当前位置: 仪器信息网 > 行业主题 > >

乙酰基苄氧羰基酪氨

仪器信息网乙酰基苄氧羰基酪氨专题为您提供2024年最新乙酰基苄氧羰基酪氨价格报价、厂家品牌的相关信息, 包括乙酰基苄氧羰基酪氨参数、型号等,不管是国产,还是进口品牌的乙酰基苄氧羰基酪氨您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙酰基苄氧羰基酪氨相关的耗材配件、试剂标物,还有乙酰基苄氧羰基酪氨相关的最新资讯、资料,以及乙酰基苄氧羰基酪氨相关的解决方案。

乙酰基苄氧羰基酪氨相关的资讯

  • 欧盟禁止2,5-二甲基-3-乙酰基噻吩作为食用香料
    2013年6月15日,据欧盟网站消息,欧盟发布(EU)No 545/2013号委员会条例,修订了(EC)No 1334/2008号食用香精香料法规,禁止2,5-二甲基-3-乙酰基噻吩(3-acetyl-2,5-dimethylthiophene)作为食用香料用于食品。   据欧洲食品安全局2013年5月15日公布的2,5-二甲基-3-乙酰基噻吩评估结果,2,5-二甲基-3-乙酰基噻吩在体内外试验均具有致突变性,因此本法规将其从许可香料清单中删除。   同时,禁止2,5-二甲基-3-乙酰基噻吩作为食用香料投放市场或用于食品;禁止含有香料物质2,5-二甲基-3-乙酰基噻吩的食品投放市场,禁止2,5-二甲基-3-乙酰基噻吩作为香料进口或含有2,5-二甲基-3-乙酰基噻吩的食品进口。   对于在本法规生效前上市的含有2,5-二甲基-3-乙酰基噻吩的食品可在其保质期内进行销售;本法规生效前进口的含有2,5-二甲基-3-乙酰基噻吩的食品不适用于本法规。   本法规自公布之日起生效。
  • 广东省化妆品学会发布《化妆品中肌肽、类蛇毒肽、棕榈酰三肽-5、乙酰基八肽-3、乙酰基六肽-8的测定高效液相色谱-串联质谱法》团体标准征求意见稿
    各相关单位:由广东省化妆品学会牵头,多家企业共同起草的《化妆品中肌肽、类蛇毒肽、棕榈酰三肽-5、乙酰基八肽-3、乙酰基六肽-8的测定高效液相色谱-串联质谱法》团体标准,已编写完成征求意见稿。为充分听取各方意见,现公开征求社会意见。请各单位将修改意见于2024年2月23日前发送学会邮箱。注:如本标准涉及相关专利问题,请指出并提供支持性文件及有关数据。联系人:杨佩珊通讯地址:广州市番禺区小谷围街道外环西路100号实验1号楼402,广东省化妆品学会联系电话:13503059375邮箱地址:msc@cgdca.org附件:1.广东省化妆品学会团体标准征求意见收集表-《化妆品中肌肽、类蛇毒肽、棕榈酰三肽-5、乙酰基八肽-3、乙酰基六肽-8的测定高效液相色谱-串联质谱法》2.广东省化妆品学会团体标准征求意见稿-《化妆品中肌肽、类蛇毒肽、棕榈酰三肽-5、乙酰基八肽-3、乙酰基六肽-8的测定高效液相色谱-串联质谱法》征求意见收集表-化妆品中肌肽、类蛇毒肽、棕榈酰三肽-5、乙酰基八肽-3、乙酰基六肽-8的测定高效液相色谱-串联质谱法.docx征求意见稿《化妆品中肌肽、类蛇毒肽、棕榈酰三肽-5、乙酰基八肽-3、乙酰基六肽-8的测定高效液相色谱-串联质谱法》.pdf
  • 宁夏化学分析测试协会批准发布《大米中2-乙酰基-1-吡咯啉的测定 顶空固相微萃取-气质联用法》等6项团体标准
    各有关单位:根据国家《团体标准管理规定》和《宁夏化学分析测试协会团体标准管理办法》,我协会对《大米中2-乙酰基-1-吡咯啉的测定 顶空固相微萃取-气质联用法》等6项团体标准进行了评审,已经通过了专家审查,现予以发布,自2024年1月1日起正式实施,特此公告。序号标准号标准名称发布日期实施日期1T/NAIA0271-2023大米中2-乙酰基-1-吡咯啉的测定 顶空固相微萃取-气质联用法2023-12-312024-01-0102T/NAIA0272-2023铂钯铑铁合金2023-12-312024-01-013T/NAIA0273-2023二乙烯基苯2023-12-312024-01-014T/NAIA0274-2023反式-1,2-二氯乙烯2023-12-312024-01-015T/NAIA0275-2023氯乙酰氯2023-12-312024-01-016T/NAIA0276-2023三氯乙酰氯2023-12-312024-01-01 宁夏化学分析测试协会2023年12月31日2023协会团体标准公告-12.31.pdf
  • 广西肥料协会发布《大米中2-乙酰基-1-吡咯啉含量的测定 气相色谱-质谱法》团体标准
    各有关单位:依据《广西肥料协会团体标准管理办法(试行)》相关规定,由广西壮族自治区分析测试研究中心提出,广西壮族自治区分析测试研究中心、广西大学、广西西大检测有限公司、广西壮族自治区产品质量检验研究院等单位编写,经过调研、立项、起草、广泛征求意见,专家组进行了评审论证,现批准发布《大米中2-乙酰基-1-吡咯啉含量的测定 气相色谱-质谱法》(标准号:T/GXAF 0011-2023)为本协会团体标准,该标准于2023年4月10日发布,2023年5月1日实施,现予以公告。广西肥料协会2023年4月10日
  • 宁夏化学分析测试协会发布《大米中2-乙酰基-1-吡咯啉的测定 顶空固相微萃取-气质联用法》团体标准征求意见稿
    各相关单位:按照宁夏化学分析测试协会团体标准工作程序,标准起草组已完成《大米中2-乙酰基-1-吡咯啉的测定 顶空固相微萃取-气质联用法》团体标准征求意见稿的编制工作。现按照我协会《团体标准制修订程序》要求,公开征求意见。请有关单位及专家提出宝贵意见,并将征求意见表(附件)于2023年10月14日前反馈给秘书处。联系人:张小飞 电 话:13995098931邮箱:1904691657@qq.com 宁夏化学分析测试协会2023年9月14日关于团标征求意见函 -9.14.pdf团标表格7-专家意见表.doc大米中2-乙酰-1-吡咯啉的测定.pdf
  • 上海有机所等揭示糖基化修饰调控阿尔茨海默病beta淀粉样蛋白病理性聚集机制
    在阿尔茨海默病(AD)进展中,存在beta淀粉样蛋白(β-Amyloid,Aβ)的积累。Aβ在受影响的脑组织区域形成病理性聚集,被认为与AD的发生、进展和表型密切相关。多种翻译后修饰(如磷酸化、硝基化、糖基化等)对Aβ的病理性聚集及体内生物活性具有重要且不同的调控作用。在AD患者脑内,多种病理相关蛋白的糖基化位点、数量和水平都发生了显著性改变,表明了糖基化修饰在AD发生和发展中的重要意义。2011年,科学家对AD病人脑脊液中的Aβ片段进行鉴定,检测到之前未在哺乳动物中发现的酪氨酸O-糖基化修饰,然而由于天然来源的翻译后修饰蛋白丰度低、微观不均一等困难,Aβ糖基化修饰的生物学功能及在疾病中的作用尚未能得以阐释。  近日,中国科学院上海有机化学研究所生物与化学交叉研究中心刘聪课题组与北京大学药学院董甦伟课题组合作,在J. Am. Chem. Soc.上发表题为O-Glycosylation Induces Amyloid-β to Form New Fibril Polymorphs Vulnerable for Degradation的研究论文,利用化学合成策略构建了一系列含不同O-糖基化修饰的均一结构Aβ,并系统研究了糖基化修饰对Aβ病理性聚集的调控作用及其构效关系。  该研究中,研究人员首先合成了三种O-糖修饰的酪氨酸砌块,糖基分别是α-GalNAc, Galβ1-3GalNAc和Neuα2,3Galβ1-3GalNAc。然后,通过固相多肽合成策略将上述三种酪氨酸砌块制备相应的Aβ糖肽。然而,Aβ含有较多大位阻氨基酸,且自身疏水性强、容易聚集,再加上糖基的引入,给Aβ糖肽的合成带来了不少困难。为了克服这些合成难题,研究人员利用微波辅助的合成策略以及多赖氨酸亲水标签等方法,以较高效率获得了结构均一、含有不同O-糖修饰的Aβ糖肽。他们进一步对三种Aβ糖肽和不含糖链的Aβ多肽进行性质表征,发现糖基化修饰能够显著抑制Aβ的聚集,并且抑制效果与糖链结构相关。通过对Aβ聚集/解聚动力学的进一步研究,表明糖基修饰可以降低纤维结构的稳定性。在酶解实验中,糖基修饰的Aβ纤维表现出了更差的酶解稳定性。  为进一步阐述糖基化修饰降低Aβ纤维稳定性的分子机理,研究人员通过冷冻电镜技术(Cryo-EM),获得了Galβ1-3GalNAc糖型Aβ纤维的3.1埃近原子级分辨率结构。糖基修饰的Aβ组装形成了一种全新的淀粉样纤维结构,其纤维核心由6-42位氨基酸残基组成,并且在Tyr10残基侧链附近可以观察到修饰糖基的电子密度。通过与未修饰的Aβ纤维核心结构进行比较,研究发现Tyr10的糖基化会增大其与相邻氨基酸残基的空间位阻,从而导致整个Aβ纤维核心结构的重排。相较而言,糖基化Aβ纤维的结构具有更小的原纤维间交互界面,且仅由两对盐桥(Asp23和相邻原纤维的Lys28)所维持。这为糖基化修饰降低Aβ纤维稳定性提供了分子层面的解释。  该工作首次发现糖基化修饰在动态调控Aβ病理性聚集方面的重要功能,为后续研究不同糖基修饰对神经退行性疾病病理蛋白聚集的生物活性及病理毒性的调控作用,提供了有利的研究工具及新的研究思路。该工作得到了国家自然科学基金委、北京市自然科学基金委和中科院稳定支持基础研究领域青年团队计划的资助。  论文链接
  • 科研人员利用红外和拉曼光谱识别赖氨酸乙酰化特征
    近期,中科院合肥研究院智能所黄青研究员课题组利用红外和拉曼光谱识别赖氨酸乙酰化特征,为生物系统中蛋白质乙酰化结构分析提供了理论和实验基础。相关研究成果发表在国际光谱专业期刊Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy上。 乙酰化是生物学中常见且极其重要的蛋白质修饰,在细胞代谢中都起着关键性的调节作用。蛋白质乙酰化有两种方式,一是赖氨酸残基特有的乙酰化,二是多种氨基酸残基都可发生的N-末端乙酰化。目前一般用N-末端乙酰转移酶来标记判断赖氨酸残基是否发生乙酰化,但该方法的准确性仍存在争议。在分子水平识别蛋白质乙酰化是目前研究挑战之一,其关键是对赖氨酸的乙酰化进行准确定位表征,由此获得清晰和系统的认识。 针对这种情况,研究团队通过红外和拉曼光谱实验以及密度函数理论(DFT)计算,系统地研究L-赖氨酸三种乙酰化类型(、和)的结构变化及相应的振动光谱特征,发现酰胺基、羧基等基团的红外和拉曼特征谱带能用于有效识别不同的乙酰化类型。换言之,从红外和拉曼光谱特征即可判断赖氨酸是否乙酰化,也可判断赖氨酸发生了 乙酰化,还是 乙酰化,或者同时乙酰化。同时,研究团队对乙酰化的振动光谱识别策略在多肽模型中也得到验证。基于此,该项研究工作提供乙酰化赖氨酸的振动模式解析,并提出赖氨酸乙酰化的光谱识别和新的表征方法,为生物系统中蛋白质乙酰化结构分析提供了理论和实验基础。   该研究工作得到了国家自然科学基金和安徽省自然科学基金的资助。赖氨酸和三种乙酰化赖氨酸的分子结构Lys-G4多肽及其赖氨酸残基乙酰化的理论计算红外光谱(红色为乙酰基,蓝色为乙酰基)
  • 黄超兰与高福团队描绘新冠刺突蛋白糖基化图谱, 揭示“O-Follow-N”糖基化新规律
    CellRes. | 突破!黄超兰与高福团队描绘新冠刺突蛋白糖基化图谱,揭示“O-Follow-N”糖基化新规律  蛋白质糖基化修饰是生物体内最重要的翻译后修饰之一,发生在细胞50%-70%的蛋白上。病毒囊膜蛋白的糖基化修饰具有广泛的功能,包括调控蛋白质稳定性、病毒的趋向性、和保护潜在的抗原表位免受免疫监视等。深入了解新型冠状病毒(SARS-CoV-2)刺突蛋白(Spike, S)的糖基化修饰对于新型冠状病毒肺炎(COVID-19)发病机制的探索,疫苗和治疗药物的设计开发,以及检测试剂盒的生产具有重要意义。此前研究者在体外纯化表达的S蛋白胞外域和从病毒颗粒中提取的S蛋白中共鉴定到了22个N-糖基化修饰位点1,2。而由于技术和样本来源的限制,已有研究仅在纯化的S蛋白上鉴定到了一些O-糖基化修饰位点,截止目前,尚未进行病毒颗粒上S蛋白的O-糖基化修饰的研究。近日,北大-清华生命科学联合中心黄超兰团队,和中国科学院院士高福团队,中国科学院天津工业生物技术研究所高峰团队等开展合作研究,采用基于质谱的糖基化鉴定技术,首次揭示了病毒颗粒上提取的S蛋白O-糖基化修饰图谱,并提出了“O-Follow-N”的O糖基化修饰规律。该研究以“O-glycosylation pattern of the SARS-CoV-2 spike proteinreveals an “O-Follow-N” rule”为题于2021年8月2日线上发表在Cell Research期刊上。为获得天然状态下S蛋白的N-和O-糖基化修饰完整图谱,研究者从SARS-CoV-2病毒颗粒上获得S蛋白,用多种蛋白酶酶解成肽段,采用纳升液相色谱以及具有超高分辨率的Orbitrap Eclipse Tribrid三合一质谱联用仪,利用阶梯能量HCD (stepped collisional energy SCE),HCD (Higher-energy collisional dissociation) 以及HCDpdEThcD三种碎裂方法进行质谱分析。本研究中,研究者不但成功鉴定到了此前已报道的22个N-糖基化修饰位点,还首次从SARS-CoV-2病毒颗粒中提取的S蛋白上鉴定到了17个O-糖基化修饰位点。值得注意的是,研究者发现在这17个位点中,有11个位点位于糖基化的天冬酰胺(Asn)附近。研究者将NxS/T共有基序内糖基化的Asn每一侧的3个氨基酸定义为“N±1-3”。分析结果显示,11个O-糖基化修饰位点分布在“N±1-3”的位置上,位点信息确定的位点数有10个,其中7个位点分布在“N+2”的位置上。研究者还通过开展定点突变实验进一步证实Asn糖基化修饰的存在是“N±1-3”的位置上出现O-糖基化修饰的先决条件。综上,研究者提出SARS-CoV-2病毒S蛋白的糖基化修饰存在O-糖基化修饰追随N-糖基化修饰发生的现象,并将这一现象命名为“O-Follow-N”规律。  图. SARS-CoV-2病毒S蛋白的糖基化修饰遵循“O-Follow-N”规律 本研究基于前沿的质谱鉴定技术,揭示了S蛋白的O糖基化修饰谱,提出了O糖基化修饰的“O-Follow-N”规律,这一规律可能适用于其它蛋白,提示O-糖基化修饰具有潜在的新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。此前,黄超兰主任领衔的多组学中心团队还与高福院士领衔的多学科团队紧密合作,揭示早期的新冠感染患者存在显著的免疫抑制,并首次提出COVID-19的发病机制或存在“两阶段”模式3。多组学中心在黄超兰教授的带领下,将继续基于临床,前沿技术和基础学科的深度交叉融合,深耕前沿技术方法开发,为推动基础生物学和临床领域的创新研究提供最有质量保证的蛋白质组和质谱技术手段。中国科学院微生物研究所高福院士,北大-清华生命科学联合中心、北京大学医学部精准医疗多组学研究中心黄超兰教授,北京大学医学部精准医疗多组学研究中心陈扬副研究员,中国科学院天津工业生物技术研究所高峰教授为本文的共同通讯作者 北京大学医学部精准医疗多组学研究中心田文敏博士,中国科学院天津工业生物技术研究所李德林博士,北京大学医学部精准医疗多组学研究中心博士研究生张楠,中国科学院天津工业生物技术研究所博士研究生白桂杰、原恺博士为本文的共同一作。 原文链接:https://www.nature.com/articles/s41422-021-00545-2
  • 黄超兰与高福团队描绘新guan刺突蛋白糖基化图谱
    新突破新guan肺炎自2019年暴发以来,给全社会带来了灾难性的影响,不仅对quan世界人民的健康造成了巨大威胁,还对全球经济产生了震荡性的影响。因此,对新guan肺炎的研究也显得愈发重要。近期,来自北京大学医学部jing准医疗多组学研究中心的黄超兰团队、中国科学院院士高福团队以及中国科学院天津工业生物技术研究所高峰团队,通过采用基于质谱的糖基化修饰鉴定技术,对新guan肺炎颗粒上S蛋白的O-糖基化修饰图谱进行了整体描绘,进而提出了“O-Follow-N”的O糖基化修饰规律,为新guan肺炎的致病机制探索提供了研究基础。而这项出色的研究,也于2021年8月2日以“O-glycosylation pattern of the SARS-CoV-2 spike protein reveals an“O-Follow-N” rule”为题发表在了Cell Research期刊上。糖基化修饰(Glycosylation)是蛋白质主要的翻译后修饰类型,其广泛参与细胞黏附、识别、信号转导等重要过程,影响蛋白质的分泌、运输和稳态调控,可发生在细胞50-70%的蛋白质上,2021年糖基化修饰鉴定被Nature Methods评为zui值得关注的技术之一。根据糖苷链类型,蛋白质糖基化修饰可以分为四类:(1)N-连接糖基化;(2)O-连接糖基化;(3)C-连接糖基化;(4)糖基磷脂酰肌醇锚定。其中O-糖基化修饰,是在高尔基体中产生。它在人体中有70余种常见糖型,无特定氨基酸结构域。目前,对O-糖基化修饰研究存在许多困难,比如:1糖基化修饰的糖链形成无固定模版;2受200多种糖基转移酶的复杂调控;3糖基化肽段剂量水平低;4规模化糖链结构解析通量低;5糖链构成微不均一性,定性与定量困难;6功能性糖基化位点及关键糖结构指认困难。受这些因素影响,对O-糖基化修饰的研究也是少之又少。现阶段,对于大规模、高通量的蛋白质翻译后修饰的研究,zuihao的途径就是利用基于高分辨质谱的蛋白质组学技术。在这篇报道中,黄教授等团队,就是通过基于质谱的蛋白质组学技术,克服一系列困难,shou次对新guan病毒上S蛋白的O-糖基化进行了综合性描绘。实验中,研究者为获得天然状态下S蛋白的N-和O-糖基化修饰完整图谱,首先从SARS-CoV-2病毒颗粒上获得S蛋白,并使用了LysC+Trypsin, Chymotrypsin, GluC, Elastase 以及 alpha-Lytic等多种蛋白酶将S蛋白酶解成肽段。而对于这种复杂糖蛋白酶解后产生的肽段,普通质谱很难进行检测。研究者则采用了具有超高分辨率的Orbitrap Eclipse 三合一质谱仪,并利用三合一仪器多种碎裂功能中的阶梯HCD(stepped collisional energy SCE),HCD(Higher-energy collisional dissociation)以及组合式的HCDpdEThcD三种碎裂方法进行质谱分析。图1. Orbitrap Eclipse 三合一质谱仪Orbitrap Eclipse三合一质谱仪是一台不仅拥有着CID, HCD, ETD HD, EThcD HD, ETciD, UVPD, PTCR等多种碎裂模式的质谱仪,而且还具有高达50万的分辨率,能够对多种形式的修饰肽段进行jing准定性与定量,为研究者提供了更坚实的硬件基础。研究中,研究者共鉴定到了39个糖基化修饰位点。其中包括此前已报道的22个N-糖基化修饰位点,以及17个O-糖基化修饰位点。值得注意的是,这17个O-糖基化修饰位点是shou次从SARS-CoV-2病毒颗粒中提取的S蛋白上鉴定到的。并且通过深入分析这些位点,研究者发现在这17个位点中,有11个位点位于糖基化的天冬酰胺(Asn, N)附近。为了更准确的对这一现象进行挖掘,研究者将NxS/T共有基序内糖基化的N每一侧的3个氨基酸定义为“N±1-3”。分析结果显示,11个O-糖基化修饰位点分布在“N±1-3”的位置上,位点信息确定的位点有10个,其中7个位点分布在“N+2”的位置上。研究者还通过开展定点突变实验进一步证实N糖基化修饰的存在是“N±1-3”的位置上出现O-糖基化修饰的先决条件。基于以上分析,研究者提出SARS-CoV-2病毒S蛋白的糖基化修饰存在O-糖基化修饰追随N-糖基化修饰发生的现象,并将这一现象命名为“O-Follow-N”规律。图2.新guan病毒S蛋白上符合“O-Follow-N”规律的O糖基化修饰(点击查看大图)小结Summary研究基于前沿的质谱分析技术,通过使用超高分辨的三合一质谱仪Orbitrap Eclipse,揭示了新guan病毒上S蛋白的O糖基化修饰谱,进而提出了O 糖基化修饰的“O-Follow-N”规律,同时这一规律也可能适用于其它蛋白。这个规律提示O-糖基化修饰具有潜在的调控新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。黄超兰(北京大学医学部jing准医疗多组学研究中心主任)问根据您的经验,O-糖基化修饰鉴定的难点在哪里?答对于所有的蛋白翻译后修饰鉴定都普遍存在着几个相同的难点:(1)修饰丰度相对较低,难以直接鉴定,往往需要进行修饰富集,因此对样本量等要求较高;(2)修饰调节为动态变化过程,鉴定重复性会相对低一点。而对于O-糖基化修饰,因其特殊性,又有几个其他因素影响:(1)糖基化修饰的糖链形成无固定模版,且受多种糖基转移酶的复杂调控;(2)规模化糖链结构解析通量低,定性与定量困难;(3)功能性糖基化位点及关键糖结构指认困难。问Orbitrap Eclipse Tribrid三合一质谱联用仪在该研究中发挥了怎样的作用?答在我们的实验体系中,使用了多种蛋白酶对S蛋白进行处理,因此会产生长短不一,形式各异的肽段,而这就要求配套的质谱仪器能够具有多种碎裂模式,而 Orbitrap Eclipse质谱仪就很好地满足了我们的需求。并且Orbitrap Eclipse具有很好的分辨率以及稳定性,这对我们的实验提供了很大帮助。问新guan病毒颗粒上提取的S蛋白O-糖基化修饰图谱的揭示对新xing冠状病毒肺炎的研究有哪些帮助?答我们在实验中发现了“O-Follow-N”变化规律,这对研究糖基化的变化具有很好的提示作用。并且这个规律也显示O-糖基化修饰具有潜在的调控新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。专家介绍黄超兰教授长期致力于质谱和蛋白质组学前沿新技术和方法的研究开发,应用范围包括生物学基础、医学和临床研究,是高度跨界,善于交叉学科整合,战略规划制定和人员管理的quan方位技能科学家。如需合作转载本文,请文末留言。这样的应用图书馆不来了解一下?点击进入小程序完成注册即刻抽取盲盒好礼
  • 岛津水产品中三甲氧苄氨嘧啶残留的LCMSMS检测方案
    三甲氧苄氨嘧啶(TMP),是一种磺胺增效剂。常与多种抗生素合用,也可产生协同作用,增强疗效,可以成倍增加部分抗菌药的疗效。抗菌谱与磺胺药基本类似,但抗菌作用弱,且易产生耐药性。和磺胺类、四环素、青霉素、红霉素、庆大霉素、粘菌素等合用可以增强抗菌作用。 目前我国对磺胺类及其增效剂的使用有比较明确的规定。农业部NY 5034 - 2005中规定禽肉类产品中磺胺类总量不得超过100 &mu g/kg NY5070 - 2002 中规定磺胺类在水产品中总量不得超过100 &mu g/kg, 增效剂磺胺三甲氧苄氨嘧啶限量不得超过50 &mu g/kg 。日本肯定列表中将动物源性食品的最低限量定为20 &mu g/kg。《SN/T 2538-2010进出口动物源性食品中二甲氧苄氨嘧啶,三甲氧苄氨嘧啶和二甲氧甲基苄氨嘧啶残留量的检测方法液相色谱质谱/质谱法》规定,三甲氧苄氨嘧啶的检测低限为5.0 &mu g/kg。 本方案建立了一种使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8040联用快速测定水产品中三甲氧苄氨嘧啶的方法,供检测人员参考。水产品经处理后,用超高效液相色谱LC-30A分离,三重四极杆质谱仪LCMS-8040进行分析。三甲氧苄氨嘧啶在0.1-100 µ g/L浓度范围内线性良好,标准曲线的相关系数为0.9993;对1 µ g/L、5 µ g/L和10 µ g/L三甲氧苄氨嘧啶标准溶液进行精密度实验,连续6次进样保留时间和峰面积相对标准偏差分别在0.31%和3.95%以下,系统精密度良好。 岛津三重四极杆质谱仪系列 了解详情,请点击《超高效液相色谱三重四极杆质谱联用法测定水产品中的三甲氧苄氨嘧啶残留》。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 【瑞士步琦】利用SFC系统纯化利多卡因与乙酰氨基酚
    步琦SFC系统纯化利多卡因与乙酰氨基酚SFC应用”1简介药物是一种由化学或生物来源制成的产品,用于人类或动物的医疗治疗,这些药物往往以化学合成的形式来生产。化学合成是一种通常伴随着杂质存在的过程,因为产率很少是 100%。这些杂质可能会对最终产品的疗效、安全性和质量产生重大影响。因此,对药物进行纯化以确保合成化合物的纯度和完整性是至关重要的,药物的纯化可以通过色谱法等多种方法进行。最近,超临界流体色谱(SFC)已经作为一种替代反相液相色谱(RP-HPLC)的方法出现。SFC 使用超临界二氧化碳作为流动相的一部分,这是一种清洁且环保的溶剂,很容易从最终产品中去除。此外,SFC 结合了气相色谱和液相色谱的优点,在提供高分辨率的同时也能以更快的速度分离样品。在 SFC 的方法开发过程中,最大的难点在于没有一种通用的固定相。因此需要在不同的固定相上进行筛选,以确定要分离的样品的最佳选择性。CO2 的低极性溶剂特性允许在色谱柱筛选时同时考虑非极性和强极性的固定相。在确定最佳固定相后,就可以进一步放大到制备规格。在本次应用中,我们会例举利多卡因和乙酰氨基酚的合成案例,利用 SFC 系统来高效去除合成过程中的杂质,获取高纯度目标化合物。在这一过程中,需要先进行合适色谱柱的筛选,再放大至制备色谱的规格。2设备BUCHI Sepmatix 8x SFC 8通道平行色谱系统BUCHI Sepiatec SFC-50 超临界制备色谱系统BUCHI PrepPure 硅胶,5um,250×4.6mm BUCHI PrepPure 二醇基,5um,250×4.6mm BUCHI PrepPure 氨基,5um,250×4.6mm BUCHI PrepPure 2-EP,5um,250×4.6mm HILIC柱,5um,250×4.6mm (Dr. Maisch GmbH)BUCHI PrepPure PEI,5um,250×4.6mm BUCHI PrepPure CBD,5um,250×4.6mm 氰基柱,5um,250×10mm ,(Dr. Maisch GmbH)BUCHI PrepPure PEI,5um,250×10mm BUCHI PrepPure 氨基,5um,250×10mm3化学品与样品化学品:二氧化碳 (99.9%)甲醇 (≥99%)甲醇溶液中2M的氨溶液甲酸(99%)去离子水为了安全处理,请注意所有相应的MSDS!样品:乙酰氨基酚合成产物利多卡因合成产物4程序设定BUCHI Sepmatix 8x SFC平行色谱系统流动相:A= 二氧化碳;B= 甲醇柱尺寸:250×4.6mm流速:3mL/min(每根色谱柱)检测:DAD 紫外扫描 200 nm - 600 nm流动相条件:0&minus 0.5min5%B0.5 – 8.0 min5 – 50 % B8.0 – 9.4 min50 % B9.4 – 9.5 min50 – 5 % B9.5 – 10 min5 % B筛选过程完全自动运行,流速设置为 3mL/min 每通道,使用流控单元,平衡每一根色谱柱。样品自动注入(V = 5 μL),并开始平行筛选(运行时间 =10min)。背压调节器设置为 150 bar,柱子加热至 32℃,可按需往改性剂中加入添加剂改善峰型。BUCHI Sepiatec SFC-50超临界制备色谱系统流动相:A= 二氧化碳;B= 甲醇柱尺寸:250×10mm流动相条件:等度运行条件检测:紫外所有 10mm ID 色谱柱都在预设流速下平衡 3 分钟,使用自动进样器上样,并开始运行。背压调节器设置为 150 bar,柱子加热至 40℃,可按需往改性剂中加入添加剂改善峰型。5结果5.1 乙酰氨基酚乙酰氨基酚(下称 AA),也常被称为对乙酰氨基酚,是一种镇痛剂、解热剂和手性药物。它属于非阿片类镇痛剂这一类。在化学上,它可以通过对氨基苯酚(下称 AP)与乙酸酐的反应来合成,在此过程中发生 N-乙酰化(见图1)。为了确定乙酰氨基酚合成产物的最佳纯化分离固定相,首先进行了柱筛选(见图1)。▲ 图 1:顶部:乙酰氨基酚合成的反应方程式,底部:Sepmatix 8x SFC 仪器色谱柱筛选结果;从左到右:硅胶,氨基,二醇基,氰基,2-EP,HILIC,PEI和CBD;运行时间 = 10分钟。图1显示,二醇基和 2-EP 相并未表现出分离度,硅胶相、CBD 相、氰基相和氨基相未显示出理想的分离度,因为它们无法实现基线分离。HILIC 和 PEI 相具有良好的选择性和分辨率,且分辨率始终远高于 1.5(见表1)。1.5 的分辨率意味着可以很好地分离 2 个峰。表1 还显示了洗脱顺序,氰基相显示出相反的洗脱趋势,对氨基苯酚先洗脱,然后是对乙酰氨基酚。筛选结果表明,反应并非百分之百完全,因为产物中仍含有大量对氨基苯酚。▲ 表1:样品在不同固定相色谱柱条件下的分辨率值和洗脱顺序选择 PEI 相色谱柱放大至制备规格,因为它具有最高的分辨率(见图2)。根据筛选时的色谱图,我们可以确定 AA 和 AP 在甲醇为 35&minus 40% 之间洗脱。图2(顶部)显示了在 40% 甲醇等度条件下,在10 x 250mm 的PEI 色谱柱上对 AA 进行纯化的情况,结果显示 AA 和 AP 可以非常良好地分离。因此在相同的条件下,可以实施一个堆叠注射方法,用于自动纯化并收集 AA (见图2,底部)。▲ 图2:单次注射(顶部)和堆叠注射(底部)用于AA的纯化;运行条件:流速=30 mL/min, 甲醇= 40 %,温度 = 40 ℃,压力BPR = 150 bar,注射 = 250 µ L,UV波长 = 254 nm;堆叠注射条件:注射次数 = 10,堆叠时间 = 1.8 min,Fractions = 1(基于时间的)。5.2 利多卡因利多卡因(下称 L),化学名为 2-二乙基氨基 -N-(2,6-二甲基苯)乙酰胺,是一种用作局部麻醉剂和抗心律失常药物的药物,它作为钠通道阻断剂起作用。利多卡因可以通过两步合成过程生产(见图3)。第一步中,2,6-二甲基苯胺(下称 X)的氨基组团被酰化 。第二步中,中间产物(下称 IP)通过与二甲胺的亲核取代反应转化为利多卡因。因此,需要进行两步纯化过程。色谱柱筛选的结果如图3所示,筛选过程中,在改性剂甲醇中始终添加 20 毫摩尔氨水作为碱性添加剂。▲ 图 3:顶部:利多卡因合成的反应方程式,底部:Sepmatix 8x SFC 仪器色谱柱筛选IP与利多卡因结果;从左到右:硅胶,氨基,二醇基,氰基,2-EP,HILIC,PEI 和 CBD;运行时间 = 10分钟。从结果来看,所有色谱柱都可用于中间体 IP 的第一步纯化分离,因为都具有基线分离的效果。其中氨基相具有最高的分辨率,且在甲醇比例较低时就能出峰(见图3)。对于第二步利多卡因的纯化,氰基和CBD相无法实现基线分离,而氨基再次表现出最佳的分离度(见表2)。在洗脱顺序上,第一步中间体的纯化出峰顺序都是先 X 再 IP,而第二步的利多卡因的纯化除了硅胶相之外都是先 L 再 IP(见表2)。▲ 表2:样品在不同固定相色谱柱条件下的分辨率值和洗脱顺序最终选择 10 x 250mm 的氨基色谱柱进行制备纯化,因为它的分辨率总是最高的(见表2)。氨基柱筛选结果显示,X 和 IP 出峰时的甲醇比例约为 10 - 19%,L 和 IP 出峰时的甲醇比例约为 11 - 19%。图 4 a) 显示的是甲醇比例为 16% 等度条件下的 IP 的单次纯化分离图谱,图 4 b) 显示的是甲醇比例为 20% 等度条件下的 L 的单次纯化分离图谱。在相同的条件下,可以进行叠层进样分离,分别自动纯化 IP 和 L,并进行馏分收集(见图 4 c) 和 d))。▲ 图4:中间体 IP 的单次进样(a)和叠加进样(c);运行条件:流速 = 20 mL/min,改性剂 = 甲醇 + 20 mM 氨水,改性剂 % = 16 %,温度 = 40 °C,压力 BPR = 150 bar,进样量 = 170 μL,紫外波长 = 254 nm;叠加进样条件:进样次数 = 15,叠加时间 = 0. 75 min, Fractions = 1 (基于时间) 利多卡因L的单次进样 (b) 和叠加进样 (d) 运行条件:流速 =20 mL/min, 改性剂 = 甲醇 + 20mM 氨水, 改性剂 % = 20 %, 温度 = 40 °C 和压力 BPR = 150 bar, 进样 = 170 μL, 紫外波长 = 254 nm 叠加进样条件:进样次数 = 20, 叠加时间 = 0.65 min, Fractions = 1 (基于时间)。6结论在进行有机合成后,由于副反应或转化率未达到 100%,通常仍会存在杂质,这些杂质必须去除,尤其是在药品生产中。在药物合成研发领域,时间与效率至关重要。BUCHI 的 SFC 色谱解决方案为研发人员提供了强大的工具,通过 Sepmatix 8x SFC 色谱柱筛选系统与 Sepiatec SFC-50 制备色谱系统相结合,可快速筛选出合适的色谱柱并线性放大至制备规格。SFC-50 的叠层进样功能,不仅能实现无人值守自动分离,还可显著提高分离效率,从而加快药物合成研发的速度。7参考文献Medikamente & Medizinprodukte (admin.ch) (Status 23.11.2023).https://doi.org/10.1016/j.chroma.2011.09.029https://doi.org/10.1016/j.chroma.2012.06.029https://doi.org/10.1016/j.chroma.2005.03.073https://doi.org/10.1016/j.jpba.2007.08.013.PRACTICAL APPLICATION OF SUPERCRITICAL FLUID CHROMATOGRAPHY FOR PHARMACEUTICAL RESEARCH AND DEVELOPMENT, Vol. 14, M. Hicks and P. Ferguson, 2022 Elsevier Inc.Th. Eicher und H. J. Roth Synthese, Gewinnung und Charakterisierung von Arzneistoffen, Georg Thieme Verlag, Stuttgart (1986).The synthesis of Lidocaine (University of San Diego).Winterfeld, K. – Praktikum der organisch-prä parativen Pharmazeutischen Chemie, 6. Auflage, Steinkopff Verl., Darmstadt (1965).Axel Kleemann, Jürgen Engel, Bernd Kutscher und Dietmar Reichert: Pharmaceutical Substances, 4. Auflage, Georg Thieme Verlag, Stuttgart (2000).
  • 国科大发表蛋白质糖基化与人类重大疾病发生机制综述文章
    蛋白质糖基化是目前在高等真核生物中发现的最普遍、最重要的蛋白质翻译后修饰方式之一,该类修饰涉及聚糖与蛋白质分子的连接,是蛋白质分子正确折叠、维持稳定、参与互作和细胞黏附等活动所必需的。异常的糖基化修饰会导致多种人类重大疾病的发生,如白血病(leukemia)、胰腺功能障碍(pancreatic dysfunction)、阿尔茨海默病 (Alzheimer’s disease, AD)等。由于糖基化的复杂性,研究难度大,相关领域研究起步较晚,研究结果还不尽完善。中国科学院大学博士生导师、教授郎明林课题组发表了蛋白质糖基化与人类重大疾病发生机制综述,该研究通过探索葡萄糖的调控角色,突出了葡糖转移酶的功能结构特性及其对人类健康和疾病的影响,有利于学界认识葡萄糖修饰的重要性。  在动物胚胎神经系统的发育过程中,Notch蛋白对决定细胞未来命运发挥重要作用;其在成人大脑,特别是海马组织等高突触可塑性区域表达。多种证据表明,Notch1参与了神经元凋亡、轴突回缩和缺血性脑卒引起的神经退行性病变。葡萄糖基化是调控Notch受体S2切割,细胞表面展示、转运,以及EGF重复序列稳定性的重要修饰。由于Notch受体发挥正常功能需要糖基化修饰,其修饰缺陷会引起γ分泌酶(该酶参与淀粉样前体蛋白APP切割形成Aß分子)对Notch的切割,可能参与AD发病的机制。Notch蛋白保守的表皮生长因子EGF-like重复序列的葡萄糖基化由O-葡糖基转移酶POGLUTs催化完成,该酶通过KDEL-like信号驻留于内质网中。POGLUTs不仅具有葡萄糖基转移酶活性,还具有连接木糖至EGF保守重复序列的木糖基转移活性,而这些酶活特性的实现取决于内质网内糖的浓度水平和酶的构象变化。此外,POGLUTs通过Notch蛋白和转化生长因子β1(TGF-β1)信号,操纵了正常细胞周期循环或增殖所需的周期蛋白依赖性激酶CDKIs的表达。已有研究发现,POGLUTs异常过度或下调表达均会导致一些严重的并发症发生,如肌肉萎缩症、白血症、肝功能障碍等。POGLUTs通过控制不同CDKIs的表达,可发挥对细胞增殖诱导和抑制的双重作用。该研究评述有利于学界更深入地了解葡萄糖在当前糖生物学、癌症和细胞通信等研究领域中扮演的角色。  相关研究成果以Structure, Function, and Pathology of Protein O-Glucosyltransferases为题,在线发表在Nature子刊Cell Death & Disease上。国科大生命科学学院博士生Muhammad Zubair Mehboob为论文第一作者,郎明林为论文通讯作者。研究工作得到生物互作卓越创新中心、国家自然科学基金、北京市自然科学基金、河北省应用基础研究计划重点基础研究项目和河北省百名创新人才计划项目的支持。  论文链接
  • 中国轻工业联合会公开征集对《乳制品中A2型β-酪蛋白的测定》等108项轻工行业标准计划项目的意见
    根据标准化工作的总体安排,现将申请立项的《猫砂》等108项轻工行业标准计划项目予以公示(见附件1),截止日期为2023年6月12日。如对拟立项标准项目有不同意见,请在公示期间填写《标准立项反馈意见表》(见附件2)并反馈至我部,电子邮件发送至qgbz445@163.com(邮件注明:轻工行业标准立项公示反馈)。联系电话:010-68396445附件: 1. 2023年6月轻工行业标准制修订计划(征求意见稿)2.标准立项反馈意见表中国轻工业联合会质量标准部2023年6月6日 相关标准如下:序号体系编号标准项目名称代替标准项目周期(月)标准化技术组织1210000003000000005CP聚合级γ-氨基丁酸24中国轻工业联合会2210000003000000006CP生物基聚丁内酰胺24中国轻工业联合会3041010001000000007JC轻工机械 智能化通用技术要求24全国轻工机械标准化技术委员会4045510003050000001CP降膜式蒸发器QB/T 1163-200018全国食品加工机械标准化技术委员会5045510003050000002CP外循环列管式真空蒸发器QB/T 1829-199318全国食品加工机械标准化技术委员会6045510001000000011JC乳品机械名词术语QB/T 3921-199918全国食品加工机械标准化技术委员会7045510001000000010JC乳品机械型号编制方法QB/T 1823-199318全国食品加工机械标准化技术委员会8084100006020399002CP金属保温饭盒24全国金属餐饮及烹饪器具标准化技术委员会9081740101040100055CP旅行剪刀QB/T 1234-199118全国五金制品标准化技术委员会日用五金分技术委员会10201190720010105001CP冷库保温门24全国制冷标准化技术委员会冷藏柜分技术委员会11093770003010000011CP玻璃容器 化妆品瓶罐24全国日用玻璃标准化技术委员会12152950001000000024GL食盐安全信息追溯体系规范QB/T 5279-201818全国盐业标准化技术委员会13061410403040500177CP滤嘴棒纸QB/T 2689-201518全国造纸工业标准化技术委员会14041010201010200020CP连续式软管吹瓶机24全国轻工机械标准化技术委员会制酒饮料机械分技术委员会15041010201010100059CP白酒灌装旋盖一体机24全国轻工机械标准化技术委员会制酒饮料机械分技术委员会16041010201010200002CP饮料灌装旋盖机QB/T 2371-199818全国轻工机械标准化技术委员会制酒饮料机械分技术委员会17041010201019900021CP果蔬汁(含颗粒)饮料热灌装生产线QB/T 4441-201218全国轻工机械标准化技术委员会制酒饮料机械分技术委员会18140640014030800025CP植物提取物 螺旋藻多糖24全国食品工业标准化技术委员会19140640000040200011FF食品中L-阿拉伯糖的测定24全国食品工业标准化技术委员会20140640001040000105FF乳制品中A2型β-酪蛋白的测定24全国食品工业标准化技术委员会21140640016050000025GL芒果粉加工技术规程24全国食品工业标准化技术委员会22140640016040000026FF大蒜制品中蒜氨酸的测定24全国食品工业标准化技术委员会23140640014030400026CP抗性淀粉24全国食品工业标准化技术委员会24140640011050000001GL灵芝孢子油加工技术规范24全国食品工业标准化技术委员会25140640001050000100GL婴幼儿配方乳粉行业产品质量安全追溯体系规范QB/T 4971-201818全国食品工业标准化技术委员会26140640001040000101FF生乳及纯奶中钙的快速测定方法24全国食品工业标准化技术委员会27140640001040000102FF乳及乳制品中低聚果糖的检测24全国食品工业标准化技术委员会28140640001040000103FF乳及乳制品中蛋白酶活力的检测24全国食品工业标准化技术委员会29140640001040000104FF生乳及液态乳中脂肪酶活力的检测24全国食品工业标准化技术委员会30140640019040101029GL预制菜加工技术规范24全国食品工业标准化技术委员会31140640000040200017FF食品中叶酸的测定 预包被微孔板式微生物法24全国食品工业标准化技术委员会32140640000040200018FF食品中泛酸的测定 预包被微孔板式微生物法24全国食品工业标准化技术委员会33140640000040200012FF食品及食品生产过程中致敏原的测定 第1部分:麸质致敏原的免疫分析检测方法24全国食品工业标准化技术委员会34140640000040200013FF食品及食品生产过程中致敏原的测定 第2部分:乳致敏原的免疫分析检测方法24全国食品工业标准化技术委员会35140640000040200014FF食品及食品生产过程中致敏原的测定 第3部分: 花生致敏原的免疫分析检测方法24全国食品工业标准化技术委员会36140640000040200015FF食品及食品生产过程中致敏原的测定 第4部分:蛋致敏原的免疫分析检测方法24全国食品工业标准化技术委员会37140640000040200016FF食品及食品生产过程中致敏原的测定 第5部分:芝麻致敏原的免疫分析检测方法24全国食品工业标准化技术委员会38140640017030600005CP素肉 第4部分:熏煮素肉24全国食品工业标准化技术委员会39140640017030700006CP素肉 第5部分:素肉干24全国食品工业标准化技术委员会40140640019020100005CP方便菜肴QB/T 5471-202018全国食品工业标准化技术委员会41140640019030100026FF预制菜肴消费者喜好测试规范24全国食品工业标准化技术委员会42140640019030100027FF预制菜肴感官货架期确定规程24全国食品工业标准化技术委员会43140640019030100028FF预制菜肴感官品质评价规范24全国食品工业标准化技术委员会44140640014030500027CP食用食叶草粉24全国食品工业标准化技术委员会45140640014050000028GL食用食叶草粉生产技术规范24全国食品工业标准化技术委员会46140640007040218033CP氨基酸、氨基酸盐及其类似物 第18部分:L-组氨酸及其盐酸盐24全国食品工业标准化技术委员会47140640007040123034CP氨基酸、氨基酸盐及其类似物 第23部分:羟脯氨酸24全国食品工业标准化技术委员会48140640007040124035CP氨基酸、氨基酸盐及其类似物 第24部分:四氢甲基嘧啶羧酸24全国食品工业标准化技术委员会49140640007040126036CP氨基酸、氨基酸盐及其类似物 第26部分:麦角硫因24全国食品工业标准化技术委员会50140640007040127037CP氨基酸、氨基酸盐及其类似物 第27部分:N-乙酰基-L-半胱氨酸24全国食品工业标准化技术委员会51140640007040128038CP氨基酸、氨基酸盐及其类似物 第28部分:L-丙氨酰-L-谷氨酰胺24全国食品工业标准化技术委员会52140640007050102005CP核苷(酸)及其衍生物 第2部分:胞嘧啶核苷24全国食品工业标准化技术委员会53140640007070100084CP乳酸菌类后生元24全国食品工业标准化技术委员会54140640007089900006CP酵素制品通则24全国食品工业标准化技术委员会55140640007069900062FF食源性多糖的分子量及其分布测定-高效凝胶渗透色谱法24全国食品工业标准化技术委员会56140640007020300029CP海藻糖酶制剂24全国食品工业标准化技术委员会57140640007060200025CP伊代欣糖(浆)QB/T 4916-201618全国食品工业标准化技术委员会58140640007010100018CP谷胱甘肽酵母粉24全国食品工业标准化技术委员会59140640007010100019CP富营养素酵母24全国食品工业标准化技术委员会60140640007079900082JC工业用菌种基因组追溯管理通则24全国食品工业标准化技术委员会61140640007060300056CP阿拉伯木聚糖24全国食品工业标准化技术委员会62140640007079900083JC食品生产用微生物工程菌鉴定和检测技术规程24全国食品工业标准化技术委员会63140640000050000007GL食品中微量营养素混合均匀度技术评价规范24全国食品工业标准化技术委员会64140640000040200019FF茶叶及制品中茶多糖总量的测定-分光光度法24全国食品工业标准化技术委员会65140640004030400025CP葛根全粉24全国食品工业标准化技术委员会66140640115000000001GL冷熏海水鱼加工技术规程24全国食品工业标准化技术委员会67140640115000000002GL冻熟小龙虾加工技术规程24全国食品工业标准化技术委员会68140640115000000003CP预挂浆鱼片(冻预调制淡水鱼片)24全国食品工业标准化技术委员会69140640115000000003GL冻预调制淡水鱼片加工技术规程24全国食品工业标准化技术委员会70140640019040300037GL预制菜肴产品追溯体系规范24全国食品工业标准化技术委员会71 140640001010100106JC乳制品工业术语24全国食品工业标准化技术委员会72140640000030000019GL短保食品检验规则24全国食品工业标准化技术委员会73140640006080300084CP盐渍青梅24全国食品工业标准化技术委员会74140640004010000025JC 冻干食品术语和分类24全国食品工业标准化技术委员会75140640205010300006CP海参罐头和海胆罐头24全国食品工业标准化技术委员会罐头分技术委员会76140640205000000005CP肉酱类和蔬菜酱类罐头QB/T 4630-201418全国食品工业标准化技术委员会罐头分技术委员会77140640205000000005JC罐头食品包装、标志、运输和贮存QB/T 4631-201418全国食品工业标准化技术委员会罐头分技术委员会78144710008040000121CP特种葡萄酒 第2部分:加香葡萄酒24全国酿酒标准化技术委员会79203830020020601001JC食品机械通用技术条件 基本技术要求SB/T 222-201318全国饮食加工设备标准化技术委员会80203830020020601002JC食品机械通用技术条件 机械加工技术要求SB/T 223-201318全国饮食加工设备标准化技术委员会81203830020020601003JC食品机械通用技术条件 装配技术要求SB/T 224-201318全国饮食加工设备标准化技术委员会82203830020020601004JC食品机械通用技术条件 铸件技术要求SB/T 225-201718全国饮食加工设备标准化技术委员会83203830020020601005JC食品机械通用技术条件 焊接、铆接技术要求SB/T 226-201718全国饮食加工设备标准化技术委员会84203830020020601006JC食品机械通用技术条件 电气装置技术要求SB/T 227-201718全国饮食加工设备标准化技术委员会85203830020020601007JC食品机械通用技术条件 表面涂漆SB/T 228-201718全国饮食加工设备标准化技术委员会86203830020020601008JC食品机械通用技术条件 产品包装技术要求SB/T 229-201318全国饮食加工设备标准化技术委员会87203830020020601009JC食品机械通用技术条件 产品检验规则SB/T 230-201318全国饮食加工设备标准化技术委员会88203830020020601010JC食品机械通用技术条件 产品的标志、运输与贮存SB/T 231-201318全国饮食加工设备标准化技术委员会89203830020020202001CP绞肉机技术条件SB/T 10130-200818全国饮食加工设备标准化技术委员会90213970405030102003CP玻璃器皿 醒酒器24全国食品直接接触材料及制品标准化技术委员会91213970505040200003FF食品金属容器内壁腐蚀的测定 第2部分:电化学法24全国食品直接接触材料及制品标准化技术委员会
  • 餐饮店油炸食品多用老油 专家支招如何分辨
    食品安全问题总是引人注目。近日,肯德基继“豆浆门”之后,又爆出了“用油门”事件:用来炸鸡、炸薯条的油4天甚至更久才彻底更换一次,虽然事后肯 德基发表声明称用油符合国家安全标准,但是这样的翻炸油制作出来的食品,确让人怕怕。“老油”对身体有哪些害处?怎样辨别这些“老油”?一起来看看。   事件回顾:   肯德基爆出“用油门”   肯德基某员工向媒体爆料:肯德基用于炸薯条等的油每天晚上过滤油渣后,第二天继续使用,平均4天才更换一次,还会在使用过的老油里加入新油。而陕西媒体更爆出该地区部分肯德基门店使用“滤油粉”的情况,以此反复使用煎炸油达10天之久。   针对“用油门”事件,肯德基发表声明表示“每天都会过滤清除烹饪油中的食品残渣,减少残渣对烹饪油品质的影响 同时采用专用试纸监控烹饪油的化 学成分变化,一旦接近指标要求限度,就会立刻废弃,以确保烹饪油完全符合国家《食用植物油煎炸过程中的卫生标准》。”而在食品药品监管部门的随后抽检中, 也未发现肯德基用油中的废弃物、过氧化值、酸价等指标有超出国标使用的现象。不过监管部门同时表示,不提倡通过在“老油”中添加“新油”的方法,延长食用 油脂的食用期限。   专家:   煎炸油最好不要反复使用   为什么反复使用多次的油仍然符合国家标准?翻炸油多次油对身体是否有伤害?暨南大学食品研究中心主任傅亮教授认为,烹调食物的用油使用次数越少 越好,但是否判定为“安全”,应该以国家标准为主要参考。“根据我国颁布的《食用植物油煎炸过程中的卫生标准》,判断煎炸用油的安全指标主要为羰基价、酸 价、极性组分等理化指标,虽然油在高温煎炸后会含有一定食物残渣,酸价的指标也会随之上升,但国家标准是允许这些东西控制在一定范围内的。从健康的角度来 说,煎炸用油只使用一次当然最好,但事实上难以做到。”   不过专家同时表示,煎炸用油使用时间过长,的确对健康有着一定影响。在高温下,油中所含的维生素会遭到破坏,油的营养价值随之降低。油在高温下会产生一定的有害物质,反复食用,对健康不利。   记者调查发现,某些专家针对反复用油的问题提出了更为严峻的观点。中国农业大学食品学院营养与食品安全系任副教授范志红在微博上反复提出“家中 的煎炸油千万不要用多次”的观点。“过火之后,油中多了有毒物质。你闻到一股烟味,吃到一种油腻感,实际上是你的身体不愿意接受它。”也有食品专家曾指 出,高温煎炸时油温达到120℃以上,就会产生有害物质丙烯酰胺,人在长期低剂量食用含丙烯酰胺地食品后,会出现嗜睡、情绪与记忆改变、产生幻觉和震颤等 症状,并伴随末梢神经病,“这对孩子和老人的伤害尤其严重。”   呼吁:   细化标准 加强监督   “要想真正杜绝煎炸用油的不规范使用,关键还是要细化相关标准,加强行业监督。”中国消费者协会律师邱宝昌认为,食用油煎炸的频率、用量、特点,新旧油能否混合使用等问题都应该在相关标准中予以体现,并应有相应的监督机制。   提醒:   辨别“老油”有窍门   事实上,很多餐饮店的煎炸油的情况比肯德基是有过之而无不及。早市里卖油条的油会不会是用了好多天的“超级老油”?专家教给消费者下面的识别窍门:   一看颜色。新鲜的油煎炸出来的食品颜色比较金黄。反复使用的油因为含有一些沉淀物质,可能会使炸出的食物上附着焦色物质,食物颜色较深。二试口 感。反复使用的油煎炸出的食品吃起来会感觉非常粘,甚至还会有异味。三注意油烟。油在反复高温使用后会产生较多油烟。不过,由于一些商家可能往老油中勾兑 各类食品添加剂,所以仅仅依据上述的方法并非绝对能将老油“验明正身”。而且,油的烟量有时与油的品种也有关,例如菜子油出烟较多,而茶油的出烟量则非常 少。
  • 中科院PNAS文章:阿尔茨海默氏症新成果
    近日来自中科院遗传与发育生物学研究所、湖北大学的研究人员在阿尔茨海默氏症研究中取得重要进展,他们在果蝇中发现HDAC6突变可挽救人类tau诱导的微管缺陷。相关论文&ldquo 生物通 HDAC6 mutations rescue human tau-induced microtubule defects in Drosophila&rdquo 发表在3月4日的《美国科学院院刊》(PNAS)上。 领导这一研究的是中科院遗传与发育生物学研究所的张永清(Yong Q. Zhang)研究员。其主要研究方向是利用传统的模式动物果蝇进行神经生物学的基础应用研究。张永清研究组博士研究生熊英为第一作者,该研究得到了中科院和国家自然科学基金委的资助。 阿尔茨海默氏症(AD)即我们常说的老年痴呆症。在65岁以上的人群中,大约10%患有阿尔茨海默氏症,这也让此病成为最常见的神经退行性疾病。随着社会人口的老龄化,其发病率呈上升趋势,但目前却没有准确诊断和有效治疗的方法。阿尔茨海默氏症的神经病理学标志包括神经元减少,以及神经纤维缠结和老年斑的出现。神经纤维缠结是神经内包涵体,早在80年代Tau蛋白就被证明是神经纤维缠结的主要构成部分, 2010年该蛋白的基因被证实是帕金森氏症的主要危险基因之一。 Tau蛋白是一种分布在中枢神经系统内的低分子量含磷糖蛋白,它能与神经轴突内的微管结合,具有诱导与促进微管蛋白聚合成微管,防止微管解聚、维持微管功能的稳定的的功能。对记忆和正常大脑功能起重要的作用。然而,在阿尔茨海默氏症和其他神经退行性疾病中,tau蛋白不仅不再发挥正常功能,还会转变为破坏脑细胞的&ldquo 恶棍&rdquo 因子。此时,tau蛋白发生异常磷酸化或糖基化以及泛素蛋白化时,tau蛋白会失去对微管的稳定作用,导致神经纤维退化,功能丧失。 当前,人们将紫杉酚(paclitaxel)和埃坡霉素D(epothilone D)等微管稳定药物视作是AD及相关Tau病可能的治疗方法。然而这些微管稳定药物会导致如神经病变和中性粒细胞减少等一些常见副作用。 为了发现能够抑制tau诱导微管缺陷的新因子,研究人员构建出了一种肌肉细胞异位表达人类tau的果蝇模型,利用这一模型研究人员可以对微管网络进行清晰成像。研究人员证实过表达的tau被过度磷酸化,导致了微管密度降低,及更大的碎片,这与从前在阿尔茨海默氏症患者和小鼠模型中的研究结果相一致。利用遗传筛查,研究人员发现组蛋白脱乙酰基酶6 (HDAC6)无效突变(null mutation)可以挽救肌肉和神经元中tau诱导的微管缺陷。研究人员采用遗传和药理学方法抑制HDAC6的tubulin特异性脱乙酰基酶活性,证实这一挽救效应有可能是通过增进微管乙酰化所介导。 这些研究结果表明了HDAC6有可能是阿尔茨海默氏症和相关Tau病的一种独特的有潜力的药物靶点,从而为该领域研究指明了新方向。
  • 《细胞》突破!傅静远团队开发出肠道微生物指纹算法 能根据粪便微生物组成定位受试者
    北京时间2021年4月9日晚23时,荷兰格罗宁根大学医学中心傅静远(Jingyuan Fu)教授团队在Cell发表研究文章——“The long-term genetic stability and individual specificity of the human gut microbiome”。该团队陈连民(Lianmin Chen)、王道明(Daoming Wang)博士等通过Lifelines随访队列,探索了个体四年间肠道微生物组成的稳定性,发现部分肠道微生物的遗传构成具有个体特异性,并利用这一特征针对性地开发了高精度肠道微生物指纹算法,实现通过测定粪便样本中微生物的遗传构成便可辩别样本归属于哪位受试者,精确程度高达85-95%。该肠道微生物指纹算法可能在混淆样品重排、法医鉴定、个性化医疗等领域具有重要的应用价值。我们的肠道中定殖着与身体细胞数量相当的微生物,包括细菌、真菌等。不同个体肠道微生物组成存在着差异,且在诸如荷兰Lifelines、芬兰FINRISK、英国UKbiobank、比利时FGFP、美国HMP等大型人群队列研究中发现个体肠道微生物组成的差异与健康和疾病相关,包括心血管病、糖尿病、炎症性肠病、癌症等。然而个体间肠道微生物菌群组成及遗传结构可随着时间而变化,了解菌群个体特异性、稳定性或变异性将有助于了解菌群与人体自身健康状态的因果关系,为开发基于改善肠道微生物从而促进人体健康的个性化医疗手段提供直接依据。除此以外,该研究还鉴别出许多不稳定肠道微生物,且这些微生物在含量、遗传组成上的变化与宿主自身健康状况的变化相关(图1A)。例如:细菌丰度(图1B)、细菌代谢通路丰度(图1C)、细菌遗传组成的变异(图1D)、细菌遗传组成的缺失(图1E)等变化与宿主血压、糖尿病指标、免疫细胞及抑郁症等变化相关。图1 肠道微生物变化与宿主表型变化相关。为回答肠道微生物是如何影响宿主表型,研究人员认为肠道微生物可能通过其代谢功能产生众多代谢物,从而被肠道上皮吸收进入血液大循环,最终得以影响机体代谢健康。为此,研究人员利用非靶向代谢组技术在血浆样品中测定了一千多种代谢物的含量,发现近15%的代谢物可能由肠道微生物产生。进一步地,将肠道微生物变化与血浆代谢物相关联,发现一些个体肠道中细菌菌株的改变与血浆代谢物变化相关。例如,个体肠道中益生菌Faecalibacterium prausnitzii菌株的变化与其血浆中多种心血管病相关的代谢物浓度变化相关(图2)。图2 Faecalibacterium prausnitzii菌株改变与血浆心血管病相关代谢物浓度变化相关。除菌株层面变化外,肠道微生物的含量,特定遗传组成等变化也与血浆代谢物广泛相关,特别是与尿毒素及硫胺素等与心血管病及慢性肾病相关的代谢物(图3)。值得注意的是,22.6%的菌群-代谢物关联是在Blautia wexlerae的遗传组成变异中发现,而这些变异区域具有编码膜结构、氨基酸酶、尿酶和蛋白结合等功能。图3 多种微生物特征变化与血浆代谢物相关。研究人员进一步通过双向中介分析揭示了肠道微生物通过其代谢物影响宿主血压、血糖及血脂等心血管病指标(图4)。极大程度上丰富了我们对于肠道微生物代谢物在人类健康和疾病中的分子作用机制的认识。研究发现微生物通过介导硫胺素和乙酰基-N-甲酰基-5-甲氧基犬尿氨酸(AFMK)以影响人体血压。其中,硫胺素对人体心血管疾病的影响已经在临床随机对照试验中验证。AFMK是褪黑素的一种降解产物,可以通过抑制前列腺素合成来降低血压。中介分析发现多种肠道细菌可以参与到这些通路中。例如微生物硫酸盐还原生物通路可以通过提高血浆硫胺素的水平来降低血压(图4C);微生物脂多糖的合成也可以通过影响血浆AFMK来调节血压(图4D)。此外,研究者也发现了血液代谢物也介导了肠道菌群对人体血脂和血糖的影响。例如酪醇4-硫酸盐,一种尿毒症毒素,介导了球菌Ruminococcus的SV对人体低密度脂蛋白的影响(图4E)。图4 多种微生物特征变化与血浆代谢物相关。除此以外,该研究还系统性地测定了肠道微生物所携带的抗生素抗性及毒性物质合成基因含量,发现随着时间的推移肠道微生物所携带的抗生素抗性及基因含量有显著的富集,且该富集可能与肉蛋奶等摄入量有关。陈连民博士表示,研究肠道微生物的稳定性及其与宿主健康状态的关系极大地丰富了我们对于肠道微生物在人体健康与疾病中的作用的认识,一定程度揭开了肠道微生物在人体健康和疾病中的神秘面纱,为开发通过靶向肠道微生物进而改善人体健康状态的个性化精准医疗提供了重要资料参考。相关论文信息:https://doi.org/10.1016/j.cell.2021.03.024
  • 微流控电泳技术检测药物中对乙酰氨基酚(扑热息痛)和维生素C
    醋氨酚【对乙酰氨基酚,退热净(一种替代阿司匹林的解热镇痛药);扑热息痛(APAP)】广泛应用于止痛剂和解热镇痛药,用于退热、止头痛和其它轻微的疼痛等。由于药物中APAP的过量会引起暴发性肝病或肾坏死和其他毒副作用,所以药物中APAP的定量检测非常重要。 APAP水解主要生成对氨基苯酚(pAP),在医药制剂中可以作为降解产物或作为合成中间体。 据报道,抗坏血酸(维生素C)对APAP引起的肝中毒具有保护作用。 Micrux微流控系统很好的分离和检测了醋氨酚(APAP)、抗坏血酸(AA)、对氨基苯酚(pAP) 提供了简单、经济、精确的分析方法,非常适合于医药厂家检测药物的稳定性、药物分析和质量控制。相关资料可以在雷迪美特中国有限公司资料中心下载。 或电:400-628-2898 Email:analysis@126.com!
  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • 专家称光化学污染与PM2.5一样危害大
    近日,南京空气持续污染,臭氧连连超标。据南京环保微博发布的信息,造成本次南京空气污染的首要污染物是臭氧,南京又一次出现了大范围的光化学污染。   据悉,2011年,南京就曾出现一次罕见的大范围光化学污染 2012年,广东省光化学污染严重,臭氧成为重要污染物。“光化学污染经常出现,北京、上海、广东、南京等大城市都曾出现过。”南京大学大气科学学院教授刘红年说。   何为光化学污染?   兰州大学大气科学学院副教授陈强介绍,光化学烟雾主要是大气中的碳氢化合物和氮氧化物等一次污染物,在阳光的作用下发生光化学反应而生成的二次污染物。   “所谓光化学污染,光是关键因素之一,阳光越强烈光化学反应越快速越充分,因此,夏季是光化学污染的高发期。但是不排除北半球有些地区冬春季臭氧高值是由于受大气环流影响,导致平流层臭氧向对流层输送。”中国科学院大气物理研究所副研究员孙扬解释说,产生光化学污染的主要一次污染物是氮氧化物和挥发性有机物,机动车尾气是城市里最主要的污染来源,其他的氮氧化物来自于工业燃烧排放,挥发性有机物来自工业废气和化学有机溶剂、汽油挥发,餐饮排放等。   这并非一个陌生的概念,谈起光化学污染,人们不免恐慌,第一反应便是光化学烟雾污染。上世纪四五十年代出现的洛杉矶光化学烟雾污染,造成了数百人的死亡。“光化学烟雾的成分非常复杂,有对流层臭氧、挥发性有机化合物、过氧乙酰基硝酸酯、醛类、酮类等污染物,其对人体带来的影响则是刺激眼睛、鼻粘膜等,造成各种器官病变,甚至导致死亡。”刘红年解释,光化学污染并非光化学烟雾污染,光化学烟雾是光化学污染达到一定的严重程度,出现的可见烟雾。京津冀、珠三角、长三角地区出现的大多为光化学污染,光化学烟雾污染较为罕见。“二者的严重程度、危害性还是有一定区别的,光化学烟雾污染更为严重、危害性更大。”刘红年说。   臭氧——光化学污染的重要指标   陈强介绍,臭氧是光化学污染的指示性物质,一旦臭氧浓度超标,即表明可能出现了光化学污染,对人体具有一定的危害性。   2012年新修订的《环境空气质量标准》,增加了PM2.5和臭氧8小时浓度限值监测指标。可见,在环境空气质量评估中,臭氧占有重要地位。   大气中臭氧层对地球生物的保护作用早已广为人知,它能吸收太阳释放出来的绝大部分紫外线,使动植物免遭这种射线的危害。而臭氧浓度超标为何有害呢?   刘红年介绍,位于不同大气层的臭氧有不同的作用。平流层臭氧层能够吸收绝大部分的有害太阳紫外线,为地球上的生物提供天然的保护屏障。对流层臭氧属于温室气体,会导致全球增温效应。另外,作为强氧化剂,臭氧几乎能与任何生物组织反应。当臭氧被吸入呼吸道时,就会与呼吸道中的细胞、流体和组织很快反应,导致肺功能减弱和组织损伤。对那些患有气喘病、肺气肿和慢性支气管炎的人来说,臭氧的危害更为明显。臭氧同样是植物生长的大敌,它能抑制各种植物的生长,给农业生产带来重大损失。臭氧也会对一部分颗粒物的产生起到促进作用,降低大气能见度。   如何防治“光化学污染”   光化学污染与雾霾天气都能使大气能见度显著下降。孙扬说:“这两种污染确实有些共性,但又有各自的特点。易灰霾在白天夜间都会出现,光化学烟雾只在光照充分的白天出现。灰霾的主要污染物是PM2.5,光化学烟雾的主要污染物和指示物是气体污染物臭氧,但除了主要污染物,灰霾天也存在很多气体污染物,如硫氧化物、氮氧化物、有机物等,而光化学烟雾发生时也存在很多颗粒污染物,如含氮有机颗粒物。”   今年以来,在我国许多大城市的观测数据表明,在晴天,天气比较稳定的时候,PM2.5和臭氧浓度都非常高,易形成灰霾和光化学烟雾的混合污染状态。“在一定的天气条件下,灰霾和光化学烟雾可能同时叠加出现,也可能相互转化。”孙扬说。   上世纪七八十年代,兰州西固区出现了国内首次光化学烟雾污染,此后,京津唐、珠三角、长三角地区均发生过光化学烟雾污染。近些年,光化学污染越发严重,发生次数越来越多。   对此,孙扬一点也不感到意外,他认为城市污染源的增加,如机动车保有量的快速增加,各种工厂数量的增加等等,都是光化学污染加重的关键因素。“GDP要增长,那么能源消耗就要增加,能源消耗增加就意味着排放增加,虽然排放标准也在提高,技术也在进步,但从目前效果来看,排放还是在持续增加,排放增加的结果就是各种污染的增加。”   陈强指出,在出现大范围光化学污染的紧急状况下,可以通过喷洒化学抑制剂,通过降低污染物的浓度,达到暂时控制光化学污染的目的。但是,孙扬认为,减少氮氧化物和挥发性有机物排放才是防治光化学污染的根本所在。   刘红年介绍,机动车尾气是造成光化学污染的“罪魁祸首”,所以严格遵守排放标准,提高油品质量,使用清洁燃油,改善机动车发动机工作状态、安装机动车尾气净化装置等,是防治光化学污染的重要方法。同时,加强对工厂的废气排放管理,减排限排 设立监测站,经常监测光化学污染的状况等也是必不可少的方法。   此外,绿色植物能吸收二氧化碳、释放氧气,不同的植物对二氧化硫、氯气、氯化氢、臭氧、放射线、氨、铅等有害物质有不同的吸收能力,大面积地植树造林,增加绿色植物,既能调解大气中的碳氧平衡,又能达到净化空气的效果,也是防治光化学污染的有效方法。(原标题:光化学污染:与PM2.5一样危害大)
  • 新一届安谱工会委员会慰问一线员工
    2017年7月14日,上海安谱实验科技股份有限公司第二届工会主席沈志希、副主席张佳,以及文体生活委员夏洁代表公司工会慰问一线员工,将防暑降温慰问品送到一线员工手中,为一线员工送去清凉,送去关怀。 近日,申城的持续高温给奋战在一线的安谱员工带来严峻考验。在送去慰问的同时,工会委员会积极协商解决高温问题,与物流部原料仓主管林梅花等相关负责人就叶张路西仓库高温问题协商相应降温方案。与物流部经理周礼、副经理吕任晔就民发路二楼筠安成品库高温问题进行深入沟通,并给出初步的指导性解决方案。与相关部门责任人深入沟通劳动防护、高温降温、用水用电安全等相关问题。 安谱工会会继续坚持以人为本,秉持让员工快乐工作、幸福生活的准则,以实际行动弘扬安谱企业文化,改善员工工作条件,关爱员工的身心健康。
  • 文献解读丨可见光促进Katritzky盐通过脱氨烷基化反应合成β ,γ -不饱和酯类
    本文由中国科学院大学协同创新实验室所作,文章发表于Oganic Letters (Org. Lett.2021, 23, 5, 1577–1581)。 可见光促进的脱氨烷基化反应已经成为一个化学合成的重要研究方向,从廉价易得的原料出发合成羰基化合物是现代合成科学的重要目标,而β,γ-不饱和羰基化合物因其独特的活性特征,日益成为有价值的合成砌块。传统方法合成β,γ-不饱和羰基多建立在过渡金属催化的交叉偶联反应,如钯、镍或铜催化下的烯醇和烯基卤代物、烯基磺酸化合物等反应(图1A)。近年来,可见光促进的脱氨烷基化反应已经成为多样化烯烃制备的重要手段(图1B), 而利用弱相互作用EDA形成的策略,该课题组发现仅仅通过碱金属盐(例如,NaI, NaOAc, K2CO3等)便可以与N-羟基邻苯二甲酰亚胺酯(NHPI esters)以及系列吡啶盐等形成EDA复合物(图1C)。据此,作者推测仅仅通过碘化钠和Katritzky盐就可以直接形成EDA复合物,产生的烷基自由基与双键偶联,再生成相应的产物(图1D)。通过可见光促进EDA复合物引发的Katritzky盐与烯烃的脱氨基烷基化反应,成功实现了β,γ-不饱和酯类化合物的构建,该方法原料简单、条件温和,无需过渡金属催化和额外的添加剂,具有通用性。图1 首先进行反应条件的优化,分别以1a和2a为原料,在45℃的LED光照条件,DMA为溶剂,加入NaI(20% mol%)反应过夜后得到的偶联产物3a,获得了最优收率95%(图3)。由于这种弱相互作用形成的复合物是很难直接分离表征的,UV-vis光谱表征技术的发展为我们研究这种弱相互作用的形成提供了有利的检测手段。利用岛津UV-2550对反应中的各底物之间,底物与催化剂之间以及底物自身的紫外可见光谱进行表征测试,明确了碘化钠和Katritzky盐直接形成EDA复合物的猜想,为实验的机理研究提供了有力的证据(图2)。进一步对1a和NaI的EDA复合物进行了DFT计算,发现其溶剂化的络合自由能为9.6 kcal/mol。 除此之外,在实验条件优化过程中,作者还使用了GC-2010 plus,GCMS-TQ8040用于制作反应产率的标准曲线。对反应产物不易分离或者分离后难以提纯而又对产率有严格要求的反应体系,利用绘制的标准曲线,不仅能够得到准确快速的每次优化条件的产率值,而且大大减轻实验操作者工作量,能够提高实验效率,减少实验耗材的使用(图3)。 图2图3 随后,作者对于底物的适用性进行了扩展,对于系列苯丙氨酸衍生的含吸电子基或者供电子基的吡啶盐(3a-g)均可以顺利反应。此外,该方法可耐受多种官能团(3h-n)(图4)。同时,二苯乙烯上取代基的影响(3o-s)也被一并考虑,亦具有较好的结果;苯乙烯(3t)的反应也得到了相应的β,γ-不饱和产物,尽管产率有所降低,其具有很好的E/Z比率,取代的苯乙烯(3u-x)也得到相应的产物,但是E/Z比率出现降低。该方法也适用于肉桂酸(3t)为原料和吡啶盐的反应,各种取代肉桂酸(3y-b’)也容易发生反应,可以得到高E/Z比例的β,γ-不饱和酯(图5)。 图4图5 同时,对于反应机理,作者进行了详细的DFT计算并进行了阐释(图6)。 图6 本研究开发了一种更为简单的合成β,γ-不饱和羰基化合物的方法,只需要NaI和Katritzky盐即可实现。DFT计算研究表明二者间的弱相互作用力加速催化EDA的产生,并揭示了自由基反应的机理。该反应从廉价易得的原料出发,不使用过渡金属催化剂和任何添加剂,操作性强,通用性良好。 关联仪器 文献题目《Photoinduced α‑Alkenylation of Katritzky Salts: Synthesis of β,γ-Unsaturated Esters》 使用仪器岛津UV、GC、GCMS 作者Chao-Shen Zhang,† Lei Bao,† Kun-Quan Chen, Zhi-Xiang Wang,* and Xiang-Yu Chen*Corresponding Authors:Zhi-Xiang Wang − School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Xiang-Yu Chen − School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Authors:Chao-Shen Zhang − School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaLei Bao − School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaKun-Quan Chen − School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China †C.-S.Z. and L.B. contributed equally. 声明 1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。3. 文中涉及最优,最佳类描述,限于实验组别对比结果。4. 本文内容非商业广告,仅供专业人士参考。
  • 卫生部:53项食安标准征求意见
    12月21日,卫生部发布消息,征求《食品用香料通则》等53项食品安全国家标准及2项食品安全国家标准修改单意见的函,并要求于2013年2月20日前将相关意见反馈至卫生部。原文如下: 卫生部办公厅关于征求《食品用香料通则》等53项食品安全国家标准(征求意见稿)及2项食品安全国家标准修改单意见的函 卫办监督函〔2012〕1145号   各有关单位:   根据《食品安全法》及其实施条例的规定,我部组织制定了《食品用香料通则》等53项食品安全国家标准(征求意见稿)和《食品添加剂 二丁基羟基甲苯(BHT)》等2项食品安全国家标准修改单。现向社会公开征求意见,请于2013年2月20日前将意见反馈表(附件56)以传真或电子邮件形式反馈我部。   传 真:010-52165424   电子信箱:zqyj@cfsa.net.cn   附件:   《食品用香料通则》征求意见稿及编制说明.zip   《食品添加剂 琥珀酸二钠》征求意见稿及编制说明.zip   《食品添加剂 1-辛烯-3-醇》征求意见稿及编制说明.zip   《食品添加剂 2,5-二甲基吡嗪》征求意见稿及编制说明.zip   《食品添加剂 2-己烯醛(叶醛)》征求意见稿及编制说明.zip   《食品添加剂 2-巯基-3-丁醇》征求意见稿及编制说明.zip   《食品添加剂 2-乙酰基吡咯》征求意见稿及编制说明..zip   《食品添加剂 2-异丙基-4-甲基噻唑》征求意见稿及编制说明.zip   《食品添加剂 3-巯基-2-丁酮(3-巯基-丁-2-酮)》征求意见稿及编制说明.zip   《食品添加剂 4,5-二氢-3(2H)噻吩酮(四氢噻吩-3-酮)》征求意见稿及编制说明.zip   《食品添加剂 6-甲基-5-庚烯-2-酮》征求意见稿及编制说明.zip   《食品添加剂 d,l-薄荷酮甘油缩酮》征求意见稿及编制说明.zip   《食品添加剂 l-薄荷醇丙二醇碳酸酯》征求意见稿及编制说明.zip   《食品添加剂 N-[N-(3,3-二甲基丁基)]-L-α-天门冬氨-L-苯丙氨酸1-甲酯(纽甜)》征求意见稿及编.zip   《食品添加剂 N-乙基-2-异丙基-5-甲基-环己烷甲酰胺》征求意见稿及编制说明.zip   《食品添加剂 γ-辛内酯》征求意见稿及编制说明.zip   《食品添加剂 δ-己内酯》征求意见稿及编制说明.zip   《食品添加剂 δ-壬内酯》征求意见稿及编制说明.zip   《食品添加剂 δ-十四内酯》征求意见稿及编制说明.zip   《食品添加剂 δ-十一内酯》征求意见稿及编制说明.zip   《食品添加剂 δ-突厥酮》征求意见稿及编制说明.zip   《食品添加剂 δ-辛内酯》征求意见稿及编制说明.zip   《食品添加剂 阿拉伯胶》征求意见稿及编制说明.zip   《食品添加剂 苯甲醛丙二醇缩醛》征求意见稿及编制说明.zip   《食品添加剂 丁苯橡胶》征求意见稿及编制说明.zip   《食品添加剂 二丙基二硫醚》征求意见稿及编制说明.zip   《食品添加剂 二甲基二硫醚》征求意见稿及编制说明.zip   《食品添加剂 二丁基羟基甲苯(BHT)》修改单.doc   《食品添加剂 二糠基二硫醚》征求意见稿及编制说明.zip   《食品添加剂 二氢-β-紫罗兰酮》征求意见稿及编制说明.zip   《食品添加剂 二烯丙基硫醚》征求意见稿及编制说明.zip   《食品添加剂 甘油》征求意见稿及编制说明..zip   《食品添加剂 海藻酸钾(褐藻酸钾)》征求意见稿及编制说明.zip   《食品添加剂 槐豆胶(刺槐豆胶)》征求意见稿及编制说明..zip   《食品添加剂 聚丙烯酸钠》征求意见稿及编制说明.zip   《食品添加剂 糠基硫醇(咖啡醛)》征求意见稿及编制说明.zip   《食品添加剂 离子交换树脂》征求意见稿及编制说明.zip    《食品添加剂 吗啉脂肪酸盐果蜡》修改单.doc   《食品添加剂 明胶》征求意见稿及编制说明.zip   《食品添加剂 柠檬酸三乙酯》征求意见稿及编制说明.zip   《食品添加剂 柠檬酸亚锡二钠》征求意见稿及编制说明.zip   《食品添加剂 柠檬酸脂肪酸甘油酯》征求意见稿及编制说明.zip   《食品添加剂 肉桂酸苄酯》征求意见稿及编制说明..zip   《食品添加剂 肉桂酸肉桂酯》征求意见稿及编制说明.zip   《食品添加剂 四氢芳樟醇》征求意见稿及编制说明.zip   《食品添加剂 萜烯树脂》征求意见稿及编制说明.zip   《食品添加剂 脱乙酰甲壳素(壳聚糖)》征求意见稿及编制说明.zip   《食品添加剂 维生素E(dl-α-生育酚)》征求意见稿及编制说明.zip   《食品添加剂 烯丙基二硫醚》征求意见稿及编制说明.zip   《食品添加剂 纤维素》征求意见稿及编制说明..zip   《食品添加剂 氧化芳樟醇》征求意见稿及编制说明.zip   《食品添加剂 叶醇(顺式-3-己烯-1-醇)》征求意见稿及编制说明.zip   《食品添加剂 乙醛二乙缩醛》征求意见稿及编制说明.zip   《食品添加剂 异硫氰酸烯丙酯》征求意见稿及编制说明.zip   《食品添加剂 棕榈酸视黄酯(棕榈酸维生素A)》征求意见稿及编制说明.zip   卫生部办公厅   2012年12月18日
  • 解决方案 | 美正助力2023年国家食品安全风险监测之生物毒素检测
    2023年国家食品安全风险监测计划工作手册——划重点规定了食品中黄曲霉毒素等16种真菌毒素的同位素稀释液相色谱-串联质谱测定方法。该方法适用于小麦、大米、玉米及其制品以及膨化食品、婴幼儿辅食中黄曲霉毒素B1/B2/G1/G2、脱氧雪腐镰刀菌烯醇、雪腐镰刀菌烯醇、3-乙酰基脱氧雪腐镰刀菌烯醇、15-乙酰基脱氧雪腐镰刀菌烯醇、玉米赤霉烯酮、赭曲霉毒素A、伏马毒素B1/B2/B3、T-2/HT-2毒素、杂色曲霉毒素等16种真菌毒素的测定。规定了小麦粉及其制品(挂面、饼干、面包、馒头等)、番茄及其制品、樱桃、车厘子、葡萄酒和植物油(含橄榄油)中4种交链孢霉毒素的液相色谱串联质谱测定方法。4种交链孢霉毒素包括:细交链孢菌酮酸(Tenuazonic acid,TeA)、交链孢酚(Alternariol,AOH)、腾毒素(Tentoxin,TEN)和交链孢酚单甲醚(Alternariol monomethyl ether,AME)。新增《辣椒酱、火锅底料中黄曲霉毒素(B1、B2、G1、G2)、赭曲霉毒素A测定的标准操作程序》。规定了食品中米酵菌酸的液相色谱-串联质谱测定方法,适用于谷物及其制品、银耳及其制品、木耳及其制品中米酵菌酸的测定。规定了同位素稀释-液相色谱串联质谱法测定黄曲霉毒素B族和G族的测定方法,适用于植物蛋白饮料中黄曲霉毒素B族和G族含量的测定。美正多年来持续专注于生物毒素检测技术与产品服务,公司已通过 ISO9001:2015 质量体系认证,美正检测实验室是CNAS标准物质/标准样品生产者认可实验室(注册号:CNAS RM0035),同时通过了CNAS检测实验室认可及CMA资质认定。针对2023年国家食品安全风险监测计划,美正为您提供完整的生物毒素检测解决方案,助您迅速建立方法,快速完成风险监测项目。2023风险监测计划对应毒素类基体质控样品2023风险监测计划对应毒素类免疫亲和柱2023风险监测计划对应毒素类混标2023风险监测计划对应毒素类单标
  • “疫”不容辞,共克时艰|一线有需求,天隆必响应!
    12月23日,一架载有防疫物资的顺丰航空专机正在西安咸阳机场如火如荼地进行最后一波装载,这是陕西本土疫情爆发以来,第一架由企业包机的防疫物资出港,天隆科技正是这批物资的发出单位。12月,全国多地局部疫情频繁散发,各地防疫物资紧缺。作为国内核酸检测产品的主力供应企业,天隆科技紧急协调,生产人员三班轮值,产线24小时满负荷高效运转,不断突破产能极限,全力保障核酸检测产品的供应。疫情非常时期,天隆科技竭力响应客户紧急需求,迅速组织人员装车,克服万难,连夜安排包机,火速将10余万盒试剂及百余台设备发出,最大限度缩短保障时间,确保防疫物资以最快的速度抵达抗疫一线。近日,西安疫情形势持续吃紧,全市部署开展全员核酸检测工作,时间紧急,任务艰巨。天隆科技在加紧生产,全力保障核酸检测产品供应的同时,百余名技术人员携天隆核酸检测、提取设备及试剂等产品迅速支援西安疫情防控,为突发公共卫生事件应急处置提供技术保障,极大提高核酸检测能力和应对突发疫情的处置水平。而在此前数次国内疫情防控中,天隆科技也都全力以赴,为守护民众健康发挥了关键作用。危机面前有担当,疫情面前不退缩。天隆人数次挺身而出,用行动筑牢抗疫堡垒。天隆科技将始终积极响应疫情防控需求,与一线医护人员同心协力,为打赢疫情防控攻坚战贡献天隆力量。
  • SCIEX最新推出快速生物药糖基标记与分析试剂盒
    方案为研究者提供比传统方法更快检测糖基化变化的能力 中国北京讯- SCIEX是生命科学分析技术的全球领先的公司,在2017年1月24号发布了针对于生物制药表征中大量糖基化表征的快速糖标记与分析试剂盒。传统分析中耗时的样品制备和数据分析,现在可以在SCIEX公司PA800 Plus生物分析系统上通过快速糖释放、标记和分离,进行糖基定性定量分析,从而加快研究者的工作流程。 平均一小时的样品制备,而后进行96个分离程序,快速糖分析试剂盒分析糖的速度比传统的HILIC方法快五倍。这使研究者可以快速检测糖基的变化,帮助他们监测可能影响功能变化和生物药的功效、清除效率的糖型分布。自动的糖基化定性不再需要手动而乏味的糖基数据库搜索,排除了分析过程中潜在的人为因素。SCIEX公司提供的方案使分析方法开发和QC实验室的研究者可以对生物药中的糖基进行有效的定性和定量,有助于保证治疗效果。 糖基化对生物药的疗效、免疫原性和清除效率的非常关键。对单克隆抗体(mAb)来说,它可导致抗体依赖性细胞毒性(ADCC)和补体依赖的细胞毒性(CDC)的增加或减少。缺少高分辨的糖基化信息(如岩藻糖基化和非岩藻糖基化结构的分离)以及不可靠的结果会对患者和研究机构产生很大的风险。 使用客户定制的内标,可以直接在SCIEX公司PA800 Plus软件上计算糖单位(GU)。SCIEX公司提供了全面的糖单位参考表用于糖单位的计算,用户也可以添加自定义的特殊糖基种类。SCIEX公司快速糖分析方法中的样品处理可以在Beckman Coulter的 Biomek自动化工作站上使用,来进一步提高实验室的通量和效率。 SCIEX公司产品经理Mark Lies 说过“通常糖分析需要研究者很有耐心的花费一整天进行样品前处理。SCIEX公司提供的解决方案具有自动化鉴定糖基的特点,平均几分钟即可完成样品的制备、对糖基进行定性和定量分析,保证了整个实验室更高的工作效率”。 SCIEX公司快速糖标记与分析试剂盒最近获得了生物国际(BPI)“最佳技术应用与分析奖”,展示创新的新增功能与其它分析技术的结合。 了解更多关于新的快速糖标记与分析试剂盒 关于SCIEX公司SCIEX公司帮助科学家和研究员在他们面对的复杂的分析挑战中探索答案,改善我们生活的世界。SCIEX公司在毛细管电泳、液质联用的全球领导地位和世界一流的技术服务支持下,使它成为了在基础研究、药物开发、食品与环境检测、法医学与临床研究领域值得信赖的合作伙伴。 伴随着超过40年的成熟创新,SCIEX公司擅长聆听和了解客户不断变化的需求,开发可靠、灵敏、直观的解决方案,继续重新定义在常规和复杂分析中可实现的部分。更多信息,请访问sciex.com.cn。 ###媒体联络: 范雪,易思闻思公关咨询Nicole@eastwestpr.com+86 10 65820018
  • 屹路同行:改革一线的微波消解仪
    屹路同行:改革一线的微波消解仪——因为在乎,所以勇往直前有一个地方,当地人以为他们出名的是油田,但外地人只听说过他们的大米,哦,离得近点的,还知道那边的螃蟹真好。“我们是新鲜出炉的国家卫生城市、国家园林城市、全国文明城市、美丽山水城市̷̷”孙副主任说。“谁在乎?我在家人和朋友圈问过,在办公室也问过,但没人能告诉我去年得这些荣誉的城市是哪几个。”我回复她说。事情通常就是这样,对别人的荣誉,我们不是那么关心,哪怕别人再多辛苦的付出;念念不忘的,是自己的荣誉,比如,我还得过“好孩子作文”三等奖呢。 “盘锦?”临出门前,老婆跟我说:“我们吃的大米是那边的。”“大米带不了,太重。”我回她:“我是去回访一个VIP客户,很重要的那种。”“那边是东北吧?”她疑惑地问我:“不是说东北经济不行了吗?” 这两年,东北给外地人的印象,除了直播,可能就是“经济不行了”。经济不行了,好像啥都不行了,然后就没了多瞧一眼的兴趣。可是,白山黑水那边,还有数以亿万的人在生活,在为幸福生活努力,不管外人是否在意。上面说的那些国家级荣誉,属于盘锦,一个人口只有130万的地级市,传说中的老工业基地之一。 “你应该去采访一下盘锦检验检测中心。”倪总这么说:“那边跟你印象中的东北很不一样,充满活力。”我一边点头,一边腹诽:“都没怎么听说过的地方。”因为不以为然,因为忙, 事情就耽搁了下来,直到那天,倪总说:“我们跟盘锦检验检测中心的联合创新实验室要挂牌了,这事情交给你负责。”创新?在盘锦创新?好吧,我准备去看看。 “济南和合肥市疾控的领导刚来调研过,他们主要是调研什么?”这是我的第一个问题。盘锦检验检测中心孙晓丽副主任笑着说:“实验室改造和智慧实验室的建设,都是同行交流,互相学习。” 她是一个谦和的人,脸上始终带着笑容,温婉如江南女子,但说话却有着东北人特有的实在和爽利。 “盘锦早在2015年就率先完成了检验检测机构整合,比全国多数地区早了三年,而且动作很大,一举整合了全市七个行业主管部门的八家检测机构,当时是什么原因促成这么大的动作?”她更正道:“现在更多了,辽宁省新一轮事业单位改革中,盘锦市质量技术监督局所属的三个检验检测机构(特种设备监督检验所、产品质量监督检验所、计量测试和标准化研究服务中心),也都整合到检测中心来了,同时原市结核病防治所的防控职能归入中心。其实也没那么复杂,国家早在2014年就出台文件鼓励各地将职能相同或相近的检验检测机构进行跨行业、跨部门的整合,盘锦市只不过行动得最早、力度最大而已!大健康事业需要大检测平台保驾护航,市委、市政府支持我们先行先试,我们也摸石头过河创出了一条新路。” “去年首届中德智慧实验室建设与发展高峰论坛为什么会选在盘锦举办?交通又不方便,机场都没有。”我很好奇:“一提‘智慧’和‘高峰论坛’这两个词,通常就想到北上广深,或者乌镇等景点。”“我们今年还举办了全国疾控系统科研管理与学术交流大会呢。” 她笑道:“没有机场并不能阻止我们创新,也不能阻止我们跑到行业前列的决心和步伐啊。全新的检测中心,不只是硬件上采用了众多高科技技术,管理上也进行了大胆创新——原有编制解除,采用全员聘用制。定岗定酬,竞聘上岗,提升危机意识和责任意识。”侃侃而谈的孙副主任满脸自豪,基于成就感的自信让她充满力量,我不得不打断她:“我参观了咱们的实验室,确实很先进,但我们真有那么大的业务量来支撑吗?”“我们的定位是区域检测中心。”她肯定地说:“除了承接本市各行政部门的检测任务外,随着整合后实力提升,我们还承接了来自省里和其他市的一些项目,并承担了更多国家项目。政府搭建这么大的检测平台,目的就是做强做大检验检测事业,为政府、为社会、为企业提供技术服务。面向市场参与竞争是我们必须走的路,高质量满足社会需求是我们理应承担的社会责任,也只有这样,整合的优势才能得到充分的发挥。事实上,我们目前的业务都忙不过来,当然,我们在建设实验室时也为未来的发展预留了空间。” “你们和众多国际一流品牌设立了共建实验室,而屹尧科技作为目前唯一一家与贵中心建立联合实验室的国产仪器公司,当时为什么会选择我们?”我问:“你们是PREPS全自动微波消解仪的首批用户。”孙副主任爽朗地说:“我们当然希望能够采用高品质的国产仪器,也愿意支持国产仪器的发展。就实际使用情况来看,屹尧微波消解仪等产品完全可以满足我们的需求,并且在后期技术培训和应用支持方面,也不逊色国际大品牌。” 聊了很多,从检验检测中心的整体架构与发展理念,到实验室管理与运维的思路;从人才培养和梯队建设的谋略,到如何借助国际化厂商资源;她一再刷新着我对盘锦和东北的认知。回首那座挂满了众多国际一流品牌联合实验室招牌的大楼,那里刚承办了国家食品安全风险评估中心“2018年中国食品安全技术支撑人才培训项目现场教学培训”,那里,朝气蓬勃。这是一个“敢为天下先”的团队,流淌着勇于创新的血液,我希望告诉所有人,盘锦不只有好吃的螃蟹,还有一群敢于最先吃螃蟹的人。 回到文章的最初,“谁在乎?”面对我的那个略带嘲讽的反问。孙副主任当时很严肃地回答说:“我们在乎。”或许,正是因为这份对家乡对事业的爱和珍惜,盘锦人才会勇敢地踏出求新求变的那一步,然后,变则通。我相信,红滩绿苇之间,热爱这片黑土地并愿意为之付出心血的人还有无数,他们值得尊重和祝福。
  • 白春礼:保障一线科研人员科研时间不少于4/5
    白春礼:规划“森林”,让“树木”自由生长   中科院召开人才工作座谈会   3月17日, 中科院人才工作座谈会在京召开。与以往不同的是,这次座谈会请来了16位来自不同研究领域、不同层次的科学家、工程技术人员和研究生代表,他们没有任何行政职务。   在座谈会上,中国科学院院长、党组书记白春礼逐一听取了与会代表对中科院人才工作的意见和建议,并和与会代表就中科院和全国科技界人才工作中遇到的实际问题进行了深入交流。这是他在设立院长信箱,“问政于民、问需于民、问计于民”后,就人才专项工作“问情于一线科研人员”。   座谈会的代表中,既有来自中科院物理所和计算所的“千人计划”入选者代表,也有来自中科院遗传与发育研究所和动物所等单位的“百人计划”入选者和杰出青年基金获得者代表,还有来自一线的工程技术人员代表。他们的研究领域、职级甚至序列都各不相同,但在座谈中,他们都以“中科院优秀文化、科研环境以及‘走在前列’的人才引进培养政策受益者”的角度,畅谈了对中科院人才工作的意见和建议。   为科学家创造良好科研环境   自实施知识创新工程以来,中科院凝聚培养了近千名新一代科技领军人物和科技尖子人才,形成了一支高水平的科技创新队伍。   截至2010年,7位在中科院各研究院所工作的中国科学院院士获国家最高科技奖 284名(次)中科院科学家成为国家重大科技计划首席科学家或主要带头人 726位科学家获得国家杰出青年基金。中科院更率先启动了“百人计划”、“西部之光”人才计划、“东北之春”人才计划等。中科院还向社会输送了大批高素质创新创业人才,培养了一批高科技企业的创业者和企业家。   白春礼指出,中科院人才工作取得了很好的成绩,但同时也面临更大的挑战,面临国际同行的人才竞争、面临国内高校和科研机构的人才竞争,更面临国家经济转型对科技人才的大量需求。在这种形势下,我们要把广大科研人员的所思、所需、所忧,作为我们为科研人员服务的出发点和落脚点。除了继续创造条件,培养、引进、凝聚更多的优秀科技人才外,更要重点关注如何充分调动他们的积极性和创造性,发挥好各类人才的作用。   “我们应规划森林,让树木自由生长。”白春礼强调,中科院的人才工作必须以人为本,要尊重人、关心人、信任人、发展人,营造良好的创新生态系统,并努力为“良种”提供“肥沃的土壤”和“充足的阳光”。中科院各级领导干部要切实做好科技工作者的“后勤部长”,必要时可以设专人负责,加强与地方政府和社会各界的沟通和协调,着力解决科技工作者的“3H”需求,即在住房(Housing)、子女入学和配偶工作(Home)、就医(Health)等方面的实际困难,让他们能安心致研。   保障一线科研人员科研活动时间不少于4/5   出席座谈会的代表集纳了从助理研究员到研究员、从工程师到高级工程师等各个级别和序列的科学技术人才。在座谈中,白春礼详细询问了每位代表参加科研活动的时间。   他强调,“创新2020”其中最重要的任务就是保障重大科研成果产出和培养顶尖科研人才,这一目标达成的前提条件,就是保障科研工作者参与科研活动的时间。   目前,科研人员参与科研活动时间减少是一个普遍现象。全国政协委员、中纪委驻中科院纪检组原组长王庭大,在对全国4个领域11家科研院所的374位科学家调查后发现:44.1%的调查对象作研究的时间只占正常工作时间的1/2 16.5%的调查对象的科研时间只占工作时间的1/3甚至更少。另外,90.6%的调查对象认为,除科研外的其他工作时间主要用在争取项目上。   白春礼指出,申请科研经费花费时间较多,这需要在国家层面统一协调,不是中科院一家可以完全解决的问题。但我们除了向国家有关部委、管理部门提出建议和沟通协调外,更要从中科院自身实际出发,改革科研评价和项目管理办法。让广大科技人员从不必要的考评等事务中解放出来,让他们心无旁骛地潜心钻研,深入学术交流,腾出时间来少说多做,争取使一线科研人员从事科研活动的时间不少于4/5。   研究生教育要“育人为先”   在座谈会上,白春礼还就研究生培养工作和与会人员、研究生代表进行了交流。   中科院培养了新中国第一位女博士,第一位工学博士,第一位双博士 全国首批18位博士生,12位出自中科院 全国百篇优秀博士论文评奖结果表明:中科院用不到10%的博士招生名额培养了18%的优秀博士。   白春礼从1996年开始分管中科院教育工作,他坦陈,中科院在培养研究生方面既有良好的科研环境和学术氛围等优势,也有培养模式不健全、缺少校园文化氛围等方面的劣势。   白春礼要求中科院科研人员和导师在研究生培养工作中要以“育人为先”。他强调,让研究生参加科研活动,可以提高他们的科研创新能力,研究生参与前沿课题的研究工作,有助于创新能力的培养,这是中科院的优势所在。但我们不能把研究生仅仅当做“科研劳动力”,参加座谈会的研究生代表对这方面的反映比较强烈。导师的责任是认真培养,使他们真正成为未来支撑国家经济和科技的建设者。作为中科院科研人员和导师,要将育人工作和科研工作紧密结合起来,努力提高研究生的综合素质和质量。   在座谈中,白春礼还和与会工程技术人员就科技支撑人才的引进、培养、使用工作进行了专门交流。   他指出,作为国立科研院所,中科院还有一项任务是为构建国家科技软实力服务,其中包括为国家培养科技管理、支撑人才。为此,我们要建立完善科学的科研评价评估体系。他鼓励全院各级单位,向国际同行业科研院所、高校学习人才培养成功经验,打造科技支撑系统人才吸引、凝聚、培养新模式。他强调,中科院要开辟体现科技人员和管理支撑人员不同特点的职业发展道路和评价体系,重视科技管理支撑队伍的建设,鼓励和支持科技人员在创新实践中成就事业并享有相应荣誉和待遇。   面向国家需求 培养领军人才   最后,白春礼指出,作为中国科学技术的“火车头”,中科院要面向我国产业结构调整,面向国家安全的战略高技术领域,面向经济社会全面协调可持续发展和人民生命健康的重大公益性创新领域,调整科研项目布局,“抓大育小”,以重大原始性创新项目和解决国家急需的科技瓶颈问题、优秀创新人才培养、体制机制重大创新等工作来进一步凝练目标。   白春礼强调,中科院各级领导要做好后勤工作,打造适合创新人才凝聚、培养的新环境,力争在未来10年,培养出一批德才兼备的科技领军人才、一批善于攻坚的科技尖子人才和在主要研究方向国际领先的学术带头人。不仅如此,中科院还要建立一批结构合理、动态优化的高水平科技创新团队,一批具有战略眼光和卓越组织管理才能的科技管理专家,一批技术精湛、爱岗敬业的关键技术支撑人才 同时也要有强烈创新意识和市场意识的科技产业化人才,来推动科技成果向现实生产力转化。
  • “氨氮大比武,我测最准”,西南赛区比赛纪实
    通过近两个月的网上答题环节,全国七大赛区分别筛选出25名选手参加氨氮大比武现场操作复赛。12月的重庆迎来了第一场操作复赛,7日在重庆大学城市建设和环境工程学院实验室,来自西南地区的各行各业与水质分析检测相关的一线操作人员在这里进行复赛的比拼。有供水,排水公司,污水厂自来水公司,疾控中心以及酒业、化工等行业的选手,比赛在去年举行&ldquo COD大比武&rdquo 的实验室中进行,今年的选手们同样的热情高涨,跃跃欲试。 这次的&ldquo 氨氮大比武&rdquo 增加了测试的多样化,除了现场操作以外,增加了笔试以及抢答环节。首先是半个小时的笔试时间。选手们沉着冷静,认真答题,按时提交试卷。赛场的秩序良好,选手们各自作答,独立完成。 接下来是现场操作部分,选手们仔细阅读了比赛规则和操作指南,便开始进行样品的前处理操作。哈希公司氨氮测试系统的操作过程包括样品的准备,再取样加入到条形码试剂中,用DR3900光度计进行测试。一位选手完成测试以后,就感叹:&ldquo 这种方法真是方便,比以前使用的方法大大节省了时间。&rdquo 选手们有的是第一次使用DR3900分光光度计,但是简明清晰的操作流程使他们的操作进行得很顺利。 当他们将条形码试剂放入样品室中后,仪器自动读取测试方法, 试管自动旋转读取平均值,几秒钟内得出读数。选手们还使用了稀释倍数设定功能,免去了手动计算稀释以后的结果。在实际体验完氨氮测试系统的快速检出后,选手们纷纷表示测定过程真的很方便快速,比起以前的自配试剂,复杂的处理,氨氮条形码试剂再配上DR3900的人性化操作,使整个操作过程大大简化。 此外,选手们表示此方法在最大限度减小误差和简便操作方面很有优势。如果应用到日常工作中,会有显著的优势。 我们的工程师在现场也对氨氮分析系统DR3900+TNTplus,以及哈希公司电化学家族进行了详细的介绍。结合刚才选手们的亲自操作,使大家对氨氮分析系统有了一个全面的认识,包括方法的读数准确、操作简便以及最大限度的减少测量误差等特性。哈希电化学家族也针对电化学仪器的使用维护等方面注意事项进行了介绍。针对工程师所介绍的内容,我们设计了抢答的环节,因为抢答的成绩最终会计入选手的总分,题目数量有限,所以选手们争先恐后答题,都希望能够抢到答题权,为自己的总成绩加分,现场气氛相当热烈。 这次氨氮测试比武不光是一个比赛,更加是一个哈希公司回馈用户,与用户相互学习与交流的平台,用户们在这里既可以尽情展示自己的操作水平,也可以体验到氨氮分析系统操作的准确与便利。 通过紧张激烈的笔试,现场操作以及抢答环节,我们认真仔细的计算出选手得分,最终西南赛区前三甲闪亮登场了,以下是三位选手接受奖状的激动时刻。他们也将踏上代表西南赛区参加北京举行的总决赛的征程。前三名由程总颁发获奖证书,选手们表示将努力为西南赛区在北京总决赛上争得荣誉。(从左到右分别是第一名,第二名和第三名)
  • 【新案例】利用康宁微反应器实现苄位连续纯氧氧化工艺研究
    研究简介科学期刊OPRD在2021年7月16日这一期(第7期,第25卷)刊登了来自大连理工大学的孟庆伟教授课题组利用康宁反应器进行苄基催化氧化的最新连续流工艺研究成果,并将其作为封面文章进行了特别报道。本文将详细介绍本研究成果。[1]苄基的直接氧化已广泛应用于药物和精细化学品的合成,很多市售药物分子结构中含有一个或多个被氧化的苄基位置(图1)。传统工艺上,苄基氧化反应需要引入金属催化剂,如 Co、Ru、Ni、Mn 和 Cu。难以避免的金属杂质残留限制了这些体系在药物中的应用。近几年研究者希望能够通过应用非金属催化剂实现苄基的氧化,分子氧被认为是一种理想的氧化剂。有研究者采用O2作为氧化剂建立了从苄基化合物中获得酮的绿色方法[2-7]。但反应时间长,从几十小时到几天不等,效率相对较低。微通道反应器持液量低、高效传热特性可以降低纯氧气与易燃溶剂相互作用时发生局部过热而失控的风险。特别是康宁微反应器独特的内部结构,允许反应物连续分散并充分混合,从而消除了气液反应中的传质限制。传质和温度会影响反应动力学,温度升高反应时间缩短。图2. 反应体系示意图孟教授课题组的苄基催化氧化连续流工艺,选用非金属催化,停留时间54s,获得了高达90.3%的收率,且催化剂和溶剂均可实现循环利用(分别获得了92.6%和94.5%的回收率),且该方法具有很好的底物普适性,为奥卡西平等药物的合成,提供了易于放大的工艺。 研究过程实验以1,2,3,4-四氢萘(1a)的氧化反应为模型反应。对苯基sp3 C - H键进行选择性氧化生成相应的酮类化合物。N-羟基邻苯二甲酰亚胺 (NHPI) 作为催化剂,亚硝酸叔丁酯 (TBN) 作为自由基引发剂。一、反应条件优化研究者选择O2作为氧化剂对溶剂、反应温度、停留时间和物料比等进行了优化实验。1、研究者对溶剂体系进行了考察(图3)通过实验得出最佳溶剂为MeCN和DMK的混合溶剂,该体系仅在54s内便获得最高的收率75.1%(条目7)。图3. 溶剂系统筛选2、接下来分别对反应温度、物料比和停留时间做了优化实验,实验结果见下图:图4. 在微通道反应器中进行的温度和物料比条件优化实验 底物1a的转化率与温度的升高呈正相关。然而在高温条件下,副产物2,3-二氢萘-1,4-二酮(3a)的产率增加。 最佳反应温度为100℃(2a收率80.4%;图4(1))。 TBN的数量和1a的转换之间存在近似线性关系见图4(2).选择最佳1.5摩尔当量的TBN来优化反应选择性。 如图4(3)NHPI增加到0.75摩尔当量后继续增加对反应产率基本没有影响,故选择0.75摩尔当量NHPI。 此外,在间歇反应中NHPI的用量减少到0.2个当量时,反应收率仍可达到75.3%。同时,NHPI几乎可以完全回收而不被消耗。这些结果证明NHPI在反应中起到了催化剂的作用。 最佳的液体−气体流速比为1:20(图4条目1−3)。当液体流速(Vl)为1.0ml/min,氧气流速(Vg)为20ml/min,停留时间54s时收率最高。二、放大实验研究者应用康宁高通量微通道G1反应器进行了放大实验研究。实验显示连续运行28小时,产物2a的总收率为79.5%(1H-NMR),1小时可生产0.87g(图5)。图5:规模化连续流动苄基羰基化三、底物扩展实验结果最后,在优化条件下进行了底物扩展研究实验(图6)。由不同苄基化合物制备相应的各种酮,均获得了较高的收率。 图6. 苄基sp3 C的快速氧化−氢键得到相应的酮基 关于反应机理及催化剂的讨论为了进一步了解可能的反应机理,研究者进行了一系列平行反应(图7)。图8. 反应机理反应条件筛选和提出的自由基反应机理均表明NHPI不会在反应中被消耗。研究者在实验后收集NHPI,来验证其是否可用于回收(图10)。经过4个循环后,收率仍高于78%。本实验证实了NHPI作为自由基转运剂的作用,并进一步表明该工艺具有规模化商业回收的潜力,可有效降低成本。结果讨论 该研究描述了在 MeCN 和 DMK 的混合溶剂中,通过NHPI 和 TBN 催化苄型 sp3 C-H 键的选择性氧化生成相应的酮。反应时间仅为54s,远低于间歇工艺。 作为催化剂的NHPI可以回收利用。多次循环的收率变化在1%以内。 NHPI的回收率也在90%以上。 作者对连续流工艺进行了放大研究,结果显现,在相同的工艺条件下,该工艺可实现安全连续化生产。 通过拓展实验,作者从苄基亚甲基中获得了一系列有价值的酮,收率为 41.2%~90.3%。 利用康宁微反应器进行快速的开发,不但可以对反应机理进行研究,也便于拓展底物,建立化合物库。 康宁反应器无缝放大的技术优势使该工艺具有很大的商业化潜力,特别是对于氧气氧化这一类在釜式工艺中存在较多困难的反应。Reference:[1] Lei Yun, Jingnan Zhao, Xiaofei Tang, Cunfei Ma, Zongyi Yu, and QingWei Meng*. Selective Oxidation of Benzylic sp3 C–H Bonds using Molecular Oxygen in a Continuous-Flow Microreactor Org. Process Res. Dev. 2021, 7, 1612–1618.[2] Dobras, G. Kasperczyk, K. Jurczyk, S. Orlinska, B. NHydroxyphthalimide Supported on Silica Coated with Ionic Liquids Containing CoCl2 (SCILLs) as New Catalytic System for SolventFree Ethylbenzene Oxidation. Catalysts 2020, 10, 252−264.[3] Mukherjee, M. Dey, A. Electron Transfer Control of Reductase versus Monooxygenase: Catalytic C−H Bond Hydroxylation and Alkene Epoxidation by Molecular Oxygen. ACS Cent. Sci. 2019, 5,671−682.[4] Li, J. Bao, W. H. Tang, Z. C. Guo, B. D. Zhang, S. W. Liu, H. L. Huang, S. P. Zhang, Y. Rao, Y. J. Cercosporin-bioinspired selective photooxidation reactions under mild conditions. Green Chem. 2019, 21, 6073−6081.[5] Hwang, K. C. Sagadevan, A. Kundu, P. The sustainable room temperature conversion of p-xylene to terephthalic acid using ozone and UV irradiation. Green Chem. 2019, 21, 6082−6088.[6] Liu, K. J. Duan, Z. H. Zeng, X. L. Sun, M. Tang, Z. L. Jiang,S. Cao, Z. He, W. M. Clean Oxidation of (Hetero)benzylic Csp3−H Bonds with Molecular Oxygen. ACS Sustainable Chem. Eng. 2019, 7,10293−10298.[7] Li, S. L. Zhu, B. Lee, R. Qiao, B. K. Jiang, Z. Y. Visible lightinduced selective aerobic oxidative transposition of vinyl halides using a tetrahalogenoferrate(iii) complex catalyst. Org. Chem. Front. 2018, 5, 380−385.
  • 卫生部公布14种食品添加剂质量规格标准
    根据《中华人民共和国食品安全法》和卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)规定,经审核,现公布磷酸酯双淀粉等14个食品添加剂的质量规格标准。   特此公告。   附件:磷酸酯双淀粉等14个食品添加剂的质量规格标准.doc 一、磷酸酯双淀粉 项目 指标 干燥失重/(g/100g) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/(%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:用三偏磷酸钠或三氯氧磷为酯化剂 二、醋酸酯淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 乙酰基含量/(%) ≤ 2.5 乙酸乙烯酯/ (mg/kg) ≤ (仅限用乙酸乙烯酯作为酯化剂) 0.1 注:用乙酸酐作酯化剂时,其用量不超过8.0%(w/w,占淀粉干基),用乙酸乙烯酯作酯化剂时,其用量不超过7.5%(w/w,占淀粉干基)。 三、辛烯基琥珀酸淀粉钠和辛烯基琥珀酸铝淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 砷/(mg/kg) (以As计) ≤ 0.5 铅/(mg/kg) ≤ 1.0 辛烯基琥珀酸基团/(%) ≤ 3.0 辛烯基琥珀酸残留量/(%) ≤ 0.3 注:生产辛烯基琥珀酸淀粉钠时,辛烯基琥珀酸酐用量不超过3.0%(占淀粉干基,w/w);生产辛烯基琥珀酸铝淀粉时,辛烯基琥珀酸酐用量不超过2.0%,硫酸铝用量不超过2.0%(均为占淀粉干基,w/w)。 四、氧化羟丙基淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯丙醇/(mg/kg) ≤ 1.0 羧基含量/(%) ≤ 1.1 羟丙基含量/(%) ≤ 7.0 注:用次氯酸钠作氧化剂,使用量中的有效氯不超过5.5%(占淀粉干基,w/w),用过氧化氢作氧化剂,使用量中的活性氧不超过0.45%(占淀粉干基,w/w);用环氧丙烷作醚化剂,使用量不超过25%(占淀粉干基,w/w)。 五、羧甲基淀粉钠 项目 指标 干燥失重/(%) ≤ 10 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯化物(以cl计)/(%) ≤ 0.43 硫酸盐(以SO4计)/(%) ≤ 0.96 注:一氯乙酸为醚化剂。 六、淀粉磷酸酯钠 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:用正磷酸、磷酸钠、磷酸钾或三聚磷酸钠酯化。 七、氧化淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 羧基含量/(%) ≤ 1.1 注:用次氯酸钠作氧化剂,使用量中的有效氯不超过5.5%(占淀粉干基,w/w)。 八、酸处理淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 注:采用盐酸、正磷酸或硫酸处理。 九、乙酰化双淀粉己二酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 乙酰基含量/(%) ≤ 2.5 己二酸盐/(%) ≤ 0.135 注:用已二酸酐(用量占淀粉干基不超过0.12%,w/w)交联,乙酸酐(用量占淀粉干基不超过8.0%,w/w)酯化。 十、羟丙基淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/( mg/kg ) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯丙醇/(mg/kg) ≤ 1.0 羟丙基含量/(%) ≤ 7.0 注:用环氧丙烷作醚化剂(用量占淀粉干基不超过25%,w/w)。 十一、磷酸化二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:采用三聚磷酸钠和三偏磷酸钠作酯化剂。 十二、乙酰化二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 铅/(mg/kg) ≤ 1.0砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.14;其他淀粉0.04 乙酰基含量/(%) ≤ 2.5 乙酸乙烯酯残留量/(mg/kg) ≤ (仅限用乙酸乙烯酯作酯化剂) 0.1 注:用乙酸酐作酯化剂时,其用量不超过8.0%(w/w,占淀粉干基),用乙酸乙烯酯作酯化剂时,其用量不超过7.5%(w/w,占淀粉干基)。 十三、羟丙基二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单品淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/(%) ≤ 马铃薯和小麦淀粉0.14;其他淀粉0.04 羟丙基含量/(%) ≤ 7.0 氯丙醇/(mg/kg) ≤ 1.0 注:采用三氯氧磷(用量占淀粉干基不超过0.1%,w/w)或三偏磷酸钠酯化交联,环氧丙烷醚化(用量占淀粉干基不超过10%,w/w)。 十四、聚丙烯酸钠 项 目 指 标 硫酸盐(以SO4计),w/ % ≤ 0.49 重金属(以Pb计)/(mg/kg) ≤ 20.0 砷(以As计)/(mg/kg) ≤ 2.0 残存单体,w/ % ≤ 1.0 低聚合物,w/ % ≤ 5.0 干燥失重,w/ % < 6.0 烧灼残渣,w/ % ≤ 76.0 pH(0.1%水溶液) 8~10 0.2%水溶液粘度 (60rpm.20℃) 250~430 cps 注:生产工艺,丙烯酸+NaOH→中和催化剂→聚合→精制→干燥→粉碎→成品。 分送:各省、自治区、直辖市卫生厅局,新疆生产建设兵团卫生局,部直属各单位。 卫生部办公厅 2010年7月21日印发
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制