛋白质鉴定准确度更高,并能够增加整体肽段的鉴定率、谱学信息利用率,并已经利用LC-MS/MS数据集在人类和小鼠蛋白鉴定取得了显著效果。华大基因(BGI-Shenzhen) 闻博 报告题目《Protein Identification and Quantification based on Multiple Search Engines》  闻博在报告中介绍了团队有关以多搜索引擎为基础的蛋白鉴定和定量软件的研究进展。目前,串联质谱技术产生的质谱数据解析率往往不高,不同蛋白质鉴定软件由于谱图预处理、打分算法不同等原因导致对同一个数据的解析结果往往存在一定的互补性。虽然有一些开源的软件可以通过精巧的运算将多个鉴定引擎的鉴定结果整合起来取得与单引擎相比更好的鉴定效果,但由于操作往往较为复杂、下游软件比较缺乏等原因,故没有在蛋白鉴定与定量中推广开来。为了促进多引擎整合方法在蛋白鉴定和定量中的应用,该研究组研发了一种多引擎综合鉴定的开源软件IPeak和同重同位素(如iTRAQ、TMT)标记定量软件IQuant,并将IQuant升级到IQuant2。IQuant2采用精妙的算法和mzIdentML标准,整合多引擎搜索结果进行蛋白质定量。在分析水稻蛋白样品(用Q-Exactive分析)和人细胞系蛋白(用TripleTOF 5600分析)样本时,与单个引擎定量结果相比,IQuant2定量的蛋白能提高28.8%,检测的差异蛋白数量能提高多大40%。多引擎搜索不但能够提高蛋白鉴定效果,也能提高蛋白定量效果。中国科学院水生生物研究所 葛峰博士 报告题目《GAPP: a Proteogenomic Software for Genome Annotation and Global Profiling of Posttranslational Modifications in Prokaryotes》  葛峰博士在前期蓝细菌的蛋白基因组学研究工作的基础上,开发了一种用于原核生物的基因组注释和翻译后修饰全局发现的蛋白基因组分析软件GAPP。该软件最大的特点就是简单高效,具备初步生物信息学知识的研究者就能应用该软件进行原核生物的蛋白基因组数据的深度分析,利用该软件可以高效完成原核生物的全蛋白质组解析和翻译后修饰的全局发现的工作,该软件的开发和应用将有助于原核生物的基因组的精准鉴定,并有望成为原核生物基因组注释的一项标准流程。今后研究组还将根据用户的要求和体验继续对该软件进一步升级。复旦大学 周峰博士 报告题目《Genome-Wide Quantitative Proteomic and Transcriptomic Analysis Reveals Post-Transcriptional Regulation of Mitochondrial Biogenesis in Human Hematopoiesis》  蛋白质组学样品分析需要高分辨分离平台,周峰博士研究组搭建了一种长色谱柱三维蛋白组学定量分析平台(GWPQ), 整套系统完全在线和实现操作自动化。研究者将在此平台建立的蛋白质组学方法与Ribosome profiling相比较,水平相当,在分析模型样品时有80%的重叠。研究者还用此方法开展了人体造血相关细胞的研究,二代测序与应用该平台的蛋白质组方法重叠率达到92%。研究团队利用此方法比较了人体最重要的造血干细胞和红细胞发育中14502个基因蛋白表达变化和17127个基因mRNA表达变化。mTORC1信号极大的促进了红细胞进化中线粒体蛋白的翻译,线粒体和mTORC1的遗传和药理学干扰削弱了体内和体外的红细胞生成。该研究支持了线粒体理论机理,可能与线粒体疾病和老化相关的血液缺陷有关。研究者用模式生物小鼠实验验证了线粒体在血红细胞发育中起到关键作用,找到了全新控制血红细胞发育的通路。Johns Hopkins University(美国约翰霍普金斯大学) 张会博士 报告题目《Comprehensive Analyses of Glycoproteins》  已有不少实验证明,糖蛋白的变化与很多疾病相关。张会博士介绍了糖蛋白的生物合成、结构和功能以及分析糖蛋白的最新方法。糖蛋白的分析是蛋白质分析中最复杂的一种。研究者常把糖和蛋白分开分析,如已有的SPEG(固相提取糖基位点肽)法。该研究组建立了N-糖蛋白数据库,该库可用于检索已鉴定蛋白、通过精确质量数检索候选肽段、鉴定糖蛋白源等。该研究组最近还建立了分析N-linked糖链,糖基化位点,糖基化位点特异糖链,及O-linked糖链分析方法和软件,并探索了用糖基化酶推测多糖的方法。中国科学院大连化学物理研究所 于龙博士 报告题目《Isolation and Structural Analysisof N-Linked Glycansby Using Two-dimensional Chromatography, Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy》  糖蛋白糖链的纯化合物对糖链的结构分析、精准检测以及功能研究都具有十分重要的意义。然而,目前糖链纯化合物仍处于严重匮乏的状态。来自大连化物所的于龙博士介绍了该团队根据自身优势,采用纯化制备方法来获取N-糖链纯化合物并对其结构进行解析的相关研究进展。研究者首先介绍了糖链的结构特点并对其分离分析中存在的难点问题进行了阐述。针对这些难点问题,研究者结合课题组的材料优势,构建了以二维亲水作用色谱分离体系为核心的糖链纯化制备流程,该流程包括糖蛋白糖链的释放、富集、二维分离、质谱表征以及核磁结构分析等技术单元。在二维色谱分离体系中,第一维度主要根据糖链的羟基数量而实现不同聚合度糖链的分离,第二维度主要用于同分异构体的分离。由于串联质谱技术并不能得到糖链准确的结构信息,因此,研究者目前正在探索核磁共振技术进行准确结构的分析。以现有的糖链纯化合物为基础,研究者接下来将分别在功能、结构和定量三方面开展相关研究以拓展糖链样品库的应用。青岛大学 李磊博士 报告题目《Ultra-Deep Tyrosine Phosphoproteomics Enabled by a Phosphotyrosine Superbinder》  酪氨酸磷酸化网络应用在蛋白组学中不容忽视,如何找到pY尤为重要,但之前方法需要大量抗体才能富集pY。为解决业内这一问题,李磊博士研究组做了不少相关研究,团队研发的Superbinder(超亲体)易于制备,能够有效减轻实验室经济负担。研究者合成了pTyr1和pTyr2两个肽段,比较了SH2 superbinder法与其他几种方法的效果,又增加了Ti4+IMAX的去噪功能,证明其能有效富集pY。与抗体相比,src和grb2超亲体都能有效发现更多pTyr位点。研究者还应用superbinder富集方法进行了Tyr 磷酸化蛋白组学研究。如探索人细胞磷酸化蛋白不同功能分类和Tyrosine kinase (TK)的生物活性等。该项研究是与中科院大连化学物理研究所邹汉法团队、加拿大西安大略大学李顺成团队多方合作完成的。University of Minnesota (美国明尼苏达大学) 陈悦博士 报告题目《Discovery and Characterization of Short-chain Lysine Acylations with Mass Spectrometry and Quantitative Proteomics》  赖氨酸是细胞内蛋白质翻译后修饰的重要靶点。最近,除了赖氨酸乙酰化以外还有一些短链酰基化修饰逐渐被发现。在陈悦博士的早期研究工作中,他从细致的质谱分析中发现了组蛋白赖氨酸丙酰化和丁酰化,两种新的短链酰基化修饰。进一步的研究表明,这两类短链酰基化修饰都是广泛存在的,并可以被特定的酶所调控。最近最新的研究表明赖氨酸丁酰化在Bromo domain识别和精子发育过程中起到重要的调控作用。为了进一步探索质谱信息中隐藏的其他新的修饰,研究者设计了PTMap软件,用来分析非限定性搜索,得到了一些可靠的新蛋白质修饰鉴定,包括琥珀酰化,巴豆酰化,羟基丁酰化等。在定量研究方面,该团队比较关心蛋白质修饰丰度,因为普遍使用的相对定量的分析方法对解释蛋白质修饰的生物学意义有一定的局限性,但是质谱分析得到的离子峰强度并不能直接比较来计算蛋白质修饰的丰度。研究者针对此问题开发了稳定同位素标记为主的新的蛋白质修饰丰度定量方法,可以直接比较离子峰强度,通缩计算得到每个位点上赖氨酸位点丰度,准确性和重现性都很好。中国科学院昆明动物研究所 赖仞博士 报告题目《Mite Allergen Diversity Identification by Proteomics Coupling with Pharmacological Testing》  螨虫、马蜂、牛虻和蟑螂等带有很多种过敏原,一些过敏甚至会导致死亡。过敏的标准治疗方式就是利用过敏原进行脱敏治疗,现在很多机构希望把过敏原纯化出来进行过敏治疗,因此对过敏原发现和提取纯化都有更多要求。屋尘螨(HDM) 是最常见的室内过敏原。赖仞博士希望结合蛋白质组学、药理和病理学手段来进行过敏原的多样性研究。过敏原蛋白组学研究一般是将分离提取出的过敏原与病人血清进行IgE反应。赖仞研究组将蛋白组学技术和二维免疫印迹法结合,从粉尘螨提取物中鉴定出分属于12个组群的17种过敏原,由Edman降解、质谱分析和cDNA克隆等技术鉴定出其一级结构。通过酶联免疫吸附试验抑制测试、免疫印迹、粒细胞活化试验、皮肤点刺试验测定,该研究组发现了8种新的尘螨过敏原。中国医学科学院基础医学研究所 邵晨博士 报告题目《Opportunities and Challenges for Urinary Biomarker Discovery Using Proteomic Approaches》  邵晨博士对业内目前围绕尿蛋白质组生物标志物的发现研究进展进行了综述。据介绍,现在很多科研和医疗开始倾向于做尿液,因其具有易得性和稳定性,且含有丰富蛋白信息。邵晨博士研究组曾通过二维液相与串联质谱鉴定做了一些尿中蛋白质组的研究,尿液蛋白质组可以包括其他体液70%的蛋白质。研究组也通过3DLC-MS/MS鉴定出尿液中的6400多种蛋白,并发现与尿蛋白重合率最高的是脑组织中的高表达蛋白。尿蛋白能够反映很多远端的变化,如帕金森症和脑肿瘤等脑部疾病。在肾脏病中,肾小球损伤病人的肾小球会失去过滤功能而造成尿蛋白显著上升。目前很多研究发现尿蛋白中的生物标记物与一些疾病相关,主要集中在泌尿系统疾病的发现,如膀胱癌和急性肾损伤的标志物已获FDA批准,也有在消化系统疾病、肿瘤等疾病中的相关发现。其中,肺癌的研究比较成熟且已进入临床阶段。
  • 应用 | 乳化剂对氨基酸洁面膏性能的影响
    研究背景皂基类产品有非常强的清洁力,但对皮肤刺激性较强,市场上逐渐兴起氨基酸型清洁产品。常见的氨基酸表面活性剂有甘氨酸型、肌氨酸型、谷氨酸型以及丙氨酸型,而其中甘氨酸型表面活性剂因其易于冲洗,洗后干爽柔滑的使用感被广泛应用于洁面产品中。在实际产品开发中,往往会利用甘氨酸型表面活性剂在pH 6~7时部分酸化形成结晶的特性来制备洁面膏,但是这类产品在研制过程中容易出现发泡能力弱、制备料体稀薄、长时间放置后料体出水或外观粗糙等问题,目前主要通过调整配方中多元醇的种类及添加量,调节产品pH值或者添加高分子来解决,而乳化剂对结晶型氨基酸洁面膏性能影响的研究报道较少。本文主要通过动态泡沫分析仪等,研究了4种不同乳化剂对结晶型氨基酸洁面膏性能的影响,以期为洁面膏中乳化剂的选择提供实践基础以及理论支持,为开发兼具使用性及稳定性的洁面产品提供新的解决思路。实验仪器1.1样品制备表1.洁面膏基础配方1.2 泡沫性能测试DFA100动态泡沫分析仪 泡沫测试采用KRÜ SS的动态泡沫分析仪DFA100完成,包括泡沫高度分析以及泡沫结构分析。首先,用去离子水将洁面膏配成质量分数为10%的溶液,然后用注射器移取50 mL溶液至组装好的量筒配件中。将固定量筒的底座支架插入仪器中,进行泡沫测试。设置参数:发泡方法:搅拌器;搅拌速度:3000 r/min;搅拌3s停止3s(便于记录泡沫高度),循环15次;测试时间:15 min;照相机高度:55 mm;测试温度:25 ℃。结论与讨论2.1 乳化剂对泡沫性能的影响根据表1配方,考察不同类型乳化剂对结晶型氨基酸洁面膏的泡沫性能影响,其中1#配方为不添加乳化剂的空白组,泡沫高度结果如图1。 图1.不同乳化剂制备的洁面膏泡沫高度由图1可知,加入乳化剂,洁面膏泡沫量有不同程度的减少。空白组稳定后的泡沫高度为127.1 mm,其次是泡沫高度与其接近的2#,3#和5#配方,高度分别为126.6 mm,126.1 mm和126.7 mm;4#配方对泡沫总量减少较为明显,泡沫高度为119.4 mm。泡沫结构可以分析泡沫的细密程度以及泡沫的稳定性。图2为稳泡阶段的平均气泡面积随时间的变化曲线,图3为测试结束时的泡沫结构照片。由结果可知,除Eumulgin® S21外,乳化剂的加入都能提高泡沫的细密程度以及稳定性,其中5#配方的泡沫最绵密,稳定性也最好,在测试时间内粒径变化最小,其次是3#与2#配方。定义每平方毫米内气泡个数衰减一半的时间为泡沫半衰期,则1#~4#配方的半衰期分别为615,626,637和553 s,而5#配方在测试周期内未观察到半衰期。这也说明用Hostacerin® DGSB,Hostaphat® KW340D 和Plantasens® Emulsifier HP 30作为乳化剂能使结晶型氨基酸洁面膏的泡沫更加细密稳定,同时又不影响泡沫量。而Eumulgin® S21使洁面膏的泡沫量减少,同时泡沫也更容易变大而破裂。乳化剂由于具有表面活性,在气泡中将被吸附在空气-水的界面,与表面活性剂共同稳定泡沫。结合泡沫的稳定性因素分析,乳化剂可能会增加气泡间液膜强度,减缓气体间的扩散导致泡沫增大,从而提高泡沫的稳定性。Eumulgin® S21为聚醚类乳化剂,但配方中存在较高含量的多元醇和盐,这使得聚醚类乳化剂的浊点降低,从而改变乳化剂的亲水亲油平衡,在体系中的溶解度有限,在气-液界面形成棱镜铺展,取代表面活性剂,从而起到消泡的作用。其中Plantasens® Emulsifier HP 30是一种液晶乳化剂,易于形成多层结构,这也可能是其泡沫稳定性最好的原因:多层液晶结构能赋予气泡间的液膜更高的粘度,可以防止或减慢排液的过程;而且液晶相的存在能增大气-液界面的曲率半径,从而减弱气泡间的Laplace压力;此外,液晶结构还能更大程度的增加液膜的力学强度和刚性,以抵御引起气泡破裂的热和机械扰动。 图2.不同乳化剂制备的洁面膏泡沫大小图3.不同乳化剂制备的洁面膏微观泡沫结构结论通过动态泡沫分析仪等研究了4种不同类型乳化剂对以椰油酰甘氨酸钠为主要表面活性剂的结晶型洁面膏的影响,包括泡沫高度和结构等,得出以下结论:磷酸酯类乳化剂Hostaphat® KW340D能提高洁面膏的泡沫稳定性;Eumulgin® S21作为聚醚类乳化剂,在多元醇与盐含量较高的体系中浊点降低,使得其与体系的兼容性变差,从而导致泡沫量明显减少,泡沫的稳定性也最差;液晶型乳化剂Plantasens® Emulsifier HP 30能显著提高泡沫的细密程度与稳定性,这可能是液晶乳化剂在体系中易于形成多层结构,从而使泡沫更加稳定。以上研究也为洁面膏中乳化剂的选择提供一定的实践结果与理论分析,因此在实际配方过程中,可挑选合适的乳化剂或乳化剂组合来达到改善洁面膏特定性能的目的。此文版权来自科莱恩化工(中国)有限公司,内容有所删减,全文请查看:张美龄,王晨茜,许明力,朱晨江.乳化剂对结晶型氨基酸洁面膏性能的影响[J]. 日用化学品科学, 2022,45(6): 43-47.
  • 动物细胞培养基如何选择?这里有答案
    1、细胞培养基的种类按照细胞培养基的发展历史,细胞培养基大致可分为平衡盐溶液、天然细胞培养基、合成细胞培养基、无血清细胞培养基、限定化学成分细胞培养基等几大种类。1.1 平衡盐溶液(balanced salt solution,BSS)BSS主要是由无机盐、葡萄糖组成,它的作用是维持细胞渗透压平衡,保持pH稳定及提供简单的营养。其主要用于细胞的漂洗、配制其他试剂等。几种常用的BSS配方如下(表1-1)。D-Hank' s与Hank' s的一个主要区别是前者不含有Ca2+和Mg2+,因此D-Hank' s常用于配制胰酶溶液。因为Ca2+、Mg2+是细胞膜的重要组成成份,参与细胞粘附等功能,使用不含Ca2+、Mg2+的BSS可避免细胞结团。此外,Hanks液和Earle液是常用的BSS基础溶液,前者缓冲能力较弱,适合于密闭培养;后者缓冲能力较强,适合于5% CO2的培养条件。表1-1 几种常用的BSS配方(g/L)名称PBS(无Ca2+、Mg2+)PBS(含Ca2+、Mg2+)Earle’sHank’sD-Hank’sKrebs-RingerNaCl8.008.006.808.008.007.00KCl0.200.200.400.400.400.34CaCl2--0.200.14-MgCl2• 6H2O-0.10---MgSO4• 7H2O--0.20.2-Na2HPO41.151.15-0.0480.0480.10Na2HPO4• 2H2O--0.14--0.207KH2PO40.200.20-0.060.06NaHCO3--2.200.350.35-葡萄糖--1.001.00-1.80酚红--0.010.010.01-目前用于细胞培养的血清主要是牛血清,培养某些特殊细胞也用人血清、马血清等。牛血清对绝大多数哺乳动物细胞都是适合的,但并不排除在培养某种细胞时使用其他动物血清更合适。血清中含有各种血浆蛋白、多肽、脂肪、碳水化合物、生长因子、激素、无机物等,这些物质对促进细胞生长或抑制生长活性是达到生理平衡的。此外,血清含一些对细胞产生毒性的物质,如多胺氧化酶,能与来自高度繁殖细胞的多胺反应(如精胺、亚精胺)形成有细胞毒性作用的聚精胺。补体、抗体、细菌毒素等都会影响细胞生长,甚至造成细胞死亡。目前,血清多作为一种添加成分与合成培养基混合使用,使用浓度一般为5~20 %,最常用是10 %。1.2 合成细胞培养基合成培养基是根据天然培养基的成分,用化学物质模拟合成、人工设计、配制的培养基。最早开发的基础培养基(minimal essential medium, MEM),其本质为含有盐、氨基酸、维生素和其他必需营养物的pH缓冲的等渗混合物。在此基础上,DMEM、IMDM、HAM F12、PRMI1640等各种合成细胞培养基被不断开发出来。常用合成培养基的配方此处不详细介绍,其特性及应用的范围见下表:哺乳动物细胞培养基:培养基名称特性及应用范围199细胞培养基添加适量的血清后,可广泛用于多种细胞培养,并用于病毒学、疫苗生产等MEM细胞培养基MEM(Minimal Essential Medium)培养基有含Earle' s平衡盐的类型,也有含Hanks' 平衡盐的类型;有高压灭菌型的,也有过滤除菌型的;还有含非必需氨基酸的类型。是最基本、适用范围最广的细胞培养基。DMEM细胞培养基DMEM(Dulbecco’s modified Minimal Essential Medium)是由Dulbecco在MEM培养基的基础上改良获得的,各成分份量加倍,分低糖(1000mg/L)、高糖(4500mg/L)两种类型。细胞生长快。附着稍差的肿瘤细胞、克隆培养用高糖效果较好,常用于杂交瘤的骨髓瘤细胞和DNA转染的转化细胞培养。IMDM细胞培养基IMDM(Iscove’s modified DMEM )是由Iscove在DMEM基础上改良,增加了几种氨基酸和胱氨酸量等。可用于杂交瘤细胞培养,以及无血清培养的基础细胞培养基。GMEM细胞培养基Glasgow’s MEM培养基是MEM的改进型,用于支持BHK-21细胞的生长。原配方以BME为基础, 加入10%磷酸胰蛋白(月示)肉汤,氨基酸和维生素浓度加倍。RPMI-1640细胞培养基专门针对淋巴细胞培养设计,含有BSS、21种氨基酸、维生素等,广泛适于多种正常细胞和肿瘤细胞的培养,也用做悬浮细胞培养。HamF12细胞培养基含微量元素,可在血清含量低时用,适用于克隆化培养。F12适用于CHO细胞,也是无血清细胞培养基中常用的基础细胞培养基。DMEM/F12细胞培养基将DMEM和F12按照1:1比例混合,混合后营养成份丰富,血清使用量也减少,常作为开发无血清细胞培养基时的基础细胞培养基。McCoy' s5AMcCoy' s 5A Medium 主要为肉瘤细胞的培养所设计,可支持多种(如骨髓、皮肤、肺和脾脏等)原代细胞的生长,除适于一般的原代细胞培养外,主要用于作组织活检培养、一些淋巴细胞培养以及一些难培养细胞的生长支持。例如Jensen大鼠肉瘤成纤维细胞、人淋巴细胞、HT-29、BHL-100等上皮细胞。William' s Medium E适用于大鼠肝上皮细胞的长期细胞培养。神经元基础培养基可为神经元生长提供基础营养物质。昆虫细胞培养基:培养基名称特性及应用范围Grace' s昆虫培养基Grace昆虫培养基(Grace' s Insect Medium)最初设计为支持澳大利亚白星橙天蚕蛾 (Antherea eucalypti) 细胞 的生长,是对Wyatt培养基的改良,以更接近 Antherea 血淋巴。Grace用这种培养基建立了第一个连续细胞系。适当补充添加剂后,该基本培养基已用于培养各种昆虫细胞,包括多种鳞翅类以及一些双翅类昆虫。Grace昆虫细胞培养基主要作为 培养基基础,用于培养Sf9 和Sf21细胞系,也用于其它鳞翅类昆虫细胞系的生长和维持。Grace' s培养基(Grace’s Insect Cell Culture Medium) 是无血清培养基,使用时需要补充血清,从而为细胞提供必要的营养因子。添加5 -20%胎牛血清后,Grace昆虫细胞培养基可以用于培养多种昆虫细胞。IPL-41 昆虫培养基 IPL-41昆虫培养基(IPL-41 Insect Medium)旨在用于大规模扩增草地贪夜蛾(Spodoptera frugiperda)细胞系,也常用于通过杆状病毒表达系统(BEVS)进行蛋白表达。 IPL-41培养基是对原始IPL配方的改良,由美国农业部昆虫病理实验室Weiss等人开发,用于大规模扩增草地贪夜蛾衍生细胞系。Weiss向基础培养基中加入了胎牛血清和TPB培养基(Tryptose Phosphate Broth),成功地实现了IPL-21 AE (III)细胞系的大规模连续培养。该培养基主要用于培养和维护鳞翅类衍生细胞系和扩增这些细胞系的病毒。IPL-41培养基基础也以用于无血清夜蛾细胞的杆状病毒重组蛋白表达。Shield' s & Sang Insect向Sheilds-Sang M3昆虫培养基中添加10%胎牛血清后广泛用于培养各种果蝇细胞系。Sheilds-Sang M3昆虫培养基(Sheilds and Sang M3 Insect medium) 基于D22培养基。该培养基支持黑腹果蝇衍生细胞的生长。Sheilds和Sang将原配方中的氯化物除去,用谷氨酸盐提供钠和钾离子,并用游离氨基酸替代乳白蛋白水解物。Bis-Tris作为缓冲剂放置pH变动。Schneider' s 果蝇培养基 很多昆虫组织培养基的配方是模拟特定昆虫体液的主要物理化学性质。针对相同物种的不同培养基成分的相似度可能比针对不同物种的培养基之间更低。有多种培养基用于果蝇细胞和组织的体外培养。应用最多的是Schneider 培养基、D-22 培养基。果蝇细胞用于研究各种生物化学过程,包括遗传学、内分泌学、生理学和细胞生物学等方面,以及重组蛋白的表达。加入5-20% 胎牛血清后Schneider培养基能够支持黑腹果蝇(Drosophila melanogaster)原代细胞和建立的细胞系的快速生长。该培养基用于培养和维护果蝇胚胎衍生的细胞系以及其它双翅目昆虫细胞培养物细胞培养基常用几种重要的添加成分及使用过程中应注意的问题酚红在细胞培养基中用作pH值的指示剂。一般情况下,可以通过酚红的指示作用判断培养基的pH值,但低血清或是无血清细胞培养基中酚红的含量与普通细胞培养基中的酚红含量不同,不能通过肉眼观察或通过经验来判定pH值,建议使用pH计进行测定。酚红通常对含血清的细胞培养基生产的生物制品质量并不会产生明显影响,也可通过纯化技术去除,但酚红在无血清细胞培养基中可能带来胞内钠/钾失衡,影响细胞生长。碳酸氢钠在细胞培养基中主要是作为缓冲系统,此外还具有调节渗透压的作用。通常产品使用说明中的碳酸氢钠推荐量是一个标准、安全量,是在科学的基础上根据实践经验所得。但是由于不同的细胞系(株)不同,同一株细胞适应环境也可能不同(细胞耐受性不同等),且存在的地域性水质差异等,在实际生产过程中也可稍作改动,但使用者需做相应的检测(理化及细胞生产试验等)。HEPES是一种非离子缓冲液,在pH 7.2 ~7.4范围内具有较好的缓冲能力,在高浓度时对一些细胞可能有毒。HEPES缓冲液可与低水平的碳酸钠(0.34 g /L)共用,以抵消因额外加入HEPES引起的渗透压增加。其安全浓度范围是10~25 mmol/L。丙酮酸钠可以作为细胞培养中的替代碳源,尽管细胞更倾向于以葡萄糖作为碳源,但是在没有葡萄糖的条件下,细胞也可以代谢丙酮酸钠。谷氨酰胺在溶液中很不稳定,4 ℃下放置1周可分解50 %,使用中最好单独配制,置-20 ℃冰箱中保存,使用前加入细胞培养液中。赖氨酸(L-lysine):分子量大于70,000的多聚赖氨酸可以用于促进细胞贴壁生长,也可以用于组织学(Histology)分析时的粘片剂。Poly-L-lysine和Poly-D-lysine都可以用于促进细胞的贴壁生长。Poly-L-lysine可以被某些细胞所消化并吸收,摄入过多的Poly-L-lysine会产生一定的细胞毒性。如果遇到Poly-L-lysine有细胞毒性的情况,可以考虑选用Poly-D-lysine,因为右旋的聚赖氨酸是不会被生物吸收利用的,所以毒性更低。远慕生物致力于生物技术和生命科学等行业领域,专注于植物生物学技术研究,以满足全球不断增长的食品,能源、医药日益增长的需求和发展。目前远慕生物制造和提供的产品主要有动物细胞培养产品(包括细胞培养基、FBS、缓冲溶液、抗菌剂和其他试剂)和植物生物学产品(包括植物组织培养基、凝胶系列产品、植物生长调节剂、抗生素&抗菌剂、生化试剂以及植物组培容器和耗材)。
  • 岛津应用:应用蛋白质测序仪PPSQ-53A测定N-末端部分甲硫氨酸缺失的蛋白质类药物的N-末端氨基酸序列
    生物体在合成蛋白质时,N-末端首位的甲硫氨酸在蛋白质加工过程中可能被酶切除。本文以蛋白质类药物重组人粒细胞巨噬细胞刺激因子注射液原液为例,演示了应用蛋白质测序仪PPSQ-53A进行N-末端甲硫氨酸部分缺失的蛋白质分析的方法和结果。本应用蛋白质测序仪PPSQ-53A测定了发生N-末端部分甲硫氨酸切除的蛋白质类药物重组人粒细胞巨噬细胞刺激因子的-N未端前16个氨基酸的序列,结果与理论序列一致。除了氨基酸定性,根据信号峰强度,可以粗略估计样品N-末端甲硫氨酸的缺失比例。以上表明应用PPSQ-53A可以测定N-未端部分甲硫氨酸缺失的蛋白质的N-末端氨基酸序列。可作为此类生物药物样品分析时的参考。 ?了解详情,敬请点击《应用蛋白质测序仪PPSQ-53A测定N-末端部分甲硫氨酸缺失的蛋白质类药物的N-末端氨基酸序列》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 张玉奎院士、张丽华研究员团队蛋白质组学最新成果:N-磷酸化蛋白质组的深度覆盖分析新方法
    仪器信息网讯 近日,中国科学院大连物理研究所生物分子高效分离与表征研究组(1810组)张丽华研究员和张玉奎院士团队,蛋白组组学分析最新成果发表于《自然-通讯》(Nature Communications)上。团队发展了N-磷酸化肽段高选择性富集新方法,并结合肽段的高效分离和高灵敏度鉴定,实现了N-磷酸化蛋白质组的深度覆盖分析。  与研究相对深入的发生在丝氨酸、苏氨酸和酪氨酸侧链氨基上的蛋白质O-磷酸化修饰相比,发生在蛋白质组氨酸、精氨酸和赖氨酸上的N-磷酸化修饰,由于P-N酰胺键具有较高的吉布斯自由能,且易发生水解,目前仍缺乏有效的N-磷酸化蛋白质组分析方法,制约了人们对其生物学功能的认识。  团队研制了具有核壳结构的亚二微米硅球,并通过在硅球表面键合双二甲基吡啶胺双锌分子,在中性条件下实现了N-磷酸化肽段的高效、高选择性、快速富集 通过基于该材料的on-tip富集方法和液质联用分离鉴定的结合,不仅从HeLa细胞中鉴定到3384个N-磷酸化位点(目前最大的哺乳动物N-磷酸化数据集),而且还发现N-磷酸化位点附近亮氨酸高度表达 建立的N-磷酸化蛋白质组分析新方法不仅为深入研究其生物学功能提供了基础数据,而且也为推动精准医学、合成生物学等领域的发展提供了技术支撑。  上述工作得到国家自然科学基金、国家重点研发计划、中科院大连化物所创新基金等项目的资助。文章链接:《自然-通讯》(Nature Communications)。
  • 远慕MRS琼脂培养基促销中
    上海远慕生物科技有限公司为了回馈广大科研工作者特此做出培养基促销优惠活动啦,培养基均现货促销!价格绝对出乎你的意外,望有需要的老师赶快联系我们吧! 培养基是远慕公司自主研发的项目之一,产品质量有保证!说明书都会随货发给您!我们我是符合国家标准的,我们也可以按照客户提供的要求给您配制,我们承诺产品有任何质量问题都是免费退换的! 远慕生物严格遵守“质量优先、客户优先、技术优先、服务优先”“四项优先”原则;产品已被广泛应用于化学、化工、生命科学的基础研究和开发应用、制药、疾病诊断与控制、人口与健康、生物技术等诸多领域,并销往全国各地,公司客户遍布国内各大学、研究所、卫生防疫、制药公司、生物公司等单位,得到广大客户的一致好评。我们的宗旨是“为客户提供最优质的产品和服务”。 远慕欢迎您!培养基促销其他产品:结晶紫中性红胆盐葡萄糖琼脂(VRBGA) 250g/瓶 胰蛋白胨大豆琼脂(TSA) 250g/瓶 胰蛋白胨大豆琼脂 90mm×10个/包 革兰氏染色液 10ml×4支/盒 氧化酶试纸 10片/瓶 氧化酶试剂 1g/瓶 阪崎肠杆菌显色培养基(DFI琼脂) 1000ml/瓶 鸟氨酸脱羧酶试验 1ml×10支/盒 赖氨酸脱羧酶试验 1ml×10支/盒 精氨酸脱羧酶试验 1ml×10支/盒 氨基酸脱羧酶试验对照 1ml×10支/盒 无菌液体石蜡 2ml×10支/盒 氰化钾(KCN)培养基 1ml×10支/盒 氰化钾(KCN)对照培养基 1ml×10支/盒 D-蔗糖发酵管 1ml×10支/盒 D-山梨醇发酵管 1ml×10支/盒 阿拉伯糖发酵管 1ml×10支/盒 卫矛醇半固体琼脂 1ml×10支/盒 棉子糖发酵管 1ml×10支/盒 产品名称 规格 采样袋/均质袋 100个/袋 SCDLP液体培养基基础 250g/瓶 SCDLP增菌肉汤 10ml×20支/箱 磷酸盐缓冲液(pH7.2) 250g/瓶 磷酸盐缓冲液(pH7.2) 225ml×20瓶/箱 磷酸盐缓冲液(pH7.2) 9ml×20支/箱 生理盐水 225ml×20瓶/箱 生理盐水 9ml×20支/箱 假单胞菌CFC选择性培养基基础 250g/瓶 假单胞菌CFC选择性培养基基础添加剂 1ml×10支/盒 假单胞菌琼脂基础培养基基础/CN琼脂基础 250g/瓶 萘啶酮酸 1.5mg×10支/盒 甘油 1ml×10支/盒 营养琼脂斜面(限供汽运) 10ml×20支/箱 营养琼脂(NA) 250g/瓶 氧化酶试纸 10片/瓶 氧化酶试剂 1g/瓶 革兰氏染色液 10ml×4支/盒 乙酰胺培养基 1ml×10支/盒 葡萄糖酸钾培养基 1ml×10支/盒 精氨酸脱羧酶试验 1ml×10支/盒 赖氨酸脱羧酶试验 1ml×10支/盒 氨基酸脱羧酶试验对照 1ml×10支/盒 液体石蜡 2ml×10支/盒 硝酸盐蛋白胨水培养基 250g/瓶 明胶培养基(营养明胶培养基) 250g/瓶 山梨醇麦康凯(SMAC)琼脂 250g/瓶 亚碲酸钾溶液 0.25mg×10支/盒 头孢克肟溶液 0.005mg×10支/盒 改良山梨醇麦康凯(CT-SMAC)琼脂 90mm×10个/包 月桂基硫酸盐胰蛋白胨肉汤-MUG(LST-MUG) 1000ml/瓶 含新生霉素的缓冲胰蛋白胨大豆肉汤(BTSB+N)基础 250g/瓶 三糖铁(TSI)琼脂 250g/瓶 三糖铁(TSI)琼脂斜面 4ml×10支/盒 革兰氏染色液 10ml×4支/盒 氧化酶试纸 10片/瓶 半固体琼脂 250g/瓶 半固体琼脂管 1ml×10支/盒 营养琼脂(NA) 250g/瓶 营养琼脂(NA) 90mm×10个/包 蛋白胨水 1ml×10支/盒 Kovacs氏靛基质试剂 10ml×4支/盒 鸟氨酸脱羧酶试验 1ml×10支/盒 赖氨酸脱羧酶试验 1ml×10支/盒 氨基酸脱羧酶试验对照 1ml×10支/盒 无菌液体石蜡 2ml×10支/盒 山梨醇发酵管 1ml×10支/盒 棉子糖发酵管 1ml×10支/盒 纤维二糖发酵管 1ml×10支/盒 缓冲葡萄糖蛋白胨水(MR-VP培养基) 1ml×10支/盒 甲基红试剂 10ml×4支/盒 V-P试剂 10ml×4支/盒 西蒙氏柠檬酸盐琼脂斜面 4ml×10支/盒 大肠杆菌O157:H7套装生化鉴定管(10种)(SN0973) 12支/套×10套 无菌脱纤维绵羊血 100ml/瓶 肝浸液培养基 250g/瓶 胰蛋白胨琼脂培养基 250g/瓶 精氨酸脱羧酶试验 1ml×10支/盒 氨基酸脱羧酶试验对照 1ml×10支/盒 无菌液体石蜡 2ml×10支/盒 3%过氧化氢溶液 2ml×10支/盒 氧化酶试纸 10片/瓶 氧化酶试剂 1g/瓶 阿拉伯糖发酵管 1ml×10支/盒 葡萄糖发酵管 1ml×10支/盒 半乳糖发酵管 1ml×10支/盒 硝酸盐肉汤 250g/瓶 硝酸盐肉汤 5ml×10支盒 硝酸盐还原试剂 10ml×4支/盒
  • 华盛顿大学研究人员利用“Serine Ligation”产生有效且稳定的GLP-1类似物
    大家好,今天为大家介绍一篇ACS Chemical Biology的文章,标题为“Generation of Potent and Stable GLP-1 Analogues Via ‘Serine Ligation’ ”,文章的通讯作者是来自美国华盛顿大学的David Baker教授。在这项工作中,作者受“Serine Ligation”方法的启发,介绍了一种具有位点特异性的生物偶联策略。该策略依赖于带有 1-氨基-2-羟基官能团的非天然氨基酸的多肽和水杨醛酯之间的偶联,实现多肽上的化学修饰。具体来说,作者利用这个技术对类似于索马鲁肽 (Semaglutide) 的胰高血糖素样肽-1 (GLP-1) 26位的赖氨酸以及18位的丝氨酸分别修饰,得到了GLP-1类似物G1和G2。结果显示,修饰后的G1和G2在基于细胞的激活试验中比GLP-1更有效,同时能提高其在人血清中的稳定性以及体内葡萄糖处理效率。这种方法展示了“Serine Ligation”在化学生物学中各种应用的潜力,特别是发展稳定的多肽治疗剂(图 1)。图 1 基于“Serine Ligation”的GLP-1位点特异性修饰胰高血糖素样肽-1 (GLP-1) 是一类多肽激素,源自于胰高血糖素原肽的组织特异性翻译后加工,具有通过增强胰岛素分泌从而降低血糖水平的能力。二肽基肽酶 (DPP-4)可以切割GLP-1 N端8位的丙氨酸,因此内源GLP-1的半衰期只有2 min左右。虽然有许多旨在于解决稳定性问题的方法,例如在降解位点引入“不可切割”的氨基酸,但这些方法通常以牺牲稳定性为代价来换取多肽的功能和效力。因此人们对开发既能维持效力,又能稳定多肽治疗剂的新技术产生了很大兴趣。另一方面,多肽和蛋白质的偶联彻底改变了人们对于引入各种官能团来扩展新应用的认识。其中便包括蛋白质组学和高分辨率成像技术。由于多肽或蛋白质中存在多个可反应的活性位点,利用传统的共轭策略,例如N-羟基琥珀酰亚胺 (NHS) 酯,会导致产物的异质性,进而引起分离提纯困难以及生物学活性下降等诸多问题。因而具有位点特异性的新修饰方法亟待开发。作者从“Ser/Thr Ligation”(STL) 中获取灵感,发现该偶联主要发生在C 端的水杨醛酯和 N 端含有丝氨酸或苏氨酸的残基之间。因此,作者通过合成和引入带有1-氨基-2羟基的非天然氨基酸,并将其与水杨醛酯的衍生物偶联,实现了多肽位点特异性的化学修饰(图 2)。图 2 “Serine Ligation”与引入非天然氨基酸的位点特异性生物偶联作者首先评估了该方法的普适性,合成了生物素、花青-3、一种棕榈酸类似物,以及单分散PEG 水杨醛酯。然后将这些探针特定地偶联到带有 1-氨基-2-羟基的非天然氨基酸的模型肽 1 上,生成产物 2-5(图 3)。为了代表性地评估产物的转化率和纯度,作者监测了多肽反应物1和生物素水杨醛之间的反应,发现几乎在30 min后实现了定量转换。图 3 对未保护模型肽的位点特异性修饰之后作者探究如何利用该生物偶联技术增强多肽的稳定性。最常用的方法包括聚乙二醇化和脂化。事实上,两种 GLP-1药物,索马鲁肽和利拉鲁肽都是脂化的,目前用于治疗 2 型糖尿病。基于此,作者利用STL合成了两种GLP-1类似物G1和G2。二者都含有一个类似索马鲁肽的杂合 PEG 和脂肪酸侧链。不同之处在于,G1的修饰在26位的赖氨酸上,与索马鲁肽的修饰位置相同。同时,为了增强稳定性,对G1多肽8号位的丙氨酸也进行了修饰,引入了2-氨基异丁酸 (Aib)。G2的修饰则在18位的丝氨酸上。借助于冷冻电镜,发现18位的丝氨酸在GLP-1与GLP-1受体的结合模型中是溶剂暴露的,因此不会干扰多肽激素的天然功能。在这种条件下,我们可以不对G2的8号位丙氨酸引入修饰,因为18号位丝氨酸引入的脂肪链离N端的距离近,可以保护8号位的丙氨酸不被蛋白水解(图 4)。图 4 GLP-1多肽类似物G1, G2的设计许多生化和结构研究表明GLP-1 内的一个扩展的两亲性 α-螺旋是负责与GLP 受体 (GLP-1R) 的细胞外结构域高亲和力结合的。为了去评估这些外加修饰是否会破坏多肽二级结构,作者使用圆二色谱 (CD) 来表征。相对于显示出特征性螺旋折叠的GLP-1,G1 和 G2 也都显示出螺旋结构;然而,它是低于天然GLP-1的。G1与G2的数据与在索马鲁肽上的脂质修饰相一致,说明了二级结构的丢失是脂质修饰引起的。GLP-1 与 GLP-1R 的内源性结合会导致募集G蛋白的细胞内重排,随后刺激cAMP的产生。cAMP来源于ATP并会导致葡萄糖刺激的胰岛素分泌。为了去评估GLP-1 类似物 G1 和 G2 去激活人源GLP-1R的能力,在过表达人 GLP-1R 的 CHO-K1 细胞中去监测cAMP的积累。细胞最初用天然 的GLP-1 和索马鲁肽进行处理。相比之下,G1 和G2 比未加修饰的GLP-1表现更好,并且与 Semaglutide 大致等效,EC50值为 0.97 ± 0.2 和 0.73 ± 0.2 nM(图 5A)。这些数据表明26位的赖氨酸和18位的丝氨酸的脂质修饰不会对其内源功能造成影响。为了补充体外的药理学分析,作者接下来用反向高效液相色谱 (RP-HPLC) 比较GLP-1类似物G1,G2,天然 GLP-1以及索马鲁肽在人血清中的稳定性。在这个测定中,每种肽在人血清中孵育最多48 小时,取出等分试样并通过 RP-HPLC 分析(图 5B)。相对于天然 GLP-1,G1 显示出显著的稳定性曲线,t1/2 ≈ 40 小时。同时G2也非常稳定,相对于天然 GLP-1 稳定性增幅超过了14倍,几乎与索马鲁肽相似。在得到理想的激活和稳定性数据之后,作者接下来使用标准葡萄糖耐量实验 (GTT) 在动物体内进行测试。更具体地说,在禁食 16 小时后,用 10 nmol/kg 剂量向小鼠注射多肽,其次是 2 g/kg 葡萄糖。血糖水平用血糖仪测量,然后在不同的时间长度之后进行定量(图 5C)。在这种急性 GTT 实验中,G1 和 G2 相比于天然的GLP-1显示出具有统计学意义的血糖控制能力,这与他们的体外数据相一致。这些数据表明脂质化修饰能够在不损害效力的前提下显著增加稳定性,从而改善急性高血糖小鼠模型的体内活性。图 5 脂化对细胞活性,蛋白水解的稳定性以及控制血糖能力的影响为了深入了解 G1 和 G2 是如何与GLP-1R相互作用,作者对相应的配体-受体复合物进行了计算建模。GLP-1R 肽结合模型是基于最近发表的GLP-1R 与未修饰的 GLP-1 复合物的Cryo-EM 结构。索马鲁肽、G1 和 G2 模型与 GLP-1R 的复合物表明脂质化18位的丝氨酸或26位的赖氨酸是溶剂暴露的,可能不会干扰与激活有关的相互结合作用(图 6)。图 6 GLP-1R-Semaglutide、GLP-1R-G1 和 GLP-1R-G2 复合物模型总结来看,作者介绍了一种强大的,基于“Serine Ligation”的位点特异性生物偶联策略。作者应用该方法合成了有效且稳定的GLP-1类似物。该类似物具有一个混合聚乙二醇和脂肪酸侧链,类似于广泛使用的糖尿病药物索马鲁肽。这两种化合物在激活GLP-1R的能力上与索马鲁肽等效;相比于天然的GLP-1,G1,G2在人血清中显示出显著改善的稳定性,并且在小鼠体内的改善血糖能力优于天然的GLP-1。在未来,该方法也显示出构建其他GPCRs稳定且有效的类似物潜力。原文:https://pubs.acs.org/doi/10.1021/acschembio.2c00075
  • 质谱从多维度“透视”ADC,为产品质量保驾护航
    ADC药物作为一类新兴的生物治疗药,其结构更为复杂,质量表征挑战也随之升级。在ADC的定量和定性表征中,质谱凭借其独特的能力发挥着不可或缺的作用,可以从完整分子水平、亚基水平、肽段水平和小分子分析等方面对ADC进行多维度的表征(如图1所示)。图1. 质谱多维度表征ADC的方法[1]ADC质谱表征策略√ 丰富的项目经验夏尔巴生物在ADC项目开发方面积累了丰富的经验,涵盖半胱氨酸随机偶联、糖基化定点偶联、半胱氨酸定点偶联、双抗ADC以及双载荷ADC等多种类型。目前,已有5个项目进入临床阶段、多个项目处于临床前阶段。√ 高效的ADC质谱表征流程夏尔巴生物凭借深厚的表征经验和先进的分析平台,成功打造出一套全面、高效的ADC质谱表征策略,可对不同偶联方式的ADC药物进行全方位表征,涵盖分子量、偶联位点、偶联位点占有率、偶联杂质、二硫键和翻译后修饰等,确保分析的全面性和深入性。这套质谱表征流程有效克服了在DAR(药物抗体比)分析、复杂肽段偶联位点的质谱表征研究方面的难题,实现了在完整分子水平的精准分析,充分为产品质量保驾护航。本文聚焦于药物抗体比(DAR, drug-to-antibody ratio)和偶联位点这两个ADC药物的关键质量属性,深入介绍夏尔巴生物的质谱表征方法。药物抗体比(DAR, drug-to-antibody ratio)的质谱表征ADC常用的偶联方式一般分为随机偶联和定点偶联,随机偶联包括赖氨酸随机偶联和半胱氨酸随机偶联;定点偶联方式较多,包括引入反应性半胱氨酸定点偶联、引入非天然氨基酸定点偶联、糖基化偶联、抗体间二硫键桥接偶联、其他酶促反应偶联等。半胱氨酸随机偶联过程如图2所示,由于半胱氨酸随机偶联ADC的轻链和重链以及重链和重链之间的二硫键被破坏,RP-LC/MS方法流动相中的有机溶剂会破坏非共价连接的立体空间结构,无法在完整分子水平分析DAR值和载荷分布情况。图2. 半胱氨酸随机偶联ADC偶联过程和结构展示[2] 而非变性质谱法(Native MS)由于其自身的特性,尤其是体积排阻色谱(Size exclusion chromatography, SEC)和质谱联用,很好的弥补了这种缺陷。SEC-MS法通常选择与质谱兼容的乙酸铵作为流动相体系,液相分离过程中无有机相参与,对柱温要求较低,分子的非共价结构得以保留,从而可以在完整分子水平进行DAR值分析。疏水作用色谱(HIC)通常以含盐的水溶液作为流动相,检测过程中不会引入有机相,也适用于在完整分子水平进行DAR值分析,通常被作为半胱氨酸偶联ADC的DAR值检测放行方法。但是HIC法本身不具备DAR值组分鉴定的能力,所以在HIC方法开发过程中,需要收集不同的组分,借助Native MS鉴定每个峰的组成。HIC法DAR值检测典型图谱见图3A,相应的Native-MS鉴定结果如图3B所示。图3. HIC和Native MS检测DAR值结果[2]定点偶联ADC在偶联过程中一般不会打开分子的链间二硫键,所以传统的RP-LC/MS法可以进行完整水平的DAR值分析。经典的糖定点偶联过程如图4所示,偶联过程中链间的二硫键得以保留,RP-LC/MS法以有机溶剂和水作为流动相,经过反相分离后进行质谱检测,对质谱结果解卷积分析后即可得到平均DAR值和载荷分布。图4. 糖定点偶联ADC的偶联过程[3]双载荷ADC(dual-payload)是在抗体上偶联两种不同的载荷,其自身异质性较强,常规分析方法很难实现两种载荷的DAR值检测,质谱可以根据带有不同载荷分子的分子量差异进行总DAR值以及两种不同载荷DAR值(DAR-A和DAR-B)的表征研究(图5)。图5. 双载荷ADC质谱表征[4]质谱分析DAR相较于常规分析方法的另一个优势在于可以在完整分子和亚基水平分别评估,如图6所示,对完整分子进行DTT还原后,可以检出轻链和重链上分别偶联的linker-payload数量,加权计算得出平均DAR值,与完整分子量检测结果交叉验证,可以得到更准确的ADC结构信息。图6. 质谱在完整分子和亚基水平DAR值检测结果ADC偶联位点的质谱表征研究肽图分析(LC-MS/MS法)是表征大分子药物的强大工具,将ADC样品酶解后,利用LC-MS/MS分析,从而确证氨基酸序列、翻译后修饰、二硫键连接形式,通过一级和二级质谱信号对肽段序列和linker-payload特征碎片进行确认即可获得偶联位点信息。图7. 肽图法质谱分析流程对于含有多个偶联位点的肽段,偶联位点的鉴定会更复杂,如图8所示,铰链区酶切肽段含有两个半胱氨酸偶联位点(~CPPC~),肽段有可能偶联一个或者两个linker-payload,这时就需要通过一级质谱判断肽段偶联的linker-payload数量,结合二级质谱信息判断偶联发生位点。图8. 偶联一个和两个linker-payload肽段质谱鉴定结果综上所述,夏尔巴生物的质谱分析平台具备生物大分子的全面表征分析能力,可以实现抗体、融合蛋白以及随机/定点不同偶联方式的不同分子形式ADC药物的全面表征研究和分析方法开发,可以根据需求为客户提供Top-down、Middle-down、Bottom up等基于质谱的、全面的生物大分子结构表征研究和质量控制策略,助力客户产品提质增效。参考文献1) Zhu X, Huo S, Xue C, et al. Current LC-MS-based strategies for characterization and quantification of antibody-drug conjugates[J]. Journal of pharmaceutical analysis, 2020, 10(3): 209-220.2) Valliere-Douglass JF, Hengel SM, Pan LY. Approaches to Interchain Cysteine-Linked ADC Characterization by Mass Spectrometry. Mol Pharm. 2015 Jun 1 12(6):1774-83.3) van Geel R, Wijdeven MA, Heesbeen R, Verkade JM, Wasiel AA, van Berkel SS, van Delft FL. Chemoenzymatic Conjugation of Toxic Payloads to the Globally Conserved N-Glycan of Native mAbs Provides Homogeneous and Highly Efficacious Antibody-Drug Conjugates. Bioconjug Chem. 2015 Nov 18 26(11):2233-42.4) Yamazaki C M , Yamaguchi A , Anami Y ,et al.Antibody-drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance[J].Nature Communications[2024-03-05].关于夏尔巴生物夏尔巴生物专注于提供抗体、融合蛋白、ADC(抗体偶联药物)等药物的开发和商业化生产,致力于“帮助优质客户开发出全球老百姓用得起的高质量生物药”。公司已组建了一支具有丰富经验的国际化人才团队,并助力完成了40多个项目的申报注册以及10个产品的国内外上市,满足了250多万病人的用药需求。目前,夏尔巴生物在苏州已有60,000L的总产能,生产线的建设标准同时符合NMPA、FDA和EMA等GMP要求。同时,夏尔巴生物在杭州基地还有172,000L产能在建,其中4条20,000L的生物反应罐已建成。夏尔巴生物致力于为优质客户提供优质的技术服务,可提供行业领先的一站式解决方案,协助客户加速将创新成果实现商业化,惠及更多患者。“利他以恒,匠心致远”,以分享、帮助、成就、共赢的理念,帮助优质客户开发出全球老百姓用得起的高质量生物药,是夏尔巴生物的理想和目标。
  • 助力生物药研发,浅谈ADC药物DAR值测定
    导语从上世纪初德国医学家、诺贝尔奖得主Paul Ehrlich(保罗埃尔利希)提出ADC(Antibody-Drug Conjugate,抗体药物偶联物)的概念至今,ADC药物已经发展至第三代,一系列特异性偶联技术使得生产工艺变得更加稳定,能够得到稳定药抗比的药物,对于ADC药物的疗效和安全性都有很大的贡献,推动了ADC药物的研发。抗体药物偶联物ADC是具有靶向作用的单克隆抗体与具有特定药理学特性(如细胞毒作用)的化合物的结合,两部分通过连接子偶联为一个整体。DAR(Drug-to-Antibody Ratio,药物抗体比值)是抗体药物偶联物的一个关键属性,是ADC药物研发过程重要的质控环节。 ADC药物 带您了解DAR值如何检测 ADC药物从本质上讲是混合物,是由连接不同个数小分子药物的单抗组成,DAR代表的是每个单抗上连接小分子药物的平均数量,DAR直接影响ADC药物的疗效和安全性,药物研发阶段应尽量缩小DAR值的变动区间。 ADC药物的偶联位点分为单抗赖氨酸残基上的氨基和半胱氨酸残基上的巯基。通过赖氨酸偶联的DAR往往比较小,而潜在的偶联位点却很多,偶联反应具有随机性,产物异质性较大;ADC药物研发使用的单抗有4对链间二硫键,抗体通过部分还原使链间二硫键转换成游离的半胱氨酸残基,半胱氨酸残基中的巯基与连接子中的马来酰亚胺基反应形成ADC,一般连接的小分子数量为0、2、4、6和8,如图所示。 半胱氨酸偶联的ADC药物DAR分布 DAR测定的方法有多种,可分为光谱法、色谱法和质谱法,可根据ADC的特性及偶联工艺等因素选择合适的方法,具体如下: 紫外/可见光谱法(UV/Vis)紫外/可见光谱法是检测DAR值最简单稳定的方法,这种方法需要抗体和小分子药物具有不同的最大吸收波长,分别计算二者的浓度进而得到ADC的DAR值,适用于多种ADC。 色谱法色谱法包括疏水作用色谱(HIC)和反相高效液相色谱法(RP-HPLC)两种,适用于测定半胱氨酸偶联的ADC。疏水作用色谱法能将不同DAR值的组分根据疏水性的差异分离开,且保持ADC分子的结构完整性;反相高效液相色谱法需要先将抗体还原得到轻、重链再进行分析,可用于补充验证疏水作用色谱法的结果,并且适用于质谱分析。 质谱法质谱法适用于赖氨酸偶联的ADC的DAR值测定,包括液相色谱串联质谱和MALDI-TOF-MS。赖氨酸偶联的ADC具有较强的异质性,增加了质谱谱图解析的难度,通常在测定前需对ADC进行额外的前处理,如去糖基化和去除C端赖氨酸异质性。 我们能做什么?疏水作用色谱法解决方案我们使用生物兼容液相系统(Nexera Bio)建立了一种疏水作用色谱方法用于抗体药物偶联物(ADC)中药物抗体比值(DAR)和药物分布的测定。 生物兼容液相系统(Nexera Bio) Nexera Bio系统通过对关键部位的惰性化升级,在耐受高压的前提下,升级的惰性表面降低了生物大分子在管路进样针、检测器中的吸附,并且可耐受高盐洗脱体系,更适合于生物大分子样品的分析。通过梯度洗脱,降低盐浓度,增加有机相比例,可将偶联不同药物数量的ADC分离,未偶联药物的抗体疏水性最弱,最先被洗脱,连接8个药物的抗体疏水性最强,最后被洗脱。峰面积百分比代表特定药物数量连接的ADC的相对分布。通过峰面积百分比和偶联药物数量计算加权平均DAR。 我们将此方法应用于实际药物的分析,并进行了重复性考察,发现液相系统稳定,方法重复性良好。 实际样品色谱图 表2. 6次进样数据重复性结果我们还能做什么? 岛津的产品线比较全面,包括紫外-可见吸收光谱、高效液相色谱、LCMS-Q-TOF以及MALDI-TOF质谱,可满足不同用户对于仪器的需求,较全面覆盖ADC药物DAR值测定以及其它生物制品的研发质控。 结语 经历了几十年的发展,ADC药物研究取得了巨大进展,已上市药物数量达到了12个,在研管道300多种。无论是赖氨酸偶联还是半胱氨酸偶联的ADC药物,都是复杂的混合药物,应该通过工艺的改进更好地控制DAR值变动区间,降低ADC药物的异质性。岛津一直关注生物药行业的发展,希望以我们的仪器平台为产品研发助力,推动新药安全、有效地走向临床,造福社会。
  • ELISA试剂盒告诉你鸡蛋应该怎么吃
    一、鸡蛋与豆浆同食降低营养价值  人们经常食用豆浆冲鸡蛋,认为两者都富含蛋白质,食之对身体有益,从科学饮食角度讲,豆浆性味甘平,含植物蛋白、脂肪、碳水化合物、ELISA试剂盒维生素、矿物质等很多营养成分,单独饮用有很好的滋补作用。  但两者不宜同食。因为生豆浆中含有胰蛋白酶抑制物,它能抑制人体蛋白酶的活性,影响蛋白质在人体内的消化和吸收,鸡蛋的蛋清里含有粘性蛋白,可以同豆浆中的胰蛋白酶结合,使蛋白质的分解受到阻碍,从而降低人体对蛋白质的吸收率。二、吃未熟鸡蛋易引起腹泻  鸡蛋蛋白含有抗生物素蛋白,会影响食品中生物素的吸收,使身体出现食欲不振、全身无力、肌肉疼痛、皮肤发炎、脱眉等症状。鸡蛋中含有抗胰蛋白酶,影响人体对鸡蛋蛋白质的消化和吸收。未熟的鸡蛋中这两种物质没有被分解,因此影响蛋白质的消化、吸收。鸡蛋在形成过程中会带菌,细菌会穿过蛋壳上的小孔,进入蛋内,而未熟的鸡蛋又不能将细菌杀死,轻则会引起腹泻。因此鸡蛋要经高温煮后再吃,不要吃未熟的鸡蛋。  生鸡蛋的蛋白质结构致密,有很大部分不能被人体吸收,只有煮熟后的蛋白质才变得松软,人体胃肠道才可消化吸收。生鸡蛋有特殊的腥味,会引起中枢神经抑制,使唾液、胃液和肠液等消化液的分泌减少,从而导致食欲不振、消化不良。三、炒鸡蛋放味精破坏鲜味  鸡蛋中含有氯化钠和大量的谷氨酸,ELISA试剂盒这两种成分加热后天生谷氨酸钠,有纯正的鲜味。味精的主要成分也是谷氨酸钠,炒鸡蛋时假如放进味精,会影响鸡蛋本身合成谷氨酸钠,不但破坏鸡蛋的鲜味,对菜肴起不到增加鲜味的作用。四、吃煮老的鸡蛋影响吸收  鸡蛋煮老未必更好,因为一项研究文献表明,鸡蛋煮老后会增加营养素的损失和脂肪的氧化。研究发现,煮老的蛋和炒鸡蛋相比,其维生素E的损失要大16%,而且脂肪氧化程度要高30.4%。研究者还发现,对于富含omega-3脂肪酸的鸡蛋来说,烹调会增加其脂肪氧化程度3-9倍之多。鸡蛋煮得时间过长,蛋黄表面会形成灰绿色硫化亚铁层,很难被人体吸收。蛋白质老化会变硬变韧,鸡蛋会变得很硬,既不好吃,又影响消化吸收。  煮蛋小贴士:把鸡蛋放冷水中,大火煮开之后,马上转最小火,四五分钟之后把火关掉,用余热把鸡蛋焖熟。这样煮出来的鸡蛋,蛋清柔嫩,蛋黄滋润,吃起来就美味多了。五、鸡蛋与糖同煮导致血液凝固  因为在长期加热的条件下,鸡蛋中的氨基酸与糖之间会发生化学反应,结果生成一种叫糖基赖氨酸的化合物,破坏了鸡蛋中对人体十分有益的氨基酸成分。所产生的化合物不仅不容易被人体所吸收,还带有毒性,而且这种物质有凝血作用,ELISA试剂盒进进人体后会造成危害。  如需在煮鸡蛋中加糖,应该等稍凉后放进搅拌,味道不减。
  • 优化规模生产iPSC衍生的胰岛素合成的β细胞关键工艺参数
    一、摘要:1型糖尿病是一种会导致胰腺β细胞破坏的自身免疫性疾病,需要终身胰岛素治疗。胰岛移植提供了一个很有前途的解决方案,但也面临着诸如可用性有限和需要免疫抑制等挑战。诱导多能干细胞(iPSCs)为功能性β细胞提供了一个潜在的替代来源,并具有大规模生产的能力。然而,目前的分化方案,主要是在混合或2D环境中进行的,缺乏可延展性和悬浮培养的最佳条件。我们研究了一系列可能影响分化过程的生物反应器放大过程参数。该研究采用了一种优化的HD-DoE协议,该协议设计具有可扩展性,并在0.5L(PBS-0.5 Mini)垂直轮式生物反应器中实现。我们开发了一种三阶段的悬浮生长过程,从贴壁培养过渡到悬浮培养,TB2培养基在规模化过程中支持iPSC的生长。阶段性优化方法和延长分化时间用于增强iPSC衍生的胰岛样簇的标记物表达和成熟。连续的生物反应器运行被用于研究营养和生长的限制以及对分化的影响。将连续生物反应器与对照培养基变化生物反应器进行比较,显示出代谢变化和更类似b细胞的分化谱。从试验中收集的低温保存的聚集物被恢复,恢复后显示出活力和胰岛素分泌能力得到维持,这表明它们具有存储和未来移植治疗的潜力。本研究表明,阶段时间的增加或限制培养基补充以减少乳酸积累可以增加在大规模悬浮环境中培养的胰岛素合成细胞的分化能力。二、实验内容节选:营养消耗和代谢物的分析 为了检测细胞潜在的替代碳源和氮源,我们分析了对照组和连续生物反应器在整个培养过程中的氨基酸代谢(图S5A-B)。使用快速培养基氨基酸维生素分析仪Rebel(908 Devices)来分析氨基酸浓度。必需氨基酸,如组氨酸、异亮氨酸、亮氨酸、赖氨酸、蛋氨酸、苯丙氨酸、苏氨酸、色氨酸和缬氨酸在整个培养期间都保持不变。然而,一些氨基酸在两种培养基中都完全耗尽,包括5天后的L-天冬氨酸和16天后的L-谷氨酸。氨基酸代谢对正常的胰腺β细胞功能至关重要,丙氨酸和谷氨酰胺以其调节β细胞功能和胰岛素分泌的作用而闻名。在培养结束时,谷氨酰胺和丙氨酸的浓度高于新鲜培养基,表明它们不限制生长(图S5A-B)。然而,它们增加的来源仍然未知,不像之前的观察而将它们的增加归因于GlutaMAX&trade 添加剂。与起始培养基相比,丙氨酸和谷氨酰胺水平的升高在对照组生物反应器中没有观察到,后者在不同阶段之间和整个延长的内分泌诱导阶段都有频繁的培养基变化。两种生物反应器之间无其他显著性差异。如前所述,限制培养基补充的生物反应器比对照培养基变化的生物反应器具有更好的分化能力。氨基酸浓度调节和血清缺乏与促进来自人类干细胞的胰腺β细胞的发育有关。 此外,使用FLEX2(Nova Biomedical)对两种培养结果进行评估,分析两种反应器的整个培养期间Gln、Glu、NH4+、Na+、K+、Ca++、pH、PCO2和PO2(图S6A-B)。在连续生物反应器中,培养基的渗透压稳定增加,但保持在280-320mOsm/kg范围内。这种增加可以归因于由营养物质代谢和其他废物产生的溶质的积累。相比之下,对照培养基的渗透压变化的生物反应器随着培养基在细胞分化过程的不同阶段被补充而波动。谷氨酰胺和谷氨酸水平也进行了评估,两者都显示随着时间的推移而消耗。这与使用Rebel分析仪进行的测量结果一致。两种生物反应器在生物分化上具有可比性,除了在连续生物反应器中pH的持续下降和预期的耗氧速率方面的主要差异。在反应液中测量的气体可能会受到收集和测量之间时间的影响,但是,对所有样品的总体影响是相同的。总体数据显示,在培养10天或PP诱导分化阶段后,PO2水平开始稳步下降。尽管反应液与两个生物反应器顶空内的气体体积相同(500毫升),但与控制培养基补充变化生物反应器相比,进入反应液的氧气通量可能不足以补充0.5L连续容器中增加的耗氧量。文献来源:doi.org/10.21203
  • 全国生命分析化学研讨会:药物分析论坛
    仪器信息网讯 2010年8月20日,由国家自然科学基金委员会化学科学部主办,北京大学、清华大学和中国科学院化学研究所共同承办的“第三届全国生命分析化学学术报告与研讨会”在北京大学召开。研讨会同期召开了“食品分析、药物分析、仪器装置”等多场专题论坛,“药物分析”专题论坛共吸引了300余位业内人士的参加。   会议由南昌大学倪永年教授、陕西师范大学张成孝教授联合主持,中国科学院大连化学物理研究所梁鑫淼研究员、北京理工大学屈锋教授、中国科学院大连化学物理研究所秦建华研究员等专家为与会者作了精彩的报告。 倪永年教授 张成孝教授   报告人:中国科学院大连化学物理研究所梁鑫淼研究员   报告题目:中药复杂体系分离分析新策略与方法   梁鑫淼研究员表示,其课题组将高通量制备、高通量SPE浓缩和正交分离三种方法相结合,发展了一种新的分离策略。该策略的应用有利于制备效率的提高、微量化合物和高纯度化合物的制备,对于中药物质基础研究具有重要意义。   高通量制备技术能够在短时间内将复杂中药分为大量组成相对简单的小组分,使得后续分离较为容易,分离效率有了明显提高。该课题组以中等极性组分为例,发展了中药小组分的高效高通量制备方法。该方法利用HPLC的高效性,快速将复杂样品切割为组成相对简单的小组分,简化了进一步的纯化分离,有利于制备效率的提高 四通道平行制备色谱的采用,将制备通量提高四倍,在短时间内制备出大量馏分,实现了中药小组分的高通量制备。   高通量浓缩技术是高通量制备技术的重要组成部分。由于反相液相色谱流动相中水的比例较大,使得这些小组分浓缩十分困难,成为制约整个制备过程的瓶颈问题。该课题组针对大量中药小组分的浓缩问题,通过SPE填料的选择、高通量SPE浓缩仪的设计、回收率的考察发展了基于SPE的高通量浓缩方法。该方法浓缩效率高,可一次实现48个馏分的浓缩,实现了中药小组分的高通量浓缩。   通过高通量制备获得大量的中药小组分,其中一些较为简单的组分可以在不同类型的C18或C8柱上通过二次制备获得纯化合物,但对于较为复杂或含有难分离化合物的组分,这种简单的二次制备很难获得高纯度的化合物。因此,梁鑫淼课题组发展了中药小组分的正交分离方法,选择与C18正交性好的色谱模式或色谱柱,一方面能够对中药小组分进行深入分析,更好地揭示中药的复杂程度 另一方面有利于高纯度化合物的分离制备。   报告人:北京理工大学屈锋教授   报告题目:毛细管电泳在生物分析检测中的新应用   毛细管电泳作为高效、快速、简单、低成本的微量分子技术在生物体(细胞、微生物)和生物大分子(蛋白质、核酸)研究中具有着广泛的应用空间和潜力。   屈锋课题组近年来进行了以下研究: 1)针对动物细胞的活性分析,建立了单细胞连续流毛细管电泳双波长检测分析方法和基于特异性染料的毛细管区带电泳细胞活性分析法 2)利用毛细管区带电泳分析大肠杆菌基因突变菌株,探索毛细管电泳在基因突变菌株研究中的新应用 研究了大肠杆菌与核酸适配体库的相互作用,以及毛细管电泳测定微生物表面电荷特征的方法 3)蛋白质与核酸适配体文库的相互作用评价方法,以及多种蛋白质适配体的毛细管电泳筛选方法对比研究 4)离子液与天然核酸和合成核酸的相互作用的毛细管电泳表征研究。   报告人:中国科学院大连化学物理研究所秦建华研究员   报告题目:微流控芯片生物化学实验室   微流控芯片又称“芯片实验室”(Lab-on-a-Chip),具有将化学、生物实验室的基本操作功能单元缩微到一个几平方厘米芯片上的能力,被认为是本世纪的重要科学技术之一,具有重大应用前景。   多年来,秦建华研究员所领导研究组围绕微流控芯片技术、方法以及在生物医学和化学领域中的应用等方面开展了一系列研究工作,建成了具有自主知识产权和核心竞争力的微流控芯片及其应用系统。   该研究组在已有的玻璃、石英、PDMS 和PMMA 等不同材料芯片制备方法的基础上,建立了富有特色的基于水凝胶的液塑PDMS 芯片制备技术,和以蜡疏水隔离及硝酸纤维素膜为特征的纸芯片制备技术,构建了一系列功能化微流控芯片平台。   据介绍,在发展平台技术的同时,该研究组开展了一系列基于分子、细胞甚至动物水平的生物医学应用研究,并逐渐形成系统和特色:1)构建了集成化芯片核酸分析系统 2)构建了规模集成化芯片免疫分析系统 3)构建了微流控芯片细胞学研究平台,包括细胞水平高内涵药物筛选平台,集成有肝微粒体生物反应器和电泳分离功能的药物代谢研究平台,以及肿瘤细胞与微环境相互作用研究平台(图1)。4)以经典模式生物线虫为对象,建立了基于液滴和微泵阀控制的芯片模式生物药物筛选平台,用于神经退行性变疾病(帕金森病)研究。   报告人:广西师范大学赵书林教授   报告题目:微流控芯片电泳在线衍生化学发光检测巯基类药物   赵书林教授在报告中介绍到,其课题组采用集成柱前和柱后反应器的微流控芯片,以N-(4-氨基丁基)-N-乙基-异鲁米诺(ABEI)和邻苯二甲醛(OPA)为衍生试剂,建立了微流控芯片电泳在线衍生化学发光测定巯基类药物的新方法。其详细考察了影响在线衍生反应、电泳分离和化学发光检测的各种因素。在优化的实验条件下,化学发光检测四种巯基类药物(硫普罗宁、卡托普利、硫鸟嘌呤、6-巯基嘌呤)的检测限为8.9~13.5 nmol/L。该方法用于人血浆中巯基类药物,相对标准偏差小于4.9%,回收率为93.4%~101.6%。   报告人:桂林理工大学李建平教授   报告题目:基于酶放大效应的分子印迹传感器检测超微量土霉素   目前,分子印迹传感器由于检测原理限制,灵敏度一直较低,李建平教授将酶放大效应引入其中,制备了一种基于酶放大效应的新型分子印迹传感器,大大提高了检测的灵敏度。   该实验以土霉素(OTC)作为目标模板分子。分子印迹膜修饰在电极的表面,把土霉素分子通过与孔穴中功能位点的作用连接在分子印迹膜上。由于葡萄糖氧化酶和辣根过氧化物酶标记的土霉素(OTC-GOD 和OTC-HRP)存在空间位阻效应,部分孔穴只能识别OTC,而不能识别酶标记的OTC,因此李建平教授在检测之前引入了“掩蔽”这一步骤,以使所有的印迹孔穴全部被占据。然后将传感器在高浓度的酶标记的土霉素溶液中进行孵化,使得OTC-GOD(HRP)将OTC从置换出来。随着标记酶减少,分子印迹传感器在检测体系中的电化学信号将会明显降低。样品中土霉素的浓度与酶对溶液中底物催化反应导致浓度变化产生的电化学信号有直接关系,这就达到了利用酶放大效应提高分子印迹传感器灵敏度的目的。   报告人:兰州大学张海霞教授   报告题目:新型键合型聚赖氨酸固定相的制备与评价   张海霞教授通过表面键合的方式将NCA-赖氨酸单体聚合到氨丙基功能化的硅胶上,合成新型聚赖氨酸固定相,并对其进行元素分析,红外光谱等表征。通过与C18商业柱的色谱行为进行对比,评价了其在高效液相色谱中,对苯系物,酸性物质,碱性物质,以及强极性和亲水性小分子物质的色谱保留行为。并且该实验研究了流动相中水含量,缓冲溶液PH值,离子强度的不同对色谱保留行为的影响。结果表明聚赖氨酸固定相是反相和亲水混合作用色谱模式。具有很好的应用前景。   此外,来自大同大学的冯锋教授、西南大学的袁若教授分别为大家作了“荧光法研究哮喘病人淋巴细胞膜上钠钙交换的异常表现”、“基于合金功能化的硅纳米纤维和凝集素-糖蛋白为复合固载基质的拟双酶葡萄糖生物传感器的研究”的专题报告。
  • 专家约稿|“肉中黄金”鳄鱼肉的营养成分解析
    鳄鱼肉是一种低脂肪、低胆固醇的肉类,健康优质的鳄鱼肉不但好吃,而且还有滋心润肺、补血壮骨、补肾固精和驱邪除湿的功效,经常食用可补气养血、平喘止咳,也被食客们称为“肉中黄金”。近年来随着政府的大力支持和人们营养健康的意识增强,鳄鱼肉作为一种新兴的食材步入大众视野。为了深入了解鳄鱼肉的营养组成和营养特性,为后续鳄鱼肉的深加工提供数据参考。仪器信息网邀请到了北京市营养源研究所有限公司高级工程师孔凡华,为大家讲解“肉中黄金”鳄鱼肉的营养成分。01简介鳄鱼是一种脊椎类两栖爬行动物,是迄今为止发现的最原始的动物之一,属于国家级保护动物。近年来,鳄鱼养殖技术的进一步成熟,促进了鳄鱼的科研价值和经济价值的进一步开发。我国从1993年开始引进鳄鱼养殖技术,2003年,中国国家林业局批准了尼罗鳄、湾鳄和暹罗鳄3个品种鳄鱼可作为商业经营利用野生动物。随着进出口数量的增加,我国成为鳄鱼加工和消费大国。鳄鱼不仅具有观赏价值和经济价值,还具有高营养价值和药用价值。目前,我国人工养殖鳄鱼主要用于皮革制品,而鳄鱼肉、骨、血等其他部位利用率比较低,因此造成一定程度的资源浪费。鳄鱼肉具有补气血、滋心养肺、驱湿邪等功效,还具有抗脂质氧化、清除自由基、提高机体免疫力等诸多保健功能。鳄鱼肉的营养特性会受到遗传因素、营养因素、环境因素等影响,且鳄鱼生长周期较长,养殖技术不成熟,用于加工的资源不多,因此我国对于鳄鱼肉的营养价值研究较少。随着政府的大力支持和人们营养健康的意识增强,鳄鱼肉作为一种新兴的食材步入大众视野。为了深入了解鳄鱼肉的营养组成和营养特性,为后续鳄鱼肉的深加工提供数据参考。本研究对鳄鱼肉的主要组分、维生素、矿物质、氨基酸、脂肪酸进行测定,同时与猪肉、牛肉、羊肉、鸡肉4种畜禽肉及河虾肉、鲫鱼肉2种水产品进行比较分析。02鳄鱼肉营养价值解析采用国家标准检测方法,分析和测定其含有的主要营养成分并进行营养评价。(1)宏量营养成分含量测定结果样品中水分含量测定参照GB 5009. 3的直接干燥法;蛋白质测定参照 GB 5009. 5的凯氏定氮法;脂肪含量测定参照 GB 5009. 6的索氏提取法;灰分量测定参照 GB 5009. 4烧灼重量法。由表1可知,鳄鱼肉、猪肉和羊肉中水分含量小于70%,其余肉类中水分含量大于70%。鳄鱼肉的蛋白质含量与羊肉和鱼肉接近,显著高于猪肉和鱼虾肉。鳄鱼肉脂肪含量低于猪肉、高于其他肉类,但鳄鱼肉的不饱和脂肪酸含量体现了鳄鱼肉的优势所在。河虾肉中灰分含量显著高于其他肉类,主要是因为鱼虾肉中含有丰富的矿物元素。(2)主要矿物质的含量测定结果矿物质成分测定的测定参照GB 5009.268的电感耦合等离子体发射光谱法;硒含量测定参照GB 5009.93的氢化物原子荧光光谱法。由表2可知,不同肉类中矿物质含量存在显著性差异。常量元素中,除河虾肉外,其余肉类中钾元素含量最高。鳄鱼肉中含有丰富的常量元素,其磷的含量显著高于其他肉类。鳄鱼肉与畜禽肉相比:钙含量为猪肉的4.6倍,牛肉的3.9倍,鸡肉的4.2倍,羊肉的4.1倍,是除水产品外一种良好的补钙的动物源食品,符合“高钙高钾低钠”营养理念。(3)维生素含量测定结果根据国标方法测定了肉样品中脂溶性和水溶性维生素的含量。由表3可知,不同肉中维生素的含量与组成存在显著性差异。脂溶性维生素中,测定样品中α-生育酚含量最高,其中河虾肉中α-生育酚含量显著高于其他肉类。鳄鱼肉中维生素A含量仅次于牛肉,而河虾肉和鲫鱼肉均未检测到维生素A。鳄鱼肉和其他6种肉类中均含有维生素B6、烟酸和泛酸3 种水溶性维生素。鳄鱼肉中维生素B2含量显著高于其他肉类,而维生素B1的含量仅次于猪肉。与其他肉类相比,鳄鱼肉中水溶性维生素总含量最高。 03鳄鱼肉营养评价分析(1)氨基酸组成、含量与营养评价氨基酸的测定采用氨基酸分析仪法,色氨酸的测定采用高效液相色谱法。根据 FAO/WHO建议的氨基酸评分模式和鸡蛋蛋白质氨基酸评分模式按照下列公式计算蛋白质氨基酸评分( amino acid score,AAS) 和化学评分( chemical score,CS) 由表4可知。肉类中氨基酸的种类齐全,不同肉类各氨基酸含量存在显著性差异。牛肉中总氨基酸(TAA)含量最高,鳄鱼肉、猪肉和鸡肉中TAA含量仅次于牛肉。谷氨酸和天门冬氨酸是鳄鱼肉以及其他6种肉类中含量最多的两种氨基酸。鳄鱼肉中鲜味氨基酸含量最高,尤其是谷氨酸含量,这表明鳄鱼肉比其他6种肉类具有更好的鲜味特征。赖氨酸是决定蛋白质营养价值的“生长性氨基酸”。赖氨酸是人体第一必需氨基酸(EAA),牛肉中赖氨酸含量最高,而鳄鱼肉中赖氨酸含量高于猪肉和河虾肉。根据FAO/WHO对蛋白质理想模式的定义,EAA/TAA在40%左右,EAA/非必需氨基酸(NEAA)达到60%以上为较好的蛋白质组成。鳄鱼肉中EAA/TAA为37%,EAA/NTAA为85%,除了猪肉外,其他肉类均能达到较好蛋白质的标准。对于食物蛋白质营养价值的评价不仅与所含EAA种类是否齐全有关,而且与EAA之间的比例是否适宜也有密切关系。与人体需要越相符合,其必需氨基酸的吸收越完全,其营养价值最高。根据FAO /WHO 提出蛋白质中EAA的营养价值评价方式计算肉样品中蛋白质氨基酸评分(AAS),结果由表5可知,鳄鱼肉和河虾肉的第一限制氨基酸为Thr,猪肉、鸡肉和鲫鱼肉的第一限制氨基酸均为Val,牛肉和羊肉的第一限制氨基酸为Phe+Tyr,河虾肉的第一限制氨基酸为Thr。根据FAO /WHO 提出蛋白质中EAA的营养价值评价方式计算肉样品中化学评分( chemical score,CS) ,结果由表6可知,鳄鱼肉的CS第一限制氨基酸为Met+Cys,猪肉、牛肉、鸡肉、羊肉和鲫鱼肉的CS第一限制氨基酸均为Phe+Tyr,河虾肉的CS第一限制氨基酸为Thr。鳄鱼肉中Ile、Leu、Lys和Phe+Tyr均能满足理想蛋白模式,鳄鱼肉的氨基酸均衡性更好,营养价值高,更易被人体消化吸收。(2)脂肪酸组成、含量与营养评价脂肪酸含量与组成是评价肉类品质的重要指标之一,对肉类的风味和抗氧化能力直接产生影响。脂肪酸含量测定参照GB 5009.168的内标法。由表7可知。不同肉类中脂肪酸的含量存在显著性差异。与其他肉类相比,鳄鱼肉中脂肪酸的种类最为丰富。鳄鱼肉中饱和脂肪酸(SFA)占总脂肪酸的比例较低,棕榈酸含量仅次于猪肉,人体摄入过多饱和脂肪酸(SFA)使血液中胆固醇含量增加,但棕榈酸可以降低血浆胆固醇浓度,预防心血管疾病的发生,说明鳄鱼肉中脂肪酸的组成比例较好,更有利于人体健康。鳄鱼肉中单不饱和脂肪酸(MUFA)含量仅次于猪肉,但其含有MUFA的种类最为丰富。油酸可以抑制血液中胆固醇的合成,从而有效预防动脉粥样硬化。SFA和MUFA与肉的风味呈正相关,含量高,肉的风味、嫩度和多汁性越好。鳄鱼肉中SFA和MUFA含量仅次于猪肉,这表明鳄鱼肉具有良好风味、嫩度和多汁性。鳄鱼肉中多不饱和脂肪酸(PUFA)含量明显高于其他肉类。与其他肉类相比,鳄鱼肉中含有PUFA种类最多,含量最高。鳄鱼肉中α-亚麻酸、 γ-亚麻酸和花生四烯酸含量远高于其他肉类。鳄鱼肉中n-6和n-3 PUFA含量极其丰富。PUFA与SFA比值是另一个评价肉类营养价值的重要参数,当该比值大于0.4时,表明品质更好,其营养价值更符合人体健康标准。当肉品中UFA与SFA比值大于1时,表明脂肪酸组成以UFA占主体,脂肪酸组成稳定。而鳄鱼肉中PUFA与SFA比值为1.21,UFA与SFA比值为2.61。因此,鳄鱼肉具有良好的营养价值,也更加符合人类健康膳食要求。04研究结论本研究对鳄鱼肉和其他6种肉类中营养成分进行测定与综合评价。鳄鱼肉中矿物质含量丰富,磷含量最高,钙含量高于其他畜禽肉,是一种优质补钙和磷的动物源性食品。鳄鱼肉中其水溶性维生素含量显著高于其他6种肉类。鳄鱼肉中TAA和EAA含量显著高于河虾肉。鳄鱼肉中鲜味氨基酸含量最高,尤其是谷氨酸显著高于其他肉类(P0.05),这表明鳄鱼肉肉质鲜美。根据必需氨基酸评分(AAS) 和化学评分(CS),鳄鱼肉更易被人体消化吸收。与其他肉类相比,鳄鱼肉中UPA含量最高,尤其是PUFA含量,鳄鱼肉中ω-6和ω-3脂肪酸含量极其丰富,具有较高的营养价值和良好的保健功能。因此,鳄鱼肉是一种优质动物性资源,具有很好的开发前景。作者简介孔凡华,北京市营养源研究所有限公司高级工程师,农产品食品检验员职业技能鉴定考评员,农产品食品检验员职业技能鉴定督导员,中国农业科学院校外指导教师,北京城市学院校外指导教师。开展食物资源的营养分析检测技术及应用研究,筛选和开发新型食物资源和食品新功能成分,提供分析技术研究及检测应用市场化服务。作为项目骨干完成食品安全国家标准、标准跟踪评价专项研究、农业行业标准和团体标准制修订共计30余项,完成十三五国家重点研发计划1项,国家自然科学基金面上项目1项,河北省重点研发计划1项,其他科研项目10余项,以第一作者和通讯作者发表科研论文15篇,申报专利2项,参编专著1部。入选北京市科协青年人才托举工程,入选第十五届北京青年优秀科技论文。
  • 《食品中亚硝酸盐限量》等38项食品安全国家标准向社会公开征求意见
    各有关单位:根据《食品安全法》及其实施条例规定,我委组织起草了《食品安全国家标准 食品中亚硝酸盐限量》等38项食品安全国家标准和修改单(征求意见稿),现向社会公开征求意见。请于2023年3月20日前登录食品安全国家标准管理信息系统(https://sppt.cfsa.net.cn:8086/cfsa_aiguo)在线提交反馈意见。附件:征求意见的食品安全国家标准目录           食品安全国家标准审评委员会秘书处2023年2月10日征求意见的食品安全国家标准目录序号标准名称制定/修订污染物标准1项1.食品安全国家标准 食品中亚硝酸盐限量修订食品产品2项2.食品安全国家标准 发酵酒及其配制酒修订3.食品安全国家标准 果冻(GB 19299-2015)第1号修改单修改单营养与特殊膳食食品7项4.食品安全国家标准 食品营养强化剂 血红素铁制定5.食品安全国家标准 食品营养强化剂 L-蛋氨酸(L-甲硫氨酸)制定6.食品安全国家标准 食品营养强化剂 乙二胺四乙酸铁钠修订7.食品安全国家标准 食品营养强化剂 L-赖氨酸天门冬氨酸盐制定8.食品安全国家标准 特殊医学用途婴儿配方食品通则修订9.食品安全国家标准 婴幼儿谷类辅助食品修订10.食品安全国家标准 婴幼儿罐装辅助食品修订生产经营规范1项11.食品安全国家标准 食品中二噁英及多氯联苯污染控制规范制定食品添加剂2项12.食品安全国家标准 食品添加剂 叶黄素修订13.食品安全国家标准 食品添加剂 植物炭黑修订食品相关产品2项14.食品安全国家标准 食品用消毒剂通用安全要求修订15.食品安全国家标准 食品接触材料及制品用添加剂使用标准(GB 9685-2016)第1号修改单修改单理化检验方法与规程18项16.食品安全国家标准 食品中三价铬和六价铬的测定制定17.食品安全国家标准 食品接触材料及制品 氟迁移量的测定制定18.食品安全国家标准 食品中双酚A、双酚F和双酚S的测定制定19.食品安全国家标准 食品中氟的测定制定20.食品安全国家标准 食品中脲酶的测定制定21.食品安全国家标准 食品中酵母β-葡聚糖的测定 制定22.食品安全国家标准 食品中渗透压的测定制定23.食品安全国家标准 食品中甲醛的测定修订24.食品安全国家标准 食品中锑的测定修订25.食品安全国家标准 食品中左旋肉碱的测定修订26.食品安全国家标准 食品中丙酸及其盐的测定修订27.食品安全国家标准 食品中总酸的测定(GB 12456-2021)第1号修改单修改单28.食品安全国家标准 食品中胡萝卜素的测定(GB 5009.83-2016)第1号修改单修改单29.食品安全国家标准 食品中多种磷酸盐的测定修订30.食品安全国家标准 食品中酸价的测定修订31.食品安全国家标准 食用盐指标的测定修订32.食品安全国家标准 食品接触材料及制品 氯乙烯、1,1-二氯乙烯和 1,1-二氯乙烷的残留量和迁移量的测定修订33.食品安全国家标准 食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定(GB 5009.111-2016)第1号修改单修改单微生物检验方法与规程 5项34.食品安全国家标准 食品用菌种安全性评价程序制定35.食品安全国家标准 食品微生物学检验 大肠菌群计数修订36.食品安全国家标准 食品微生物学检验 诺如病毒检验修订37.食品安全国家标准 食品微生物学检验 单核细胞增生李斯特氏菌检验修订38.食品安全国家标准 食品微生物学检验 大肠埃希氏菌计数修订
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制