当前位置: 仪器信息网 > 行业主题 > >

葡萄糖基龙胆苦苷标

仪器信息网葡萄糖基龙胆苦苷标专题为您提供2024年最新葡萄糖基龙胆苦苷标价格报价、厂家品牌的相关信息, 包括葡萄糖基龙胆苦苷标参数、型号等,不管是国产,还是进口品牌的葡萄糖基龙胆苦苷标您都可以在这里找到。 除此之外,仪器信息网还免费为您整合葡萄糖基龙胆苦苷标相关的耗材配件、试剂标物,还有葡萄糖基龙胆苦苷标相关的最新资讯、资料,以及葡萄糖基龙胆苦苷标相关的解决方案。

葡萄糖基龙胆苦苷标相关的论坛

  • 葡萄糖基甜菊糖苷基线波动大

    单一的甜菊糖苷与瑞鲍迪A或者是纯度高的葡萄糖基甜菊糖苷的基线波动小,分离也不错。但是有时候做比较杂的葡萄糖基甜菊糖苷,会有小杂峰密集出现并带着基线波动。是按照国标方法做的,求方法解决

  • 葡萄糖基质中B的测定

    请问用ICP-OES测定葡萄糖基质中的B。葡萄糖的浓度比较高大概在20%甚至更高左右。是否需要前处理?怎么做

  • 【金秋计划】龙胆苦苷靶向PAQR3激活PI3K/AKT通路改善糖脂代谢紊乱

    [font=宋体]【金秋计划】[/font]龙胆苦苷(Gentiopicroside,GPS)是条叶龙胆的主要活性物质,具有广泛的药理活性,包括抗炎、抗氧化等。最近发现龙胆苦苷能有效改善糖尿病小鼠的周围神经病变和视网膜病。此外,作者之前的研究发现GPS显著改善血糖水平并有效抑制炎症以减轻肾脏微血管病变。然而,GPS是否以及如何改善高脂饮食(HFD)诱导的糖脂代谢仍然很大程度上是未知的。2022年6月,中山大学药学院黄河清/刘培庆教授联合广州中医药大学药学院刘中秋团队在Acta Pharm Sin B(IF=14.5)发表题为“Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism”的文章,发现龙胆苦苷(GPS)有效改善肝脏胰岛素抵抗,改善糖脂代谢紊乱。从机制上讲,GPS促进PAQR3和DDB2的互作,促进DDB2介导的PAQR3泛素降解。此外,GPS直接与PAQR3的N端结合,并在空间上抑制PAQR3与P110 α的互作,从而维持PI3K/AKT信号通路。 1、GPS激活PI3K/AKT通路减少脂质合成并增加葡萄糖利用率棕榈酸(PA)可用于诱导肝细胞和骨骼细胞中的胰岛素抵抗。作者发现GPS能增加PA处理的HepG2细胞中葡萄糖利用率,起到与二甲双胍相似的效果。此外,GPS显著降低HepG2细胞中的TG和TC含量,减少脂滴沉积并增加了糖原合成。考虑到PI3K/AKT轴激活对调节葡萄糖和脂质代谢很重要,作者检测发现,PA刺激显著抑制PI3K活性并减少了PIP3的产生,而GPS共处理可恢复PI3K活性并促进PIP3的产生。此外,FOXO1和SREBP-1c是调控胰岛素信号通路中GCK、G6Pase、PEPCK和LDLR等的主要转录因子,GPS有效阻断了PA诱导的HepG2细胞中的FOXO1和SREBP-1c核易位。图片图1 GPS激活PI3K/AKT通路减少脂质合成并增加葡萄糖利用率2、GPS体外抑制PAQR3与P110α互作促进PI3K/AKT通路激活作者使用PI3K的特异性抑制剂LY294002进一步研究GPS 在 PI3K/AKT 轴上的作用,发现在PA处理的HepG2细胞中,与LY294002的预孵育显著逆转了GPS共处理诱导的PI3K、AKT和GSK3 β磷酸化增加。有研究报道PAQR3竞争性地拴住了高尔基体中PI3K的催化亚基(p110α),以抑制 p110α–p85α二聚体的形成,从而负向调节胰岛素信号通路。作者发现GPS处理显著降低了PA处理细胞中高尔基体中PAQR3和p110α的分布。co-IP结果证实GPS处理可逆转PA刺激导致的PAQR3和p110α互作的增加。同时,GPS处理显著增加p110α与p85α互作,表明GPS处理促进了PI3K二聚体的形成。此外,PAQR3过表达显著逆转了GPS处理对减少高尔基体中PAQR3和P110α分布的影响,消除了GPS共处理诱导的PI3K二聚体(P110α–P85α)的形成,也逆转了GPS诱导的PI3K/AKT轴的激活,而PAQR3敲低足以恢复PI3K/AKT轴并改善糖脂代谢标志物表达,而与GPS联合处理没有产生额外的效果。图片图2 GPS抑制PAQR3与P110α互作促进PI3K/AKT通路激活3、GPS通过DDB2介导的PAQR3体外泛素化抑制PAQR3蛋白表达作者接着研究了GPS负调控PAQR3蛋白水平的机制,发现GPS不影响PA处理的HepG2细胞中PAQR3的mRNA水平,半衰期分析显示GPS处理组PAQR3周转率快于未处理组,表明GPS在翻译后水平上调控PAQR3的表达。据报道PAQR3可能被泛素-蛋白酶体途径降解。作者发现在蛋白合成抑制剂CHX存在下,用蛋白酶体抑制剂MG132处理可以阻断HepG2细胞中PAQR3蛋白的降解,而溶酶体抑制剂氯喹CQ不能阻止PAQR3降解,结果阐明了PAQR3降解是由蛋白酶体介导的。此外,作者发现PAQR3可以被多泛素化。DDB2是一种底物受体模块,可决定靶向底物对泛素化的特异性,最近的研究表明,DDB2是PAQR3的转录后调节因子,可促进泛素介导的PAQR3降解。作者通过过表达DDB2验证了DDB2在促进PAQR3泛素化以恢复PI3K激活中的作用。PA刺激下DDB2下调,PAQR3上调,GPS协同处理显著增加DDB2表达,PAQR3表达降低。此外,PA处理细胞中DDB2和PAQR3的共定位降低,而GPS共处理显著增加了DDB2和PAQR3的共定位。Co-IP结果验证了GPS可促进PA处理细胞中DDB2和PAQR3的互作。此外,GPS诱导的PAQR3泛素化在很大程度上受到DDB2-siRNA的抑制。同时,DDB2敲低损害了GPS对促进PA处理的HepG2细胞中P110α和P85α的互作,损害了GPS诱导的PI3K磷酸化。这些结果表明,GPS通过DDB2介导的PAQR3泛素降解抑制PAQR3的表达。图片图3 GPS通过DDB2介导的PAQR3体外泛素化抑制PAQR3蛋白表达4、GPS直接靶向结合PAQR3Co-IP结果表明GPS可抑制PAQR3和P110α的互作,与PAQR3表达的抑制无关,而这种作用是否可归因于GPS和PAQR3的直接结合尚不清楚。作者利用重组PAQR3蛋白通过SPR、MST和TSA证实了GPS与PAQR3蛋白直接互作。分子对接确定GPS复合物与PAQR3的Leu40、Asp42、Glu69、Tyr125和Ser129形成7个关键氢键,以稳定结合构象,这对GPS的抑制活性很重要。蛋白质配体相互作用指纹图谱(PLIF)计算表明,GPS和Glu69之间存在两种强氢键相互作用和强表面接触,表明Glu69可能是GPS的重要结合位点。利用定点诱变构建PAQR3的PAQR3-S129T/Y125F/E69D/D42E/L40G和PAQR3-E69Del突变体,并通过CETSA和SPR发现Glu69的缺失影响GPS和PAQR3结合,表明 Glu69 可能是GPS的重要结合位点。图片图4 GPS直接结合PAQR35、GPS激活糖尿病小鼠的PI3K / AKT信号通路改善糖脂代谢紊乱采用链脲佐菌素(STZ)和高脂饮食(HFD)诱导的糖尿病小鼠确认GPS在体内的效果,发现GPS给药降低了空腹血糖(FBG)水平和糖化血清蛋白(GSP),降低了肝脏重量/体重(LW/BW)的比值,增加了肝糖原的含量,降低了肝组织中的总胆固醇(TC)和甘油三酯(TG)含量。重要的是,GPS在改善葡萄糖和脂质代谢方面与二甲双胍相当。作者进一步观察了糖尿病小鼠肝脏的形态,发现GPS或二甲双胍均明显改善糖尿病小鼠肝组织病理性肝损伤和脂质沉积,增加了LDLR和GCK在肝脏中的分布,恢复STZ-HFD诱导的受损AKT和GSK3β信号转导,改善了肝脏中糖脂代谢标志物的表达,有效阻断FOXO1和SREBP-1c在肝细胞核中的积累。图片图5 GPS激活糖尿病小鼠的PI3K / AKT通路改善糖脂代谢紊乱6、GPS抑制PAQR3在体内的表达促进PI3K的激活体外结果表明GPS诱导的PAQR3抑制介导了PAQR3在胰岛素抵抗中的保护作用,作者进一步在糖尿病小鼠中检测发现糖尿病小鼠肝组织中PAQR3表达上调,PI3K磷酸化下调,GPS治疗逆转该现象。此外,提取肝组织的高尔基体,Western blot显示GPS降低了高尔基体中PAQR3和p110α的表达,降低 PAQR3 和p110α的共定位。Co-IP结果进一步证实,在糖尿病小鼠中,GPS处理后PAQR3与p110α之间增加的互作受到强烈抑制,P110α与P85α之间的相互作用增加,这与体外结果一致。图片图6 GPS抑制PAQR3在体内的表达促进PI3K的激活7、GPS 促进体内DDB2和 PAQR3的互作来促进PAQR3泛素化降解与细胞实验一致,GPS显示对糖尿病小鼠Paqr3的mRNA水平没有影响。此外,PCR结果表明GPS显著提高了糖尿病小鼠Ddb2的mRNA水平,这可能有助于DDB2蛋白表达的上调。免疫荧光显示,GPS处理的肝组织中DDB2和PAQR3的共定位显著增强。Co-IP结果进一步证实,DDB2和PAQR3的结合在糖尿病小鼠中减少,而GPS处理促进了DDB2和PAQR3在糖尿病小鼠肝组织中的互作。此外,肝组织中PAQR3的泛素化水平在糖尿病期间下调,伴随着PAQR3 蛋白的上调。结果表明,GPS增加了DDB2的表达,这可能促进了PAQR3的泛素化和降解。综上所述,GPS通过DDB2介导的PAQR3泛素介导的降解抑制糖尿病小鼠PAQR3的表达。图片图7 GPS促进体内DDB2和 PAQR3的互作来促进PAQR3泛素化降解总结该研究发现龙胆苦苷在棕榈酸(PA)处理的HepG2细胞中减少脂质合成并增加葡萄糖利用,此外,龙胆苦苷改善了链脲佐菌素(STZ)治疗的高脂饮食(HFD)诱导的糖尿病小鼠的糖脂代谢。机制上,龙胆苦苷通过促进DDB2介导的PAQR3泛素化降解来促进PI3K/AKT轴的激活。此外, SPR、MST和TSA的结果表明,GPS直接与PAQR3结合。分子对接和CETSA结果显示GPS直接与PAQR3 NH的氨基酸结合,并在空间上抑制PAQR3与PI3K催化亚基(P110α)的互作以恢复PI3K/AKT信号通路。总之,研究确定了抑制PAQR3表达并直接靶向PAQR3以恢复胰岛素信号通路的天然产物龙胆苦苷,作为治疗糖尿病的潜在候选药物。

  • 葡萄糖和四苄基葡萄糖的紫外衍生化方法

    最近在做一个糖苷类的检测方法,想用对硝基苯甲酸和糖苷上的羟基发生酯化反应显色后用紫外检测器检测,但是副产物太多,不能进行准确的定量,想请教下还有别的衍生化条件没? 我的衍生化条件是10mg糖苷样品+50mg对硝基苯甲酸加丙酮溶解后加1ml浓盐酸加热10min,条件是我自己摸索的,可能有很多的不规范的地方样品里可能有葡萄糖,蔗糖,葡萄糖甲苷,1-O-甲基-四苄基葡萄糖,1-羟基-四苄基葡萄糖

  • 【原创】即α-D-葡萄糖和β-D-葡萄糖的分离

    即α-D-葡萄糖和β-D-葡萄糖的分离,非常有意思,以后在糖类的分离上会有更多的东西。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=149893]即α-D-葡萄糖和β-D-葡萄糖的分离[/url]

  • 【求助】连葡萄糖醛酸的三萜皂苷盐的碳谱的特点

    求助高手,连葡萄糖醛酸的三萜皂苷盐(钾盐或钠盐)的碳谱和一般非盐相关化合物的碳谱有啥区别吗?俺就知道可能那个羧基信号要向低场移几ppm。钾或钠会影响峰高吗?因为分的东西可能不纯,原来以为含两个化合物,可是解释不清楚为什么一部分高场不连氧的信号(14个)很高,从连氧部分到最低场都没有与之高度相当的信号。再有就是除非把高峰和低峰加在一起,否则碳数不够。(高峰-高场-14个,中等-大约高峰高度的一半-12个;低峰-大约高峰高度的1/4-16个)图谱没有扫描,暂时没上传,就是比较迷惑,不知道可不可能是连葡萄糖醛酸的三萜皂苷盐(钾盐和钠盐)混合物?

  • 【求助】葡萄糖和葡萄糖酸分离

    求各位高手帮忙一下,怎样用HPLC分离葡萄糖和葡萄糖酸 或者是葡萄糖和葡萄糖酸钠? 应该用什么样的柱子和检测器呢?拜托拜托!!

  • 【求助】求方法测果汁中葡萄糖含量,急!!

    请问:利用什么方法可以测得一种果汁中的葡萄糖含量和N-乙酰葡萄糖胺含量可以用液相色谱么?果汁中含有蔗糖,葡萄糖,果糖,N-乙酰葡萄糖胺、氨基酸,蛋白质、和钙、铁等矿物离子着急!!![em0812][em0812][em0812]

  • 【求助】求助:样品水解检测葡萄糖的含量?

    我提取的多糖中有葡聚糖和甘露聚糖,我想检测甘露聚糖的含量,现在我首先想先把样品水解检测葡萄糖的含量,我想用试剂盒检测葡萄糖的含量,我想问下葡萄糖试剂盒检测葡萄糖时,甘露糖会对它产生干扰吗??

  • β-葡萄糖醛酸酶/芳基硫酸酯酶 ----- 新品!!!!!

    β-葡萄糖醛酸酶/芳基硫酸酯酶 ----- 新品!!!!!

    β-葡萄糖醛酸酶/芳基硫酸酯酶 被广泛地应用于科研和分析实验室,可同时具备对β-葡萄糖苷酸类固醇类和硫酸酯类物质的酶解/水解能力,对分析物做到最优化的样品前处理,确保最佳的气相色谱GC,液相色谱HPLC,免疫学等其他分析检测。β-葡萄糖醛酸酶典型应用:GBT 22286-2008: 动物源性食品中多种β-受体激动剂残留量的测定液相色谱串联质谱法SNT 1924-2011: 进出口动物源食品中克伦特罗、莱克多巴胺、沙丁胺醇和特布他林残留量的测定 液相色谱-质谱 质谱法农业部1025号公告-18-2008: 动物源性食品中β-受体激动剂残留检测液相色谱-串联质谱法目前可以提供免费试用,如需请发送信息至 luxiaofan@anpelsci.com .最新产品单页献上!!http://ng1.17img.cn/bbsfiles/images/2013/10/201310161017_471135_2655559_3.jpg

  • 葡萄糖浆的问题

    在此想请教大家一个问题,如果A食品中使用的葡萄糖浆执行标准是: GB/T 20882.2 淀粉糖质量要求 第2部分:葡萄糖浆(粉);该原料名称(标签和规格书上标识)也是“葡萄糖浆”,其在A食品中的添加量大于25% 。大家觉得在该种情况下,A食品的标签配料表上的葡萄糖浆后是否要展开其原始配料(淀粉和水)?即葡糖浆这类原始原料已经过反应转化的物料是否当作一种复合配料,并按照GB 7718 4.1.3.1.3相关要求标识? 盼复,谢谢!

  • 68.3 高效液相色谱法测定龙胆泻肝汤颗粒中龙胆苦苷含量

    68.3 高效液相色谱法测定龙胆泻肝汤颗粒中龙胆苦苷含量

    作者】 许仲; 叶胜体; 张妥; 【Author】 Xu Zhong1,Ye Shengti1,Zhang Tuo2(1.Yangjiang Municipal Institute for Drug Control,Yangjiang,Guangdong,China 529500; 2.Yangjiang Municipal Hospital of Chinese Medicine,Yangjiang,Guangdong,China 529500)【机构】 广东省阳江市药品检验所; 广东省阳江市中医医院;【摘要】 目的建立测定龙胆泻肝汤颗粒中龙胆苦苷含量的高效液相色谱法。方法采用Diamonsil C18色谱柱(250 mm×4.6 mm,5μm),以甲醇-水(21∶79)为流动相,检测波长为270 nm,流速为1.0 mL/min,柱温为40℃。结果龙胆苦苷进样量在20.42~61.26μg范围内与峰面积有良好的线性关系(r=0.996 9),平均回收率为98.17%,RSD为0.6%(n=6)。结论该方法简便、准确、重复性好,可用于龙胆泻肝汤颗粒制剂的质量控制。 更多还原http://ng1.17img.cn/bbsfiles/images/2012/08/201208271646_386529_2379123_3.jpg

  • 求助:药典测铁皮石斛中甘露糖含量怎么确定内标盐酸氨基葡萄糖的峰

    求助:药典测铁皮石斛中甘露糖含量怎么确定内标盐酸氨基葡萄糖的峰

    采用药典内标法测铁皮石斛中甘露糖的含量时,我为了确定混标中内标物盐酸氨基葡萄糖的峰,对盐酸氨基葡萄糖进行了pmp衍生化做成单标进样,但是单标走不出盐酸氨基葡萄糖的峰,想请教一下原因,还有我要怎么做?难道单标不需要衍生化吗?还请教一下做法,拜托拜托[img=,690,516]https://ng1.17img.cn/bbsfiles/images/2022/07/202207251153388131_5664_5615623_3.jpg!w690x516.jpg[/img]

  • 质谱测葡萄糖

    请教大家一个质谱测葡萄糖的问题。我用0.1%乙酸做的溶剂直接direct injection 葡萄糖 ESI positive发现质谱测到的主要是葡萄糖的2聚体葡萄糖 分量是180 我看到的主要是342+1的峰我没想明白为 葡萄糖单体挺稳定的怎么会形成2聚体呢?

  • β-葡萄糖醛酸酶

    β-葡萄糖醛酸酶

    [align=left][font=宋体] β[/font]-[font=宋体]葡萄糖醛酸酶是一种可以使葡糖醛酸苷键加水分解的酶。被广泛的应用于科研,检测机构和分析实验室。[/font][font=宋体]药物进入人或动物体内后,不是以游离态的形式存在的,而是通过糖苷键结合参与代谢,转换为葡萄糖醛酸轭合物或硫酸轭合物。[/font][font=宋体]β-葡萄糖醛酸酶把葡萄糖醛酸轭合物或硫酸轭合物的糖苷键切断,释放出游离态。[/font][font=宋体]然后借助于液相串联质谱([/font]LC -MS[font=宋体])或[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]串联质谱([/font][url=https://insevent.instrument.com.cn/t/Mp]gc[/url] -MS[font=宋体])技术对代谢产物进行定量检测与分析。[/font][/align][align=left][font=宋体] [font=宋体][size=14px]β[/size][/font][font='Microsoft YaHei',Arial,Helvetica][size=14px]-[/size][/font][font=宋体][size=14px]葡萄糖醛酸酶广泛的应用于食品安全、药物滥用和临床检查、诊断及药物开发等邻域。[/size][/font][/font][/align][align=left][font=宋体][size=14px][color=#000000] 目前,市场上的β-葡萄糖醛酸酶一般提取自鲍鱼,蜗牛,大肠杆菌,是一种深色浑浊液体;而IMCSzyme 为生物工程改良的β-葡萄糖醛酸酶,为无色透明液体,不含有杂志酶。[/color][/size][/font][/align][align=left][font=宋体][size=14px][color=#000000][/color][/size][/font][/align][align=left][font=宋体] [/font][/align][img=,563,518]https://ng1.17img.cn/bbsfiles/images/2020/09/202009211541232417_4281_2617624_3.jpg!w563x518.jpg[/img]

  • 体系中有葡萄糖、葡萄糖酸和葡萄糖酸内酯,该用什么柱子分离?

    岛津液相,柱子用[font=&]Bio-Rad Aminex HPX-87H[/font][font=宋体]柱时,葡萄糖和葡萄糖酸在同一个地方出峰。为了得到葡萄糖酸的量,看了一些文献,说可以用紫外检测器来尝试,但是因为体系里还有葡萄糖酸内酯,在紫外检测器上和葡萄糖酸在同一个地方出峰,也不能分离。[/font][font=宋体]求问各位大神用什么柱子和什么方法可以分离体系中有内酯的葡萄糖和葡萄糖酸?感谢[/font]

  • 【求购】葡萄糖二酸

    大家知道哪有卖葡萄糖二酸,或者他的盐类,或者葡萄糖二酸-1,4内酯啊?葡萄糖二酸应该属于医药中间体吧,我从网上查了几个生产厂家,都说这东西不稳定,没有现货,而且量小他们也不给开工做。谢谢,俺着急。

  • CNS_01.312_葡萄糖酸钠

    CNS_01.312_葡萄糖酸钠

    [font='calibri'][size=13px] [/size][/font][font='calibri'][size=14px] [/size][/font][size=29px]葡萄糖酸钠[/size][font='calibri'][size=29px] [/size][/font][font='calibri'][size=21px] [/size][/font][size=21px]林扬[/size][align=center][font='黑体'][size=20px]摘 要 [/size][/font][/align][align=center][font='calibri'][size=18px] [/size][/font][/align][font='黑体']摘要[/font][font='黑体']:[/font]葡[font='黑体']萄糖酸钠的分子式为C[/font][font='黑体'][size=16px]6[/size][/font][font='黑体']H[/font][font='黑体'][size=16px]11[/size][/font][font='黑体']O[/font][font='黑体'][size=16px]7[/size][/font][font='黑体']Na,分子量为218.14。葡萄糖酸钠广泛用于工业中。在食品工业中,葡萄糖酸钠作为食品添加剂,可以赋予食品酸味,增强食品的味道,防止蛋白质变性,改善不良的苦味和涩味,并取代盐来获得低钠,无钠的食品。本文简述了食品添加剂葡萄糖酸钠的理化性质及其主要的生产制备工艺[/font][font='黑体'],[/font][font='黑体']并参照国家标准[/font][font='黑体'],[/font][font='黑体']展示了几种常见的葡萄糖酸钠的检测方法[/font][font='黑体']。[/font][font='黑体']关键词[/font][font='黑体']:葡萄糖酸钠、食品添加剂[/font][font='黑体']、[/font][font='黑体']制备[/font][font='黑体']、[/font][font='黑体']检测[/font][font='calibri'][size=18px] [/size][/font] [font='calibri'][size=18px] [/size][/font][size=18px]引言[/size]葡萄糖酸钠是一种重要的食品添加剂, 在食品中的应用前景广阔,因为其广泛的来源,且无毒性,无潮解性,稳定性和良好的螯合性能,在营养增补剂、食品保鲜剂、品质改良剂等方面有广泛的应用。在2021年8月即将实施的GB1886.320-2021中,国家市场监督总局、国家卫生健康委员会对食品添加剂葡萄糖酸钠的相关指标及检测方法设定了国家标准。[size=18px]1[/size][size=18px].[/size][size=18px]葡萄糖酸钠的理化性质[/size][font='宋体'][size=16px][1][/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262015125951_6792_1608728_3.png[/img]分子式:C[font='宋体'][size=16px]6[/size][/font]H[font='宋体'][size=16px]11[/size][/font]NaO[font='宋体'][size=16px]7[/size][/font]分子量:218.14熔点:206-209℃外观:白色结晶颗粒或粉末溶解性:极易溶于水(0.1g/mL),略溶于酒精,不能溶于乙醚比旋光度:[α]D20+11~+13°(c=10,H[font='宋体'][size=16px]2[/size][/font]O)储存条件:低于30℃PH值:7.0-8.0(100g/l,H[font='宋体'][size=16px]2[/size][/font]O,20℃)CAS数据库:527-07-1(CAS Data Base Reference)EPA化学物质信:Sodium gluconate(527-07-1)[size=18px]2[/size][size=18px].[/size][size=18px]葡萄糖酸钠的生产制备[/size][font='宋体'][size=18px][2][/size][/font]葡萄糖酸钠的制备方法主要包括均相化学氧化法,电解氧化法,非均相催化氧化法和生物发酵法。其中,最常用的是非均相催化氧化和生物发酵。非均相催化氧化法受催化剂和催化效率的限制,具有催化剂易中毒,生产效率低,生产成本高的缺点。因此,非均相催化方法不适合在食品工业中生产葡萄糖酸钠[font='宋体'][size=16px][3][/size][/font]。食品级葡萄糖酸钠的制备主要采用的是生物发酵法,生物发酵法所用的菌种主要包括真菌和细菌,另外还有新型的固定化细胞发酵。现目前葡萄糖酸钠生产的方法采用的是酶氧化法生产,其中用到的主要的酶是葡萄糖氧化酶(GOD)。葡萄糖氧化酶主要负责通过葡糖酸和过氧化氢催化葡萄糖的产生。黑曲霉(Aspergillus niger)是GOD的主要生产菌株。在实际生产中,GOD将与过氧化氢酶(CAT)形成复杂的酶系统。CAT主要的功能是使得体系中的H[font='宋体'][size=16px]2[/size][/font]O[font='宋体'][size=16px]2[/size][/font]得以分解。葡萄糖在GOD的作用会氧化为葡萄糖酸,并伴随过氧化氢的释放。过氧化氢具有很强的氧化性,可以降低葡萄糖氧化酶的活性。过氧化氢酶的加入可以快速分解过氧化氢,将过氧化氢分解成水和氧,葡萄糖氧化酶可以继续催化反应。并且可以补充反应所需的氧气,使氧化反应持续进行。在实际生产中,加入一定量的氢氧化钠溶液以维持反应体系的pH值,使反应继续进行。2.1传统生物发酵技术传统的葡萄糖酸钠发酵采用的是黑曲霉菌发酵工艺,该方法是利用黑曲霉为发酵菌株,通过不断向发酵体系内加入氢氧化钠溶液控制pH,并控制一定的温度,氧含量等条件进行发酵。发酵后,通过多种工艺获得产品,如灭菌,脱色,浓缩,结晶,离心和干燥。由于存在传统工艺效率低下,所得产品质量较差等缺陷。目前国内外在传统生物发酵法中的研究主要集中在改良发酵菌种、固定化菌丝体重复利用、改变发酵方式和寻找葡萄糖替代品等方面。 葡萄糖酸钠的生产过程是需氧过程,反应体系中的氧气量对发酵时间和产量有着重要的影响。传统工业生产一般都是通入空气以供应反应所需的氧气,但液体溶氧速率有限,不能及时满足实际生产中所需氧气含量,从而延长了生产时间。H.W. Lee通过加压使得水中溶解氧浓度达到150mg/L,发现葡萄糖酸钠的生产得率大大提高。O.V. Singh对比了液态发酵,表面发酵,半固态发酵和固态发酵对于葡萄糖酸钠生产的影响,证明了固态发酵是最有效的发酵方式。在实际生产中,为了降低生产成本,将尝试寻找低成本碳源作为发酵和生产葡萄糖酸钠的基质,包括玉米淀粉,甘蔗渣,糖蜜等。2.2生物发酵新技术——固定化酶技术[font='宋体'][size=16px][2][/size][/font] 传统的发酵法生产葡萄糖酸钠,会得到大量的细菌或真菌菌丝。这些菌丝会被当做废料处理,而其中往往含有大量的葡萄糖氧化酶。近年来,基于这一问题,国内外学者将目光瞄准酶固定化技术,因此固定化酶技术越来越受到了研究者的关注。固定化酶的研究使得葡萄糖酸钠广泛的应用于工业中成为可能。目前为止,多种酶被成功固定到不同载体上,并且取得了很好的经济效益及应用价值。在食品工业中,使用固定化酶代替游离酶可以提高葡萄糖酸钠的生产效率,降低使用成本,简化纯化过程,并提供高产量和高质量。关于酶固定化技术的早期研究主要选择纤维素,固体玻璃颗粒,多孔玻璃颗粒和镍网。其中,多孔玻璃和纤维素是最广泛使用的固定载体,因为它们的表面积大,因而酶的催化活性相对较高。近年来,固定化技术应用越来越多,酶的固定化技术涉及用高分子材料物理的包埋法,导电高分子共聚法和无机凝胶包埋法。有研究者采用丙烯酸的微粒凝胶和三价金来固定GOD,表现出很好的效果,还有报道关于利用戊二醛交联作用把GOD固定在竹子的内膜上,并取得了一定的成果。现在所使用的固定化载体种类繁多。[size=18px]3.应用[/size][font='宋体'][size=18px][2][/size][/font]目前葡萄糖酸钠作为一种性能良好的食品添加剂,广泛用于食品加工业。同时,它还广泛用于营养补充剂,食品防腐剂,质量改进剂和缓冲剂。 3.1.葡萄糖酸钠调节食品的酸度 在食品中添加酸可以增强食品的安全性,因为酸是防止冷藏食品中微生物污染的主要形式,而与高温或高静水压力处理相结合使用酸可以降低能耗,从而降低成本。然而,在食品或饮料配方中添加酸通常会降低适口性,因为酸性较高,这限制了食品工业更好地利用酸作为防腐剂的能力,将葡萄糖酸钠配制成钠盐混合物(分别加入氯化钠和醋酸钠)后分别作用于柠檬酸、乳酸和苹果酸,发现葡萄糖酸钠混合物对柠檬酸和苹果酸的酸度(PH为4.4)有中度抑制作用,但对乳酸的酸度几乎没有影响。葡萄糖酸钠调节柠檬酸和苹果酸中的pH值,从而有效减少酸味,不会产生过咸的味道,说明葡萄糖酸钠在相对较高的酸水平上能够显著抑制柠檬酸和苹果酸的酸性。在食品工业中,葡萄糖酸钠被广泛用于饮料行业以确保饮料的质量,同时还保护由常规灭菌方法引起的过高温度引起的饮料成分的破坏,并且节省能量。 3.2葡萄糖酸钠代替食盐用于食品工业 相关研究表明中国人均的食盐摄入量是世界平均人均摄入量水平的数倍,体内钠离子含量过高,会导致高血压高血脂等慢性疾病的发生。在关注生活水平和疾病健康的同时,低盐食品引起了广泛关注,成为食品行业的热点。研究表明,每日盐的钠含量是葡萄糖酸钠的四倍,而葡萄糖酸钠的钠分子量仅为10.5%。与常用的低钠盐相比,葡萄糖酸钠的味道差别不大,但具有无刺激性,无苦味和涩味的优点,在实际应用中已成为盐的替代品。目前主要用于食品领域,如无盐产品和面包。研究报道使用葡萄糖酸钠代替盐进行面包发酵,不仅可以发酵低钠面包,还可以在不影响其整体风味和保质期的情况下实现减盐。 3.3葡萄糖酸钠改善食品风味 在食品行业,食品的风味是在感官评价中的重要指标。近年研究发现:葡萄糖酸钠能够改善苦味,葡萄糖酸钠盐对苦味化合物及其二元组合物质的苦味有不同程度的抑制作用。将不同剂量的葡萄糖酸钠盐以及乳酸锌盐均应用于咖啡因发现其能够抑制咖啡因苦味,上述研究说明葡萄糖酸钠对呈苦味的风味物质具有调节作用。另外,有报道表明在肉制品加工过程中添加一定量的葡萄糖酸钠,能较好的改善豆制品当中的大豆腥臭味。有研究发现。在海产品的加工过程中,通常会添加一定量的葡萄糖酸钠来降低鱼臭味,提高食物的食欲,且相比于传统的覆盖方式,成本更加低廉。 3.4葡萄糖酸钠能够改善食品品质 随着生活水平的不断提高,人们对食品的要求也越来越高。作为一种新型食品添加剂,葡萄糖酸钠不仅提高食品的风味,而且还增强了食品的营养特性。与市场上许多食品添加剂相比,它的无毒无害性能已经成为其最大的亮点。将葡萄糖酸钠作为乳酸钙晶体抑制剂在切达干酪中作用,发现葡萄糖酸钠能增加乳酸钙的溶解度,调节切达干酪的PH值,所以葡萄糖酸钠具有增加钙和乳酸盐溶解度的潜力,通过与钙和乳酸盐离子形成可溶性复合物,阻止它们形成乳酸钙晶体,不仅保证其营养,还改善了切达干酪的品质。将葡萄糖酸钠浸泡处理海带后,能够增加其藻酸盐含量,导致表面更软,改善口感。葡糖糖酸钠还具有蛋白变性抑制作用和肌原纤维蛋白溶解作用,在鱼糜中加入葡萄糖酸钠,加热后凝胶体的凝胶强度比未加葡萄糖酸钠的有明显提高,所以葡萄糖酸钠能够改善鱼糜制品的品质。[size=18px][color=#333333][back=#ffffff]4.限量[/back][/color][/size][font='宋体'][size=18px][color=#333333][4][/color][/size][/font]由GB 2760-2014,葡萄糖酸钠可在各类食品中按生产需要适量使用。[size=18px]5.检测[/size]5.1葡萄糖酸钠的定性检测[font='宋体'][size=16px][1][/size][/font]5.1.1钠离子的鉴别方法原理:根据钠离子在无色火焰上燃烧、火焰为亮黄色的现象,鉴别钠离子的存在。测定步骤:称取约1g试样,精确至0.01 g,溶于10 mL水中,用铂丝蘸取盐酸在无色火焰上燃烧至无色,再蘸取试验溶液少许,在无色火焰上燃烧,火焰应呈亮黄色。5.1.2葡萄糖酸的鉴别方法原理:试样在冰乙酸介质中,与苯肼共热,生成黄色葡萄糖酰苯肼结晶。测定步骤:取约0.5 g试样,精确至0.01 g,置于10 mL试管中,加5 mL 水,溶解(必要时加热),加0.7 mL冰乙酸和1 mL苯肼,在水浴上加热30 min,放至室温,用玻璃棒摩擦试管内壁,则析出黄色的结晶。5.2葡萄糖酸钠的定量检测5.2.1常规滴定法方法原理:试样以冰乙酸为溶剂,以结晶紫为指示剂,用高氯酸标准滴定溶液滴定,根据消耗高氯酸标准滴定溶液的体积计算葡萄糖酸钠的含量。分析步骤:称取测定干燥减量后的试样约0.4 g,精确至0.000 1 g,置于250 mL干燥的锥形瓶中,加50 mL冰乙酸(必要时可用电热板稍微加热),加2滴~3滴结晶紫指示液,用高氯酸标准滴定溶液滴定至溶液由紫色经蓝色最后变为绿色即为终点。除不加试样外,使用相同数量的试剂溶液做空白试验。使用时,高氯酸标准滴定液的温度应与标定时的温度相同 若其温度差小于4℃时,应将高氯酸标准滴定溶液的浓度修正到使用温度下的浓度 若其温度差大于4℃时,应重新标定。[img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262015127065_6610_1608728_3.png[/img]5.2.2电位滴定法方法原理:试样以冰乙酸为溶剂,采用电位滴定仪用高氯酸标准滴定溶液滴定,在滴定过程中通过测量电位变化以确定滴定终点﹐并根据消耗高氯酸标准滴定溶液的体积计算葡萄糖酸钠的含量。分析步骤:称取测定干燥减量后的试样约0.4 g,精确至0.000 1 g,置于250 mL,干燥的锥形瓶中,加50 mL冰乙酸(必要时可用电热板稍微加热),采用电位滴定仪用高氯酸标准滴定溶液滴定。除不加试样外,使用相同数量的试剂溶液做空白试验。使用时,高氯酸标准滴定液的温度应与标定时的温度相同 若其温度差小于4℃时,应将高氯酸标准滴定溶液的浓度修正到使用温度下的浓度﹔若其温度差大于4℃时,应重新标定。[img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262015128040_257_1608728_3.png[/img][size=18px]5.3其它可用于定量分析的方法[/size][font='宋体'][size=18px][5][/size][/font]5.3.1 HPLC法准确称取1.5040g于105℃下烘至恒重的葡萄糖酸钠, 用超纯水溶解并定容至 500mL。分别取1, 2, 3, 4, 5, 6, 7, 8, 9mL葡萄糖酸钠溶液用超纯水稀释至15mL。将其分别过0.45μm 滤膜,再超声处理后即可进样,在HPLC仪器上分析,取其中6点做标准曲线。高效液相色谱采用的流动相为甲醇︰水︰1%磷酸 (2︰48︰50), 流速为1.0mL/min,柱温为25℃, 进样量为15μL,检测波长为210nm.葡萄糖酸钠的出峰时间在2.758min, 峰形较好。色谱条件简单,操作简便,线性关系好。缺点是:其中葡萄糖酸钠属于盐类,对色谱柱的影响较大;且高效液相色谱仪器较昂贵。5.3.2 分光光度法准确称取 13.4779g于105℃下烘至恒重的葡萄糖酸钠, 用蒸馏水定容至 50mL。分别取 1, 2,3, 4, 5, 6, 7, 8, 9m L用蒸馏水定容至 25mL,作为标准溶液待用。各取 1mL上述标准溶液 , 加入18mL 1.25mol/L NaOH, 再边缓缓滴加0.10mol/L CuSO[font='宋体'][size=16px]4[/size][/font]溶液边充分搅拌, 直至产生的沉淀不消失。再将螯合后的溶液煮沸 5min,冷却至室温后,过滤, 再用2mL 1.25 mol/L NaOH洗涤滤渣。将收集的滤液用蒸馏水定容至50mL, 得到一系列浓度分别为 1, 2, 3, 4, 5, 6, 7, 8, 9mmol /L的标准溶液。以0.50 mol /L NaOH 为对照,在660nm波长下测其吸光度。该法的线性关系较好, 但该法较繁琐。该法仅适用于葡萄糖酸钠浓度≦10mmol /L的溶液,且当溶液中葡萄糖的量大于3倍葡萄糖酸钠的量时,葡萄糖对其影响较大。在葡萄糖酸钠的制备中,可能葡萄糖为其制备源,葡萄糖的含量较高, 故该法若要用于葡萄糖酸钠的检测还有待改进。5.3.3 旋光度法 准确称取 13.4070g于 105℃下烘至恒重的葡萄糖酸钠 , 用蒸馏水定容至 50mL。分别取 1, 2,3, 4, 5, 6, 7, 8m L用蒸馏水定容至20m L, 以水为空白 , 依法分别测定旋光度 t =20 ±0.5℃,L =2dm, 用同法读取旋光度 5 次, 取其平均数做标准曲线。用旋光法作葡萄糖酸钠标准曲线的线性关系好 , 操作方便,且不需要昂贵的仪器。但该法的抗干扰因素太低,工业生产的葡萄糖酸钠的纯度往往不高 ,含有较多具有旋光性的杂质,故不适用于工业生产葡萄糖酸钠的检测,可用于食品添加剂葡萄糖酸钠的检测。[size=18px][color=#333333][back=#ffffff]6.葡萄糖酸钠的标准[/back][/color][/size][font='宋体'][size=18px][color=#333333][1][/color][/size][/font][color=#333333][back=#ffffff]6.1.感官要求[/back][/color][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262015129311_283_1608728_3.png[/img][color=#333333][back=#ffffff]6.2.物化指标[/back][/color][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262015130223_2270_1608728_3.png[/img][size=18px]总结与展望[/size][size=16px]葡萄糖酸钠被广泛应用于食品工业[/size][size=16px],[/size][size=16px]但对于国内的发展现状[/size][size=16px],[/size][size=16px]无论是生产工艺还是检测方法[/size][size=16px],[/size][size=16px]都有许多有待提高的方面[/size][size=16px]。[/size][size=16px]未来对于食品添加剂葡萄糖酸钠的研究[/size][size=16px],[/size][size=16px]应着眼于开发高效绿色的生产方法[/size][size=16px],[/size][size=16px]进一步完善食品安全标准并确立准确高效的检测手段。同时对葡萄糖酸钠在其他领域的应用价值进行探索,不局限于食品添加剂,拓宽其应用范畴。[/size][size=18px]参考文献 [/size][1]GB 1886.320-2021[2]杜裕芳,左艳娜,胡秋连,郝苗.食品添加剂葡萄糖酸钠的制备方法及其应用研究进展[J].食品界,2019,{4}(08):80-81.[3]黄道震,余丽秀,王桂香,何纪光.葡萄糖酸钠的生产工艺及研究动态[J].河南化工,1999,{4}(05):35-36.[4]GB 2760—2014[5]李艳,肖凯军,王兆梅,陈朝毅,郭祀远.葡萄糖酸钠检测方法研究[J].食品研究与开发,2006,{4}(09):109-112.

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制