当前位置: 仪器信息网 > 行业主题 > >

聚乙烯乙酸酯分散体

仪器信息网聚乙烯乙酸酯分散体专题为您提供2024年最新聚乙烯乙酸酯分散体价格报价、厂家品牌的相关信息, 包括聚乙烯乙酸酯分散体参数、型号等,不管是国产,还是进口品牌的聚乙烯乙酸酯分散体您都可以在这里找到。 除此之外,仪器信息网还免费为您整合聚乙烯乙酸酯分散体相关的耗材配件、试剂标物,还有聚乙烯乙酸酯分散体相关的最新资讯、资料,以及聚乙烯乙酸酯分散体相关的解决方案。

聚乙烯乙酸酯分散体相关的论坛

  • 【求助】关于聚乙烯醇醇解度的检验方法

    检测分散剂聚乙烯醇(液体)的醇解度,原理:在样品中,加人定量氢氧化钠与聚乙烯醇树脂中残留的乙酸根反应再加定量硫酸中和剩余的氢氧化钠,过量的硫酸用氢氧化钠标准溶液滴定,计算得到试样中残留乙酸根含量和醇解度。 是直接称取样品,还是称取固含量的残渣?

  • 聚乙烯硫酸钾的用途

    聚乙烯醇硫酸钾别名:PVSK英文名 potassium polyvinyl alcohol sulfate;PVSK 性质 聚乙烯醇硫酸钾是一种水溶性的阴离子聚电解质。用途 主要用作胶体滴定法的标准阴离子试剂,还可用于纺织、电镀、生物工程等领域。近年来,由于阳离子聚电解质已广泛用于石油、化工、也进,环保等部门,采用胶体滴定法测定其阳离子度是一种简便、迅速、准确的定量方法,所以急需标准阴离子试剂PVSK。制法 按配比将定量的吡啶置于三口瓶中,搅拌,冷却至-20~10℃。将规定量氯磺酸滴加进反应体系,滴加完毕升温。讲规定的聚乙烯醇分批加入三口瓶中。在规定温度下反应一定时间,倾去上层液,用乙醇洗涤,然后加入氢氧化钾水溶液,进行交换反应,再用乙醇洗涤。所得乙醇洗涤,再用乙醇洗涤。所得产物经真空干燥粉碎即得产品。不要广告太明显!如有需要,站内联系此版友,此产品在促销。

  • 【转帖】乙烯基单体改性水性聚氨酯的研究

    乙烯基单体改性水性聚氨酯的研究关键字:乙烯,单体,聚氨酯,研究 0引言 聚氨酯具有突出的力学性能,但水性聚氨酯的耐水性、耐化学品性等性能有待提高,而乙烯基树脂具有较好的耐水性、耐化学品性等,因此,聚氨酯和乙烯基树脂两者的有机结合,可使材料的力学性能有显著提高。本文采用种子聚合的方法,用甲基丙烯酸甲酯和苯乙烯对聚氨酯进行共混接枝改性,并用红外光谱分析了聚氨酯及改性聚氨酯中的微相分离和氢键,揭示结构与性能的关系。 1实验部分 1.1原料 甲苯二异氰酸酯(TDI):上海化学试剂厂 聚醚多元醇(PPG):上海高桥石化三厂 二羟甲基丙酸(DMPA):国产 三乙胺(TEA):广州化学试剂厂 乙二胺(EDA):广州化学试剂厂 苯乙烯(St):广州化学试剂厂 N-甲基-2-吡咯烷酮(NMP):Nacalal.TesqueInc 甲基丙烯酸甲酯(MMA):广州化学试剂厂。 1.2水溶性聚氨酯树脂(PUR)分散体的合成 将聚醚多元醇装入配有温度计、搅拌器的250mL三口烧瓶中,在120℃,660Pa真空下脱气脱水2h。通入氮气并加入计量好的甲苯二异氰酸酯于65℃左右反应1.5h左右,用正丁胺滴定法判断反应终点。加入溶有适量DMPA的NMP反应1.5h左右。降温至40℃,加入TEA和适量NMP溶剂,反应40min。降温并向体系中加入去离子水,然后加入TEA扩链。制得呈微蓝光的水乳液。 1.3甲基丙烯酸甲酯(MMA)改性 取一定量的PUR分散体、MMA和溶有引发剂的水溶液,加入三口烧瓶中,升温到65℃,反应2.5h,然后补加一定量的引发剂水溶液并升温至75℃,反应0.5h。 1.4苯乙烯(St)改性 过程同1.3甲基丙烯酸甲酯改性。 1.5性能测试 1.5.1分散体黏度测试 用NDJ-79型旋转式黏度计,测得各分散体在(25±1)℃下的黏度。 1.5.2拉伸强度测试 将制备好的聚氨酯乳液胶膜用80×4型的裁剪刀裁好,放在真空干燥器中真空干燥24h,然后在XLL-100A型拉力试验机上测定其拉伸强度及延伸率。延伸率的计算公式如下: E=(L2-L1)/L1×100% 式中:E——延伸率/%,L1——试样的原长,L2——试样断裂时的拉伸长度,拉伸速度为室温下300mm/min。 1.5.3粘接强度的测定试片采用PVC薄片,尺寸为100mm×25mm,粘合部分为12.5mm×25mm,表面先用砂纸打磨,再用工业丙酮处理表面污物,粘合的试片在接触压力下于45℃热烘48h,然后在室温下真空干燥24h,用XLL-100A型拉力试验机测定T型剥离强度,室温下拉伸速率为100mm/min。1.5.4吸水率的测定 把样品膜在真空下干燥24h,室温测定样品膜的质量,然后把样品膜浸泡于室温下的去离子水中,24h后再称其质量,两者的质量差即为吸水率(Ω)。其计算公式如下: Ω=(m2-m1)/m1×100% 式中:Ω——样品膜的吸水率,m1——样品膜的原来质量,m2——样品膜浸泡后的质量。 1.5.5FTIR实验 实验装置为PERKIN-ELMER-1700红外光谱仪,扫描方式,噪音过滤。红外样品的制备是将样品制成薄膜,在60℃下真空除水。实验数据由仪器上的微机处理。 2结果与讨论 2.1甲基丙烯酸甲酯共混接枝改性的影响MMA改性水性分散体的配方及性能见表1。 表1 MMA改性水性PU分散体的配方及性能 由表1可见,随着MMA用量的增加,分散体的黏度呈现下降趋势。根据内乳化聚合机理分析:MMA含量的增加能更有效地抑制离子化作用,这一作用使得一些键卷曲,分散粒子膨胀,分散颗粒单位面积的离子数目减少,使体系的黏度下降。 由表1还可看出,在固含量基本不变的情况下,用MMA改性水性PU能较大程度地降低体系的黏度。这意味着可以通过用MMA改性的方法来提高水性PU的固含量,同时保证体系稳定。MMA改性PU对膜的机械性能影响见表2。 表2 MMA改性PU对膜的机械性能的影响注:-因脆性太大,无法成膜。 1—拉伸强度 2—延伸率图1MMA/PU的比值与膜的拉伸强度和延伸率的关系 图2MMA/PU的比值与T型剥离强度和吸水率的关系 1—T型剥离强度 2—吸水率 图1和图2表明,由于PMMA本身有较强的粘附性能,与水的亲合能力比PU材料低,硬度比PU材料大,用MMA对PU进行改性处理后,膜的拉伸强度、T型剥离强度以及吸水率都得到明显的改善。制品膜的延伸率随着MMA的用量增加而降低。2.2苯乙烯共混接枝改性的影响 St改性水性PU分散体的配方及性能见表3。 表3 St改性水性PU分散体的配方及性能注:St/PU为固含量比 表3显示:用St对PU改性对体系黏度的影响与用MMA改性PU的影响相同。这也证明了应用内乳化机理解释该现象的合理性。 值得注意的是,用MMA和St分别对PU分散体改性,均在乙烯基单体/PU的比值为0.5的时候,观察到分散体的黏度出现一个较大的值,这可能是由于乙烯基单体与PU水分散体在种子聚合的条件下,提高了粒子的粒径和分散性。因为粒子表面存在着—COOH和三乙胺中和后形成的盐基离子对存在,并且由于总表面积增大,使原来包埋在分散体颗粒内部的盐基分布到分散体颗粒的表面,导致分散体颗粒和水的缔合作用增强,使自由水减少,从而使黏度升高。当乙烯基单体用量多到一定程度时,分散体颗粒粒子表面的盐基离子对数量相对单位表面积减少较多,而且乙烯基单体的极性相对PU较低,其含量的增加会使分散体粒子与水的缔合作用减弱,同时由于粒径增大,黏度下降。 1—拉伸强度 2—延伸率图3 St/PU的比值与拉伸强度和延伸率的关系 1—T型剥离强度 2—吸水率图4St/PU的比值与膜的T型剥离强度和吸水率的关系 从图3和图4可见,用St对PU改性和用MMA对PU改性的影响大致相同,不同的是用St对PU改性在St/PU为0.6和0.8之间时,拉伸强度和T型剥离强度都出现一个最大值,然后减小。这是由于当St用量较小时,接枝-共混的共聚组成在同步互穿网络中起内增塑剂的作用,固化收缩诱发产生的内应力能较低[6],使强度提高 随着用量的增大,根据Gnaffith理论,如St、MMA一类的刚性分散相在结构上存在缺陷,而且分布不均匀,在受到应力时,起应力集中剂的作用,产生大量的小裂纹及剪切带,使强度降低。然而在用MMA改性时未出现这种现象,可能的原因是MMA中的羰基的存在使它与PU之间的界面相容性好,降低了应力集中作用。2.3红外光谱分析 对MMA改性、St改性和未改性的样品进行FTIR分析,谱图如图5、6、7所示。 图5 未改性膜的红外光谱 图6 MMA改性膜的红外光谱 图7 St改性膜的红外光谱 本文主要研究3个特征谱带,即VNH、VCO、VO吸收带,VNH的吸收峰在3460cm-1处,氢键化的VNH-B约在3310cm-1左右而且为反式结构,VCO的吸收峰在1660~1780cm-1处,氢键化约在1724cm-1而且为无序区的氢键化 1000~1110cm-1处吸收峰属于C—O—C的伸缩振动(VO),氢键化约在1050cm-1处,2856~2960cm-1处的峰归属于VCH(对称和反对称)。 从以上3个谱图上可以看出,在3300cm-1左右处有强的吸收峰,而在3460cm-1处几乎看不到吸收峰存在,这说明脲基上的NH已几乎完全氢键化。St改性的谱图在3306cm-1处的氢键化吸收峰相对于PU来说向波数低的方向移动,在图6的红外图谱中也看到了同样的现象,这说明在改性材料中—NH—形成的氢键作用力比PU更大。其原因可能是:St和MMA的分子极性与脲基的极性相去甚远,相对于脲键而言,与聚醚软段的极性更接近,并且由于St和MMA在聚氨酯软段上接枝,“埋没”大量的醚氧键和软段微区中的部分羰基,St和MMA的加入将导致—NH—与—O—之间形成的氢键数目相对减少,因为—NH—与—O—之间形成的氢键要弱于—NH—与—CO—之间形成的氢键,所以导致吸收峰向低波数移动。 另外还可以看到,在1724cm-1左右处有一明显的吸收峰,说明硬段相溶有一定数量的软段,这表明乙烯基聚合物与PU中的硬段链有一定的相容性,使得PU硬段有序程度降低。这种有序程度的降低,反映了PU与乙烯基聚合物之间形成了化学键能,提高了它们之间的相容性与共混程度。3结语 采用种子聚合的方法,乙烯基单体改性水性聚氨酯能提高水性PU的力学性能、降低吸水率。改性后的水性聚氨酯材料中均存在着氢键行为,其中甲基丙烯酸甲酯的氢键作用强,有较好的相容性,苯乙烯的氢键作用小,相分离程度最大。 涂料附着力不理想,本文就此问题进行了研究,分析了影响附着力的因素,并提出了相应的解决方法。 目前,关于树脂在金属表面附着的原理很多。如机械咬合粘接理论、静电理论、吸附理论、扩散理论、酸碱使用理论和化学键理论等[1]。总的说,附着力是机械连接、静电吸引和化学键合共同作用的结果。附着力强度是润湿程度、两表面的相对表面力学能和润湿动力学的函数,在附着力的定义上,附着力应该是指涂装金属暴露在高湿环境或溶液中的附着力,俗称湿附着力,即指将涂装金属置于介质环境后,表现出来的附着力,目前通用的一些测定涂层附着力的方法,大多测试的是干涂层体系的数值,本实验所描述的附着力数值是用划圈法所测定的干涂层数值。

  • 【原创大赛】分散体的稳定性和表征方法

    【原创大赛】分散体的稳定性和表征方法

    [align=center][size=16px]分散体的稳定性和表征方法[/size][/align]1,分散体的概念和分散体的稳定性1,1 分散体把一种或几种物质分散在另一种物质中构成的体系,称为分散体(Dispersion)。其中:被分散的物质称为分散相(Dispersed phase) 分散的介质(Dispersing medium)称为连续相(Continuous phase)。分散相中的颗粒如果是固体颗粒(Solid particle),该分散体则统通常被称为悬浮液(Suspension) 分散相中的颗粒如果是液滴(Droplet),该分散体则统通常被称为乳液或乳浊液(Emulsion)。现实生活中的分散体可能是非常复杂多样的,例如牛奶这种经典的分散体,分散相中的颗粒形态既有蛋白质固体颗粒,又有脂肪液滴,遂也可以称为悬浮乳液(Suspension-emulsion);例如化妆品乳液中又经常可以分类为水包油乳液(O/W),油包水乳液(W/0),水包油包水(W/O/W)双重乳液等等。随着研发技术和工艺的发展,还有越来越多的人开始研究纳米分散体(Nano dispersion),皮克林分散体(Pickering dispersion),液晶乳液(Liquid crystal emulsion)等复杂分散体。1,2 分散体的稳定性分散体的稳定性是指分散体保持其初始状态性质或状态不随时间改变的能力。即在一定时间内,分散体的品质没有发生改变。1,3 分散体失稳的现象1,3,1 沉降(Sedimentation)由于分散相颗粒密度大于连续相密度产生的分散相的向下迁移沉淀(分离)的现象。分散相在容器底部的累积证明沉降发生。1,3,2 上浮(Floatation/Creaming)由于分散相颗粒密度小于连续相密度,分散相颗粒向液态连续相顶部迁移的现象。其中固体颗粒的上浮通常也被成为漂浮(floatation),液滴颗粒的上浮通常也被成为乳状上浮(creaming)。1,3,3 相分离(Phase separation)宏观均匀的分散体如悬浊液、乳液或泡沫分离成两个或多个相的现象。1,3,4 团聚(Agglomeration)分散体中分散相的颗粒(固体颗粒或液滴)聚集成团,形成二维的颗粒簇,称为团聚物,这个过程称为团聚。1,3,5 絮凝(Flocculation)絮凝是团聚的一种形式,分散体里的颗粒由弱物理作用力聚集在一起,一般是由颗粒之间的范德华引力大于双电层斥力引起形成松散的内聚结构。1,3,6 聚并(Coalescence)两个颗粒接触时边界消失(通常是液滴或气泡,不存在于固体颗粒),或者在一个颗粒与较大的颗粒间发生形状改变导致总面积减少的现象。1,3,7 奥斯特瓦尔德熟化(Ostwald ripening)小颗粒溶解在较大颗粒的表面重新沉积的过程。此过程发生的原因是较小颗粒有较高的表面能,有较高的总Gibbs自由能,因而有明显的较高溶解度。1,3,8相反转(Phase inversion)由体系的特性、体积比及能量输入所导致的液-液分散体(乳液)的相转变的现象,即分散相自发地变成了连续相,反之亦然。例如水包油乳液(O/W)相反转成为油包水(W/0)乳液。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018324112_9390_3433167_3.png[/img][align=center][size=12px]F[/size][size=12px]ig[/size][size=12px].1-1 [/size][size=12px]分散体的失稳[/size][size=12px]现象[/size][/align][align=center][size=12px]Instability of dispersion[/size][/align]1,4 影响分散体稳定性的因素分散体状态的改变取决于复杂的物理化学因素。分散相的状态(密度,粒度和分布,粒形,颗粒表面结构等),连续相的状态(密度,溶解度,pH,粘度,表面张力,流变行为等),颗粒的相互作用(排斥,吸引,流体动力学等),分散相和连续相的相互作用(润湿性,界面张力,流变学等),分散相的体积浓度等,都会影响一个分散体的稳定性。1,5 分散体的稳定性和产品设计 产品设计者须根据产品的实际应用场景或客户对符合产品规范及分散体充分稳定的需求进行配方调控。为此产品设计者需选择好分散体的状态(如:粒径分布,形状,密度匹配,对超大尺寸颗粒的限制,表面电荷和表面包裹)以及适合的连续相行为。对于分散体的稳定性,颗粒-颗粒间以及分散相-连续相间的相互作用非常重要。传统上,主要应用静电稳定原理。现在,随着创新产品的涌出(例如常用聚合物添加剂以使连续相适应其产品需求),静电稳定,空间位阻或静电位阻稳定,或其组合变成更常用的方法。这些方法的理论基础是经典的DLVO 理论(Derjaguin, Landau, Verwey, Overbeek)和近来进一步扩展的DLVO理论。应该强调的是,当今产品常含有数种分散相,其连续相也可能含有数种成分,产品设计将会变得更为困难。由于这些分散体的复杂结构,由单一参数来表征和预测分散体状态的稳定性是远远不够的。选择合适的仪器来表征分散体产品的稳定性将会在产品设计过程中的原料筛选,配方调控,工艺优化等环节起到至关重要的作用。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018326858_5189_3433167_3.png[/img][align=center][size=12px]F[/size][size=12px]ig[/size][size=12px].1-[/size][size=12px]2[/size][size=12px] [/size][size=12px]静电位阻[/size][/align][align=center][size=12px]Electrostatic and potential resistance[/size][/align][align=center][/align]2,分散体稳定性表征的方法2,1 LUM稳定性测试原理LUM系列稳定性分析仪器使用近红外光源(或多光源系统)照射样品整体,相比于传统的光谱只能读取样品某个点位置的消光度/透光度信息,LUM运用全球专利的STEP技术(Space and Time Resolved Extinction/Transmission Profiles)可以单次就记录整个样品管所有位置的消光率/透光率信息。并且可照射样品的同时,设置任意长度的光源照射时间间隔(最低1秒),由此可以实现样品消光率/透光率随时间变化的实时监测。对于较不稳定的分散体(如低温酸奶,冷链饮料,原油,浆料等),在若干小时或者若干天就能出现较为明显的失稳现象,可以利用LUMiReader静置(1g)系列的稳定性分析仪来进行实时监测和表征;对于较为稳定的分散体(如常温乳品和饮料,化妆品,涂料,脂肪乳剂等),在若干月甚至若干年才能观察到较为明显的失稳现象,可以利用LUMiFuge或者LUMiSizer离心加速(6-2300g)系列的稳定性分析仪来进行加速测试和表征。无论是LUM的静置还是加速系列的稳定性分析仪,专利的STEP技术(Space and Time Resolved Extinction/Transmission Profiles)都可以得到完整样品在任意空间和时间的透光率信息,形成独特的透光率指纹图谱。由这些特征的指纹图谱,不仅可以定性分析样品分离失稳的过程和变化,还可以对样品的稳定性/不稳定性指数,样品分层情况,颗粒迁移速度,颗粒的粒径和分布等进行定量分析。LUM仪器还可以实现多样品测试,最多可以同时测试12个样品,实现高通量高效的测试需求。此外,仪器配备温度控制模块,4-80℃的温控范围可以满足常规的稳定性测试的温度需求。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018328030_8014_3433167_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018329141_2160_3433167_3.jpeg[/img][align=center]Fig.2-1 LUMiReader静置稳定性分析仪[/align][align=center]Real-time Stability analyzer[/align][img]" style="max-width: 100% max-height: 100% [/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018330257_9894_3433167_3.jpeg[/img][align=center]Fig.2-2 LUMiFuge/ LUMiSizer离心加速稳定性分析仪[/align][align=center]Accelerated Stability analyzer[/align][align=center][/align]2,2 Stokes定律[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018331192_4571_3433167_3.png[/img]v – 颗粒移动速度△ρ – 两相的密度差η– 连续相动态粘度r – 粒径a – 颗粒浓度xg –相对重力加速度(LUMiReader=1g,LUMiFuge/LUMiSizer=5-2300g)由Stokes定律可知,分散相和连续相的密度差,分散相颗粒的粒径,连续相的粘度,颗粒浓度等因素都会影响体系里颗粒的迁移速率,最终影响分散体的稳定性。Stokes定律适用于重力场和离心场。2,3 LUM透光率指纹图谱(Transmission profile)[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018332129_9696_3433167_3.png[/img][align=center]Fig.2-3 样品静置测试的透光率指纹图谱[/align]图2-3是某样品在静置测试下的透光率图谱。样品管在仪器里竖直放置,遂纵坐标对应样品管的位置刻度;横坐标对应透光率数值。红色谱线为初始谱线,绿色谱线为实验66h结束后的谱线。我们可以发现,该样品随着实验的进行,底部的透光率逐渐升高,意味着样品里的颗粒发生了上浮(向上迁移)。同时观察样品管实验前后的状态,我们也可以发现该样品确实在底部出现了变澄清的过程。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018333411_7189_3433167_3.png[/img][align=center]Fig.2-4 样品离心加速测试的透光率指纹图谱[/align]图2-4是某两个样品在离心加速测试下的透光率图谱。样品管在仪器里平躺放置,遂横坐标对应样品管的位置刻度;纵坐标对应透光率数值。红色谱线为初始谱线,绿色谱线为实验结束后的谱线。我们可以发现,这两个样品随着实验的进行,顶部的透光率逐渐升高,意味着样品里的颗粒发生了沉降(向下迁移)。同时对比样品管实验后的状态,我们也可以发现这两个样品确实在顶部出现了变澄清的过程。两外,尽管这两个样品都是沉降的过程,左边的样品有明显的界面(或称之为区域沉降),对应的透光率图谱的斜率也是陡峭的形态;而右边的样品没有明显的界面(或称之为多分散沉降),对应的透光率图谱的斜率也是平缓的形态。由此可见,LUM仪器可记录样品的透光率随时间变化的过程,并直观地反应在指纹图谱中,产品设计者由此可以分析判读出分散体详细的失稳过程,从而进一步进行样品间稳定性的比较。2,4 不稳定性指数(Instability index) 产品的透光率变化越剧烈意味着样品越不稳定。LUM稳定性分析系列仪器通过配套的SEPView分析软件,可以直接将产品的透光率随时间的变化计算量化成不稳定性指数(Instability index),从而可以定量比较样品间的稳定性。由此可帮助产品设计者有效快速地筛选和优化配方,大大地缩短研发周期。还可对原料进行控制和筛选,对均质和出料等工艺条件进行优化改善,为质检提供快速便捷的方法。 图2-5展示了同一配方的某分散体,采用不同的工艺控制过程后制备的样品,在LUMiSizer加速稳定性分析仪中测试所得的透光率指纹图谱以及对应的不稳定性指数(Instability index)。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018334424_9357_3433167_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018335665_2656_3433167_3.png[/img][align=center]Fig.2-5不同工艺处理对相同配方的稳定性的影响[/align][align=center](LUMiSizer: 328g, 20°C, 15 h)[/align]2,5 界面追踪(Front tracking) 除了从不稳定性指数的角度量化产品的稳定性,产品设计者往往还会考虑产品分层的过程。LUM稳定性分析系列仪器通过配套的分析软件,还可以实时追踪产品界面位置随时间的变化,从而可以量化给出产品分层的速率。由此可以进一步对分散体产品进行稳定性的综合表征。 图2-6展示了为某产品选择不同添加剂后,在LUMiSizer加速稳定性分析仪中测试所得的界面位置随时间的沉降过程以及对应的界面沉降速率。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018336895_8486_3433167_3.png[/img][align=center]Fig.2-6 不同种类添加剂对样品界面沉降的影响[/align][align=center](LUMiSizer: 2300g, 40°C, 2 h)[/align][align=center][/align]图2-7展示了为某产品选择不同添加量的破乳剂后,在LUMiSizer加速稳定性分析仪中测试所得的界面位置随时间的上浮过程以及对应的界面上浮层的高度。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018338135_6561_3433167_3.png[/img][align=center]Fig.2-7 不同添加量的破乳剂对样品界面上浮的影响[/align][align=center](LUMiSizer: 2300g, 35°C, 1 h)[/align]2,6 颗粒表征(Particle characterization)除了稳定性表征外,LUM的部分仪器还选配了粒度检测模块,用于测量颗粒的粒度和分布。由于粒度分析这一块在本书的其他章节做了详细描述,固不再赘述。3, LUM稳定性分析仪的应用场景LUM系列稳定性分析仪广泛应用于食品,化学品,个人护理品,涂料,墨水,电子浆料,纳米材料,生物医药等各类分散体系产品的原浓度快速稳定性分析和定量排序。相比于传统的温箱储存数月(储存法),再进行肉眼比较的方法来说,LUM仪器大大缩短了测试和分析的时间;相比于表征样品中某一特定指标的参数变化(间接法),例如粒度,粘度等,LUM系列稳定性分析仪更着重于样品的所有参数综合影响的最终稳定性的表现。样品的透光率指纹图谱中包含了样品失稳过程的定性信息,产品设计者可以分析出颗粒的沉降,上浮,团聚和絮凝,聚并,转相,奥斯特瓦尔德熟化等各类失稳过程的信息,还可进一步对特定产品,观察网状结构,破乳行为的研究等。结合丰富的软件分析模块,还可以为产品的稳定性进行快速和综合的量化,进而还能为货架期的比较和预测提供良好的数据支持。

  • 前处理中怎么把醋酸乙烯酯分散

    本人做[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]要提取醋酸乙烯酯中某些成分,但是其粘度较大,需将其分散后进行后续操作,请问各位大神有什么办法可以把它分散?

  • CNS_14.010_聚乙烯醇

    CNS_14.010_聚乙烯醇

    [align=left][font='等线 light'][size=29px][color=#2f5496]聚乙烯醇[/color][/size][/font][font='等线 light'][size=29px][color=#2f5496]简介[/color][/size][/font][/align][align=left][font='等线 light'][size=29px][color=#2f5496]王梓安[/color][/size][/font][/align][align=left][font='等线'][size=14px]目录[/size][/font][/align][align=left][font='等线'][size=14px]一、聚乙烯醇的基本理化性质[/size][/font][font='等线'][size=14px] [/size][/font][font='等线'][size=14px]3[/size][/font][/align][align=left][font='等线'][size=14px]二、聚乙烯醇的分类[/size][/font][font='等线'][size=14px] [/size][/font][font='等线'][size=14px]3[/size][/font][/align][align=left][font='等线'][size=14px]2[/size][/font][font='等线'][size=14px].1聚乙烯醇17-88[/size][/font][font='等线'][size=14px] [/size][/font][font='等线'][size=14px]4[/size][/font][/align][align=left][font='等线'][size=14px]2[/size][/font][font='等线'][size=14px].2聚乙烯醇17-92[/size][/font][font='等线'][size=14px] [/size][/font][font='等线'][size=14px]4[/size][/font][/align][align=left][font='等线'][size=14px]2[/size][/font][font='等线'][size=14px].3聚乙烯醇17-99[/size][/font][font='等线'][size=14px]4[/size][/font][/align][align=left][font='等线'][size=14px]三、聚乙烯醇的生产方法[/size][/font][font='等线'][size=14px] [/size][/font][font='等线'][size=14px]5[/size][/font][/align][align=left][font='等线'][size=14px]四、聚乙烯醇的应用[/size][/font][font='等线'][size=14px] [/size][/font][font='等线'][size=14px]6[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].1油田用[/size][/font][font='等线'][size=14px]6[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].1.1用作增粘剂和降阻剂[/size][/font][font='等线'][size=14px]6[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].1.2酸化压裂液添加剂[/size][/font][font='等线'][size=14px] [/size][/font][font='等线'][size=14px]6[/size][/font][/align][align=left][font='等线'][size=14px]4.1.3其它应用[/size][/font][font='等线'][size=14px]6[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].2纤维用[/size][/font][font='等线'][size=14px]6[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].3功能性高分子材料[/size][/font][font='等线'][size=14px]6[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].3.1接枝共聚物[/size][/font][font='等线'][size=14px]7[/size][/font][/align][align=left][font='等线'][size=14px]4.3.2感光树脂[/size][/font][font='等线'][size=14px]7[/size][/font][/align][align=left][font='等线'][size=14px]4.3.3高分子催化剂[/size][/font][font='等线'][size=14px]7[/size][/font][/align][align=left][font='等线'][size=14px]4.3.4功能电极[/size][/font][font='等线'][size=14px]7[/size][/font][/align][align=left][font='等线'][size=14px]4.3.5高吸水性树脂[/size][/font][font='等线'][size=14px]7[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].3.6半透膜[/size][/font][font='等线'][size=14px]7[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].3.7分解性高分子[/size][/font][font='等线'][size=14px]7[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].3.8蓄冷剂[/size][/font][font='等线'][size=14px]7[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].3.9吸附剂[/size][/font][font='等线'][size=14px]8[/size][/font][/align][align=left][font='等线'][size=14px]4.4涂料[/size][/font][font='等线'][size=14px]8[/size][/font][/align][align=left][font='等线'][size=14px]4.4.1建筑涂料[/size][/font][font='等线'][size=14px]8[/size][/font][/align][align=left][font='等线'][size=14px]4.[/size][/font][font='等线'][size=14px]4.2耐油涂料[/size][/font][font='等线'][size=14px]8[/size][/font][/align][align=left][font='等线'][size=14px]4.4.3磷化底漆[/size][/font][font='等线'][size=14px]8[/size][/font][/align][align=left][font='等线'][size=14px]4.4.4水基铸型涂料[/size][/font][font='等线'][size=14px]8[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].5表面活性剂[/size][/font][font='等线'][size=14px]8[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].5.1用作乙烯基单体乳液聚合、共聚的乳化剂[/size][/font][font='等线'][size=14px]8[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].5.2作保护胶体[/size][/font][font='等线'][size=14px]9[/size][/font][/align][align=left][font='等线'][size=14px]4.6助剂[/size][/font][font='等线'][size=14px]9[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].6.1作纺织工业经纱及印花浆料[/size][/font][font='等线'][size=14px]9[/size][/font][/align][align=left][font='等线'][size=14px]4.6.2造纸工业[/size][/font][font='等线'][size=14px]9[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].6.3用于混凝土的防水剂[/size][/font][font='等线'][size=14px]9[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].6.4用于照相材料[/size][/font][font='等线'][size=14px]9[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].7胶粘剂[/size][/font][font='等线'][size=14px]9[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].7.1对其它胶[/size][/font][font='等线'][size=14px]粘[/size][/font][font='等线'][size=14px]剂进行改良[/size][/font][font='等线'][size=14px]9[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].7.2建筑胶粘剂[/size][/font][font='等线'][size=14px]10[/size][/font][/align][align=left][font='等线'][size=14px]4.8膜塑料[/size][/font][font='等线'][size=14px]10[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].8.1聚乙烯[/size][/font][font='等线'][size=14px]醇[/size][/font][font='等线'][size=14px]聚乙烯复合膜[/size][/font][font='等线'][size=14px]10[/size][/font][/align][align=left][font='等线'][size=14px]4[/size][/font][font='等线'][size=14px].8.2安全玻璃[/size][/font][font='等线'][size=14px]10[/size][/font][/align][align=left][font='等线'][size=14px]4.9分析化学[/size][/font][font='等线'][size=14px]10[/size][/font][/align][align=left][font='等线'][size=14px]4.10被膜剂[/size][/font][font='等线'][size=14px]10[/size][/font][/align][align=left][font='等线'][size=14px]五、聚乙烯醇作为食品添加剂的国标检测标准[/size][/font][font='等线'][size=14px]11[/size][/font][/align][align=left][font='等线'][size=14px]六、参考文献[/size][/font][font='等线'][size=14px]12[/size][/font][/align][align=left][/align][align=left][/align][size=18px]一、[/size][size=18px]聚乙烯醇[/size][size=18px]的基本理化性质[/size][align=left]聚乙烯醇是一种有机化合物,化学式为[C[font='times new roman'][size=16px]2[/size][/font]H[font='times new roman'][size=16px]4[/size][/font]O][font='times new roman'][size=16px]n[/size][/font],英文全称为polyvinylalcohol或vinylalcoholpolymer,简称PVA。外观是白色片状、絮状或粉末状固体,无味。[/align][align=left]聚乙烯醇的物理性质受化学结构、醇解度(指醇解之后得到的产品中羟基占原有基团的百分比)、聚合度的影响。聚乙烯醇的相对密度(25℃/4℃)1.27~1.31(固体)、1.02(10%溶液),熔点230℃,[url=https://baike.baidu.com/item/%E7%8E%BB%E7%92%83%E5%8C%96%E6%B8%A9%E5%BA%A6]玻璃化温度[/url]75~85℃,在空气中加热至100℃以上慢慢变色、脆化。加热至160~170℃脱水醚化,失去溶解性,加热到200℃开始分解。超过250℃变成含有[url=https://baike.baidu.com/item/%E5%85%B1%E8%BD%AD%E5%8F%8C%E9%94%AE]共轭双键[/url]的聚合物。折射率1.49~1.52,[url=https://baike.baidu.com/item/%E7%83%AD%E5%AF%BC%E7%8E%87]热导率[/url]0.2W/(mK),[url=https://baike.baidu.com/item/%E6%AF%94%E7%83%AD%E5%AE%B9]比热容[/url]1~5J/(kgK),电阻率(3.1~3.8)×10Ωcm。[/align][align=left]溶于水,为了完全溶解一般需加热到65~75℃。不溶于汽油、[url=https://baike.baidu.com/item/%E7%85%A4%E6%B2%B9]煤油[/url]、植物油、苯、[url=https://baike.baidu.com/item/%E7%94%B2%E8%8B%AF]甲苯[/url]、二氯乙烷、[url=https://baike.baidu.com/item/%E5%9B%9B%E6%B0%AF%E5%8C%96%E7%A2%B3]四氯化碳[/url]、[url=https://baike.baidu.com/item/%E4%B8%99%E9%85%AE]丙酮[/url]、[url=https://baike.baidu.com/item/%E9%86%8B%E9%85%B8%E4%B9%99%E9%85%AF]醋酸乙酯[/url]、甲醇、[url=https://baike.baidu.com/item/%E4%B9%99%E4%BA%8C%E9%86%87]乙二醇[/url]等,微溶于二甲基亚砜,120~150℃可溶于[url=https://baike.baidu.com/item/%E7%94%98%E6%B2%B9]甘油[/url],但冷至室温时成为[url=https://baike.baidu.com/item/%E8%83%B6%E5%86%BB/6802192]胶冻[/url]。溶解聚乙烯醇应先将物料在搅拌下加入室温水中,分散均匀后再升温加速溶解,这样可以防止结块,影响溶解速度。聚乙烯醇水溶液(5%)对[url=https://baike.baidu.com/item/%E7%A1%BC%E7%A0%82]硼砂[/url]、[url=https://baike.baidu.com/item/%E7%A1%BC%E9%85%B8]硼酸[/url]很敏感,易引起[url=https://baike.baidu.com/item/%E5%87%9D%E8%83%B6%E5%8C%96]凝胶化[/url],当硼砂达到溶[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]量的1%时,就会产生不可逆的凝胶化。[url=https://baike.baidu.com/item/%E9%93%AC%E9%85%B8%E7%9B%90]铬酸盐[/url]、[url=https://baike.baidu.com/item/%E9%87%8D%E9%93%AC%E9%85%B8%E7%9B%90]重铬酸盐[/url]、[url=https://baike.baidu.com/item/%E9%AB%98%E9%94%B0%E9%85%B8%E7%9B%90/7093594]高锰酸盐[/url]也能使聚乙烯醇凝胶。聚乙烯醇成膜性好,对除[url=https://baike.baidu.com/item/%E6%B0%B4%E8%92%B8%E6%B0%94/4923367]水蒸气[/url]和[url=https://baike.baidu.com/item/%E6%B0%A8/384093]氨[/url]以外的许多气体有高度的不适气性。[url=https://baike.baidu.com/item/%E8%80%90%E5%85%89%E6%80%A7]耐光性[/url]好,不受光照影响。通明火时可燃烧,有特殊气味。水溶液在贮存时,有时会出现毒变。无毒,对人体皮肤无刺激性。[/align][size=18px]二、[/size][size=18px]聚乙烯醇的[/size][size=18px]分类[/size]根据聚合度和醇解度的不同,聚乙烯醇可分为许多类。聚乙烯醇的聚合度分为超高聚合度(分子量25~30万)、高聚合度(分子量17~22万)、中聚合度(分子量12~15万)和低聚合度(2.5~3.5万)。醇解度一般有78%、88%、98%三种。部分醇解的醇解度通常为87%~89%,完全醇解的醇解度为98%~100%。常取平均聚合度的千、百位数放在前面,将醇解度的百分数放在后面,如17-88即表聚合度为1700,醇解度为88%。一般来说,聚合度增大,水溶液粘度增大,成膜后的强度和耐溶剂性提高,但水中溶解性、成膜后伸长率下降。聚乙烯醇的相对密度(25℃/4℃)1.27~1.31(固体)、1.02(10%溶液),熔点230℃,玻璃化温度75~85℃,在空气中加热至100℃以上慢慢变色、脆化。加热至160~170℃脱水醚化,失去溶解性,加热到200℃开始分解。超过250℃变成含有共轭双键的聚合物。2.1聚乙烯醇17-88简称PVA17-88,17表示聚合度1700,88表示醇解度为88%。这个醇解度具有常温水溶解的特性,同时其溶液不需任何处理就具有抗凝胶特性,缺点是胶膜耐水比醇解度99%的差,价格远高于1799。2.2聚乙烯醇17-92简称PVA17-92,白色颗粒或粉末状。易溶于水,溶解温度75~80℃。其他性能基本与PVA17-88相同。用作乳液聚合的乳化稳定剂。用于制造水溶性胶粘剂。贮存于阴凉、干燥的库房内,防火、防潮。2.3聚乙烯醇17-99又称浆纱树脂(Sizingresin),简称PVA17-99。白色或微黄色粉末或絮状物固体。玻璃化温度85℃,[url=https://baike.baidu.com/item/%E7%9A%82%E5%8C%96%E5%80%BC]皂化值[/url]3~12mgKOH/g。溶于90~95℃的热水,几乎不溶于冷水。浓度大于l0%的水溶液,在室温下就会凝胶成冻,高温下会变稀恢复流动性。为使粘度稳定,可于溶液中加入适量的硫氰酸钠,[url=https://baike.baidu.com/item/%E7%A1%AB%E6%B0%B0%E9%85%B8%E9%92%99]硫氰酸钙[/url]、[url=https://baike.baidu.com/item/%E8%8B%AF%E9%85%9A/317273]苯酚[/url]、[url=https://baike.baidu.com/item/%E4%B8%81%E9%86%87/1433955]丁醇[/url]等粘度稳定剂。PVA17-99溶液对硼砂引起凝胶比PVA17-88更敏感,溶[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]量的0.1%的硼砂就会使5%PVA17-99水溶液凝胶化,而引起同样浓度PVA17-88水溶液凝胶化的硼砂量则需1%。对于相同浓度、相同醇解度的聚乙烯醇水溶液,硼砂比硼酸更易发生凝胶。PVA17-99比PVA17-88对苯类、氯代烃、[url=https://baike.baidu.com/item/%E9%85%AF/2397756]酯[/url]、[url=https://baike.baidu.com/item/%E9%85%AE/3599168]酮[/url]、醚、烃等溶剂的耐受能力更强。加热至100℃以上逐渐变色,150℃以上时很快变色,200℃以上时将分解。聚乙烯醇加热时变色的性质可以通过加入0.5%~3%的硼酸而得到抑制。耐光性好,不受光照的影响。具有长链多元醇的酯化、醚化、缩醛化等化学反应性。通明火会燃烧,有特殊气味。无毒,对人体皮肤无刺激性。聚乙烯醇17-99B主要用于制造高粘度[url=https://baike.baidu.com/item/%E8%81%9A%E4%B9%99%E7%83%AF%E9%86%87%E7%BC%A9%E4%B8%81%E9%86%9B]聚乙烯醇缩丁醛[/url].广泛用作浆纱料的[url=https://baike.baidu.com/item/%E5%88%86%E6%95%A3%E5%89%82]分散剂[/url]等。其他类型的17-99用作聚醋酸乙烯乳液聚合的乳化稳定剂,但效果不如17-88,一般是将17-99与17-88混合使用。17-99用于制造聚乙烯醇缩甲醛水溶液(主要是107建筑胶)。17-99还用于制备耐苯类溶剂的密封胶。贮[img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107251439039027_6594_1608728_3.png[/img]存于阴凉、干燥的库房内,防潮、防火。[size=18px]三、[/size][size=18px]聚乙烯醇的生产方法[/size]聚乙烯醇是不能直接通过乙烯醇单体聚合而得到的高聚物,因为乙烯醇单体非常不稳定不能单独存在,它在常态下自发地进行分子间重排转化成乙醛,所以不能采用乙烯醇单体直接聚合的方法来制备聚乙烯醇,通常是先将醋酸乙烯醇聚合得到聚醋酸乙烯,然后将聚醋酸乙烯醇解以制得聚乙烯醇。聚乙烯醇的生产工艺有两种技术路线:一种是以乙烯为原料,制备醋酸乙烯 另一种是以乙炔(分为电石乙炔和天然气乙炔)为原料制备醋酸乙烯,再由醋酸乙烯聚合醇解制得聚乙烯醇。生产聚乙烯醇原料的路线有乙烯法、天然气乙炔法和电石乙炔法三种。目前,世界上聚乙烯醇生产厂家采用乙烯法的居多,其数量占总生产能力的72%。美国目前大多数厂家己经用乙烯法替代以前的乙炔法,日本以上的聚乙烯醇生产厂家也采用乙烯法生产聚乙烯醇原料。美国生产聚乙烯醇及相应产品的生产厂家主要有空气化工、杜邦和孟山,日本的聚乙烯醇生产厂家主要有可乐丽、合成化学和电气化学等,可乐丽是世界最大的聚乙烯醇生产商,随着中国聚乙烯醇工业的发展,这一地位也可能被中国的安徽皖维高新材料股份有限公司所取代,西班牙、比利时等西欧各国共有个聚乙烯醇生产厂家,年生产能力约为万吨,另外朝鲜的聚乙烯醇年生产能力也达到万吨,主要是为了满足本国生产维尼纤维的需求。[img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107251439039964_1720_1608728_3.png[/img][size=18px]四、[/size][size=18px]聚乙烯[/size][size=18px]醇[/size][size=18px]的应用[/size]4.1油田用4.1.1用作增粘剂和降阻剂聚乙烯醇水溶液的粘度较水的粘度有显著增加,这种稠化水可用于驱油,在℃以下的地层没有明显的降解。缺点是分子中的经基可与亲水性岩石表面形成氢键,因而有较大的吸附量,目前使用量以受到限制。的线型分子能沿流动方向取向,减少了流动摩阻,可用作降阻剂。4.1.2酸化压裂液添加剂聚乙烯醇可作稠化酸的添加剂,使之延缓与岩石作用并降低酸液的滤失。4.1.3其它应用在泡沫堵水中,用作泡沫稳定剂。水解度的聚乙烯醇、浓度为一的水溶液,经与硼砂、硼酸盐等络合形成高粘度凝胶,用作井筒封堵工作液。可作为处理油田污水的助凝剂。4.2纤维用1931年德国瓦克化学公司首先生产了水溶性的聚乙烯醇纤维,年日本樱田一郎、矢泽将英、朝鲜的李升基共同研究的热处理和甲醛处理方法,制成了耐热水的纤维,这种纤维的吸水率高达,故有合成棉花之称,当今占世界合成纤维的,由于该种纤维与棉混纺制得的衣料不挺括,染色性、耐热性较差,不能在热水中洗涤,故应用不大。现已转向工业用途,用它来制造帆布、滤布、运输带、包装材料、工作服、鱼网和海上作业缆绳、高强度、高模量长丝可作运输带的骨架材料,各种胶管、胶布、胶鞋的衬里材料。因具有强韧性,且平滑性、软着性、渗透性和储存性好,尤其是疏水性大,是纤维不可缺少的浆料。浆纱用的浆料,根据纤维品种的不同而不同。容易吸水的棉纱、铜氨丝等亲水性纤维,使用部分水解,醋酸纤维、尼龙等疏水性纤维,使用低粘度的部分水解,以脉素一聚合物、三聚氛胺一聚合物等热固性树脂为基料的纺织品,使用完全水解,以改善这类织物所存在的耐折性和防皱性差的缺点。4.3功能性高分子材料与通用高分子材料相比较,通过设计使其在某些条件、环境下具有化学或物理“功能”的高分子材料,称之为功能高分子材料。在这方面的使用如下。4.3.1接枝共聚物高价饰盐引发丙烯酸在聚乙烯醇无纺布上接枝共聚,接枝率可达,接枝共聚物具有较强的吸附稀土离子的能力。4.3.2感光树脂用于成像材料,印刷油墨、涂料、胶粘剂等方面,如含聚乙烯的感光树脂组成聚乙烯醇、安息香乙醚、轻甲基丙烯酸胺、甲基丙烯酸轻乙醋、二甲基丙烯酸乙二酷、季戊四醇等。4.3.3高分子催化剂作为固定化酶的载体,包埋酵母菌用于酱油发酵,长期浸泡仍保持良好的机械强度,对酵母无毒害,酱油质量明显提高。4.3.4功能电极将以聚乙烯醇作载体的低温下物理交联固定化酶的膜贴在电极表面上,将电化学测定的简便性和酶反应物的底物特异性功能综合起来,作为医疗检用的功能电极。4.3.5高吸水性树脂以聚乙烯醇改性及交联型丙烯酸酷共聚物作为高分子吸水剂具有一定强度,产品颗粒状不易为微生物降解而腐败,可长期保存。用于餐巾、尿布、土壤保墒、苗木移栽保水剂、污泥凝固剂等。4.3.6半透膜半透膜指能透过溶剂而不能透过溶质的膜,利用这种膜可以分离近沸点混合物、共沸混合物、异构体混合物等难以分离的混合物,如用聚乙烯醇来分离水乙醇混合液而达到提纯的目的。当用聚乙烯醇与壳聚糖制作共混膜,在℃时,以丙三醇进行交联后,膜的耐水性和机械强度较好,对于乙醇水体系分离,其渗透分离比更高。4.3.7分解性高分子分子量在办沉以内的聚乙烯醇与淀粉的共混膜,当淀粉含量达时,膜中淀粉先被微生物分解后形成微孔状结构,由于比表面积增大,也就容易被氧化分解,一个月可全部分解。可作为易降解的薄膜用于农业,以降低白色污染[align=left]4.3.8蓄冷剂以聚乙烯醇、水、助剂制成各种形状的凝胶,50℃时仍能保持形状,0℃以下仍然柔软、富弹性、强度大,解冻后保持原状,可反复使用。用于制作冰枕、冰帽、高温防护背心、储运药品及生物制品,食品保鲜等。[/align][align=left]4.3.9吸附剂以聚乙烯醇缩丁醛纤维处理高浓度酚醛废水时,除苯酚效果显著,去除率以上。吸附后的纤维可以再生后继续使用。[/align][align=left]4.4涂料4.4.1建筑涂料内墙涂料是量大面广的内墙涂料,由聚乙烯醇、水玻璃、颜料、填料、助剂等组成,用量约占涂料配方的左右。按目前国内年产建筑涂料万吨计,其中类涂料占,则每年聚乙烯醇的用量约在万吨。另外,水性仿瓷涂料,系成膏状用刮涂法施工于室内墙体该产品色调淡雅,手感光滑细腻,其基料也是由聚乙烯醇经部分缩醛化制得的胶料,故在该涂料中聚乙烯醇作为原料,其用量也颇可观。[/align][align=left]4.4.2耐油涂料[/align][align=left]因聚乙烯醇缩丁醛树脂多极性基团,故对非极性的汽油和煤油有很大的抗性。 4.4.3磷化底漆[/align][align=left]磷化底漆亦称洗涤底漆,适用于涂覆各种船舶、浮筒、桥梁、仪表以及其它各种金属构件和器材表面。以聚乙烯醇缩丁醛树脂和铬酸盐为主要成分的长曝型磷化底漆,据测定,采用同样的底漆和面漆作样板,在广州地区曝晒两年后测定,经过磷化处理的寿命提高一倍左右。[/align][align=left]4.4.4水基铸型涂料在铸造生产中,铸型涂料改善了铸型工作面的光滑度,提高了铸件的加工精度。水基铸型涂料中聚乙烯醇与钠基膨润土共同用作悬浮剂,可获得较高的沉降稳定性,快干性和良好的涂刷性。4.5表面活性剂聚乙烯醇作为表面活性剂在降低表面张力和渗透力作用方面是很差的,但在保护胶体作用、分散作用和絮凝作用方面有其独特的优点。4.5.1用作乙烯基单体乳液聚合、共聚的乳化剂[/align][align=left]利用分散力强的特点,用作醋酸乳胶之乳化剂及抓乙烯聚合之悬浮剂。又如作为苯乙烯二乙烯基苯悬浮聚合分散稳定剂时,采用十二烷基硫酸钠,聚乙烯醇后有效地降低了共聚物的粒径。4.5.2作保护胶体农药、溶剂型涂料采用聚乙烯醇作保护胶体,可制成水包油型悬浮分散液,如农药乳剂、水性多彩涂料等。4.6助剂4.6.1作纺织工业经纱及印花浆料用取代天然浆料物质作经纱浆料、印花浆料,我国每年用量约一万吨。4.6.2造纸工业用作纸张表面的施胶剂,以减少纸张对水和油墨的吸收,有利于提高纸张的平滑度、琉水性、印刷适应性、通气性。还可用于涂料粘合剂,使颜料粘附于原纸,用于食品包装,无异味。4.6.3用于混凝土的防水剂用于混凝土的防水剂,显著改善沙浆的作业性和防水效果。聚乙烯醇缩甲醛纤维耐水泥的碱性,且与水泥的粘结性和亲和性好,可代替石棉作水泥的增强材料。4.6.4用于照相材料在照相材料中聚乙烯醇代替部分明胶作卤化银的保护胶体,以提高卤化银的乳剂特性,改善彩色照相的发色和耐气候性,适应快速显影的加工要求。4.7胶粘剂聚乙烯醇是水溶性高聚物用作胶粘剂的典型例子。将聚乙烯醇粉末溶于一℃的温水中,调制成一的溶液,即成为胶粘剂,对玻璃和有经基材料粘接性良好,用于邮票几胶带、安全玻璃中间膜、纸与纸、纸与木材、卷烟纸的粘接,纸长期保持稳定和不变质。出于对环境问题的日益重视,外商对出口食品瓦楞纸箱要求不用钉子或塑料胶纸固定和封箱,以便于回收,故用聚乙烯醇等合成胶水粘接纸箱是必然趋势。[/align]4.7.1对其它胶粘剂进行改良三聚乙烯醇改性聚醋酸乙烯乳液胶粘剂,其热稳定性、固化速度、储存稳定性都有所提高。以聚乙烯醇缩甲醛改性脉醛树脂胶,有效地克服了耐水性和耐候性差,胶层易龟裂的缺点,使竹编胶合板的性能明显地提高。4.7.2建筑胶粘剂聚乙烯醇液可作为墙纸及各种粉刷灰浆中胶料用,无臭、无毒、无味。聚乙烯醇缩甲醛胶胶可作为墙布、墙纸、水泥制品的胶粘剂,还可作为瓷砖、马赛克、地坪、内墙涂料的胶料。4.8膜塑料聚乙烯醇及其衍生物的薄膜与玻璃纸、聚氯乙烯膜、聚乙烯膜对比,其透明度、光泽、抗静电性、透湿性、耐油性和有机药品性、强韧性、耐候性、印刷性等性能较优,保香、剥离性好。能作为农药、化肥、洗涤剂、医院的水溶性包装薄膜。4.8.1聚乙烯醇聚乙烯复合膜以低密度聚乙烯为内层,聚乙烯醇为外层,内层膜厚一林,外层一巧卜,该薄膜气密性优良,用于榨菜、腌腊制品,熟肉食品、中药材包装有满意的效果。4.8.2安全玻璃两块玻璃中间夹一层透明的聚乙烯醇缩丁醛薄膜被称之为安全玻璃,迄今仍不失为安全玻璃最合适的基材。4.9分析化学在分析化学中应用较多,作者曾将它用于硅的重量法分析及一些离子缔合物的分析。在聚乙烯醇的存在下,汞、钒、钼与硫氛酸盐和罗丹明形成多元离子络合物,可直接在水相中测定微量汞、钒和铝等。4.10被膜剂被膜剂是一种覆盖在食物的表面后能形成薄膜的物质,可防止微生物入侵,抑制水分蒸发或吸收和调节食物呼吸作用。在水果表面使用被膜剂,可以抑制水分蒸发,防止微生物侵入,并形成气调层,吸收和调节食物的呼吸作用,达到延长蔬果保鲜时间的目的。有些糖果如巧克力等,使用被膜剂后,不仅外观光亮、美观,而且还可以防止粘连,保持质量稳定。在粮食的贮藏过程中,被膜剂能有效隔离病菌和虫害,同时也能在一定程度上抑制粮食的呼吸作用,具有良好的保鲜作用。被膜剂用于冷冻食品和固体粉状食品,可防止其表面失潮而避免因此产生的产品质量下降。如果在被膜剂中加入一些防腐剂、抗氧化剂和乳化剂等,还可以制成复合型的保鲜被膜剂。我国《食品安全国家标准 食品添加剂使用标准》中批准使用的被膜剂有天然来源的蜂蜡、巴西棕榈蜡、紫胶(虫胶)、硬脂酸、普鲁兰多糖、吗啉脂肪酸盐(果蜡),也有化学改性和纯化学合成来源的白油(液体石蜡)、松香季戊四醇酯、聚二甲基硅氧烷及其乳液、聚乙二醇、聚乙烯醇。[size=18px]五、[/size][size=18px]聚乙烯醇作为食品添加剂的国标检测标准[/size]5.1感官要求[img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107251439041976_386_1608728_3.png[/img]5.2理化指标[img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107251439042864_9522_1608728_3.png[/img]5.3鉴别实验5.3.1 pH称取1g试样,按照GB/T 12010.4-2010中规定测定pH,应为5.0~6.5。5.3.2 红外光谱以溴化钾作为分散剂。5.3.3显色反应5.4.4沉淀反应取5mL 0.05g/mL的试样水溶液,加入10mL乙醇,应产生絮状沉淀。参考文献:[1]高慧慧.聚乙烯醇合成及聚合度调控研究[D].华东理工大学,2011.[align=left][2]贾明芬,李侠,王帅.聚乙烯醇的生产现状及市场前景分析[J].云南化工,2012,39(05):36-40.[/align][align=left][3]科信.果蔬的涂膜保鲜法[J].农村百事通,2002(21):33.[/align][align=left][4] GB 31630-2014.食品安全国家标准 食品添加剂 聚乙烯醇[s][/s][/align][align=left][5]贺同欣, 王亚文, 崔瑞丽,等. 可食用性食品接触材料聚乙烯醇(PVA)含量的测定[J]. 华东科技:学术版, 2012(12):10-10.[/align]

  • 【资料】中华人民共和国国家标准 GB 11175-89 聚乙酸乙烯酯乳液试验方法

    10.4 水溶物含量试验10.4.1 原理 所制备的薄膜经水浸泡,其可溶于水的物质从薄膜中溶解于水中,以此薄膜质量与浸水前薄膜质量的百分比表示试样耐水程度。10.4.2 仪器和装置 a. 恒温水浴; b. 分析天平:感量0.1 mg; c. 干燥器:用硅胶作干燥剂。10.4.3 试验步骤 准确称量10.3中制备的薄膜(玻璃载片的质量是制备薄膜前准确称量过的),将其置于30~0.5 ℃的水浴中(水浴的水为蒸馏水),浸泡24 h,取出晾干,再置于干燥器中放置24h后准确称量。10.4.4 试验结果计算 C=[(m[2]-m[1])/(m[0]-m[1])]×100 (3)式中:m[0]——浸水前原薄膜试样总质量,g;m[1]——载薄膜的玻璃片的质量,g;m[2]——溶水后薄膜试样的总质量,g;C——水溶物含量,%。 试验结果取两位有效数字。10.4.5 试验报告 a.试样规格、批号和生产、取样及试验日期; b.试验结果; c.如经水浸泡,薄膜发生乳化分散现象(即薄膜中含有的乳化剂或分散剂溶水后,使薄膜中聚合物再乳化再分散现象)也应注明。11 稳定性试验方法11.1 冻融稳定性11.1.1 方法提要 把试样在水的冰点下冻结,破坏聚合物乳液颗粒的水合层,然后在规定的条件下融化,检查样品是否能恢复乳液状态。11.1.2 仪器和装置 a.容器:为高密度聚乙烯塑料瓶,有盖,高70 mm、内径40 mm、壁厚2 mm的瓶子; b.低温箱:温度控制在-10±0.5 ℃; c.天平:感量0.5 g; d.恒温水浴; e.玻璃棒:直径8 mm左右、长200 mm左右; f.玻璃温度计:2支,一支为-50~0 ℃,精度1 ℃;一支为0~100 ℃,精度0.5 ℃。11.1.3 试验步骤11.1.3.1 冻结 用塑料瓶称取约50 g试样,盖好盖子,放到温度为-1010.5 ℃的低温箱中,冻结16h。11.1.3.2 融化 取出冻结的试样,放到温度控制为30±0.5 ℃的水浴中,融化1 h后,用玻璃棒搅动试样。11.1.3.3 高温融化 若经融化后的试样粘度增大失去流动性,或用玻璃棒搅不动,需在60±0.5 ℃的水浴中继续融化11.1.4 试验结果 按下列情况判断: a. 按11.1.3.1和11.1.3.2条规定进行,如试样无变化,或粘度稍有增大者,则冻融稳定性合格; b. 若按11.1.3.2条的规定进行试验的试样,不能恢复原状态,冻融稳定性不合格。 c. 需按11.1.3.3条的规定进行试验的试样或能融化,仍不失乳液的使用价值;或虽能融化而呈渣状,失去使用价值;或最终不能融化,完全破乳;以上各种现象均视为不合格。11.1.5试验报告 a.试样的规格、批号和生产、取样及试验日期; b.试验结果及融化、高温融化后的现象; c.试验中观察到的特殊现象。11.2 高温稳定性11.2.1 方法提要 试样在高温下放置,造成聚合物乳液颗粒融结,然后冷却到室温,观察试样外观变化情况。11.2.2 仪器和装置 a.容器、天平、玻璃棒应符合11.1.2条中a.、c.、e.的规定。 b.恒温干燥箱。11.2.3 试验步骤11.2.3.1 高温放置 用塑料瓶称取约50 g试样,盖好盖子,放入温度为60 ℃的恒温箱中,持续放置120 h。11.2.3.2 冷却 把试样从恒温箱中取出,室温下冷却3 h,然后用玻璃棒搅拌。11.2.3.3 外观试验 按4.3条的规定进行。11.2.4试验结果 根据4.3条的外观标准表征试样的高温稳定性,用合格或不合格表示。11.2.5试验报告 a.试样规格、批号和生产、取样及试验日期; b.试验结果; c.试验中观察到的现象。11.3 稀释稳定性11.3.1 方法提要 把试样稀释,降低聚乙酸乙烯酯乳液保护胶体浓度,试验乳液颗粒在重力场作用下沉淀的程度。11.3.2 仪器和装置 a.试管:平底,具塞,容积30 mL,刻度精度0.1 mL,由底部至30 mL刻度处的高度为20 cm; b.天平:感量0.5 g。11.3.3 试验步骤 取一定量试样于试管中,加水稀释到30 mL使其蒸发剩余物为2.5%~3.5%,盖塞后,上下摇动均匀,放置72 h后测定上层澄清液容积,试管底部沉淀物的容积。11.3.4 试验结果计算 U=(V[1]/30)×100 (4)P=(V[2]/30)×100 (5)式中:V[1]——上层澄清液容积,mL;V[2]——沉淀物容积,mL;U——上层清液容积比,%;P——沉淀物容积比,%。 计算结果取整数位。11.3.5 试验报告 a.试样规格、批号和生产、取样及试验时间; b.试验结果; c.试验中观察到的现象。12 残存单体试验方法12.1 试验原理 根据乙酸乙烯酯与溴素可进行加成反应的机理,以试样所消耗标准溴液量计算残存乙酸乙烯酯的含量,反应式为: CH[3]COOCH=CH[2]+Br[2] —→ CH[3]COOCHBr+CH[2]Br 12.2 试剂 溴—溴化钾标准溶液:c(Br[2]/2)=0.15 mol/L,按附录A制备。12.3 仪器和装置12.3.1 锥形瓶:150或200 mL,具塞,薄壁。12.3.2 滴定装置:25 mL棕色滴定管,滴定架。12.3.3 天平:感量0.1 g。12.4 试验步骤` 准确称取10.0 g试样于锥形瓶内,加25 mL水稀释试样,以溴—溴化钾标准溶液滴定,直至呈微黄色且颜色不消失,记下消耗溶液的体积(每次试验时,需重新标定溶液)。12.5 试验结果计算 残存单体(%)=(V• c×0.043/m)×100 (6)式中:V——试样消耗溴—溴化钾标准溶液体积,mL;c——溴—溴化钾标准溶液的浓度,mol/L;m——试样总质量,s; 0.043——与1.00 mL溴—溴化钾标准滴定溶液[c(Br[2]/2)=0.15 mol/L]相当的,以克表示的乙酸乙烯酯的质量,g。平均试验的两个滴定值绝对误差不得超过o.1 mL。试验结果以算术平均值表示,取一位有效数字12.6 试验报告 a.试样的规格、批号和生产、取样及试验日期; b.标准溶液浓度; c.试样消耗标准溶液的体积,mL; d.试验结果。13 粒径试验方法13.1 方法提要 利用显微镜观察样品微观下的状态,目测颗粒的平均直径。13.2仪器和设备13.2.1 显微镜:放大倍数不低于1 000倍。13.2.2 载物片:7.5 cm×2.5 cm;盖玻璃:2cm×2cm。13.2.3 天平:感量1 g。13.2.4 烧杯:100 mL。13.2.5 玻璃棒:直径约8 mm、长约200 mm。13.3 试验步骤13.3.1 制备蒸发剩余物为1%的试样 称取一定量试样,加适量水稀释后,使其蒸发剩余物为1%,用玻璃棒搅匀。13.3.2 测粒径 用玻璃棒沾一滴制备好的试样于载物片上,把盖玻片盖在试样上,不使气泡产生,放在显微镜下观察,目测50个以上的粒子直径,确定其平均直径。13.4 试验结果 平均粒径取一位有效数字。13.5 试验报告 a.试样的规格、批号和生产、取样及试验日期; b.试验结果及放大倍数; c.试验中能观察到的特殊现象,如单个粒子的聚集体。 附 录 A 溴—溴化钾[c(Br[2]/2)=0.15 mol/L)标准溶液制备方法 (补充件) A1 配制 称取60 g溴化钾(分析纯)及3.3 mL溴(分析纯)溶于100 mL蒸馏水中,再稀释至1 000 mL。 A2 标定 移取20.00 mL上述溴—溴化钾溶液,置于200 mL碘量瓶中,加入15%碘化钾水溶液10 mL,密封后于20—25 ℃下在暗处放置5 min,用浓度c(Na[2]S[2]O[3])=0.1 mol/L硫代硫酸钠标准溶液滴定至碘的颜色极浅时,加入1%淀粉指示剂1 mL,继续滴定至蓝色消失。 A5 计算 溴标准溶液浓度按式(A1)计算c=0.005V (A1)式中:c——溴标准溶液浓度,mol/L;V——消耗的硫代硫酸钠标准溶液体积,mL。 附加说明: 本标准由上海橡胶制品研究所归口。 本标准由天津市有机化i实验厂负责起草。 本标准主要起草人何乃谦、苏蕴诚、王明堂。 本标准参照采用日本工业标准JISK 6828—1977(80)《聚醋酸乙烯酯乳液试验方法》。 中华人民共和国化学工业部1989—03—10批准 1 990—01—01实施 ---------中国电子胶水论坛

  • 脂质体、分散体和肠溶包衣替米考星体外释放和抑菌研究

    【序号】:1【作者】:[url=http://yuanjian.cnki.com.cn/Search/Result?author=%E5%BC%A0%E5%B0%8F%E6%B4%AA]张小洪[/url] 【题名】:[b]脂质体、分散体和肠溶包衣替米考星体外释放和抑菌研究[/b]【期刊】:重庆大学硕士论文【年、卷、期、起止页码】: [color=#333333]2014[/color]【全文链接】:http://cdmd.cnki.com.cn/Article/CDMD-10611-1014043590.htm

  • 标准更新丨新国标GB15558.1《聚乙烯(PE)燃气管材》 正式发布

    在全国塑料制品标准化技术委员会塑料管材、管件及阀门分技术委员会(TC48/SC3)的组织下,新版GB15558.1《聚乙烯(PE)燃气管材》国家标准已修订完成。2015年12月31日国家标准委在第43号公告中正式发布,并将在2017年1月1日正式实施。 相对于现行版本GB 15558.1-2003,主要技术变化如下: 1. 增加了管材类型,由原来单一实壁管材增加至两种类型管材(单层实壁管材和管材外壁包覆可剥离热塑性防护层管材)。 2. 明确了混配料的定义,增加了混配料的颜色要求,增加了混配料颜色要求。聚乙烯(PE)混配料的颜色应为黑色(PE80或PE 100)、黄色(PE80)或橙色(PE 100)。 3. 修改了混配料的相关性能要求,具体包括:(1)增加了混配料的80℃长期静液压强度曲线不允许在5000h前出现拐点的要求。(2)炭黑分散/颜料分散增加了外观级别的要求。(3)以管材形式测定的混配料性能增加了耐候性要求,耐慢速裂纹增长性能要求由165h提高至500h。(4)增加了混配料的熔接兼容性要求,增加了聚乙烯(PE)混配料的改变要求。(5)修改了回用料要求,允许少量使用来自本厂的同一牌号的生产同种产品的清洁回用料。 4. 修改了管材的相关性能要求,具体包括:(1)规格尺寸要求中最大平均外径删去等级A,SDR系列删去了SDR 17.6系列,增加了SDR17、SDR 21、SDR 26系列,修改了小口径管材最小壁厚要求。(2)管材力学性能中静液压强度(20℃,100 h)试验参数PE100 环应力由12.4MPa 改为12.0MPa,删去耐候性要求,耐慢速裂纹增长(切口试验)的性能要求由165h 提高至不小于500 h,增加了耐慢速裂纹增长的锥体试验,增加了压缩复原要求,增加了对接熔接接头的系统适用性要。 5. 增加了试验方法一章,对密度、熔指、水分含量、炭黑分散、断裂伸长率、氧化诱导时间、SCG、RCP等试验方法进行了修改。 6. 修改了型式检验项目要求和定型检验要求。 7. 标志内容中增加了生产批号、回用料,增加了标志示例。 8. 增加了资料性附录“工作温度下的压力折减系数”和“高耐慢速裂纹增长性能PE 100 混配料和管材”,增加了规范性附录“带可剥离层的管材”,附录F“压缩复原试验方法”修改为规范性附录。 附:河北可道试验机科技有限公司汇总 PE燃气管现行标准GB15558-2003、ISO4437要求出厂检验项目有: 静液压强度试验: (管材耐压试验机)GB/T 6111—2003 断裂伸长率: (电子拉力/万能试验机)GB/T 8804.1—2003 压缩复原: (电子拉力/万能试验机)GB/T 8804.1—2003 氧化诱导时间: (差热分析仪)GB17391—1998 熔体流动速率: (熔体流动速率测定仪)GB/T 3682—2000 纵向回缩率: (烘箱)GB/T 6671—2001

  • 聚乙烯醇的性质?

    今天做压片法,需要用到一种粘结剂,记得有一次老师说过,用水可以配制聚乙烯醇水溶液作为粘结剂,但是今天做一下发现,聚乙烯醇基本不溶于水,请问大家聚乙烯醇到底有哪些性质特点,可以做粘结剂?

  • 低压聚乙烯压片

    各位同行,请问有用低压聚乙烯压片的吗?低压聚乙烯粉末的粒度选择多少目?

  • 【求助】关于聚乙烯蜡的测试

    聚乙烯蜡即低分子量聚乙烯,但是里面还掺有一些其他物质(例如:无机物),我想看里面的各种成分,请指点!有网友建议“用混合溶剂将体系溶解,无机滤渣作元素分析再将滤液中非极性聚乙烯沉淀,得到极性有机物溶液,做GC-MS定性 ”

  • 【求助】乙酸乙烯酯标准

    哪位大侠有这些标准:SH/T 1628.1—1996 工业用乙酸乙烯酯SH/T 1628.2—1996 工业用乙酸乙烯酯纯度及有机杂质的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法SH/T 1628.3—1996 工业用乙酸乙烯酯活性度的测定 发泡法SH/T 1628.4—1996 工业用乙酯乙烯酯酸度的测定 滴定法SH/T 1628.5—1996 工业用乙酯乙烯酯中醛含量的测定 容量法

  • 红外涂膜制样——聚乙烯薄膜替代溴化钾晶片

    红外涂膜制样——聚乙烯薄膜替代溴化钾晶片

    裂解法制样,基本上都应该是将裂解液涂抹在溴化钾晶片上进行测定的,但溴化钾压片非常烦,首先是必须干燥处理,然后是仔细的研磨,然后才是压片,如果是好一点的压片机那还没什么,如果是手工压制,那真叫一个烦,不幸的是我碰上的就是手工压制的。 聚乙烯膜是可以代替溴化钾晶片的……. 请看下图: 图1是空气中扣空白后测定的聚乙烯膜的红外光谱图(仪器是BRUKER的TENSDR 27): http://ng1.17img.cn/bbsfiles/images/2016/05/201605051121_592312_2534456_3.jpg 图2是用聚乙烯膜扣空白后测定的同一片聚乙烯膜的红外光谱图,由图2可见,如此获得的本底,比溴化钾更干净。http://ng1.17img.cn/bbsfiles/images/2016/05/201605051122_592313_2534456_3.jpg 图3是用此法测定的一个以乙丙橡胶为主体的混炼胶的裂解液红外谱图,如果是精细分析那不敢说,但用于一般的鉴定那绝对是没有问题的,有兴趣的大虾们不妨一试。http://ng1.17img.cn/bbsfiles/images/2016/05/201605051122_592314_2534456_3.jpg 操作方法: 取一小片洁净的聚乙烯膜,如果觉得不够薄,则拉伸之至尽量薄。固定在测定支架上,用此膜扣空白,取出,涂上裂解液,装回光路测定,搞定。

  • 【求助】乙酸乙烯酯标准

    SH/T 1628.1—1996 工业用乙酸乙烯酯SH/T 1628.2—1996 工业用乙酸乙烯酯纯度及有机杂质的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法SH/T 1628.3—1996 工业用乙酸乙烯酯活性度的测定 发泡法SH/T 1628.4—1996 工业用乙酯乙烯酯酸度的测定 滴定法SH/T 1628.5—1996 工业用乙酯乙烯酯中醛含量的测定 容量法

  • 请教有没有大神用聚乙烯粉料造粒压片制作过内控标准片的

    化工公司产品是聚乙烯和聚丙烯,平常用XRF测量添加剂的含量比如硬脂酸锌和硬质酸钙。买回来的国际标样因为基底不同,结果会有差异。我们想用自产聚乙烯粉料自己按比例添加添加剂造粒再压片制作内控标准片。有没有做过的大神,指点下。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制