当前位置: 仪器信息网 > 行业主题 > >

甲基伞形酮葡糖甘酸

仪器信息网甲基伞形酮葡糖甘酸专题为您提供2024年最新甲基伞形酮葡糖甘酸价格报价、厂家品牌的相关信息, 包括甲基伞形酮葡糖甘酸参数、型号等,不管是国产,还是进口品牌的甲基伞形酮葡糖甘酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甲基伞形酮葡糖甘酸相关的耗材配件、试剂标物,还有甲基伞形酮葡糖甘酸相关的最新资讯、资料,以及甲基伞形酮葡糖甘酸相关的解决方案。

甲基伞形酮葡糖甘酸相关的资讯

  • 赫施曼助力黄酒中总糖的测定
    黄酒是中华民族的传统酒,也是华夏瑰宝。随看人们生活质量的提高和健康意识的增强,人们对黄酒的类型、品质也有了更高的要求与追求。黄酒的总糖含量是区别不同类型黄酒的主要指标,根据其中的总糖含量,可将黄酒分为干黄酒、半干黄酒、半甜黄酒、甜黄酒。根据GB/T 13662-2018,总糖的测定有廉爱农法、亚铁氰化钾滴定法。1. 廉爱农法费林试剂与还原糖共沸,生成氧化亚铜沉淀。以次甲基蓝为指示液,用试样水解液滴定沸腾状态的费林溶液。达到终点时,稍微过量的还原糖将次甲基蓝还原成无色为终点,依据试样水解液的消耗体积,计算总糖含量。试样的测定:吸取试样2~10mL于500mL容量瓶中,加水50mL和盐酸溶液5mL,在68~70℃水浴中加15min。冷却后,加入甲基红指示液2滴,用氢氧化钠溶液中和至红色消失,加水定溶至500mL,摇匀,用滤纸过滤后,作为试样水解液备用。测定时,以试样水解液代替葡萄糖标准溶液,操作步骤同干型黄酒的总糖检测方法。2.亚铁氰化钾滴定法费林溶液与还原糖共沸,在碱性溶液中将铜离子还原成亚铜离子,并与溶液中的亚铁氰化钾络合而呈黄色,以次甲基蓝为指示,达到终点时,稍微过量的还原糖将次甲基蓝还原成无色为终点。根据试样水解液的消耗体积,计算总糖含量。试样的测定:(1)预滴定:准确吸取甲溶液【称取硫酸铜(CuSO45H2O)15.0g及次甲基蓝0.05g,加水溶解并定容至1000mL,摇匀】、乙溶液【称取酒石酸钾钠(C4H4KNaO64H2O)50g、氢氧化钠54g、亚铁氰化钾4g,加水溶解并定容至1000mL,摇匀】、试样水解液各5mL于100mL锥形瓶中,摇匀后置于电炉上加热至沸腾,用葡萄糖标准溶液滴定至终点,记录消耗葡萄糖标准溶液的体积;(2)滴定:准确吸取甲溶液、乙溶液、试样水解液各5mL于100mL锥形瓶中,加入比预滴定少1.00mL的葡糖标准溶液,摇匀后置于电炉上加热至沸腾,继续用葡萄糖标准溶液滴定至终点。记录消耗葡萄糖标准溶液的体积。接近终点时,滴入葡萄糖标准溶液的用量控制在0.5~1.0mL。滴定法一般使用的是玻璃滴定管,对试验人员的技术水平、实操经验和耐心的要求较高,有灌液慢、控速难,读数乱(不同人次、位置的凹液面读数可能出现偏差)三大痛点。赫施曼的光能滴定器可抽提加液、手转控制滴定速度,光能板供电无需电池;赫施曼的opus电子滴定器可通过触屏来进行灌液,可以正常滴定,也可以半滴滴定(每次出液约20uL),此外还有预滴定功能(可设定添加一定体积的滴定液,然后再继续进行常规滴定,数值累加)。这两种滴定器均为屏幕直接读数,可连接电脑输出数据,针对性解决了三大痛点,可提高工作效率、降低目视误差,无需大量实操经验,降低了培训成本和人员个体差异,所得数据也更加准确、稳定。
  • 糖苷酶抑制剂标准品哪里找?上海甄准生物
    糖苷酶抑制剂标准品哪里找?------上海甄准生物 糖苷酶抑制剂是一类含氮的拟糖类结构能抑制糖苷键形成的化合物。从结构上可分为两组:第一组氮原子在环上有野尻霉素(nojirimycin)、半乳糖苷酶抑素(galactostatin)、寡糖酶抑素(oligostatin)等。第二组氮原子在环外,如阿卡糖(acarbose),validoxylamine A、B,有效霉素A、B(海藻糖苷酶抑制剂)等,从抑制酶范围上看,它包括了部分&alpha -葡萄糖苷酶抑制剂、半乳糖酶抑制剂、唾液酸抑制剂、淀粉酶抑制剂。 上海甄准生物提供糖苷酶抑制剂标准品,为您检测分析提供强有力支持! 产品信息: 货号 品名 CAS No. B691000 N-Butyldeoxynojirimycin Hydrochloride 210110-90-0 C10H22ClNO4 10/100mg a-葡糖苷酶1和 HIV cytopathicity抑制剂 E915000 N-Ethyldeoxynojirimycin Hydrochloride 210241-65-9 C8H18ClNO4 10/100mg HIV cytopathicity抑制剂 C181150 N-5-Carboxypentyl-deoxymannojirimycin 104154-10-1 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化Man9 甘露糖苷酶 A187545 2,3-O-Acetyloxy-2&rsquo ,3&rsquo ,4&rsquo ,6,6&rsquo -penta-O-benzyl-4-O-D-glucopyranosyl N-Benzyloxycarbonylmoranoline (&alpha /&beta mixture)   C56H63NO13 10/100mg 4-O-&alpha -D-Glucopyranosylmoranoline 制备中间体 B690500 N-(n-Butyl)deoxygalactonojirimycin 141206-42-0 C10H21NO45/50mg a-D-半乳糖苷酶抑制剂 B690750 N-Butyldeoxymannojirimycin, Hydrochloride 355012-88-3 C10H22ClNO4 5/50mg a-D-甘露糖苷酶抑制剂 D236000 Deoxyfuconojirimycin, Hydrochloride 210174-73-5 C6H14ClNO3 10/100mg alpha-L-岩藻糖苷酶抑制剂 M166000 D-Manno-&gamma -lactam 62362-63-4 C6H11NO5 5/50mgalpha-甘露糖苷酶 ß - 葡糖苷酶抑制剂和 M165150 D-Mannojirimycin Bisulfite   C6H13NO7S 1/10mg alpha-甘露糖苷酶抑制剂 D455000 6,7-Dihydroxyswainsonine 144367-16-8 C8H15NO5 1/10mg a-甘露糖苷酶抑制剂 C665000 Conduritol B 25348-64-5 C6H10O4 25/250mg b-葡糖苷酶抑制剂 C666000 Conduritol B Epoxide 6090-95-5 C6H10O5 25/250mg b-葡糖苷酶抑制剂 A155250 2-Acetamido-2-deoxy-D-gluconhydroximo-1,5-lactone 1,3,4,6-tetraacetate 132152-77-3 C16H22N2O10 25/250mg glucosamidase抑制剂 D240000 Deoxymannojirimycin Hydrochloride 73465-43-7 C6H14ClNO4 10/100mg mammalian Golgi alpha- mannosidase 1 抑制剂 M297000 N-Methyldeoxynojirimycin69567-10-8 C7H15NO4 10/100mg N-连接糖蛋白高斯过程干扰剂 A158400 2-Acetamido-1,2-dideoxynojirimycin 105265-96-1 C8H16N2O4 1/10mg N-乙酰葡糖胺糖苷酶抑制剂 A157250 O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenylcarbamate 132489-69-1 C15H19N3O7 5/10/100mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 A157252 (Z)-O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenyl-d5-carbamate 1331383-16-4 C15H14D5N3O7 1/10mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 M334515 4-Methylumbelliferyl &alpha -D-Glucopyranoside 4&rsquo -O-C6-N-Hydroxysuccinimide Ester   C26H31NO12 25mg T2DM糖苷酶抑制剂 G450000 4-O-&alpha -D-Glucopyranosylmoranoline 80312-32-9 C12H23NO9 1/10mg &alpha -葡萄糖苷酶抑制剂 D231750 1-Deoxy-L-altronojirimycin Hydrochloride 355138-93-1 C6H14ClNO4 5/50mg &alpha -糖苷酶抑制剂 H942000 N-(2-Hydroxyethyl)-1-deoxy-L-altronojirimycin Hydrochloride Salt   C8H18ClNO5 0.5/5mg &alpha -糖苷酶抑制剂 H942015 N-(2-Hydroxyethyl)-1-deoxygalactonojirimycin Hydrochloride   C8H18ClNO5 1/10mg &alpha -糖苷酶抑制剂 H942030 N-(2-Hydroxyethyl)-1-deoxy-L-idonojirimycin Hydrochloride   C8H18ClNO55/50mg &alpha -糖苷酶抑制剂 T795200 3&rsquo ,4&rsquo ,7-Trihydroxyisoflavone 485-63-2 C15H10O5 200mg/2g &beta -半乳糖苷酶抑制剂 A158380 O-(2-Acetamido-2-deoxy-3,4,6-tri-o-acetyl-D-glucopyranosylidene)amino N-(4-nitrophenyl)carbamate 351421-19-7 C21H24N4O12 10/100mg 氨基葡萄糖苷酶抑制剂 M166505 Mannostatin A, 3,4-Carbamate 1,2-Cyclohexyl Ketal   C13H19NO4S 2.5/25mg 保护的Mannostatin A B682500 Bromoconduritol (Mixture of Isomers) 42014-74-4 C6H9O3Br 200mg 哺乳类 alpha-葡萄糖苷酶 2 抑制剂 K450000 Kifunensine 109944-15-2 C8H12N2O6 1/10mg 芳基甘露糖苷酶抑制剂 D239750 1-Deoxy-L-idonojirimycin Hydrochloride 210223-32-8 C6H14ClNO4 10/100mg 酵母葡糖a-苷酶类抑制剂S885000 Swainsonine 72741-87-8 C8H15NO3 1/10mg 可逆,活性部位直接抑制甘露糖苷酶抑制剂;Golgi a-甘露糖苷酶 II抑制剂 T295810 [1S-(1&alpha ,2&alpha ,8&beta ,8a&beta )]-2,3,8,8a-Tetrahydro-1,2,8-trihydroxy-5(1H)-indolizinone 149952-74-9 C8H11NO4 10/100mg 苦马豆素和衍生物合成中间体 N635000 Nojirimycin-1-Sulfonic Acid 114417-84-4 C6H13NO7S 10/100mg 葡糖苷酶类抑制剂 V094000(+)-Valienamine Hydrochloride 38231-86-6 C7H14ClNO4 1/10mg 葡糖苷酶抑制剂 D440000 2,5-Dideoxy-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 葡糖苷酶抑制剂 D494550 N-Dodecyldeoxynojirimycin 79206-22-7 C18H37NO4 10/100mg 葡糖苷酶整理剂 D479955 2,4-Dinitrophenyl 2-Deoxy-2-fluoro-&beta -D-glucopyranoside 111495-86-4 C12H13FN2O9 5/50mg 葡糖基氟化物,可以作为特定的机制为基础的糖苷酶抑制剂,未来可应用于合成和降解的低聚糖和多糖 A653270 2,5-Anhydro D-Mannose Oxime, Technical grade 127676-61-3 C6H11NO5 10/100mg 潜在的葡苷糖酶抑制剂C-(D-吡葡亚硝脲)乙胺和C-(D-glycofuranosyl)甲胺 D236500 1-Deoxygalactonojirimycin Hydrochloride 75172-81-5 C6H14ClNO4 10/100mg 强效的和有选择性的d半乳糖苷酶抑制剂 D236502 Deoxygalactonojirimycin-15N Hydrochloride   C6H14Cl15NO4 5/25mg 强效的和有选择性的d半乳糖苷酶抑制剂 B445000 (2S,5S)-Bishydroxymethyl-(3R,4R)-bishydroxypyrrolidine 105015-44-9 C6H13NO4 10/100mg 强有力的和特定的糖苷酶抑制剂 M166500 Mannostatin A, Hydrochloride 134235-13-5 C6H14ClNO3S 1/10mg 强有力的糖苷酶抑制剂,甘露糖苷酶抑制剂 A858000 N-(4-Azidosalicyl)-6-amido-6-deoxy-glucopyranose 86979-66-0 C13H16N4O7 1/10mg 人类红细胞单糖运输标签抑制剂 C185000 Castanospermine 79831-76-8 C8H15NO4 10/100mg 溶酶体 a-或者beta-葡糖苷酶. 葡糖苷酶1抑制剂和 beta-甘露糖苷酶抑制剂 D439980 1,4-Dideoxy-1,4-imino-D-mannitol, Hydrochloride 114976-76-0 C6H14ClNO4 5/50mg 糖蛋白甘露糖苷酶抑制剂 A608080 N-(12-Aminododecyl)deoxynojirimycin 885484-41-3 C12H26N2O4 5/50mg 糖苷酶亚氨基糖醇制备用试剂 I866350 1,2-O-Isopropylidene-alpha-D-xylo-pentodialdo-1,4-furanose 53167-11-6 C8H12O5 100mg/1g 糖苷酶抑制剂制备试剂 A648300 2,5-Anhydro-2,5-imino-D-glucitol 132295-44-4 C6H13NO4 10/100mg 糖水解酶类抑制剂 A648350 2,5-Anhydro-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 糖水解酶类抑制剂 M257000 3-Mercaptopicolinic Acid Hydrochloride 320386-54-7 C6H6ClNO2S 500mg/5g 糖质新生抑制剂 B286255 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin 138381-83-6 C21H23NO6 5/50mg 脱氧野尻霉素衍生物 B286260 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin Diacetate 153373-52-5 C25H27NO8 2.5/25mg 脱氧野尻霉素衍生物 D245000 Deoxynojirimycin 19130-96-2 C6H13NO4 10/100mg 脱氧野尻霉素抑制哺乳类葡糖苷酶1 A172200 N-Acetyl-2,3-dehydro-2-deoxyneuraminic Acid Sodium Salt 209977-53-7 C11H16NNaO8 10/100mg 细菌、动物和病毒抑制剂 C181200 N-5-Carboxypentyl-1-deoxynojirimycin 79206-51-2 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C181205 N-5-Carboxypentyl-1-deoxygalactonojirimycin 1240479-07-5 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C645000 Conduritol A 牛奶菜醇A 526-87-4 C6H10O4 1/10mg   C667000 Conduritol D牛奶菜醇D 4782-75-6 C6H10O4 10mg   I868875 1,2-Isopropylidene Swainsonine 85624-09-5 C11H19NO31/10mg   更多产品,更多优惠!请联系我们! 上海甄准生物科技有限公司 免费热线:400-002-3832
  • 蜂蜜中糖类营养物质测定与掺假蜂蜜鉴别
    蜂蜜是一种常见的健康食品,口味香甜,营养丰富。蜂蜜主要成分是糖类,包括单糖、二糖、低聚糖和多糖等,此外还含有人体需要的大部分矿物质和各种维生素、有机酸、氨基酸、生长素等营养物质,所以其药用价值也非常广泛,可作为中成药辅料,也对神经衰弱等慢性疾病有良好的辅助疗效。由于蜂蜜广泛的营养价值,在市场上广受欢迎,但假冒伪劣产品随之而来,且名目繁多,对食品安全构成重大威胁。有关蜂蜜掺假检测方法较多,这里分两类进行简单汇总:现有标准和法规方法、近年来新技术新方法。蜂蜜掺假相关综述文章也比较多[1-3],感兴趣的读者可查阅相关文章。一、现有标准和法规方法国标GB14963-2011食品安全国家标准蜂蜜中定义,蜂蜜是“蜜蜂采集植物的花蜜、分泌物或蜜露,与自身分泌物混合后,经充分酿造而成的天然甜物质”,其中明确规定果糖和葡萄糖含量至少要达到60%,蔗糖含量不得超过10%。市场上蜂蜜掺假形式主要包括添加葡萄糖、果糖、蔗糖、C3 植物糖浆(甜菜糖浆、大米糖浆)、C4植物糖浆(玉米糖浆、甘蔗糖浆)、高果糖浆和果葡糖浆等等。针对添加C4植物糖浆掺假,依据国标GB/T 18932.1-2002 蜂蜜中碳-4植物糖含量测定方法-稳定碳同位素比率法可鉴定,但其不能鉴别添加C3植物糖浆的蜂蜜。国标GB/T 21533-2008 中,以淀粉糖浆中含有的五糖以上的低聚糖为标志物, 将低聚糖富集后采用阴离子交换色谱-脉冲安培检测器(HPAEC -PAD) 检测,可以实现对蜂蜜中淀粉糖浆掺假的检测。2020版药典也是按照五糖以上的低聚糖为标志物,检测方法为薄层色谱法。国标GB/T 18932.2-2002 蜂蜜中高果糖淀粉糖浆测定方法-薄层色谱法对蜂蜜中寡糖多糖进行定性测定,也可鉴别蜂蜜中是否含有淀粉糖浆。二、近年来新技术新方法现代分析技术的发展为蜂蜜的鉴别提供了越来越多的新方法,屈亮亮等[4]采用基质辅助激光解吸电离质谱(MALDI-MS)分析了蜂蜜及其掺假样品中的糖类以及小分子代谢物。在正离子模式下,通过比较蜂蜜样品和掺假样品的MALDI-MS谱图在多糖聚合度以及糖类分布趋势上的差异,可对掺假样品进行快速鉴别。在负离子模式下通过寡糖异构体组成上的差异,可对掺假样品进行高通量鉴别。刘彩云等[5]采用高效液相色谱-电化学联用技术对中蜂蜂蜜中所含的 12 种酚类化合物进行了鉴别和含量测定,构建了陕西不同地区中蜂蜂蜜的酚类色谱指纹图谱。并对共有峰进行匹配,提取特征峰信息,可对掺假蜂蜜进行鉴别。杨远帆等[6]通过测定蜂蜜和果葡糖浆中脯氨酸含量后发现,蜂蜜中氨基酸的量随果葡糖的掺入量的增加呈线性减小趋势,由此建立了一种基于测定脯氨酸含量鉴别蜂蜜掺假的有效方法。杨心浩等[7]通过研究,建立了采用红外光谱测定蜂王浆品质并基于 NIR 光谱结合水光谱组学建立了检测麦卢卡蜂蜜掺假糖浆的新方法。核磁共振技术结合化学计量学分析方法也成功运用于蜂蜜和其它食品的分析检测中。Bertelli 等[8]比较了一维(1D)和二维(2D)高分辨核磁共振(nuclear magnetic resonance,NMR) 对掺杂糖浆的蜂蜜的检测效果, 发现1D 核磁谱有较高的预测正确率(95.2%)。不同的蜂蜜来源组成不同产生的气味不同, 从而在电子鼻气体传感器中产生的指纹图谱也不同。裴高璞等[9]发现电子鼻对掺假蜂蜜比较敏感,LDA模式识别算法可以将纯蜂蜜样品与掺假蜂蜜样品很好的区分开,识别正确率可达94.7%。江瑶等[10]基于代谢组学技术,采用超高液相色谱串联四级杆轨道离子阱高分辨质谱(UHPLC-Q Exactive Obitrap LC-MS)对样本原始数据进行采集,获取的数据通过多元统计分析实现对比较样品组的区分,找到的可能的标志性代谢物进行二级质谱分析寻找碎片离子,初步完成标志性代谢物的定性工作。对真蜂蜜与已知劣质蜂蜜进行区分。由于蜂蜜成分的复杂性,单一的鉴别方法也可能无法达到鉴定目的,这时可以考虑将多种方法联合使用, 多组分多指标对蜂蜜进行检测。 根据2020版药典蜂蜜含量测定项[11]下方法采用聚合物氨基柱分析4种常见糖,使用电雾式检测器(CAD)替代示差检测器进行测定取得了较好的效果。CAD作为一款通用型检测器,被2020版药典所收载,其具有良好的动态范围、一致的响应和出众的灵敏度,适用于大部分非挥发性和半挥发性有机物的检测,该检测器用于糖的检测,较示差检测器灵敏度更高,而且适用于梯度洗脱条件。图1是CAD测定某蜂蜜样品中4种常见糖的谱图。图1 蜂蜜中4种糖含量测定1:果糖 2:葡萄糖 3:蔗糖 4:麦芽糖近年来常用的蜂蜜掺假手段中,利用果葡糖浆掺假[12,13]形式最为普遍。果葡糖浆是由植物淀粉水解制得,如玉米或红薯淀粉,加工简单,成本低廉。蜂蜜中不含五糖(DP = 5)以上的寡糖,但在果葡糖浆中却广泛存在。2020版药典据此在蜂蜜检查项下采用薄层色谱法对寡糖进行鉴别[11],该方法灵敏度差、误差较大,存在很大的局限性。 赛默飞采用液相色谱法,聚合物氨基柱分离、电雾式检测器(CAD)检测,可以测定不同聚合度的寡糖,并依据五糖(DP = 5)以上寡糖的存在作为蜂蜜中果葡糖浆的判定指标,方法灵敏度高,并且具有很好的普及性。混合对照品与样品测定谱图见图2和图3。图2 寡糖混合对照品1:麦芽糖和异麦芽糖 2:麦芽三糖 3:麦芽四糖 4:麦芽五糖 5:麦芽六糖 6:麦芽七糖图3 果葡糖浆和蜂蜜样品叠加(1-果葡糖浆,2-蜂蜜样品)1:麦芽五糖 2:麦芽六糖图3可以看出该样品中未检出聚合度5以上(DP 5)的寡糖。为了考察方法准确度,我们在空白蜂蜜样品中添加麦芽五糖、麦芽六糖和麦芽七糖进行了加标回收率实验,添加浓度水平分别为为0.10、0.25和0.50mg/g,加标回收率在95.2%-100.7%之间,证明方法准确度较高。另外本方法灵敏度较高,添加1%果葡糖浆即可明显检出。HPLC-CAD方法可以方便地测定蜂蜜中糖类营养物质含量,对掺假蜂蜜中的果葡糖浆具有高灵敏度的检出,方法操作简便,保障了蜂蜜的品质,为百姓餐桌食品安全保驾护航。参考文献:1. 岳锦萍, 徐雨欣, 范佳慧, 邢 璇, 任 虹. 食品安全质量检测学报, 2018, 9(19): 5138-5145.2. 郑优,王欣,毛锐. 食品与发酵科技, 2018,54(6):76-82.3. 杜宗绪.保鲜与加工, 2015, 15(5): 67-71.4. 屈亮亮. 基于MALDI的高通量蜂蜜糖浆掺假检测及植物源鉴别分析[D]. 南昌:南昌大学.5. 刘彩云. 中蜂蜂蜜酚类色谱指纹图谱构建及加工对蜂蜜中酚类物质影响[D]. 西安:西北大学.6. 杨远帆,倪辉,吴黎明.茚三酮法测定蜂蜜及果葡糖 浆中的氨基酸含量[ J].中国食品学报, 2013, 13 (2) : 171 -176.7. 杨心浩,基于红外光谱分析蜂王浆品质及鉴别麦卢卡蜂蜜掺假的方法研究[D].广州:暨南大学.8. BERTELLI D, LOLLI M, PAPOTTI G, et al. Detection of honey adulteration by sugar syrups using one-dimensional and two-dimensional high-resolution nuclear magnetic resonance [J]. Journal of Agricultural and Food Chemistry, 2010, 58(15): 8495-8501.9. 裴高璞, 史波林, 赵镭, 等.典型掺假蜂蜜的电子鼻信息变化特征及判别能力[J].农业工程学报, 2015, 31(1): 325-331.10. 江瑶, 基于代谢组学技术寻找蜂蜜标志性代谢物并探究其应用[D].济南: 山东师范大学. 11. 国家药典委员会 . 中华人民共和国药典 [ M ] . 一部. 北京: 中国医药科技出版社, 2020: 374-375. 12.任雪梅, 胡梅, 周传静, 王文特, 吴裕健. 山东农业科学, 2013, 45(2): 117-119.13.黄文诚, 蜜蜂杂志, 2010, 4: 18-19.赛默飞世尔科技(中国)有限公司刘兴国供稿附:食品安全事关人民群众的身体健康和生命安全,关系中华民族的未来。俭以养德、诚信为本是中华民族的传统美德,保障食品安全更需要尚俭崇信、德法并举。进入全面小康社会,人民群众对食品安全营养健康的需求不断提升,必须坚持“四个最严”,严格源头治理,严格过程监管,严厉打击食品安全违法犯罪。全国食品安全宣传周(China Food Safety Publicity Week),是国务院食品安全委员会办公室于2011年确定在每年六月举办的,通过搭建多种交流平台,以多种形式、多个角度、多条途径,面向贴近社会公众,有针对性地开展风险交流、普及科普知识活动。2021年全国食品安全宣传周活动已于6月8日正式启动,而本次活动的主题为“尚俭崇信 守护阳光下的盘中餐”。作为保障食品安全的不可或缺一环,科学仪器在“保护舌尖安全”的过程中发挥了非常重要的作用!为此仪器信息网在食品安全宣传周期间特推出专题“关注食品安全——仪器人在行动”,一起领略下仪器人守护食品安全的风采!
  • 普洱咖啡协会立项《咖啡豆中草甘膦及其代谢物氨甲基膦酸残留量的测定 液相色谱-质谱/质谱法》团体标准
    各有关单位:根据《普洱咖啡协会团体标准制定程序》的相关规定,经我会标准化技术委员会研讨、审查,批准《咖啡豆中草甘膦及其代谢物氨甲基膦酸残留量的测定 液相色谱-质谱/质谱法》团体标准进行立项,我会将牵头开展团体标准的制订工作。如有单位或个人对该标准项目存在异议,请在公告之日起五个工作日内将意见反馈至我会秘书处。同时欢迎与该团体标准有关的高等院校、科研机构、相关企事业单位、社会组织、专家学者等加入标准的研制工作,有意参与该团体标准研制工作者请与我会秘书处联系。联系人、手机:许祐慈(13987941464)电子邮箱:987604287@qq.com地址:云南省普洱市思茅区康平大道6号普洱咖啡协会二〇二三年七月十八日 团体立项的通知.pdf
  • 食品安全国家标准审评委员会发布《食品安全国家标准 食品营养强化剂 (6S)-5-甲基四氢叶酸,氨基葡萄糖盐》等5项食品安全国家标准(征求意见稿)
    各有关单位:根据《食品安全法》及其实施条例规定,我委组织起草了《食品安全国家标准食品营养强化剂(6S)-5-甲基四氢叶酸,氨基葡萄糖盐》等5项食品安全国家标准和修改单(征求意见稿),现向社会公开征求意见。请于2023年6月30日前登录食品安全国家标准管理信息系统(https://sppt.cfsa.net.cn:8086/cfsa_aiguo)在线提交反馈意见。 附件:征求意见的食品安全国家标准目录 食品安全国家标准审评委员会秘书处2023年5月6日相关标准如下:序号标准名称制定/修订营养与特殊膳食食品1项1.食品安全国家标准 食品营养强化剂 (6S)-5-甲基四氢叶酸,氨基葡萄糖盐制定食品添加剂2项2.食品安全国家标准 食品添加剂 聚乙烯醇修订3.食品安全国家标准 食品添加剂 氧化亚氮(GB 1886.350-2021)第1号修改单修改单理化检验方法与规程 1项4.食品安全国家标准 食品中蛋白质的测定修订食品产品1项5.食品安全国家标准 乳粉和调制乳粉修订
  • 优瓦科技获 Acanthus 独家代理权
    广州优瓦科技有限公司获得Acanthus Research中国区独家代理权代理多个全球知名品牌化学品的广州优瓦科技有限公司,近日又传来佳音, Acanthus Research Inc.正式授予广州优瓦科技有限公司中国区独家代理权,全面负责Acanthus品牌在中国区的渠道建设、销售管理及售后服务等工作。中国化学品市场具有巨大的发展空间,目前约占全球40%的份额,这也自然成为各品牌争夺之地。然而有着质量优势的进口品牌,在中国的发展并不是想象的那么轻松;战略上的错误、管理不当或水土不服等问题,会导致产品淡出客户视线,成为一个过气的符号。而Acanthus Research Inc.选择广州优瓦科技有限公司成为其中国区独家代理商,也是看中了他的实力以及多品牌协同管理的成熟运作经验。关于Acanthus Research Inc.Acanthus Research Inc.是一个国际知名品牌,畅销美加等12个国家,有着20多年的合成有机化学研究经验,主要生产特种化学品,用作各行业的分析参考标准,包括合同研究组织、制药公司、学术机构等。 Acanthus主营产品稳定的同位素标记的类似物代谢物包括诸如葡糖苷酸的结合物降解产物和工艺杂质活性药物成分基因毒性杂质药典更新的相关物质所有产品均具有支持性分析数据和随附的认证文件,其产品符合或超过行业认证标准。此外,Acanthus Research Inc.能够提供定制认证,以满足制药行业的各种需求。Acanthus核心优势1、 向客户提供高纯度产品和全纯度信息,包括分析证书(NMR,MS,HPLC纯度)和MSDS,同时配有完整的分析摘要;2、 能够以市场绝对优势的价格提供复合化合物;3、 定制合成难以制造的化学品高达100克规模;4、 致力于研究未来的客户高需求产品上,产品目录时刻更新;5、 强大的售后服务能力,对产品负有绝对的质量保证。 部分具有综合挑战性的产品药物代谢产物麦考酚酸酰基葡萄糖醛酸苷奈福泮葡萄糖醛酸达比加群葡萄糖醛酸苷埃特罗波帕酰葡糖苷酸,其他标记药物雷帕霉素-13CD3N-羟基利唑唑13C 15N2醋酸阿比特龙D4阿达帕林D6,其他杂质克林霉素磷酸酯全杂质钙泊三醇EP杂质恩替卡韦杂质脆硼砂杂质,其他克林霉素脱氢克林霉素 2-磷酸盐 克林霉素2,4-二磷酸克林霉素3-磷酸 克林霉素4-磷酸 奥氮平 杂质奥氮平内酰胺奥氮平硫拉坦 卡泊三醇杂质卡泊三醇杂质A 卡泊三醇杂质D卡泊三醇杂质I 恩替卡韦杂质 恩替卡韦1-EPI恩替卡韦3-EPI恩替卡韦4-EPI恩替卡韦4-二甲基硅烷基USP杂质 恩替卡韦4-二甲基苯基硅杂质 恩替卡韦8-甲氧基USP杂质恩替卡韦8-羟基USP杂质专用定制合成
  • 国标蜂蜜中掺假淀粉糖浆的测定-离子色谱法
    国标GB/T21533-2008蜂蜜中掺假淀粉糖浆的测定-离子色谱法 国标GB/T21533-208检测蜂蜜中普遍掺假而加入的淀粉糖浆。该检测常见糖类的简单方法是配有氨丙基硅与高分子相或键合金属的阳离子交换树脂柱、折光检测器或低波长UV检测器的高效液相色谱,等浓度淋洗分析,但这种方法由于糖从糖醇和有机酸中分离不充分、缺乏 特异检测、灵敏度不足等问题的存在,不能满足某些应用的要求,改进糖的分析方法已受到关注,自从规定食品中总糖的含量必须在标签中注明后,糖类的分析显得尤为重要,DIONEX戴安公司提供了与该国标的一致的一种全新而且成熟的方法,方法为:在高pH条件下,使用配有脉冲安培检测器(HPAE-PAD)和高效阴离子交换柱的离子色谱使上述问题得到了解决。糖类、糖醇及寡糖、聚糖等可以在一次进样后得到高分辨的分离而无需衍生,并且可以定量到P摩尔 (10-12 mol)水平。该技术已广泛应用于常规检测和研究中,且该方法得到国际标准组织及其它官方机构的认同。醇类、二醇及醛类也可以使用该技术检测。糖醇、单糖、双糖、低聚糖和多糖的检测均使用脉冲安培检测器、金工作电极、以四电位波形检测。 戴安公司有关于蜂蜜检测的操作视频,欢迎索取010-64436740(汪小姐/汤先生) 蜂蜜中淀粉糖浆的测定--离子色谱法 1 该国标中规定了蜂蜜中果葡糖浆、麦芽糖浆、异麦芽糖浆、饴糖浆等淀粉糖浆的测定方法。本标准适用于蜂蜜中淀粉糖浆的测定。 本标准检出限:5%淀粉糖浆。 2 检测原理:蜂蜜中不含5糖(DP5)以上的寡糖,而各种淀粉糖浆中均含5糖(DP5)以上的寡糖,使用凝胶 体积排阻法去除样品中果糖、葡萄糖,将寡糖富集后直接经阴离子交换色谱-电化学检测器检测,将 5糖(DP5)以上寡糖的存在作为蜂蜜中淀粉糖浆的判定指标。 3 试剂和材料 3.1 聚丙烯酰胺凝胶微球,粒径45&mu m~90&mu m,分级分离的相对分子质量范围 100~1800,按使用 说明书进行水化和脱气。 注:可使用Bio-Gel® P-2 Gel 型聚丙烯酰胺凝胶或同等性能的凝胶材料。 3.2 凝胶层析柱:将聚丙烯酰胺凝胶(3.1)湿法装入1.5 cm× 15 cm 空柱管中,装入的凝胶高度为10cm,上端保持1cm 以上的水层,避免干涸。 3.3 层析柱架。 3.4 麦芽糖标准储备液:分别称取色谱纯麦芽糖、麦芽三糖、麦芽四糖、麦芽五糖、麦芽六糖、麦 芽七糖标准物质各10.0mg,用水分别溶解定容至10mL,配制成浓度为1mg/mL 的储备液,于棕色瓶中4℃下储存。 3.5 麦芽糖标准混合使用液:吸取一定量的糖标准储备液(3.4),按表1 用水配制麦芽糖标准混合使用液,在4℃下保存不超过30 天。该溶液用于样品色谱图中寡糖保留时间的定位。 3.6 50%氢氧化钠储备液:符合离子色谱使用纯度。 3.7 无水醋酸钠:符合离子色谱使用纯度。 3.8 0.45&mu m 样品滤膜:水性。 3.9 除非另有说明,所用试剂为分析纯,所用水符合GB/T 6682 规定的一级水。 4 仪器 4.1 离子色谱仪:配电化学检测器。 4.2 分析天平: 0.1mg 。 5 试样制备 5.1 称取混匀的蜂蜜2.0g 作为试样,用水溶解后定容至20mL,用0.45&mu m 水性滤膜过滤,滤液备 用。 5.2 将准备好的聚丙烯酰胺凝胶层析柱(3.2)中的水放尽,至下端无水珠滴下时,将样品滤液(5.1) 2.0 mL 沿柱壁慢慢加入层析柱中,恰好流至凝胶上方无液时,加入3.0mL 水冲洗柱壁,又至凝胶上 方无液时,再加入5.0mL 水冲洗凝胶柱。注意每次在层析柱上方加液(或水)的时机,应是前次加 液(或水)的层析柱体上端液体恰好流尽、下端恰好无液体滴出。弃去上述三次共10.0mL 流出液后, 于层析柱下方接一只2mL 具塞塑料离心管,从柱上方加入2mL 水,收集这2mL 流出液至离心管中, 盖紧离心管塞,摇匀后作为待测样品溶液,24 小时之内测定。层析柱中加入50mL 水冲洗,至全部流出后,该柱直接用于处理下一个样品。 5.3 将纯蜂蜜作为阴性对照品,蜂蜜中掺入5%市售果葡糖浆、蜂蜜中掺入5%市售麦芽糖浆的样品 作为阳性对照品,按照5.1 和5.2 进行操作。 6 测定 6.1 离子色谱条件 6.1.1 色谱柱:CarboPac&trade PA200 3 mm× 250 mm (带CarboPac&trade PA200 3 mm× 50 mm 保护柱) 或相当性能的分离柱,柱温30℃; 6.1.2 流动相:A:100%水;B:200mmol/L 氢氧化钠,200mmol/L 醋酸钠。梯度洗脱条件见表2。 6.1.3 检测器:电化学检测器;Au 工作电极;Ag/AgCl 参比电极。检测池温度30℃。糖检测波形 参见表3。 6.1.4 进样量:20&mu L 6.2 样品测定 依次将麦芽糖标准混合使用液(3.5)、纯蜂蜜阴性对照品(5.3)、含5%果葡糖浆的蜂蜜(5.3)和含5%麦芽糖浆的蜂蜜等阳性对照品(5.3)的寡糖收集液注入离子色谱仪中,观察离子色谱图, 当谱图与附录中参考谱图基本吻合时,方可进行实测样品的测试。 7 结果判定 分析比较纯蜂蜜阴性对照样品和含5%糖浆的蜂蜜阳性对照样品的寡糖谱图,找到两者之间有明 显差异的&ldquo 指纹区&rdquo ,并以此作为纯蜜中掺入淀粉糖浆的判定指标。任一掺入果葡糖浆的蜂蜜样品, 在麦芽五糖~麦芽六糖之间和麦芽六糖~麦芽七糖之间有两个典型的&ldquo 指纹峰&rdquo P1和P2,根据这两个峰的出现可判断蜂蜜中掺入果葡糖浆。任一掺入麦芽糖浆的蜂蜜样品,在麦芽五糖~麦芽六糖之 间、麦芽六糖~麦芽七糖之间以及麦芽七糖之后,有三个典型的&ldquo 指纹峰簇&rdquo P1、P2和P3,根据这三个峰簇的出现可判断蜂蜜中掺入麦芽糖浆(包括高麦芽糖浆、异麦芽糖浆和饴糖糖浆)。除了描述出的基本特点外,不同工艺条件下生产的糖浆还可见到其他出峰位置有其他峰形特征的微量寡糖峰,但不影响&ldquo 指纹区&rdquo 的基本特征和判定。附录A中的图A1为麦芽糖标准混合使用液的定位谱图;图A2为纯洋槐蜜、枣花蜜、椴树蜜、荆条蜜、油菜蜜的寡糖谱图;图A3为不同蜜种掺入5%的不同果葡糖浆时的寡糖谱图、图A4为不同蜜 种掺入5%的不同麦芽糖浆时的寡糖谱图。 附录A (资料性附录) 蜂蜜中淀粉糖浆测定的相关色谱图 DIONEX戴安中国市场部
  • 一支雪糕含19种添加剂 追求新奇口味酿健康隐患
    6月初,国家质检总局颁发的《食品添加剂生产监督管理规定》正式实施,其中规定,所有食品添加剂成分,必须在包装上毫无保留地明示。   不看不知道,一看吓一跳,记者从包装上面发现,区区一支雪糕,竟然含有19种添加剂。   羧甲基纤维素钠、黄原胶、单硬脂酸甘油酯、瓜尔胶、卡拉胶、柠檬酸……这些拗口的专业名词让记者颇有些摸不着头脑,究竟这么多的添加剂是否有害、是否有必要、是否被滥用了呢?   “只要按国家标准添加食品添加剂,消费者就可以放心食用。”省质监局的专家表示。不过,他坦言,即使是一款符合国家标准的产品,被一个人毫无节制地食用,那么产品当中的添加剂逐渐累积同样会给人身健康带来隐患。   主要用于调味、着色、塑形、防腐   记者近日购买了某品牌蓝莓酸奶味雪糕,细细一数,发现在34种配料中,食品添加剂竟然多达19种:磷脂、聚甘油蓖麻醇酯、饴糖、全脂乳粉、果葡糖浆、麦芽糊精、乳酸、乳酸钠、羧甲基纤维素钠、黄原胶、单硬脂酸甘油酯、瓜尔胶、卡拉胶、柠檬酸、柠檬酸钠、食用香精(酸奶香精和蓝莓香精)、甜蜜素、笕菜红、亮蓝。   那么这些添加剂在雪糕中究竟扮演着怎样一种角色呢?   “最近几年添加剂越用越多,跟这两年饮料、包装食品越来越追求新奇口味也不无关系,要创造各种口味,往里面加添加剂就成了最好的解决办法。”湖南省质监局食品质量监督检验所总工程师杨代明表示。   比如食用香精,在食品行业里面,它就被形容为“注重于香气和味觉的仿真性”。   此外,食品添加剂还被用于着色、塑形、防腐等方面。例如,在一支雪糕所含的19种添加剂中,笕菜红、亮蓝就用于着色 卡拉胶、黄原胶、单硬脂酸甘油酯等就用于塑形 乳酸、羧甲基纤维素钠、柠檬酸钠等具有防腐保鲜的作用。   适量使用添加剂无危害   “目前我国允许使用的食品添加剂共有22类,1812种,在食品生产中只要按国家标准添加食品添加剂,消费者就可以放心食用,合理使用添加剂对人体健康是有益无害的。”杨代明告诉记者。   据其介绍,符合国家安全标准添加的食品添加剂在改善食品的品质,提高食品的质量和保藏性,满足人们对食品风味、色泽、口感的要求同时使食品加工和制造工艺更合理、更卫生、更便捷,有利于食品工业的机械化、自动化和规范化,为食品工业节约资源,降低成本,在极大地提升食品品质和档次的同时,增加其附加值,产生明显的经济效益和社会效益等方面具有很重要的作用。   “这也是国家允许添加的重要原因和依据。”杨代明表示,但是过量添加食品添加剂的商品会给消费者的人身安全带来诸多的隐患,引发一些疾病。   那么,一支雪糕里面19种添加剂究竟算不算多呢?   杨代明认为,实际上添加剂的种类和剂量并没有直接的关系,“添加剂使用规定上有对总量规定的计算公式,所以不一定种类多就代表总量多。比如羧甲基纤维素钠、果胶、结冷胶都是增稠剂,在同一款饮料里配比在一起以后能起到一个协同效应,就像中药配方一样,在起协同效应之后反而能减少总用量。”
  • 【阿拉丁】FITC标记多糖——荧光探针下的多糖世界
    FITC标记多糖——荧光探针下的多糖世界 荧光素异硫氰酸酯(Fluorescein Isothiocyanate, FITC)是一种绿色荧光染料,广泛应用于生物标记和成像技术。多糖作为重要的生物大分子,参与了众多生物过程和功能。将FITC标记在多糖上,使其在荧光显微镜或流式细胞仪等设备下进行可视化和定量分析,在生物医学研究中具有重要意义。本文将着重介绍几类常见的FITC标记多糖,并详细讨论其在实验技术和生物医学应用中的重要作用。 常见的FITC标记多糖 FITC标记透明质酸 透明质酸(Hyaluronic Acid, HA)是一种天然存在于结缔组织、上皮组织和神经组织中的多糖。它在组织修复、细胞迁移、肿瘤生物学等方面具有重要作用。通过FITC标记透明质酸,可以实现对其在细胞和组织中的动态分布和代谢途径进行研究。 FITC标记葡聚糖 葡聚糖(Dextran)是一种由葡萄糖单元组成的多糖,常用于血浆扩容剂和药物载体。FITC标记葡聚糖主要用于研究其在生物体内的分布和清除过程,以及在药物输送系统中的作用。 FITC标记几丁质和壳聚糖 几丁质(Chitin)和壳聚糖(Chitosan)是由N-乙酰葡糖胺和葡糖胺组成的多糖,广泛存在于甲壳类动物的外骨骼中。FITC标记几丁质和壳聚糖用于研究其在生物降解、生物相容性以及作为药物递送载体中的应用。 FITC标记海藻酸钠 海藻酸钠(Sodium Alginate)是一种从褐藻中提取的阴离子多糖,常用于生物材料和药物递送系统。通过FITC标记海藻酸钠,可以研究其在生物材料中的作用和性能,如细胞包裹和释放机制。 实验技术 荧光显微镜成像 FITC标记多糖在荧光显微镜下具有优异的成像效果。通过共聚焦显微镜,可以获得多糖在细胞内外的三维分布图像,研究其在细胞迁移、组织修复和药物递送中的动态变化。1. 样品制备:将FITC标记的多糖加入细胞培养基中,与细胞共同孵育一段时间后,固定细胞并进行染色。2. 成像:使用共聚焦显微镜对样品进行成像,获取多糖在细胞中的分布图像。 流式细胞术分析 流式细胞术是用于定量分析FITC标记多糖在细胞表面结合和摄取情况的重要技术。通过检测细胞内外的荧光强度,可以研究多糖与细胞表面受体的相互作用及其在细胞内的代谢过程。1. 细胞处理:将FITC标记的多糖加入细胞悬液中,与细胞孵育适当时间后,用缓冲液洗涤去除未结合的多糖。2. 检测分析:使用流式细胞仪检测细胞的荧光强度,分析多糖在细胞中的结合和摄取情况。 生物材料表征 FITC标记多糖在生物材料中的应用广泛,通过荧光标记技术可以直观地观察多糖在材料中的分布和降解情况。1. 材料制备:将FITC标记的多糖掺入生物材料中,制备成所需形态(如水凝胶、薄膜)。2. 表征分析:使用荧光显微镜或荧光光谱仪检测材料中的荧光分布,研究多糖在材料中的分布和降解特性。 生物医学应用 细胞成像与跟踪 FITC标记透明质酸、葡聚糖等多糖在细胞成像中应用广泛。通过荧光显微镜,可以实时跟踪多糖在细胞内外的分布,研究其在细胞迁移、组织修复和肿瘤生物学中的作用。1. 细胞迁移:FITC标记透明质酸可以用于研究其在细胞迁移过程中的作用,揭示其在创伤愈合和癌细胞转移中的机制。2. 组织修复:通过标记透明质酸,可以研究其在组织修复中的分布和作用,优化治疗策略。 药物递送系统 FITC标记海藻酸钠、壳聚糖等多糖在药物递送系统中的应用,为提高药物的靶向性和疗效提供了新的思路。通过荧光追踪技术,可以监测药物在体内的分布和释放情况,优化药物递送系统。1. 药物释放监测:FITC标记海藻酸钠微球可以用于研究其作为抗癌药物载体的效果,追踪药物在肿瘤组织中的释放和分布。2. 靶向递送:FITC标记壳聚糖纳米粒子可以用于研究其在靶向递送中的性能,提高药物的治疗效果和减少副作用。 疾病诊断与治疗 FITC标记多糖在疾病诊断和治疗中具有重要应用。通过荧光标记技术,可以开发新的生物标志物用于疾病的早期诊断和疗效监测。1. 早期诊断:FITC标记透明质酸可以用于检测血清中透明质酸水平的变化,作为肝纤维化的早期诊断标志物。2. 疗效监测:通过标记多糖,可以实时监测治疗过程中生物分子的动态变化,评估治疗效果。 生物相容性与免疫研究 FITC标记几丁质和壳聚糖在生物相容性和免疫研究中应用广泛。通过荧光标记技术,可以直观地观察多糖与细胞或组织的相互作用,评估其生物安全性和免疫调节作用。1. 生物相容性:FITC标记壳聚糖可以用于研究其在生物医用植入材料中的生物相容性,优化其制备工艺和应用效果。2. 免疫调节:FITC标记细菌多糖可以用于研究其在免疫细胞中的摄取和处理机制,揭示其在感染和免疫调节中的作用。 技术挑战与解决方案 尽管FITC标记多糖在生物医学研究中具有广泛的应用前景,但在实际操作中仍存在一些技术挑战。1. 标记效率:多糖分子结构复杂,标记位点有限,可能导致标记效率较低。通过优化反应条件,如调整pH值、反应温度和时间,可以提高标记效率。2. 标记均一性:多糖分子大小和结构的异质性可能导致标记的不均一性。为克服这一问题,可以通过改进多糖的纯化和预处理方法,获得更加均一的多糖样品。3. 标记稳定性:FITC标记的多糖在储存和使用过程中,可能会发生荧光淬灭或脱落。为提高标记稳定性,可以优化标记反应条件,并在储存和使用过程中注意避光、防潮,低温保存。 未来发展方向 随着生物医学技术的发展,FITC标记多糖的应用前景将更加广阔。1. 多功能标记:通过结合多种荧光染料,可以实现多功能标记,研究多种生物分子的相互作用和调控机制。2. 智能药物递送:开发基于FITC标记多糖的智能药物递送系统,实现药物的可控释放和靶向治疗,提高治疗效果。3. 高通量筛选:通过高通量筛选技术,开发新型FITC标记多糖,应用于生物医学研究和临床诊断。 结论 FITC标记多糖在生物实验和生物医学研究中具有重要应用。通过荧光标记技术,可以实现多糖在细胞和体内的可视化和定量分析,促进了多糖在细胞迁移、组织修复、药物递送、疾病诊断和治疗等方面的研究。尽管在技术应用中仍面临一些挑战,但通过不断优化和改进,FITC标记多糖将在未来生物医学领域发挥更加重要的作用。 阿拉丁:https://www.aladdin-e.com
  • ELISA生物制药产业发展广阔
    中投顾问医药行业研究员郭凡礼指出,从08年开始,受到全球金融危机的影响,许多行业在此次金融危机中都受到重创,但对我国的医药企业来说,ELISA试剂盒受到的冲击相对较小,特别是对于我国的生物制药产业来说,由于受到政策利好的影响,仍然保持着稳定的增长。  郭凡礼指出,09年开始,新医改的推行更是让生物制药产业的发展如虎添翼,5月,国务院通过了《促进生物产业加快发展的若干政策》,强调要大力发展以生物医药等为重点的现代生物产业,这项战略部署为我国生物制药领域注入了一针强心针。  中投顾问研究总监张砚霖认为,09年,国家发改委安排新增中央投资4.42亿元,支持生物制药产业的专项化建设,此举可直接带动社会投资40亿元,对于促进生物制药产业的发展具有重要作用,我国生物制药产业在这种利好政策的促进下,增速将超过医药产业中的其他行业。  中投顾问发布的《2009-2012年中国生物制药行业投资分析及前景预测报告》指出,受新医改扩容的影响,预测到2010年,我国医药制造业的复合增速为15%左右,到2020年,我国生物产业总产值将达到25000亿-30000亿元,而ELISA试剂盒生物制药作为生物产业重要的一环,未来发展前景看好。67-47-0 5-羟甲基糠醛 5-hydroxymethyl-2-furaldehyde HPLC≥95%7235-40-7 β-胡萝卜素 β-Carotene HPLC≥90%5986-55-0 百秋李醇 虎尾草醇 广藿香醇 Patchouli alcohol HPLC≥98%477-43-0 去氢木香内酯 Dehydrocostus Lactone HPLC≥98%553-21-9 木香烃内酯 Costundide HPLC≥98%66-97-7 补骨脂素 制斑素 Psoralen HPLC≥98%523-50-2 异补骨脂素 Angelicin HPLC≥98%140-10-3 肉桂酸 桂皮酸;桂酸;皮酸 trans-Cinnamic acid HPLC≥98%104-54-1 肉桂醇 桂皮醇;苯丙烯醇;桂醇 Cinnamyl alcohol HPLC≥98%104-55-2 肉桂醛 Cinnamaldehyde HPLC≥98%7660-25-5 果糖 Fructose HPLC≥98%4773-96-0 芒果苷 芒果甙 Mangiferin HPLC≥98%64809-67-2 新芒果苷 新芒果甙 Neomangiferin HPLC≥98%89-78-1 DL-薄荷醇 DL-Menthol HPLC≥98%501-94-0 酪醇 对羟基苯乙醇 4-羟基苯乙醇 Tyrosol HPLC≥98% (R型)人参皂苷Rh1 20(R)Ginsenoside Rh1 HPLC≥98%120-08-1 滨蒿內酯 6,7-二甲氧基香豆素 香豆素二甲醚 Scoparone HPLC≥98%524-17-4 蝙蝠葛碱 北豆根碱 Dauricine HPLC≥98%ELISA试剂盒18524-94-2 马钱苷 马钱素 马钱子苷;番木鳖苷 Loganin HPLC≥98%76-66-4 钩藤碱 Rhyncholphylline HPLC≥98%1811243 异钩藤碱 Isorhynchophylline HPLC≥98%6902-91-6 吉马酮 大根香叶酮 Germacrone HPLC≥98%58479-68-8 桔梗皂苷D Platycodin D HPLC≥98%315-22-0 野百合碱 单响尾蛇毒蛋白 大叶猪尿青碱 农吉利碱 猪屎豆碱 Crotaline HPLC≥99%28608-75-5 荭草苷 荭草素 Orientin HPLC≥98%4261-42-1 异荭草苷 异红草素 luteolin-6-C-glucoside HPLC≥98%480-10-4 紫云英苷 紫云英甙;莰非醇-3-O-葡糖苷;山奈酚-3-葡萄糖苷 黄芪苷 Astragaline HPLC≥98%1818546 对叶百部碱 Tuberstemonine HPLC≥98%85643-19-2 仙茅苷 仙茅甙 Curculigoside HPLC≥98% (R型)人参皂苷Rh2 20(R)Ginsenoside Rh2 HPLC≥98%
  • 焙烤食品糖制品工业协会召开反式脂肪酸沟通会
    2010年11月11日,中国焙烤食品糖制品工业协会在北京国际海运酒店召开了“反式脂肪酸现状及应对措施媒体沟通会”,中国焙烤食品糖制品工业协会朱念琳理事长、赵燕萍副秘书长等出席了会议。 会议现场   此次会议的召开主要是由于有关媒体关于“植物奶油在中国普遍使用或酿食物史上最大灾难”的报道在国内引发的轩然大波,报道中存在失实报道和夸大宣传,对焙烤食品糖制品行业造成不利影响,   朱念琳理事长首先对近期国内有关“氢化油”和“反式脂肪酸”的一些失实报道和对行业的不利影响等情况向与会记者做了简单介绍,接下来,朱理事长就反式脂肪酸的产生原因(来源),氢化油脂的特性,食用专用油脂中降低反式脂肪酸的方法,反式脂肪酸的健康危害,各国对反式脂肪酸的管理和各国反式脂肪酸平均日摄入量比较等六个方面情况做了较详细的介绍。   最后朱理事长阐述了协会对“氢化油”和“反式脂肪酸”的几点认识和建议:   1、氢化油脂不等于反式脂肪酸,不同种类的氢化油脂中反式脂肪酸的含量是不同的。   2、氢化油脂作为食品组成成分之一是营养物质,有关媒体报道中声称“氢化油危害堪比杀虫剂”的观点是错误的。   3、国际上对含有反式脂肪酸的食品不是简单禁止食用,而是依据本国的反式脂肪酸摄入情况来设定反式脂肪酸的限量标准或标签标示要求。   4、目前国际上规定反式脂肪酸标签标示要求的国家尚为数不多,仅有丹麦、瑞士、美国、加拿大、奥地利、巴西、韩国、日本、新加坡、中国台湾和香港等,设定反式脂肪酸限量标准的国家更少。   5、中国居民反式脂肪酸的摄入量远低于西方发达国家。   6、一些西方发达国家强制规定在食品标签上标明反式脂肪酸的含量,这样做的目的是告诉消费者,反式脂肪酸吃多了不好 但含有反式脂肪酸的食品不等于有毒、有害食品,并不是说标签上有反式脂肪酸就表示这个食品不能吃了。主要是给消费者提供信息,让消费者明明白白地消费。   7、过分强调反式脂肪酸也是不可取的,因为人们可能摄入的饱和脂肪酸比反式脂肪酸要多得多。不能因为强调了反式脂肪酸而忽视了饱和脂肪酸对人体健康的危害,最重要的是控制总脂肪的摄入总量。   《中国营养膳食指南》建议,每人每天不能食用超过25克油 总脂肪的摄入量要低于每天总能量摄入的30%,即总脂肪摄入量低于65克。   据协会掌握的资料显示,目前国内氢化油脂中反式脂肪酸的含量有高有低,有些氢化油脂中反式脂肪酸的含量确实较高,如果消费者长期食用反式脂肪酸含量过高的食品,将会对身体产生严重危害。因此,我们一定要清醒的认识到反式脂肪酸的危害性和行业面临问题的严重性和紧迫性。   协会郑重敦促各会员单位:一定要本着对消费者负责,对行业负责的态度,严把原料进货关,把氢化油脂中反式脂肪酸含量的检测作为采购的必检项目。对使用氢化油脂制作的产品中反式脂肪酸的含量,要做到心中有数。目前可参考国际相关国家要求,选用反式脂肪酸含量相对较低的原料从事生产和研发工作。   民以食为天,食以安为先。作为焙烤食品糖制品行业生产企业,一定要扎扎实实、坚持不懈的追求和探索食品安全、健康、营养的发展之路,这是我们义不容辞的责任。否则,一旦因为质量问题,出现行业信任危机,那将会造成无法挽回的影响和损失。   此次座谈会,协会以认真、严谨、客观的态度,系统阐述了反式脂肪酸的有关情况和国内行业现状,旨在正确引导消费,促进行业自律,同时敦促焙烤食品糖制品行业企业本着对消费者负责,对行业负责的态度,不断追求和探索食品安全、健康、营养的发展之路。对澄清事实、消除误解、稳定行业发展具有积极和深远的意义,非常及时和必要。   附件1:沟通会要点.doc   附件2:沟通会资料.doc
  • 元旦优惠大酬宾“上海远慕生物”感谢一路有您!
    尊敬的各位客户: 值此辞旧迎新之际,为答谢全国客户朋友及终端客户对上海远慕生物的一贯支持,在2018年元旦来临前夕特举行一次特大优惠酬宾活动,预祝大家在2018年能够取得开门红的佳绩。 活动:以下是我司促销产品,更多优惠产品请联系客服! 甲基丙烯酸异癸酯/甲基丙烯酸异癸酯 吴茱萸次碱84-26-4 标准胎牛血清(碳吸附过滤) 酵母粉琼脂 大鼠血管内皮细胞生长因子C(VEGF-C)ELISA试剂盒 醛品红染色液 辣根过氧化物酶标记的羊抗兔IgG 小鼠细胞膜表面免疫球蛋白(SmIg)ELISA试剂盒 牛肉膏蛋白胨琼脂培养基 CAS:65039-10-3,氯化1-烯丙基-3-甲基咪唑 CAS:920-66-1,六氟异丙醇价格 CAS:63700-19-6,尿苷二磷酸葡糖醛酸现货供应 大鼠5羟色胺(5-HT)ELISA检测试剂盒 人5羟色胺(5-HT)ELISA检测试剂盒说明书 人转化生长因子β1(TGF-β1)ELISA检测试剂盒说明书 小鼠转化生长因子β1(TGF-β1)ELISA检测试剂盒,进口elisa试剂盒 活动时间:即日起至1月31日 注:活动期间,凡购买古朵指定产品即可享受特价优惠!本次活动的zui终解释权归上海远慕生物科技有限公司所有。 远慕生物,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询与订购!
  • Nat Metab|上交大童雪梅团队揭示非氧化磷酸戊糖途径调控Treg细胞功能及其分子机制
    点评 | 朱锦芳(NIH)2022年5月23日,上海交通大学基础医学院生化与分子细胞生物学系童雪梅教授课题组及其合作团队,上海市免疫学研究所李斌研究员课题组和复旦大学附属华山医院/脑科学转化研究院杨辉研究员,在Nature Metabolism杂志在线发表题为 Non-oxidative pentose phosphate pathway controls regulatory T cell function by integrating metabolism and epigenetics 的研究论文,揭示非氧化磷酸戊糖途径(非氧化PPP)对调节性T(Treg)细胞代谢模式及细胞功能的调控机制。Nature Metabolism同期发表伦敦帝国理工学院Margarita Dominguez-Villar博士为该研究撰写的News & Views特评,认为该文章发现非氧化PPP在Treg细胞活化和功能调控中的中心地位(a central regulator)。表达特征转录因子Foxp3的Treg细胞是一类具有免疫抑制功能的CD4+ T细胞亚群,维持机体免疫系统稳态,防止免疫过激诱发自身免疫病。已知葡萄糖酵解、脂肪酸氧化和氨基酸分解代谢等都参与 Treg 细胞功能调控。PPP是一条不产生ATP的葡萄糖分解代谢途径,由生成NADPH的氧化PPP和产生5-磷酸核糖的非氧化PPP组成。非氧化PPP包括4个代谢酶催化的5步可逆反应,可以通过改变代谢物流向来满足细胞的功能需求。非氧化PPP是否参与免疫细胞如Treg细胞的代谢与功能调控尚不清楚。转酮醇酶TKT是非氧化PPP中催化两步可逆反应的代谢酶。童雪梅团队已发现TKT在肝脏、脂肪和肠道中调控糖脂代谢平衡的重要作用(Li M et al, Cancer Research, 2019 Tian N et al, Diabetes, 2020 Tian N et al, Cell Death & Disease, 2021)。在本研究中,研究人员通过构建Treg细胞特异性敲除TKT的小鼠模型,深入探究非氧化PPP是否和如何调控Treg细胞代谢及功能。他们研究发现,Treg细胞特异性敲除TKT的小鼠出生3周后发生严重自身免疫性疾病,并且在断奶之后相继死亡,其表型与缺失Foxp3基因的小鼠相似。进一步研究发现,敲除TKT在不影响Treg数目和转录因子Foxp3 水平的情况下,阻断Treg细胞的免疫抑制功能。为了排除炎症反应的影响,研究者根据Foxp3基因位于X染色体和雌鼠X染色体选择性失活的特点,构建了在同一只鼠中既有TKT缺失又有TKT正常表达的Treg细胞嵌合小鼠模型。该小鼠Treg细胞的转录组和表观遗传组分析表明,TKT缺失导致Treg细胞中87.9%的差异表达基因被下调,染色质可及性降低。这些被下调的基因几乎全部为效应性Treg特征性基因,表明非氧化PPP对调控Treg细胞免疫抑制功能是必需的。研究者进一步发现,TKT缺失导致Treg 细胞NADPH 减少和氧化应激增加,葡萄糖进入线粒体氧化减少,脂肪酸氧化增加,氨基酸分解代谢显著增强,分解代谢重构使线粒体功能受损。同时,被氧化应激和线粒体损伤诱发的还原性TCA循环使α-酮戊二酸/琥珀酸及α-酮戊二酸/富马酸比率降低,DNA甲基化增加,抑制Treg细胞特征性功能基因表达,导致其免疫抑制性功能丧失。文章也发现非氧化PPP中的另外一个代谢酶——转醛醇酶(TAL),对维持效应性Treg特征性功能基因表达也不可或缺。此外,在自身免疫性病人外周血 Treg细胞中,TKT水平显著降低。综上所述,此研究首次揭示非氧化PPP对于调控Treg细胞中糖、脂和蛋白质分解代谢稳态、维持代谢物依赖的表观遗传修饰和功能基因表达有关键作用,即非氧化PPP可以通过整合三大营养物质代谢和表观遗传修饰控制Treg细胞功能。这项研究将为通过调控Treg功能防治自身免疫性疾病和其它免疫相关疾病提供新策略新手段。非氧化 PPP 通过整合代谢组和表观遗传组调控Treg细胞功能上海交通大学医学院博士生刘琪、阿拉巴马大学伯明翰分校博士生朱方明和上海市免疫学研究所博士生刘鑫男是该研究论文的共同第一作者。此项研究得到复旦大学生物医学研究院叶丹研究员、海军军医大学附属长征医院风湿免疫科徐沪济主任、上海交通大学附属仁济医院沈南主任、上海交通大学基础医学院徐天乐教授、清华大学药学院胡泽平研究员、阿拉巴马大学伯明翰分校胡晖教授等合作实验室的大力协助。通讯作者为童雪梅教授、李斌研究员和杨辉研究员。专家点评朱锦芳Jeff Zhu (Chief, Molecular and Cellular Immunoregulation Section, NIH)调节性T细胞(Tregs)在维持免疫耐受和免疫稳态中发挥关键作用,并且参与调节感染和癌症中的各种免疫反应。一方面,Treg功能的丧失通常与自身免疫和过度炎症有关;另一方面,肿瘤微环境中激活的Treg往往会抑制肿瘤免疫。因此,了解Treg的产生、激活及其获得抑制性功能的机制不仅将拓展基础免疫学认知,而且将为各种免疫相关疾病提供新颖有效的临床疗法。不同的代谢途径在控制Treg和效应性辅助型CD4+ T(Th)细胞的发育和分化中作用不同。经典观点认为,Tregs更倾向于脂肪酸氧化,而效应Th细胞主要利用葡萄糖作为能量来源。在本项工作中,童雪梅团队及其合作实验室共同发现,非氧化磷酸戊糖途径(非氧化PPP)在控制Treg细胞激活和抑制功能中起着关键作用。非氧化PPP是葡萄糖分解代谢的一个分支,它在Treg和效应性Th细胞中的功能尚不清楚。令人惊奇的是,在Treg中敲除非氧化性PPP中的重要酶—转酮醇酶(TKT),小鼠会产生致死性自身免疫病。Treg细胞特异性 TKT 缺失导致其失去免疫抑制功能,却不影响其发育和Foxp3蛋白表达。机制上,童雪梅及其合作团队发现TKT缺失诱导线粒体氧化应激和还原性TCA循环,导致α-酮戊二酸(α-KG)水平降低。α-KG作为重要的表观遗传辅助因子,能调控组蛋白和DNA去甲基化酶的功能。TKT缺失时,Treg中众多基因的DNA甲基化增加,染色质可及性下降。并且,α-KG补充能够改善由Treg特异性TKT 缺失引起的自身免疫反应。此外,在临床自身免疫性疾病患者外周血Treg中,TKT水平被下调。Treg获得抑制功能需要被激活,TKT缺失诱发的自身免疫反应是由活化Treg特征性基因表达减少所导致的。由于Treg细胞群体的异质性,单细胞分析可以为TKT如何调节Treg激活和表观修饰提供一个更清晰的解释。然而,该研究发现在大约1000个激活态Treg特征基因中,只有124个受到TKT缺失的影响,却诱发了显著的小鼠自身免疫病表型,表明这个小的基因群体包含对Treg功能至关重要的效应分子,例如IL-10和TIGIT等。因此,本项研究发现令人印象非常深刻。本项工作不仅促进我们全面认识Treg细胞激活和功能的机理,而且在未来治疗人类疾病方面具有潜在重要转化价值。原文和特评链接:https://www.nature.com/articles/s42255-022-00575-z,https://www.nature.com/articles/s42255-022-00574-0
  • 全国饲料工业标准化技术委员会发布国家标准《饲料中新甲基橙皮苷二氢查耳酮的测定 高效液相色谱法》征求意见稿
    国家标准计划《饲料中新甲基橙皮苷二氢查耳酮的测定 高效液相色谱法》由 TC76(全国饲料工业标准化技术委员会)归口 ,主管部门为国家标准化管理委员会。主要起草单位 山东省畜产品质量安全中心 、山东奔月生物科技股份有限公司 。附件:《饲料中新甲基橙皮苷二氢查耳酮的测定 高效液相色谱法》征求意见稿.pdf《饲料中新甲基橙皮苷二氢查耳酮的测定 高效液相色谱法》编制说明.pdf
  • 搭载拉曼血糖监测功能的三星Galaxy Watch 4或将在二季度上市,科学仪器走向大众化
    据最新爆料,三星Galaxy Watch 4和Active 4将在第二季度上市,这两款新的智能手表将增加血糖监测功能,使用与麻省理工学院共同开发的拉曼光谱分析法,该手表将能够监测血糖,这是糖尿病患者的一个关键指标。2020年,三星公司就发布消息,在三星高级技术研究所(SAIT)、三星电子以及麻省理工学院相关研究人员的共同努力下,使用全新的“拉曼光谱法”,研发出一种无创检测血糖的新技术,并将应用于可穿戴设备中,今年终于要实现了。同时,苹果公司也在近日为其全新的Apple Watch申请新专利,同样是能够支持血糖监测功能,与三星不同,苹果公司全新的Apple Watch则是采用了太赫兹技术。近年来,随着社会的发展,糖尿病患者不断增加,苹果和三星两家科技巨头均在其可穿戴设备上尝试搭载相关监测元件,可见,实时监测血糖水平,已经成为一项普遍的需求。科学仪器在人们心中一直是一种“高高在上”的存在,通过这种方式,让拉曼光谱和太赫兹走向,或可以让科学仪器平民化、大众化,让科学仪器真正服务于平民,真正实现大规模产业化。
  • 医疗污水处理过程中的微生物检测标准及方法解析
    为什么需要如此重视医疗污水和城镇污水监管工作呢?美国PM Gundy的研究团队曾在《Survival of Coronaviruses in Water and Wastewater》一文中指出,水体中的有机物和悬浮固体可以吸附冠状病毒,为病毒的存活提供了保护。同时,从污水流向的我们不难看出,粪便最终排到了污水处理厂,这些可能携带新型冠状病毒的废水,在污水处理中形成携带病毒的气溶胶,从而形成了气溶胶传播的环境,使污水处理人员成为感染风险较大的群体,对阻止疫情传播有很大的影响。因此,医疗机构、污水处理机构及环境监测部门,都是控制病毒通过污水传播的关键。 目前,为有效防止新型冠状病毒通过粪便和污水扩散传播,生态环境部门要求对要接收新型冠状病毒感染的肺炎患者或疑似患者诊疗的定点医疗机构(医院、卫生院等)、相关临时隔离场所及研究机构,严格执行《医疗机构水污染物排放标准》,并参照《医院污水处理技术指南》、《医院污水处理工程技术规范》和《新型冠状病毒污染的医疗污水应急处理技术方案(试行)》等有关要求,对污水和废弃物进行分类收集和处理,确保稳定达标排放;同时,地方生态环境部门要督促城镇污水处理厂切实加强消毒工作,结合实际,采取投加消毒剂或臭氧、紫外线消毒等措施,确保出水粪大肠菌群数指标达到《城镇污水处理厂污染物排放标准》要求。 通过对比以上标准发现,在这些污水处理过程中,粪大肠菌群数是评判污水处理是否合格的关键微生物指标。研究表明,污水中粪大肠菌群数量与肠道致病菌数量存在相关关系,当污水中粪大肠菌群数超过1174个/L时,即可在污水中检出病原菌,因此将粪大肠菌群数作为特征指示性指标对这些微生物进行控制。 根据检测方法、应用领域和污染情况的不同,各标准中对粪大肠菌群数的限量也不同(表1)。目前,可用于检测水体中粪大肠菌群数的方法有4种,分别是多管发酵法、膜过滤法和快速荧光检测法、酶底物法,其中前三种认可度较高,且使用较广泛。 1 膜过滤法 膜过滤法是目前最常用于水体中粪大肠菌群数检测的一种标准方法,也是《新型冠状病毒污染的医疗污水应急处理技术方案(试行)》中的指导方法,可于地表水、地下水、生活污水、工业废水及医疗污水等样本的检测。 该方法使样品通过孔径为0.45μm的滤膜过滤,细菌被截留在滤膜上,然后将滤膜置于MFC选择性培养基上,在特定的温度(44.5℃)下培养24h,胆盐三号可抑制革兰氏阳性菌的生长,粪大肠菌群能生长并发酵乳糖产酸使指示剂变色,通过颜色判断是否产酸,并通过对呈蓝色或蓝绿色的菌落进行计数,从而测定样品中粪大肠菌群浓度。 膜过滤法的关键在于样品前处理,需借助抽滤装置才可完成,使微生物被截留在无菌滤膜上,并通过物理的方式进行富集,以保证粪大肠菌以菌落形态被检出。目前,市面上已有较为成熟、有效的的水中膜过滤装置,可用于水体中微生物前处理操作。专为水质样品前处理、富集等操作设计;结构精巧,配合精密抽滤泵,保证良好的抽滤效果;不锈钢材质,可高温高压灭菌,避免交叉污染;直抽直排,防止废液倒吸。 2 多管发酵法 多管发酵法又称最大可能数(most probable number,MPN)法或稀释培养计数法,该方法是用于检测地表水、地下水、生活污水和工业废水中粪大肠菌群的测定中粪大肠菌群数的一种标准方法。 该方法是一种基于泊松分布的间接计数法,利用统计学原理,根据一定体积不同稀释度样品经培养后产生的目标微生物阳性数,查表估算一定体积样品中目标微生物存在的数量(即单位体积存在目标微生物的最大可能数)。 采用多管发酵法时,先将样品加入含乳糖蛋白胨培养基的试管中,37℃初发酵富集培养,大肠菌群在培养基中生长繁殖分解乳糖产酸产气,产生的酸使溴甲酚紫指示剂由紫色变为黄色,产生的气体进入倒管(杜氏小管)中,指示产气。然后再44.5℃复发酵培养,培养基中的胆盐三号可抑制革兰氏阳性菌的生长,最后产气的细菌确定为是粪大肠菌群。最后通过查MPN表,即可得出粪大肠菌群浓度值。 实验小贴士 该方法在操作过程中,根据样品检出限的不同,可选择12管法(检出限为3MPN/L)或15管法(检出限为3MPN/L)进行实验,因此需要大量使用试管和液体培养基(每个样品需准备12或15支试管)。若检测样品量较大时,建议可采用培养基分液器来降低工作量。可用于生理盐水、液体及半固体培养基自动分装;1L溶液分装到100个MPN法试管中,最快仅需2分钟;微电脑系统与精密泵体联合控制,分装精度高;分装量、分装速度、分装时间、停顿时间、分装次数等参数可自由设定。 采用自动微生物试剂分液器进行实验用品准备,不仅能实现准确的连续分装,还可在保证进度的同时,大大降低工作量。 3 快速荧光检测法 快速荧光检测法是一种利用ATP荧光原理与微生物特性相结合的快速检测方法,虽然该方法暂未被纳入国家标准中,但由于其操作方便,检测与培养时间短(仅为膜过滤法、多管发酵法的1/3),目前被很多大型企业作为内部微生物自检的一种重要手段。通过与对应的采样、增菌拭子配合使用,可快速检测水体中粪大肠菌群数量。 快速荧光检测法是在荧光素酶(lueiferase)和Mg2+的作用下,荧光素(lueiferin)与ATP发生腺苷酰化反应后被活化,活化的荧光素与荧光素酶相结合,形成了荧光素-AMP复合体焦磷酸(PPi)。该复合物在氧化作用下,产生荧光信号。通过ATP检测液检测微生物ATP的发光量,达到检测细菌的目的。该方法现已获得AOAC研究机构的检测方法性能担保认证。 目前,杭州大微已开发了DW-ES800型微生物实时检测系统,该系统基于ATP荧光快速检测法,采用双模块设计,实现对水体中粪大肠菌群、大肠菌群、大肠杆菌、细菌总数等多种微生物的检测和计数。耗时短:培养时间短(定性8小时,定量1~8小时),检测时间仅需15秒范围广:细菌总数、大肠杆菌、总大肠菌群、粪大肠菌群等多种微生物效率高:双培养通道,可同时培养不同温度微生物易操作:五步即可完成(增菌拭子采样→培养→转移→检测拭子激活→检测)可将RLU值转换为CFU值 4 酶底物法 酶底物法是检测水体中大肠菌群、粪大肠菌群和大肠埃希氏菌的一种标准方法。该方法是利用在特定温度下培养特定的时间,总大肠菌群、粪大肠菌群、大肠埃希氏菌能产生特定的β-半乳糖苷酶将选择性培养基中的无色底物邻硝基苯-β-D-吡喃半乳糖苷(ONPG)分解为邻硝基酚(ONP),呈黄色反应;且大肠埃希氏菌同时又能产生β-葡萄糖醛酸酶将选择性培养基中的4-甲基伞形酮-β-D-葡萄糖醛酸苷(MUG)分解为4-甲基伞形酮,在紫外灯照射下呈荧光反应。统计阳性反应出现数量,查MPN表,再除以接种样品的稀释度。计算相应水样中总大肠菌群、粪大肠菌群、大肠埃希氏菌的浓度值。由于操作起来较为繁琐,工作量巨大,故在日常检测中很少被使用。
  • 全国兽药残留专家委员会发布《水产品中氨基糖苷类药物残留量的测定 液相色谱-串联质谱法》等20项兽药残留标准征求意见稿
    各相关单位:依据《食品安全国家标准审评委员会章程》有关要求,我办组织起草了《水产品中氨基糖苷类药物残留量的测定 液相色谱-串联质谱法》等16项兽药残留国家标准、《食品安全国家标准 水产品中27种性激素残留量的测定 液相色谱-串联质谱法》(GB 31656.14-2022)等4项标准修改单,现公开向社会征求意见,请提出具体修改意见和理由,并通过电子邮件形式反馈。征询截止日期2024年5月15日。联系人:张玉洁电 话:010-62103930邮 箱:syclyny@163.com附 件:1.食品安全国家标准兽药残留标准征求意见表2.《水产品中氨基糖苷类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)》3.《水产品中苯甲酰脲类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)》4.《鱼可食性组织中水杨酸残留量的测定 液相色谱-串联质谱法(征求意见稿)》5.《河鲀、鳗鱼和烤鳗中18种β-受体激动剂残留量的测定 液相色谱-串联质谱法(征求意见稿)》6.《蜂产品中克百威残留量的测定 液相色谱-串联质谱法(征求意见稿)》7.《动物性食品中四环素类、磺胺类和喹诺酮类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)》8.《动物性食品中氨基糖苷类药物残留量的测定液相色谱-串联质谱法(征求意见稿)》9.《动物性食品中吩噻嗪类药物残留量测定 液相色谱-串联质谱法(征求意见稿)》10.《动物性食品中异丙嗪残留量的测定 液相色谱-串联质谱法(征求意见稿)》11.《动物性食品中碘醚柳胺残留量的测定 液相色谱-串联质谱法(征求意见稿)》12.《动物性食品中甲氧苄啶、二甲氧苄啶和二甲氧甲基苄啶残留量的测定 液相色谱-串联质谱法(征求意见稿)》13.《动物性食品中氮哌酮及其代谢物残留量的测定液相色谱-串联质谱法(征求意见稿)》14.《动物性食品中地克珠利和托曲珠利砜残留量的测定 高效液相色谱法(征求意见稿)》15.《动物性食品及尿液中同化激素类药物多残留的测定 液相色谱-串联质谱法(征求意见稿)》16.《奶及奶粉中吩噻嗪类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)》17.《动物尿液中23种β-受体激动剂残留量的测定液相色谱-串联质谱法(征求意见稿)》18.《食品安全国家标准 水产品中27种性激素残留量的测定液相色谱 串联质谱法》(GB31656.14-2022)修改单19.《食品安全国家标准 动物性食品中拟除虫菊酯类药物残留量的测定 气相色谱-质谱法》(GB31658.8-2021)修改单20.《食品安全国家标准 动物性食品中氨基甲酸酯类杀虫剂残留量的测定 液相色谱-串联质谱法》(GB31658.10-2021)修改单21.《食品安全国家标准 动物性食品中β-受体激动剂残留量的测定 液相色谱-串联质谱法》(GB31658.22-2022)修改单
  • 【行业应用】赛默飞发布在线衍生-气质联用法分析检测PM2.5中的正构烷酸、甾醇、左旋葡聚糖
    赛默飞世尔科技(以下简称:赛默飞)近日发布了检测PM2.5中的正构烷酸、甾醇、左旋葡聚糖的解决方案。 中国环境监测总站为规范全国环境空气颗粒物来源解析的监测技术,发布了《环境空气颗粒物源解析监测技术方法指南(试行)》,其中就包含正构烷酸、甾醇类、左旋葡聚糖类化合物分析方法。通过检测这类化合物的含量,来确认污染物的来源,以期更好地控制污染。其中正构烷酸被认为是植物燃烧的示踪物。甾醇类化合物主要来源于厨房油烟,可作为餐饮源的示踪物。左旋葡聚糖为纤维素热降解产物,可作为生物质燃烧的示踪物。 但正构烷酸、甾醇类以及左旋葡聚糖类化合物极性大,挥发性较差,需要通过衍生的方法来改善极性及挥发性。本方法参考《环境空气颗粒物源解析监测技术方法指南(试行)》,采用加速溶剂萃取提取后,采用在线衍生-气质联用法测定PM2.5中的正构烷酸、甾醇类、左旋葡聚糖。该方法省去了离线手动衍生的烦扰,前处理更简单快速、自动化程度更高。本实验采用赛默飞Triplus RSH 三合一自动样品前处理平台结合Thermo ScientificTM ISQTM系列四极杆 GC-MS 系统分析PM2.5中的正构烷酸、甾醇、左旋葡聚糖,样品通过Triplus RSH在线自动衍生通过气质进行定量分析,前处理简单快速、自动化程度高,结果重复性好。 更多产品信息,请查看:Thermo ScientificTM ISQTM 系列四极杆 GC-MS 系统www.thermoscientific.cn/product/isq-series-single-quadrupole-gc-ms-systems.html 应用方法下载:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/GCMS/documents/Determination-of-normal-fatty-acid-sterol-levoglucosan-in-PM2.5-by-online-derivation-GC-MS.pdf---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
  • 拉曼光谱无创血糖检测距离实用还有多远?
    近日,多家媒体就三星及苹果公司正在研发的可检测血糖的智能穿戴设备进行报道,据悉,这两家公司最新款的智能手表可能将借助光学传感器,采用拉曼光谱法进行人体血糖无损检测。消息一出,引来多方关注和议论,为此我们采访了多年从事光学无损检测相关研究的清华大学物理系联合培养博士后王成铭,请其为我们答疑解惑。王成铭博士  王成铭,物理学博士,现任北京鉴知技术有限公司光学工程师,毕业于清华大学物理系低维量子物理国家重点实验室,清华大学物理系联合培养博士后。多年从事光学相干层析成像(OCT)临床应用方向,有丰富的临床医学合作经验,就光谱方法在血糖检测中的应用做过深入研究。  仪器信息网:采用拉曼光谱法检测血糖是否可行?  王博士:方法原理是可行的,使用激发光照射皮肤后收集得到的拉曼光谱(经皮测量)可以反映出皮肤组织中的许多化学物质,例如真皮内的胶原蛋白,真皮下脂肪中的三油酸甘油酯,表皮角质层的胶质蛋白,皮肤血管中的血红蛋白,以及分布于组织液和血液中的葡萄糖等。在血糖无创检测的诸多光学方法之中,拉曼光谱法因其能检测葡萄糖的特征谱,是未来最有希望实现高精度测量血糖浓度的方法之一。拉曼经皮测量无创血糖检测示意图  Pandey, Rishikesh, et al. "Noninvasive monitoring of blood glucose with raman spectroscopy." Accounts of chemical research 50.2 (2017): 264-272. 葡萄糖分子位于皮肤真皮层中的组织液与血液中,葡萄糖的浓度可从其产生的拉曼光谱信号推断。  仪器信息网:请介绍目前拉曼光谱法检测血糖的最新研究进展?  王博士:麻省理工学院(MIT)在使用拉曼光谱测量无创血糖已研究了20多年,他们系统研究了皮肤拉曼光谱的成分、经皮血糖探测的定量化分析和矫正算法、动物血糖测量临床实验等等。去年三星和MIT研究人员在SCIENCE ADVANCES杂志上发表了最新的无创血糖检测的研究,通过对猪的活体葡萄糖钳制实验,从猪耳的拉曼信号图中直接观测到了葡萄糖的拉曼特征峰及其随血糖浓度的变化,这终结了长久以来关于拉曼光谱测量得到的是否是真实的葡萄糖浓度信号的争论,也为这项技术的应用带来一大突破。  除MIT外,还有一些公司曾经或正在尝试将拉曼血糖检测技术产品化,包括C8 Medisensors,Diramed, LLC和RSP Systems等。C8 Medisensors公司曾推出的可穿戴拉曼无创血糖检测设备  仪器信息网:拉曼光谱法检测血糖在实际应用中还有哪些问题亟待解决?  王博士:虽然利用葡萄糖的多个拉曼特征峰与皮肤组织中的其他物质信号峰的差异可做定量分析,但这一研究距离实际应用仍有一定的距离,主要有以下几个难题:  ①葡萄糖浓度低信号弱,并且有可能被其他物质的拉曼信号掩盖和干扰,如真皮层的胶原蛋白和真皮皮下脂肪的三油酸甘油酯,二者合计贡献了超过90%的皮肤拉曼光谱信号。  ②经皮测量还需要解决皮肤的荧光信号干扰,激发光功率的皮肤安全剂量限制以及皮肤表皮层黑色素对激发光和拉曼光的吸收效应等等问题,此外,不同种族之间肤色的差异,加大了这项技术的应用难度。  ③为解决以上两点问题,必然需要使用极高灵敏度的探测器,以及较长的积分时间,这给仪器尺寸及使用便利度带来挑战。  仪器信息网:据悉,目前已经有一些厂家在进行基于拉曼光谱原理的血糖仪器的研发,您认为可行性如何?有什么新的进展?  王博士:最近,有报道称三星和苹果将在其智能可穿戴设备上集成拉曼无创血糖检测技术。三星近几年和MIT研究组合作,从发表的公开学术文章看,已经进入临床实验阶段。曾有报道称苹果公司招募过C8 Medisensors公司的前员工,以此猜测苹果很有可能在继续发展可穿戴拉曼技术的路线,但具体进展不得而知。  虽然基于拉曼技术的无创血糖监测仪器在原理上是可行的,并且在过去十多年内虽然有很多拉曼血糖检测的学术文章报道,检测精度在不断提高,但尚未有成功的获得医疗器械资格的仪器出现,说明相关产品研发的难度确实较大。  仪器信息网:您对可检测血糖的智能手表这项技术的未来发展如何看待?  王博士:如上一个问题所讲,这个技术本身存在一定的技术难度,并且在可穿戴设备上集成低功耗的小型化拉曼光谱仪在工程上的难度也较大,但随着深度学习技术的飞速发展和大数据的不断积累,未来基于卷积神经网络的算法可能会替代当前拉曼葡萄糖浓度直接量化算法或者回归量化算法,使得智能穿戴设备的高精度无创血糖测量成为可能。  附:王成铭博士讲座回顾:《光学无创技术在临床检测中面临的挑战与未来》  在临床医学实践中,医疗影像(MRI、超声、CT)和病理切片对疾病的诊断起着至关重要的作用,而基于光与生物组织的散射、吸收、相干、偏振效应的光学无创方法,很有希望成为沟通影像学和病理学之间的重要桥梁。本次会议报告对光学无创方法进行概述,着重探讨其在实际临床应用中面临的困难和挑战,从发展的角度探讨技术的未来发展趋势和临床应用前景。
  • 成果速递|李咏生教授团队阐述线粒体丙酮酸载体作为代谢-表观遗传检查点调控T细胞分化的机制
    近日,重庆大学附属肿瘤医院李咏生教授团队在《Signal Transduction and Targeted Therapy》杂志(影响因子:38.104)发表了题为《线粒体丙酮酸载体:调控T细胞分化的代谢-表观遗传学检查点》的研究亮点,阐述线粒体丙酮酸载体作为代谢-表观遗传检查点调控T细胞分化的分子机制,及影响肿瘤免疫的临床意义。细胞毒性CD8+ T细胞是抗癌免疫反应中最强大的效应细胞。在抗原刺激下,CD8+ T细胞可增殖并分化为效应T细胞(Teff),其中大部分是终末分化的短寿命效应细胞 (SLEC),具有强大的细胞毒性潜力;而其余的部分则是记忆前体效应细胞 (MPEC),可进一步分化为长寿的、可自我更新的记忆CD8+ T细胞(Tmem)。代谢重编程对CD8+ T细胞的分化和功能具有重要调控作用,其中糖酵解,包括乳酸发酵和丙酮酸氧化,均可促进CD8+ T细胞向Teff的分化。然而,线粒体丙酮酸载体(MPC)控制的线粒体丙酮酸摄取和代谢如何影响T细胞功能和命运仍不清楚。今年五月,来自瑞士洛桑大学的Mathias Wenes团队在Cell Metabolism上发表了题为 The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function的论著,他们发现,MPC缺陷的CD8+ T细胞具有向记忆型分化的倾向,机制研究表明,MPC受抑制的CD8+ T细胞可利用环境中的谷胱甘肽和脂肪酸氧化产生乙酰辅酶A,进而促进组蛋白H3K27位点乙酰化,并导致转录因子RUNX1下游的Tmem分化相关细胞因子(如IL-2,CD40)的表达上调。 此外,该团队还发现,在营养缺乏的肿瘤微环境(TME)中,乳酸来源的丙酮酸是维持CD8+ T细胞抗肿瘤活性的重要能源物质。由于谷胱甘肽和脂肪酸含量较少,在肿瘤微环境(TME)浸润CD8+ T细胞中敲除MPC并不会导致其向Tmem分化,但CD8+ T细胞内mTOR信号受到了显著抑制,进而引起H3K27位点甲基化水平上调,最终导致其抗肿瘤免疫活性降低。近年来,过继细胞转移(ACT)疗法成为了临床上最主要的抗肿瘤免疫治疗策略之一,其通过生成大量的带有基因修饰受体(嵌合抗原受体CAR)的肿瘤特异性CD8+ T细胞(也就是CAR-T 细胞)来增强抗肿瘤效应。然而,由于CAR- T细胞在患者体内的存活率、增殖能力和活力持续性较低,对部分患者的抗癌效果不佳。研究表明,低分化的CD8+ Tmem细胞在ACT疗法中具有更好的抗肿瘤治疗效果。同样,在ACT疗法中,使用MPC抑制剂预处理的CAR-T细胞具有更强的抗肿瘤效应。李咏生教授团队指出,在临床转化应用中,对MPC调控CD8+ T细胞分化和肿瘤免疫抑制的研究表明了靶向MPC可成为激活肿瘤浸润T细胞乳酸利用和抗肿瘤疗效的新途径。并且抑制MPC增强了CAR-T细胞的抗肿瘤作用、记忆表型和持久性,可能是未来临床试验中改善CAR-T细胞免疫治疗的潜在策略。据悉,重庆大学附属肿瘤医院肿瘤内科助理研究员陈瑜和陆军军医大学新桥医院消化内科博士生王景纯为共同第一作者,重庆大学附属肿瘤医院肿瘤内科李咏生教授为通讯作者。原文链接:https://www.nature.com/articles/s41392-022-01101-z陈瑜重庆大学附属肿瘤医院肿瘤内科助理研究员。长期从事肿瘤微环境中MDSC免疫抑制功能及其脂质代谢的基础研究工作,主要研究方向为肿瘤免疫与脂质代谢。近年来共参与发表SCI文章9篇,其中以第一/共同第一作者在Signal Transduction and Targeted Therapy和Theranostics杂志共发表SCI论文3篇;参编Elsevier出版社的英文著作1部;主持重庆市科技局课题1项,参与重庆市科技局课题2项。王景纯陆军军医大学新桥医院消化内科博士生,从事肿瘤治疗耐药及肿瘤干细胞领域研究。近年来共参与发表SCI文章11篇,其中以第一/共一作者在Signal Transduction and Targeted Therapy和Theranostics杂志共发表SCI论文3篇;参与重庆市科技局课题1项;2019年获得“世界医学生论坛”冠军;获评陆军军医大学“优秀共产党员”及“优秀毕业生”。李咏生重庆大学附属肿瘤医院肿瘤内科主任、教研室主任、I期病房主任,博士、教授、主任医师、博士生导师、结直肠癌和恶性肿瘤临床试验首席专家,美国哈佛医学院博士后,国家高层次引进人才,国家自然科学基金重点国际合作项目首席科学家,国家自然科学基金重点、国合、优青、海外优青项目评审委员,重庆英才•创新领军人才,重庆市杰出青年科学基金获得者,重庆市学术技术带头人,重庆市高校创新研究群体负责人,重庆市青年专家工作室领衔专家,中国抗癌协会肿瘤代谢专委会免疫代谢学组组长,肿瘤与微生态专委会常务委员,重庆市免疫学会代谢免疫专委会主任委员,重庆市医药生物技术协会肿瘤罕见病疑难病专委会主任委员,重庆市医学会肿瘤学分会化疗学组组长,重庆市医学会精准医疗与分子诊断专委会副主任委员,重庆市免疫学会、重庆抗癌协会、重庆市医药生物技术学会常务理事。兼任《中国医院用药评价与分析》副主编,STTT等杂志编委,Cell Metabolism、Advanced Science、Cancer Research等杂志审稿人。专注于“肿瘤免疫代谢”研究,主持国家高层次引进人才计划、国家自然科学基金重点国际合作研究项目、国家临床重点专科等项目20余项,发表SCI论文70余篇,总影响因子大于500,被引用大于4000次,以第一/通讯作者在Immunity、STTT、Ann Rheum Dis、Sci Adv、Nat Commun、Cancer Res等杂志发表SCI论文40余篇,单篇影响因子大于30的论文4篇,大于10的论文12篇,截止2022年7月的H指数36。获得国际发明专利1项,国家发明专利2项,国家实用新型专利2项。主编和参编Springer Nature、Elsevier等出版社英文专著4部。以PI身份参研临床试验共计48项,其中I期36项,II期5项,III期7项,以组长单位牵头全国多中心临床研究7项,其中注册类6项。当选中国临床肿瘤协会首批35岁以下最具潜力青年肿瘤医生,获树兰医学青年奖提名,获中国抗癌协会青年科学家奖,入围中国细胞生物学学会青年科学家奖。
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 《苹果醋饮料》《浓缩苹果汁》两项国家标准在京通过审定
    日前,《苹果醋饮料》和《浓缩苹果汁》两项国家标审定会在北京召开,来自饮料协会、科研院校、相关企业的专家及部分饮料标委会的委员代表一致通过了两项标准的审定。   中国作为苹果种植大国,浓缩苹果汁是主要加工产品,并在同类产品的国际贸易中占据主导地位。此次《浓缩苹果汁》国家标准的制定,整合了原行业标准QB2657-2004《浓缩苹果浊汁》和原国家标准GB/T18963-2003《浓缩苹果清汁》。新标准中对浓缩苹果汁的定义进行了充实和完善,结合行业实际,明确提出不允许添加的原料如其他水果汁液、果葡糖浆等 同时考虑原料及生产实际,理化指标中调整了可溶性固形物及可滴定酸的要求,参照国际食品法典委员会、欧洲果汁联盟等相关国际标准,对清汁类产品增加了富马酸、乳酸、羟甲基糠醛的指标,有利于企业进行原料及工艺控制。   以发酵工艺为基础的苹果醋饮料,近年来呈现较快的增长趋势,生产企业多数以中小企业为主,由于缺乏标准规范,真正发酵苹果醋饮料与纯原料调配型饮料混杂,市场秩序混乱。此次标准制定对苹果醋使用的原辅料、特征性有机酸进行了规定,有利于提高使用苹果醋原料的质量和真实性,也为饮料企业在选择原料时提供了依据 标准还明确提出不得使用粮食等非苹果发酵产生或人工合成的食醋、乙酸、苹果酸、柠檬酸等调制苹果醋饮料 此外标准还对苹果醋饮料中苹果醋、苹果汁、总酸、苹果酸、柠檬酸、乳酸的进行了规定。以上内容,有利于维护产品的真实性,保护消费者利益,为质量监管提供依据,提高行业整体水平。   审定会上,两项标准课题组所开展的工作得到了专家的一致认可,特别是苹果醋饮料的样品收集、检验等工作为标准的顺利通过奠定了扎实的基础。会后协会技术工作委员会根据审定会的修改意见对标准分别进行修改、整理,并按要求于2月份上报国家有关部门,实施时间建议为2012年5月1日。
  • 关于阿拉伯木聚糖等8种“三新食品”的公告与解读
    根据《中华人民共和国食品安全法》规定,审评机构组织专家对阿拉伯木聚糖等3种物质申请作为新食品原料,羟基酪醇等4种物质申请作为食品添加剂新品种,“2,2-二甲基-1,3-丙二醇与对苯二甲酸、乙二醇、间苯二甲酸、1,2-丙二醇、氢化二聚(C18)不饱和脂肪酸、1,6-己二醇和三羟甲基丙烷的聚合物”申请作为食品相关产品新品种的安全性评估材料进行审查并通过。特此公告。国家卫生健康委2024年7月25日阿拉伯木聚糖是以甘蔗渣为原料,经清洗、压榨、氢氧化钠提取、沉淀、纯化、干燥等工艺制成。该原料主要作为膳食纤维来源之一。美国食品药品监督管理局将阿拉伯木聚糖作为一种膳食纤维,欧盟、加拿大等国家和地区已允许该物质添加在食品或膳食补充剂中。本产品推荐食用量为≤15克/天。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对阿拉伯木聚糖的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于阿拉伯木聚糖在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。长双歧杆菌婴儿亚种(原名称为“婴儿双歧杆菌”)已被列入我国《可用于食品的菌种名单》,也已列入欧洲食品安全局资格认定(QPS)名单的推荐微生物列表。长双歧杆菌婴儿亚种M-63(Bifidobacterium&ensp longum&ensp subsp.infantis&ensp M-63)从健康婴儿肠道中分离得到,该菌株在美国被作为“一般认为安全的物质(GRAS)”管理,可用于婴幼儿食品。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对长双歧杆菌婴儿亚种M-63的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性,批准列入《可用于婴幼儿食品的菌种名单》。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。该原料的食品安全指标应符合《食品安全国家标准&ensp 食品加工用菌种制剂》(GB&ensp 31639)的规定,同时克罗诺杆菌属不得检出(/100g)。N-乙酰氨基葡萄糖是以葡萄糖、玉米浆干粉、硫酸铵、磷酸二氢钾、硫酸镁为原料,经谷氨酸棒杆菌RDG-2110(Corynebacterium&ensp glutamicum&ensp RDG-2110)发酵、过滤、浓缩、结晶、离心、醇洗、干燥等工艺制成。韩国允许N-乙酰氨基葡萄糖作为食品原料使用;加拿大批准其作为天然健康食品使用;我国台湾地区已将其作为食品原料使用。本产品推荐食用量≤500毫克/天(以干基计)。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对N-乙酰氨基葡萄糖的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于N-乙酰氨基葡萄糖在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。1.背景资料。羟基酪醇申请作为食品添加剂新品种。本次申请用于植物油脂(食品类别02.01.01)。美国食品药品管理局、欧盟委员会等允许其用于植物油中。2.工艺必要性。该物质作为抗氧化剂用于植物油脂(食品类别02.01.01),延缓油脂氧化。其质量规格按照公告的相关要求执行。1.背景资料。二氯甲烷申请作为食品工业用加工助剂新品种。本次申请用于茶叶脱咖啡因工艺。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局等允许其作为提取溶剂脱咖啡因。2.工艺必要性。该物质作为食品工业用加工助剂用于茶叶脱咖啡因工艺,在茶叶提取加工中发挥作用。其质量规格按照公告的相关要求执行。1.背景资料。2’-岩藻糖基乳糖申请作为食品营养强化剂新品种。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局等允许2’-岩藻糖基乳糖用于婴幼儿配方食品等食品类别。2.工艺必要性。该物质作为食品营养强化剂,是母乳中一种主要的母乳低聚糖。其质量规格按照公告的相关要求执行。1.背景资料。聚甘油蓖麻醇酸酯作为乳化剂、稳定剂已列入《食品安全国家标准&ensp 食品添加剂使用标准》(GB&ensp 2760),允许用于水油状脂肪乳化制品、半固体复合调味料等食品类别,本次申请扩大使用范围用于调制稀奶油(食品类别01.05.03)。美国食品药品管理局、日本厚生劳动省等允许其用于人造黄油等食品类别。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-7.5&ensp mg/kgbw。2.工艺必要性。该物质作为乳化剂用于调制稀奶油(食品类别01.05.03),改善产品品质。其质量规格执行《食品安全国家标准&ensp 食品添加剂&ensp 聚甘油蓖麻醇酸酯(PGPR)》(GB&ensp 1886.95)。&ensp 2,2-二甲基-1,3-丙二醇与对苯二甲酸、乙二醇、间苯二甲酸、1,2-丙二醇、氢化二聚(C18)不饱和脂肪酸、1,6-己二醇和三羟甲基丙烷的聚合物1.背景资料。该物质常温下为淡黄色液体,不溶于水、微溶于丁酮等有机溶剂。欧洲委员会和日本厚生劳动省均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质为涂料基础树脂,具有较好的交联性和耐化学性。以该物质为原料生产的涂层具有较好的附着力和耐腐蚀性能。食品相关产品新品种.pdf阿拉伯木聚糖等 3 种新食品原料.pdf羟基酪醇等 4 种食品添加剂新品种.pdf
  • 岛津中国率先推出遗传毒性杂质NMBA(N-亚硝基-N-甲基-4-氨基丁酸)LC-MS/MS解决方案
    2019年3月1日,美国食品和药物管理局(FDA)在官网发布血管紧张素II受体阻滞剂(ARBs)药物氯沙坦的自愿召回公告,涉及到印度Hetero Labs Ltd.生产的87批氯沙坦钾片,而导致该召回的主要原因是发现其中含有N-亚硝基-N-甲基-4-氨基丁酸(NMBA)杂质。由于NMBA是已知动物和潜在人类的致癌化学物质,是继N?亚硝基二甲胺(NDMA)和N?亚硝基二乙胺(NDEA)之后上市ARBs药物中检测到的第三种亚硝胺类遗传毒性杂质。此后,FDA相继公布了Teva Pharmaceuticals和Vivimed Life Sciences Pvt Ltd等制药公司自愿召回涉及氯沙坦钾的63批药品,其原因为检出含有NMBA。同时,加拿大卫生部(HC)及英国卫生部(DHSC)也在官网上发布了氯沙坦类药物的召回公告。直至2019年6月12日,Teva Pharmaceuticals仍在扩大自愿召回7批检出NMBA氯沙坦钾片,可见药物中的遗传毒性杂质仍受到公众及药品监管机构的高度关注。  在FDA已公布的ARBs药物亚硝胺杂质限度表中,NMBA的日允许摄入量最大值为0.96ppm。 FDA评估了暴露于9.82ppm水平NMBA相比于终生暴露于0.96ppm NMBA的服药水平,表明6个月的暴露量不会存在患癌风险。N-亚硝基-N-甲基-4-氨基丁酸(NMBA)N-Nitroso-N-methyl-4-aminobutyricacid(NMBA)CAS. 61445-55-4  因此,为了确保患者在缓冲期可获得氯沙坦类药物,FDA不反对含NMBA低于9.82ppm的氯沙坦保持销售。该过渡缓冲期FDA设为6个月,直至生产企业提供亚硝胺杂质符合要求的氯沙坦药物来填补市场。目前,关于氯沙坦钾中NMBA的检测方法尚未见公开报道,为及时应对市场检测需求,岛津中国率先推出了基于LC-MS/MS技术的检测方法,该方法操作简单,灵敏度高,适用性强,可有效用于氯沙坦钾中NMBA的分析检测。 1、 实验部分 1.1 仪器: LCMS-8050三重四极杆质谱仪联用仪,含有:LC-30AD×2输液泵,DGU-20A5R在线脱气机,SIL-30AC自动进样器,CTO-30A柱温箱,CBM-20A系统控制器,LCMS-8050三重四极杆质谱仪,LabSolutions(Version 5.82 SP1)色谱工作站。 1.2 分析条件: 液相色谱条件质谱条件 1.3 标准品溶液:取NMBA标准贮备液,以纯甲醇逐级稀释为0.5、1、2、5、10、20、50、100 ng/mL的八个不同浓度的混合标准工作溶液。 1.4 样品溶液:取氯沙坦钾三批原料药(符合EP9.0)0.1 g于10 mL容量瓶中,加甲醇适量,超声1 min至全部溶解,放冷至室温,用甲醇定容待测。 2、 结果 2.1标准品色谱图图1. NMBA标准品色谱图(100 ng/mL)(黑色-总离子流;粉色-MRM147.15/117.10;蓝色-MRM147.15/87.10;棕色-MRM147.15/44.10) 2.2 线性关系及检出定量限图2. NMBA标准曲线检出限(LOD)0.5 ng/mL(MRM147.15/117.10),定量限(LOQ)1.0 ng/mL (MRM147.15/117.10) 2.3 精密度实验:10 ng/mL标准溶液为样本连续进样,日内及日间保留时间相对标准偏差低于0.1%,峰面积低于1.10%。 2.4 加标回收实验 取0.1 g氯沙坦钾样品于10 mL容量瓶中,加入NMBA标准品溶液(相当于50、100、200 ng NMBA标准品),按照1.4中的方法进行处理,上机分析。加标的氯沙坦钾溶液色谱图(以200 ng加标量为例)见图3。三个平行样品的低中高平均回收率分别为98.04%,94.40%,95.61%。 图3 NMBA加标量为200 ng时氯沙坦钾溶液色谱图 2.5 检测结果:三批样品中NMBA均低于最小检出限(LOD)。 3、 结论   本工作建立了使用LCMS-8050三重四极杆质谱联用仪测定氯沙坦钾原料药中N-亚硝基-N-甲基-4-氨基丁酸(NMBA)杂质的方法,在0.5~100 ng/mL浓度范围内线性关系良好,检出限和定量限分别为0.5 ng/mL和1.0 ng/mL。使用此方法对三批次氯沙坦钾原料药进行了测定,结果为NMBA未检出。本方法简单、快速、灵敏、准确,可有效用于氯沙坦钾原料药中NMBA的分析检测。
  • 达标蜂蜜未必纯正 新国标未涉及大米糖浆检测
    将不同的蜂蜜样本进行取样萃取。   实验室检测人员在电脑上分析大米糖浆检测数据。   通过酶标仪检测氯霉素残留。   ■ 送检说明   ●组织送检单位:   “绿篮子”食品安全科普组织,由英国大使馆文化教育处指导创建,指定中国土畜进出口商会检验支持。通过媒体公开安全食品标准、解读标准,引导公众作出正确的选择。鼓励企业为食品安全履行更多承诺。   ●送检样本:   慈生堂结晶蜂蜜400g:抽检产品在北京沃尔玛超市随机购买。   同仁堂荆条蜂蜜:从同仁堂北四环华堂商场专柜购买。   百花牌枣花蜂蜜454g:在北京大润发超市购买。   百花调制儿童蜂蜜膏450g:从华堂超市购买。   冠生园纯天然蜂蜜580g:从北京大润发超市民族园店购买。   中粮悦活枸杞蜂蜜454g:在北京北四环华堂超市购买。   福明洋槐蜂蜜500g:厂家送交绿篮子团队,委托检测。(非市场领导品牌,在北京购买不到)   感蜂堂洋槐蜂蜜:厂家送交绿篮子团队,委托检测。(非市场领导品牌,在北京购买不到)   ●检测方法:在蜂蜜制造业业内人士的指导下,对比了欧盟、日本等国家蜂蜜标准后,共检测8项内容,按排除法一一检测。   ●检测内容:(按检测步骤先后顺序):SM-R大米糖浆检测、β-呋喃果糖苷酶检测、碳六项检测、TLC检测四项真实性检测 氯霉素、甲硝唑、硝基呋喃、四环素族四项安全性检测。   ●检测机构   秦皇岛出入境检验检疫局:拥有针对蜂蜜类产品最严格的实验室检测方法,是欧盟、日韩等多个发达国家认可的蜂蜜出口检验单位。   ●检测结果   三送检样品掺有大米糖浆   在此次送检的八个样品中,其中有三个样本在SM-R检测中结果呈阳性,证明其中掺入大米糖浆,并非纯正蜂蜜,其中包括北京和上海的某知名品牌的蜂蜜。   其他5个蜂蜜产品在本轮抽检批次中顺利通过了真实性与安全性检测。   【真实性检测】   SM-R大米糖浆检测   将已经萃取提纯的蜂蜜液态样品,送入液相色谱串联质谱仪中。实验人员解释说,如果将色谱柱当作跑道的话,各种不同的物质,通过液相极性分离出不同的糖,由于分子量、分子结构极性不同,在相同助力的推动下,却会先后到达终点。通过色谱图观察,不同物质达到峰值的时间预算,可确定是否是大米糖浆,而通过达到的峰的面积可以确定含有的大米糖浆的含量。   SM-R是大米糖浆里特有的物质,也是判断蜂蜜是否纯正最重要、最基本的检测项目之一,为我国蜂蜜出口欧盟的必检项目之一。如果产品被检测出SM-R呈阳性,则涉嫌在蜂蜜中掺入大米糖浆。大米糖浆虽然也是糖,但却廉价,其保健功效是完全不一样的。   β-呋喃果糖苷酶检测   β-呋喃果糖苷酶检测是在液相色谱仪上进行的,同样的送样、极性分离后的与标准色谱卡的对照,来判断是否含有β-呋喃果糖苷酶。   β-呋喃果糖苷酶,可将蔗糖直接转化成葡萄糖和果糖。作为蜂蜜掺假手段之一,其作用机理是将普通蔗糖的葡萄糖基与果糖基的s-(1,4)糖苷键断裂,生成果糖与葡萄糖。如果在加入二糖蔗糖的同时又加入了β-呋喃果糖苷酶,就可将蔗糖直接转化成葡萄糖和果糖,而天然蜂蜜中90%的成分为葡萄糖和果糖这两种单糖,但这种化学方式生产的“蜂蜜”其营养价值与天然蜂蜜完全不同。   “在这种情况下掺杂糖浆和白砂糖的蜂蜜有可能借助于HPLC也检验不出来。”实验室人员解释说,现在针对β-呋喃果糖苷酶建立了相应的检测方法,针对甜菜糖来源的果葡糖浆掺假进行检测,能够控制一部分的造假行为。   碳六项检测   通过“碳同位素质谱分析仪”检测,这项检测专业的说法叫液相串联同位素质谱检测,来判断蜂蜜中各种糖同位素值的测定方法。液相分离不同的糖,不同糖的同位素比值不一样,来判断糖的种类。   “大米、玉米、马铃薯等植物的糖是碳四植物糖,碳四植物糖通过光合作用产生,不是蜜蜂酿造的,蜂蜜中碳四植物糖含量越高,说明造假越严重。”据业内人士透露,碳同位素检测,主要是通过碳13蛋白和蜂蜜的碳同位素阈值来判断蜂蜜是否掺假,但阈值在-23~--23.5之间的为灰色地带,即不能判断它是否掺假。   TLC检测   又称高果糖浆检测,高果糖浆是一种多糖,淀粉类植物如马铃薯、甜菜糖等都属于高果糖浆,味道和颜色与蜂蜜相似,但是价格比蜂蜜便宜很多。TLC检测使用的是薄层色谱检测法,检测方法看似很老土———通过将样品滴在硅胶板上的“履迹”和颜色深浅,来判断其中是否含有高果糖浆。   【安全性检测】   氯霉素等四项抗生素残留检测   真实性检测均过关的蜂蜜产品,统一通过酶标仪检测氯霉素、硝基呋喃、硝基咪唑类、四环素族,这四项均为蜂蜜中的抗生素残留成分。比如便宜效果好的氯霉素是用来防治蜂病的,但如果蜂蜜中的氯霉素残留,被人体摄取后,会增加致癌的可能性 而甲硝唑可造成恶心、呕吐、腹痛、头晕、站立不稳、精神错乱等症状 硝基呋喃是合成药物,有抑菌作用,但同时也能致癌 四环素残留可能会导致儿童牙齿损害,成人造成肝脏损害。   ■ 检测方声音   对比色谱-质谱发现SM-R   蜂蜜的主要成分是葡萄糖和果糖,掺入糖和糖浆是最简单的方法。针对蜂蜜的掺杂造假的检测方法也一直在发展。常见的掺假方法是通过大米糖浆和甜菜糖浆加入蜂蜜掺假,与甜菜糖浆相比,大米糖浆价格便宜,所以目前最为严重的就是通过大米糖浆掺杂在蜂蜜中造假,又由于检测方法跟不上,市场上有人公然兜售能满足所有蜂蜜检测要求的大米糖浆。   我们今年开始使用通过对比大米糖浆和蜂蜜的色谱-质谱的差别,发现了一种糖浆中特有的物质(SM-R),通过检测该物质能有效地鉴别蜂蜜中是否掺杂了大米糖浆。方法对于掺杂了5%大米糖浆的蜂蜜都能有效的鉴别,方法快速,准确率高。   ■ 行业发言 假蜂蜜形成规模会破坏生态系统   ●周磊,绿篮子食品安全科普团队蜂蜜选题负责人   现行蜂蜜的国家标准为中国蜂产品协会主导,而蜂产品协会的主要成员基本由上海冠生园、北京百花、江西汪氏等国内几大蜂蜜厂家的负责人组成,蜂蜜国家标准虽然规定了“不得添加或混入任何蜂蜜以外的物质”,但没有对检测项目和具体指标做限定,导致检测项目无法鉴别蜂蜜的真假。   尽管新标准仍只使用碳4检测项目来鉴别蜂蜜,但是中国蜂产品协会还是致函卫生部,对新标准提出异议,主要内容是“对不涉及食品安全的感官指标、理化指标等写入食品安全标准提出了行业意见”,并提出暂停执行新标准的建议,力求“放宽”,而非“打假”。   蔗糖蜂蜜、高果糖浆蜂蜜是近年来除了普遍存在的大米糖浆掺假蜂蜜后的另几种高科技蜂蜜造假手段,它们可以欺骗传统的检测仪器,而掺假技术还在发展,很多检测项目结果已不能断定真假蜂蜜,被逐步弱化为“参考指标”。   假蜂蜜虽然吃了无害,但形成规模后,少数蜂农也被动掺假、蜜源无法被控制。人类高依赖性生态圈的花朵授粉已少有野生蜂采蜜,人工蜂业萎缩会导致生态系统连锁受损。
  • 离子色谱分析氨基糖苷类药物及在各国药典中的应用
    离子色谱自上世纪70年代开始经过近40多年的发展,已成为色谱分析领域中十分重要的分支,被广泛应用于无机阴阳离子、有机酸、糖醇类化合物、氨基酸、氨基糖苷类抗生素等,具有方便快速、灵敏度高、选择性好、可同时分析多种化合物、样品用量少等优点。离子色谱的检测器主要有电化学检测器与光学检测器,在药品控制领域,应用得最多的为电化学检测器,包括电导检测器和安培检测器。电导检测器主要用于测定无机阴阳离子与部分极性有机物如羧酸等。安培检测器又可分为直流安培检测器与积分安培(包括脉冲安培)检测器,其中积分安培检测器主要用于测定糖类、氨基酸类及氨基糖苷类抗生素等。氨基糖苷类抗生素具有相似的化学结构与理化性质,都是以碱性环己多元醇为苷元,与氨基糖缩合成苷,是临床应用较早的一类抗生素。氨基糖苷类抗生素根据其来源可分为发酵与半合成2种,其中发酵来源的主要有链霉素、新霉素、卡那霉素、巴龙霉素、妥布霉素、庆大霉素、核糖霉素及大观霉素等;半合成是以发酵来源的抗生素为前体,再进行结构改造而得到,主要有阿米卡星、奈替米星、异帕米星及我国自主研发的依替米星等,具有更强的抗菌活性、低耐药性及低毒性等。氨基糖苷类抗生素结构中无紫外吸收基团,难以采用常规的高效液相色谱-紫外检测器控制质量,目前国内常用的分析方法为高效液相色谱-蒸发光散射检测法(HPLC-ELSD)。由于其结构中含有多个氨基(-NH2)与羟基(-OH),在强碱性溶液中易解离成阴离子,在一定电压下,可在金电极表面发生氧化反应,实现脉冲安培检测,因此国外药典中多采用离子色谱法检测该类药物。本文概述了本实验室近十几年来采用离子色谱法分析氨基糖苷类抗生素的实例,并简述离子色谱法在各国药典中控制该类药物的应用与发展趋势。1. 硫酸阿米卡星、硫酸阿米卡星注射液与注射用硫酸阿米卡星有关物质1.1 色谱条件YMC ODS-Aq C18(4.6mm×250mm, 5µm)色谱柱,流动相为1L无二氧化碳的去离子水中加三氟乙酸20mL,五氟丙酸300μL,七氟丁酸300μL,50%(V/V)氢氧化钠溶液8mL,用50%(V/V)氢氧化钠溶液调节pH为3.3,加乙腈10mL;流速1.0 mLmin-1;柱后加碱2.1%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。1.2 结果硫酸阿米卡星与其杂质A、杂质B、杂质 C、杂质D、杂质E、杂质G、杂质H、杂质I均能分离,见图1。阿米卡星质量浓度在0.4985~9.969 µgmL-1范围内峰面积线性关系良好,阿米卡星峰检测限为2.0ng,定量限为5.0ng。供试品溶液中除辅料峰外,各杂质均以主成分自身对照法计算,其中杂质B校正因子为1.4,杂质C校正因子为1.3,杂质D校正因子为0.8,杂质E校正因子为1.2,杂质H校正因子为1.4,杂质I校正因子为0.6。结果8批次硫酸阿米卡星原料总杂质含量为1.2%~1.7%,77批次硫酸阿米卡星注射液总杂质含量为1.1%~2.3%,10批次注射用硫酸阿米卡星总杂质含量为1.2%~2.2%。1. 杂质I 2.杂质B 3.杂质G 4.杂质A 5.杂质C 6.杂质D 7.杂质E 8.杂质H图1 硫酸阿米卡星系统适用性色谱图中国药典2020年版(ChP2020)采用高效液相色谱紫外末端吸收法测定硫酸阿米卡星及其制剂的有关物质。英国药典2024年版(BP2024)与欧洲药典11.0版(EP11.0)均采用离子色谱法测定,流动相体系均为辛烷磺酸钠-无水硫酸钠-四氢呋喃,其中四氢呋喃是影响该方法测定的关键因素,同样纯度不同品牌、甚至同一品牌不同批号的的四氢呋喃都会影响该方法的重复性。此外,EP 11.0 与BP2024的方法还存在运行时间太长大于100min,三电位检测对金电极损耗较大,盐浓度较大对仪器损耗大等缺点。本实验室同样采用离子色谱法,用多氟烷酸体系代替辛烷磺酸钠体系,简化了流动相的配制,缩短了分析时间为35min,用四电位取代三电位保护了工作电极,检测的杂质数量与杂质总量均多于ChP2020的紫外末端吸收法,可用于硫酸阿米卡星及其制剂的有关物质控制。2. 硫酸庆大霉素注射液、硫酸庆大霉素片与硫酸庆大霉素颗粒2.1 色谱条件TSK-gel ODS-81Ts C18(4.6mm×250mm,5µm)色谱柱;流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4ml,用50%(V/V)氢氧化钠调节pH值至2.6)-乙腈(97:3);流速为1.0mLmin-1;柱后加碱为2%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(3mm),参比电极为Ag-AgCl复合电极,四电位检测:同前;柱温为35℃;进样量20µL。2.2 结果硫酸庆大霉素含有4个主组分,分别为C1、C1a、C2a、C2,还含有结构相似的小组分西索米星与小诺霉素。该方法可完全分离4个主组分,并可同时分离出22个有关物质。庆大霉素C1a、西索米星与小诺霉组分的检测限分别为5.3ng、3.5ng与8.0ng,定量限分别为17.8ng、11.6ng与26.7ng。ChP2020采用HPLC-ELSD法测定硫酸庆大霉素注射液的组分,而BP2024与EP11.0均采用离子色谱法测定硫酸庆大霉素原料的组分与有关物质,USP现行版采用离子色谱法测定其原料的组分,均未采用离子色谱法对硫酸庆大霉素注射液进行控制。本实验室对比了离子色谱法与HPLC-ELSD法同时测定硫酸庆大霉素注射液的有关物质,发现两种方法的分离效能相当,但采用离子色谱法时各组分的响应值随其电化学活性不同而差异明显,如西索米星的响应因子大于小诺霉素,在以西索米星为外标法进行有关物质测定时,结果小于HPLC-ELSD。 3 硫酸庆大霉素片组分与有关物质3.1 色谱条件Thermo AcclaimTMAmG C18(4.6mm×150mm, 3µm)色谱柱,流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4mL,用50%(V/V)氢氧化钠溶液调节pH至2.6)-乙腈(96.5:3.5),流速1.0mLmin-1,柱后溶液为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。3.2 结果该方法中庆大霉素C1、C1a、C2a、C2分别在1.328~132.8µgmL-1、1.606~160.6µgmL-1、7.378~737.8µgmL-1、1.276~127.6µgmL-1浓度范围内线性关系良好,回收率为98.2%~101.8%。有关物质测定中,西索米星在2.632~52.64µgmL-1、小诺霉素在2.006~25.07µgmL-1浓度范围内线性关系良好,西索米星检测限为0.01µg,小诺霉素检测限为0.02µg,各杂质与庆大霉素各组分均能完全分离,见图2。156批次中148批次的硫酸庆大霉素片各C组分的绝对含量分别为C1a为26.3%~37.1%,C2+ C2a为41.8%~49.3%,C1为16.5%~22.2%,4个组分总含量为90.6%~105.0%。148批次的有关物质为小诺霉素1.8%~2.8%,西索米星为未检出~1.5%,其他最大单杂为 0.3%~0.9%,其他总杂为1.2%~4.2%。发现其余8批次样品组分与有关物质均不符合规定,原因为企业采用不符合标准规定的原料所致。1-5,7-8.未知杂质 6. 西索米星 9.小诺霉素图2 硫酸庆大霉素片有关物质典型色谱图ChP2020采用微生物检定法控制其含量,未控制有关物质。BP2024、EP11.0与USP现行版均未收载该品种。本实验室在参考国外药典离子色谱法测定其原料的基础上建立了硫酸庆大霉素片组分与有关物质的方法。方法对乙腈的比例进行了调整,工作电位由四电位取代三电位,可有效的分离硫酸庆大霉素片各组分与各杂质。4.硫酸庆大霉素颗粒组分与有关物质 4.1 色谱条件YMC-Pack Pro C18 RS(4.6×250mm,5μm)色谱柱,流动相为1.6%三氟乙酸(含0.05%五氟丙酸,50%(V/V)氢氧化钠8ml,用50%(V/V)氢氧化钠溶液调节pH值至2.6)-乙腈(94:6),流速1.0 mLmin-1,柱后加碱为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。4.2 结果硫酸庆大霉素颗粒的辅料主要为蔗糖,含量较高,与主成分的比例约为200:1,出峰时间约为5min。采用硫酸庆大霉素片的方法测定颗粒时,蔗糖的拖尾峰会导致前15min的基线抬高,严重干扰颗粒有关物质的测定。因此本实验室在硫酸庆大霉素方法的基础上增加了三氟乙酸、五氟丙酸与乙腈的比例,成功解决了蔗糖对硫酸庆大霉素颗粒有关物质测定的干扰。该方法中庆大霉素C1、C1a、C2a、C2分别在5.264~131.6µgmL-1、5.032~125.8µgmL-1、5.595~139.9µgmL-1、3.410~85.24µgmL-1浓度范围内线性关系良好,回收率为98.7%~100.8%。有关物质测定中,西索米星在1.987~39.74µgmL-1、小诺霉素在2.045~51.13µgmL-1浓度范围内线性关系良好,西索米星检测限为0.003µg,小诺霉素检测限为0.01µg,各杂质与庆大霉素各组分均能完全分离,见图3。1-14,16-18-未知杂质;15-西索米星;19-小诺霉素图3 硫酸庆大霉素颗粒有关物质典型色谱图5.盐酸大观霉素与注射用盐酸大观霉素有关物质 5.1 色谱条件采用离子色谱法及HPLC-ELSD法同时分析注射用盐酸大观霉素的有关物质。两法色谱柱均为Apollo C18 (250mm× 4.6mm,5µm),流动相均为0.1molL-1三氟乙酸溶液,柱温均为30℃,进样量均为20µL。离子色谱检测:柱后加减为21g/L氢氧化钠溶液,流速0.5mlmin-1,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。ELSD检测:漂移管温度110℃,载气流速2.6Lmin-1,增益1。5.2 结果ChP2020采用HPLC-ELSD法控制其原料,BP2024与EP11.0采用离子色谱法控制其原料。注射用盐酸大观霉素为无菌原料直接分装,本实验室参考国外药典方法测定了盐酸大观霉素及其制剂的有关物质,并同时与HPLC-ELSD方法进行比较。结果两种方法检测出的有关物质种类和数量基本一致,但离子色谱灵敏度比ELSD高,离子色谱检测限为2.4ng,ELSD为72.8ng。两种方法测定的31批次注射用盐酸大观霉素,杂质D与杂质E结果基本一致,但杂质A、4R-双氢大观霉素及总杂质结果差异较大,原因为杂质A、4R-双氢大观霉素杂质在两种检测器上响应不一致。因此采用离子色谱测定时需对杂质A与4R-双氢大观霉素杂质进行校正因子计算,按校正因子计算后的有关物质结果两种方法基本一致。6.青霉胺与青霉胺片含量与有关物质6.1 色谱条件Dikma Spursil C18(4.6mm×250mm,5µm)色谱柱;流动相为5.3g无水磷酸二氢钠-0.25g己烷磺酸钠,加去离子水1L溶解后,用磷酸调节pH值为2.85,加乙腈9ml;流速为1.0mLmin-1;柱后加碱为21gL-1氢氧化钠溶液,流速为0.3mLmin-1;脉冲积分安培电化学检测器,工作电极为金电极(1mm),参比电极为Ag-AgCl复合电极,六电位检测(T1为0~0.04s,E1为0.13V;T2为0.05~0.21s,E2为0.33V;T3为0.22~0.46s,E3为0.55V;T4为0.47~0.56s,E4为0.33V;T5为0.57~0.58s,E5为-2.0V;T6为0.59~0.60s,E6为0.93~0.13V);柱温为30℃;进样量20µL。6.2 结果含量测定方面,青霉胺浓度在49.88~199.5µgmL-1范围内线性关系良好,回收率为98.4%~101.5%,31批次青霉胺片含量为97.6%~101.5%。有关物质测定方面,各杂质与主成分青霉胺均能完全分离(见图4),青霉胺浓度在3.118~49.88µgmL-1,青霉胺二硫化物杂质浓度在1.616~19.39µgmL-1范围内线性关系均良好,青霉胺与青霉胺二硫化物杂质的检测限均为0.02µg;青霉胺二硫化物结果为0.4%~0.8%,最大单杂为0.9%~2.9%,其他总杂为2.4%~7.3%。1. EDTA 2.辅料3~8.未知杂质 9.青霉胺10.青霉胺二硫化物图5 青霉胺片有关物质典型色谱图ChP2020采用电位滴定法测定其含量,USP现行版采用HPLC法测定其含量,二者均未控制其有关物质。青霉胺虽不属于氨基糖苷类抗生素,但其结构中含有多个氨基与羧基,无共轭双键,同样可以采用离子色谱法测定。离子色谱法测定该品种的关键点为检测电位的选择,直接采用糖四电位时主成分响应很弱,采用仪器自带的六电位时峰型严重拖尾,因此本实验室采用循环伏安法分别对青霉胺与杂质青霉胺二硫化物进行扫描,确定了最佳的六电位波形,解决了主成分严重拖尾的问题。讨论讨论1: 操作过程中遇到的问题与解决方法离子色谱电化学检测在操作过程中常存在背景信号较高、基线噪音较大,重复性差等问题,导致试验耗时耗力,进展缓慢。如硫酸阿米卡星及其制剂测定过程中会出现响应信号下降的现象,原因为流动相中的三氟乙酸可使金电极表面钝化,使用一段时间后需用水擦拭金电极。硫酸庆大霉素制剂测定过程中,出现了背景信号缓慢增加,基线噪音增大的情况,使用一段时间后需用硝酸冲洗管路或打磨电极。为解决该问题,本实验室与离子色谱工程师们查找问题与原因,耗时近3年,终于初步解决了上述问题。首先,所有涉及的容器、试剂与过滤装置均应单独使用,试剂均应为高纯度试剂。其次,对仪器的部分管路用聚醚醚酮材料的管线取代原白色塑料管线,降低管路的透氧性。再次,仪器使用前分别用1.5molL-1的硝酸溶液、2.4gL-1的EDTA溶液、乙腈与去离子水依次冲洗管路。接着,使用时分别对流动相、柱后碱液的水离线脱气15min,除去溶解在其中的氧气,脱气完成后再用氮气或氦气保护。使用时所有的管路须充满液体,防止氧气进入系统中导致重复性降低。最后,更换了进样阀。初步解决了重复性差的问题,但测定时仍需要在碱液中加入一定浓度的EDTA,降低金属离子的影响。虽然重复性差的问题初步得到解决,但背景信号较高,剂型噪音较大等问题在日常操作中还存在着,还需要继续磨合。讨论2:各国药典中离子色谱法分析氨基糖苷类药物的情况(1)中国药典ChP2005年版在“附录V D 高效液相色谱法”检测器下提到了电化学检测器。从2010年版开始在附录中单独列出了“离子色谱法”,对离子色谱的色谱柱、洗脱液、检测器、测定法均进行了详细说明。直到2015年版才首次将该法收录至正文中,涉及的品种为硫酸依替米星,检测项目为有关物质与含量,同时还设有第二法为HPLC-ELSD法,二者选其一。现行2020年版药典仍沿用2015年版方法测定硫酸依替米星。收载的氨基糖苷类药物主要都采用HPLC-ELSD法。硫酸依替米星是我国自主研发的一种半合成氨基糖苷类抗菌药物,也是ChP 2020年版唯一一个采用离子色谱法安培检测器控制的品种。有关物质方法与含量测定方法均一致,为采用C18色谱柱,以0.2molL-1三氟醋酸溶液[含0.05%五氟丙酸、1.5gL-1无水硫酸钠、0.8%(V/V)的50%氢氧化钠溶液、用50%氢氧化钠溶液调节pH值至3.5]-乙腈(96:4)为流动相,四电位检测,柱后加碱(50%氢氧化钠溶液1→25),柱后流速为0.5mLmin-1。(2)国外药典美国药典USP25-NF20首次采用高容量的三乙胺阴离子交换色谱柱,以氢氧化钠为淋洗液测定了阿米卡星(包括硫酸阿米卡星及阿米卡星注射液)、卡那霉素(包括硫酸卡那霉素、卡那霉素注射液及硫酸卡那霉素胶囊)的含量。随后,USP27-NF22开始采用耐强酸、强碱和高浓度盐的聚苯乙烯-二乙烯基苯共聚物填料色谱柱代替传统的阴离子交换柱,并首次用四电位取代三电位测定了硫酸链霉素原料、硫酸链霉素注射液及注射用硫酸链霉素的含量。随着离子色谱不断发展,USP37-NF32及之后的版本用十八烷基键合硅胶代替了聚苯乙烯-二乙烯基苯共聚物色谱柱,流动相以烷基化有机酸如三氟乙酸、五氟丙酸等作为离子对试剂测定庆大霉素原料的组分。该方法采用柱后加碱的模式,较美国药典常用的氢氧化钠淋洗液体系更能避免空气中二氧化碳的影响,分析系统更稳定。BP从2002年版、EP从4.0版开始收载了硫酸新霉素的离子色谱方法,方法采用柱后加减模式测定了硫酸新霉素原料的有关物质。随后,BP2003年版、EP5.0版及之后的版本陆续将离子色谱法应用于奈替米星、妥布霉素、庆大霉素、大观霉素及阿米卡星等品种。方法的共同特点为采用耐强酸碱的聚苯乙烯-二乙烯基苯柱或耐酸的C18柱,以烷基磺酸盐或三氟乙酸等离子对试剂作为流动相,与氨基糖苷类药物形成离子对增强其保留,再加入少量的有机改进剂改善分离,三电位检测。直到BP2007年版、EP6.0版开始陆续采用更为普及的辛烷基键合硅胶或十八烷基键合硅胶色谱柱测定了盐酸大观霉素、硫酸庆大霉素、阿米卡星与硫酸阿米卡星等。其中从BP2011年版、EP7.0版开始,硫酸庆大霉素有关物质与组分方法中,流动相由烷基磺酸盐体系变更为三氟乙酸-五氟丙酸体系,减少了流动相中的盐在金电极表面沉积并使检测信号更稳定。发展趋势与展望中国药典是药品研制、生产、经营、使用和监督管理等均应遵循的法定依据,是我国保证药品质量的法典。中国药典具有使用范围广,权威性强的特点,因此其收载的质量标准应具有操作性强、重现性好、耐用性好、成本适中等特点。目前中国药典中采用离子色谱安培检测法测定的品种仅硫酸依替米星一个,而国外药典多采用安培检测法测定氨基糖苷类药物。离子色谱安培检测法在中国药典中发展缓慢的原因主要有2点:一是国内外离子色谱仪的普及率不同。国内制药企业规模参差不齐,离子色谱仪价格较高,仅一些规模较大的企业采购了离子色谱仪;而国外制药企业规模通常较大,大多有条件购买价格昂贵的仪器。二是国内外离子色谱仪使用情况不同。国内使用离子色谱电导检测比较多,而国外电导检测与安培检测发展基本持平。由于离子色谱安培检测器在分析无紫外吸收或紫外吸收较弱的药物方面具有一定的优势,无需衍生化可直接检测,灵敏度高、选择性好,具有一定的发展前景。而且目前国产离子色谱仪蓬勃发展,日趋成熟与稳定,为今后离子色谱在药物分析方面提供了更多的技术支持和选择性。但相关离子色谱生产企业也需解决操作过程中仪器存在的一些问题,如提高仪器的重复性和易操作性,使离子色谱在今后的应用更加深入和广泛。本文作者:李茜,王立萍,刘英*(河南省药品医疗器械检验院,郑州,450018)作者简介:李茜,女,副主任药师 研究方向:抗生素质量分析与质量控制*通讯作者:刘英,女,主任药师 研究方向:抗生素质量分析与质量控制
  • 食品中糖类物质国家标准检验方法的探讨
    一、背景介绍   糖类物质是多羟基醛和多羟基酮及其缩合物,或水解后能产生多羟基醛和/或多羟基酮的一类有机化合物。根据分子的聚合度,糖类物质一般分为单糖(如葡萄糖、果糖)、低聚糖(含2~10个单糖结构的缩合物,常见的是双糖,如蔗糖、乳糖和麦芽糖等)和多糖(含10个以上单糖结构的缩合物,如淀粉、纤维素、果胶等) 根据其还原性可分为还原糖(如葡萄糖、果糖、半乳糖、乳糖、麦芽糖)和非还原糖(蔗糖、淀粉) 根据其结构可分为醛糖(如核糖、葡萄糖、半乳糖、乳糖、甘露糖、麦芽糖)和酮糖(如果糖、木酮糖、核酮糖、辛酮糖)。糖的还原性主要基于分子中含有还原性的醛基,所以醛糖是还原糖。有些酮糖在碱性溶液中可发生差向异构化反应转化为醛糖,也具有还原性,属还原糖,比如果糖。单糖分子缩合为双糖或多糖后,若失去了还原性的醛基,就不具备还原性,称为非还原糖,如蔗糖(双糖)和淀粉(多糖)。蔗糖水解后生成1:1的葡萄糖和果糖,产物不是单一分子,称为转化糖。淀粉完全水解后产物为单分子葡萄糖。蛋白质、脂肪、碳水化合物(主要指糖类化合物)、钠是食品的4种核心营养素,所以食品中糖类物质的含量是食品检验的主要内容之一。   二、检验标准的探讨   现行的国家标准中糖类物质的检验方法一般涉及3个标准:GB/T 5009.7-2008 《食品中还原糖的测定》、GB/T 5009.8-2008《食品中蔗糖的测定》、GB/T 5009.9-2008《食品中淀粉的测定》。其中,蔗糖和淀粉含量的测定是基于测定二者水解后产生的还原糖,所以这3个标准实际上是有着密切联系,并且以还原糖容量法测定为基础的方法体系。   (一)样品的前处理   食品样品的组成相当复杂,对食品中某成分测定的策略是基于分离复杂背景和除去测试干扰物质后选择适宜的方法进行检测。食品中最普通的糖类物质包括葡萄糖、果糖、蔗糖和淀粉。葡萄糖和果糖是还原糖,易溶于水。食品样品用水充分浸提后,葡萄糖和果糖进入提取液,提取液中当然含有其他能溶于水的胶体物质,如蛋白质、多糖及色素等。这些胶体物质会干扰后续碱性铜盐法还原糖的测定或影响终点判定,所以必须加以分离。标准中是使用澄清剂共沉淀法除去胶体物质,过滤后的澄清液用于还原糖的测定。常用的食品澄清剂有多种,包括醋酸锌和亚铁氰化钾配合溶液、硫酸铜、中性醋酸铅、碱性醋酸铅、氢氧化铝、活性碳等。   (二)还原糖测定和结果计算   GB/T 5009.7-2008 《食品中还原糖的测定》直接滴定法的原理如下:碱性酒石酸铜甲液与乙液等量混合后,Cu2+与OH-生成天蓝色的Cu(OH)2沉淀物,该沉淀物与酒石酸钾钠反应,生成可溶性的酒石酸钾钠铜深蓝色络合物,该络合物遇还原糖反应后,产生红色Cu2O沉淀。为了便于终点的观察,直接滴定法在蓝—爱农法的基础上进行了改进,碱性酒石酸铜乙液中的亚铁氰化钾与Cu2O沉淀反应生成可溶性的淡黄色络合物。最终反应的终点由碱性酒石酸铜甲液中的亚甲蓝作为指示剂显示,亚甲蓝的氧化能力比Cu2+弱,故还原糖先与Cu2+反应。当碱性酒石酸铜甲液中的Cu2+全部被逐渐滴入的还原糖耗尽后,稍过量的还原糖立即把亚甲蓝还原,溶液颜色由蓝色变为无色,即为滴定终点。   直接滴定法首先由还原糖标准溶液(1.0mg/ml,即0.1%)标定来自碱性酒石酸铜甲液中的已知量的Cu2+,建立该已知量的Cu2+与还原糖的定量关系。试样测定时亦取等量的Cu2+溶液与试样中的还原糖反应。反应终点时,试样中的还原糖总量与标定步骤中加入的标准样液中的还原糖总量相同(A = CV,C为葡萄糖标准溶液的浓度,mg/ml V为标定时消耗葡萄糖标准溶液的总体积,ml)。由此,可以建立结果计算公式(1):   X=   其中,X:试样中还原糖的含量(以某种还原糖计,如常用的葡萄糖,g/100g) A:终点时加入的还原糖总量,mg m: 试样质量,g V: 试样消耗的体积,ml 1000:毫克换算成克的系数。   (三)计算公式的正确表达   1.还原糖计算公式。公式(1)中的250 ml是GB/T 5009.7-2008 《食品中还原糖的测定》样品处理过程中样液的最终定容体积。显然,该计算公式的建立与滴定方法的原理和操作过程密不可分。对于含大量淀粉的食品,根据样品的处理过程,公式(1)的适用性存在疑问。为了清楚地解释问题的根源所在,现将“含大量淀粉的食品”试样处理过程依标准摘录如下:“称取10g~20g粉碎后或混匀后的试样,精确至0.001g,置250ml容量瓶中,加水200ml,在45℃水浴中加热1小时,并时时振摇。冷后加水至刻度,混匀,静置,沉淀。吸取200ml上清液置另一250ml容量瓶中,慢慢加入5ml乙酸锌溶液及5ml亚铁氰化钾溶液,加水至刻度,混匀。静置30分钟,用干燥滤纸过滤,弃去初滤液,取续滤液备用。”问题出在样液的分取过程:“吸取200ml上清液置另一250ml容量瓶中,”照此,最后定容的250ml样液中仅含有原样品总量的4/5 ,即200ml/250ml,这一点在计算公式(1)中未有显示,由此会造成计算结果比实际结果低20%。综上所述,对于“含大量淀粉的食品”试样,公式(1)中试样质量应该乘以样品分取因子(等于 4/5),以保证计算公式(1)与实际操作过程相符和计算结果的正确性。   2.蔗糖标准中的计算公式。GB/T 5009.8-2008《食品中蔗糖的测定》的第二法酸水解法还原糖计算公式的错误更加严重。其错误在于样品的水解过程中溶液的分取体积未在计算公式中体现。按照标准的操作过程,正确的计算公式(2)应为:   X = (2)比较上述公式(2)与现行GB/T 5009.8-2008《食品中蔗糖的测定》的第二法酸水解法中还原糖的计算公式可知,现行国标的计算结果比正确结果小了整整一倍。如果国标的使用者未注意到该错误,报出的检验结果将会出现很大错误的。   (四)还原糖滴定法的注意事项   1.该法原理是基于还原糖标液与试样溶液滴定等量的碱性酒石酸铜甲乙混合液,因此,每次测定时,碱性酒石酸铜甲液(含Cu2+)的移取量(5.0ml)一定要精确,以保证结果的准确性和平行性。   2.滴定应按标准操作在沸腾条件下进行。其一,高温可以加快还原糖与Cu2+的反应速度,确保滴定反应正常进行 其二,保持反应液沸腾可防止空气进入,避免还原态的次甲基蓝和氧化亚铜被氧化而影响终点判定和增加还原糖消耗量。达终点后还原态的次甲基蓝(无色)遇空气中氧时又会被氧化为氧化态(蓝色)。同样,氧化亚铜也易被空气氧化回到二价态。因此,滴定时也不应过分摇动锥形瓶,更不能把锥形瓶从热源上取下来滴定,以防空气进入反应液中。   食品中糖类物资国标还原糖滴定法,其优点是快速、方便、准确,对仪器设备的依赖程度较低,所以它是实验室普遍采用的方法。现行的GB/T 5009.7-2008《食品中还原糖的测定》和GB/T 5009.8-2008《食品中蔗糖的测定》在标准转换过程中出现了计算公式的严重错误,中初级检验人员很难发现和自行纠正。因此,笔者建议国家相关部门尽快组织对现行食品中糖类物质(还原糖、蔗糖)国家检验标准的两个方法的修订工作,完善检测方法和标准,确保检测的准确度。
  • 国科大发表蛋白质糖基化与人类重大疾病发生机制综述文章
    蛋白质糖基化是目前在高等真核生物中发现的最普遍、最重要的蛋白质翻译后修饰方式之一,该类修饰涉及聚糖与蛋白质分子的连接,是蛋白质分子正确折叠、维持稳定、参与互作和细胞黏附等活动所必需的。异常的糖基化修饰会导致多种人类重大疾病的发生,如白血病(leukemia)、胰腺功能障碍(pancreatic dysfunction)、阿尔茨海默病 (Alzheimer’s disease, AD)等。由于糖基化的复杂性,研究难度大,相关领域研究起步较晚,研究结果还不尽完善。中国科学院大学博士生导师、教授郎明林课题组发表了蛋白质糖基化与人类重大疾病发生机制综述,该研究通过探索葡萄糖的调控角色,突出了葡糖转移酶的功能结构特性及其对人类健康和疾病的影响,有利于学界认识葡萄糖修饰的重要性。  在动物胚胎神经系统的发育过程中,Notch蛋白对决定细胞未来命运发挥重要作用;其在成人大脑,特别是海马组织等高突触可塑性区域表达。多种证据表明,Notch1参与了神经元凋亡、轴突回缩和缺血性脑卒引起的神经退行性病变。葡萄糖基化是调控Notch受体S2切割,细胞表面展示、转运,以及EGF重复序列稳定性的重要修饰。由于Notch受体发挥正常功能需要糖基化修饰,其修饰缺陷会引起γ分泌酶(该酶参与淀粉样前体蛋白APP切割形成Aß分子)对Notch的切割,可能参与AD发病的机制。Notch蛋白保守的表皮生长因子EGF-like重复序列的葡萄糖基化由O-葡糖基转移酶POGLUTs催化完成,该酶通过KDEL-like信号驻留于内质网中。POGLUTs不仅具有葡萄糖基转移酶活性,还具有连接木糖至EGF保守重复序列的木糖基转移活性,而这些酶活特性的实现取决于内质网内糖的浓度水平和酶的构象变化。此外,POGLUTs通过Notch蛋白和转化生长因子β1(TGF-β1)信号,操纵了正常细胞周期循环或增殖所需的周期蛋白依赖性激酶CDKIs的表达。已有研究发现,POGLUTs异常过度或下调表达均会导致一些严重的并发症发生,如肌肉萎缩症、白血症、肝功能障碍等。POGLUTs通过控制不同CDKIs的表达,可发挥对细胞增殖诱导和抑制的双重作用。该研究评述有利于学界更深入地了解葡萄糖在当前糖生物学、癌症和细胞通信等研究领域中扮演的角色。  相关研究成果以Structure, Function, and Pathology of Protein O-Glucosyltransferases为题,在线发表在Nature子刊Cell Death & Disease上。国科大生命科学学院博士生Muhammad Zubair Mehboob为论文第一作者,郎明林为论文通讯作者。研究工作得到生物互作卓越创新中心、国家自然科学基金、北京市自然科学基金、河北省应用基础研究计划重点基础研究项目和河北省百名创新人才计划项目的支持。  论文链接
  • 北大-清华汤富酬和黄岩谊与合作者发布肝癌无创早期诊断新技术
    北大-清华生命科学联合中心、北大生物动态光学成像中心研究员汤富酬、黄岩谊与首都医科大学附属北京世纪坛医院(北京大学第九临床医学院)肝胆胰外科合作,研发了一种肝癌无创早期诊断新技术——甲基化CpG短串联扩增与测序(MCTA-Seq)。该项技术是通过对患者血浆游离DNA中异常高甲基化CpG岛进行全面测序分析,来实现对肝癌的早期诊断,是癌症诊断方法上的一个突破。研究结果在线发表于10月30日的《细胞研究》(Cell Research)杂志上。  DNA甲基化是指DNA的胞嘧啶(C)被加上一个甲基而形成甲基胞嘧啶的表观遗传修饰,主要发生于CpG二核苷酸。CpG二核苷酸高度聚集于被称为CpG岛的基因组区域,这些区域主要位于基因转录起始处,具有重要的转录调控功能。CpG岛在正常细胞中大多处于去甲基化状态,但在肿瘤细胞中,大量CpG岛会发生异常高甲基化。CpG岛异常高甲基化不仅与肿瘤的发生发展密切相关,而且也是一种非常有前途的肿瘤标志物。  坏死的癌细胞会将DNA释放到血液中成为循环游离DNA,能否通过检测血液中携带异常高甲基化CpG岛的游离DNA而发现早期癌症呢?虽然早在上世纪九十年代就有学者开始这种尝试,但研究工作一直进展缓慢。其中,一个关键的瓶颈是缺乏能够同时检测大量CpG岛的高通量技术。早期肿瘤释放到外周血中的游离DNA极其微量且呈高度片段化,目前已有的DNA甲基化组检测技术灵敏度均较低,无法满足对其进行高通量检测的要求。  MCTA-Seq技术巧妙地突破了这一瓶颈。通过选择性扩增甲基化CpG短串联CGCGCGG序列和随后进行高通量测序分析,MCTA-Seq可以在一个反应中同时检测到近九千个CpG岛 检测下限可低至1~2个细胞的基因组DNA。  肝癌是全球发病率最高的恶性肿瘤之一,死亡率居第三位。由于慢性乙型肝炎病毒感染者众多,肝癌的发病率在我国一直居高不下。目前,血清甲胎蛋白(AFP)是临床上最常用的肝癌早筛标记物,但有约40%的假阴性率,因此迫切需要研发新的肝癌早筛生物标记物。  研究者采用MCTA-Seq技术共分析了151份临床样本,包括57份癌与癌旁组织样本和94份来自肝细胞癌患者、肝硬化患者及正常个体的血浆样本。在肝癌组织中,他们发现有近九百个CpG岛发生了异常高甲基化。而在小肝癌(≤ 3cm)患者血浆样本中,则鉴定出近四百个甲基化水平显著增高的CpG岛 进一步提高筛选标准后,获得了四十多个表现最佳的血浆CpG岛标记物。研究发现肝癌患者血浆CpG岛标记物可以分为两类,其中一类部分直接来自肝癌组织,而另一类则由肝癌组织与非癌肝组织共同释放。在小肝癌(≤ 3cm)患者的血浆中,后一类标记物上升的水平甚至超过了前一类。肿瘤手术切除后,两类标记物均显著下降,表明它们都与肿瘤密切相关。后一组新型血浆CpG岛标记物的发现展示了MCTA-Seq技术无偏见筛选的优势。  通过联合两类血浆CpG岛标记物,MCTA-Seq技术诊断肝细胞癌的灵敏度为94%,特异度为89%。尤为重要的是,MCTA-Seq成功地对本研究中全部15例AFP呈现假阴性的肝细胞癌患者做出了正确的诊断。  鉴于大多数类型的肿瘤都会发生CpG岛异常高甲基化,MCTA-Seq技术还有望用于其它类型癌症的无创性早期筛查。另外,由于不同类型的肿瘤有独特的甲基化图谱,MCTA-Seq同时还具有识别肿瘤组织来源的潜力。MCTA-Seq的三步建库反应在一个PCR管中即可完成,仅需浅度测序,是一种简便、经济和具有广阔应用前景的游离DNA测序新技术。  北京大学生命科学学院生物动态光学成像中心博士文路,博士研究生李静宜、刘晓萌和北京大学医学部的硕士研究生郭化虎是这篇论文的并列第一作者。北大-清华生命科学联合中心、生物动态光学成像中心研究员汤富酬、黄岩谊和北京世纪坛医院胰外科教授彭吉润是该论文的共同通讯作者。该项目得到国家自然科学基金的支持。
  • 月旭科技推出饮料中4-甲基咪唑的整体解决方案
    近日,一份源自美国监督机构环境健康中心的报告,再次将百事可乐推至焦糖色素风波中。该报告指出,在百事可乐的焦糖色素中再次检测出了含有可能致癌的4-甲基咪唑(简称4-MEI)。焦糖色素是一种允许使用的着色剂,但是,我国现行的食品质量标准中,可乐中焦糖色素没有限量标准,只规定&ldquo 按生产需要适量使用&rdquo 。 可乐中的4-甲基咪唑是在以亚硫酸铵为原料生产焦糖色素时产生的,焦糖色素能使可乐饮料变成棕褐色。4-甲基咪唑能导致动物长肿瘤,有可能给人体带来致癌风险。目前,我国国标中只有《焦糖色中的4-甲基咪唑的测定-高效液相色谱法》,而对于饮料中的4-甲基咪唑则没有相关检测方法。 针对此次事件,月旭科技迅速建立了饮料中4-甲基咪唑的前处理和检测方法。本方法使用月旭Welchrom® P-SCX (60mg/3mL)富集饮料中4-甲基咪唑,所建立的固相萃取方法能够极大程度排除饮料中杂质的干扰,保证检测结果的准确性。 1. 仪器及材料 材料:饮料;超纯水;4-甲基咪唑标准品;月旭Welchrom® SCX 固相萃取小柱(60mg/3mL);玻璃移液管;洗耳球;烧杯,固相萃取装置等。 2. 实验步骤 2.1 SPE净化 SPE柱:Welchrom® SCX(60mg/3mL) 1)活化:3mL甲醇,3mL水; 2)上样:3mL 饮料样品溶液,弃去上样液 3)淋洗:3mL 100%甲醇,弃去淋洗液; 4)洗脱:3mL 10%氨化甲醇;收集洗脱液。挥干定容至0.5mL,进液相分析。 2.2 液相色谱测定 色谱柱:月旭Ultimate® XB-C18(4.6× 250mm, 5µ m) 流动相:缓冲液/甲醇=80/20 缓冲液的配置方法:将6.8g KH2PO4和1g庚烷磺酸钠至900mL,用H3PO4调pH为3.5,再定容至1000mL,即得。 检测波长:210nm 流速:1.0mL/min 进样量:20µ L 图1:4-甲基咪唑标准色谱图 3. 添加回收率试验结果 表1: 10µ g/mL添加回收实验结果(n=5) 次数 1 2 3 4 5 回收率98.2% 92.2% 95.1% 96.4% 93.6%
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制