当前位置: 仪器信息网 > 行业主题 > >

羟基脱氢醉椒素对照

仪器信息网羟基脱氢醉椒素对照专题为您提供2024年最新羟基脱氢醉椒素对照价格报价、厂家品牌的相关信息, 包括羟基脱氢醉椒素对照参数、型号等,不管是国产,还是进口品牌的羟基脱氢醉椒素对照您都可以在这里找到。 除此之外,仪器信息网还免费为您整合羟基脱氢醉椒素对照相关的耗材配件、试剂标物,还有羟基脱氢醉椒素对照相关的最新资讯、资料,以及羟基脱氢醉椒素对照相关的解决方案。

羟基脱氢醉椒素对照相关的资讯

  • Acclaim Organic Acid—脱氢乙酸峰型拖尾“终结者”
    Acclaim Organic Acid—脱氢乙酸峰型拖尾“终结者”胡金胜食品安全国家标准修订2021年3月26日,国家卫生健康委员会食品安全国家标准审评委员会秘书处发函,对组织起草的《食品添加剂使用标准》等12项食品安全国家标准(征求意见稿)公开征求意见。备受关注的GB 2760时隔多年再次修订,变更的内容涉及到多个常用的食品添加剂,其中防腐剂“脱氢乙酸及其钠盐” 使用规定的修改引发了热议。左右滑动查看GB 2760中脱氢乙酸及其钠盐修订细节 脱氢乙酸及其钠盐作为一种广谱食品防腐剂,毒性较低,对霉菌和酵母菌的抑制能力强,按标准规定的范围和使用量使用是安全可靠的。然而通过汇总近些年来全国各地食品安全监督抽检结果,我们不难发现脱氢乙酸及其钠盐超限量、超范围使用的情况屡有发生。由于脱氢乙酸及其钠盐能被人体完全吸收,并能抑制人体内多种氧化酶,长期过量摄入脱氢乙酸及其钠盐会危害人体健康。随着GB 2760征求意见稿的发布,针对食品添加剂脱氢乙酸及其钠盐,收窄了使用范围,降低了最大使用量,释放了监管部门将进一步加强监管的信号。由于政策信息传递的延迟及生产工艺革新的滞后,部分食品企业可能会面临因脱氢乙酸及其钠盐超限量、超范围使用而被监管部门处罚的风险。 目前,食品检测实验室参照GB 5009.121-2016开展脱氢乙酸的测定也会遇到一系列的难题,其中最突出的问题就是脱氢乙酸峰型拖尾,影响定性和定量结果的准确性。脱氢乙酸属于非羧基酸类,分子结构存在烯醇互变,导致在普通C18 上峰型容易出现拖尾。相关文献显示,通过调节缓冲盐pH(调酸或调碱)和有机相比例可以在一定程度上抑制脱氢乙酸的拖尾,但是在食品安全监督抽查中对于实验室方法的偏离及变更有着较为严格的审核流程,这也是实验室体系管理难以回避的问题。 基于此,赛默飞实验室筛选了一款特色色谱柱—Acclaim Organic Acid,在不变更标准色谱条件的前提下,开展了一系列的验证工作,完美解决了脱氢乙酸峰型拖尾的问题,并且在实际样品分析过程中有着出色的表现。Acclaim Organic Acid有机酸分析专用柱,极性嵌入,专利封端技术,可耐受 100% 水相,PEEK 柱管,可有效消除硅胶表面残余硅羟基及金属柱管内壁与有机酸分子次级作用导致的拖尾。 实验谱图及数据色谱条件液相色谱仪:Vanquish™ Core HPLC 液相色谱系统色谱柱:Acclaim Organic Acid, 5 μm, 4.0×250 mm (P/N: 062902)柱温:30 ℃;进样量:5 µL;流动相:A为20 mM 乙酸铵溶液,B为甲醇洗脱程序:A:B=90:10,等度洗脱流速:0.8 mL/min检测波长:293 nm采样频率:5 Hz采集时间:15 min 分离谱图 脱氢乙酸标准品溶液5.00 μg/mL,保留时间为7.107 min,不对称因子为1.04,理论塔板数为13830。脱氢乙酸在 Acclaim Organic Acid 色谱柱上获得了出色的峰型和优异的灵敏度。图1. 脱氢乙酸标准品溶液色谱图(5.00 μg/mL) 脱氢乙酸标准工作液线性范围为0.50-50.0 μg/mL,线性方程y=0.6283x-0.0141,线性相关系数r2=0.99990,线性关系良好。图2. 脱氢乙酸线性方程图及标准曲线点叠加色谱图(0.50-50.0 μg/mL)以脱氢乙酸峰高为 S,选取 4-6 min 基质噪音的平均值为 N,采用 Chromeleo 数据处理软件计算信噪比 S/N,脱氢乙酸线性低点 0.50 μg/mL信噪比S/N为181.8。实验室可根据实际情况设置合适的线性最低点,以满足方法检出限的要求。图3. 脱氢乙酸线性低点 0.50 μg/mL 色谱图及信噪比脱氢乙酸标准品溶液 1.00 μg/mL 重复进样,保留时间RSD为0.04%,峰面积RSD为0.28%,不对称因子RSD为0.34%,重现性良好。图4. 脱氢乙酸标准品溶液 1.00 μg/mL 6次重复进样叠加谱图在实际样品分析中,面对各种复杂基质的干扰,Acclaim Organic Acid 表现出了非常出色性能。以下谱图分别展示了Acclaim Organic Acid 应用于鸡蛋挂面、猪肉脯、肉松面包、法式小面包及芒果汁中脱氢乙酸的测定。样品前处理方法采用标准推荐的直提法,其中芒果汁样品基质复杂,对流动相比例和柱温进行了适当调整。图5. 鸡蛋挂面中脱氢乙酸的测定图6. 猪肉脯中脱氢乙酸的测定图7. 肉松面包中脱氢乙酸的测定图8. 法式小面包中脱氢乙酸的测定图9. 芒果汁中脱氢乙酸的测定 本试验基于Vanquish™ Core HPLC液相色谱系统,采用Acclaim Organic Acid有机酸分析专用柱,对多种食品基质中脱氢乙酸的测定开展了验证。实验结果表明,Acclaim Organic Acid能够完美解决脱氢乙酸峰型拖尾的问题,有效排除各种复杂样品基质的干扰,为食品实验室准确定性和定量分析脱氢乙酸,提供了一个高效便捷的方法。 那么,有请我们的主角闪亮登场… … 此处应有掌
  • 泡椒凤爪用工业防腐剂? 企业称脱氢醋酸标识有误
    泡椒凤爪又酸又辣,想起来都会流口水,这么好吃的东西竟然传出“有毒”。近日,一条关于泡椒凤爪添加剂有毒的消息在网络里迅速传开。一网友称在一款泡椒凤爪的包装上发现了用于工业防腐剂的“脱氢醋酸”,并质疑这种化学物质对人体健康有害。   【事发】   包装标注出工业防腐剂   近日,网民赵先生在网站发帖称,他在商场购买了一款成都产的泡椒凤爪。而在该食品的包装袋上,他无意间居然看到了用于工业防腐剂和兽药中间体的“脱氢醋酸”。   赵先生专门查询了“脱氢醋酸”的危害,他称这种工业用防腐剂,可快速被人或动物机体吸收,并分布在血浆和各个器官中,抑制多种酶的氧化作用 它在尿排泄的速度相当慢,不应作为“食品防腐剂”使用。   泡椒凤爪用上了工业防腐剂,这可不是闹着玩的。昨日,记者赶紧在杭城几家超市里查看各种泡椒凤爪的配料表。   在杭州体育场路一家小超市里看到,货架上堆放着几十包待售的“有友”牌山椒泡凤爪。翻看包装袋,在配料一栏里标注了十多种食品添加剂,其中同样出现“脱氢醋酸”字样。   而在世纪联华超市望江店,记者看到包括有友、永健、凤巢等牌子的泡椒凤爪标注有“脱氢乙酸钠”,还有些牌子未有标注。   【释疑】   “脱氢乙酸”俗称“脱氢醋酸”   工业用防腐剂怎么跑进食物里了?昨日,记者采访了浙江省食品添加剂协会专家组委员唐家寰。   唐家寰告诉记者,“脱氢醋酸”确实是一种防腐剂,用来抑制霉菌和酵母菌的生长。但是,“脱氢醋酸”难溶于水,一般食品行业都用它的盐类来做防腐剂。   另外,唐家寰称,“脱氢醋酸”是“脱氢乙酸”俗称,今年6月实施的食品添加剂新国标(GB2760-2011)中,“脱氢乙酸及其钠盐”已经列入新国标之中,属于国家允许的食品添加剂,准许添加在熟肉、腌制品等食品内。   随后,记者联系到“有友”牌山椒泡凤爪的生产厂家重庆有友实业有限公司,该公司质检部的龙经理告诉记者,他已经获悉网上盛传关于泡椒凤爪的消息。龙经理解释说,在行业内,企业在食品包装上标注俗名“脱氢醋酸”,但实际上采用的都是脱氢醋酸钠,用作防腐剂。   “脱氢醋酸是一种游离态的物质,单物质存在具有不稳定性,所以食品行业99%都会用它的盐类来当防腐剂。现在消费者出现这样的误区,是我们企业在标识上不够重视导致的。” 龙经理如是说。   【回应】   标注有误纷纷更换包装   “同样这个问题几个月前就有消费者向我们反映了。” 龙经理告诉记者,早有消费者对此产生了质疑,该企业已经在一两个月前就更换了产品包装,新包装袋上标注的是“脱氢醋(乙)酸钠”。   “杭州地区的销售量不及我们本地,本地的新包装基本已经更换完毕,杭州可能还需要两三个月来消化老包装产品。所以,杭州买到的部分有友牌泡椒鸡爪包装袋上可能还会有标脱氢醋酸。”龙经理说,消费者仍可放心食用。   此外,记者了解到,成都当地质监部门对上述网友质疑的厂家进行了检查,发现其生产泡凤爪产品使用的食品添加剂是天润牌“脱氢醋(乙)酸钠”,在其产品包装上标注为“脱氢醋酸”。经检该企业不存在非法添加和滥用食品添加剂的违法行为。但由于没有按标准进行食品添加剂名称标注,该局已经要求企业限期整改。目前已开始更换新的包装。来源:今日早报
  • 中国产学研合作促进会公开征求《NADH氧化酶活力的测定》、《醇脱氢酶活力的测定》、《辣椒素合成酶活力的测定》团体标准意见
    各有关单位、专家:由中国产学研合作促进会归口的《NADH氧化酶活力的测定》、《醇脱氢酶活力的测定》、《辣椒素合成酶活力的测定》团体标准已完成征求意见稿。根据《中国产学研合作促进会团体标准管理办法》,为保证标准的科学性、严谨性和适用性,现公开征求意见,欢迎社会各界对标准内容提出修改意见和建议。请各有关单位组织审阅,并于2024年08月18日之前将修改意见反馈至联系人。逾期未回复,视为认可征求意见稿中相关内容。联系人:蔡晓湛联系电话:15801487546邮箱:yuqi@cspq.org.cn中国产学研合作促进会2024年07月18日附件:附件1-《NADH氧化酶活力的测定》征求意见稿.pdf附件2-《NADH氧化酶活力的测定》编制说明.pdf附件3-《醇脱氢酶活力的测定》征求意见稿.pdf附件4-《醇脱氢酶活力的测定》编制说明.pdf附件5-《辣椒素合成酶活力的测定》征求意见稿.pdf附件6-《辣椒素合成酶活力的测定》编制说明.pdf附件7-征求意见反馈表.docx
  • 毒品分析自动化|快速测定尿样中的氯胺酮和脱氢去甲氯胺酮
    导 语 氯胺酮(俗称“K粉”)属于最常见的毒品种类之一。它是苯环己哌啶的衍生物,属于分离性麻醉剂,吸食氯胺酮可能引发对吸食者肺部,心脏和大脑的永久损害,甚至导致死亡。氯胺酮的代谢产物包括去甲氯胺酮和脱氢去甲氯胺酮,大部分由肾脏排出,尿样等生物样本中的氯胺酮及其代谢物的检测可作为判定是否吸食氯胺酮的重要依据。下面小编带您了解面对大量样本,如何通过自动化前处理快速测定尿液中的毒品。 岛津公司开发的全自动在线前处理系统CLAM-2030与LC-MS/MS联用,可实现对全血、血浆、血清、尿液、唾液等生物样品自动进行蛋白质沉淀操作,然后将上清液自动传输至LC-MS/MS进行定量检测。 在系统中简单放置未加盖的血液采集试管(或样品杯)和预处理小瓶,之后只需发出分析请求,系统便可自动执行从预处理到LCMS分析的所有其他流程步骤。通过LCD触摸屏和无需使用说明的用户操作界面,该系统能够提供可靠、便捷的操作方式,并将由人工操作所导致的操作人员误差降低至最少。 CLAM-2030与LC-MS/MS联用检测尿样中的氯胺酮和脱氢去甲氯胺酮 前处理过程 岛津全自动在线前处理系统CLAM-2030自动前处理过程包括吸取样品、吸取沉淀剂、振摇和过滤,时间约为5 min. 在LC-MS/MS进行分析的同时,自动前处理程序也在同时进行,并且CLAM-2030会根据前处理流程同时处理2-3个样品,即对样品的处理进行到振摇这一步骤时,系统会自动开始序列中下一个样品的处理,如此可以进一步的提高样品分析的通量。 图2. CLAM-2030处理流程 样本分析结果 空白尿样加标0.5 ng/mL氯胺酮和脱氢去甲氯胺酮色谱图如图3所示。在0.2-100 ng/mL的加标浓度范围内,加标曲线线性相关系数均不低于0.9995,不同浓度加标样品重复进样6次,保留时间RSD均小于0.1%,峰面积RSD均小于4.5%,质控样本实测浓度在允许波动范围内。实验结果表明:该方法适合尿样中氯胺酮及其代谢物脱氢去甲氯胺酮的快速定量检测。 图3. 空白尿样加标0.5 ng/mL氯胺酮(左)和脱氢去甲氯胺酮(右)色谱图 使用岛津全自动在线前处理系统CLAM-2030与LC-MS/MS联用,对尿样进行自动前处理,并将得到的样品溶液自动进样后以质谱进行分析,大大降低了人工操作带来的误差以及潜在的生物危害风险。 该方法重复性和准确性均较好,适合尿样中氯胺酮及其代谢物脱氢去甲氯胺酮等毒品的快速定量检测,大大提高实验室运行效率。
  • 华东师大吴鹏团队成功创制高效丙烷脱氢催化新材料
    近日,华东师范大学化学与分子工程学院吴鹏教授团队在分子筛孔道限域金属催化剂高效催化丙烷脱氢领域取得重要进展。面向丙烷脱氢制丙烯这一重要工业反应对高活性、高选择性和高稳定性贵金属催化剂的实际需求,课题组创制了超大微孔硅锗沸石孔道内限域锚定铂(Pt)团簇催化剂,利用沸石骨架金属与Pt的强相互作用,实现了丙烷脱氢高选择性制丙烯反应的长周期运行。2023年6月12日,研究成果以《Germanium-enriched double-four membered-ring units inducing zeolite-confined subnanometric Pt clusters for efficient propane dehydrogenation》为题在线发表于Nature Catalysis上。丙烯是化学工业中最重要的烯烃之一,用于生产多种大宗化学品,包括聚丙烯、丙烯腈、丙烯酸、丙酮和环氧丙烷等。广泛用于丙烷脱氢制丙烯的铂基催化剂面临着制造成本高、容易团聚烧结和高温下催化性能快速失活等诸多问题。因此开发兼具理想催化活性、高选择性及长期耐久性的新型催化剂具有重要的学术和应用价值。吴鹏教授团队开发了一种UTL型硅锗沸石孔道限域的Pt亚纳米团簇型金属催化剂,巧妙利用UTL型分子筛中特殊的富锗双四元环结构(d4r)诱导锚定客体Pt,形成特异性限域于14元环孔道内的亚纳米Pt团簇,构建的主客体双金属结构Pt4-Ge2-d4r@UTL催化剂极大地提升了丙烷脱氢的催化性能,并具有高活性、高丙烯选择性和高耐久性,极具工业应用前景。Pt4-Ge2-d4r@UTL催化丙烷脱氢反应的性能课题组以热/水热结构稳定的Ge-UTL为载体,H2PtCl6为Pt源,采用湿法浸渍制备得到催化剂Pt@Ge-UTL。该催化剂在500oC的反应温度下获得了超过54%的丙烷稳定转化率,99%以上的丙烯选择性。催化剂在不同的丙烷分压,空速以及反应温度下持续稳定催化4200小时。为了满足工业应用需要,课题组还评价了纯丙烷进料、580oC/600oC高温条件下长时间的丙烷脱氢性能,结果表明催化剂具有工业应用前景。亚纳米Pt团簇在UTL孔道内的落位课题组利用积分差分相位衬度成像扫描透射电子显微镜,证实了亚纳米级的Pt团簇特异性地落位在UTL的14元环孔道内,表明Pt在UTL孔道中占据了特定位置,这与14元环孔道具有较大孔尺寸以及骨架Ge在双四元环结构单元的局部富集有关。Pt和Ge的化学状态和配位环境的表征原位XAFS研究表明,最优催化剂Pt-A-2h(31)-R中的Pt物种价态介于0-1之间,线性组合拟合给出了Pt的平均价态为0.576。该催化剂拥有几乎可以忽略的Pt-Pt键散射路径贡献,说明高Ge含量的样品中Pt的尺寸极小(Pt-Pt键配位数大约为3)。重要的是,可以明显观察到位于2.93 Å位置的Ge-O-Pt键的散射路径,且强度很高,证明了Pt是通过Pt-O-Ge键的形式锚定在Ge-UTL沸石上。此外,没有观察到Ge-Ge键的散射路径信号,表明骨架Ge未被还原,仍为原子分散的骨架Ge位点。Ge原子在载体和催化剂中的位置采用19F MAS NMR技术对双四元环结构中的元素组成进行了表征,确认了各种组成的双四元环所占比例并计算出了双四元环结构中Ge含量占整个UTL晶体中Ge含量的95 %左右,表明经酸处理稳固后,样品中的Ge主要位于双四元环结构单元。确定了Pt的定向锚定和落位是通过与双四元环结构中的骨架Ge的化学相互作用来实现的。证明了一种全新的活性位点Pt4-Ge2-d4r@UTL的形成,其可以高效催化丙烷脱氢制取丙烯。丙烷脱氢过程的理论计算结果DFT理论计算和微观动力学模拟结果表明Pt4-Ge2-d4r@UTL结构的计算活化能接近实验值,且远低于Pt(111)的活化能。这归因于Pt4-Ge2-d4r@UTL结构可以有效降低第一步脱氢的能垒,这是整个PDH反应的速率决定步骤,从而提高丙烷脱氢反应速率。吴鹏教授课题组长期聚焦于新型沸石分子筛催化材料的设计及环境友好石油化学化工过程的研究。华东师大化学与分子工程学院博士后马跃为论文的第一作者,华东师大化学与分子工程学院吴鹏教授、徐浩教授、关业军教授,以及中国石油大学(北京)宋卫余教授、内蒙古大学张江威研究员、阿卜杜拉国王科技大学韩宇教授为共同通讯作者。合作单位包括石油科学研究院、崇明生态研究院、重庆大学、中国石油大学(北京)、内蒙古大学、华南理工大学以及阿卜杜拉国王科技大学。
  • 中国产学研合作促进会立项《醇脱氢酶活力的测定 分光光度法》等团体标准
    各有关单位:根据《中国产学研合作促进会团体标准管理办法》有关规定,《醇脱氢酶活力的测定 分光光度法》、《辣椒素合成酶活力的测定》、《NADH氧化酶活力的测定 分光光度法》团体标准经中国产学研合作促进会标准化工作办公室及相关专家技术审核,符合立项条件,现批准立项。请标准起草单位对标准质量严格把关,广泛听取意见,按计划递交标准征求意见稿。为使该立项标准的制订更加科学合理,欢迎与立项标准有关的科研、使用、管理单位或专业技术人员参加该项标准的编制工作。如有单位或者个人对该标准项目存在异议,请在公告之日起30日内将意见反馈至中国产学研合作促进会标准化工作办公室。 联系人:蔡晓湛电 话:010-58811017、15801487546邮 箱:yuqi@cspq.org.cn 中国产学研合作促进会标准化工作办公室2024年05月22日
  • 新品上市 | 固态发酵食醋中对羟基苯甲酸酯类色谱检测预处理方法包
    对羟基苯甲酸酯类作为食品防腐剂被广泛应用在各类食品中,其中对羟基苯甲酸甲酯(MP)、对羟基苯甲酸乙酯(EP)、对羟基苯甲酸丙酯(PP)和对羟基苯甲酸丁酯(BP)一直是国家食品安全检测抽查的重点项目,并且MP和EP在酱油和醋中的zui大添加限量(以对羟基苯甲酸计)均为250mg/kg。国标中预处理技术存在的问题现行的《食品安全国家标准 食品中对羟基苯甲酸酯类的测定》(GB 5009.31-2016)中,针对气相色谱法检测的样品预处理技术主要是多次液液萃取+液液洗涤的技术,该方法操作繁琐、检测耗时长、有机溶剂消耗量大(其中包括消耗大量的易制毒化学试剂),且回收率较低、稳定性差,另外净化效果也不佳,往往存在着干扰检测的杂质成分。月旭科技针对固态发酵食醋这种复杂基质食品,开发出了固态发酵食醋中对羟基苯甲酸酯类色谱检测预处理专用方法包,这个方法包所采用的双柱SPE法可实现高效、稳定可靠地从各种复杂基质的固态发酵食醋中提取、分离和净化4种对羟基苯甲酸酯类(对羟基苯甲酸甲酯、乙酯、丙酯和丁酯),大幅度减少对色谱柱及色谱管路污染、甚至堵塞情况,可以很好地保护色谱系统。提取液:从食醋样品中提取对羟基苯甲酸酯类;提取吸附剂:吸附食醋样品中的大颗粒杂质;萃取液:使对羟基苯甲酸酯类提取液中的杂质沉淀分离;萃取管:管中的吸附剂可吸附萃取时沉淀的杂质;净化专用SPE柱(双柱):吸附食醋中不同种类的色素;SPE淋洗液:将被SPE柱吸附的杂质淋洗出来;SPE洗脱液:将被SPE柱吸附的目标物洗脱下来。主要操作流程1)食醋样品称量:准确称取5g食醋样品;2)分离提取:使用“提取液”和“提取吸附剂”,振荡分离提取;3)萃取:取试样提取上清液进行萃取,使用“萃取管”和“萃取液”,类似于QuEChERS的操作;4)净化:使用双柱串联的“净化专用SPE柱”,上样用“SPE淋洗液”和“SPE洗脱液”进行SPE操作,洗脱液收集后旋蒸蒸干;5)残留样品用溶剂复溶,过滤后上色谱检测。1) 气相色谱柱分析柱:WM-5色谱柱,柱长30m,内径0.32mm,膜厚0.25μm,月旭科技(货号:03902-32001);2)进样口:温度260℃,分流比1:10,进样量1μL;3)升温程序:4)检测器:氢火焰离子化检测器(FID),温度:280 ℃;5)载气:氮气,纯度≥99.999 %,流速2.0mL/min;6)检测色谱图:1) 液相色谱柱分析柱:Ultimate® XB-C18色谱柱,4.6mm×250mm,5μm,月旭科技(货号:00201-31043);保护柱:Ultimate® XB-C18,4.6mm×10mm,5μm,月旭科技(货号:00808-04001)(配不锈钢保护柱柱套,月旭科技,货号:00808-01101);2)流动相:A相:含1%乙酸的40%乙腈水溶液;B相:含1%乙酸的乙腈;3)梯度洗脱程序:4) 流速:1.0mL/min;5) 检测波长:260nm;6) 柱温:35℃;7) 进样体积:1~20μL(视目标物浓度而定)。8) 检测色谱图:
  • 新品上市 | 液态发酵食醋中对羟基苯甲酸酯类色谱检测预处理方法包
    对羟基苯甲酸酯类作为食品防腐剂被广泛应用在各类食品中,其中对羟基苯甲酸甲酯(MP)、对羟基苯甲酸乙酯(EP)、对羟基苯甲酸丙酯(PP)和对羟基苯甲酸丁酯(BP)一直是国家食品安全检测抽查的重点项目,并且MP和EP在酱油和醋中的zui大添加限量(以对羟基苯甲酸计)均为250mg/kg。月旭科技之前已推出了酿造酱油和固态发酵食醋中对羟基苯甲酸酯色谱检测预处理方法包,此次针对液态发酵食醋,新研发推出了液态发酵食醋(如白醋、米醋等液态发酵工艺的食醋)中对羟基苯甲酸酯类色谱检测样品预处理方法包,其操作步骤相较前两种食品的方法包更为简单,但净化效果依旧很好,可实现从食醋样品中同时提取、分离、净化这4种对羟基苯甲酸酯类(对羟基苯甲酸甲酯、对羟基苯甲酸乙酯、对羟基苯甲酸丙酯和对羟基苯甲酸丁酯),以用于气相色谱和液相色谱技术对这些防腐剂的检测。样品稀释液:将食醋样品溶解稀释以备上样;净化专用SPE柱:吸附食醋中的杂质;SPE淋洗液:将被SPE柱吸附的杂质淋洗出来;SPE洗脱液:将被SPE柱吸附的目标物洗脱下来;洗脱净化管:进一步吸附残留杂质并除水;萃取液:将洗脱收集液中的目标物萃取出来。1)食醋样品称量:准确称取5g食醋样品;2)稀释溶解:使用“样品稀释液”,稀释溶解食醋样品;3)净化:使用“净化专用SPE柱”,用“SPE淋洗液”和“SPE洗脱液”进行SPE操作,洗脱液收集在“洗脱净化管”内,然后氮吹浓缩;4)萃取:使用“萃取液”,类似于QuEChERS的操作,上清液收集后旋蒸蒸干;5)残留样品用溶剂复溶,过滤后上色谱检测。1) 气相色谱柱分析柱:WM-5色谱柱,柱长30m,内径0.32mm,膜厚0.25μm,月旭科技(货号:03902-32001);2)进样口:温度260℃,分流比1:10,进样量1μL;3)升温程序:4)检测器:氢火焰离子化检测器(FID),温度:280℃;5)载气:氮气,纯度≥99.999%,流速2.0mL/min;6)检测色谱图:1) 液相色谱柱分析柱:Ultimate® XB-C18色谱柱,4.6mm×250mm,5μm,月旭科技(货号:00201-31043);保护柱:Ultimate® XB-C18,4.6mm×10mm,5μm,月旭科技(货号:00808-04001)(配不锈钢保护柱柱套,月旭科技,货号:00808-01101);2)流动相:A相:含1%乙酸的40%乙腈水溶液;B相:含1%乙酸的乙腈;3)梯度洗脱程序:4) 流速:1.0mL/min;5) 检测波长:260nm;6) 柱温:35℃;7) 进样体积:1~20μL(视目标物浓度而定)。8) 检测色谱图:
  • 福建省食品企业商会发布《食品中安赛蜜的测定 液相色谱法》、《食品中苯甲酸、山梨酸、糖精钠和脱氢乙酸 的测定》等3项团体标准征求意见稿
    福建省食品企业商会发布《食品中安赛蜜的测定 液相色谱法》、《食品中苯甲酸、山梨酸、糖精钠和脱氢乙酸 的测定》、《非即食薯类粉》团体标准征求意见稿《非即食薯类粉》团体标准征求意见函.pdf《食品中安赛蜜的测定 液相色谱法》团体标准征求意见函.pdf《食品中苯甲酸、山梨酸、糖精钠和脱氢乙酸的测定》团体标准征求意见函.pdf
  • 重组益生菌能减轻饮酒后肝脏和肠道的急性损伤!
    2023年4月11日,中国科学院大学、新乡医科大学、河北医科大学的研究人员在 Microbiology Spectrum 期刊上发表了一篇题为" Oral Probiotic Expressing Human Ethanol Dehydrogenase Attenuates Damage Caused by Acute Alcohol Consumption in Mice "的研究论文。 研究人员开发了一种解酒神器,一种表达人类ADH1B的益生菌,在小鼠模型中,可减少酒精吸收,延长酒精耐受时间,并缩短饮酒后的恢复时间。重要的是,还能减轻饮酒后肝脏和肠道的急性损伤。 众所周知,喝酒后,酒精在肝脏中被乙醇脱氢酶(ADH)和乙醛脱氢酶(ALDH)依次分解。乙醇脱氢酶会将乙醇分解成危害较小的化合物乙醛,进而由乙醛脱氢酶将乙醛分解为二氧化碳和水。 这两种酶基因变异会降低一个人对酒精的耐受性,与饮酒后面部发红有关,缺少它会降低人体分解乙醛的能力,从而导致乙醛在血液中积聚,从而引起人体对毒素的反应,即喝酒上脸。ALDH2突变在东亚人群中十分普遍。延长酒精耐受时间 在该研究中,研究人员对乳酸乳球菌进行基因改造,这是一种用于生产酪乳和奶酪的益生菌,乳酸乳球菌被设计用于产生人类 ADH1B 酶。 进一步,研究人员在小鼠身上测试了改良益生菌的解酒能力。延长酒精耐受时间 研究发现,在用表达 hADH1B 的益生菌处理的小鼠中,酒精耐受时间显著延长,即从饮酒到丧失运动能力的时间。对照组小鼠在20分钟内都失去了站立能力,而益生菌组近一半的小鼠在饮酒1小时后仍然能够移动。这表明,益生菌有效地增强了急性酒精耐受性,并增加了急性中毒的酒精摄入阈值。快速 此外,研究人员还分析了小鼠喝酒后的恢复时间。正常情况下,小鼠醉酒后需要6-10小时才能恢复。缩短饮酒后的恢复时间 研究发现,表达 hADH1B 的益生菌可以缩短饮酒后的恢复时间,用益生菌治疗的小鼠在5.5小时后恢复了运动能力,而对照组则需要6.4小时恢复。减轻酒后肝脏和肠道损伤 酒精主要在肠道中被吸收,最终被送到肝脏分解。因此,肠肝轴在调节乙醇代谢方面发挥着重要作用,肠道和肝脏也是饮酒后最直接受损的器官。 为了检测两组小鼠的急性中毒,研究人员观察了小鼠肠道的粘膜损伤。发现对照组杯状细胞更肥大,而益生菌组减轻了急性饮酒的致病作用,表明肠道对酒精的吸收减少。减轻酒后肝脏和肠道损伤 研究人员还测量了小鼠醉酒后血液中的酒精含量,发现醉酒2小时后,对照组酒精含量继续增加,而益生菌组呈显著下降趋势,且低于对照组。还发现益生菌治疗降低了血液甘油三酯浓度,同时降低了肝脏中的脂质水平。 这表明,用益生菌治疗可以减轻急性饮酒引起的肠道损伤,并降低肝脏和血液中的脂肪含量。综上,研究人员发现的重组益生菌可在肠道内直接表达hADH,可快速解酒,有效降低酒精对肝脏和肠道的损伤。这种益生菌安全且成本低,为未来治疗和预防酒精的负面影响提供了新的策略. DOI : https://doi.org/10.1128/spectrum.04294-2
  • 真的有“0添加”防腐剂化妆品?智商税!
    我们常用的化妆品,如护肤、彩妆、洗护类产品,由水、油脂和营养物质组成,是微生物增生、繁殖的培养基地,极易变质腐败。为了延长化妆品使用寿命,在生产的过程中需加入适量的防腐剂。根据文献资料和新闻报道,绝大多数化妆品所谓的“0添加”只是没有添加《化妆品安全技术规范》中列出的防腐剂,而是使用了其他替代防腐剂,且这类物质使用时间较短,其副作用还暂不明确。 2015版《化妆品安全技术规范》中规定了51种准用防腐剂及最大允许浓度,较常用的有苯氧乙醇、苯甲酸钠、对羟基苯甲酸酯类、甲基异噻唑啉酮等。某护手霜成分表 如何检测化妆品中防腐剂? 防腐剂是一把双刃剑,过量的或不适合自身肤质的防腐剂可能会导致过敏性皮炎、肝脏毒性、类激素作用等副作用。 2021年3月国家药品监督管理局发布《化妆品中防腐剂检验方法》(2021年第17号通告),与2015版《化妆品安全技术规范》中绝大部分准用防腐剂一一对应,检测仪器有液相色谱仪和气相色谱仪,如有阳性检出或测试结果存在干扰因素,可采用三重四极杆液相色谱-质谱仪、气相色谱-质谱仪进行确证。 《化妆品安全技术规范(2015年版)》准用防腐剂与检验方法对照表岛津解决方案 岛津公司拥有丰富的色谱质谱产品,性能优越,操作简便,可以应对化妆品中防腐剂的检测。 检验方法 液相色谱法检测化妆品中23种防腐剂色谱柱:Shim-pack GIST C18,250mm x 4.6mm x 5μm流动相:A 0.12%磷酸水溶液 B乙腈流速:1 mL/min,柱温:30℃检测波长:230nm、254nm、280nm进样体积:10 μL洗脱程序:梯度洗脱 色谱图(1. 甲基异噻唑啉酮、2. 2-溴-2-硝基丙烷-1,3-二醇、3. 4-羟基苯甲酸、4. 甲基氯异噻唑啉酮、5. 苯甲醇、6. 苯氧乙醇、7. 苯甲酸、8. 4-羟基苯甲酸甲酯、9. 氯苯甘醚、10. 脱氢乙酸、11. 5-溴-5-硝基-1,3-二噁烷、12. 4-羟基苯甲酸乙酯、13. 4-羟基苯甲酸异丙酯、14. 4-羟基苯甲酸丙酯、15. 4-羟基苯甲酸苯酯、16. 4-羟基苯甲酸异丁酯、17.4-羟基苯甲酸丁酯、18. 4-羟基苯甲酸苄酯、19.苯甲酸乙酯、20. 4-羟基苯甲酸戊酯,21. 苯甲酸异丙酯、22. 苯甲酸丙酯、23. 苯甲酸苯基酯) 气相色谱法检测化妆品中26种防腐剂色谱柱:Rxi-wax,60m×0.32mm×0.25μm柱温程序:50℃(1 min)_50℃/min_ 120℃ _5℃/min_195℃(3 min)_20℃ /min_220℃(10min)_20℃/min_240℃ (15 min)进样方式:分流进样(分流比为5:1)检测器温度:250℃ 色谱图(1. 丙酸、2. 三氯叔丁醇、3. 苯甲酸甲酯、4.苯甲酸异丙酯、5. 苯甲酸乙酯、6. 苯甲酸丙酯、7. 苯甲酸异丁酯、8. 苯甲酸异丁酯、9. 苯甲醇、10. 甲基氯异噻唑啉酮、11. 苯氧异丙醇、12. 甲基异噻唑啉酮、13. 山梨酸、14. 苯氧乙醇、15. 苯甲酸、16. 十一烯酸、17. 对氯间甲酚、18. 氯二甲酚、19. 邻苯基苯酚、20. 4-羟基苯甲酸甲酯、21. 4-羟基苯甲酸异丙酯、22. 4-羟基苯甲酸乙酯、23. 4-羟基苯甲酸丙酯、24. 4-羟基苯甲酸异丁酯、25. 4-羟基苯甲酸丁酯、26. 4-羟基苯甲酸戊酯) 确证方法 三重四极杆液相色谱-质谱法检测化妆品中34种防腐剂 色谱柱:Shim-pack GIST C18,50mm x 2.1mmx 2μm流动相1:A相-5 mM乙酸铵;B相-甲醇流动相2:A相-5 mM乙酸铵(含0.1%甲酸) B相-甲醇流速:0.3 mL/min洗脱方式:梯度洗脱离子化模式:ESI +/- 同时扫描离子源接口电压:4.0 kV雾化气:氮气 3.0 L/minDL温度:250℃扫描模式:多反应监测(MRM) 色谱图流动相1:(1. 水杨酸、2. 甲基异噻唑啉酮、3. 苯甲酸、4. 2-溴-2硝基丙烷-1,3-二醇、5. 4-羟基苯甲酸、6. 脱氢乙酸、7. 甲基氯异噻唑啉酮、8. 硫柳汞、9. 4-羟基苯甲酸甲酯、10. 4-羟基苯甲酸乙酯、11. 4-羟基苯甲酸异丙酯、12. 对氯间甲酚、13. 碘丙炔醇丁基氨甲酸酯、14. 4-羟基苯甲酸丙酯、15. 4-羟基苯甲酸苯酯、16. 邻苯基苯酚、17. 氯二甲酚、18. 4-羟基苯甲酸异丁酯、19. 4-羟基苯甲酸丁酯、20. 4-羟基苯甲酸苄酯、21. 氯咪巴唑、22. 十二烷基三甲基溴化铵、23. 4-羟基苯甲酸戊酯、24. 苄氯酚、25. 十二烷基二甲基苄基氯化铵、26. 苄索氯铵、27. 溴氯酚、28. 三氯卡班、29. 三氯生、30. 十四烷基二甲基苄基氯化铵、31. 十六烷基二甲基苄基氯化铵、32. 海克替啶) 流动相2:(1. 己咪定二(羟乙基磺酸)盐、2. 氯己定) 部分同分异构体色谱图气相色谱-质谱法检测化妆品中19种防腐剂色谱柱:InertCap Pure-WAX,30 m×0.25 mm×0.25 μm柱温程序:40℃(1 min)_40℃/min_80℃_10℃/min_230℃(1 min) _10℃/min_260℃(5 min)色谱柱流量:1 mL/min进样方式:分流进样(分流比为5:1)采集模式:SIM 色谱图(1. 甲酸、2. 丙酸、3. 三氯叔丁醇、4. 苯甲酸甲酯、5. 苯甲酸异丙酯、6. 苯甲酸乙酯、7. 苯甲酸丙酯、8. 苯甲酸异丁酯、9. 苯甲酸丁酯、10. 苯甲醇、11. 苯氧异丙醇、12. 山梨酸、13. 苯氧乙醇、14. 2,6-二氯苯甲醇、15. 邻伞花烃-5-醇、16. 2,4-二氯苯甲醇、17. 十一烯酸、18. 苯甲酸苯基酯、19. 氯苯甘醚) 结语 其实,为了抑制细菌繁殖,绝大多数化妆品都会添加防腐剂。防腐剂种类繁多,涉及多种检测仪器,利用岛津LC、GC可以准确测定防腐剂含量,如存在不确定因素,可用岛津LC-MS/MS和GC-MS进行定性定量确证,符合法规要求,助您高效准确识别化妆品中防腐剂。 撰稿人:郑嘉
  • 血清(浆)类固醇激素液相色谱-串联质谱检测质量保证专家共识发布
    液相色谱-串联质谱(LC-MS/MS)在人体血清(浆)类固醇激素检测中展现出优于传统免疫学方法的特异性高、分析测量范围宽、多标志物同时检测等特点,已成为国际内分泌学领域相关疾病实验室诊断的首选方法。目前,国内医学实验室开展血清(浆)类固醇激素LC-MS/MS检测多参考已发表学术论文和仪器厂家说明书提供的通用操作和检测程序。然而,血清(浆)类固醇激素LC-MS/MS检测的技术难度大,临床实验室检验人员大多数缺少质谱领域专业培训和实践经验,而通用程序缺乏针对性和实操性,尤其我国尚无针对该检测程序和质量保证的系统性文件,导致实验室间检测结果存在较大差异,阻碍了该技术的临床应用。为规范我国血清(浆)类固醇激素LC-MS/MS检测,共识从检验前、中、后程序及其质量保证进行详细说明,并提出针对性建议,为实验室开展该检测项目提供参考,以推动我国血清(浆)类固醇激素LC-MS/MS检测的临床应用和结果一致性。  类固醇激素是一类具有环戊烷多氢菲母核的脂肪烃化合物,根据化学结构及生理功能可分为肾上腺皮质激素(糖皮质激素、盐皮质激素)、性激素(雌激素、雄激素、孕激素)及维生素D [ 1 ] ,在人体生长发育、能量代谢、免疫调节、生育功能调节等方面发挥重要作用。血清(浆)类固醇激素异常与先天性肾上腺皮质增生(congenital adrenal hyperplasia,CAH)、原发性醛固酮增多症、库欣综合征、多囊卵巢综合征(polycystic ovary syndrome,PCOS)、儿童发育延迟或性早熟等多种内分泌疾病密切相关 [ 2 ] ,因此其检测广泛应用于多种内分泌疾病的临床研究、诊断以及健康评估。传统免疫学方法尽管自动化程度高,但特异性相对不足,且线性范围窄,难以实现精准检测。液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry,LC-MS/MS)具备特异性高、分析测量范围宽等性能优势,且能在短时间内同时准确测定多种类固醇激素及中间代谢产物,是目前精准、全面定量分析血清(浆)类固醇激素的首选方法 [ 3 , 4 ] 。  尽管已有众多研究报道多种类固醇激素的LC-MS/MS检测,包括方法开发和优化 [ 5 , 6 ] 、生物参考区间建立 [ 7 ] 等,国外已有针对血清(浆)雄激素、雌激素LC-MS/MS检测程序的指南 [ 8 ] ,国内有LC-MS/MS临床应用通用建议共识及25羟-维生素D和雄激素LC-MS/MS检测的共识 [ 9 , 10 , 11 ] ,但依然缺乏涵盖检验前、中、后阶段的LC-MS/MS检测操作程序和质量保证的指南和共识。基于此,为规范我国血清(浆)类固醇激素LC-MS/MS检测,中国质谱学会临床质谱专家委员会组织专家参阅国内外相关文献并结合临床应用经验,面向医学实验室临床质谱检验人员,针对肾上腺皮质激素和性激素LC-MS/MS分析全流程的质量保证进行详细说明并提出建议,为实验室开展血清(浆)类固醇激素检测项目提供参考,以推动我国血清(浆)类固醇激素检测的临床应用和结果一致性,提升我国类固醇激素异常相关疾病的精准诊断能力。  01血清(浆)类固醇激素LC-MS/MS检验前质量保证  (一)标本采集  人体类固醇激素浓度受多种因素影响,包括昼夜节律、生理周期、采血体位和药物等,应根据临床具体需求和激素水平影响因素,制定合理采样流程,并推荐给标本采集人员和患者。例如:皮质醇分泌通常在清晨6:00—8:00达到峰值浓度,因此峰值监测推荐清晨采集患者血液标本 连续监测则采样时间点应相对固定 [ 12 ] 醛固酮仰卧位采血比直立位采血检测结果低50% [ 13 ] 女性患者进行血清(浆)雌激素检测时需明确卵泡期、黄体期等信息,对于无规律月经周期女性,需明确绝经(特别是早绝经)原因,如自然绝经、外科手术、辐射、药物作用等 [ 14 , 15 ] 。  含有分离胶的促凝管中存在睾酮干扰峰,且分离胶可吸收类固醇激素,标本体积和储存时间也可不同程度影响检测结果 [ 16 ] 。新生儿CAH二级筛查中,EDTA采血管可导致17α-羟孕酮、雄烯二酮及11-脱氧皮质醇的LC-MS/MS检测结果偏高,造成假阳性 [ 17 ] 。另外,更换采血管品牌或批号也可能影响待测物色谱峰分离度,应制定包括峰分离度、保留时间漂移范围等色谱参数的可接受标准,以监测潜在干扰峰的影响强弱及变化。  建议1 针对有昼夜和/或周期节律的类固醇激素,实验室应根据其临床预期用途,指导患者和采血人员选择合适的采血时机,例如清晨采血检测皮质醇、睾酮水平,卵泡期采血检测雌激素水平。推荐采用不含分离胶的血清(浆)采血管采集标本,新生儿二级CAH筛查推荐采用肝素抗凝剂采血管。  (二)标本保存和运输  实验室应根据类固醇激素质谱检测的标本保存条件及检测频率进行标本的稳定性验证 [ 18 ] 。标本稳定性验证实验应至少包括环境温度、冷藏和/或冷冻条件下的稳定性,如果标本存在冻存后复查的可能,还需考察反复冻融对标本稳定性的影响。另外,标本采集、运输及前处理阶段的稳定性也需进行评估。标本稳定性实验均需使用新鲜血清(浆),通过比较新鲜采集和保存后的血清(浆)标本检测结果评估其稳定性。  如果实验室根据参考文献报道或试剂说明书设置标本保存条件,需包含明确的稳定性、标本类型、类固醇激素浓度、保存温度范围、保存时间以及保存后标本浓度较新鲜标本的变化百分比。为确保标本保存后类固醇激素检测结果“稳定”或“无明显变化”,需明确测量程序、含量计算程序及含量变化的可接受范围。如果这些信息缺失,实验室应自行建立标本稳定性的可接受条件。  建议2 实验室应根据标本保存的实际需求,使用新鲜标本对来自文献报道或试剂说明书的标本稳定性进行验证,或自建稳定性可接受的标本保存条件。建议血清(浆)标本中类固醇激素稳定保存的条件及时间见 表1 。  02 血清(浆)类固醇激素LC-MS/MS检验质量保证  (一)标本前处理  标本前处理方法取决于待测物的理化性质、灵敏度要求和分析方法。其目的是将待测物从血清(浆)及其他潜在干扰物质中分离、提取、纯化,并实现对待测物的浓缩。大多数糖皮质激素(如17α-羟孕烯醇酮、17α-羟孕酮、11-脱氧皮质醇、皮质醇、可的松)和盐皮质激素(如孕烯醇酮、孕酮、脱氧皮质酮、皮质酮)为疏水结构,均可与相应转运蛋白结合存在于血液中,游离形式约占1%。但血液中,约50%醛固酮以游离形式存在。睾酮和雌二醇与白蛋白结合力弱,与性激素结合球蛋白(sex hormone binding globulin,SHBG)结合力强,2%~4%睾酮呈游离形式,60%~75%睾酮与SHBG结合,20%~40%睾酮与白蛋白结合 [ 1 ] 。平衡透析可去除血中结合型类固醇激素进而检测游离型激素水平,但测量程序要求更高的灵敏度。如果结合型类固醇在水解前无法被直接检测,则需水解后进行检测,并明确结合型类固醇是否完全水解,且水解步骤不会导致类固醇降解,如硫酸雌酮在提取之前需通过水解酶获得游离型雌酮。亲脂性性激素(雄烯二酮、睾酮、双氢睾酮、雌酮、雌二醇、雌三醇)较亲水性性激素(硫酸脱氢表雄酮、硫酸雌酮)在血液中浓度低,因此亲脂性性激素的LC-MS/MS测量程序通常需要更复杂的标本前处理以消除基质干扰并浓缩待测物以达到理想的定量限(limit of quantification,LOQ)。  血清(浆)类固醇激素LC-MS/MS检测的标本前处理流程通常包括:(1)取等量临床标本、标准品、质控品和基质空白 (2)加入内标物 (3)提取 (4)纯化 [ 19 ] 。对易氧化的类固醇激素,前处理时需尽可能避免发生氧化以防待测物降解及产生干扰物。例如,在样品浓缩时使用惰性气体(如氮气),而非加热真空离心浓缩。去除可能干扰检测或影响前处理的物质后,宜将分析物转移到液相色谱流动相洗脱溶剂中,保持初始浓度比例,以备后续分析。推荐使用与待测物具有相似结构和离子化性质的同位素标记物(或结构类似物)作为类固醇激素LC-MS/MS检测内标物,例如氘代或 13C标记的类固醇。通过比较已知浓度内标物与待测物的信号,校正样本前处理、色谱分离、离子化过程及基质效应所产生的误差。类固醇激素的同位素内标物大多为商品化试剂,如无商品化试剂,应优先选择使用非内源性但与待测物结构类似的合成类固醇作为内标物,并确保内标物与待测物具有相同或相近保留时间。内标物的相对分子质量应至少比相应待测物大3,氘代或 13C标记数量控制在7,化学纯度应≥98%,同位素内标物纯度≥97%。  内标物需加入到所有校准品、质控品和待测标本中,且应在提取或纯化步骤之前或同时加入。加入内标物后需静置足够长的时间(通常15~30 min)以平衡内标物与结合蛋白的相互作用,抵消因蛋白结合导致的检测浓度偏低,如睾酮和睾酮-d 3需30 min完成平衡(22 ℃)。内标物的质谱信号强度应在不同分析批次中保持稳定,平衡时间不足可能会导致内标物信号强度不稳定。  建议3 使用与待测物有相同理化性质的商品化同位素标记物作为类固醇激素LC-MS/MS检测内标物( 表2 ),浓度设置在校准曲线的中浓度或医学决定水平附近,实验室应制定内标物信号强度波动的批间可接受范围。  血液中存在的大量蛋白质、多肽、小分子化合物等可引起LC-MS/MS的离子源和检测器饱和,导致离子抑制或分辨率不足,干扰检测结果。因此,LC-MS/MS分析前应提取待检测物,去除无机化合物(如盐)、蛋白质、脂质(如甘油三酯)和磷脂等物质的干扰,提高检测灵敏度、重复性和稳定性。  LC-MS/MS分析标本的提取方法包括蛋白沉淀(protein precipitation,PPT)、液液萃取(liquid-liquid extraction,LLE)、固相萃取(solid-phase extraction,SPE)等。PPT利用蛋白沉淀剂使蛋白变性沉淀,离心后直接取上清液进行检测,不适用于含量较低或有蛋白结合特性的类固醇激素。LLE利用溶剂的相似相溶原理,将目标化合物从液体混合物中分离出来,因操作繁琐且需要消耗大量有机溶剂,故临床常用固相支撑液液萃取(supported liquid extraction,SLE)替代传统LLE,降低有机溶剂消耗。而SPE采用固体颗粒色谱填料(通常填充于小柱型装置中)对样品不同组分进行化学分离,较SLE具有更优的去磷脂干扰能力,是类固醇激素标本提取的首选方法,但也具有操作步骤多、成本高等缺点。针对类固醇激素的不同极性,脂溶性激素通常选择亲脂基团填料的SPE方法萃取待测物,非脂溶性激素选择亲水基团或阴阳离子交换填料的SPE方法萃取待测物。为进一步去除与待测物共同洗脱的干扰物,可联合LLE和SPE,或吹干提取物后用不同溶剂重新提取。其中,通过高效液相色谱(high performance liquid chromatography,HPLC)可在线进行SPE,以减少手工操作,节省时间和人力成本,但目前尚无多种类固醇激素在线SPE提取解决方案。也有通过使用单个或多个提取柱串联色谱柱,如提取/上样柱、一次性SPE柱、二维色谱,提高色谱分离效率和检测灵敏度,使血清(浆)标本无需或只需经简单蛋白沉淀处理即可进行分析。  建议4 根据待测类固醇激素理化性质及测量灵敏度要求推荐使用SLE或SPE标本提取方法。  (二)类固醇激素LC-MS/MS定量分析  LC-MS/MS通过结合HPLC的高效分离浓缩能力与三重四极杆质谱的高特异性和高灵敏度定量性能,准确测量标本中浓度极低、理化性质相似的类固醇激素,其特异性较免疫学分析明显提高。  1. HPLC分离:HPLC是一种基于待测物在固定相和流动相中具有不同分配系数的分离技术。通常使用对非极性分子具有高亲和力的非极性固定相(如 18C、五氟苯基等)色谱柱分离类固醇激素 [ 20 ] ,通过流动相极性变化将吸附于色谱柱上的类固醇激素重新溶于流动相,从而实现逐步洗脱分离。通过开发精密的流动相梯度洗脱程序和使用适合的色谱柱可以分离结构非常相似的类固醇激素及其代谢物,包括一些同分异构体(如21-脱氧皮质醇、11-脱氧皮质醇)。通过依次洗脱标本中所有待测物,降低检测信号的复杂度,分离组分信号随时间出现一组近似高斯分布的色谱峰群,生成检测信号强度随时间变化的色谱图。另外,流动相中通常加入挥发性添加剂(如0.01 mol/L甲酸铵、0.1%甲酸),其浓度不应超过0.5%,以增强化合物离子化,而不应含非挥发性流动相添加剂。色谱柱可选择粒径较小的分离柱,实现短时间内更好的分离效果,也可根据文献综合选择。色谱柱应在寿命期限内使用,并根据检测量、峰型、保留时间、分离度、柱压等参数判断是否需要更换。实验室应做好色谱柱的日常维护,在每日检测结束后进行日常冲洗程序,并最终将色谱柱保持在95%及以上的甲醇或乙腈中,尽可能地延长色谱柱的使用寿命及使用质量。  建议5 为有效分离结构相似的类固醇激素及其代谢产物,推荐实验室使用 18C或五氟苯基填料,色谱柱粒径≤3 μm,有机相梯度洗脱程序:0.5~4.0 min,40%~55% 4.0~6.5 min,55%~75% 6.5~7.5 min,75%~99%。  2. 串联质谱检测:类固醇激素LC-MS/MS测量程序使用的离子源主要包括电喷雾电离(electrospray ionization,ESI)和大气压化学电离(atmospheric pressure chemical ionization,APCI)。在常规临床检测中,醛固酮、皮质醇、11-脱氧皮质醇、21-脱氧皮质醇、可的松、睾酮、孕酮、17α-羟孕酮、皮质酮、雄烯二酮、脱氢表雄酮可采用ESI或APCI离子源。与ESI相比,APCI离子源温度更高,脱溶剂更充分,因此基质效应更小。然而,APCI更适用极性较小的类固醇激素,如3β-羟基-5-烯类固醇 [ 21 ] ,在需同时检测多个类固醇激素的临床应用中具有局限性。  类固醇激素分子经离子源电离后进入三重四极杆质量分析器,根据质荷比进行分离,并采用多反应监测(multiple reaction monitoring,MRM)或选择反应监测(selected reaction monitoring,SRM)模式采集数据。最终借助质量分析器选择特定母离子和子离子,通过母离子/子离子对和各分析物及内标物的色谱图及峰面积对目标化合物进行定量。不同仪器,其离子对信息及检测参数并不完全相同,每个化合物通常选择2个离子通道分别作为定性离子和定量离子通道( 表3 )。基于定性离子、化合物极性及内标物分离峰综合判断目标化合物的分离峰。  建议6 类固醇激素LC-MS/MS检测选择ESI或APCI离子源,采用MRM或SRM模式,应在性能验证时优化质谱参数。  3. LC-MS/MS测量程序性能验证和/或确认:测量程序的性能要求取决于其预期临床用途、待测类固醇激素生物学变异及仪器灵敏度水平。如检测女性、儿童血清睾酮,测量程序的灵敏度需要达到0.02 ng/ml 同时检测浓度差异大的多个分析物,如雌二醇、雌酮、雄烯二酮,需验证测量程序对每个分析物的分析性能是否满足临床需求。值得注意的是,由于血清(浆)类固醇激素LC-MS/MS测量程序包含的人工操作步骤多,各实验室环境条件、仪器设备配置、人员水平相差大,因此即使实验室使用商品化试剂盒(Ⅰ、Ⅱ类),也应进行性能确认或验证。LC-MS/MS测量程序性能验证和/或确认程序可参考共识 [ 22 ] 或美国临床和实验室标准协会(Clinical and Laboratory Standards Institute,CLSI)C62-A [ 23 ] ,并根据生物变异、临床指南、政策法规等设定性能验证中每项参数的可接受标准。  (三)类固醇激素LC-MS/MS测量程序的分析性能指标  类固醇激素相关疾病的临床诊断对检测指标及灵敏度有不同需求,实验室应综合临床需求及仪器灵敏度确定LC-MS/MS测量程序分析性能。  1.肾上腺皮质激素:皮质醇是最主要的肾上腺皮质激素(约占75%~95%),血液中总皮质醇、游离皮质醇水平及昼夜节律变化常用于辅助诊断原发性和继发性肾上腺功能不全、库欣综合征、艾迪生病。正常成人清晨血清总皮质醇浓度通常在20~50 ng/ml,经平衡透析后的游离皮质醇浓度约占总皮质醇5%,可更准确反应皮质醇水平及节律,推荐检测血清(浆)游离皮质醇(LOQ≤1 ng/ml)。皮质醇联合17α-羟孕酮、雄烯二酮常用于筛查11-羟化酶或21-羟化酶缺乏型CAH。大多数(约90%)CAH由21-羟化酶基因变异导致,患者血清雄烯二酮水平通常升高5~10倍,17α-羟孕酮水平升高幅度更大,而皮质醇水平较低或无法检测。不同年龄、性别人群17α-羟孕酮及雄烯二酮水平差异较大,推荐实验室检测17α-羟孕酮(LOQ≤0.1 ng/ml),检测区间上限设定在参考区间上限10倍以上 [ 24 ] 。  硫酸脱氢表雄酮、孕烯醇酮、孕酮、17α-羟孕烯醇酮、11-脱氧皮质酮和18-羟皮质酮常用于已排除11-羟化酶、21-羟化酶缺乏型CAH,及确认3β-羟基类固醇脱氢酶缺乏和17α-羟化酶缺乏型CAH。在非常罕见的17α-羟化酶缺乏症中,雄烯二酮、所有雄激素前体(17α-羟孕烯醇酮、17α-羟孕酮、硫酸脱氢表雄酮)、睾酮、雌酮、雌二醇和皮质醇水平降低,而盐皮质激素(孕酮、11-脱氧皮质酮和18-羟皮质酮)水平明显升高。醛固酮是典型的盐皮质激素,常用于辅助诊断原发性醛固酮增多症(如肾上腺肿瘤、肾上腺皮质增生)和继发性醛固酮增多症(如肾血管疾病、盐耗竭、钾负荷、肝硬化腹水、心力衰竭、妊娠、Bartter综合征),以上情况醛固酮水平通常可升高10~100倍。因此,建议醛固酮LOQ≤0.02 ng/ml,检测区间上限设定在参考区间上限100倍( 表4 )。  2.雄激素:LC-MS/MS较易检测正常成年男性雄激素水平,但对低雄激素水平人群,如女性、儿童以及性腺功能减退的男性,则要求测量程序具有更高的灵敏度。对成年女性,睾酮水平通常用于评估由肾上腺合成异常和PCOS导致的高雄激素血症及相关的女性多毛症、月经紊乱、不孕等疾病。对儿童,睾酮水平通常用于评估外生殖器性别模糊、性早熟或发育延迟,以及用于CAH的诊断。建议女性或儿童的睾酮测量程序LOQ≤0.02 ng/ml,并需配置高灵敏度LC-MS/MS系统,并对样品进行离线或在线前处理,如LLE、SPE或多个提取步骤结合(如PPT结合SPE) [ 8 ] 。  双氢睾酮以及双氢睾酮/睾酮比值可用于诊断雄激素缺乏症、监测雄激素替代治疗或5α-还原酶抑制剂疗效,建议采用双氢睾酮非衍生化法LC-MS/MS检测(LOQ≤0.05 ng/ml)。雄烯二酮还可用于诊断和评估女性高雄激素血症、多毛症、不孕症,儿童性早熟、发育延迟、CAH,以及肾上腺、性腺肿瘤。在CAH、女性高雄激素血症等疾病中,雄烯二酮水平明显升高,但在3β-羟基类固醇脱氢酶缺乏症、17α-羟化酶缺乏症及类固醇合成急性调节蛋白缺乏症等罕见病及2岁以下儿童中,其水平较正常成人明显降低,建议其LOQ≤0.02 ng/ml。雄烯二酮检测的子离子与睾酮子离子具有相同的质荷比,因此实验室需验证睾酮和雄烯二酮的色谱分离度。  脱氢表雄酮和硫酸脱氢表雄酮除联合肾上腺皮质激素用于CAH辅助诊断以外,还可用于鉴别诊断肾上腺功能不全或亢进。与性激素联合可用于区分肾上腺功能初现与性早熟,诊断儿童CAH和女性PCOS。儿童脱氢表雄酮水平较低(通常1~8岁儿童2 ng/ml),为了准确诊断儿童肾上腺功能初现、性早熟,建议脱氢表雄酮LOQ≤0.02 ng/ml,硫酸脱氢表雄酮LOQ≤30 ng/ml。  3.雌激素:对低浓度雌激素的准确检测可用于儿童性发育延迟或性早熟的评估,以及绝经后女性乳腺癌发病风险或芳香酶抑制剂治疗效果评估。非衍生化前处理,ESI负离子模式下检测雌二醇、雌酮及雌三醇建议LOQ≤0.01 ng/ml [ 25 ] 。硫酸雌酮在体内的浓度是雌二醇和雌酮的10~50倍,且半衰期较长,因此可用于雌激素水平状况评估。  建议7 实验室应根据临床需求、待测类固醇激素生物学变异及仪器灵敏度水平,建立分析性能满足要求的类固醇激素LC-
  • 新型毒饮料伪装上市,“合法”“非法”仅在“氨基”“羟基”一字之差
    这两天,一条关于某种“新毒品”在各大酒吧流行的“预警”信息,在记者朋友圈掀起了一阵转发热潮。相关信息称,这种“新毒品”是一款含有“γ-氨基丁酸”成分的饮料——咔哇,多地有人喝了这个东西可以连续嗨三个晚上,据说之前吸k粉的人很多都嗨这种东西了。 据了解,咔哇是生长在南太平洋岛国、海拔500-1000英尺地区的一种植物,系胡椒科多年生灌木。当地民间医生广泛应用咔哇改善睡眠、缓解焦虑、战胜抑郁、松弛肌肉、消除疲劳。咔哇可榨制一种饮料,即咔哇酒。2015年,国内一旅途探秘综艺真人秀节目中,节目嘉宾率领的旅行达人,曾在瓦努阿图制作饮用所谓“最幸福的饮料”——咔哇酒,从而引起国内关注,并在年轻人、时尚人士中流行。 但是仔细阅读配料表后我们发现,我国出现的这种含有“γ-氨基丁酸”成分的饮料,并非来自太平洋岛国的“最幸福的饮料——咔哇”。在太平洋岛国流行的咔哇饮料,是由卡瓦胡椒制成的,卡瓦胡椒当中含有的卡瓦内脂和二氢醉椒素,是“γ-氨基丁酸”的激动剂,能够调节人体内“γ-氨基丁酸”的传输,所以能够起到安神、镇定的作用。 饮料中标示的“γ-氨基丁酸”(gamma aminobutyric acid, gaba),是一种天然存在的功能性氨基酸,广泛分布于动植物体内,如豆属、参属、中草药等的种子、根茎和组织液中都含有,2009年9月27日由卫生部批准使用γ-氨基丁酸为新食品原料,并不是毒品。参见卫生部网站http://www.moh.gov.cn/mohbgt/s9513/200910/43090.shtml 这批咔哇饮料之所以引起关注,是因为经公安机关毒品实验室对其进行检验和分析,发现其中含该饮料含有 γ-羟基丁酸(我国一类精神药品)和 γ-丁内酯( γ-羟基丁酸的前体),并不是商品介绍的γ-氨基丁酸,这两种物质虽然只有一字之差,却有天壤之别。 γ-羟基丁酸(gamma hydroxybutyrate, ghb),是属于中枢神经抑制剂,它曾被用来当做全身麻醉剂,后由于有报导其可导致癫痫发作或昏迷使得使用率降低。滥用“γ-羟基丁酸”会造成暂时性记忆丧失、恶心、呕吐、头痛、反射作用丧失,甚至很快失去意识、昏迷及死亡,与酒精并用更会加剧其危险性。在过去的十几年,美国、东南亚国家以及中国港台地区γ-羟基丁酸的滥用呈快速增长趋势,ghb及其相关物质γ-丁内酯(gamma-butyrolactone, gbl)和1,4-丁二醇(1,4-butanediol, 1,4-bd)常被用作迷奸药,因此,2005年我国就将“γ-羟基丁酸”列入二类精神药物予以管制,并于2007年变更为一类。 据了解,目前夜场各种打着咔哇旗号的所谓潮饮数不胜数,不排除部分饮料“挂羊头卖狗肉”,打着合法成分的旗号使用违禁药物。文中提到的“毒饮料”已被勒令全面下架,但是我们仍要保持警惕,尤其在酒吧、ktv这样的地方,建议青少年朋友不要因为好奇去尝试一些“小众”“特色”的饮品。相关检测标准品
  • 助力精准诊断!药明奥测质谱法“25-羟基维生素D测定试剂盒”获批
    维生素D是人体内重要的微量元素之一,可调节钙、磷代谢、促进骨骼生长、调节细胞生长分化、调节免疫功能,但据不完全统计,目前有50%以上的中国人群存在维生素D缺乏的现象。维生素D在体内转化成25-羟基维生素D2/D3,因其半衰期长、含量高、易于检测,已成为评估VD含量的最佳指标。传统VD测定试剂盒多采用免疫分析法,因抗体特异性差异等因素影响,常存在干扰,影响了定量的准确度。为助力精准诊断,近日,上海药明奥测医疗科技有限公司(以下简称“药明奥测”)自主开发推出了“25-羟基维生素D测定试剂盒(液相色谱-串联质谱法)”,且该试剂盒已获批二类医疗器械注册证。据了解,药明奥测是中国第一家践行整合诊断的赋能平台公司,公司依托Mayo Clinic的整合诊疗理念与经验,凭借融合多平台、多组学及临床数据驱动的开放式赋能平台,通过算法整合升级,不断推出创新诊断服务和产品,同时加速诊疗创新者从研发到应用的技术转化,创造共赢共享的产业新生态。值得关注的是,为打造领先的临床质谱平台,药明奥测独家引进Mayo Clinic的400余项质谱项目,提供肿瘤、个体化用药、人体营养和代谢、激素、金属元素检测等服务,其质谱法25-羟基维生素D测定试剂盒,更是经过严格质量体系验证,可溯源至美国国家标准与技术研究院(NIST)Standard Reference Material® 2972a。液相色谱-串联质谱法(LC-MS/MS)检测特异性及灵敏度高,可对25-羟基维生素D2、25-羟基维生素D3分别测定,保证了测试准确度。同时,作为一家高新技术企业,药明奥测始终坚持国际高标准自主创新,在试剂盒的开发过程中,药明奥测秉承以客户为中心的理念,积极提出差异化的解决方案并落实到产品性能优化中。在前处理阶段,采用“蛋白沉淀一步法”,显著减少了前处理步骤,操作方便快捷,有效地提高通量。此外,鉴于25-羟基稳定性差,目前市场上诸多解决方案采用-20℃冷冻保存或冻干粉基质,增加了客户使用成本,影响了用户体验。奥测试剂盒创新的采用独特配方新基质,产品为液体剂型,2-8℃稳定保存。据悉,截至目前,公司已累计申请体外诊断(IVD)专利近200项,涉及免疫、分子及质谱技术平台。目前,国内疫情仍处于不平静阶段,疫情常态化推动了诊疗场景拓展,在社区、在第三方检测机构、在家庭,方便快捷地采集、检测,已成为广大人民群众的需求,药明奥测国际高标准的试剂开发与整体解决方案创新,不仅大大提高了维生素D检测准确性与便捷性,实现了应用场景拓宽,也让更多人获益于高质量的医疗服务。此后,药明奥测将持续凭借强大的医疗及商业资源整合能力,基于临床需求布局丰富的研发管线,通过算法整合升级,不断创新整合诊断服务和产品,以“自主研发+授权合作”双模式,推动诊疗药险全新生态,促进诊疗场景的融合与拓展,让更多人在医院、在社区、在家庭中,都能获得高品质的医疗服务。
  • 2023版食品安全监督抽检计划与2022版检测项目对比
    近日,网上流传一份《国家食品安全监督抽检实施细则(2023年版)》电子版,以下是该版资料与2022年版的检测项目的增减对比,大家可以参考一下有备无患。33大类名称与2022版基本相同,无变化。本文列举了前19大类检测项目增减情况。以下内容红色字体部分为2023版新增;蓝色字体部分为2022版原有,于2023版删除。1、粮食加工品类别检验项目通用小麦粉、专用小麦粉镉(以Cd计)、玉米赤霉烯酮、脱氧雪腐镰刀菌烯醇、赭曲霉毒素A、黄曲霉毒素B1、苯并[a]芘、过氧化苯甲酰、偶氮甲酰胺大米铅(以Pb计)、镉(以Cd计)、黄曲霉毒素B1、无机砷(以As计)、苯并[a]芘挂面铅(以Pb计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、黄曲霉毒素B1谷物加工品铅(以Pb计)、镉(以Cd计)、黄曲霉毒素B1玉米粉、玉米片、玉米渣黄曲霉毒素B1、赭曲霉毒素A、玉米赤霉烯酮、苯并[a]芘米粉铅(以Pb计)、镉(以Cd计)、总汞、无机砷(以As计)、苯并[a]芘其他谷物碾磨加工品铅(以Pb计)、赭曲霉毒素A、铬(以Cr计)生湿面制品铅(以Pb计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、二氧化硫残留量发酵面制品山梨酸及其钾盐(以山梨酸计)、苯甲酸及其钠盐(以苯甲酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、糖精钠(以糖精计)、大肠菌群、菌落总数、沙门氏菌、金黄色葡萄球菌米粉制品山梨酸及其钾盐(以山梨酸计)、苯甲酸及其钠盐(以苯甲酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、糖精钠(以糖精计)、大肠菌群、菌落总数、沙门氏菌、金黄色葡萄球菌、二氧化硫残留量其他谷物粉类制成品铅(以Pb计)、黄曲霉毒素B1、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、菌落总数、大肠菌群、沙门氏菌、金黄色葡萄球菌、脱氢乙酸及其钠盐(以脱氢乙酸计)2、食用油、油脂及其制品类别检验项目食用植物油酸值/酸价、过氧化值、铅(以Pb计)、黄曲霉毒素B1、苯并[a]芘、溶剂残留量、丁基麦芽酚、特丁基对苯二酚(TBHQ)食用植物油(煎炸过程用油)酸价、极性组分食用动物油脂酸价、过氧化值、丙二醛、总砷(以As计)、苯并[a]芘、铅(以Pb计)食用油脂制品酸价(以脂肪计)、过氧化值(以脂肪计)、大肠菌群、霉菌、铅(以Pb计)3、调味品类别检验项目酱油氨基酸态氮、全氮(以氮计)、铵盐(以占氨基酸态氮的百分比计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、菌落总数、大肠菌群、对羟基苯甲酸酯类及其钠盐 (以对羟基苯甲酸计)、三氯蔗糖食醋总酸(以乙酸计)、不挥发酸(以乳酸计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、菌落总数、对羟基苯甲酸酯类及其钠盐(以对羟基苯甲酸计)、三氯蔗糖酿造酱氨基酸态氮 、黄曲霉毒素B1、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、大肠菌群、三氯蔗糖调味料酒氨基酸态氮 、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、三氯蔗糖香辛料调味油铅(以Pb计)、酸价/酸值、过氧化值辣椒、花椒、辣椒粉、花椒粉铅(以Pb计)、罗丹明B、苏丹红I-IV、脱氢乙酸及其钠盐(以脱氢乙酸计)、沙门氏菌、二氧化硫残留量其他香辛料调味品铅(以Pb计)、丙溴磷、氯氰菊酯和高效氯氰菊酯、多菌灵、沙门氏菌、脱氢乙酸及其钠盐(以脱氢乙酸计)、二氧化硫残留量鸡粉、鸡精调味料谷氨酸钠、呈味核苷酸二钠、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、菌落总数、大肠菌群其他固体调味料铅(以Pb计)、总砷(以As计)、苏丹红I-IV、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、罂粟碱、吗啡、可待因、那可丁、阿斯巴甜、二氧化硫残留量蛋黄酱、沙拉酱金黄色葡萄球菌、沙门氏菌、乙二胺四乙酸二钠、二氧化钛坚果与籽类的泥(酱)酸价/酸值、过氧化值、铅(以Pb计)、黄曲霉毒素B1、沙门氏菌辣椒酱苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、甜蜜素(以环己基氨基磺酸计)、二氧化硫残留量火锅底料、麻辣烫底料铅(以Pb计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、罂粟碱、吗啡、可待因、那可丁其他半固体调味料罗丹明B、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、甜蜜素(以环己基氨基磺酸计)、罂粟碱、吗啡、可待因、那可丁、铅(以Pb计)蚝油、虾油、鱼露氨基酸态氮、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、菌落总数、大肠菌群其他液体调味料苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、菌落总数、大肠菌群味精谷氨酸钠、铅(以Pb计)普通食用盐氯化钠、碘(以I计)、钡(以Ba计)、铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)低钠食用盐氯化钾、碘(以I计)、钡(以Ba计)、铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)风味食用盐碘(以I计)、钡(以Ba计)、铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)特殊工艺食用盐氯化钠、碘(以I计)、钡(以Ba计)、铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)食品生产加工用盐铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)、亚硝酸盐(以NaNO2计)4、肉制品类别检验项目调理肉制品(非速冻)铅(以Pb计)、氯霉素、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、铬(以Cr计)、脱氢乙酸及其钠盐(以脱氢乙酸计)腌腊肉制品过氧化值(以脂肪计)、总砷(以As计)、氯霉素、亚硝酸盐(以亚硝酸钠计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、胭脂红、铅(以Pb计)发酵肉制品氯霉素、亚硝酸盐(以亚硝酸钠计)、大肠菌群、单核细胞增生李斯特氏菌、沙门氏菌、金黄色葡萄球菌、致泻性大肠埃希氏菌酱卤肉制品铅(以Pb计)、镉(以Cd计)、铬(以Cr计)、总砷(以As计)、氯霉素、酸性橙Ⅱ、亚硝酸盐(以亚硝酸钠计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、胭脂红、糖精钠(以糖精计)、菌落总数、大肠菌群、沙门氏菌、金黄色葡萄球菌、单核细胞增生李斯特氏菌、致泻性大肠埃希氏菌、商业无菌熟肉干制品铅(以Pb计)、镉(以Cd计)、铬(以Cr计)、氯霉素、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、胭脂红、菌落总数、大肠菌群、沙门氏菌、金黄色葡萄球菌、单核细胞增生李斯特氏菌、致泻性大肠埃希氏菌熏烧烤肉制品铅(以Pb计)、苯并[a]芘、氯霉素、亚硝酸盐(以亚硝酸钠计)、菌落总数、大肠菌群、单核细胞增生李斯特氏菌、沙门氏菌、金黄色葡萄球菌、致泻性大肠埃希氏菌、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、纳他霉素、胭脂红熏煮香肠火腿制品亚硝酸盐(以亚硝酸钠计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、胭脂红、菌落总数、大肠菌群、氯霉素、沙门氏菌、金黄色葡萄球菌、单核增生李斯特菌、致泻性大肠埃希氏菌、铅(以Pb计)、纳他霉素5、乳制品类别检验项目液体乳(巴氏杀菌乳)蛋白质、酸度、三聚氰胺、菌落总数、大肠菌群、金黄色葡萄球菌、沙门氏菌、丙二醇液体乳(灭菌乳)脂肪、非脂乳固体、蛋白质、酸度、三聚氰胺、商业无菌、丙二醇液体乳(发酵乳)脂肪、蛋白质、酸度、乳酸菌数、三聚氰胺、大肠菌群、金黄色葡萄球菌、沙门氏菌、酵母、霉菌、山梨酸及其钾盐液体乳(调制乳)脂肪、蛋白质、铅(以Pb计)、铬(以Cr计)、黄曲霉毒素M1、三聚氰胺、菌落总数、大肠菌群、金黄色葡萄球菌、沙门氏菌、商业无菌脱盐乳清粉、非脱盐乳清粉、浓缩乳清蛋白粉、分离乳清蛋白粉蛋白质、三聚氰胺乳粉(全脂乳粉、脱脂乳粉、部分脱脂乳粉、调制乳粉)蛋白质、三聚氰胺、菌落总数、大肠菌群其他乳制品(炼乳)蛋白质、三聚氰胺、菌落总数、大肠菌群、商业无菌其他乳制品(干酪、再制干酪、干酪制品)干酪:铅(以Pb计)、黄曲霉毒素M1、三聚氰胺、大肠菌群、金黄色葡萄球菌、沙门氏菌、单核细胞增生李斯特氏菌、酵母、霉菌;再制干酪:脂肪(干物中)、干物质含量、铅(以Pb计)、黄曲霉毒素M1、三聚氰胺、菌落总数、大肠菌群、金黄色葡萄球菌、沙门氏菌、单核细胞增生李斯特氏菌、酵母、霉菌其他乳制品(奶片、奶条等)三聚氰胺、脱氢乙酸及其钠盐(以脱氢乙酸计)、沙门氏菌其他乳制品(奶油)脂肪、酸度、三聚氰胺、菌落总数、大肠菌群、沙门氏菌、霉菌、商业无菌6、饮料类别检验项目饮用天然矿泉水界限指标、镍、锑、溴酸盐、硝酸盐(以NO3-计)、亚硝酸盐(以NO2-计)、大肠菌群、铜绿假单胞菌、总汞(以 Hg 计)、铅(以Pb计)、镉(以Cd计)、总砷(以 As 计)饮用纯净水电导率、耗氧量(以O2计)、亚硝酸盐(以NO2-计)、余氯(游离氯)、三氯甲烷、溴酸盐、大肠菌群、铜绿假单胞菌、阴离子合成洗涤剂、铅(以Pb计)、镉(以Cd计)、总砷(以 As 计)其他饮用水耗氧量(以O2计)、亚硝酸盐(以NO2-计)、余氯(游离氯)、溴酸盐、大肠菌群、铜绿假单胞菌、三氯甲烷、阴离子合成洗涤剂、铅(以Pb计)、镉(以Cd计)、总砷(以 As 计)果、蔬汁饮料铅(以Pb计)、展青霉素、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、纳他霉素、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、安赛蜜、甜蜜素(以环己基氨基磺酸计)、合成着色剂(苋菜红、胭脂红、柠檬黄、日落黄、亮蓝)、菌落总数、大肠菌群、霉菌、酵母蛋白饮料蛋白质、三聚氰胺、脱氢乙酸及其钠盐(以脱氢乙酸计)、菌落总数、大肠菌群、沙门氏菌碳酸饮料(汽水)二氧化碳气容量、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、甜蜜素(以环己基氨基磺酸计)、菌落总数、霉菌、酵母茶饮料茶多酚、咖啡因、甜蜜素(以环己基氨基磺酸计)、菌落总数、脱氢乙酸及其钠盐(以脱氢乙酸计)固体饮料蛋白质、铅(以Pb计)、赭曲霉毒素A、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、合成着色剂(苋菜红、胭脂红、柠檬黄、日落黄、亮蓝)、菌落总数、大肠菌群、霉菌、相同色泽着色剂混合使用时各自用量占其最大使用量的比例之和其他饮料苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、合成着色剂(苋菜红、胭脂红、柠檬黄、日落黄、亮蓝)、菌落总数、大肠菌群、霉菌、酵母、沙门氏菌16、蔬菜制品类别检验项目酱腌菜
  • 质谱POCT——90秒诊断脑胶质瘤术中分子病理
    脑胶质瘤是最常见的原发恶性脑肿瘤之一,具有边界不清、毗邻功能区、放化疗不敏感等特点,手术切除困难,预后差。此前已有研究发现,2-3级胶质瘤患者中80%存在代谢酶异柠檬酸脱氢酶(Isocitrate dehydrogenase,以下简称IDH)突变,这类IDH突变胶质瘤好发于周边脑叶,年轻人常见,在最大限度肿瘤手术切除后,可显著提升生存率。因此,术中快速识别IDH突变,实现胶质瘤术中分子病理诊断对提升患者预后意义重大。2024年5月28日,复旦大学附属华山医院毛颖/花玮教授团队、清华大学精密仪器系张文鹏/欧阳证教授团队、美国普渡大学R. Graham Cooks教授团队以及梅奥诊所Alfredo Quinones-Hinojosa教授团队合作在《美国国家科学院院刊》(PNAS)上发表了题为术中质谱法快速检测胶质瘤中IDH突变“Rapid Detection of IDH Mutations in Gliomas by Intraoperative Mass Spectrometry”的最新研究成果。此项研究中,使用清谱科技便携式质谱分析系统Cell及活检组织检测直接毛细管电喷雾(Direct Capillary Spray,DCS)试剂盒实施了脑胶质瘤术中检测与分型。清谱科技创新设计中心科学家吴俊函博士是本文的共同第一作者,清谱科技应用中心负责人王南博士参与本研究工作。该项研究由中美顶尖研究和临床机构合作近5年完成,是迄今为止已知规模最大的术中胶质瘤IDH突变检测临床试验。通过临床队列研究,确定了质谱诊断IDH突变的最佳指标和阈值。实验结果表明,通过术中质谱技术以2-HG和GLU的比值作为诊断指标,在260位胶质瘤病人的697例样品检测中实现了100%的IDH突变检测准确率。其中,183位病人的309例样品使用清谱科技Cell便携式质谱分析系统与DCS试剂盒完成检测。胶质瘤是目前发病率最高的颅内原发恶性肿瘤,具有进展快、死亡率高且预后差的特点,超过80%WHO 2-3级的胶质瘤中都存在异柠檬酸脱氢酶(Isocitrate dehydrogenase,IDH)基因突变。IDH突变的胶质瘤患者在最大限度肿瘤手术切除后,可显著提升生存率,所以实现胶质瘤术中IDH突变检测对胶质瘤患者预后提升具有重要意义。脑胶质细胞发生IDH突变后,三羧酸循环中的α-酮戊二酸(α-KG)将转变为一种特殊的肿瘤小分子代谢标志物 2-羟基戊二酸(2-HG),进而促进癌变。因此,IDH突变患者的肿瘤区域将会积累大量2-HG,通过检测2-HG可诊断IDH突变情况。图1 IDH突变型胶质瘤中的代谢变化示意图在本研究中,美方研究团队使用电喷雾解吸电离方法(DESI)和传统大型质谱仪结合的方案;中方团队则采用直接毛细管电喷雾DCS试剂盒与便携式质谱分析系统Cell结合的即时化学检测方案,实现了:1. 2-HG和内标谷氨酸的快速准确检测;2. 成功构建了完整的脑胶质瘤IDH突变术中诊断流程;3. 将术中组织采集到IDH突变检测结果反馈全流程时间压缩至1.5分钟。本研究开创了脑肿瘤术中便携式质谱即时检测的应用范式,将为临床医生在术中进行肿瘤分析提供新的技术储备,为胶质瘤患者预后提升提供重大帮助。图2 术中质谱分析流程示意图本研究在对复旦大学附属华山医院和梅奥诊所的样品检测,实现了100%的IDH突变检测准确率。在实际的术中实践中,该方法还展现了在辅助临床医生明确肿瘤类型、平衡肿瘤切除率与神经功能保全关系、术中进行肿瘤边界判断等方面的优势。这项研究不仅实现了术中分子病理快速诊断,同时为外科手术带来革命性变化和想象空间,为医生的手术策略制定提供重要的分子诊断依据,具有重要的临床价值,是未来手术个性化、精准化的发展方向。图3 临床队列情况以及检测结果图4 脑胶质瘤IDH基因突变检测试剂盒分析流程该研究首次将质谱仪搬进手术室,便携式质谱分析系统将成为外科医生的代谢之眼,为医生及时提供有效分子诊断信息,为患者带来福音。同时,清谱科技的便携式质谱分析系统已经应用于公共安全、科学研究以及临床医学领域。清谱科技将进一步推广便携质谱技术及原位电离技术在医疗行业如血药浓度检测、术中诊断、基于精细结构脂质组学的疾病诊疗研究等方面的广泛应用。
  • 饺子粉呕吐毒素超标怎么办?月旭科技守护您舌尖上的安全!
    钟爱自己和面包饺子的朋友肯定知道,和面的时候选用高筋面粉,包出来的饺子耐煮、不易破皮、饺皮口感更筋道。专用的饺子粉就属于高筋面粉,在食品安全监督抽检的食品分类中属于粮食加工品——小麦粉(食品细类)一类。就是这样一种生活中常见的商品,也存在潜在的食品安全风险。 “北纯”有机饺子粉 呕吐毒素含量超标2倍 这不,4月30日,北京市市场监督管理局网站发布关于2020年食品安全监督抽检信息的公告(2020年第20期)显示,北京顺丰电子商务有限公司经营的“北纯”有机饺子粉,经国家食品质量安全监督检验中心检验发现,脱氧雪腐镰刀菌烯醇不符合食品安全国家标准。北京顺丰电商对检测结果提出异议,并申请复检;经国家肉类食品质量监督检验中心复检后,维持初检结论。根据北京市场监督管理局2020年食品安全监督抽检信息的公告(2020年第20期)发布的不合格项目说明,人摄食被DON污染严重的谷物制成的食品后可能会引起呕吐、腹泻、头疼、头晕等中毒症状。产品不合格信息发布后,相关电商平台迅速下架商品,避免了食品安全风险进一步扩大。脱氧雪腐镰刀菌烯醇(Deoxynivalenol, DON),因能引起人畜严重的腹痛和呕吐而又称呕吐毒素。呕吐毒素易溶于水、乙醇、甲醇等溶剂,化学性质稳定,具有较强的耐热性和耐酸性,在碱性条件下毒性降低。化学名称为3α, 7α, 15一三羟基草镰孢菌-9-烯-8-酮,CAS号:51481-10-8。属于B类单端孢霉烯族化合物。呕吐毒素的产毒真菌主要由有禾谷镰刀菌、尖孢镰刀菌、雪腐镰刀菌等镰刀菌。广泛分布于大麦、小麦、玉米和燕麦等粮食作物上,在合适的温湿度条件下导致作物感病进而产生呕吐毒素。谷物在收获期极易受到呕吐毒素污染。因此,呕吐毒素也是谷物加工品、谷物原料制成的饲料中检出率最gao、超标最严重的的一种真菌毒素。根据GB 2761-2017 《食品安全国家标准 食品中真菌毒素限量》规定,谷物及其制品中限量不超过1000μg/kg。根据GB 2761-2017规定,呕吐毒素的测定按 GB 5009.111 《食品安全国家标准 食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定》执行。根据2020年食品安全国抽实施细则,小麦粉(面粉)中呕吐毒素的测定按照国标GB 5009.111方法执行。 月旭科技助您守护舌尖上的安全! 月旭科技始终关注食品、药品、环境安全,致力于做您的得力助手。在此,我们与法国A2S推出现货标准品、前处理小柱与应用方案,请注意查收。
  • 中石大(北京)姜桂元教授团队在《Nature》上发表催化剂研究文章
    在国际顶级学术期刊《Nature》上,中国石油大学(北京)实现了重要突破!中石大(北京)重质油国家重点实验室姜桂元教授团队,联合德国莱布尼兹催化研究所Evgenii V. Kondratenko教授团队、焦海军教授团队、山西大学及德国卡尔斯鲁厄理工学院等科研机构合作者,在丙烷无氧脱氢催化剂研究方面取得新进展。11月10日,研究结果以“In situ formation of ZnOx species for efficient propane dehydrogenation”(原位形成ZnOx物种用于丙烷高效脱氢)为题, 于《Nature》在线发表。中石大(北京)博士生赵丹为本论文的第一作者,姜桂元教授、Evgenii V. Kondratenko教授及焦海军教授为论文的通讯作者。论文以中石大(北京)为第一通讯单位,而这也是该校的首篇《Nature》。继2013年首次《Science》发文之后,至此,中石大(北京)已经集齐了《Nature》和《Science》两大国际顶尖期刊的发表。作者简历:姜桂元,男,教授、博士生导师,中国石油大学(北京)化学工程与环境学院副院长,校青年创新团队负责人。主要从事能源催化方面的研究工作,包括轻烃高效转化和太阳能光催化等。在Nature Commun., Adv. Mater., Chem. Commun., J. Catal., Applied Catal. B等SCI 重要学术期刊上发表论文100余篇,参编学术著作4部,授权国家发明专利24项。先后入选北京市科技新星计划、教育部新世纪优秀人才计划及北京高等学校青年英才计划等。受邀担任《Scientific Reports》、《Current Catalysis》、《Carbon Resources Conversion》期刊编委,担任中国化工学会工程热化学专业委员会委员、中国感光学会光催化专业委员会委员、中国能源学会能源与环境专业委员会委员等。研究简介:丙烯是基本的有机化工原料,近年来供需缺口不断加大。随着页岩气开采技术发展、资源高效利用及能源高质量发展的需求驱动,特别是在双碳背景下石油石化行业面临的转型升级,丙烷无氧脱氢(PDH)制丙烯技术成为填补丙烯供需缺口的一种重要途径。目前商业化的PDH催化剂是K-CrOx/Al2O3和Pt-Sn/Al2O3,Pt价格昂贵以及Cr(VI)毒性高,限制了其进一步应用。研发价格低廉、环境友好的高效非贵金属基替代催化剂并揭示其催化作用机制至关重要且迫在眉睫。针对上述问题,研究人员采用简单的机械混合-原位氢气还原处理方法,成功地在Silicalite-1(S-1)上合成了双核Zn-oxo物种。研究发现,在还原处理机械混合的ZnO-S-1样品时,被还原的ZnO以Zn单质形式迁移至S-1上并与其羟基窝发生反应,得到双核Zn-oxo物种。在还原性条件下,低配位双核Zn-oxo物种是丙烷脱氢的活性位,将该催化剂应用于丙烷无氧脱氢反应时,在400个小时的反应测试中,催化剂展现了优异的催化性能,在与商业K-CrOx/Al2O3类似催化剂相当的丙烯选择性条件下,该催化剂的丙烯时空收率是K-CrOx/Al2O3的3倍左右(上图(a)和(b))。同时该催化剂的制备方法还可以拓展至富含羟基窝的其它类型分子筛以及富含羟基的金属氧化物中(上图(c)和(d)),表现出良好的应用前景。该研究基于分子筛羟基窝和原位预处理/反应构筑高效非贵金属基催化剂,不仅从分子层次阐明丙烷脱氢活性位的形成与作用机制,还为将来高效催化剂理性设计提供了新思路。
  • 岛津战略合作伙伴和合诊断集团自主研发25-羟基维生素D试剂盒,获批国家二类医疗器械注册证
    2020年2月,和合诊断集团全资子公司合肥和合医疗科技有限公司自主研发的25-羟基维生素D检测试剂盒(液相色谱-串联质谱法)、25-羟基维生素D校准品、25-羟基维生素D质控品正式通过审批,获得国家二类医疗器械注册证!上图为25-羟基维生素D检测试剂盒、校准品、质控品的国家二类医疗器械注册证件 合肥和合医疗科技有限公司自主研发的25-羟基维生素D系列检测试剂盒产品基于液相色谱-串联质谱检测方法,该方法为国际公认的维生素D项目检测金标准,可以大大提高血清维生素D检测的精确性,为相关疾病的临床诊断提供重要依据。产品适用机型广、组成全面,能很好的满足临床客户的检测需求。 和合诊断集团自2011年开始与岛津合作,现在拥有多台岛津LCMS-8050CL、Nexera系列液相色谱仪。LCMS-8050CLNexera X2(LC-30A系列) 岛津液相色谱仪历经50年在技术积淀,从输液泵、自动进样器到柱温箱和检测器,各个方面做到最优,为用户获得最优、最稳定的检测结果,提供最优秀的仪器平台。 和合诊断尤以开展高效液相色谱、串联质谱法检测擅长,是国内第一家也是目前规模最大的临床“色谱/质谱检验技术平台”,可提供临床化学和分子遗传学检验专业的百余项检测项目。集团率先在国内开展血清维生素检测,为全国2000余家医院提供诊断技术服务。集团各实验室执行国际通用标准ISO15189,拥有与世界同步的检验技术和实验室管理系统,检测结果为全球100多个国家和地区认可。科研能力突出,截至目前,集团共获得国家专利局审批及受理的专利近百余项、其中维生素D检测发明专利10余项。 研究表明,人体血清维生素D水平与免疫力息息相关,维生素D可以使细胞因子水平提高,从而增强人体免疫力。所以高度关注血清维生素水平,及时干预,可使肌体抗病毒感染能力提升。
  • 对照品如何保存,又应该如何使用?
    对照品系指用于鉴别、检查、含量测定的标准物质,包括杂质对照品,不包括色谱用的内标物质。在药品检验工作中我们常会用到一种用来检查药品质量的特殊参照物——药品标准物质(对照品)。它在药品检验中具有十分重要的地位。随着仪器分析的广泛使用,必将越来越多地使用药品标准物质。下面远慕生物就来介绍一下如何对对照品进行保存和使用:  (1)对照品应按说明书规定的条件妥善保存,一般置干燥阴凉处保存,某些对照品如维生素E等需避光低温保存。要注意对照品的使用期限,过期、变质的对照品不宜再使用。开瓶后建议短期内用完,避免开瓶后长期不用,同时,在重复使用过程中应尽量避免对照品的分解、污染或吸潮。  (2)使用中检所对照品时,应严格按说明书执行。一般情况下,供鉴别、检查用的对照品不能用于含量测定。红外鉴别用的对照品使用时应注意与样品在晶型上的差异,必要时可采用相同的方法对样品和对照品重结晶。例如氨苄西林钠具有多种不同的晶型,可用丙酮对样品和对照品重结晶后测定,以确保二者晶型和红外光谱图的一致。  (3)由中国药品生物制品检定所提供的对照品或国际对照品为法定对照品,以法定对照品作对照标化的原料可称为二级对照品或工作对照品。药品生产单位为节约成本,可使用工作对照品进行日常检验,但药品检验所必须使用法定的对照品,出具的检验报告书才具有法律效力。  (4)除另有规定外,对照品使用时应采用适宜的方法测定其水分的含量,按干燥品(或无水物)进行计算后使用,否则会造成含量测定结果偏高。对热稳定的对照品可直接干燥后使用;对热不稳定的对照品可同时另取一份作干燥失重,扣除水分后使用。此外,对照品若含有结晶水或盐基,使用时应注意其换算。  远慕生物提供以下服务:  1.中药提取物的定制研发和生产,中药提取物代加工相关服务。  2.中药高含量提取物的工业化高效分离及分离纯化生产  3.天然产物原料药和中间体的生产,定制(包括合成,半合成)
  • 食品安全丨科学认识食品添加剂
    从“土坑酸菜”到“牛奶中检测出丙二醇”,再到近期“科技与狠活”有关食品添加剂的视频陆续出现,食品安全的话题再次被推到风口浪尖,引发消费者高度关注。食品添加剂究竟是什么?食品添加剂=非法添加剂?食品添加剂不等于非法添加剂,食品添加剂是为改善食品品质和色、香、味,以及为防腐、保鲜和加工工艺的需要而加入食品中的人工合成或者天然物质。《GB 2760-2014 食品安全国家标准 食品添加剂使用标准》规定了食品添加剂的使用原则、允许使用的食品加剂品种、使用范围及最大使用量或残留量。合理合法且规范使用食品添加剂不会对人体健康造成危害。食品添加剂有哪些种类?目前允许使用的食品添加剂有23个类别,共2400多种,包括甜味剂、着色剂、防腐剂、抗氧化剂、香味物质等。(点击产品名称即可购买)甜味剂糖精钠、甜蜜素、阿斯巴甜、安赛蜜常见于饮料、糕点、糖果等着色剂胭脂红、赤藓红、柠檬黄、亮蓝常见于冰激淋、果汁饮料、糖果等防腐剂苯甲酸及其钠盐、山梨酸及其钾盐、脱氢乙酸钠、丙酸钙常见于果酱、蜜饯、酱油等抗氧化剂叔丁基羟基茴香醚(BHA)、二丁基羟基甲苯(BHT)、叔丁基对苯二酚(TBHQ)、没食子酸丙酯(PG)常见于油脂和含油食品、干鱼制品、饼干、速煮面等香味物质麦芽酚、乙基麦芽酚、2-乙基呋喃常见于果汁、调味品、罐头等国务院食品安全委员会已公布151种食品和饲料中非法添加名单,包括47种可能在食品中“违法添加的非食用物质”、22种“易滥用食品添加剂”和82种“禁止在饲料、动物饮用水和畜禽水产养殖过程中使用的药物和物质”。常见种类如下:禁用色素苏丹红、碱性橙、罗丹明B常见于辣椒粉、豆腐皮、辣椒油等非法添加剂三聚氰胺,常见于乳及乳制品硝基呋喃类,常见于猪肉、禽肉、动物性水产品孔雀石绿,常见于水产或鱼类
  • 专家视角丨药物研发过程中的化学对照品探讨
    精准药物分析的工作,离不开稳定的分析系统和可靠的标准物质(标准品/对照品等)。标准物质具有复现、保存和传递量值的基本作用,对实现测量结果的溯源性,保证测量结果在时间与空间上的连续性与可比性,进而确保测量结果的准确可靠、有效与国际互认具有关键作用。 岛津为制药行业客户提供稳定可靠的标准品/对照品制备解决方案:制备液相系统(Prep LC)、质谱引导的制备液相系统(MS-trigger Prep LC),超快速制备纯化液相色谱系统(UFPLC)、制备超临界流体色谱(Prep SFC)。 超快速制备纯化液相色谱系统(UFPLC)可在线完成从分离、浓缩、纯化到回收的制备全过程。 2020年,中国药科大学药物分析系吴春勇博士于新药仿药CMC实操讨论群进行了精彩而全面的主题分享,并发表在“新药仿药CMC实操讨论”公众号,经过“新药仿药CMC实操讨论”的授权,在此分享吴春勇博士的《化学药物研发过程中的对照物探讨》。 概述案例 对于吴春勇博士的《化学药物研发过程中的对照物探讨》,新药仿药CMC实操讨论群也进行了较为热烈的探讨。PPT正文后续延申的讨论内容如下(基本按照时间先后顺序列出)。 沈晓斌博士(前FDA资深审评员,FDA报批咨询顾问):very nice.吴博士论述的非常全面、非常细。我们就说比如说在FDA做review的时候呢,我们个人不会接触那么全面,各种各样的方式,这个标准品的这个去就是抽点它的含量呀,就是拿到他的COA,通常不会把各种方法都是看过一遍的。 就是它这个PPT呢,把所有的东西都给想细细的捋了一遍,个人觉得就是这是一个对知识体系的全面的补充,有些东西,因为你以前没有接触过,你不会考虑那么细,当在FDA的时候你看到的是公司怎么做,然后你来评估他是否合理,是否可以接受,或者跟FDA的现有要求,来评估。 想要就说一点,FDA本身他不去说去该怎么去定量,这个标准品他只是负责审评,就是评审你(的资料),外界可以自己去建议你想要的方式,但是你要有足够多的科学依据,然后他(FDA)来评估是否可以接受,就是完全靠自己来论述清楚。 另外就是说国内看起来,这个我以前对国内这个没有太多的,而且也没有特别去关注,因为我这个工作最早才从FDA报批方面的东西,吴教授这个主题一讲,觉得国内在有些方面其实要求是似乎是比USP、FDA的要求更细更多一些,有一种感觉就是弯道超车已经超了,在有些方面实际上是做的更好。只不过,过去这些年,西方就是设定了这种既定的质量标准,那其他国家,就因为你要照着西方去做仿药嘛,你就必须根据他的规则来走,更多的是这方面的区别。 孙亚洲老师(长沙晶易首席科学家):意见1:研发人员买的非法定对照品,外标法测定杂质含量时,很多人直接采用了COA的赋值,也直接采用相应的测定结果订入了标准,有些不妥。包括批检验,最初的朔源需要是法定对照或者经过标定的对照品。 意见2:在吴博士的ppt中,对于非法定来源的如百灵威,sigma等买到的杂质对照品,拿到后是否需要再行进行研究工作或者分析一下是否存在风险,似乎没有提出来。这个问题建议大家是否深入思考一下。 群主补充:只有经过标化赋值且可溯源(过程,方法,验证)的,风险才是最低的。 群主补充:尽管杂质测定中,如5%的误差是可以接受的(这属于科学性的范畴);但不等同于对照品/标准品可以草率拿来,草率采用他人的赋值,这完全是两个范畴。也许某份杂质对照品中含水量10%,无机成分包括前处理过程带来的硅胶等30%,若草率定量,杂质的真实含量会被低估如40%。 沈晓斌博士:同意以上的观点。 群友1:通过药品杂质的公司购买的对照品,我们就碰到了,欧美的一家知名公司提供的对照品结构出现偏差,我们通过多次比对都无法拿到和代谢产物吻合的结果,多次交涉和讨论之后才发现该公司的产品是另外一个同分异构体。 吴春勇博士(中国药科大学药物分析系副教授):看来概率虽然小,这个问题还是客观存在的。 沈晓斌博士:提供化合物的公司没有责任和义务。使用者必须做该做的来证明给监管机构标准品的使用是合理的。 刘国柱博士(长沙晨辰医药创始人、技术总监):我请教吴博士一个问题,目前国内杂质对照品市场非常混乱,大部分购买的杂质对照品都是经几手倒卖才到厂家手里,对照品塑源存在问题,谱图与赋值真实性也存在问题,请问对此引入的风险有何看法? 群友2:在购买对照品的时候,在COA的同时能否得到该合成方法的信息,这个在技术层面上是有难度的。没有哪个合成公司愿意提供产品合成路线给对方的。 群友3:好多杂质对照品本身不稳定,需要在-20℃保存,有可能在运输过程中就发生了变化,拿到的第一时间应该进行确认,遇到好几次这种情况。 吴春勇博士:在现有的条件下,购买的商业化对照品全部自己赋值,实践上还是存在相当的困难,成本上也没法控制。所以我个人观点:1)尽量选择知名公司;2)自己对风险进行评估,尤其是校正因子与各国药典不同,或者结构上与待测药物的生色团类似,分子量相当,校正因子却有显著不同。 【插话:知名公司依旧有风险或风险大】 是的,分享的那个案例,购买公司是业界相当知名的! 群友4:购买杂质时能同时获得合成信息的可能性非常小,最多提供四大谱(还不带解谱的),那就需要公司内部有比较强大的解谱能力,有碰到过解谱结果和供应商提供的不一致的情况,所以购买“商业化”的杂质对照风险是很大,市场良莠不齐,缺乏有效的管控。 群友5:我们碰到问题的那家公司就是业界知名对照品公司,也有出失误的概率。 刘国柱博士:另请教吴博士及大家一个问题,目前国内许多企业对于杂质对照品的结构确证,很多时候都只做了质谱与NMR氢谱与碳谱,不做二维;而事实上不做二维NMR谱,NMR信号是无法归属的,从而不足以确定杂质结构,有可能确证的结构是错的;请问这个问题大家如何看待? 吴春勇博士:我个人只要做结构确认,一定做二维。 刘国柱博士:那我和您观点一致,强烈呼吁大家做结构确证一定要做二维。 购买的杂质对照品一般只提供质谱与NMR氢谱与碳谱,不做二维与结构解析;在此习惯引导下,国内许多企业自已做杂质结构确证也只做个质谱与NMR氢谱与碳谱,个人观点这是存在风险的做法。 代孔恩(安士研发总监):法规有明确规定必须这么表征,很多标准品量很小,做全应该不容易。【插话:情况多,复杂,没法一刀切】 黄常康博士(南京百泽医药创始人):有些杂质是定向合成的,或者是有文献数据的。我觉得根据实际情况来判断需不需要。不用二维定不了结构的,该做就做,有些简单的杂质,其实氢谱已经足够了,质谱只是多一个证据。 自己做的话,还需要加上做结构确证的杂质的钱,很多时候会差很多。 群友6:对照品的检测分析,既要有普遍性的,也要特殊性的,这个普遍性与特殊性的界点怎么界定,很难有一个文件化的说法。 以上讨论内容来源: 新药仿药CMC实操讨论公众号
  • 我国学者在聚乙烯废塑料降解研究方面取得重大进展
    p   近日,中国科学院上海有机化学研究所的黄正课题组和加州大学尔湾分校管治斌课题组合作,在聚乙烯废塑料降解研究方面取得重大进展,相关成果于6月17日以“Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions”(温和条件下高效选择性降解聚乙烯制备液体燃料和石蜡)为题在Science Advances杂志上在线发表(Sci. Adv., 2016, 2, e1501591)。该研究工作得到优秀青年科学基金(21422209)和重点项目(21432011)等的支持。 /p p   烃类物质(烷烃、烯烃、芳烃等)是化石能源的重要组成体,也是重要的基础化工原料。为应对绿色、可持续发展的挑战,一方面需要从自然界丰富的烃类物质出发,发展高效、原子经济性的合成技术,直接制备高价值化学品,实现“分子价值的增量” 另一方面也需要发展温和、实用的催化降解技术,将废弃的高分子量、稳定的烃类化学化工产品转化成可再次利用的小分子物质,避免对环境造成污染,实现“污染物质的减量”。黄正课题组发展了高效的金属有机催化方法和技术,在这两方面取得了重要突破。 /p p   烷烃由高键能、非极性C-C单键和Csp sup 3 /sup -H键组成,是最惰性的有机分子之一,其在合成化学中的应用价值较低。黄正课题组一直致力于烷烃催化转化方面的研究。该课题组先前发展了一类新型的PSCOP螯钳型铱金属有机配合物,其在烷烃脱氢反应中表现出非常高的催化活性,但是在直链烷烃脱氢过程中,由于催化剂具有烯烃异构活性,在反应后期阶段不可避免地生成内烯烃混合物作为主要产物。为解决该问题,他们巧妙地利用双金属催化一锅两步法进行烷烃末端高区域选择性硅基化,实现烷烃至直链烷基硅的高效催化转化(图1a)。催化体系包括由该课题组发展的PSCOP螯钳型铱金属有机络合物作为烷烃脱氢催化剂,将烷烃脱氢生成内烯烃混合物,吡啶二亚胺铁络合物作为串联烯烃异构和端烯烃硅氢化催化剂。该转化的关键在于:烷烃脱氢所生成的烯烃中间体快速异构,并通过铁催化剂对端烯烃选择性硅氢化促使内烯烃向端烯烃转化。该工作为烷烃选择性官能团化提供了新思路,相关成果发表在Nature Chemistry上(Nat. Chem.,2016, 8, 157 Conversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylation 利用铑-铁催化的脱氢-异构化-硅氢化串联反应实现烷烃到直链烷基硅的转化)。 /p p   聚乙烯和烷烃结构单元相似,均由C-C单键和Csp sup 3 /sup -H键组成。聚乙烯是年产量 大的塑料产品(年产超过上亿吨),由于其化学惰性,被弃置后难以降解构成“白色垃圾”主要成分。研究人员利用双金属催化交叉烷烃复分解策略,使用价廉量大的低碳烷烃作为反应试剂和溶剂,与聚乙烯发生重组反应,可有效降低聚乙烯的分子量。由于在反应体系中低碳烷烃过量存在,可多次参与和聚乙烯的重组反应,直至把分子量高至上百万的聚乙烯降解为适用于运输系统燃油的烷烃产品。该反应适用于 HDPE、 LDPE和 LLDPE的降解,且催化剂可以兼容商业级聚乙烯中包含的各类添加剂,并进一步被证明可应用于实际生活中所产生的聚乙烯废塑料瓶、废塑料膜和废塑料袋的降解(图1b)。相比较传统高温裂解方法,该方法具有反应条件相对温和,产物选择性高的优点。高温裂解方法往往需要超过400度反应温度,产生包括气、油、蜡、焦等非常复杂的混合物 产物包括直链烷烃、支链烷烃、烯烃、芳烃等,产品利用价值低。而且黄正等发展的降解方法温度较低(150-200度),生成的产物以直链烷烃为主,且可以通过催化剂结构调控或反应时间控制,选择性生成可作为柴油的C9-C22烷烃或者聚乙烯蜡。这项研究成果得到了Nature、Science、Chemical & amp Engineering News等学术杂志的正面评论,并被《洛杉矶时报》、《华盛顿邮报》和新华网等国内外新闻媒体报道。 /p p style=" TEXT-ALIGN: center" img title=" tpxw2016-06-27-01.jpg" src=" http://img1.17img.cn/17img/images/201606/insimg/0b7ccaeb-e75f-4906-95ec-5a09ef3bc04a.jpg" / /p p style=" TEXT-ALIGN: center" strong 图1. a) 烷烃选择性硅基化 b) 聚乙烯降解。 /strong /p p /p
  • 基于三维电子衍射技术解析含有序硅羟基纯硅分子筛结构
    近日,大连化物所低碳催化与工程研究部(DNL12)郭鹏研究员、刘中民院士团队与南京工业大学王磊副教授团队合作,在分子筛结构解析研究中取得新进展,利用先进的三维电子衍射技术(cRED)直接解析出含有序硅羟基的纯硅分子筛结构。分子筛是石油化工和煤化工领域重要的催化剂及吸附剂,分子筛的性能与其晶体结构密切相关。分子筛通常为亚微米甚至纳米晶体,传统的X-射线单晶衍射法无法对其结构进行表征。在前期工作中,郭鹏和刘中民团队聚焦先进的电子晶体学(包括三维电子衍射和高分辨成像技术)和X-射线粉末晶体学方法,对工业催化剂等多孔材料进行结构解析,并且在原子层面深入理解构—效关系,为高性能的工业催化剂/吸附剂的设计及合成提供理论依据。团队开展了一系列研究工作,包括针对定向合成SAPO分子筛方法的开发(J. Mater. Chem. A,2018;Small,2019)、酸性位点分布的研究(Chinese J. Catal.,2020;Chinese J. Catal.,2021)、吸附位点的确定(Chem. Sci.,2021)、利用三维电子衍射结合iDPC成像技术解析分子筛结构并观测局部缺陷(Angew. Chem. Int. Ed.,2021)等。本工作中,研究人员利用先进的三维电子衍射技术,从原子层面直接解析出一种含有序硅羟基排布的新型纯硅沸石分子筛的晶体结构,其规则分布的硅羟基与独特的椭圆形八元环孔口结构息息相关。研究人员通过调变焙烧条件,在有效去除有机结构导向剂的同时保留了分子筛中有序硅羟基结构,实现了丙烷/丙烯高效分离,并从结构角度揭示了有序硅羟基和独特的椭圆形八元环孔口对丙烷/丙烯的分离作用机制。相关研究成果以“Pure Silica with Ordered Silanols for Propylene/Propane Adsorptive Separation Unraveled by Three-Dimensional Electron Diffraction”为题,于近日发表在《美国化学会志》(Journal of the American Chemical Society)上。该工作的第一作者是我所DNL1210组博士后王静,该工作得到了国家自然科学基金、中科院前沿科学重点研究等项目的资助。
  • 聚焦分析测试技术与环境催化学术前沿交叉 分论坛精彩报告集锦
    仪器信息网讯 2022年8月20-21日,第二十六届高校分析测试中心研究会年会暨第二届中国分析测试协会高校分析测试分会年会在历史名城镇江顺利召开。大会现场采用线上线下同步直播的方式,现场与会嘉宾超300位。本次会议为期两天,除大会报告外,会议还设置了五个平行分论坛,主题分别聚焦高校分析测试中心管理与资质认定、科学试验创新方法标准化、分析测试技术研究与应用、分析测试与学术前沿交叉之能源材料、分析测试与学术前沿交叉之环境催化。分会场照片本文将带来分析测试与学术前沿交叉之环境催化分论坛的精彩报告集锦,论坛邀请了中山大学欧阳钢锋教授、中国科学院化学所陈春城研究员、华东理工大学詹望成教授、上海师范大学张蝶青教授、上海大学张登松研究员、四川大学王建礼教授、南京师范大学何欢教授(季秋忆)、山东大学占金华教授、南京大学谷成教授、上海师范大学卞振锋教授、西南交通大学范美坤教授、华南理工大学付名利教授、浙江工业大学庞小兵教授、山东师范大学孙传智教授、清华大学彭悦副研究员、西安交通大学何炽教授、河北工业大学王鹏飞副教授等专家带来了30个精彩报告分享。分析测试与学术前沿交叉之环境催化分论坛现场《新型碳材料在环境催化中的应用探究》中山大学 欧阳钢锋教授报告介绍了欧阳钢锋课题组近年来在利用碳材料开展的环境催化领域的研究成果。针对芬顿技术在环境领域的广泛应用,以可见光催化生成双氧水为例,指出由于环境污水体量大,该类技术的实施将面临巨大的投入。欧阳钢锋团队以碳材料为基质,研究构筑了“Z”型异质结并在可见光作用下实现双氧水的原位、高效生成。通过对催化剂结构调控及醌类化合物引入,大幅提升了双氧水的产率,在类芬顿氧化降解水环境污染物时取得了良好效果。此外,欧阳钢锋针对碳材料活化过硫酸盐机理进行了详细论述,阐明了杂化轨道比例对过硫酸盐活化效率的影响,评估了碳催化材料的规模化应用前景,展望了碳材料在环境领域蕴藏的巨大潜能。《原位红外研究污染物光催化降解机理》中国科学院化学所 陈春城研究员低浓度、高毒性、难降解有机污染物(如卤代物、染料、农药、抗生素药物等)引起的环境问题已经严重影响人类的健康。光催化技术是近年发展起来的一类高效绿色的消除水中难降解有毒有机污染物的新技术,不过污染物降解量子效率低严重限制光催化规模化应用。报告介绍了陈春城团队通过原位红外研究手段和技术对有机污染物光催化降解的界面机理以及大气颗粒界面光化学转化机制等关键问题进行的系统研究成果。《含氯VOCs的高效催化净化》华东理工大学 詹望成教授挥发性有机物(VOCs)是造成我国大气中臭氧和颗粒物浓度居高难下的重要前体物。报告介绍了詹望成团队围绕当前VOCs净化过程中面临的关键科学问题——污染物分子的高效活化和控制转化,针对低碳烷烃和氯代烃等难降解VOCs的催化净化过程,重点开展C-H键的活化及毒副产物的控制等创新性研究的工作进展。《低浓度NOx的光化学去除研究》上海师范大学 张蝶青教授氮氧化物(NOx)是影响大气环境质量的一个重要污染因素,国内外对NOx的危害、燃煤发电燃烧过程中NOx的产生机理以及NOx技术的降低等都进行了充分的研究。氮氧化物气体的反应会形成臭氧,臭氧是烟气和酸雨的主要组成部分,也是形成细颗粒的主要组成部分,对人体健康都有损害。报告介绍了张蝶请团队围绕基于太阳光的低浓度NOx光化学高效去除技术开展的相关研究进展,包括光化学电子转移对低浓度NO高效去除的调变规律和光-电协同促进低浓度NO去除的新机制研究成果。《非电行业烟气氮氧化物催化净化》上海大学 张登松研究员随着工业与交通运输业的发展,氮氧化物(NOx)排放量与日俱增,NOx是造成酸雨、光化学烟雾及雾霾的主要原因,严重危害人类健康,破坏生态环境平衡。目前NH3选择性还原(NH3-SCR)是最有效的NOx控制技术,钒基催化剂已经广泛应用于电厂脱硝工艺中。然而,商业钒基催化剂活性温度窗口窄,很难应用于低温脱硝过程,比如工业窑炉、垃圾焚烧等非电行业。随着国家对非电行业NOx排放标准的日益提升,亟待开发适用于非电行业的低温抗中毒的NOx净化催化剂。报告介绍了张登松课题针对非电行业烟气NOx净化催化剂易中毒失活的关键科学难题,提出了以保护位抑制催化剂中毒失活的新理念,即通过对活性位和保护位的耦合与调控,发展了对SO2、碱金属以及多重复合毒物有抗中毒作用的NOx净化催化剂,并揭示了其抑制中毒作用的新机制,有效克服了烟气复杂组分对催化剂造成的中毒效应,显著提升了NOx催化净化效率和稳定性,形成了高效稳定的NOx催化净化新技术,为非电行业NOx减排应用奠定了科学基础。《双碳背景下未来汽车尾气催化剂技术趋势》四川大学 王建礼教授汽车尾气催化剂是汽车尾气催化转化器中使用的催化剂,是指借助某些有效的技术措施,减少尾气中的有害物质或使尾气中的CO、HC、NOx及PM被氧化或还原,生成无毒的CO2、H2O和N2。报告分别从柴油车、汽油车以及天然气车等方面详细介绍了各领域的尾气催化材料及催化剂制备科学和技术的发展趋势。《苝酰亚胺催化剂内场调控及其光耦合过硫酸盐增效机制》南京师范大学 何欢教授/季秋忆博士当前处理有机污染物的方法包括吸附技术、膜分离技术、生物降解以及高级氧化技术。报告介绍了何欢团队构建的新型苝二酰亚胺/过硫酸盐/可见光(PDI/PS/Vis)系统,以不同自组装程度PDI为研究对象,以双酚A为目标污染物,深入阐明了可见光下超分子活化过硫酸盐新机制。研究表明PDI/PS/Vis系统可以为降解废水中的有机微污染物提供新思路。《纳米环境矿物的表面调控与高级氧化》山东大学 占金华教授过去十几年来,基于过硫酸盐的高级氧化技术处理难降解有机污染物具有操作简单和氧化能力强的特点,在污水和污染土壤治理领域已得到广泛关注。而发展具有环境友好、催化稳定、廉价易得等优势的金属催化剂是近年来研究者们关注的研究方向之一。矿物材料广泛存在于自然环境之中,具有环境协调性、环境舒适性、加工制备简单、成本低廉等特点,是环境修复领域关注的重要研究课题。报告介绍了占金华团队在纳米环境矿物材料在有机污染治理中的研究成果,包括研究了环糊精改性纳米矿物活化H2O2与过硫酸盐,增强了污染物的降解,表现出实际应用的潜力;研究了富氧空位红锌矿活化PMS体系,阐明了非价电子活化PMS产生SO4-的机制,以及阐明了非电子活化PMS产生O2的机制。《限域体系的构建以及对全氟化合物高效降解机制的研究》南京大学 谷成教授全氟化合物是一种分布广泛的污染物,但是一般的羟基自由基、亚硫酸盐、活性碘等高级氧化技术对全氟化合物的降解存在效率过低、反应条件复杂等问题。报告介绍了有机源物质产生水合电子方法,尤其是带有五元杂环吲哚类物质具有的优势;紧接着,谷成教授围绕三个体系,从限域体系构建、降解/脱氟效率、水合电子产率、体系表征、理论计算等方面对研究工作进行了详细介绍,并展示了其课题中自制的反应装置。《固废中贵金属的光催化绿色回收》上海师范大学 卞振锋教授固废中贵金属回收过程涉及使用强酸和释放毒气、有毒重金属离子,环境污染严重。如何实现贵金属清洁回收是环保领域研究热点。报告介绍了卞振锋团队通过光催化氧化实现贵金属的溶解,发展适合多种贵金属的光催化清洁回收技术,探究贵金属选择性溶解回收的调控机制;系统研究贵金属原子表面活化、迁移以及光催化氧化途径;发展适用于在温和条件下,能够实现快速从电子垃圾、废汽车尾气三效催化剂、废贵金属负载型催化剂甚至矿石废渣中回收贵金属的通用方法,为光催化规模化贵金属清洁回收提供理论基础。《多维度SERS在环境中的应用研究》西南交通大学 范美坤教授拉曼光谱,特别是表面增强拉曼光谱(surface enhanced Raman scattering,SERS)是一种基于光的非弹性散射的光谱技术,具有实时、快速等特点,是一种很好的茶叶质量安全和品质分析的方法。报告介绍了范美坤团队基于表面增强拉曼光谱技术在茶叶分析领域开展的应用工作进展。《漆包炉尾气中VOCs的深度催化氧化及其异味治理》华南理工大学 付名利教授漆包线广泛应用于电机、变压器和家电等电器制造,我国是漆包线生产与消费第一大国,其生产过程使用大量含VOCs溶剂与稀释剂,产生的VOCs具有较强的毒性和致癌性,其行业产生的异味废气常引起强烈的扰民投诉,是环境部门重点管控项目。基于此,报告介绍了付名利团队对漆包线生产各环节中的 VOCs 进行物质流向跟踪,用各种实验方法进行分析,研究了漆包线行业 VOCs 的排放特征和组成分布,旨在为控制漆包线行业 VOCs 污染提供可靠的污染源数据支持。《工业园区异味VOCs污染特性的研究》浙江工业大学 庞小兵教授餐厨垃圾生物处理包括好氧堆肥、厌氧消化及卫生填埋等方式,在处理过程中产生的大量挥发性有机物(VOCs)会造成二次污染,对环境和人体健康均造成危害。报告从餐厨异味VOCs的来源、检测技术等方面进行阐述,并详细介绍了庞小兵团队基于传感器、机器学习等开发的便携式异味检测仪,及其与GC-MS、GC-PID检测的比对结果,研究表明检测结果一致,阐明餐厨垃圾异味治理与机理研究需要进行VOCs成分分析。《稀土改性金属氧化物的在NH3-SCR中的应用基础研究》山东师范大学 孙传智教授氮氧化物(NOx)是公认的主要大气污染物之一,它不仅是酸雨的主要成分,还是形成光化学烟雾的元凶,控制和治理氮氧化物污染越来越受到国内外环保领域的关注。目前,工业上主要采用氨选择性催化还原技术(NH3-SCR)控制氮氧化物的排放。催化剂为商用V2O5-WO3/TiO2,具有较高的脱硝活性,但其成本和操作温度较高,活性组分钒有毒,易对环境和人类造成二次毒害。因此,开发NH3-SCR低温高效无毒催化剂迫在眉睫。报告介绍了孙传智团队稀土改性金属氧化物在NH3-SCR中的应用基础研究方面的工作进展。《锰基复合氧化物的表征及其在环境催化领域的应用研究》清华大学 彭悦副研究员近年来,天然气受到了广泛应用,但这也带来了环境问题。甲烷是天然气的主要成分,其温室效应是CO2的22倍,甲烷废气的排放会加剧温室效应。催化燃烧可以有效地处理这些较低浓度的甲烷,此反应中常用的贵金属催化剂成本较高且易烧结,而金属氧化物催化剂以廉价易得、高热稳定性等优势表现出更强的应用价值,其中锰氧化物具有众多稳定的氧化物形式,表现出极高的催化潜力。报告介绍了彭悦团队开展的锰基莫来石在柴油车DOC以及锰氧化物在催化氧化甲苯中的应用研究工作进展。《低碳烷烃催化氧化与资源化》西安交通大学 何炽教授乙烯、丙烯、丁二烯等低碳烯烃是重要的化工原料,主要用于生产聚合物(聚乙烯、聚丙烯等)、含氧化合物(乙二醇、乙醛、环氧丙烷等)以及化工中间体(乙苯、丙醛等)等,因此在高分子、农药、医药、精细化工等领域应用广泛。目前,低碳烯烃主要来源于传统石油路线的蒸汽裂解和炼厂流化催化裂化工艺、以煤/甲醇为原料的煤制烯烃/甲醇制烯烃路线和以烷烃为原料的脱氢制烯烃技术。其中,烷烃催化脱氢技术因其高原子经济性、环境友好的特点,备受研究者关注。自页岩气革命以来,丰富的低碳烷烃资源(含甲烷、乙烷、丙烷等)极大地推动了低碳烷烃脱氢制烯烃的研究热潮。报告介绍了何炽团队建立的高效催化反应体系,拥有能够加速C-H键、C-C键活化、提升活性中心稳定性等特点,实现了低碳烷烃高效稳定催化氧化。《光催化分子氧活化去除难降解有机污染物》河北工业大学 王鹏飞副教授有毒难降解有机污染物毒性大、难生物降解、在自然界中存在的时间长,易在生物体内富集滞留,导致人类和动物癌变、畸变及雌性化,用现有环境技术很难处理。有毒难降解有机污染物的高效、环境友好的去除方法是国际上十分关注的前沿研究领域。报告介绍了王鹏飞团队在光催化分子氧活化去除难降解有机污染物研究方面的工作进展。论坛还邀请了南京工业大学丁靖、中国石油大学王雅君、中国科学院重庆绿色智能技术研究院方玲、南京大学万海勤、中山大学王俊慧、南京师范大学汤常金、南京大学邹伟欣、南京大学谭伟等位专家带来精彩的口头报告、以及麦克默瑞提克(上海)仪器有限公司熊雯、SPECS-TII王珍、安徽创谱仪器科技有限公司申锦等仪器厂商带来最新的仪器技术应用进展报告。合影
  • 压电位移台常用术语中英文对照表
    压电位移台常用术语中英文对照表Absolute accuracy : Deviation between the actual position and the desired one. If a stage has to move 100µm but it moves only 99.99µm (measured through an ideal scale), then the inaccuracy is 10nm. The permanent positioning error along an axis is designated as accuracy. Absolute accuracy is aff¬ected by calibration errors, linearity errors, hysteresis, Abbe errors and positioning noise. 绝dui精度:实际位置与所需位置之间的偏差。 如果一个平台必须移动 100µm,但它仅移动 99.99µm(通过理想标尺测量),则误差为 10nm。 沿轴的泳久定位误差称为精度。 绝dui精度受校准误差、线性误差、滞后、阿贝误差和定位噪声的影响。Backlash : Backlash is a positioning error occurring upon change of direction. Backlash can be caused by insufficiently preloaded thrust or inaccurate meshing of drive components, for example gear teeth. Piezoconcept’s flexure motion translation mechanism and piezo actuator designs are inherently backlash free. 齿隙:齿隙是在运动方向改变时发生的定位误差。 齿隙可能是由于预载推力不足或驱动部件(例如齿轮齿)啮合不准确造成的。 Piezoconcept 的弯曲运动平移机构和压电致动器设计本质上是无间隙的。Bandwidth : The frequency range to which the amplitude of the stage' s motion is dropped by 3dB. It reflects how fast the stage can follow the driving signal. 带宽:载物台运动幅度下降的频率范围为3dB。 它反映了平台能够以多快的速度跟随驱动信号。Drift : A position change over time, which includes the e¬ffects of temperature change and other environmental e¬ffects. The drift may be introduced from both the mechanical system and electronics. 漂移:位置随时间的变化,包括温度变化和其他环境影响的影响。 漂移可能来自机械系统和电子设备。Friction : Friction is defined as resistance between contacting surfaces during movement. Friction may be constant or speed dependent. Because they use flexure, the nanopositioners from Piezoconcept are friction free. 摩擦力:摩擦力定义为运动过程中接触表面之间的阻力。 摩擦力可以是恒定的或取决于速度的。 因为使用柔性连接,Piezoconcept 的纳米定位器是无摩擦的。Hysteresis : The positioning error between forward scan and backward scan. A closed-loop control is an ideal solution for this problem and is done by using a network of High Resolution silicon sensor to provide feedback signals. 滞后:前向扫描和后向扫描之间的定位误差。 闭环控制是该问题的理想解决方案,它通过使用高分辨率硅传感器网络提供反馈信号来完成。Linearity error : The error between the actual position and the first-order best fit line (straight line). Our nanopositioning products are calibrated with laser interferometry and the non linearity errors are compensated down to 0.02% of the full travel.线性误差:实际位置与一阶蕞佳拟合线(直线)之间的误差。 我们的纳米定位产品使用激光干涉仪进行校准,非线性误差补偿低至全行程的 0.02%。Orthogonality error : The angular off¬set of two defined motion axes from being orthogonal to each other. It can be interpreted as a part of crosstalk. 正交性误差:两个定义的运动轴相互正交的角度偏移。 它可以解释为串扰的一部分。Position noise : The amplitude of the stage shaking when it is on a static command. It is usually measured and specified with Peak-To-Peak value. It is a combination of the sensor noise, driver electronics noise and command noise, etc. The position noise of our stages is very limited due to the very high Signal-To-Noise ratio of the Silicon HR sensors we use. 位置噪声:在静态命令下载物台晃动的幅度。 它通常用峰峰值来测量和指定。 它是传感器噪声、驱动器电子噪声和命令噪声等的组合。由于我们使用的 Silicon HR 传感器具有非常高的信噪比,我们平台的位置噪声非常有限。Range of motion : The maximum dISPlacement of the nanopositioners. 运动范围(行程):纳米定位器的蕞大位移。Resolution : The minimum step size the stage can move. 分辨率:舞台可以移动的蕞小步长。Resonant frequency : Piezostage are oscillating mechanical systems characterized by a resonant frequency. The resonant frequency that we give is the lowest resonant frequency that can be seen on a nanopositioner. In general, the higher the resonant frequency of a system, the higher the stability and the widerworking bandwidth the system will have. The resonant frequency of a piezostage is determined by the square root of the ratio of sti¬ness and mass. 谐振频率:压电级是以谐振频率为特征的振荡机械系统。 我们给出的共振频率是在纳米定位器上可以看到的蕞低共振频率。 一般来说,系统的谐振频率越高,系统的稳定性和工作带宽就越宽。 压电级的共振频率由刚度和质量之比的平方根决定。Silicon HR sensor : Piezoconcept use temperature compensated High-Resolution silicon sensors network for reaching highest long-term stability. This measuring device is capable of measuring position noise in the picometer range and its response is not dependent of the presence of pollutants, air pressure changes like other high-end sensors can be. Si-HR 传感器:Piezoconcept 使用温度补偿高分辨率硅传感器网络,以达到蕞高的长期稳定性。 该测量装置能够测量皮米范围内的位置噪声,并且其响应不依赖于污染物的存在,应对改变气压带来的影响与其他高端传感器一样。Step response time : The step response time is the time needed by the nanopositioner to do the travel from 10% of the commanded value to 90% of the commanded value. The step response time reflects the dynamic characteristics of the system and is relatively to the installation method and load of the stage.阶跃响应时间:阶跃响应时间是纳米定位器从指令值的 10% 到指令值的 90% 所需的时间。 阶跃响应时间反映了系统的动态特性,并且与位移台的安装方式和负载有关。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。相关技术文
  • 应对新国标——化妆品中限用防腐剂测定
    化妆品中含有很多天然高营养、高活性的有机物,如氨基酸、蛋白质、糖类、维生素等,为了合理延长产品保质期,确保产品在使用期间不会因为各种污染而产生变质,通常会加入阻止微生物滋生的各种防腐剂,常用防腐剂有苯酸甲酯、乙酯、丙酯和丁酯、苯甲酸、山梨酸等,防腐剂不超标都是正常的,防腐剂种类以及含量越低越好。 “GB/T 39927-2021化妆品中限用防腐剂二甲基噁唑烷、7-乙基双环噁唑烷和5-溴-5-硝基-1,3-二噁烷的测定”已于2021年11月1日正式实施,在《化妆品安全技术规范(2015)》中规定二甲基噁唑烷使用范围及限制条件PH≥6,7-乙基双环噁唑烷禁用于接触粘膜的产品,5-溴-5-硝基-1,3-二噁烷用于淋洗类产品,避免形成亚硝胺。本标准适用于水剂类、水包油类和油包水类化妆,推荐方法包括气相色谱-质谱联用以及高效液相色谱法。 岛津拥有丰富的色谱质谱产品,性能优越,操作简便,在应对化妆品中防腐剂的检测方面有丰富应用。 液相色谱法检测化妆品中23种防腐剂Nexera LC-40 (1. 甲基异噻唑啉酮、2. 2-溴-2-硝基丙烷-1,3-二醇、3. 4-羟基苯甲酸、4. 甲基氯异噻唑啉酮、5. 苯甲醇、6. 苯氧乙醇、7. 苯甲酸、8. 4-羟基苯甲酸甲酯、9. 氯苯甘醚、10. 脱氢乙酸、11. 5-溴-5-硝基-1,3-二噁烷、12. 4-羟基苯甲酸乙酯、13. 4-羟基苯甲酸异丙酯、14. 4-羟基苯甲酸丙酯、15. 4-羟基苯甲酸苯酯、16. 4-羟基苯甲酸异丁酯、17.4-羟基苯甲酸丁酯、18. 4-羟基苯甲酸苄酯、19.苯甲酸乙酯、20. 4-羟基苯甲酸戊酯,21. 苯甲酸异丙酯、22. 苯甲酸丙酯、23. 苯甲酸苯基酯) 气相色谱-质谱法检测化妆品种19种防腐剂GCMS-QP2020NX (1. 甲酸、2. 丙酸、3. 三氯叔丁醇、4. 苯甲酸甲酯、5. 苯甲酸异丙酯、6. 苯甲酸乙酯、7. 苯甲酸丙酯、8. 苯甲酸异丁酯、9. 苯甲酸丁酯、10. 苯甲醇、11. 苯氧异丙醇、12. 山梨酸、13. 苯氧乙醇、14. 2,6-二氯苯甲醇、15. 邻伞花烃-5-醇、16. 2,4-二氯苯甲醇、17. 十一烯酸、18. 苯甲酸苯基酯、19. 氯苯甘醚) 如需了解岛津相关仪器设备或化妆品中相关应用资料,请不吝与岛津联系! 本文内容非商业广告,仅供专业人士参考。
  • 固相微萃取-高效液相色谱测定水产中丁香酚类麻醉剂
    丁香酚作为一种渔用麻醉剂,在水产品长途运输中,可降低呼吸和代谢强度,减少碰撞,降低其死亡率而被广泛使用。但有研究表明,高剂量的丁香酚会引起心律失常、肾脏损伤、消化系统等问题,对人类健康造成潜在危害,因此日本食品安全法规定丁香酚在水产品体内的最大残留量为50 μg/kg,但我国还未对其使用和残留量制定相关法规,针对其在水产品中的痕量残留检测的文献报道较少。  目前,丁香酚类麻醉剂常用的检测方法有气相色谱-质谱(GC-MS)、高效液相色谱-质谱(HPLC-MS)、高效液相色谱-紫外(HPLC-UV)和电化学(EC)等,但水产品中丁香酚类麻醉剂含量少,基质复杂,对其进行准确检测存在一定困难。  高效的样品前处理方法是获得准确结果的有效方法,现有液液萃取(LLE)、固相萃取(SPE)、分散固相萃取(DSPE)和固相微萃取(SPME)等方法应用在水产品前处理中,其中LLE方法操作简单,但很难消除水产品中色素、脂肪和蛋白质等杂质对测定的干扰,DSPE方法在处理过程中容易造成目标物损失导致回收率偏低,所以SPE和SPME技术在水产品前处理中更为常用,特别是针对水产品中一些挥发性和痕量物质检测时,SPME技术因其高效低耗、绿色环保显示出更大的优势而被广泛使用。  SPME涂层是决定方法选择性、灵敏度、寿命、重现性和应用价值的关键。SPME涂层的种类有限,其萃取容量或选择性难以满足不同性质复杂样品的痕量分析要求,亟待发展新型SPME涂层。氟化共价有机聚合物(fluorinated covalent organic polymer, F-COP)是一类具有拓扑结构的新型多孔聚合材料,主要由轻质原子通过较强的共价键相互连接而成,具有物理化学性质稳定、吸附容量高、孔结构和尺寸可控等特点,而且F-COP结构中含有氟官能团,可以与酚羟基之间形成氢键相互作用,从而实现对目标物的特异性识别与吸附,因此F-COP吸附剂在丁香酚类化合物的富集与分析中有很大的应用潜力。  本文以三氟甲磺酸钪为催化剂,在室温下合成一种F-COP材料,并采用黏合法在石英棒表面制备SPME涂层,结合HPLC-UV建立了测定丁香酚、乙酸丁香酚酯和甲基丁香酚的分析方法,并将该方法成功应用到罗非鱼和基围虾的分析中,为水产品中丁香酚类麻醉剂的残留检测提供技术支持。  01色谱条件  色谱柱:Diamonsil Plus C18-B(250 mm×4.6 mm, 5 μm);紫外检测波长:280 nm;流动相:甲醇-水(60:40, v/v);流速:0.800 mL/min;进样量:20.0 μL;柱温:30 ℃。  02标准溶液的配制  准确称取10.0 mg(精确至0.2 mg)丁香酚、乙酸丁香酚酯和甲基丁香酚标准品,用色谱纯甲醇配制成400 mg/L的混合标准储备液,于4 ℃下冷藏保存备用。实验所需不同浓度溶液均用超纯水进行稀释。  03F-COP-SPME石英棒的制备  F-COP材料的制备  根据文献报道的合成方法并进行适当修改,制备F-COP材料。具体合成方法如下:称取TAPB (36 mg)和TFA (31 mg),加入4 mL的1,4-二氧六环-1,3,5-三甲苯(4:1, v/v)混合溶液,超声至完全溶解。在超声条件下缓慢加入2 mg Sc(OTf)3催化剂,室温下密封静置反应10 min,得到黄色固体物质,分别用1,4-二氧六环和甲醇超声洗涤3次(3×10 mL),然后离心分离,获得的材料在60 ℃真空条件下干燥12 h备用。  F-COP-SPME石英棒的制备  截取5 cm石英棒,依次用1 mol/L氢氧化钠和1 mol/L盐酸溶液各浸泡5 h,再用超纯水超声清洗后于100 ℃下烘干备用。采用黏合法制备F-COP-SPME石英棒,具体过程如下: (a)分别称取90 mg F-COP粉末和90 mg PAN粉末于3 mL玻璃小瓶中,加入1.5 mL DMF,放入小磁子搅拌,超声分散形成均匀浆液;(b)将石英棒插入浆液中,再从浆液中缓慢拉出,置于空气中晾干1 min,再放入80 ℃烘箱中加热30 min,重复此操作2次;(c)将涂覆后的石英棒放入150 ℃烘箱中老化2 h; (d)老化后的石英棒涂层分别用10 mL丙酮、甲醇和超纯水各超声清洗10 min; (e)用刀片小心刮去多余涂层,保留涂层的长度为2.0 cm,最终得到SPME石英棒。F-COP-SPME石英棒每次使用前用10 mL甲醇和10 mL超纯水各清洗10 min后再进行萃取。  04样品前处理  鲜活罗非鱼和基围虾购于广州当地水产品市场,将其洗净去除鱼鳞、虾皮和内脏,然后用组织匀浆机绞碎样品,放入-20 ℃下保存待分析。称取2.00 g样品放入50 mL离心管中,加入5 mL乙腈和5.00 g硫酸钠后,依次涡旋振荡和超声各10 min,再以5000 r/min速度离心10 min,移取上层清液至另一支离心管中,残渣按上述步骤重复提取一次,合并两次上清液,加入5 mL正己烷脱脂,涡旋振荡10 min,静置10 min,去除上层正己烷相,将剩余溶液在室温下氮气吹干,加3.00 mL超纯水重溶,得到样品溶液。  05F-COP-SPME萃取过程  将3.00 mL样品溶液置于4 mL带密封垫的样品瓶中,插入制备的F-COP-SPME石英棒,涂层需全部侵入样品溶液中,室温下搅拌萃取(700 r/min) 30 min。然后将石英棒立即放入加有500 μL乙腈解吸液的小瓶中,超声解吸10 min,解吸液经0.45 μm滤膜过滤后待HPLC-UV分析。F-COP-SPME石英棒每次使用后,用10 mL甲醇和10 mL超纯水各清洗3次后待下次使用。  06模拟计算  通过Gaussian 09和Discovery Studio软件,在密度泛函理论方法优化结构的基础上,计算丁香酚、乙酸丁香酚酯和甲基丁香酚与所制备F-COP材料间的吸附能和电子云分布情况。
  • 百灵威聚焦奶粉中雌激素检测相关产品
    &ldquo 奶粉疑致性早熟&rdquo 事件已经给我们敲响警钟,若从食物中摄入过量激素,将会严重损害人体健康,因此食物中激素检测日益重要。 GB/T 21981-2008 动物源食品中激素多残留检测方法,用液相色谱- 质谱/ 质谱法,对猪肉、猪肝、鸡蛋、牛奶、牛肉、鸡肉和虾等动物源食品中50种激素残留进行检测,确保食物安全。 百灵威作为中g分析行业的专业引l者,与权威机构共同开发g家标准中指定标准品(对照品)。在三聚氰胺、RoHs、苏丹红等检测项目中,百灵威提供的标准品被认定为&ldquo 指定产品&rdquo 。为支持《GB/T 21981-2008 动物源食品中激素多残留检测方法》及《农业部1031号公告-1-2008 动物源性食品中11种激素残留检测液相色谱-串联质谱法》需求,百灵威现为专业分析研究者提供该g标涉及的各项标准品、配套产品。 ★ 标准品 CAS 英文名 中文名 规格 734-32-7 (+)-19-Norandrost-4-ene-3,17-dione 去甲雄烯二酮 10mg 10161-33-8 Trenbolone 孕三烯酮 0.1g 846-48-0 Boldenone 勃地酮 10mg 76-43-7 Fluoxymesterone 氟甲睾酮1g 434-22-0 19-Nortestosterone 诺龙 0.1g 63-05-8 4-Androstene-3,17-dione 雄烯二酮 0.1g 72-63-9 Methandrostenolone 美雄酮 25mg 58-22-0 Testosterone 睾酮 0.25g 53-43-0 Dehydro epiandrosterone 普拉雄酮 100mg 58-18-4 17-alpha-Methyltestosterone 左炔孕酮 0.1g 481-29-8 Epiandrosterone 表雄甾酮 1g 10418-03-8 Stanozolol 康力龙 0.1g 521-18-6 5alpha-Androstan-17beta-ol-3-one 双氢睾酮 0.1g 1424-00-6 mesterolone 甲氢睾酮 1g 17230-88-5 Danazol 达那唑 500mg 68-22-4 Norethindrone 炔诺酮 2g 64-85-7 21-Hydroxyprogesterone 去氧皮质酮 0.1g 68-96-2 17-alpha-Hydroxyprogesterone 17-&alpha -羟基孕酮 0.1g 797-63-7 D-(-)-Norgestrel 甲基炔酮 10mg 520-85-4 Medroxyprogesterone 甲孕酮 0.1g 595-33-5 Megestrol acetate 乙酸甲地孕酮 1g 302-22-7 Chloromadinon 17-acetate 氯化孕酮-17-乙酸酯 0.1g 57-83-0 Progesterone 孕酮,黄体酮 0.25g 71-58-9 Medroxyprogesterone-17-acetate 安宫黄体酮/醋酸甲羟孕酮 0.1g 124-94-7 Triamcinolone 曲安西龙 1g 52-39-1 Aldosterone 醛固酮 1mg 53-03-2 Prednisone 泼尼松 0.1g 53-06-5 Cortisone 可的松 5g 50-23-7 Hydrocortisone 氢化可的松 0.25g 50-24-8 Prednisolone 泼尼松龙/氢化泼尼松 0.25g 2135-17-3 Flumethasone 双氟美松 250mg 50-02-2 Dexamethasone 地塞米松 0.1g 514-36-3 Fludrocortisone acetate 醋酸氟氢可的松 1g 83-43-2 6-alpha-Methylprednisolone 甲基泼尼松龙 50mg 4419-39-0 Beclomethasone 倍氯米松 25mg 76-25-5 Triamcinolone acetonide 曲安奈德 0.1g 67-73-2 Fluocinolone acetonide 氟轻松 10mg 426-13-1 Fluorometholone 氟甲松龙 1g 51333-22-3Budesonide 布地奈德 0.1g 25122-46-7 Clobetasol propionate 丙酸氯倍他索 0.1g 50-27-1 Estriol 雌三醇/1,3,5(10)-三烯- 3&beta ,16&alpha ,17&beta 三醇 0.1g 50-28-2 17-beta-Estradiol &beta -雌二醇/&beta -1,3,5(10)-三烯- 3,17&beta -二醇 0.25g 57-63-6 17&alpha -Ethinylestradiol 17&alpha -炔雌醇 0.25g 53-16-7 Estrone 雌酮 0.1g 56-53-1 Diethylstilbestrol己烯雌酚 0.1g 84-16-2 Hexestrol 己烷雌酚/去氢己烯雌酚/4,4'-(1,2- 二乙基亚乙基)二苯酚 0.1g 84-17-3 Dienestrol 双烯雌酚/己二烯雌酚/2,3-二苯酚丁二烯 0.1g N/A Norgestrel-D6 炔诺孕酮-D6 1mg N/A Progesterone-D9 孕酮-D9 1mg N/A Megestrol acetate-D3 甲地孕酮醋酸盐-D3 0.5mg 162462-69-3 Medroxyprogesterone-D3 甲羟孕酮-D3 1mg N/A Norethindrone-ethynyl-13C2 炔诺酮-13C2 1mg 869287-60-5Methandrostenolone-D3 甲睾酮-D3 2.5mg N/A Boldenone 17-Sulfate-D3 勃地酮-D3 5mg 73565-87-4 Cortisol-9,11,12,12-D4 可的松-9,11,12,12-D4 0.5mg 53866-34-5 Estrone-D4 雌酮-D4 2.5mg N/A Hexestrol-D4 己烷雌酚-D4 1mg N/A Testosterone-3,4-13C2 睾酮-3,4-13C2 0.01g N/A Estradiol-3,4-13C2 雌二醇-3,4-13C2 1.2mL N/A Diethylstilbestrol--D8 己烯雌酚-D8 1.2mL ★ 配套产品 CAS 英文名 中文名 规格 67-56-1 Methanol ,99.9% [HPLC/ACS] 甲醇 1L/4L 75-05-8 Acetonitrile ,99.9% [HPLC/PREP] 乙腈 1L/4L 75-09-2 Dichloromethane, stabilized with amylene, for HPLC, 99.8% 二氯甲烷 1L/2.5L 7732-18-5 Water, for HPLC gradient grade 水 1L/2.5L 64-19-7 Acetic acid, for analysis, 99.8% 乙酸 1L/2.5L 64-18-6Formic acid, for analysis, 99+% 甲酸 1L/2.5L 9001-45-0 B-GLUCURONIDASE TYPE IX-A FROM E. COLI BETA-葡萄糖醛酸甙酶 1x25KU 25561-30-2 N,O-Bis(trimethylsilyl)trifluoroacetamide ,98% N,O-双(三甲基硅烷基)三氟甲基乙酰胺 25g/100g 12252201 BOND ELUT CARBON, 500MG, 6ML, 30/PK 石墨化碳黑SPE小柱 1x1EA 12256045 MEGA BE-NH2, 500MG 6ML, 30/PK NH2氨基SPE小柱 1x1EA 1634-04-4 tert-Butyl methyl ether, for HPLC 叔丁基甲基醚MtBE 1L/2.5L 497-19-8 Sodium carbonate, anhydrous, powder, for analysis, 99.8% 无水碳酸钠 1kg 更多配套分析试剂欢迎致电百灵威垂询!
  • 396万!甘肃省药品检验研究院2022年实验用试剂、耗材、对照品项目
    项目编号:2022zfcg00371项目名称:甘肃省药品检验研究院2022年实验用试剂、耗材、对照品项目预算金额:396.48(万元)最高限价:396.48(万元)采购需求:具体品目、技术参数和数量详见招标文件第五章 技术规格书合同履行期限:按合同约定执行本项目(是/否)接受联合体投标:否
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制