当前位置: 仪器信息网 > 行业主题 > >

小鼠肥大细胞瘤细胞

仪器信息网小鼠肥大细胞瘤细胞专题为您提供2024年最新小鼠肥大细胞瘤细胞价格报价、厂家品牌的相关信息, 包括小鼠肥大细胞瘤细胞参数、型号等,不管是国产,还是进口品牌的小鼠肥大细胞瘤细胞您都可以在这里找到。 除此之外,仪器信息网还免费为您整合小鼠肥大细胞瘤细胞相关的耗材配件、试剂标物,还有小鼠肥大细胞瘤细胞相关的最新资讯、资料,以及小鼠肥大细胞瘤细胞相关的解决方案。

小鼠肥大细胞瘤细胞相关的资讯

  • Nature:成像质谱流式细胞术发现肿瘤微环境特征预测肺癌结果
    来自麦吉尔大学和多伦多大学等研究人员已经开发出一种方法,可以仅通过一个微小肿瘤组织样本来预测肺癌患者在手术后的发展状况。研究人员将成像质谱流式细胞术与深度学习技术相结合,分析了400 多名来自肺腺癌患者的肺癌样本的肿瘤微环境。肿瘤微环境已被确定为影响治疗进展的异质性来源。通过在空间和单细胞水平上表征肿瘤微环境,研究人员揭示了与临床特征(如生存率)相关的不同细胞状态和特征。正如他们在Nature杂志上报道的那样,他们使用了人工智能来识别肿瘤微环境的某些特征来高精度地预测疾病进展。  Fig. 1: IMC defines the spatial landscape of LUAD.  “总的来说,这些数据表明空间分辨的单细胞转录组在未来可能具有非常大的价值,有助于为个性化的围手术期护理计划提供有价值的信息,以最大限度地减少那些能被治愈的人在治疗过程中产生的毒副作用,或提高那些会复发的人的治愈率”,麦吉尔大学的共同资深作者 Daniela Quail 和 Logan Walsh 以及拉瓦尔大学的 Philippe Joubert 领导的研究人员在论文中写道。研究人员使用 Fluidigm(现为 Standard BioTools)企业的成像质谱流式细胞技术系统,分析了 1996 年 2 月至 2020 年 7 月期间收集的 426 名肺腺癌患者的小组织核心样本。他们使用 35 重抗体组来识别各种细胞他们样本的成分,包括癌细胞本身以及基质细胞、适应性和先天性免疫细胞。研究人员总共检测到超过 160 万个细胞,并发现了 14 个不同的免疫细胞群。他们特别关注免疫细胞群与患者的临床数据之间的关联。例如,肥大细胞与延长生存期有关,虽然它们在非吸烟者和患有早期疾病的患者中更为常见。研究人员进一步注意到某些免疫细胞的频率与特定临床亚组之间的联系—例如,CD4 阳性辅助性 T 细胞在女性患者的样本中富集,她们往往会有更好的总体存活率,而老年患者的肿瘤内 CD8 较少- 阳性 T 细胞。与此同时,他们探索了肿瘤微环境中不同的细胞表型如何与生存相关,例如,发现 H1F1-α 阳性中性粒细胞将会产生不利于生存的环境。观察具有相似局部细胞类型组成的区域(邻近细胞),研究人员进一步指出,不同的组织结构与生存差异有关。例如,富含 B 细胞的邻近细胞与存活显着相关,尤其是 CN-25 邻近细胞,它也富含 CD4 阳性辅助性 T 细胞。通过应用深度学习方法,研究人员发现他们生成的空间信息可以改善对临床结果的预测。他们报告说,创建的模型(包括空间信息)预测进展的准确率高达 95.9%,而基线评分的准确率为 75%,而且他们仅仅使用了一个 1 mm²的肿瘤样本。此外,研究人员使用成像质谱流式细胞术分析了 60 名原发性肺腺癌患者的单独验证队列,并在数据集中发现该模型以 94% 的准确度预测进展。研究人员将他们模型的预测能力追溯到六个标记的组合:CD14、CD16、CD94、αSMA、CD117 和 CD20。总体来讲,准确率为 93.3%,精密度和召回率为 95.6%。研究人员写道:“我们的研究结果代表了对使用临床和病理变量的现有预测工具的重要进步,并且可以更有效地利用不断增长的围术期辅助系统来改善癌症结果。”  来源:  1.Sorin, M., Rezanejad, M., Karimi, E. et al. Single-cell spatial landscapes of the lung tumour immune microenvironment. Nature (2023). https://doi.org/10.1038/s41586-022-05672-3.  2.基因网
  • Cancer Cell | 单细胞图谱揭开非小细胞肺癌肿瘤分类新标准
    免疫治疗是非小细胞肺癌(Non-small cell lung cancer,NSCLC)的主要治疗方法之一。虽然肿瘤突变负荷(Tumor mutational burden,TMB)与免疫治疗的响应应答相关,但是免疫应答与肿瘤基因型之间的关系还知之甚少。2021年11月11日,美国西奈山伊坎医学院Miriam Merad研究组与Ephraim Kenigsberg研究组合作发文题为Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification,通过建立病人非小细胞肺癌中肿瘤细胞的scRNA-seq以及CITE-seq分析,确定了肿瘤突变负荷以及TP53突变的情况,从而构建了NSCLC肿瘤的细化分类以及患者分层,为免疫疗法的响应提供了新的数据库参考。为了对肿瘤微环境中的免疫细胞的转录状态进行检测,作者们对未进行治疗的、早期的NSCLC患者体内的肿瘤进行切除并对细胞进行分析(图1)。作者们通过CITE-seq(Cellular Indexing of Transcriptomes and Epitopes by Sequencing)、scRNA-seq以及TCR-seq(T cell receptor sequencing)整合免疫细胞表面标记的抗体分析生成了三个数据库。作者们对8名患者的肿瘤和非肺部组织进行了CITE-seq,对另外27名患者进行了scRNA-seq。CITE-seq中采用了15个用于注释细胞类型的抗体,并最终扩展到81个抗体进行更具体的研究。除此之外,作者们的还对三名患者进行了scRNA-seq/TCR-seq的联合分析。图1 对病人NSCLC肿瘤组织的CITE-seq、scRNA-seq以及TCR-seq分析总的来说,来自35个肿瘤和29个相匹配的非肺部样本中的361,929个单细胞被分为30个注释的转录状态细胞群。基于RNA的聚类分析,作者们共鉴定除了49个免疫细胞群体,包括T细胞、B细胞、浆细胞、肥大细胞、浆细胞样树突状细胞以及单核吞噬细胞等。CITE-seq数据使用成熟的蛋白质细胞标记物进一步确认了细胞身份。为了确定组织取样是否会导致分析结果的差异,作者们对8名患者的每个肿瘤的三个不同区域进行了取样对比分析。作者们发现免疫细胞表型的差异主要是由肿瘤之间的差异而非区域取样差异造成的。因此,肿瘤微环境中的特征稳健且可重复,促使作者们进一步分析其中转录状态的差异与肿瘤分型之间的关系。通过对肿瘤的scRNA-seq以及CITE-seq分析,作者们发现肿瘤中树突细胞(Dendritic cells,DC)组分主要包括cDC1、cDC2、富含调控因子的成熟mregDC以及DC3类型(图2)。其中DC3是肿瘤中最普遍存在的DC亚型,并且在肿瘤中数量会增加,而mregDC是最为罕见的类型。先前的研究表明mregDC的激活对于诱导肿瘤定向T细胞应答至关重要,因此作者们想对单个载玻片上的肿瘤样品进行连续免疫组化染色,研究检测mregDC在肿瘤中的分布【1】。作者们发现在靠近T细胞的三级淋巴结构区域(Tertiary lymphoid structures,TLS)存在MYH11+滤泡树突状细胞的聚集。TLS结构的形成有助于患者接受免疫疗法以及预后【2,3】。通过对DC3细胞类型的分析,作者们发现DC3的特征介于单核细胞样细胞和cDC2样细胞之间。另外,通过基因表达的差异分析作者们鉴定发现一个DC模块基因mod28富集表达在肿瘤病灶区域,其中包括CD1A以及CD207基因表达,这些基因标记出LCH(Langerhans cell histiocytosis)朗格汉斯细胞组织细胞增生症细胞,因此作者们又将该细胞群的分类名称为LCH-like细胞。随后作者们对NSCLC中的T细胞进行了细致分类。CITE-seq对T细胞的分析鉴定发现CD8+细胞具有自然杀伤细胞样(Natural killer-like)特征,另外也有多种因子表达的激活型T细胞等。除此之外,通过对病人体内的NSCLC肿瘤进行配对的scRNA-seq/TCR-seq分析,作者们发现激活型T细胞是肿瘤中存在最多的类群,而且与非肺部组织相比肿瘤内包含多种类型的T细胞,比如激活型T细胞、周期型T细胞以及调节型T细胞等。作者们对的肿瘤中免疫细胞的数量进行分析后发现,B细胞和浆细胞的数量在肿瘤中都出现了显著的升高,但是B细胞与浆细胞之间的比例相对来说是比较稳定的。为了建立起细胞表型驱动病人多样性的关联,作者们希望对细胞类型出现频率进行归一化分析。通过该分析,作者们发现激活型T细胞、IgG+浆细胞以及MoMΦ-II细胞对于肺癌的出现具有很高的相关性。因此,作者们将该细胞组成称为肺癌激活模块(Lung cancer activation module,LCAM)。作者们可以根据肿瘤免疫微环境中存在的免疫细胞的类型对病人进行分型,与已有的聚类方法Seurat【4】相比LCAM分型方法具有很高的准确性和稳健性,对其他独立于本工作的数据库【5】进行测试也可以确认该LCAM分类方法具有很高的可重复性。作者们发现LCAM评分与病人吸烟的情况具有相关性,该细胞模块的表达是对突变和异位表达的肿瘤抗原的适应性反映的标志。而且,LCAM与TP53突变负担也存在相关性,TP53突变的肿瘤与TP53野生型的肿瘤相比,LCAM评分更高。而且TP53的突变与肿瘤突变负担也存在相关性。为了鉴定这些发现在其他肿瘤中是否具有普适性,作者们在肺鳞状细胞癌中也进行了相似的分析,发现肺鳞状细胞癌中也表现出较高的LCAM评分水平。因此,LCAM与肿瘤突变负担相关,可能可以作为特异性免疫检查点阻断反应的非冗余生物标志物。 工作模型总的来说,该工作通过对35个NSCLC病人中相匹配的肺部肿瘤与非肺部组织的scRNA-seq、CITE-seq以及TCR-seq,构建了迄今为止最大的早期肺癌免疫反应细胞图谱,并通过对其中免疫细胞类型的分析建立了对NSCLC肿瘤进行详细分型的LCAM模块,LCAM评分较高说明患者正在经历一个更有力的抗原特异性抗肿瘤适应性免疫应答过程,同时说明LCAM可以作为更直接的衡量抗原特异性抗肿瘤免疫激活的指标。原文链接:https://doi.org/10.1016/j.ccell.2021.10.009
  • 保卫细胞宝宝离不开细胞培养的四大护法
    隔壁的直男师兄今年喜得千金,最近总在实验室诡异地傻笑,问他为何,说是时常想起女儿的可爱模样。 这种感情,没养育过孩子的人恐怕理解不了。但生物汪在实验室养育细胞,也一样寄托感情,生怕细胞被养坏了。一个闪失,就前功尽弃。实验结果不可靠,没有一致性和稳定性,还重复不出来,再浓密的头发也经不住这样的考验。所以,有一个稳定、一致的培养环境,那就很重要了。 培养细胞不可能24小时值守,快快请出四大护法相助! 1. 大护法:二甲基亚砜(DMSO) 成功冻存和复苏细胞是细胞培养研究的常规操作。细胞低温储藏时,防止冰晶形成是维持细胞活力的关键。大护法DMSO作为冷冻保护玻璃化剂,可以让细胞免受冰晶导致的机械损伤。大护法法力无边,能够用于原代、继代培养和重组的异倍体和杂交瘤细胞系、胚胎干细胞 (ESC) 以及造血干细胞的冻存。 下面为大家解密DMSO这个既熟悉又陌生的细胞培养大护法~~l DMSO的摩尔浓度是多少?DMSO的摩尔浓度为14.1 M,依据是密度1.1 g/mL和分子量78.13 g/ml。l DMSO的来源?过去,DMSO是从树皮中分离出来的。现在,它是一种商业合成的溶剂。l 细胞冻存培养基中应使用什么浓度的DMSO?DMSO通常以1-10%的浓度使用,具体取决于细胞系。 l DMSO应该是液体,为什么我收到后却是固体?DMSO的熔点为16-19℃,室温过低就凝固。这并不妨碍使用,可以缓慢加热令其重新液化,不会有任何影响。l 哪种类型的过滤器可用于无菌过滤DMSO?DMSO可以用带0.2 μm PTFE膜的过滤器进行无菌过滤。 每个伺候细胞宝宝的“宝爸宝妈”对棕瓶子白盖子的DMSO应该都不陌生。没错!正是Sigma-Aldrich® 品牌热卖的这款DMSO(货号:D2650):明星产品,质量过硬,口碑积累,适用性广,久经验证。 2. 二护法:血清 血清里的生长因子能促进细胞的繁殖,附着因子可促进细胞的贴壁,此外矿物质、脂类及激素对细胞也大有裨益。常用的血清有胎牛血清和小牛血清,公认澳洲来源的血清品质更优、更安全。 赶快来了解一下保护细胞宝宝的二护法吧~~l 如何解冻血清?血清应在2-8°C过夜解冻以避免降解,或者在室温条件下,定期轻轻摇动使组分重悬。解冻的血清在加入细胞培养基前应该混合均匀。反复冻存会严重影响血清品质,建议将解冻的血清分装成单次使用量,并冻存于-20°C。如果储存于2-8°C的环境中,应该在2-4周内尽快使用。温度超过37°C时血清会降解,功能遭到破坏。l 如果血清收到时存在部分解冻,还能继续使用吗?血清是干冰包装运输,到达时应该是冷冻状态。运输超期,会部分解冻,但依然可以继续使用。l 培养基中加入血清和所有补充物后可以储存多久?如果正确无菌操作,添加血清的培养基可以在2-8°C最长储存6周。不论储存时间长短,一旦培养基变浑浊,应该使用适当的方法丢弃。l 为什么血清会出现浑浊或絮状物质?原因很多,主要有二:1. 反复的冻融会使血清脂蛋白发生变性造成浑浊,所以,一定要分装哦~~2. 血清加工中遗留的纤维蛋白原在解冻时会转化成纤维蛋白,过量的纤维蛋白就呈现为絮状物。不要着急,可以离心移除;不推荐过滤哦,因为容易堵。l 什么是γ辐照的血清?γ辐照的血清通过暴露于放射性60Co产生的25-40 kGy剂量的γ射线来灭活病毒和其他外来微生物(比如支原体)。γ辐照处理不影响血清的理化性质或细胞培养性能。l 为什么有些血清是热灭活的?如何热灭活?哺乳动物血清中天然存在的补体蛋白参与细胞溶解事件、收缩平滑肌、从肥大细胞和血小板中释放组胺和激活淋巴细胞和髓细胞。热灭活破坏了血清中补体的活性,因此免疫学应用,培养胚胎干细胞、昆虫细胞和平滑肌细胞时推荐使用。热灭活方法是在56°C水浴中处理30分钟,并每隔大约10分钟旋转一次瓶子。为了保持精确,可使用一个类似大小的瓶子作为对照,对照瓶内放入同等体积的水,并放置一个温度计,在温度到达56°C时开始计时30分钟。热灭活过程必须小心控制,避免血清中支持细胞和组织繁殖的关键蛋白组分发生降解。l 胎牛血清的颜色和之前使用的批次不同,会影响血清使用效果吗?血清的颜色取决于血红蛋白浓度,颜色差异不影响血清性能。 说了这么多,从哪里请到这尊神呢?当然可以选择默克啦~~澳洲来源的牛血清,满足培养细胞的不同需要!货号产品描述F8318-500ML胎牛血清,澳大利亚来源,无菌,适合细胞培养,适合杂交瘤细胞,500mLF8687-500ML胎牛血清,澳大利亚来源,γ辐照,无菌,适合细胞培养,适合杂交瘤细胞,500mLB7446-1000ML小牛血清,澳大利亚来源,无菌,适合细胞培养,适合杂交瘤细胞,1000mLB7447-1000ML小牛血清,澳大利亚来源,γ辐照,无菌,适合细胞培养,适合杂交瘤细胞,1000mL 3. 三护法:胰蛋白酶 在细胞培养中,从组织上解离或从贴壁基质上分离细胞的步骤很关键,一般使用胰蛋白酶。胰蛋白酶作用于赖氨酸或精氨酸的C末端,在37°C时具有最佳的效率,因此使用期前要预热。当然,高浓度的胰蛋白酶长期孵育会去除细胞表面蛋白而损伤细胞,甚至杀死细胞。看来,这个护法的脾气可不好哦~~ 根据应用和细胞类型的不同,胰蛋白酶的组分和浓度也不同。比如,粘附分子在钙离子存在时决定细胞-细胞和细胞-基质的相互作用,为了削弱折衷联系,通常使用含EDTA的胰蛋白酶螯合二价阳离子(Ca, Mg)(点击这里,了解更多:T4049)。 胰蛋白酶的主要来源是猪的胰脏,产品是冻干粉或溶液。为了避免动物或微生物物质,现在也有技术可以在玉米中重组表达牛胰蛋白酶,厉害吧?(点击这里,了解更多:T3449)。 胰蛋白酶的使用浓度也很有讲究。对于强贴壁细胞系,常使用0.25%-2.5%的胰蛋白酶。如果实验需要细胞表面蛋白完整,则应降低使用浓度(0.05%胰蛋白酶)。 4. 四护法:抗生素 细菌宝宝的生存环境这么好,肯定有坏蛋觊觎,这就需要请出四护法——抗生素。 常见的生物污染由细菌、真菌和支原体造成,部分由病毒、化学物和细胞交叉污染造成。抗生素可以控制细胞培养中的生物污染。灵活使用抗生素是控制污染的方法,但千万不要偷懒,还是要注意无菌操作哦~~ 青霉素对大多数革兰氏阳性菌和少数革兰氏阴性菌有效,链霉素对革兰氏阴性菌和少数革兰氏阳性菌有效,联合使用青霉素和链霉素(简称双抗),就能有效控制细胞培养中大多数细菌的污染啦~~ 默克旗下有相当靠谱的抗生素。Sigma-Aldrich® 品牌热卖的青链霉素溶液(货号为V900929)不仅性能稳定,超高性价比;而且还是即用型经典配方(10KU青霉素和10mg链霉素/mL),直接以1:100比例添加到培养基中就全搞定! 怎么样?这四大护法,是不是各个身手不凡呀!有了他们,细胞宝宝就可以健康无忧啦~~ 友情提醒,11月起我们会推出四大护法优惠组合套装,敬请留意~也欢迎大家在留言区分享自己培养细胞的心得体会~~我们会精选出五个有趣有料的留言,送上默克超可爱的萌娃家族盲盒一个,共有5位幸运儿,快来留言参与吧! 留言截止时间:2020年10月30日12:00
  • 保卫细胞宝宝离不开细胞培养的四大护法
    隔壁的直男师兄今年喜得千金,最近总在实验室诡异地傻笑,问他为何,说是时常想起女儿的可爱模样。 这种感情,没养育过孩子的人恐怕理解不了。但生物汪在实验室养育细胞,也一样寄托感情,生怕细胞被养坏了。一个闪失,就前功尽弃。实验结果不可靠,没有一致性和稳定性,还重复不出来,再浓密的头发也经不住这样的考验。所以,有一个稳定、一致的培养环境,那就很重要了。 培养细胞不可能24小时值守,快快请出四大护法相助! 1. 大护法:二甲基亚砜(DMSO) 成功冻存和复苏细胞是细胞培养研究的常规操作。细胞低温储藏时,防止冰晶形成是维持细胞活力的关键。大护法DMSO作为冷冻保护玻璃化剂,可以让细胞免受冰晶导致的机械损伤。大护法法力无边,能够用于原代、继代培养和重组的异倍体和杂交瘤细胞系、胚胎干细胞 (ESC) 以及造血干细胞的冻存。 下面为大家解密DMSO这个既熟悉又陌生的细胞培养大护法~~l DMSO的摩尔浓度是多少?DMSO的摩尔浓度为14.1 M,依据是密度1.1 g/mL和分子量78.13 g/ml。l DMSO的来源?过去,DMSO是从树皮中分离出来的。现在,它是一种商业合成的溶剂。l 细胞冻存培养基中应使用什么浓度的DMSO?DMSO通常以1-10%的浓度使用,具体取决于细胞系。 l DMSO应该是液体,为什么我收到后却是固体?DMSO的熔点为16-19℃,室温过低就凝固。这并不妨碍使用,可以缓慢加热令其重新液化,不会有任何影响。l 哪种类型的过滤器可用于无菌过滤DMSO?DMSO可以用带0.2 μm PTFE膜的过滤器进行无菌过滤。 每个伺候细胞宝宝的“宝爸宝妈”对棕瓶子白盖子的DMSO应该都不陌生。没错!正是Sigma-Aldrich® 品牌热卖的这款DMSO(货号:D2650):明星产品,质量过硬,口碑积累,适用性广,久经验证。 2. 二护法:血清 血清里的生长因子能促进细胞的繁殖,附着因子可促进细胞的贴壁,此外矿物质、脂类及激素对细胞也大有裨益。常用的血清有胎牛血清和小牛血清,公认澳洲来源的血清品质更优、更安全。 赶快来了解一下保护细胞宝宝的二护法吧~~l 如何解冻血清?血清应在2-8°C过夜解冻以避免降解,或者在室温条件下,定期轻轻摇动使组分重悬。解冻的血清在加入细胞培养基前应该混合均匀。反复冻存会严重影响血清品质,建议将解冻的血清分装成单次使用量,并冻存于-20°C。如果储存于2-8°C的环境中,应该在2-4周内尽快使用。温度超过37°C时血清会降解,功能遭到破坏。l 如果血清收到时存在部分解冻,还能继续使用吗?血清是干冰包装运输,到达时应该是冷冻状态。运输超期,会部分解冻,但依然可以继续使用。l 培养基中加入血清和所有补充物后可以储存多久?如果正确无菌操作,添加血清的培养基可以在2-8°C最长储存6周。不论储存时间长短,一旦培养基变浑浊,应该使用适当的方法丢弃。l 为什么血清会出现浑浊或絮状物质?原因很多,主要有二:1. 反复的冻融会使血清脂蛋白发生变性造成浑浊,所以,一定要分装哦~~2. 血清加工中遗留的纤维蛋白原在解冻时会转化成纤维蛋白,过量的纤维蛋白就呈现为絮状物。不要着急,可以离心移除;不推荐过滤哦,因为容易堵。l 什么是γ辐照的血清?γ辐照的血清通过暴露于放射性60Co产生的25-40 kGy剂量的γ射线来灭活病毒和其他外来微生物(比如支原体)。γ辐照处理不影响血清的理化性质或细胞培养性能。l 为什么有些血清是热灭活的?如何热灭活?哺乳动物血清中天然存在的补体蛋白参与细胞溶解事件、收缩平滑肌、从肥大细胞和血小板中释放组胺和激活淋巴细胞和髓细胞。热灭活破坏了血清中补体的活性,因此免疫学应用,培养胚胎干细胞、昆虫细胞和平滑肌细胞时推荐使用。热灭活方法是在56°C水浴中处理30分钟,并每隔大约10分钟旋转一次瓶子。为了保持精确,可使用一个类似大小的瓶子作为对照,对照瓶内放入同等体积的水,并放置一个温度计,在温度到达56°C时开始计时30分钟。热灭活过程必须小心控制,避免血清中支持细胞和组织繁殖的关键蛋白组分发生降解。l 胎牛血清的颜色和之前使用的批次不同,会影响血清使用效果吗?血清的颜色取决于血红蛋白浓度,颜色差异不影响血清性能。 说了这么多,从哪里请到这尊神呢?当然首选默克啦~~澳洲来源的牛血清,满足培养细胞的不同需要!货号产品描述F8318-500ML胎牛血清,澳大利亚来源,无菌,适合细胞培养,适合杂交瘤细胞,500mLF8687-500ML胎牛血清,澳大利亚来源,γ辐照,无菌,适合细胞培养,适合杂交瘤细胞,500mLB7446-1000ML小牛血清,澳大利亚来源,无菌,适合细胞培养,适合杂交瘤细胞,1000mLB7447-1000ML小牛血清,澳大利亚来源,γ辐照,无菌,适合细胞培养,适合杂交瘤细胞,1000mL 3. 三护法:胰蛋白酶 在细胞培养中,从组织上解离或从贴壁基质上分离细胞的步骤很关键,一般使用胰蛋白酶。胰蛋白酶作用于赖氨酸或精氨酸的C末端,在37°C时具有最佳的效率,因此使用期前要预热。当然,高浓度的胰蛋白酶长期孵育会去除细胞表面蛋白而损伤细胞,甚至杀死细胞。看来,这个护法的脾气可不好哦~~ 根据应用和细胞类型的不同,胰蛋白酶的组分和浓度也不同。比如,粘附分子在钙离子存在时决定细胞-细胞和细胞-基质的相互作用,为了削弱折衷联系,通常使用含EDTA的胰蛋白酶螯合二价阳离子(Ca, Mg)(点击这里,了解更多:T4049)。 胰蛋白酶的主要来源是猪的胰脏,产品是冻干粉或溶液。为了避免动物或微生物物质,现在也有技术可以在玉米中重组表达牛胰蛋白酶,厉害吧?(点击这里,了解更多:T3449)。 胰蛋白酶的使用浓度也很有讲究。对于强贴壁细胞系,常使用0.25%-2.5%的胰蛋白酶。如果实验需要细胞表面蛋白完整,则应降低使用浓度(0.05%胰蛋白酶)。 4. 四护法:抗生素 细菌宝宝的生存环境这么好,肯定有坏蛋觊觎,这就需要请出四护法——抗生素。 常见的生物污染由细菌、真菌和支原体造成,部分由病毒、化学物和细胞交叉污染造成。抗生素可以控制细胞培养中的生物污染。灵活使用抗生素是控制污染的方法,但千万不要偷懒,还是要注意无菌操作哦~~ 青霉素对大多数革兰氏阳性菌和少数革兰氏阴性菌有效,链霉素对革兰氏阴性菌和少数革兰氏阳性菌有效,联合使用青霉素和链霉素(简称双抗),就能有效控制细胞培养中大多数细菌的污染啦~~ 默克旗下有相当靠谱的抗生素。Sigma-Aldrich® 品牌热卖的青链霉素溶液(货号为V900929)不仅性能稳定,超高性价比;而且还是即用型经典配方(10KU青霉素和10mg链霉素/mL),直接以1:100比例添加到培养基中就全搞定! 怎么样?这四大护法,是不是各个身手不凡呀!有了他们,细胞宝宝就可以健康无忧啦~~ 友情提醒,11月起我们会推出四大护法优惠组合套装,敬请留意~也欢迎大家在留言区分享自己培养细胞的心得体会~~我们会精选出五个有趣有料的留言,送上默克超可爱的萌娃家族盲盒一个,共有5位幸运儿,快来留言参与吧! 留言截止时间:2020年10月30日12:00
  • Science子刊| 多色免疫荧光标记联合转录组测序助力解析宫颈癌的单细胞分子特征
    宫颈癌是全世界女性第四大常见恶性肿瘤,每年可造成30多万人死亡。宫颈鳞癌(CESC)作为宫颈癌主要病理类型约占75%,通常经历由正常宫颈到宫颈上皮内瘤变再到CESC的发生和进展过程。然而,CESC进展过程中上皮和微环境细胞相互作用关系及其关键分子途径的发展尚不清楚。2023年1月27日,山东省肿瘤医院于金明院士、岳金波教授团队与解放军总医院第五医学中心刘兵研究员团队合作在Science Advances杂志上发表了题为Single-cell dissection of cellular and molecular features underlying human cervical squamous cell carcinoma initiation and progression的研究论文。为宫颈癌的诊疗提供了疾病诊断与预后的生物标志物和潜在的治疗靶点。为了阐明了宫颈上皮细胞的转录致瘤轨迹并揭示了 CESC 启动和进展中涉及的关键因素,文章作者对来自对四组13例不同病变阶段的宫颈组织(包括NC、CIN、早期CESC和晚期CESC)的起始和进展过程中,上皮细胞、巨噬细胞、NK和T细胞、内皮细胞、成纤维细胞的转录组变化及亚群特征进行了深入探索。该研究通过单细胞转录组测序,进行了单细胞RNA测序(scRNA-seq)构建了宫颈鳞癌发生和进展过程中的细胞和分子特征图谱,发现了大量肿瘤发生和进展相关的新的细胞亚群和分子。在此基础上,提出了针对“CESC生态系统“进行分析的必要性,尤其是考虑到免疫系统是作为一个动态的整体,简单对于单个细胞亚型的描述不足以展现更大的”全景“。围绕这个目标,在文章中通过大量的转录组数据,研究者发现几个细胞簇的相对丰度显示与较短的存活期显着相关:CCL20 +Mac、APOE+Mac、epi7、CD56+NK、TH17、耗尽的CD8 +T、PODXL+EC、TNFRSF9高Treg和 mCAF。相反,其他细胞簇的丰度与更长的存活率显着相关:pDC、CD16+NK、GZMK+CD8+T、ZNF683+CD8+T、CLEC9A+DC、epi8和肥大细胞。 实验部分除了转录组测序相关之外,作者使用TissueGnostics公司TissueFAXS Plus全景组织细胞定量分析系统获取图像。在长存活率相关的因素中,作者重点提出了CESC中的epi8的高相对丰度可以促进我们观察到的高水平T细胞浸润从而增强与肿瘤细胞的串扰。文中作者表示,尽管对 CESC 进行了大量的转录组分析,但这些方法无法提供对主要细胞参与者、它们的相互作用伙伴以及驱动疾病发生和发展的关键分子途径的高分辨率洞察,尤其是CAF,作为肿瘤微环境中的关键组成部分,其通过多种机制促进恶性生长和侵袭 ,而且空间 CESC 信息对于理解细胞簇的位置及其相互作用很重要,但在 scRNA-seq 分析的解离过程中存在丢失。多重免疫荧光标记与转录组测序为了揭示了 mCAF 和 vCAF 的两个主要亚群,作者选择使用TissueFAXS Cytometry技术了,通过多重免疫荧光标记验证了它们在人类 CESC 中的存在,发现 mCAF 表达高水平的与促肿瘤途径相关的基因(主要位于富含胶原蛋白的基质条纹内),以及细胞间相互作用分析表明,mCAF 可主要通过 NRG1/ERBB3途径促进 CESC 进展,该途径参与抗雄激素对前列腺癌的抗性,在之前的研究中尚未报道。这部分内容也是TissueGnostics公司的TissueFAXS Cytometry技术在关键领域取得的最新科研进展之一。Fig 1 CESC样本组织切片中的T细胞(PAN-CK(红色)、HLA-DR(蓝色)、IDO1(绿色)和CD3(灰色))的多重免疫荧光标记图像。在较短存活期显著相关的因素中,作者研究了CESC进展过程中基质癌相关的呈现为细胞(mCAF)的亚群特征,发现mCAF可能促进CESC的进展,并进一步发现其作用机制是通过NRG1/ERBB3 通路来实现的。Fig 2 多重免疫荧光CESC组织样本中mCAF和vCAF上的特异性标记物。Fig 3 mCAF肿瘤特异性配体-受体对的多重免疫荧光标记,包括NRG1-ERBB3和Wnt5A-FZD6。&bull 单细胞测序技术完成了细胞水平的组学研究,但是获取的信息内缺失了细胞的空间分布信息。如果想要补充细胞的空间位置表型,就需要引入多重免疫荧光技术。多色免疫荧光技术通过单细胞分辨率的组织成像,能够多靶点、可视化地描绘细胞的复杂空间位置信息,从而揭示细胞间的相互作用关系,细化微环境的空间结构。&bull 单细胞测序技术与多重免疫荧光技术的结合能够多层次、多角度、多组学地研究肿瘤微环境及免疫微环境,同时获悉胞间联系、基因空间变化等信息,并赋予关键基因的细胞分布信息和组织分布信息,从而更加精准地研究疾病相关分子机制并探索潜在的治疗靶点。同时作者也在讨论部分,使用TissueFAXS Cytometry技术生成的数据,可以针对人体组织进行更详细的研究,以回答 scRNA-seq 无法解决特定问题。
  • 培养细胞不可能24小时值守,快快请出四大护法相助!
    隔壁的直男师兄今年喜得千金,最近总在实验室诡异地傻笑,问他为何,说是时常想起女儿的可爱模样。这种感情,没养育过孩子的人恐怕理解不了。但生物汪在实验室养育细胞,也一样寄托感情,生怕细胞被养坏了。一个闪失,就前功尽弃。实验结果不可靠,没有一致性和稳定性,还重复不出来,再浓密的头发也经不住这样的考验。所以,有一个稳定、一致的培养环境,那就很重要了。 培养细胞不可能24小时值守,快快请出四大护法相助!大护法:二甲基亚砜(DMSO)成功冻存和复苏细胞是细胞培养研究的常规操作。细胞低温储藏时,防止冰晶形成是维持细胞活力的关键。大护法DMSO作为冷冻保护玻璃化剂,可以让细胞免受冰晶导致的机械损伤。大护法法力无边,能够用于原代、继代培养和重组的异倍体和杂交瘤细胞系、胚胎干细胞 (ESC) 以及造血干细胞的冻存。 下面为大家解密DMSO这个既熟悉又陌生的细胞培养大护法~~DMSO的摩尔浓度是多少?DMSO的摩尔浓度为14.1 M,依据是密度1.1 g/mL和分子量78.13 g/ml。DMSO的来源?过去,DMSO是从树皮中分离出来的。现在,它是一种商业合成的溶剂。细胞冻存培养基中应使用什么浓度的DMSO?DMSO通常以1-10%的浓度使用,具体取决于细胞系。 DMSO应该是液体,为什么我收到后却是固体?DMSO的熔点为16-19℃,室温过低就凝固。这并不妨碍使用,可以缓慢加热令其重新液化,不会有任何影响。哪种类型的过滤器可用于无菌过滤DMSO?DMSO可以用带0.2 μm PTFE膜的过滤器进行无菌过滤。 每个伺候细胞宝宝的“宝爸宝妈”对棕瓶子白盖子的DMSO应该都不陌生。没错!正是Sigma-Aldrich® 品牌热卖的这款DMSO(货号:D2650):明星产品,质量过硬,口碑积累,适用性广,久经验证。 二护法:血清血清里的生长因子能促进细胞的繁殖,附着因子可促进细胞的贴壁,此外矿物质、脂类及激素对细胞也大有裨益。常用的血清有胎牛血清和小牛血清,公认澳洲来源的血清品质更优、更安全。 赶快来了解一下保护细胞宝宝的二护法吧~~如何解冻血清?血清应在2-8°C过夜解冻以避免降解,或者在室温条件下,定期轻轻摇动使组分重悬。解冻的血清在加入细胞培养基前应该混合均匀。反复冻存会严重影响血清品质,建议将解冻的血清分装成单次使用量,并冻存于-20°C。如果储存于2-8°C的环境中,应该在2-4周内尽快使用。温度超过37°C时血清会降解,功能遭到破坏。如果血清收到时存在部分解冻,还能继续使用吗?血清是干冰包装运输,到达时应该是冷冻状态。运输超期,会部分解冻,但依然可以继续使用。培养基中加入血清和所有补充物后可以储存多久?如果正确无菌操作,添加血清的培养基可以在2-8°C最长储存6周。不论储存时间长短,一旦培养基变浑浊,应该使用适当的方法丢弃。为什么血清会出现浑浊或絮状物质?原因很多,主要有二:反复的冻融会使血清脂蛋白发生变性造成浑浊,所以,一定要分装哦~~血清加工中遗留的纤维蛋白原在解冻时会转化成纤维蛋白,过量的纤维蛋白就呈现为絮状物。不要着急,可以离心移除;不推荐过滤哦,因为容易堵。什么是γ辐照的血清?γ辐照的血清通过暴露于放射性60Co产生的25-40 kGy剂量的γ射线来灭活病毒和其他外来微生物(比如支原体)。γ辐照处理不影响血清的理化性质或细胞培养性能。为什么有些血清是热灭活的?如何热灭活?哺乳动物血清中天然存在的补体蛋白参与细胞溶解事件、收缩平滑肌、从肥大细胞和血小板中释放组胺和激活淋巴细胞和髓细胞。热灭活破坏了血清中补体的活性,因此免疫学应用,培养胚胎干细胞、昆虫细胞和平滑肌细胞时推荐使用。热灭活方法是在56°C水浴中处理30分钟,并每隔大约10分钟旋转一次瓶子。为了保持精确,可使用一个类似大小的瓶子作为对照,对照瓶内放入同等体积的水,并放置一个温度计,在温度到达56°C时开始计时30分钟。热灭活过程必须小心控制,避免血清中支持细胞和组织繁殖的关键蛋白组分发生降解。胎牛血清的颜色和之前使用的批次不同,会影响血清使用效果吗?血清的颜色取决于血红蛋白浓度,颜色差异不影响血清性能。 说了这么多,从哪里请到这尊神呢?当然选默克啦~~澳洲来源的牛血清,满足培养细胞的不同需要!货号产品描述F8318-500ML胎牛血清,澳大利亚来源,无菌,适合细胞培养,适合杂交瘤细胞,500mLF8687-500ML胎牛血清,澳大利亚来源,γ辐照,无菌,适合细胞培养,适合杂交瘤细胞,500mLB7446-1000ML小牛血清,澳大利亚来源,无菌,适合细胞培养,适合杂交瘤细胞,1000mLB7447-1000ML小牛血清,澳大利亚来源,γ辐照,无菌,适合细胞培养,适合杂交瘤细胞,1000mL 三护法:胰蛋白酶在细胞培养中,从组织上解离或从贴壁基质上分离细胞的步骤很关键,一般使用胰蛋白酶。胰蛋白酶作用于赖氨酸或精氨酸的C末端,在37°C时具有最佳的效率,因此使用期前要预热。当然,高浓度的胰蛋白酶长期孵育会去除细胞表面蛋白而损伤细胞,甚至杀死细胞。看来,这个护法的脾气可不好哦~~根据应用和细胞类型的不同,胰蛋白酶的组分和浓度也不同。比如,粘附分子在钙离子存在时决定细胞-细胞和细胞-基质的相互作用,为了削弱折衷联系,通常使用含EDTA的胰蛋白酶螯合二价阳离子(Ca, Mg)(点击这里,了解更多:T4049)。胰蛋白酶的主要来源是猪的胰脏,产品是冻干粉或溶液。为了避免动物或微生物物质,现在也有技术可以在玉米中重组表达牛胰蛋白酶,厉害吧?(点击这里,了解更多:T3449)。胰蛋白酶的使用浓度也很有讲究。对于强贴壁细胞系,常使用0.25%-2.5%的胰蛋白酶。如果实验需要细胞表面蛋白完整,则应降低使用浓度(0.05%胰蛋白酶)。四护法:抗生素细菌宝宝的生存环境这么好,肯定有坏蛋觊觎,这就需要请出四护法——抗生素。常见的生物污染由细菌、真菌和支原体造成,部分由病毒、化学物和细胞交叉污染造成。抗生素可以控制细胞培养中的生物污染。灵活使用抗生素是控制污染的方法,但千万不要偷懒,还是要注意无菌操作哦~~青霉素对大多数革兰氏阳性菌和少数革兰氏阴性菌有效,链霉素对革兰氏阴性菌和少数革兰氏阳性菌有效,联合使用青霉素和链霉素(简称双抗),就能有效控制细胞培养中大多数细菌的污染啦~~默克旗下有相当靠谱的抗生素。Sigma-Aldrich® 品牌热卖的青链霉素溶液(货号为V900929)不仅性能稳定,超高性价比;而且还是即用型经典配方(10KU青霉素和10mg链霉素/mL),直接以1:100比例添加到培养基中就全搞定!怎么样?这四大护法,是不是各个身手不凡呀!有了他们,细胞宝宝就可以健康无忧啦~~友情提醒,11月起我们会推出四大护法优惠组合套装,敬请留意~也欢迎大家在留言区分享自己培养细胞的心得体会~~
  • 药理学家绘制出心肌细胞表观基因组
    近日研究发现,药理学家已经成功地绘制出心肌细胞的表观基因组。他们希望这一发现引起有关先天性心脏病和慢性心力衰竭的新见解。科学家们在《自然通讯》杂志上发表了相关内容。表观基因组是表观遗传机制的总体,表观遗传机制决定细胞中哪些基因是活跃的,哪些基因是不活跃的。内部或环境条件的变化,如营养、压力、或药物,可以留下表观遗传模式。这样的机制在癌症的发展过程中发挥重要作用,但它对心脏病的意义还不太为人所知。中文名称:人粘膜相关上皮趋化因子(MEC/CCL28)ELISA试剂盒价格96t/48t 英文名称:Human mucosae associated epithelia chemokine,MEC ELISAkit中文名称:人B细胞活化因子受体(BAFF-R)ELISA试剂盒价格96t/48t 英文名称:Human B cell activation factorr from the tumor necrosis factor family 中文名称:人血管内皮细胞生长因子受体3(VEGFR-3/Flt-4)ELISA试剂盒价格96t/48t 英文名称:Human Vascuoar endothelial cell growth factor 中文名称:人血管内皮细胞生长因子受体1(VEGFR-1/Flt1)ELISA试剂盒价格96t/48t 英文名称:Human Vascuoar endothelial cell growth factor 中文名称:人血管内皮细胞生长因子D(VEGF-D)ELISA试剂盒价格96t/48t 英文名称:Human Vascular Endothelial cell Growth Factor D,VEGF-D 中文名称:人血管内皮细胞生长因子C(VEGF-C)ELISA试剂盒价格96t/48t 英文名称:Human Vascular Endothelial cell Growth Factor C,VEGF-C 中文名称:人血管内皮细胞生长因子B(VEGF-B)ELISA试剂盒价格96t/48t 英文名称:Human Vascular Endothelial cell Growth Factor B,VEGF-B 中文名称:人血管内皮细胞生长因子(VEGF)ELISA试剂盒价格96t/48t 英文名称:Human Vascular Endothelial cell Growth Factor,VEGF ELISAkit 中文名称:人血管内皮细胞粘附分子1(VCAM-1/CD106)ELISA试剂盒价格96t/48t 英文名称:Human Vascuolar cell adhesion molecule 1,VCAM-1 中文名称:人可溶性肿瘤坏死因子相关凋亡诱导配体(sTRAIL)ELISA试剂盒价格96t/48t 英文名称:Human soluble tumor necrosis factor-related apoptosis 中文名称:人肿瘤坏死因子相关凋亡诱导配体4(TRAIL-R4)ELISA试剂盒价格96t/48t 英文名称:Human tumor necrosis factor-related apoptosis-中文名称:人肿瘤坏死因子相关凋亡诱导配体3(TRAIL-R3)ELISA试剂盒价格96t/48t 英文名称:Human tumor necrosis factor-related apoptosis-中文名称:人肿瘤坏死因子相关凋亡诱导配体1(TRAIL-R1)ELISA试剂盒价格96t/48t 英文名称:Human tumor necrosis factor-related apoptosis-中文名称:人肿瘤坏死因子β(TNF-β)ELISA试剂盒价格96t/48t 英文名称:Human Tumor necrosis factor β,TNF-β ELISAkit 中文名称:人肿瘤坏死因子α(TNF-α)ELISA试剂盒价格96t/48t 英文名称:Human Tumor necrosis factor α,TNF-α ELISAkit 中文名称:人肿瘤坏死因子可溶性受体Ⅱ(TNFsR-Ⅱ)ELISA试剂盒价格96t/48t 英文名称:Human Tumor necrosis factor soluble receptor Ⅱ,TNFsR-Ⅱ 中文名称:人肿瘤坏死因子可溶性受体Ⅰ(TNFsR-Ⅰ)ELISA试剂盒价格96t/48t 英文名称:Human Tumor necrosis factor soluble receptor Ⅰ,TNFsR-Ⅰ中文名称:人转化生长因子β1(TGF-β1)ELISA试剂盒价格96t/48t 英文名称:Human Transforming Growth factor β1,TGF-β1 ELISAkit 中文名称:人转化生长因子α(TGF-α)ELISA试剂盒价格96t/48t 英文名称:Human transforming growth factor α,TGF-α ELISAkit中文名称:人基质细胞衍生因子1β(SDF-1β/CXCL12)ELISA试剂盒价格96t/48t 英文名称:Human Stromal cell derived factor 1β,SDF-1β 中文名称:人干细胞因子受体(SCFR)ELISA试剂盒价格96t/48t 英文名称:Human Stem Cell Factor Receptor,SCFR ELISAkit 中文名称:人干细胞因子/肥大细胞生长因子(SCF/MGF)ELISA试剂盒价格96t/48t 英文名称:Human Stem cell factor/mast cell growth 中文名称:人可溶性CD40配体(sCD40L)ELISA试剂盒价格96t/48t 英文名称:Human Soluble Cluster of differentiation 40 ligand,sCD40L ELISAkit 中文名称:人可溶性CD30配体(sCD30L)ELISA试剂盒价格96t/48t 英文名称:Human Soluble Cluster of differentiation 30 ligand,sCD30L ELISAkit 中文名称:人正常T细胞表达和分泌因子(RANTES/CCL5)ELISA试剂盒价格96t/48t 英文名称:Human regulated on activation in normal T-cell 中文名称:人P选择素(P-Selectin/CD62P/GMP140)ELISA试剂盒价格96t/48t 英文名称:Human P-Selectin/CD62P/GMP140 ELISAkit 中文名称:人血血小板衍生生长因子AB(PDGF-AB)ELISA试剂盒价格96t/48t 英文名称:Human Platelet-Derived Growth Factor AB,PDGF-AB ELISAkit 中文名称:人神经营养因子4(NT-4)ELISA试剂盒价格96t/48t 英文名称:Human Neurotrophin 4,NT-4 ELISAkit 中文名称:人的神经生长因子(NGF)ELISA试剂盒价格96t/48t 英文名称:Human Nerve growth factor,NGF ELISAkit 心脏在人出生和发育后起着无可替代的作用。它是胚胎发育形成时的第一个器官,并不断用氧气和营养供应着整个身体所需。心肌细胞的细胞核承担着控制基因表达过程中的中央功能。Ralf Gilsbach博士 和Lutz Hein教授领导的研究小组现在已经开发出一种新颖的方法,他们分离心脏组织中不同类型细胞的心肌细胞的细胞核。科学家们应用下一代DNA测序的方法分离创建高分辨率的DNA甲基化图像的细胞核,该细胞核调整基因活性和所有基因的表观遗传标志一样的最重要的表观遗传机制。这使他们确定在出生过程中打开心脏基因程序的表观遗传开关会引起慢性心脏衰竭。目前研究人员想在微小的组织切片活检中进行表观遗传分析,比如在心导管检查中进行分析
  • 此刻的你还在着急等双十一快递么,别错过这波ProSense大促!
    您在进行活体癌症和炎症研究时是否仍然遇到提升荧光成像信噪比的困难?传统的临床前小鼠模型主要依靠离体测量手段进行疾病形态学和组织学分析,以此评估肿瘤和其他疾病的临床症状。但使用这些测量方法可获得的信息量有限,且可能无法展示最生理相关的生物过程。相比之下,体内荧光成像可最大化实现终点定量,从而从一组动物中获取最相关的信息,但活体检测仍可能遇到低荧光信噪比的难题。PerkinElmer推出新颖的“智能” 近红外组织蛋白酶荧光探针ProSense可轻松应对上述两项挑战,实现对癌症和炎症病灶处相关联蛋白酶进行最佳可视化成像分析什么是蛋白酶,它们的功能是什么?众所周知,蛋白酶可使蛋白质发生特异性和非特异性水解。蛋白酶存在于包括细菌和病毒在内的各种生命形式中,经历多次进化后形成不同类别。半胱氨酸组织蛋白酶家族是其中一个重要的类别,是控制蛋白质寿命和活性的关键所在。在健康的生物系统中,蛋白质的表达和抑制受蛋白酶的剪切和降解功能调节,维持在精确的平衡状态。人溶酶体半胱氨酸组织蛋白酶家族有 11 个成员,其中许多具有重叠功能。其中较常见的溶酶体组织蛋白酶包括组织蛋白酶 B、L、S和纤溶酶,这些半胱氨酸组织蛋白酶几乎仅在溶酶体的弱酸性低 pH 环境中具有活性。研究证明,组织蛋白酶在细胞外间隙的异常调节和过表达反映出多种病理状态,包括:1炎症2癌症、肿瘤转移3动脉粥样硬化4心血管疾病5类风湿性关节炎、自身免疫性疾病、骨关节炎6肺相关疾病7神经炎症/痛觉过敏图 1.蛋白酶和半胱氨酸组织蛋白酶在溶酶体和细胞外间隙中表现出一定活性。ProSense 荧光信号激活示意图见右图ProSense 近红外荧光探针的作用原理是什么?ProSense 近红外荧光探针用于检测广谱组织蛋白酶家族的活性,因为这些酶的表达与重要疾病的发展相联系。ProSense 探针在完整状态下并不发射荧光信号,利用一项新型专利技术*可以实现对活化的蛋白酶活性进行可视化成像分析,最终探针在蛋白酶介导的剪切作用下被活化并释放极强的荧光信号。ProSense 探针可用于实时定量检测体内正常/异常表达的蛋白酶,包括组织蛋白酶。它通过胞饮作用进入溶酶体/内体,可以在不抑制蛋白酶活性的条件下,检测巨噬细胞、中性粒细胞和肥大细胞等炎症细胞或肿瘤细胞中溶酶体内的蛋白酶。ProSense 探针对静息巨噬细胞的吸收和活化作用极小,因此尤其适用于炎症研究,例如:在肺部炎症和极性外伤炎症中,ProSense 探针可以检测到大量活化的炎症细胞。图 2.ProSense 探针活化原理图。(左)非常接近荧光团的非活化探针(右)蛋白酶剪切作用分离荧光团以便活化我们在此介绍两项案例研究以说明 ProSense 荧光探针的应用方法:01哮喘炎症模型哮喘是一种以可逆性气道阻塞和气道高反应性为特征的炎症性疾病,其疾病过程由活化 T 淋巴细胞和嗜酸性粒细胞驱动。当人体吸入过敏原后,这些细胞会集中到肺部,并释放炎症介质、激活肥大细胞和上皮细胞、刺激粘液分泌,最终导致气道阻塞。首先用卵清蛋白免疫小鼠,在小鼠肺部激发对卵清蛋白的免疫应答,从而诱发过敏反应。三周后,用卵清蛋白对小鼠进行鼻腔给药。如图 3 所示,给药后肺部发生了以气道高反应性改变为特征的过敏反应,其原因是大量嗜酸性粒细胞涌入肺部,以及细胞因子和免疫因子的诱导作用,这些因子同时也是人类哮喘疾病的典型诱导因子(例如白细胞介素 IL-4,组胺和 IgE)。这些参数通常需要通过外科手术(测量气道高反应性)、处死小鼠(测量支气管肺泡灌洗 [BAL] 嗜酸性粒细胞计数)以及大量样品处理和制备步骤(用于基于微孔板的血清和支气管肺泡灌洗液免疫检测)等方式来测量和评估。相比之下,使用 ProSense 探针进行非侵入式成像可以追踪病变细胞,在多个时间点监控同一动物的疾病进展。图 3.注射 ProSense 680 的哮喘小鼠(左),肺内可见荧光和炎症的广泛分布。对照组小鼠(右)几乎没有荧光信号。(使用 FMT® 系统成像。)02肿瘤模型通过静脉注射 4T1 小鼠乳腺癌细胞建立转移性肺癌模型。在 ProSense 750 试剂给药前让肿瘤生长两周。如图 4 所示,非侵入式荧光成像的结果稳定,与肺总重量变化、离体组织成像和组织学评估等终末评估具有较好的相关性。这种成像方法有助于对体内癌症进展或转移性级联进行可视化分析和定量,并有利于开发新的治疗方法。图 4.注射 5X1054T1 细胞两周后,注射 ProSense 750 荧光探针,使用 FMT小动物活体荧光断层成像系统进行活体成像,并取出脏器进行离体脏器成像。将 ProSense 荧光探针检测融合到完整活体检测解决方案中ProSense 系列荧光探针可用于检测病灶部位高表达的组织蛋白酶(Cathepin)活性,包含组织蛋白酶B, L, S及 Plasmin,可用于癌症,关节炎,肺炎,血管新生,蛋白粥样硬化,心血管疾病研究及相关药物研发。ProSense 有三种波长规格可供选择:680、750 EX 和 750 FAST。值得一提的是,ProSense FAST (Fluorescent Activatable Sensor Technology,荧光活化传感器技术)的药代动力学特性更为出色,其激活用时更短,目标特异性信号更高,背景噪音更少,可显著减少注射后的等待时间。现针对ProSense系列部分产品可享受一次性50%折扣优惠,促销活动至2019年12月31日截止。促销产品目录*专利 9574085 - 含 N,N - 二取代磺酰胺的生物相容性荧光染料标记
  • 小鼠原代海马神经元细胞的分离培养方法!
    小鼠原代海马神经元细胞的分离培养方法!海马体主要负责记忆和学习,日常生活中的短期记忆都储存在海马体中。神经元是构成神经系统结构和功能的基本单位。神经元具有长突起,由细胞体和细胞突起构成。小鼠海马神经元细胞的组织来源于实验小鼠的正常脑组织,因为海马神经元细胞类似于干细胞属于高分度分化的细胞特性,具有不能传代,不能增殖等特点,所有收到细胞后尽快使用。为了更好的服务于广大科研工作者,百欧博伟生物技术人员特提供了海马神经元细胞分离培养方法,技术因人而异仅供参考:1、试验所需仪器设备及试剂(1)仪器生物安全柜CO2细胞培养箱荧光倒置显微镜高速冷冻离心机电热恒温鼓风干燥箱(2)试剂耗材T25细胞培养瓶血球计数板细胞培养孔板红细胞裂解液神经元完全培养基0.25%胰蛋白酶(含0.02%EDTA)多聚甲醛(PFA)DAPITriton X-100山羊血清NSEGoat anti-Rabbit lgG(H+L)Cross-Adsorbed Secondary antibody,Alexa Fluor 594Fluoromount-G荧光封片剂2、分离培养方法1) 取1-10 d的新生小鼠。用75%的乙醇浸泡,2) 在冰浴的PBS中分离海马,PBS洗涤3次,剪碎,3) 用0.25% Trypsin + 0.1% Ⅰ型胶原酶37℃水浴振荡消化30min,4) 用FBS终止消化,轻轻吹打,5) 过100 μm 滤网,6) 收集滤液,300 g离心5 min,7) 用完全培养基重悬沉淀,铺瓶。3、免疫荧光3.1.实验步骤(1)细胞爬片取3片玻璃片于24孔板中,每孔加入培养基1mL,加入细胞0.02million个/孔。置培养箱2h或过夜。(2)固定细胞爬片后,吸出培养基,用PBS洗1遍,加入4% PFA于4℃固定30min。用PBS洗3×5min/次。也可最后一次不吸出PBS,放4℃过夜。(3)破膜封闭将玻片除去水分,置于培养皿支撑物上,玻璃片封闭液配置:0.5% Trition X-100与PBS 1:1混合,再加10% 血清,取50uL破膜封闭液滴于防水膜上,将玻片上有细胞的一面盖上2h。(4)一抗孵育一抗配制:抗体与PBS 1:100(200)稀释破膜封闭后,取50uL一抗于防水膜上(湿盒中),将玻片(有细胞的一面)盖上置于4℃(最多可放置一周)(5)二抗孵育室温避光孵育二抗(二抗:PBS=1:500)2h后,PBS洗3×5min/次,染DAPI(DAPI:PBS=1:1000)5min,PBS洗3×5min/次。(6)包埋玻片上各滴1滴Fluoromount-G,将有细胞的一面盖上。鉴定细胞为P1代细胞3.2.检测结果(1)细胞免疫荧光鉴定照片阴性100X-DAPINSE100X-DAPI(2)检验基本情况:经免疫荧光鉴定,该细胞纯度达到90%以上。除了上述的细胞分离方法以外,百欧博伟还有很多关于其他细胞的分离方法,想要学习的小伙伴可以来百欧博伟进行现场学习,如果想要其他原代分离培养方法,可打电话或咨询相关技术人员哦。
  • 研究利器ImageXpress Pico开启小儿呼吸道感染研究大门
    重磅::科学家使用ImageXpress Pico证实在急性呼吸道病毒感染中,富含ha的ECM的形成促进了促炎症环境的形成。ImageXpress Pico本身具有高分辨率成像功能和强大的分析能力,加上其紧凑小巧的设计风格正是 “小身材,大能耐”的真实写照。西雅图儿童研究所首席研究员,西雅图儿童医院肺科和睡眠内科主治医师Stephen R. Reeves博士说:“ImageXpress Pico系统使我们的团队能够准确有效地评估肥大细胞与RSV感染的人肺成纤维细胞(HLFs)的结合特性,并更好地了解RSV的炎症反应。研究挑战——了解RSV感染的HLFs外基质中肥大细胞(mast cells)和透明质酸(hyaluronan,HA)的结合特征呼吸道合胞病毒(RSV)是世界范围内感染儿童最常见的病毒之一。病毒的轻度病例仅限于上呼吸道(鼻子和喉咙)炎症;更严重的病例会延伸到下呼吸道(支气管和肺),并伴有咳嗽、低烧和食欲不振。更严重的RSV感染可发展为肺炎、呼吸衰竭和或死亡。RSV具有高度传染性,主要影响儿童。然而,成年人和那些免疫系统较弱的人也易被影响。RSV的症状和传播与影响上呼吸道和下呼吸道的其他病毒类似,包括甲型和乙型流感病毒、鼻病毒、腺病毒以及冠状病毒株COVID-19。更多地了解这些病毒的潜在机制有助于阐明潜在的治疗方案。西雅图儿童研究所、华盛顿大学和贝纳罗亚研究所的研究人员着手研究RSV的一种潜在机制。Stephen Reeves博士和他的伙伴设计了几个实验来确定RSV感染的HLFs中肥大细胞和HA之间相互作用的下游炎症效应。为此需要用活细胞和固定的细胞做细胞荧光成像来测试摸索一系列的条件,包括包括HA在细胞外基质(ECM)中的位置和作用机制,肥大细胞蛋白表达,以及HA、肥大细胞和ECM之间的分子相互作用。传统的荧光显微镜成像需要使用玻璃盖片对细胞进行固定,这将浪费更多的时间。Reeves博士和他的团队需要一种更有效的方式去更有效的获得高质量的活细胞和固定组织图像。解决方法——高分辨率的活细胞和固定细胞荧光成像和分析研究团队选择了ImageXpress® Pico自动细胞成像系统,因为其易用性、灵活性和强大的分析能力。分析方法为了帮助该团队快速开展实验,我们的现场应用科学家和技术支持专家为不同的分析提供了现场培训和支持。这包括了实验方案和动态分析,这样就可以同时成像和分析。图像获取研究小组进行了活细胞成像,然后固定组织,对细胞外基质成分进行染色,而这些成分在活细胞中是不可视的。在ImageXpress Pico用多孔板进行成像,减少了与样品处理相关的时间。图像采集过程中,大面积的感兴趣区域可以通过高倍镜下的拼接模式获取。这样的成像方式既减少了额外的荧光显微镜重复验证工作,同时还可以得到高质量图片。结果分析Reeves博士和他的伙伴能够定量分析肥大细胞和感染了RSV的HLFs的细胞外基质(ECM)之间的相互作用,图片和分析数据如下:ImageXpress Pico系统还用于分析RSV感染的HLFs在48小时内TSG-6的表达和肥大细胞粘附的影响。图片和分析数据如下:(注:TSG-6是一种与炎症相关的蛋白,在RSV感染的细胞中表达上调)。ImageXpress Pico自动细胞成像系统产品使用ImageXpress Pico是一个稳定的、可靠的自动细胞成像系统,适于实验台面操作 。这台仪器专为个体生物实验室或高通量筛选应用而设计,其紧凑的设计风格结合了仪器本身高分辨率成像功能和强大的分析能力给到客户所有层面的成像体验。基于细胞分析,系统拥有强大的预设程序模板,以及先进的功能,如数字共焦。无论您是在做固定细胞或活细胞的荧光或明场成像,只需单击几下鼠标就可以开始成像和生成数据。结果高质量的数据有助于科学取得更快的突破Reeves博士使用ImageXpress Pico首次证实:l 在感染RSV的儿童捐赠者来源的HLFs中,HA的合成更强,从而产生富含HA的细胞外基质(ECM)l 富含HA的ECM促进肥大细胞更强的黏附,增加肥大细胞蛋白酶的释放,导致炎症反应(如气道收缩、粘液生成、咳嗽)l RSV感染的HLFs表现出肥大细胞炎症介质的表达增加,以及肥大细胞黏附增加研究结果表明,在急性呼吸道病毒感染中,富含ha的ECM的形成促进了促炎症环境的形成。这一机制对RSV等呼吸道病毒的干预治疗具有深远的意义。总结:研究总结:该研究表明,感染RSV的HLFs诱导了合成HA的酶的上调(HAS 2和3),同时下调了分解HA的酶(HYAL 2),这导致了细胞外基质中HA的增加和肥大细胞的粘附。此外,RSV感染的HLFs显示TSG-6表达增加,增强了肥大细胞与ECM的结合。与RSV诱导的ECM结合的肥大细胞可以上调肥大细胞蛋白酶的表达,促进促炎症环境的形成。Stephen R. Reeves博士认为:“ImageXpress Pico系统不断改进以满足我们不断变化的需求,并为进一步的发现打开了大门。我们很期待接下来会发生什么!”Reeves博士和其他通讯作者是Dr. Jason Debley实验室成员的一部分。Debley实验室利用流行病学、临床和分子方法来了解儿童早期哮喘的进化,并研究在儿童哮喘中气道上皮的作用。西雅图儿童研究所免疫和免疫疗法中心的研究人员调查了一些影响人类免疫系统的最具挑战性的儿童疾病。最终的目标是利用免疫学的治疗力量来设计新的疾病治疗方法。
  • Cell Research|邓宏魁/李程等课题组合作利用小鼠二细胞胚胎建立具有形成类囊胚能力的新型全能性干细胞
    2022年5月4日,北京大学生命科学学院、生命联合中心邓宏魁课题组与李程课题组、北京大学医学部基础医学院徐君课题组在Cell Research杂志上发表了题为“Derivation of totipotent-like stem cells with blastocyst-like structure forming potential”的研究论文。该研究通过化学小分子筛选组合,建立了一个新的全能性干细胞培养条件,可以支持从小鼠二细胞胚胎及扩展型多能干细胞(EPS细胞)建立全能性干细胞系。这种新型全能性干细胞可在体外长期稳定培养,在分子特征和发育潜能上与小鼠二细胞胚胎高度相似,并且可以在体外被诱导形成在转录组水平上类似于体内囊胚的类囊胚结构。从左到右分别是李程、邓宏魁和徐君(来源:北京大学官网)如何在体外制备全能性干细胞,长期以来一直是干细胞领域的重要科学问题。在小鼠中,只有受精卵及二细胞胚胎具有全能性:单个细胞能够形成一个完整生命个体。随后发育形成的囊胚细胞可以被用于建立多潜能干细胞,滋养层干细胞及原始内胚层干细胞。然而,这些干细胞的发育潜能是受限的,无法同时发育到胚内和胚外组织。近年的研究发现:在小鼠多能干细胞群中存在极少量的表达小鼠二细胞胚胎分子标记MERVL的细胞,被称为二细胞样细胞(2-cell like cells),具有二细胞胚胎的部分分子特征(1)。然而,这种细胞无法在体外进行稳定的培养。此外,最近的研究发现,二细胞样细胞与体内二细胞胚胎仍存在较大差异,作为体外研究全能性的模型仍存在较大局限性(2)。北京大学邓宏魁团队长期以来致力于采用化学小分子调控的手段来建立调控干细胞的发育潜能的新方法(3-6)。2017年邓宏魁团队报道了一个新的小分子组合(LCDM),可以在人和小鼠中建立扩展型多能干细胞(EPS细胞)(4)。EPS细胞具有胚内胚外发育潜能,并且可以被诱导形成类囊胚(Blastoid)结构(7)。然而,与小鼠二细胞胚胎相比,这种细胞的分子特征与二细胞胚胎还有较大差异,细胞的胚外分化潜能也存在局限性,诱导获得的类囊胚结构中存在较高比例的中间态和中胚层样细胞(8)。最近北京大学杜鹏团队、中山大学王继厂团队等报道了全能性干细胞的诱导条件(9-10)。当前,如何直接自小鼠全能性胚胎建立全能性干细胞,仍是全能性干细胞研究的“金标准”。在本研究中,团队通过化学小分子高通量筛选,鉴定了能够在EPS细胞中诱导提高MERVL及Zscan4阳性细胞比例的化学小分子。通过进一步的组合优化,发现了一个可以将EPS细胞诱导为全能性干细胞的小分子组合CD1530,VPA,EPZ004777,CHIR 99021 (CPEC组合),诱导获得的全能性干细胞能长期稳定地在体外培养。更为重要的是,CPEC组合可以在体外支持从小鼠二细胞胚胎直接建立全能性干细胞系。研究者将由CPEC组合支持建立的全能性干细胞命名为全能潜能干细胞(totipotent potential stem cells, TPS细胞)。研究者进一步从转录组、表观特征、嵌合能力等多个方面深入分析了TPS细胞的分子特征和发育潜能。他们发现TPS细胞在单细胞水平上表达大量的全能性特征基因,并且下调了多能性的分子标记。进一步的单细胞转录组分析发现,TPS细胞群中存在一个在转录组水平与中期二细胞胚胎高度相似的细胞亚群(约10%)。他们定量分析了TPS细胞、杜鹏团队报道的TBLC中的全能干细胞亚群、二细胞样细胞与二细胞胚胎的转录组相似度,发现TPS细胞中的全能干细胞亚群与二细胞胚胎的相似程度是最高的。ATAC-seq和全基因组甲基化分析也表明:TPS细胞具备了二细胞胚胎的表观修饰特征。在发育潜能分析方面,他们通过在不同发育阶段的单细胞嵌合实验证明了:单个TPS细胞具备了同时向胚内和胚外发育的能力。为了严格证明TPS细胞在体内的胚外发育潜能,他们对E17.5的嵌合胎盘进行了单细胞转录组分析,结果表明TPS来源的细胞可以分化形成多种胚外滋养层细胞类型。并且,他们发现tdTomato标记的TPS细胞与有GFP标记的受体胚胎形成的嵌合胎盘中,存在大量的tdTomato单阳性嵌合细胞,高表达滋养层细胞的分子标记,排除了由细胞融合导致的假阳性可能。这些结果表明了TPS细胞具备了与二细胞胚胎相似的分子特征和发育潜能。自组装形成类囊胚结构的能力是评估细胞全能性最为关键的功能性标准之一。研究者证明了通过调控早期胚胎发育的信号通路,可诱导TPS细胞高效形成类囊胚结构。单细胞转录组分析表明,TPS诱导的类囊胚结构中存在与小鼠E4.5囊胚中类似的上胚层、滋养外胚层、原始内胚层细胞,并且在转录组水平上高度相似。通过转录组数据的定量分析,研究者进一步比较了TPS-类囊胚结构中的滋养层细胞、小鼠滋养层干细胞/多能干细胞组合诱导类囊胚中的滋养层细胞,发现TPS-类囊胚结构中的滋养层细胞更类似于着床前囊胚中的小鼠滋养外胚层细胞。并且,不同于EPS细胞诱导的类囊胚结构,TPS-类囊胚结构中并不存在大量的中间态细胞及中胚层样细胞。将TPS来源的类囊胚结构植入体内后,可以诱导蜕膜化反应,但是仍无法像正常囊胚那样发育成个体,提示诱导类囊胚的方案仍需优化。最后,研究者分析了CPEC组合在TPS细胞中诱导和调控全能性的分子机制。他们发现抑制HDAC1/2和Dot1L的活性、以及特异激活RARγ通路,对TPS细胞的诱导和维持具有重要作用。有趣的是,当用CPEC组合的小分子联合处理小鼠二细胞胚胎时,他们发现这些小分子处理能在一定程度上帮助维持小鼠胚胎中的全能性分子标记的表达。这些结果表明HDAC1/2、Dot1L、RARγ通路的协同调控对于小鼠全能性调控的重要作用。综上所述,该研究利用化学调控的方法从小鼠二细胞胚胎中建立了新型的全能性干细胞,该细胞具有与二细胞胚胎相似的分子特征及双向发育潜能,能够形成与体内着床前囊胚更相似的类囊胚结构。这一工作不仅为体外研究全能性提供了更为合适和可靠的模型,而且朝着在不同哺乳动物物种中利用全能性胚胎捕捉、维持全能性干细胞的目标迈出了重要的一步。邓宏魁教授,李程研究员,徐君研究员是这一研究成果的共同通讯作者。北京大学徐亚星,赵晶薷,任奕璇,王旭阳和吕钰麟为该研究成果的第一作者。本工作获得了生命科学联合中心、国家重点研发计划项目、国家自然科学基金等支持。
  • 常与急性白血病混淆的罕见病,有什么特异性表现?
    肥大细胞白血病(Mast cell leukemia,MCL)又称为组织嗜碱细胞白血病,约占恶性肥大细胞肿瘤的 15%。但因其罕见,在体内恶性增殖的晚期表现及症状,又与急性白血病相似,所以很容易与急性嗜碱性粒细胞白血病、慢性粒细胞白血病嗜碱性粒细胞急变或伴骨髓嗜碱粒细胞增多的 AML 混淆。那么,面对 MCL 有什么相应的诊断策略吗?有哪些特异性表现可以作为诊断的突破口吗?以下临床病例可为您详细解答:////病史介绍:患者男性,59 岁。反复腹泻、乏力、皮疹、消瘦 1 年;面色黝黑,贫血貌,睑结膜苍白,浅表淋巴结不大,B 超示脾脏肿大,肋下7 cm 可触及,肝脏肿大,肋下 2 cm 可触及。血常规 :白细胞计数 18.2×109/L,红细胞计数 1.64×1012/L,血红蛋白 60 g/L,血小板计数 142×109/L。外周血白细胞分类:中性分叶核粒细胞 22%,淋巴细胞 30%,单核细胞 3%,嗜酸性粒细胞 2%,分类不明细胞 42%,原始细胞 1%,有核红细胞 2 个/100 个白细胞。初步检查及诊断:骨髓细胞形态学检查:骨髓增生极度活跃,粒、红二系增生受抑,巨系增生活跃。血小板散在或小簇可见。髓片中分类不明细胞约占 79%,散在或成堆分布。此类细胞胞体大小不一,呈圆形、椭圆形或梭形,胞核圆或不规则,可见单个核、双核、分叶核,部分胞核中可见核仁,胞质中充满深紫色大小不一的颗粒。细胞化学染色结果:POX(-)100%;PAS(-)10%,(+)14%,(+++)76%;NAS-DCE(+)100%;甲苯胺蓝染色(+)100%;图 1 骨髓染色基因检测:骨髓 KIT 基因 F522C 突变。骨髓活检:骨髓象提示造血组织增生明显活跃,未见幼稚细胞、淋巴细胞、浆细胞增多和聚集。可见一类细胞弥漫单一性分布,胞体小,胞质少,胞核呈圆形的细胞异常增生。巨核细胞数量大致正常,胞体中等,核有分叶,散在分布。骨髓间质骨小梁规则,未见明显纤维化。该细胞免疫组化结果:CD34(-),CD117(+),髓过氧化物酶(myeloperoxidase,MPO)显示粒系细胞阳性。综上分析考虑肥大细胞(mast cell,MC),提示 MCL 可能。流式检测方案及检测结果:以所有 WBC 设门,异常细胞比例约占 61.1%,该群细胞 CD45 强表达、SS 中等、FS 较大,强表达:CD9,CD33,CD117;表达:CD2,CD13,CD203c;不表达:CD3,CD4,CD5,CD7,CD19,CD56,CD11b,CD15,CD14,CD64,CD123,CD25,CD34,CD38,HLA-DR,CD138,MPO,CD79a,cyCD3图 2 流式细胞学检查结果(以上数据来自 Navios 流式细胞仪采集,Kaluza 软件分析)病例分析与诊断策略:参考*****的诊断标准,临床诊断为 MC。总结与思考:急性肥大细胞白血病很少见,容易与急性嗜碱性粒细胞白血病、慢性粒细胞白血病嗜碱性粒细胞急变或伴骨髓嗜碱粒细胞增多的AML混淆。在免疫表型上、形态学以及免疫组化的染色结果*******扫描下方二维码或点击「阅读原文」,即可查看完整诊断策略及病例思考。作者简介:吴婧硕士,主管技师,就职于上海交通大学附属瑞金医院血液研究所主要从事白血病和淋巴瘤免疫分型工作。////点击「阅读原文」,查看更多精彩病例、课程。注册学员即可学习更多临床病例、大咖课程!注册用户中,也将随机选取 30 位,送上「鼠」于你的精美公仔!责任编辑:杭璐阅读原文
  • 杨扬/韩华团队成功开发小鼠听觉皮层亚细胞结构的三维电镜重构算法
    2022年8月,上海科技大学生命科学与技术学院杨扬团队与中国科学院自动化研究所韩华团队合作,在Cell Press细胞出版社期刊Cell Reports上以长文形式发表了题为“Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data”的研究论文,该研究通过对恐惧学习小鼠听觉皮层突触的三维电镜重建和大规模比较分析,探究了小鼠听觉皮层中与恐惧记忆相关的神经元突触等亚细胞结构的变化情况,并用模型分析方法揭示了突触连接模式变化引起的信息存储容量的大幅提升。中国科学院自动化研究所刘静助理研究员、上海科技大学生命科学与技术学院漆俊倩博士、中国科学院自动化研究所陈曦研究员和李贞辰博士生为本文的共同第一作者,杨扬研究员、韩华研究员、谢启伟教授为本文的共同通讯作者。大脑中的神经网络由神经元通过复杂的突触连接构成,神经元编码、处理和存储信息从根本上依赖于突触的连接模式以及在此基础之上的协调活动,解析突触的连接模式对理解大脑的结构与功能至关重要。在哺乳类动物大脑中,除了由单个轴突小结(axonal bouton)与单个树突棘(dendritic spine)形成的1-1型连接,即单位点突触连接外,大脑中的突触连接模式还包括由单个轴突小结与多个树突棘形成的1-N型连接,或多个轴突小结与单个树突棘的N-1型连接,统称为多位点突触(multiple-contact synapses,MCS)。此前,已有很多研究通过光学显微镜发现学习记忆可以改变突触的组织结构,由于突触间隙宽度仅有几十纳米(低于一般光学显微镜的衍射极限),因此在光学显微镜下观察突触结构的精细变化非常困难。与此同时,突触三维结构的光学数据获取和分析高度依赖于人工,更是极大限制了突触结构的重建数量和分析规模。为探究学习记忆如何促进突触多位点连接模式的形成及效果,本项研究以经典的听觉条件恐惧学习(auditory fear conditioning)为范式设置了实验组和对照组,基于大规模序列电子显微镜成像技术和深度学习识别模型,实现了电镜图像中多种亚细胞三维结构的自动提取,重构了小鼠听觉皮层135,000个线粒体和160,000个突触。实验组和对照组的大规模对比分析表明,尽管恐惧学习训练没有改变突触的空间密度与空间分布,却特异性地增加了1-N型突触的比例。进一步分析发现,绝大多数1-N型突触中的树突棘来自不同树突主干,并且这种多树突1-N型突触在神经元网络中能够起到信号广播的作用。为了进一步分析多树突1-N型突触的信息编码能力,本项研究建立了基于香农信息熵来计算突触信息存储容量(information storage capacity,ISC)的组合数学模型。在无新增突触的静态网络和包含新增突触的可塑性动态网络两种条件下,分别计算了引入多树突1-N型突触的ISC增量。在静态网络中,引入此类突触只是略微增加了ISC容量,而在动态可塑性网络中,此类突触将信息存储容量显著提高了50%。综上,基于序列电子显微镜成像技术和深度学习计算方法,研究者开发了小鼠听觉皮层亚细胞结构的三维电镜重构算法,自动重建精度可以满足大规模分析的精度需求,有效地节省了人工校验时间消耗,极大提高了分析效率。大规模电镜重构和对比分析结果在亚细胞水平揭示了学习记忆对大脑皮层突触、线粒体的组织结构和连接模式的影响,为类脑计算仿生模型的精确建模提供了结构基础和启发依据。图:(上左)听觉条件恐惧学习的对照组和实验组。(上右)轴突小结与树突棘替换或增加的示意图。(中左)不同突触连接模式的电镜图像及三维重构结果。1-N型突触由单个轴突小结与多个树突棘形成,N-1型突触由多个轴突小结与单个树突棘形成。(中右)不同突触连接模式示意图。绿色:树突;蓝色:轴突。(下左)密集重构揭示绝大多数1-N型突触中的树突棘来自不同树突主干。(下右)无新增突触的静态网络和包含新增突触的可塑性动态网络。该研究获得了国家科技创新2030重大项目、中国科学院战略性先导科技专项、国家自然科学基金、北京市科技计划的经费支持。作者专访Cell Press细胞出版社公众号特别邀请杨扬研究员、刘静博士和韩华研究员代表研究团队接受了专访,请他们为大家进一步详细解读。CellPress:过去也有基于电镜图像重构来探究突触和线粒体的研究报道,有的还完成了更大规模的密集重构。本文的方法和思路与过去的研究有何不同?杨扬研究员:电镜图像的密集重构对运算量的要求很高,工作量极大。而本文所使用的方法可以在不做密集重构的前提下,选择性识别和分割出研究者感兴趣的亚细胞结构,如本文关注的突触、线粒体,也可以推广到其他有特殊结构的细胞器。已有的突触或线粒体的自动重构算法多是像素或体素分割模型,也就是将图像中的像素或体素分类成前景或者背景。本文所使用的region-based卷积神经网络是一种实例分割网络,可端到端的完成目标实例的检测和分割。另外,针对强各向异性的序列电镜数据,本文提出一种2D到3D的重构方法,首先在2D上识别和分割亚细胞结构,随后应用3D连接算法完成3D的重构。这种方式可有效避免直接应用3D卷积神经网络带来的目标尺度在特征空间和图像空间不一致的问题。CellPress:多位点突触是一个新的概念吗?本文对此类突触的研究有何特别之处?杨扬研究员:一个突触前轴突小结与多个突触后树突棘形成的1-N多位点突触,和多个突触前轴突小结与一个突触后树突棘形成的N-1多位点突触,在过去的文献中都有过报道。但限于电镜图像人工识别的效率,过去的工作未能对这种特殊突触进行大规模的定量研究。本文通过基于机器学习的自动识别与重构算法实现了这一突破。此外,连接同一个多位点突触中的多个树突棘是来自同一根树突还是不同树突,代表了两种不同的神经元连接方式:前者仍是1对1的神经元连接,后者则是1个神经元对多个神经元的信息广播。本文通过密集重构,首次对这两类多位点突触进行了区分和定量,并发现后者在大脑皮层中,特别是学习之后占据了绝大多数,提示这种连接可能表征了大脑中突触层面的记忆痕迹。CellPress:人工智能算法在这个研究中发挥着怎样的作用?刘静博士、韩华研究员:近年来,人工智能算法已经深入应用到生命科学领域,加速甚至革新了生物学的研究进程。在连接组(Connectomics)领域,面对海量的高分辨电镜数据,借助人工智能算法绘制神经元的线路图是一个必不可少的环节。在本文中,我们设计了一套深度学习算法工具集,可以自动识别序列电镜图像中神经元、突触以及线粒体并恢复其三维形态。深度学习算法的应用大大提高了识别效率,将人从大量冗余复杂的标注工作中解放出来,加速了研究进程。CellPress:可否用简要的语言解释文中所提及的突触连接静态网络和动态网络,两者最核心的区别是什么?具有何种生物学意义?刘静博士、韩华研究员:突触连接网络是指根据神经元的几何拓扑特征来模拟突触连接模式的一种建模方式。其中,静态模型中仅考虑稳定的突触连接,假设没有新突触的形成或旧突触的消亡,本文使用信息熵定义静态网络的信息存储容量。而动态模型则将突触可塑性引入到网络中,允许新突触的形成,本文使用信息熵的增益表示新突触形成带来的信息存储容量的增加。动态模型通过模拟突触可塑性,与真实的大脑神经网络更为相似。CellPress:您认为该项研究对类脑计算有什么启发吗?刘静博士、韩华研究员:类脑智能(Brain-inspired Intelligence)本身就是通过模仿和借鉴人类神经系统的工作原理以构建新型的计算结构和智能形态。然而,目前人对大脑的生理机制还知之甚少。类脑研究的第一步就是要理解大脑,突触作为神经元连接的桥梁,是大脑中最重要的结构之一。突触的可塑性(synaptic plasticity)被认为与长时程记忆(long-term memory)有关。本文通过恐惧学习实验范式和电镜成像技术,发现了恐惧记忆能促进小鼠听觉皮层中一种特殊的1-N突触连接模式的形成,且这种连接模式大大增强了局部环路的信息编码能力。本研究中发现的这种局部神经环路信息传递模式或许能够作为一种记忆存储模块启发新型的类脑计算模型。作者介绍谢启伟教授谢启伟,北京工业大学现代制造业基地教授研究兴趣、领域:数据挖掘、图像处理和复杂系统智能;应用图像处理、机器学习和深度学习等方法研究基于电镜数据的神经元重建,集中于神经元电镜图像的前处理、超体素分割、图融合后处理等方法的研究,为神经科学提供有力工具,期待从脑的结构中挖掘出智能的本源。韩华研究员韩华,中国科学院自动化所研究员研究兴趣、领域:高通量显微成像技术产生海量影像数据,如何重构数据、分析数据、可视数据等已成为脑科学与类脑研究领域的重大挑战。我们致力于建立我国微观脑图谱的高通量技术体系和自主可控技术平台,持续突破大体块神经组织样品制备、长时程超薄切片连续收集、高通量扫描电镜三维成像、高精度神经结构三维重建等关键技术,开展多个百TB规模的微观脑图谱绘制工程,为构建类脑计算仿真提供生物真实网络和仿生建模依据。杨扬研究员杨扬,上海科技大学生命科学与技术学院助理教授、研究员研究兴趣、领域:以条件恐惧学习和增强式学习为行为范式,使用在体双光子成像、双光子全息光遗传、电镜、电生理等技术,研究与学习记忆相关的神经环路活动性和可塑性,及神经调制系统在其中所起的作用。
  • 明美1250万像素高分辨率相机助力小鼠贴壁细胞观察
    近日,为了提高医院医疗水平,进一步规划和凝练医疗方向,深州市人民医院对小鼠细胞的观察效果提出了更高的要求。明美专业工程师经过详细的沟通了解,针对博士的特殊需求,为其推荐了明美生物倒置显微镜mi52搭配研究级1250万高像素显微数码相机msx2的组合方案,并免费提供专业的样机演示服务,展现了明美在显微成像领域的专业素养。此次项目中,博士需要观察的是小鼠细胞中的贴壁细胞,这种细胞在培养过程中,必须有可以贴附的支持物表面,其依靠自身分泌或培养基中的贴附因子才能在该表面生长增殖,因此,对观察使用的显微成像产品要求极高。通过明美专业工程师的多次沟通,以及产品推荐使用,最终选定使用明美生物倒置显微镜mi52搭配研究级显微数码相机msx2来进行观察研究。msx2是明美最新研发的1250万高像素科研级数字相机,采用1英寸大靶面高性能的成像芯片,设计usb3.0数据传输接口,具有高分辨率、颜色还原准确和高灵敏度的特点,其优秀的色彩表现,是液基细胞分析、免疫组化、骨髓细胞分析等对颜色要求高的病理诊断的理想工具。此外在明暗场、相衬、偏光、dic、荧光成像等领域同样表现出色。下图为使用明美生物倒置显微镜mi52与研究级显微数码相机msx2、ms60进行观察: 下图为明美生物倒置显微镜mi52与研究级显微数码相机ms60镜头下的小鼠细胞图片: 下图为明美生物倒置显微镜mi52与研究级显微数码相机msx2镜头下的小鼠细胞图片: 使用机型:明美生物倒置显微镜mi52 研究级显微数码相机msx2。
  • Nature!庄小威团队利用MERFISH技术绘制小鼠全大脑分子可定义和高空间分辨的细胞图谱
    在哺乳动物的大脑中,许多不同类型细胞形成复杂的相互作用网络,从而实现广泛的功能。由于细胞的多样性和复杂的组织,人们对大脑功能的分子和细胞基础的理解受到了阻碍。单细胞RNA测序(scRNA-seq)和单细胞表观基因组分析的发展使发现大脑中许多分子上不同的细胞类型成为可能[1,2]。然而,这些研究中有限的样本量可能导致对大脑细胞多样性的低估。此外,了解大脑功能背后的分子和细胞机制不仅需要对细胞及其分子特征进行全面的分类,还需要详细描述分子定义的细胞类型的空间组织和相互作用。在更精细的尺度上,细胞之间的空间关系是通过相邻分泌和旁分泌信号传递的细胞间相互作用和通信的主要决定因素。虽然突触通信可以发生在细胞体相距较远的神经元之间,但神经元和非神经元细胞之间的相互作用以及非神经元细胞之间的相互作用通常借助直接的体细胞接触或旁分泌信号,因此需要细胞之间的空间接近。而且涉及局部中间神经元的相互作用也倾向于发生在空间近端神经元之间。因此,一个高空间分辨率的全脑细胞图谱对于理解大脑的功能极其重要。来自美国哈佛大学的庄小威教授课题组使用多重误差鲁棒荧光原位杂交(MERFISH)技术对整个成年小鼠大脑中大约1000万个细胞中的1100多个基因进行了成像,并通过整合MERFISH和scRNA-seq数据,在全转录组尺度上进行了空间分辨的单细胞表达谱分析。研究人员在整个小鼠大脑中生成了5000多个转录不同的细胞簇(属于300多种主要细胞类型)的综合细胞图谱,将该图谱与小鼠大脑共同坐标框架进行定位,可以系统量化单个大脑区域的细胞类型组成和组织,并进一步确定了具有不同细胞类型组成特征的空间模块和以细胞渐变为特征的空间梯度。这种高分辨率的细胞空间图—每个细胞都具有转录组表达谱,有助于推断数百种细胞类型对之间的细胞类型特异性相互作用和预测这些细胞-细胞相互作用的分子(配体-受体)基础和功能。总之,此研究不仅为大脑的分子和细胞结构提供了丰富的见解,而且为其在健康和疾病中的神经回路和功能障碍奠定了基础。该结果于近日发表在Nature上,题为“Molecularly defined and spatially resolved cell atlas of the whole mouse brain”。研究小组通过MERFISH技术对横跨4只成年小鼠(1雌3雄)大脑整个半球的245个冠状面和矢状面切片上进行成像,根据DAPI和总RNA信号,单个RNA分子被识别并被分配到细胞,进而得到单个细胞的表达谱。总之,该研究对成年小鼠大脑中大约1000万个细胞进行成像和分割,包括11个主要的大脑区域:嗅觉区、等皮层(CTX)、海马形成、皮质底板(CS)、纹状体(ST)、苍白球、丘脑、下丘脑(HT)、中脑、后脑和小脑。基于典型相关性分析整合MERFISH数据和scRNA-seq数据,采用K最近邻(k-NearestNeighbor,KNN)分类算法对MERFISH细胞进行分类。为了对不同大脑区域的细胞类型组成和组织进行系统定量,他们将MERFISH生成的细胞图谱注册到艾伦脑科学研究所发布的小鼠脑三维图谱第三版(Allen Mouse Brain Common Coordinate Framework,CCFv3)[3],可将每个单独的MERFISH成像细胞及其细胞类型身份标签放入3D CCF空间(图1)。图1 对整个小鼠大脑的分子定义和空间分辨的细胞图谱(图源:Zhang, M., et al.. Nature, 2023)据统计,整个小鼠大脑由46%的神经元和54%的非神经元细胞组成,神经元细胞与非神经元细胞的比例在后脑中最低、在小脑中最高。神经元细胞包括315个亚类和超过5000个集群,其类型也表现出很强的区域特异性,大多数神经元亚类仅在11个主要区域中的一个区域富集。这11个主要区域包含了不同数量的细胞类型,尤其是后脑、中脑和下丘脑所包含的神经元细胞类型的数量以及局部复杂性远远高于其它大脑区域。基于神经递质转运体和参与神经递质生物合成相关基因的表达,他们将成熟的神经元分为8个部分重叠的组别。其中,谷氨酸能神经元和γ-氨基丁酸(GABA)能神经元分别约占神经元总数的63%和36%,谷氨酸能与GABA能神经元的比例在不同的大脑区域中差异很大,而5-羟色胺(5-HT)能、多巴胺能、类胆碱能、甘氨酸能、去甲肾上腺素能和组胺能神经元仅占神经元总数的2%(图2c)。谷氨酸能神经元和GABA能神经元广泛分布于全脑,可分为具有不同空间分布的不同细胞类型;在谷氨酸能神经元中,Slc17a7(Vglut1)、Slc17a6(Vglut2)和Slc17a8(Vglut3)在不同的脑区分布存在差异,Slc17a7主要位于嗅觉区、CTX、海马形成、CS和小脑皮层,而Slc17a6主要位于HT、中脑和后脑(图2d,e)。他们还观察到两个未成熟神经元(IMNs)亚类:一种是抑制性的,一种是兴奋性。抑制性IMNs由30个簇组成,沿脑室下区(SVZ)分布,通过前连合处延伸至嗅球;兴奋性IMNs由七个簇组成:簇516主要位于嗅觉区域,而其它簇沿海马体形成的齿状回分布(图2f),这与之前关于海马形成中成人神经发生的发现一致[4]。图2 神经元细胞的类型和空间分布(图源:Zhang, M., et al.. Nature, 2023)非神经元细胞包括23个亚类和117个簇。通过量化,研究小组发现在整个大脑中,非神经元细胞由30%少突胶质细胞、6%少突胶质细胞前体细胞(OPCs)、28%血管细胞、23%星形胶质细胞、8%免疫细胞和5%其它类型细胞组成。一些非神经元细胞类型,特别是星形胶质细胞和心室系统中的细胞也表现出很强的区域特异性。星形胶质细胞包括36个细胞簇,最大的两个集群Astro 5225和Astro 5214,分别占星形胶质细胞总数的48%和33%。基本上每个Astro星团都显示出独特的空间分布,Astro 5225只位于端脑区,Astro 5214只位于非端脑区,Astro 5215位于丘脑,Astro 5216位于后脑,Astro5231-5236位于嗅球,Astro 5207位于小脑,Astro 5222位于齿状回,Astro 5208富集于靠近软脑膜表面的髓质,Astro 5228、5229和5230位于SVZ沿线,延伸至嗅球,并与抑制性IMNs广泛共定位(图3d)。少突胶质细胞在纤维束中富集,在整个脑干中十分丰富,而OPCs则均匀分布地整个大脑;在集群水平上,一些少突胶质细胞和OPCs也表现出区域特异性,如Oligo 5277在皮层中富集,而Oligo 5286在后脑中富集(图3e)。与心室系统相关的细胞也呈现区域特异性分布,在第三脑室,下丘脑室管膜—胶质细胞位于腹侧区域,而ependymal细胞占据背侧区域,Hypendymal细胞位于第三脑室背侧的下联合器,心室内的主要细胞是脉络膜丛细胞和血管软脑膜细胞(VLMCs)。除了VLMC 5301和VLMC 5302,大多数VLMC集群被限制在软脑膜(图3f)。图3 非神经元细胞的类型和空间分布(图源:Zhang, M., et al.. Nature, 2023)接下来,研究团队为每个细胞定义了一个局部细胞类型的组分矢量,并使用这些矢量聚类细胞,从而得到了包含相似邻域细胞类型组成的细胞的“空间模块”(图4a)。他们确定了16个一级空间模块和130个二级空间模块,一级空间模块将大脑分割成与CCF中定义的主要大脑区域基本相吻合的区域,一个显著的差异是中脑和后脑之间的边界(图4b,c)。许多2级空间的模块与CCF中定义的子区域一致,但观察到更多的差异(图4d)。此研究中的空间模块描述是基于单个细胞的转录组范围内的表达谱所定义的细胞类型,因此比CCF中脑区描述的信息具有更高的分子分辨率,空间梯度代表了对该区域的分子轮廓的更精确的描述。图4 空间模块:分子定义的大脑区域(图源:Zhang, M., et al.. Nature, 2023)考虑到在某些情况下,细胞的基因表达谱可能会表现出渐进或连续的变化,他们因此检查了所有的细胞亚类,结果发现细胞的空间梯度广泛分布在大脑的许多区域。例如,颅内(IT)神经元在整个CTX上形成了一个连续的梯度,在这个区域,基因表达沿皮层深度方向逐渐变化,但第2/3层IT神经元的分离更为明显(图5a)。在纹状体中,D1和D2中棘神经元均沿背外侧-腹内侧轴形成空间梯度(图5b,c)。在外侧间隔复合体(LSX)中,几个GABA能亚类沿着背腹轴形成了一个梯度(图5d)。在海马体的CA1、CA3和齿状回区域和中脑的下丘中也观察到空间梯度。他们也观察到了一些非神经元细胞之间的空间梯度,如下丘脑室管膜—胶质细胞,沿着第三脑室的背腹轴形成了一个连续的梯度(图5e)。通过基于UMAP(一致的多方面逼近和投影以进行降维)的基因表达可视化分析,他们发现一个大规模的跨越HT、中脑和后脑区域的空间梯度(图5f)。图5 分子定义的细胞类型的空间梯度(图源:Zhang, M., et al.. Nature, 2023)最后,他们分析了亚类水平上的细胞类型,并推断单个大脑区域中细胞类型特异性的细胞-细胞相互作用(包括非神经元细胞间,非神经元细胞和神经元之间以及神经元间)。几百对细胞亚类被确定,统计学结果显示有显著的相互作用。预测的大多数具有相互作用的细胞类型对包含多个配体-受体对,与同一细胞类型对中的非近端细胞对相比,近端细胞对的表达显著上调,为这些细胞间相互作用的分子基础提供了见解。在非神经元细胞之间,发现内皮细胞和周细胞均与大脑中的边缘相关巨噬细胞(BAMs)、巨噬细胞有显著的相互作用。在这两种情况下,与非近端细胞对相比,来自层粘连蛋白信号通路的配体-受体对在近端细胞对中均明显上调,一些细胞因子(内皮细胞中的Cytl1和周细胞中的Ccl19)在BAMs近端血管细胞中表达上调,这说明大脑中的血管细胞可能利用这些细胞因子来招募巨噬细胞(图6d,e)。小胶质细胞也被发现与内皮细胞、周细胞之间的显著相互作用;与内皮细胞相比,周细胞与小胶质细胞相互作用的可能性更高,而与BAMs相互作用的趋势则相反(图6f,g)。他们还观察到神经元和非神经元细胞之间的显著相互作用,例如星形胶质细胞和抑制性IMNs在嗅球中、星形胶质细胞和兴奋性IMNs在海马形成中表现出显著的相互作用。此分析也预测了一些神经元亚类之间的相互作用,例如,海马形成过程中Pvalb枝形吊灯状GABA神经元和CA3谷氨酸能神经元之间、IPN Otp Crisp1 GABA神经元和中脑的DTN-LDT-IPN Otp Pax3 GABA神经元之间的相互作用。图6 细胞间的相互作用和通信(图源:Zhang, M., et al.. Nature, 2023)文章结论与讨论,启发与展望通过MERFISH技术成像约1000万个细胞,并将MERFISH数据与全脑scRNA-seq数据集整合,该研究生成了一个具有高分子和空间分辨率的、横跨整个小鼠大脑的分子定义的细胞图谱。进一步将该图谱注册到了艾伦脑科学研究所发布的CCF中,提供了一个可被科学界广泛使用的参考细胞图谱,使科研人员能够确定每个大脑区域不同转录细胞类型的组成、空间组织和潜在的相互作用。一方面,非神经元细胞与神经元细胞或非神经元细胞之间的相互作用,以及配体-受体对、基因的相关上调,为测试不同非神经元细胞类型的功能作用提供了切入点。另一方面,将转录组成像与不同行为范式下的神经元活动成像相结合可以揭示神经元的功能角色[5]。未来的研究将结合空间分辨的转录组学分析和各种其它特性的测量(如表观基因组谱、形态学、细胞的连通性和功能、系统的基因扰动方法),将有助于大家阐述大脑的分子和细胞结构的功能和功能障碍在健康和疾病中的作用。MERFISH(Multiplexed Error-Robust Fluorescence In Situ Hybridization),一种空间分辨的单细胞转录组学方法,经过近年的发展已成为生命科学领域中最具有前景的单细胞测序技术之一。该技术独特的原理和方法,可实现对单细胞进行多重靶向探测,从而深入研究细胞的生物学特性,对于疾病诊治及药物研发等方面也有着广泛的应用价值。
  • 【视频回看】微流控芯片、拉曼SERS、流式细胞术、膜片钳?“花样”单细胞分析前沿技术都给你!
    p style=" text-align: justify text-indent: 2em " 细胞是生物体和生命活动的基本单位,细胞分析对于细胞结构和功能的研究、生命活动规律和本质的探索、疾病的诊断与治疗、药物的筛选与设计等都具有十分重要的意义。作为细胞研究的“标配”,创新细胞分析技术在生命科学基础研究、生物制药、新型治疗方法中的应用与进展不可不知! /p p style=" text-align: justify text-indent: 2em " 仪器信息网举办的“细胞分析技术与应用”专题网络研讨会在6月5日成功召开,本次会议报告干货十足,诚意满满,对广大细胞分析领域用户的研究工作具有一定指导意义。错过了直播的小伙伴不要遗憾,部分专家的精彩报告视频回放即刻奉上! /p p style=" text-align: center " span style=" color: rgb(192, 0, 0) " strong 报告题目:《单细胞试剂盒分析》 /strong /span /p p span style=" color: rgb(192, 0, 0) " strong /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 212px " src=" https://img1.17img.cn/17img/images/201906/uepic/c6e217a3-3a1c-404e-ab9a-af4cc9876f3b.jpg" title=" 001.jpg" alt=" 001.jpg" width=" 200" height=" 212" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 江德臣,南京大学化学化工学院及生命分析化学国家重点实验室教授,博士生导师,单细胞分析课题组组长,教育部青年长江学者,江苏省化学化工学会质谱专业委员会秘书长。研究兴趣为高内涵单细胞分析方法和装置的建立,及其在细胞信号传导机制研究中的应用。以第一/通讯作者在PNAS、JACS、Anal Chem 等期刊发表学术论文50余篇。 /span /p p style=" text-align: justify text-indent: 2em " 单细胞分析可以揭示细胞个体特征,以助于理解细胞自身的复杂性及彼此之间存在巨大差异,具有重要的生物学价值。在过去的六年中,江德臣教授所在实验室发展了基于微/纳试剂盒的单细胞分析策略,将宏观维度生物测量理论与方法引入单细胞分析中,建立了通用性强、通量高且可测量单细胞及单细胞器内生物分子活性的新型分析方法和装置。 span style=" color: rgb(192, 0, 0) " strong a href=" https://www.instrument.com.cn/webinar/video_105263.html" target=" _blank" ( span style=" color: rgb(0, 112, 192) " 点击查看视频回放 /span ) /a /strong /span /p p style=" text-align: center " span style=" color: rgb(192, 0, 0) " strong 报告题目:《微流控芯片单细胞分泌分析》 /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 239px " src=" https://img1.17img.cn/17img/images/201906/uepic/c6f4bf34-0adc-48e7-aa50-6026304a3bef.jpg" title=" 陆瑶.jpg" alt=" 陆瑶.jpg" width=" 200" height=" 239" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-align: justify font-family: 楷体, 楷体_GB2312, SimKai " 陆瑶,博士, 副研究员,中国科学院大连化学物理研究所单细胞分析研究组组长。研究相关工作发表于PNAS,Science Signaling等国际期刊,主要科研成果在美国两家公司获得应用,作为主要发明人参与开发的单细胞蛋白分析技术获国际发明专利授权,目前已应用于CAR-T肿瘤免疫治疗药品开发及临床测试,被美国著名科普杂志科学家(The Scientist)评选为2017年度十大医疗技术发明首位。现主要从事基于微流控芯片的单细胞分析技术开发及其在人类健康/疾病相关问题中的应用等研究。 /span br/ /p p style=" text-align: justify text-indent: 2em " 细胞是生命存在的基础,探索生命健康与疾病常需要以细胞研究为基础。由于细胞与细胞之间存在差异,群体细胞的研究结果只能得到一群细胞的平均值,这往往会掩盖个体差异信息。为更全面的了解细胞以服务人类健康、疾病研究,单细胞分析就变得尤为必要。在过去的几年中,陆瑶老师团队开发了一系列的基于抗体条形码微流控芯片的高通量、高内涵单细胞细胞分泌分析工具,大大加深了人们对细胞分泌异质性的认识,并尝试将其服务临床实现个体化、精准医疗。 span style=" color: rgb(0, 112, 192) font-size: 14px " strong span style=" color: rgb(0, 112, 192) " (含未公开发表内容,暂不提供回放视频) /span /strong /span /p p style=" text-align: center " strong span style=" color: rgb(192, 0, 0) " 报告题目:《拉曼单细胞流式分选技术及应用》 /span /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 240px " src=" https://img1.17img.cn/17img/images/201906/uepic/e7fe07cf-f676-4425-985b-a6b1b99d2bc7.jpg" title=" 马波.jpg" alt=" 马波.jpg" width=" 200" height=" 240" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em text-align: justify " 马波,研究员,博士生导师,中科院青岛生物能源与过程研究所微流控系统团队负责人。自2003 年起致力于微流控芯片技术在分析化学和生命科学中的基础和应用研究。目前研究方向聚焦在:基于微流控技术的高通量单细胞分析技术和仪器研究,研制了首套拉曼单细胞流式细胞分选仪;用于临床、环境和食品安全的便携式微生物检测系统;工业酶、菌株和微藻的高通量筛选、选育和定向进化研究等。 /span /p p style=" text-align: justify text-indent: 2em " “单细胞拉曼图谱” 是特定细胞的“化学指纹”,蕴含着该特定细胞在特定生理状态下的丰富的生化信息,通过体现细胞化学组成及其变化,能够静态和动态地表征和监测该细胞的遗传背景、生理状态及所处微环境。与现有荧光细胞分选技术FACS相比,拉曼激活单细胞分选RACS 具有无损非标记的特点。因此,马波教授团队先后研发了单细胞拉曼光镊液滴分选、高通量流式拉曼单细胞分析与分选及单细胞测序等系列关键技术,并于新近推出了单细胞拉曼分选耦合测序的RACS-SEQ系统,同时提供适用于拉曼抗生素耐药性快检、单细胞测序的芯片和试剂盒。该仪器及试剂盒将为耐药性快速检测、合成生物学细胞工厂表型筛选、工业菌株和高通量酶定向进化和筛选等提供创新的系统解决方案。 strong span style=" font-size: 14px color: rgb(0, 112, 192) " (含未公开发表内容,暂不提供回放视频) /span /strong /p p style=" text-align: center " strong span style=" color: rgb(192, 0, 0) " 报告题目:《肿瘤靶向的拉曼SERS探针和拉曼微球的构建和应用》 /span /strong /p p strong span style=" color: rgb(192, 0, 0) " /span /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 242px " src=" https://img1.17img.cn/17img/images/201906/uepic/7c59cb63-76ee-4bdd-ba86-db17ae600e1e.jpg" title=" 汤新景.jpg" alt=" 汤新景.jpg" width=" 200" height=" 242" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 汤新景,博士,北京大学药学院教授,长江学者奖励计划青年学者,国家优秀青年科学基金获得者,教育部跨世纪(新世纪)人才。近年来,在反义核酸药物及非编码RNA等功能核酸的定点修饰及其功能的精确光调控、新型荧光核酸探针和新型肿瘤靶向的光学纳米探针等方面开展了一系列的研究工作。 /span /p p style=" text-align: justify text-indent: 2em " 拉曼纳米探针基于其高的光谱分辨率和深的组织穿透性而被广泛应用于生物体系。目前大多数的拉曼纳米探针是利用增敏金属表面负载的染料分子,且拉曼信号位于1400-1700 cm-1 范围内。鉴于此,汤新景教授设计并构建了一系列基于生物体系拉曼信号静默区(1900-2500 cm-1)的拉曼报告基团的金纳米拉曼探针以及无需金属增敏的拉曼纳米微球。通过进一步的拉曼纳米探针表面的靶向修饰和功能化,实现对肿瘤细胞、组织以及活体小鼠的特异性拉曼光谱检测或拉曼成像。 a href=" https://www.instrument.com.cn/webinar/video_105271.html" target=" _blank" style=" text-decoration: underline color: rgb(0, 112, 192) " span style=" color: rgb(0, 112, 192) " strong (点击查看视频回放) /strong strong /strong /span /a /p p style=" text-align: center " span style=" color: rgb(192, 0, 0) " strong 报告题目:《肝细胞移植治疗肝衰竭的问题和策略》 /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 239px " src=" https://img1.17img.cn/17img/images/201906/uepic/bd1cd376-e0ab-4ac6-8ad6-43c62228704c.jpg" title=" 何志颖.jpg" alt=" 何志颖.jpg" width=" 200" height=" 239" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai text-align: justify text-indent: 2em " 何志颖,研究员,博士生导师。同济大学附属东方医院再生医学研究所执行所长、课题组长,同济大学东方临床医学院生物技术教研室主任。入选上海市浦江人才计划等。现任中华医学会医学细胞生物学分会委员、中国整形美容协会干细胞研究与应用分会副秘书长等。科研上以干细胞与肝脏再生为研究方向,开展肝细胞移植基础和应用研究,致力肝脏疾病的细胞治疗。在Nature,Cell Stem Cell,Gastroenterology等期刊发表SCI论文37篇。 /span /p p style=" text-align: justify text-indent: 2em " 肝衰竭是多数肝脏疾病重症化的共同结局,肝细胞移植治疗肝衰竭成为新的希望。如何获得非供体来源的肝细胞、提高移植肝细胞在宿主肝脏中的植入和增殖效率及开展活体示踪评价细胞移植的安全性等,成为肝细胞移植应用于临床迫切需要解决的主要问题。何志颖老师在报告中分享了应用多能干细胞肝向诱导分化、肝向谱系重编程等方案,获得充足的非供体来源的肝系细胞;通过局部磁场干预促进移植肝细胞在受体肝脏的植入效率;通过基因修饰或在受体肝脏释放生长因子促进移植肝细胞的增殖能力,寻找特异标志物分选具有肝脏再殖能力的肝系细胞,实现了移植肝细胞在受体肝脏的有效再殖;最后,应用活体生物体内发光成像系统,何志颖教授对肝细胞移植后在体内的分布进行了动态观察,开展了肝细胞移植后在肝脏中归巢与再殖规律的研究。 a href=" https://www.instrument.com.cn/webinar/video_105264.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong (点击查看视频回放) /strong strong /strong /span /a /p p style=" text-align: center " span style=" color: rgb(192, 0, 0) " strong 报告题目《质谱对大脑代谢通路的解析——从单细胞分析到组织成像》 /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 239px " src=" https://img1.17img.cn/17img/images/201906/uepic/bf5f8e7b-bab1-45d3-9b30-42440313e939.jpg" title=" 黄光明.jpg" alt=" 黄光明.jpg" width=" 200" height=" 239" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 黄光明,中国科学技术大学化学系教授,博士生导师。2001及2004年先后在北京师范大学获分析化学学士和硕士学位,2007年在清华大学获得博士学位。2012-今在中国科学技术大学化学系任教。于2013年入选中组部第四批“青年千人计划。美国质谱协会会员,中国质谱分析专业委员会委员。长期从事质谱分析及其化学、生命科学等领域的应用研究。目前主要承担国家自然科学基金青年及面上项目,中组部千人计划以及科技部重大研发计划子课题等课题。在Cell,PNAS,Angew. Chem. Int. Ed.,Anal. Chem.,Chem. Sci., Chem. Comm. 等国际期刊上发表论文50余篇,引用1200余次。于2018年获得中国质谱学会首届“质谱青年奖”。 /span /p p style=" text-align: justify text-indent: 2em " 针对单细胞分析中的一系列技术难题,黄光明教授通过兼容膜片钳技术实现了活体细胞原位取样,并结合毫秒级超快电泳分离技术,搭建了单细胞质谱分析平台。利用该平台实现了对脑切片组织样品上的单个神经元细胞研究,在脑内发现了一条新的谷氨酸合成通路,阐释了其促进学习记忆功能的分子机制,为在单细胞内开展代谢通道研究提供了新的研究平台。 a href=" https://www.instrument.com.cn/webinar/video_105270.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong (点击查看视频回放) /strong /span /a /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 虽然会议已经结束,但是精彩仍在继续,仪器信息网已经将部分报告老师的现场讲座视频上传到仪器信息网网络讲堂,想要重复学习或者错过参与会议直播的网友,可以点击报告视频精彩回放进行学习与分享。 /span span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 0, 0) " 更多专家报告请点击查看: /span a href=" https://www.instrument.com.cn/news/20190612/486910.shtml" target=" _blank" style=" text-decoration: underline border: 1px solid rgb(0, 0, 0) " span style=" border: 1px solid rgb(0, 0, 0) " i strong span style=" border: 1px solid rgb(0, 0, 0) color: rgb(192, 0, 0) font-family: 楷体, 楷体_GB2312, SimKai " 【视频回看】单细胞原位、定量分析、无损分选,还有?“最夯”重器都在这儿! /span /strong /i i strong span style=" border: 1px solid rgb(0, 0, 0) color: rgb(192, 0, 0) font-family: 楷体, 楷体_GB2312, SimKai " /span /strong /i /span /a /p p style=" text-align: center " span style=" text-decoration: underline " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span br/ /p p style=" text-align: center " strong 关注 span style=" color: rgb(192, 0, 0) " 【3i生仪社】 /span 解锁生命科学新鲜资讯! /strong /p p strong /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/bb3dca69-d424-4faa-b6d3-f9b9d6eee2d8.jpg" title=" 小icon.jpg" alt=" 小icon.jpg" / /p
  • SunnyELISA新品闪亮登场
    联科生物SunnyELISA新推出Human IL-15、IL-29、 CCL3(MIP-1alpha)、CCL4(MIP-1beta)、GM-CSF、Granzyme K ELISA检测试剂盒,品质保证,灵敏度达到0.21 U/ml,平均回收率为102%,板内和板间变异系数均在8%,专业的代测服务和完美的检测报告为您提供真实的数据、节省宝贵的精力。 指标名 灵敏度 平均回收率 IL-15 3.78 pg/ml 97% IL-29 0.12 pg/ml 93% CCL3/MIP-1alpha 7.15 pg/ml 94% CCL4/MIP-1beta 3.58 pg/ml 99% Granzyme K 2.41 pg/ml 100% TSLP 0.13 pg/ml 100%IL-15与IL-2结构相似。病毒感染后,单核吞噬细胞会分泌IL-15。 IL-15可以诱导自然杀伤细胞的分化。IL-29是III型干扰素,又称为IFN-λ1,与IL-28非常相似。IL-29在宿主抵御微生物的免疫反应中起重要作用,同时,在病毒感染的样本中,IL-29上调表达。目前小鼠基因组中没有发现IL-29基因。TSLP即胸腺基质淋巴细胞生成素(Thymic stromal lymphopoietin)。TSLP在抗原递呈细胞活化,促进T细胞分群的过程中起关键作用。GM-CSF(Granulocyte-macrophage colony-stimulating factor (GM-CSF))粒细胞-巨噬细胞集落刺激因子,又称为集落刺激因子2(colony stimulating factor 2 (CSF2)),可由巨噬细胞、T细胞、肥大细胞、NK细胞、内皮细胞和成纤维细胞分泌产生。GM-CSF可以刺激干细胞分化成粒细胞(嗜酸性、嗜碱性、中性粒细胞)、单核细胞。Granzyme 颗粒酶是细胞毒性T细胞和自然杀伤性细胞中的胞质颗粒释放的丝氨酸蛋白酶。颗粒酶可以诱导目标细胞的程序性死亡,从而消除被细菌或病毒感染的细胞。MIP-1alpha 与MIP-1beta,巨噬细胞炎症蛋白,都是半胱氨酸-半胱氨酸家族的趋化因子。他们不仅是化学诱导物,而且还是巨噬细胞辅助活化因子。新品列表:目录号 产品名称 规格 70-E-EK1151 Human IL-15 ELISA Kit 48T 70-E-EK1152 Human IL-15 ELISA Kit 96T 70-E-EK115S Human IL-15 Standard 2 ng/vial 70-E-EK1611 Human CCL3 (MIP-1 alpha) ELISA Kit 48T 70-E-EK1612 Human CCL3 (MIP-1 alpha) ELISA Kit 96T 70-E-EK161S Human CCL3 (MIP-1 alpha) Standard 2 ng/vial 70-E-EK1621 Human CCL4 (MIP-1 beta) ELISA Kit 48T 70-E-EK1622 Human CCL4 (MIP-1 beta) ELISA Kit 96T 70-E-EK162S Human CCL4 (MIP-1 beta) Standard 0.75 ng/vial 70-E-EK1631 Human GM-CSF ELISA Kit 48T 70-E-EK1632 Human GM-CSF ELISA Kit 96T 70-E-EK163S Human GM-CSF Standard 0.375 ng/vial 70-E-EK1641 Human Granzyme K ELISA Kit 48T 70-E-EK1642 Human Granzyme K ELISA Kit 96T 70-E-EK164S Human Granzyme K Standard 1 ng/vial 70-E-EK1291 Human IL-29 ELISA Kit 48T 70-E-EK1292 Human IL-29 ELISA Kit 96T 70-E-EK129S Human IL-29 Standard 1ng/vial 70-E-EK1651 Human TSLP ELISA Kit 48T 70-E-EK1652 Human TSLP ELISA Kit 96T 70-E-EK165S Human TSLP Standard 1ng/vial以上新品现货供应,欢迎广大科研工作者选购品质卓越的民族生物试剂。 阅读原文:http://www.liankebio.com/ProductCenterShow/articleID/2014120016.html
  • 肿瘤微环境调节免疫细胞功能机制获揭示
    p   华中科技大学科研团队揭示了肿瘤微环境中肿瘤细胞与免疫细胞相互调节机制。《临床研究杂志》近日在线发表了该成果。 /p p   近年来,随着肿瘤免疫治疗,特别是Car-T细胞免疫治疗技术和免疫节点治疗在临床上的成功,深入研究肿瘤微环境对免疫细胞功能的调节机制具有重要的基础研究意义。 /p p   华中科技大学基础医学院免疫学系杨想平团队的研究发现,在小鼠模型中,皮下移植的肿瘤细胞在小鼠中生长更快,尾静脉注射的肺腺癌肿瘤细胞向肺转移结节在小鼠中明显增多,血管增多,巨噬细胞向促肿瘤表型极化增强。 /p p   杨想平团队和病理系王国平团队合作发现,在人的临床肺腺癌患者组织中,肿瘤细胞能通过其代谢产物调控巨噬细胞囊泡水解酶表达,从而使肿瘤相关巨噬细胞在肿瘤微环境中编程重组为促进肿瘤生长的免疫细胞。 /p p   该研究还发现囊泡水解酶表达高低可作为肺腺癌重要的预后标志,因此具有重要的临床意义。 /p p /p
  • ​Nat Bio Eng封面文章 | 傅阳心团队开发新型双特异性抗体—通过靶向树突状细胞上的PD-L1来重新激活肿瘤特异性T细胞
    双特异性T细胞衔接器(bispecific T-cell engager,BiTE)是一种能够同时结合肿瘤相关抗原(tumor associate antigen, TAA)和 CD3 复合物的抗体类抗肿瘤药物。传统的技术是通过靶向TAA 来实现肿瘤内T细胞上CD3信号通路的再激活,从而达到杀伤肿瘤细胞的效果【1-3】。自上世纪90年代起,针对双特异性抗体疗法的设计和改进已经有了近30年的研究。然而,目前为止只有安进公司(Amgen)的Blinatumomab (针对CD19 的 BiTE) 被FDA 批准用于治疗复发或难治性急性淋巴细胞白血病 (acute lymphoblastic leukemia, ALL)【4,5】。以细胞因子风暴(cytokine storm)为主的副作用限制了其他针对实体瘤的BiTE所进行的临床测试。仅在2021年,安进公司就暂停了4种 BiTE的一期临床试验, 所涉及的抗原包括FLT3, BCMA, CD33和EGFRVIII。除了严重的副作用之外,半衰期短,TAA特异性低以及抑制性肿瘤微环境都是限制BiTE在体内发挥抗肿瘤效应的重要因素。因此,提升双特异性抗体的有效性并降低其副作用能够极大的促进该疗法在临床的广泛应用。图1 正在以单药形式进行临床测试的双特异性抗体2021年11月1日,美国德克萨斯大学西南医学中心傅阳心团队在Nature Biomedical Engineering杂志上发表了题为Rejuvenation of tumour-specific T cells through bispecific antibodies targeting PD-L1 on dendritic cells的文章。该研究构建了靶向免疫检验点PD-L1 和CD3ε的双特异性抗体 (PD-L1xCD3)。在多种小鼠肿瘤模型上,PD-L1xCD3比传统的TAA靶向性双特异性抗体(ErbxCD3)展现出了更强的抗肿瘤效果。利用多种条件性敲除小鼠表明,PD-L1xCD3在体内主要结合树突状细胞(dendriticcells, DCs)表达的PD-L1而并非肿瘤细胞或巨噬细胞表达的PD-L1,进而重新激活了肿瘤内部的抗原特异性CD8 T 细胞免疫反应来达到治疗肿瘤的效果。进一步的机制研究表明,PD-L1xCD3与DC上PD-L1的结合,促进了共刺激分子B7和CD28之间的相互作用,从而避免T细胞发生激活诱导的细胞死亡(activation-induced cell death),进而实现肿瘤内T 细胞长效激活的效果。研究团队首先在体外验证了制备的PD-L1xCD3能够同时结合PD-L1和CD3ε,并能够以PD-L1依赖的方式刺激T细胞活化并分泌IFNγ,杀伤肿瘤细胞。体内实验进一步表明PD-L1xCD3能够在MC38模型上产生良好的抗肿瘤效果并优于anti-PD-L1和anti-CD3的联合治疗,从而表明PD-L1xCD3具有其独特的作用机制。通过细胞过继转移和删除实验表明,PD-L1xCD3能够诱导抗原特异性CD8 T细胞反应并产生免疫记忆,而这一现象依赖于肿瘤内预存的CD8 T 细胞。为了研究PD-L1xCD3是否比传统的TAAxCD3具有更强的抗肿瘤效果,作者们制备了靶向TAA的ErbxCD3双特异性抗体,并通过体外实验证明其具有与PDL1xCD3相似的亲和力,激活T细胞能力和肿瘤细胞杀伤能力。然而体内实验却表明,在相同剂量下PD-L1xCD3比ErbxCD3展现出了更强的抗肿瘤效果,并且这一现象在TC1,B16F10,TuBo等多种模型上均得到了验证,提示靶向免疫检验点PD-L1的双特异性抗体比靶向TAA具有更好的激活T细胞能力。为了进一步探究产生这种区别的本质原因,作者们首先通过在不同的细胞上敲除了PD-L1来探寻哪种细胞表达的PD-L1对于PD-L1xCD3在体内的抗肿瘤效果是必须的。出乎意料的是,尽管肿瘤细胞本身是最主要的PD-L1阳性的细胞,但敲除肿瘤细胞上的PD-L1并没有影响PD-L1xCD3的治疗效果。与之相反,敲除宿主细胞上的PD-L1却彻底废除了PD-L1xCD3的治疗效果。通过条件性PD-L1敲除小鼠实验表明,树突状细胞而并非巨噬细胞表达的PD-L1起到了至关重要的作用。作者进一步利用Batf3敲除小鼠确认树突状细胞亚群(cDC1)对于PD-L1xCD3的治疗效果是不可或缺的。前期研究表明,anti-PD-(L)1 治疗能够通过增强B7-1(CD80) 与CD28的相互作用来达到激活T 细胞的效果6, 7。由此,研究人员提出了PD-L1xCD3治疗是通过增强共刺激信号来发挥作用的假设。结果也表明,用抗体阻断CD80/86后,PD-L1xCD3的治疗效果消失同时抗原特异性T细胞反应也大大减弱。通过体外共培养实验证明,PD-L1xCD3能够通过增强共刺激信号的方式促进IL-2的分泌,避免T细胞因过度激活导致的凋亡,从而实现肿瘤内T细胞的长效激活。传统BiTE的设计理念是通过单链抗体(ScFv)衔接T细胞与肿瘤细胞,促使T细胞活化并直接进行肿瘤细胞杀伤。然而,在肿瘤微环境里T细胞的数量和质量都非常有限。而肿瘤细胞不仅数量“占优”并且能够通过激活抑制性信号通路(如PD-L1/PD-1)来逃逸杀伤。与此同时,由于肿瘤细胞本身并不表达共刺激分子,其激活T细胞的效果非常有限。面对数倍于己的“敌军”,T细胞在反复杀伤的过程中很容易产生耗竭而败下阵来。与之相反,作为新型双特异性抗体,PD-L1xCD3能够将T细胞与树突状细胞衔接在一起,从而为其激活提供充足的条件(共刺激分子)。通过与树突状细胞的相互作用,T细胞不仅得到了有效的激活并且能够通过IL-2实现自我扩增。最终实现T细胞的持续性激活并获得持久的抗肿瘤免疫反应。图二:PD-L1xCD3的作用机理综上所述,该研究为新一代双特异性抗体设计提供了思路。证明了PD-L1xCD3 具有优于传统BiTE的如下特点:1)靶向肿瘤组织降低毒性;2)阻断PD-L1/PD-1相互作用,解除T细胞抑制;3)靶向DC细胞为T细胞激活提供共刺激信号,从而促进IL-2介导的T细胞存活。据悉,该论文已被选为Nature Biomedical Engineering 杂志11月份的封面故事。该研究的通讯作者是美国德克萨斯大学西南医学中心的乔健博士和傅阳心教授。刘龙超博士为论文的第一作者。原文链接:https://www.nature.com/articles/s41551-021-00800-2
  • 单细胞技术之肿瘤免疫微环境研究应用|含肿瘤微环境会议预告
    肿瘤异质性对癌症预后和治疗反应有显著影响。传统的基因组和转录组分析被广泛用于研究不同的癌症类型,在预测预后和对不同治疗的反应以及为癌症治疗提供靶点方面具有潜在作用。不同癌症类型的单细胞分析表明,肿瘤免疫微环境的详细信息在多种癌症类型之间共享。目前,自从发现检查点抑制剂以来,免疫治疗彻底改变了癌症治疗并引起了越来越多的关注。肿瘤免疫微环境由非细胞成分(血管、细胞外基质、信号分子等)和细胞成分(T细胞、髓细胞、成纤维细胞等)组成。尽管传统的基因组和转录组学分析,也强调免疫相关途径和计算方法,并已应用于预测免疫细胞成分,但技术限制阻碍了时间的精确表征。传统的批量基因组和转录组分析获得的信号均来自不同细胞,掩盖了特定细胞类型和状态的识别。原位杂交和免疫组织化学已被用于探索单个细胞的基因组、转录组和蛋白质组学特征,但其产量相对较低。流式细胞术能够分析数千或数百万个单细胞蛋白质组学图谱;然而,这些方法需要事先选择感兴趣的抗体。随着细胞分离和测序技术的突破,单细胞转录组测序已经能够在单次运行中在单细胞水平上对许多细胞进行无偏好的全基因组分析。单细胞转录组测序已被用于分析单个细胞的转录组学,用于解析细胞间的异质性。肿瘤免疫微环境在诊断、治疗和预测不同类型癌症的预后方面显示出了潜力。与传统方法相比,scRNA-seq可用于识别新的细胞类型和相应的细胞状态,加深了我们对肿瘤免疫微环境的理解。1.介绍了scRNA-seq的原理,并比较了不同的测序方法。2.根据肿瘤免疫微环境中新的细胞类型、持续的过渡状态以及肿瘤免疫微环境成分之间的相互通讯网络找到了癌症的预后预测和治疗的潜在靶点。3.总结出在肿瘤免疫微环境中应用scRNA-seq后发现的由癌症相关成纤维细胞、T细胞、肿瘤相关巨噬细胞和树突状细胞组成的新型细胞簇。4.提出了肿瘤相关巨噬细胞和耗尽的T细胞的发生机制,以及中断这一过程的可能靶点。5.对肿瘤免疫微环境中细胞相互作用的干预治疗进行了总结。几十年来,肿瘤免疫微环境中的细胞成分定量分析已被应用于临床实践,预测患者生存率和治疗反应,并有望在癌症的精确治疗中发挥重要作用。总结目前的研究结果,我们认为单细胞技术的进步和单细胞分析的广泛应用可以导致发现癌症治疗的新观点,并应用于临床。最后,作者提出了肿瘤免疫微环境研究领域的一些未来方向,并认为通过scRNA-seq对这些方向进行辅助。相关会议预告:8.30召开,点击报名scRNA-seq在刻画肿瘤免疫微环境中的应用scRNA-seq技术进展scRNA-seq程序主要包括单细胞的分离和提取、cDNA合成、核酸扩增、测序和数据分析。与传统的批量测序相比,scRNA-seq单个细胞中的RNA量相对较少。因此,需要更有效的扩增方法。研究人员已经成功建立了稳定的单细胞文库构建过程,以产生足够的cDNA用于测序。单细胞分离和捕获是scRNA-seq在不同方法中的基本程序。目前单细胞分离和捕获的常用方法。这些程序分为四大类:激光捕获微切割、油滴包裹技术、流式细胞荧光分选技术和微流控微孔技术。scRNA-seq技术的未来发展可能会降低成本并增加细胞产量,使scRNA-seq成为研究单个细胞转录组的标准工具。肿瘤免疫微环境的细胞成分肿瘤免疫微环境的细胞成分包括淋巴细胞(T和NK细胞)、髓细胞(巨噬细胞和树突状细胞)、成纤维细胞和其他免疫细胞。成纤维细胞传统上被归类为基质细胞,因为它们在构建细胞外基质中发挥着重要作用。在这里,作者将肿瘤免疫微环境的癌相关成纤维细胞包括在内,因为它们分泌丰富的促炎和抗炎因子来重塑免疫微环境。细胞毒性CD8+T细胞识别肿瘤细胞上的特异性抗原并随后消除它们,是免疫微环境最常见和最有效的免疫细胞。CD8+T细胞的细胞毒性功能依赖于CD4+T Th1细胞。其他CD4+T细胞,包括Th2细胞和Th17细胞,也促进肿瘤微环境中的免疫反应。调节性T细胞抑制肿瘤免疫微环境并加剧肿瘤进展。自然杀伤T细胞和自然杀伤细胞也参与其中。它们的受体识别肿瘤细胞,从而激活其他免疫细胞。作为先天免疫的重要组成部分,骨髓细胞,包括肿瘤相关巨噬细胞和树突状细胞,在肿瘤免疫微环境中发挥着重要作用。巨噬细胞通常分为促炎M1和抗炎M2表型。肿瘤相关巨噬细胞主要由M2巨噬细胞组成,通过产生生长因子和细胞因子促进肿瘤生长、肿瘤存活和血管生成。DC对于T细胞的抗原呈递至关重要,连接先天免疫和适应性免疫。癌症相关成纤维细胞在肿瘤免疫微环境中维持增殖和分泌调节因子,可分为炎症性CAF和肌纤维母细胞CAF。炎症性CAF具有较高的细胞因子和趋化因子分泌,而肌纤维母细胞CAF高度表达收缩蛋白,成纤维细胞对免疫微环境起相互抑制作用。研究表明,成纤维细胞募集M2巨噬细胞和调节性T细胞,抑制肿瘤微环境中的免疫反应。肿瘤相关成纤维细胞也被发现在某些情况下会支持抗肿瘤免疫。除了分泌抗体,B细胞还通过产生与T细胞相互作用的细胞因子参与细胞免疫。研究表明,B细胞抑制细胞毒性T细胞并诱导CD4+T细胞分化为调节性T细胞。B细胞也是最近引入的三级淋巴结构的重要组成部分,富含B细胞的三级淋巴结构与各种肿瘤的生存和免疫治疗反应有关。先前的研究强调了细胞成分在时间中的重要作用。然而,免疫细胞的鉴定常基于有限的细胞标记,并借助免疫组织化学。个体免疫细胞的转录组图谱是探索不同免疫细胞及其相应功能所必需的。为了理解细胞进化过程及其决定因素,有必要应用scRNA-seq观察每个细胞的转录动态。利用scRNA-seq探索免疫微环境的新发现聚类和注释对于解释scRNA-seq数据探索至关重要。根据细胞相似性对数据进行划分,挑战在于在不提供先验知识的情况下估计固有的簇数或密度。可能的解决方案是采用分层聚类方法来揭示细胞的分层结构,这也与细胞本体相一致。给定聚类方法产生的数据划分结果,需要细胞类型注释来提供生物学意义。注释的主要挑战是确定每个聚类中存在多少细胞类型,以及是否存在当前未发现的细胞类型。在实践中,研究人员通常首先识别每个聚类的标记基因,然后根据专业知识和文献对其进行注释。scRNA-seq使研究人员能够以更高的分辨率将免疫细胞分类为具有不同功能的亚群,描述了免疫细胞的常规亚型。利用scRNA-seq发现的淋巴细胞(T和NK细胞)、髓细胞(巨噬细胞和树突状细胞)和成纤维细胞的组成(图2)。人和小鼠样本的scRNA-seq表明,成纤维细胞可分为抗原呈递CAFs、癌症相关成纤维细胞或肌成纤维细胞。抗原提呈CAFs独特地表达主要组织相容性复合体(MHC)II类基因,包括激活CD4+T细胞的CD74。在结直肠癌中也观察到类似的抗原提呈CAFs亚群。乳腺癌症基因工程小鼠模型中成纤维细胞的scRNA-seq进一步鉴定了血管CAF、基质CAF、发育CAF和循环CAF。血管CAF、基质CAF和发育CAF似乎起源于固有成纤维细胞和恶性细胞发生上皮-间充质转化时的血管周围位置。循环CAF是血管CAF群体中增殖的部分。在其他小鼠模型中也发现了血管CAF和基质CAF,它们在患者乳腺肿瘤样本中是保守的,并且发现它们会增加乳腺癌症细胞的转移。提高CAF的分辨率为开发精确靶向CAF的药物提供了生物标志物。另一项关于乳腺癌症的scRNA-seq研究将调节性T细胞分为五类:共表达细胞毒性T淋巴细胞相关抗原-4的调节性T细胞、具有Ig和ITIM结构域的T细胞免疫受体,以及相互或仅表达相同基因的GITR和其他调节性T细胞,它们具有不同的功能。不同预后的患者具有不同比例的调节性T细胞簇,为个性化治疗提供了靶点。免疫微环境对T细胞和髓细胞进行了更详细的泛癌研究,发现存在颗粒酶K+T细胞、干扰素刺激基因+T细胞、杀伤细胞免疫球蛋白样受体在记忆性T细胞和NK细胞上表达、转录因子7+CD8+T细胞,ficolin 1+常规DC2、分泌性磷酸蛋白1+TAM,以及肿瘤微环境中的叶酸受体β+TAMs。基于scRNA-seq数据,免疫微环境还发现了新的免疫细胞亚群。葡萄膜黑色素瘤的scRNA-seq鉴定了以前未识别的细胞类型,包括主要表达检查点标记LAG3而不是程序性死亡-1或CTLA-4的CD8+T细胞。同时,在肝细胞癌中发现浸润耗尽的CD8+T细胞和具有高表达layilin的记忆T细胞的克隆富集,这些研究为癌症免疫治疗提供了新的靶点。因为CD8+T细胞是参与消除恶性细胞的主要成分。大肠癌CXC基序趋化因子的scRNA-seq鉴定配体BHLHE40+Th1样细胞与干扰素-γ调节转录因子BHLHE40。在不稳定肿瘤中,这些细胞对免疫检查点阻断有良好的反应,可能会提高免疫疗法的疗效。树突状细胞对于呈递抗原以激活肿瘤免疫微环境中的T细胞是必不可少的。胃癌的scRNA-seq揭示了一个新的树突状细胞簇,表达吲哚胺2,3-双加氧酶1和趋化因子C–C基序趋化因子配体(CCL)22、CCL17、CCL19和白细胞介素-32,它们参与T细胞的募集。胰腺导管腺癌的scRNA-seq还鉴定了除了常规细胞标记物之外还高表达吲哚胺2,3-双加氧酶1的树突状细胞簇。吲哚胺2,3-双加氧酶1对于催化色氨酸消耗和犬尿氨酸产生、抑制T细胞增殖和细胞毒性至关重要,这揭示了树突状细胞和T细胞之间的密切相互作用。此外,通过scRNA-seq鉴定了溶酶体相关膜蛋白3+树突状细胞,并且似乎是经典树突状细胞族的成熟形式。溶酶体相关膜蛋白3+DC可以迁移到淋巴结,并高度表达与T细胞相互作用的配体。这些表达特异性标记物的新型树突状细胞簇的发现为癌症免疫治疗提供了一个新的视角。使用scRNA-seq在肺腺癌中发现了肿瘤相关巨噬细胞的新特征基因,包括髓系细胞触发受体2、CD81、具有胶原结构的巨噬细胞受体和载脂蛋白E。此外,乳腺癌症的scRNA-seq表明,除了M2型基因如CD163、跨膜4域A6A和转化生长因子β1外,血管生成因子纤溶酶原激活剂、尿激酶受体和IL-8也在肿瘤相关巨噬细胞中表达。肿瘤相关巨噬细胞中这些新的基因特征图谱与患者生存相关,并为癌症治疗提供了新的潜在靶点。肿瘤样本scRNA-seq显示,一个肿瘤相关巨噬细胞亚群呈现出SPP1、巨噬细胞清除剂受体MARCO和MHC II类基因的高表达。MARCO和SPP1是巨噬细胞激活中的抗炎和免疫抑制信号,而MHC II类基因与促炎功能有关。其他scRNA-seq研究表明,肿瘤相关巨噬细胞经常同时具有促炎和抗炎特征。这一现象表明,肿瘤微环境中的巨噬细胞活化与传统的M1/M2极化不一致。图2:利用scRNA-seq揭示免疫微环境中的新的免疫亚群单细胞数据揭示免疫细胞进化大多数免疫细胞都处于细胞发育过程中。大量的免疫细胞处于发育轨迹的瞬态状态,而不是分化良好的细胞的离散状态。借助scRNA-seq和深入分析,研究人员可以探索分化细胞的特征、特定细胞类型的转变及其可能的机制。最常用的计算方法是拟时序分析。轨迹描述了细胞的发育过程,其特征是基因表达的级联变化。分支点代表细胞分化的显著差异。各种机器学习计算方法已被用于构建轨迹,包括Monocle3、DTFLOW、DPT、SCORPIUS和TSCAN,这些方法已在单独的综述中进行了评估和比较。由于肿瘤相关巨噬细胞和T细胞代表了免疫微环境中最丰富的免疫细胞类型,这里主要关注这两种细胞类型。scRNA-seq显示,TAMs经常共表达M1基因,包括TNF-α和M2基因,如IL-10,并且肿瘤相关巨噬细胞的分化和状态与其抗肿瘤作用直接相关。拟时序轨迹分析证实,肿瘤相关巨噬细胞在M1和M2表型之间连续转换。转录因子IRF2、IRF7、IRF9、STAT2和IRF8似乎在决定TAMs分化中很重要,并可作为表观遗传学靶点诱导肿瘤相关巨噬细胞的M1极化,从而产生促炎和抗肿瘤的微环境。使用环境刺激和抗原T细胞受体(TCR)刺激测定T细胞表型。不同状态的细胞之间TCR库的重叠,即TCR共享,也可用于研究T细胞的进化。结合scRNA-seq和TCR追踪在结直肠癌中发现20个具有不同功能的T细胞亚群。在黑色素瘤肿瘤的耗竭T细胞中发现了28个基因的耗竭特征,包括TIGIT、TNFRSF9/4-1BB和CD27,并且在大多数肿瘤的高耗竭细胞中也被发现上调。另一项关于T细胞的研究进一步鉴定了CD8+T细胞中的其他耗竭标记物,如LAYN、普列可底物蛋白同源物样结构域家族A成员1和突触体相关蛋白47。拟时序轨迹分析表明,T细胞在时间上处于连续激活和终末分化(衰竭)状态(图3)。已经进行了额外的研究来研究耗尽的T细胞的进化和逆转T细胞耗尽的潜在靶点。scRNA-seq与TCR分析相结合表明,功能失调的衰竭T细胞和细胞毒性T细胞可能在时间上与发育有关。因此,研究集中在CD8+T细胞从效应细胞到衰竭T细胞的过渡过程。scRNA-seq鉴定出两个CD8+T细胞簇为非小细胞肺癌中预先耗尽的T细胞。在肺腺癌中,预先耗尽与耗尽的T细胞比率与更好的预后相关。因此,在耗尽前中断预先耗尽的T细胞可能对癌症免疫治疗至关重要。由于免疫细胞和恶性细胞之间的密切相互作用,恶性细胞的进化在免疫细胞进化中也起着至关重要的作用。拟时序轨迹分析表明,转移性肺腺癌的轨迹分支不同于向纤毛细胞和肺泡型细胞的正常分化。受恶性细胞进化的影响,正常的骨髓细胞群体被单核细胞衍生的巨噬细胞和新型树突状细胞取代。T细胞也被发现会衰竭,从而构建免疫抑制的肿瘤微环境。同样,另一项研究表明甲状腺癌症细胞来源于乳头状甲状腺癌症细胞亚簇,其中构建了不同的肿瘤免疫微环境,导致预后显著恶化。图3:肿瘤相关T细胞和巨噬细胞的进化过程免疫微环境中不同细胞间的通讯网络免疫微环境上的细胞通讯与肿瘤进展有关。配体-受体相互作用是一种重要的细胞通讯类型,对于构建免疫微环境和识别潜在的治疗靶点至关重要。scRNA-seq是在细胞基础上进行的,这使得研究未发现的细胞相互作用变得可行。已经开发了许多基于scRNA-seq数据研究配体-受体相互作用的分析工具,包括iTALK、CellTalker和CellPhoneDB。这些工具利用了已知配体-受体对相互作用的数据库。其中,CellTalker利用差异表达的基因,而CellPhoneDB包括配体和受体的亚基结构。其他工具,如NicheNet,也考虑了受体细胞下游通路的变化。在肿瘤进展过程中,恶性细胞导致免疫细胞的募集和功能障碍,从而相互影响肿瘤的发生和恶性细胞的进化,形成恶性循环(图4)。发现TAMs通过表皮生长因子受体-双调节蛋白配体受体对与恶性细胞相互作用。在基底样乳腺癌细胞系中AREG的调节导致抗炎TAMs的招募。同时,基于scRNA-seq,发现了一种EGFR相关的反馈回路可促进胰腺腺鳞癌的进展。来源于TAMs的抑瘤素M也与其在恶性细胞上的受体相互作用,以激活信号转导子和转录激活子3。研究人员通过整合素受体与胶原蛋白、纤维连接蛋白、血小板反应蛋白1配体和富含亮氨酸重复序列的G蛋白偶联受体4-R-反应蛋白3的相互作用,发现CAF与胃癌细胞之间的通信,这些配体调节干细胞。此外,胰腺导管腺癌的scRNA-seq揭示了TIGIT与T细胞和NK细胞中的甲型肝炎病毒细胞受体2之间的相互作用,以及它们在恶性细胞中的相应配体PVR和LGALS9,导致免疫细胞功能障碍和胰腺癌症进展。因此,基于单细胞数据探索免疫细胞和恶性细胞之间的细胞相互作用提供了可能治疗靶点,以打破肿瘤进展的恶性循环。除了恶性细胞外,scRNA-seq和随后的分析还预测了免疫细胞之间在时间上的相互作用,这表现出相反的功能(图3)。例如,研究发现TAM降低了CXCL12-C-X-C基序趋化因子受体3和CXCL12-CXCR4的相互作用,增强了鼻咽癌细胞毒性T细胞和Tregs之间的CD86-CTLA-4相互作用,导致肿瘤免疫微环境加重癌症进展。此外,CAFs通过分泌CXCL12募集Tregs,并通过periostin与M2巨噬细胞相关。图4:免疫微环境中的细胞通讯网络基于scRNA-seq的肿瘤免疫微环境的临床应用和潜在靶点几十年来,临床实践中一直采用时间的量化来预测患者的生存率和对治疗的反应。利用免疫组化分析的免疫评分,量化肿瘤中的原位免疫细胞浸润。与传统的免疫评分相比,scRNA-seq在免疫微环境上提供了前所未有的渗透免疫细胞分辨率。已经鉴定出与预后相关的新的免疫细胞簇。例如,在早期复发的肝细胞癌中发现了一种独特的低细胞毒性先天性样CD8+T细胞表型。这些T细胞过表达KLRB1,同时下调共刺激和耗竭相关分子,包括肿瘤坏死因子受体超家族、成员9、CD28、诱导型T细胞共刺激因子、TIGIT、CTLA-4和HAVCR2。这种T细胞簇的浸润与癌症的不良预后相关。此外,基于scRNA-seq的细胞相互作用也被计算在预测模型中。基于细胞间通讯相关基因构建了机器学习模型,以预测肺腺癌的复发。将八个细胞间通讯相关基因和患者的临床信息相结合,获得了0.841的受试者-操作者特征曲线下面积。除了预后预测外,肿瘤免疫微环境中独特的细胞相互作用也与免疫疗法的反应有关。scRNA-seq分析发现,抗PD-1治疗的应答者和非应答者之间存在不同的细胞-细胞通信网络,有可能预测患者对抗PD-1疗法的反应。因此,在scRNA-seq的帮助下,可以更准确地预测患者的预后和对免疫疗法的反应。利用scRNA-seq在精准医学中具有启发性,例如帮助靶向治疗克服耐药性。例如,医生在使用替比法尼治疗的非CR肌肉浸润性膀胱癌症患者治疗前后应用患者衍生异种移植物的scRNA-seq。在治疗后的PDX中发现PD-L1的上调,并降低了免疫细胞的抗肿瘤作用。因此,选择了用PD-L1抑制剂进行额外治疗。随后,患者获得了良好的反应。此外,在单药耐药性肿瘤中,通过scRNA-seq鉴定了新的免疫亚型。用抗集落刺激因子1受体阻断TAMs不能减少胆管癌的肿瘤进展。scRNAs-eq鉴定了表达APOE的粒细胞髓系衍生抑制细胞的补偿富集,其介导T细胞抑制。TAMs和粒细胞性骨髓源性抑制细胞的双重抑制与抗CSF1R和抗淋巴细胞抗原6复合物、基因座G治疗联合增强了小鼠的免疫检查点阻断效果小鼠模型,这在临床实践中很有前景。除了治疗耐药肿瘤外,scRNA-seq在免疫微环境上的应用也突出了需要进一步研究的潜在新靶点。T细胞是免疫微环境中去除恶性细胞最重要的免疫细胞。然而,在不同的肿瘤中,耗尽的CD8+T细胞会导致不利的预后。除了众所周知的免疫抑制检查点外,scRNA-seq还鉴定了高表达内皮前体蛋白、酪氨酸酶相关蛋白1和内皮素受体B型的耗尽CD8+T细胞,这些细胞可以作为新的潜在靶点。髓细胞是免疫微环境招募免疫细胞所必需的。通过scRNA-seq鉴定TREM2/APOE/补体组分1,q亚组分阳性巨噬细胞浸润为透明细胞肾癌复发的预后生物标志物。另一项研究证实,小鼠中靶向TREM2的抗体与缺乏MRC1+和CX3CR1+巨噬细胞以及表达免疫刺激分子的髓系簇的扩增有关,这促进了T细胞反应并导致更好的预后。细胞相互作用也可以用作治疗靶点。肝内胆管癌的scRNA-seq揭示了血管CAFs与肝内胆管细胞之间的串扰。血管CAFs分泌的IL-6诱导Cajal间质细胞细胞的表观遗传学改变,从而增强恶性肿瘤。因此,IL-6信号在Cajal间质细胞的中断变得非常有趣。表1总结了scRNA-seq显示的癌症治疗的潜在靶点。表1:scRNA-seq显示的癌症治疗的潜在靶点总结scRNA-seq可以绘制全面的肿瘤免疫微环境细胞图谱,为各种肿瘤的临床应用提供了新的视角。此外,免疫微环境的细胞成分和通讯为癌症治疗提供了潜在靶点,并有助于精确医学的发展。技术的进步和单细胞分析的广泛应用可以发现癌症治疗的新观点,助力临床研究。作为突破性的新技术,单细胞分析技术有望逐渐取代传统的整体样本二代测序。单细胞分析技术在临床和药物开发方面的应用前景更为广阔,可以代替或补充分子、细胞和组织病理检测的现有技术,也可以用于新兴的细胞治疗。
  • 新型冠状病毒肺炎,流式细胞术都有哪些用武之地?
    在新型冠状病毒肺炎(Novel coronavirus pneumonia, NCP)的各个诊疗方案中,我们仍然能够发现与流式细胞术相关的检测得到了不少认可与建议,那么,究竟流式细胞术在新型冠状病毒感染的诊断与治疗中,有哪些用途呢?这些基于流式的检测又是否对临床具有实际意义的帮助呢?我们从现有的已经官方发布的新型冠状病毒肺炎的诊疗方案中,寻到了建议进行流式相关检测的依据。即,对于新型冠状病毒感染,在有条件的情况下,建议进行淋巴细胞亚群和细胞因子的检测。针对已确诊的2019-nCoV病人建议留观后第3、5、7天及出院时依据病情可,若有条件可检查血细胞,肝肾功能,肌酶+肌红蛋白,凝血、CRP;第5-7天若有条件可复查PCT及TB淋巴细胞亚群11项。而进行淋巴细胞亚群和细胞因子的检测,最常用的检测方法即流式细胞术。由于对2019-nCov的机制尚在研究中,我们参考了与之相似性很高的SARS的诊治方案和研究结果,来共同探讨一下这些检测的临床意义。其他研究显示,在SARS治疗过程中,糖皮质激素的应用会使T淋巴细胞及亚群发生不同程度减低,因此,外周血T淋巴细胞亚群的动态监测,有助于SARS-Cov致病机制的研究和诊断,并对于指导治疗(尤其糖皮质激素应用的试剂、剂量等)以及提示预后具有重要价值。3还有很多研究揭示了细胞因子在冠状病毒感染中扮演的重要角色。Chen J等人在2010年发表的,利用BALB/c小鼠模式,对SARS-CoV感染的细胞免疫反应进行的研究显示,细胞因子在病毒感染后的早期(如TNF-α, IL-6, 趋化因子CXCL10, CCL2, CCL3, CCL5等)和疾病进程中(如 TNF-α, IFN-γ, IL-2, IL-5, IL- 6, 趋化因子CXCL9, CXCL10, CCL2, CCL3和CCL5等)均有增高,这些细胞因子的增高,要么与早期炎症细胞的募集相关,要么与病毒清除,肺部损伤肺部炎症产生相关。5另有研究认为,SARS感染后,机体会因为受到较强的外界刺激而产生过度免疫,出现细胞因子风暴。而细胞因子风暴会造成的肺毛细血管内皮细胞以及肺泡上皮细胞的弥漫性损伤,引发急性呼吸急性呼吸窘迫综合征(acute respiratory distress syndrome, ARDS)。6最新发表在Lancet上的针对2019-nCoV 感染的研究揭示,感染2019-nCoV的患者有大量的IL1B、IFNγ、IP10和MCP1增高,可能与激活Th1细胞免疫反应有关。然而,2019-nCoV感染也启动了抑制炎症的Th2细胞因子(如IL4和IL10)分泌的增加,这与SARS-CoV感染还是不同的。进一步比较ICU患者与非ICU患者,发现ICU患者血浆IL2、IL7、IL10、GCSF、IP10、MCP1、MIP1A、TNFα的浓度均高于非ICU患者,提示细胞因子风暴与疾病严重程度相关(图2)。7由此可见,检测病毒感染者的细胞因子的情况,有助于了解机体在冠状病毒感染后的一系列免疫应答状态,为疾病治疗和预后判断提供重要依据,同时也为探索新型冠状病毒的致病机制提供更多的线索。当然,对于新型冠状病毒的研究仍在继续,流式细胞术能贡献的检测指标也远不止淋巴细胞亚群和细胞因子,在条件允许的情况下,纳入更多有潜在意义的检测指标,也很有可能为探索新型冠状病毒感染的更优诊疗方案,以及致病机制研究带来新的助益和指引。参考文献1. 新型冠状病毒感染的肺炎诊疗方案(试行第四版)2. 北京协和医院关于 “新型冠状病毒感染的肺炎”诊疗建议方案(V2.0)3. 传染性非典型肺炎(SARS)诊疗方案[J].现代实用医学,2004(02):119-126.4. He Z, ZhaoC, Dong Q, et al. Effects of severe acute respiratory syndrome (SARS) coronavirus infection on peripheral blood lymphocytes and their subsets[J]. International Journal of Infectious Diseases, 2005, 9(6): 323-330.5. Chen J, Lau Y F, Lamirande E W, et al. Cellular Immune Responses to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection in Senescent BALB/c Mice: CD4+ T Cells Are Important in Control of SARS-CoV Infection[J]. Journal of Virology, 2010, 84(3): 1289-1301.6. 张艳丽, 蒋澄宇. 细胞因子风暴:急性呼吸窘迫综合征中的主宰生命之手[J].生命科学,2015,27(05):554-557.7. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. The Lancet, 2020.
  • 流式细胞仪新品盘点|光谱流式、成像流式正在成为技术发展潮流
    ——2022上半年生命科学仪器新品盘点系列今年上半年BD率先将光谱流式细胞术与CellView™ 图像技术融合推出看点十足的新品,或将定义细胞分选的新标准、新潮流;赛默飞则是在Attune NxT流式细胞仪的基础上增加了明场成像功能,实现高速、高分辨率巧妙融合;国产流式细胞仪也在今年实现了3激光“零”的突破,为临床用户带来更自由、更灵活的解决方案。为了方便大家熟悉了解这3款流式细胞新品的看点与亮点,小编特别进行了一期简评,供大家学习交流。碧迪:光谱流式细胞术与图像技术结合 重新定义细胞分选标准2022年6月2022年6月,全球领先的医疗科技公司BD(Becton Dickinson)率先将光谱流式细胞术与可分选成像相结合推出新品BD FACSDiscover™ S8 细胞分选仪。区别于传统流式细胞术,该新品所采用的光谱流式细胞术能够捕获样品制备发出的全光谱信号,让科学家使用更多参数对细胞进行分类。同时采用突破性BD CellView™ 图像技术,该技术曾登上过《科学》杂志的封面,可捕获流经系统的单个细胞的图像,并根据每个细胞的详细显微图像分析以高速分选对它们进行分选。通过整合光谱流式细胞术与实时空间和形态学信息,将细胞分析和分选的能力扩展到新维度,使科学家能够进行高参数实验,同时快速查看和分选具有特定、可视化感兴趣特征的细胞,这一进步填补了生物医学研究中长期存在的空白。BD FACSDiscover™ S8 细胞分选仪小编简评:新品FACSDiscover™ S8细胞分选仪代表了BD流式细胞仪创新和领先地位的新篇章,通过将高参数光谱流式细胞仪的功能与前所未有的细胞图像及其内部运作相结合,能够以前无法识别的细胞进行分选,该新品正在定义细胞分选的新标准、新维度。赛默飞: 声波聚焦与高速相机结合 推出全新图像增强流式分析仪2022年1月2022年1月,赛默飞世尔科技发布了新一代Attune CytPix成像型流式细胞仪,Attune CytPix是在Attune NxT流式细胞仪的基础上增加了明场成像功能,既保留了传统流式高速、高参数、大数据分析的优势,又增加了明场观察细胞形态、活性等信息。Attune CytPix成像型流式细胞仪应用声波聚焦专利技术,上样速度相比传统流式细胞仪快10倍。此外,采用专利抗堵设计,大细胞、黏细胞均可轻松上样。赛默飞 Attune CytPix成像型流式细胞仪小编简评:Attune CytPix流式细胞仪是一款图像增强型的流式细胞仪,将声波聚焦流式细胞术与高速相机相结合。用户能够从细胞中收集高性能的荧光流式数据,同时捕获高分辨率的明场图像,从而将图像与流式数据进行匹配,以便更好地了解细胞形态和质量。层浪科技:国产3激光“零”的突破2022年2月2022年2月,北京层浪生物科技有限公司推出国产首台3激光14色16通道流式细胞仪LongCyte,采用全新专利设计的光路系统、电路系统以及信号处理系统,可配置红(638nm)蓝(488nm)紫(405nm)三个激光器;标配自动进样器,适配96孔板(U、V、平底)、流式管、EP管等;强大的软件系统,提供细胞因子、报告编辑、质控监测、LIS连接等功能;可视化用户体验,可深度观察流动室液流状态。依托3激光14色流式细胞仪LongCyte,临床和科研端可用的试剂种类和荧光染料种类更加丰富,能够在仪器上开展的项目更多,实验方案也会更自由、更灵活,兼容性更强。目前,该仪器26种型号已经获得CE认证、NMPA注册批准。层浪科技 LongCyte流式细胞仪小编点评:LongCyte流式细胞仪实现了国产3激光“零”的突破,将国产流式细胞仪技术推向更高水平,为临床用户带来更自由、更灵活的解决方案。中生医疗:新一代高性能智能流式细胞仪2022年6月针对科研检测领域,中生(苏州)医疗科技有限公司于今年6月推出新一代高性能智能流式细胞仪SinoCyte,搭载了全新椭圆光斑激光器和全新WDM分光模块,进一步提高检测灵敏度和稳定性。此外,中生流式细胞仪SinoCyte最高可配置3个激光器,18个检测参数,全自动的检测流程,采集与分析同步进行,大大提高了工作效率。中生医疗 SinoCyte流式细胞仪小编点评:中生流式细胞仪SinoCyte操作简单高效,检测结果精确,代表着中生医疗针对科研检测的高端流式细胞仪迈出重要一步,希望中生医疗能够源源不断为用户带来高品质、高性价产品。后记:BD作为流式细胞行业领头羊,一举一动都备受业界关注,本次新品FACSDiscover™ S8细胞分选仪首次融合了高参数光谱流式技术与细胞图像技术,引起了业内广泛关注,或成为未来流式细胞仪市场的新导向。此外,该新品也是BD首次应用光谱流式技术,在一定程度上说明了光谱流式新技术正被主流制造商认可。而从赛默飞发布的新一代Attune CytPix成像型流式细胞仪可看出,高速、高分辨率图像技术正成为未来流式细胞仪发展的又一新潮流。国产流式细胞仪也取得长足进步。层浪科技推出的桌面式LongCyte流式细胞仪在技术上实现了3激光14色,外观上呈现为桌面型,极大地节约了宝贵的实验室空间。中生医疗面向科研领域用户推出的高性能流式细胞仪SinoCyte,是国产流式细胞仪走向科研市场的节点性动作。
  • 免疫系统暴打自己人?原来你患的是这种病|甲状腺系列科普(十)
    阿瓜在单位体检时,查出患上了桥本甲状腺炎。一开始听到是“炎症”,阿瓜觉得应该没有大碍,吃点消炎药说不定就好了。  但医生说,这不同于普通的炎症,它是一种自身免疫系统疾病,需要特别注意。阿瓜的情况属于前期,由于没什么明显的症状,暂时不需要吃药进行治疗。  听完医生的介绍后,阿瓜一头雾水:什么叫做自身免疫系统疾病,是我的免疫力出问题了吗?为啥我要特别注意,但是又不用吃药?  看到小宋的情况,你是不是也对桥本甲状腺炎一头雾水?今天我们就来一探究竟,看看桥本甲状腺炎究竟有什么样的真面目。 图源自familydoctor.org  甲宝玉(西湖欧米) | 撰文  在前面的甲状腺疾病大家族中,我们都没有提到过这个词——自身免疫性甲状腺疾病,桥本甲状腺炎就是其中一员。  “狠起来连自己都打”  免疫系统,就像是我们体内的安保系统。  这个安保系统,由三大部门——免疫器官、免疫细胞和免疫活性物质组成。  人体的免疫系统 制图:西湖欧米  安保家族非常庞大,比如免疫细胞部门,就包含了淋巴细胞、单核吞噬细胞、中性粒细胞、嗜碱粒细胞、嗜酸粒细胞、肥大细胞、血小板等。  每个部门的成员需要各司其职,才能保护好我们的身体。  一些想进入人体内“搞事情”的坏家伙,我们称为抗原,即所有能诱导机体发生免疫应答的物质。每次病毒、细菌等抗原进入人体的时候,免疫细胞就会发现它们并吹响警报,这时候安保家族就会派出对应抗体来对付它们。  人体内的各种物质,是敌是友,安保家族又如何辨认呢?其实这都归功于免疫细胞的能力,免疫细胞是机敏的“警长”,能识别外来入侵的抗原。  当然,如此厉害的“警长”也会有看走眼的时候——在保卫战中一旦认错了攻击对象,就会误攻“自己人”,这就是我们所说的自身免疫性疾病。我们熟知的很多疾病都是自身免疫性疾病,如类风湿性关节炎、系统性红斑狼疮、甲亢等。  我们今天要介绍到的桥本甲状腺炎,就是典型的免疫系统“暴打自己人”的情况,这和安保系统中的一种免疫细胞——淋巴细胞有密切关系。  桥本甲状腺炎是怎么来的  桥本甲状腺炎(Hashimoto's thyroiditis),也称“慢性淋巴细胞性甲状腺炎”,是甲状腺被一系列细胞或抗体介导免疫过程攻击后所导致的自体免疫性疾病  桥本氏甲状腺炎患者的甲状腺在低倍率显微镜下所呈现的影像 图源:wikipedia.org  前面我们提到,这种疾病和淋巴细胞关系密切:人体中的淋巴细胞一不留神走错了路,跑到了甲状腺上皮滤泡细胞队伍中间,淋巴细胞和滤泡细胞面面相觑——“哥们,你谁啊?”  淋巴细胞一看,“这小子我不认识,八成是外来入侵者!”淋巴细胞作为“警长”,二话不说拿起武器(抗体),直接冲上去一顿暴打,于是,甲状腺惨遭毒手,而作为甲状腺主人的你,不可避免地患上了桥本甲状腺炎。  也就是说,当体内的免疫系统“错乱了”,产生了抗体攻击甲状腺细胞,把它们当成了外来入侵者,你就患上了桥本甲状腺炎。  当淋巴细胞攻击了上皮滤泡细胞,并浩浩荡荡进入甲状腺内部的时候,甲状腺球蛋白(Tg)傻眼了——免疫细胞一看到Tg,直接生成了甲状腺球蛋白的抗体(TgAb),一路追杀Tg。  被追杀的小倒霉蛋Tg是由甲状腺滤泡细胞产生的一种糖蛋白,是生成甲状腺激素(T3和T4)的重要底物。我们也可以简单把Tg理解成T3、T4的母亲,所以当Tg被免疫细胞“误杀”时,我们体内的T3和T4就大量减产了。  甲状腺激素的产生和运输路径 图源自my.clevelandclinic.org  Tg生成T3和T4的过程还要依靠酶的催化,这种酶的名字叫甲状腺过氧化物酶(Thyroid peroxidase,TPO)。当Tg正在被免疫细胞追杀的时候,TPO也没能逃过“连坐”的命运——免疫细胞也不认识它,于是马上派出过氧化物酶抗体(TPOAb)对付它。  这下麻烦了,Tg和TPO都在被追杀,而甲状腺细胞伤亡也非常惨重,这就导致在甲状腺外游离的T3和T4兄弟俩回不了家,他们只好成为孤儿,在人体的血液和其他器官中四处流浪。  体内甲状腺激素T3和T4的增多,会让人出现甲亢的症状,比如吃得多,饿得快,脾气也不好……当然,这还只是桥本甲状腺炎的第一阶段——甲状腺毒症期。  但甲亢阶段的持续时间是比较短的。一方面,这是因为T3和T4的母亲——Tg被大量消灭,导致T3和T4的产量降低 另一方面,游离的T3和T4在人体的各个器官中逐渐被消耗,这个时候,人体会感觉好像病好了,甲亢症状也都没了。  其实甲亢的症状消失也意味着,你已经进入了桥本甲状腺炎的第二阶段——稳定期。  紧接着,T3和T4慢慢开始负增长了,你就会进入桥本甲状腺炎的第三个阶段——甲减,这时候你可能会逐渐出现畏寒、乏力、心率减慢、食欲减退等症状。  桥本甲状腺炎初期可能并无症状,但随着病情的发展,某些患者最终可能变成甲减。对于这一历程颇为波折的疾病,我们要如何应对呢?  慎吃药,多复查  我们都知道,桥本甲状腺炎是因为免疫细胞“暴打自己人”导致的,但免疫细胞究竟为什么会攻击人体,这个原因暂未查清。  不过,有一些比较容易诱发桥本甲状腺炎的因素,我们需要注意:  1. 性别因素(女性患病的概率大约是男性的七倍)   2. 遗传因素(直系亲属中有患有桥本甲状腺炎的或者其他自身免疫性疾病的更易患上)   3. 环境触发因素,如感染、压力或辐射暴露(压力导致激素水平变化、受到辐射的人群都更易患上)   4. 碘过量(碘摄入量过多的人群易患上)   因此,大家要注意调节,不要压力太大,也不要摄入过多的碘,切勿惹怒了自己体内的“免疫细胞”。  如果不幸得了这种病,又该咋办呢?  一句话:多测甲功,慎重吃药。此外,有几个治疗桥本甲状腺炎的要点需要大家注意:  首先,大家要明白一点——桥本甲状腺炎是否需要治疗,取决于你甲状腺功能是否正常,以及是否出现了对应的甲亢/甲减症状。所以一旦你发现自己有点儿“不对劲”,一定要及时就医,甲功、超声抗体检测可以考虑都做一遍,再遵医嘱配合治疗。  其次,如果平时你完全没有症状,甲功也是正常的,这种情况就不需要吃药,定期复查就好。  最后,大家还需要注意根据自身的情况(甲亢或者甲减),调整饮食,多吃能提升免疫力的食物,至于需不需要补充碘,还需要根据医生的诊断来,切勿胡乱补充!  一般来说,桥本甲状腺炎无法治愈,一旦患病,便会伴随我们一生。不过,大部分患者都不会有任何的临床症状,如果甲功正常,其实并不需要治疗,定期复查即可。对于部分有了显著症状、需要治疗的患者,现代医学也能使他们的寿命和生活质量与正常人一般无二。因此,这个“免疫系统暴打自己人”的病,听起来很可怕,实则很“温柔”。  参考文献  1. McGee, Elizabeth A. Hsueh, Aaron J. W. (2000). "Initial and Cyclic Recruitment of Ovarian Follicles". Endocrine Reviews. 21 (2): 200–214. doi:10.1210/edrv.21.2.0394. PMID 10782364.  2. Hashimoto's disease - Symptoms and causes - Mayo Clinic  3. Departments and Centers - Mayo Clinic  4. Hashimoto’s Thyroiditis | American Thyroid Association  5. Hashimoto's Thyroiditis: Symptoms, Causes, and Treatments (webmd.com)  6. 《原来甲状腺这么重要》彭林主编. 广东科技出版社.
  • 中科院分子细胞卓越中心俞珺璟博士:流式细胞技术平台发展与使用心得分享
    生命科学基础研究与人类健康和社会经济发展密切相关,在科学和经济社会领域中的重要性日渐增强。Science 曾发布125 个挑战全球科学界的重要基础问题,其中涉及生命科学的问题约占 54%。生命科学研究过程离不开各类科学仪器的帮助,今年,仪器信息网特别策划话题:“生命科学技术平台经验分享”,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展、学习仪器使用方法。本篇为中国科学院分子细胞科学卓越创新中心细胞分析技术平台副主任俞珺璟撰写,俞老师根据多年工作经验,详细介绍了流式细胞术的发展,并分享了长期工作中仪器使用的心得体会。以下为供稿内容:流式细胞术最初诞生于20世纪60年代末,发展之初主要应用于计数和评估颗粒的大小。随着硬件和软件的不断升级发展以及各种荧光试剂的迭代更新,流式细胞术作为一种能够对细胞群、细胞亚群及单个细胞或者颗粒进行多参数、快速的定性/定量的分析手段,已经被深入应用于细胞生物学、免疫学、病毒学、肿瘤生物学、传染病检测、食品和环境监控及生物制药等多个研究领域。流式细胞技术部门作为中国科学院分子细胞科学卓越创新中心细胞分析技术平台的一个重要分支,从成立最初的只有一台2激光4色流式细胞检测仪和2激光7色流式细胞分选仪发展至今已经具备了高低不同配置的流式细胞检测仪8台、流式细胞分选仪7台、高活性全自动磁珠分选仪1台(http://sjzx.sibcb.ac.cn/Cn/Index/pageView/catid/32.html/list/48 ),最大程度地满足中心及周边乃至全国科研院所在流式细胞仪方面的实验需求。平台流式的建设和发展与流式技术的不断更新、科研方向的转变是息息相关的。现就平台在流式方面的使用心得进行分享及对未来流式潜在的需求做一些展望。一、流式细胞检测传统流式细胞仪的硬件系统通常由一个或者多个激光器组成的光照系统、二向色镜以及带通/长通滤光片组成的分光光学器件、高灵敏度光电倍增管(PMT)或雪崩光电二极管组成的检测系统组成。传统流式细胞仪内一个激光器可以搭配2个或多个PMT通道,一个PMT对应一个检测通道,接收发射光谱的峰值信号。激光器越多检测通道越多,可检测荧光信号也越多。平台根据中心各课题组的实验需求配置了不同型号的基于传统检测原理的流式细胞检测设备。1.1 细胞內源荧光蛋白或自发荧光的流式细胞检测细胞内源荧光蛋白或自发荧光的检测主要包括三个方面的应用:1.细胞系转染质粒后阳性比例的检测;2.组织来源带有内源性荧光标记蛋白的细胞比例情况,例如细胞示踪实验;3.细胞自发荧光的测定,比如细胞富含某类化合物,而该类化合物具有较强的自发荧光,可以作为该类细胞的识别标志物。这三类实验基本只用单色或者两色的流式设备配置就可以开展实验。通常转染了只带有GFP标签蛋白的质粒细胞进行流式检测时,只需有488nm激光器,但是如果有mCherry之类的荧光蛋白,必需要有561激光器进行激发。如果带有GFP和mCherry两种融合荧光蛋白的小鼠组织来源细胞进行实验时,要注意两种荧光蛋白的表达水平,尤其是mCherry表达强而GFP表达弱时,mCherry的荧光溢漏会影响GFP通道,所以要利用合适的单荧光样品管作为单染管进行补偿调节。对于一些自发荧光的细胞,例如富含维生素A的细胞类型,可以用405nm激光器激发,450/50带通滤光片进行收集。对于这些荧光蛋白检测的实验,平台需要配备405nm/488nm/561nm的流式检测设备即可。1.2 常规细胞生理健康的流式细胞检测细胞凋亡、倍型、周期是流式平台做的最多的和细胞生理健康相关的实验。细胞凋亡实验一般会采用PI/Annexin V-FITC双指数染色,只有488nm激光器的设备就可以满足实验需求,但是如果有488nm/561nm独立光斑的仪器就可以省略调补偿的过程。细胞倍型一般会采用Hoechst 33342进行染色,以区分单倍体、二倍体等。Hoechst和双链DNA结合后最大激发波长为350nm,最大发射波长为461nm,因此需要配备了355nm激光器的设备,450/50带通滤光片收集。细胞周期一般会采用PI染色的方法,488nm或者561nm激光器都可以激发。因此,对于细胞生理健康的检测,如果使用上述染料基本配备355nm/488nm/561nm激光器的流式检测设备即可。1.3 多色流式细胞检测平台在多色流式细胞检测上主要围绕免疫细胞、造血干细胞、成体干细胞等的分型鉴定。多色流式检测从配色方案设计、设备选择、样品制备、上机和数据分析,过程相对更为复杂。因此,平台配备了4激光12色,4激光14色,5激光18色,5激光19色,5激光28色等多参数流式细胞仪,以满足各种实验需求。在实验过程中,如果多色实验,补偿调节依然是许多用户困惑的地方。如何获得正确的补偿矩阵是保证后期样品数据分析准确性的前提。现在的流式细胞分析仪基本都具备自动调节补偿的功能,因此可以用样品来确定各检测通道的电压后,用补偿微球进行补偿调节可以避免细胞阳性群不明显的困扰。随着仪器光路结构/检测器、电子元器件和分析软件的不断迭代,光谱流式技术的实用性得到了发展。在2005年的时候,Robinson等人提出了可以通过使用棱镜或光栅系统进行分光,配合32通道PMT或CCD检测器阵列可实现500-800nm波长范围内的全光谱信号检测技术。与棱镜分光相比,光栅分光系统可以通过单缝衍射原理对复合荧光实现均匀色散分光,在保证荧光信号真实性的基础上确保所有波段的荧光信号可以同时到达PMT检测器阵列中,实现全光谱信号检测的时空一致性,确保染料光谱的真实性。全光谱流式细胞仪可以跨越所有激光线,检测到可见光波长范围内(360-920nm波长)的全光谱信息,获得每一种荧光的整个发射光谱信息,最后利用WLSM算法(最小加权二乘法)对多个光谱进行拆分,获得每个单一荧光探针的完整光谱信号,从而避免使用传统的补偿计算矩阵,收集到更加全面与准确的荧光信号。因此,通过引入光谱流式技术,可以避免传统流式实验中高参数实验的补偿困扰。比如,通过光谱流式,平台已经实现了小鼠肠道23色免疫细胞分析方案、28色肿瘤免疫细胞亚群分析实验等。但是值得注意的是,光谱流式需要正确的光谱信息,比如样品固定会影响光谱信号,所以固定前后需要建立不同的荧光光谱库。1.4 高通量流式细胞检测流式分析上样方式除了传统的5ml流式管上样外,现在的注射泵和蠕动泵进样方式还可以支持1.5ml EP管上样。而对于一些高通量筛选的时候,尤其是悬浮细胞,利用高通量上样器可以很好地解决这类实验数据采集问题。尤其是带有声波聚焦技术的出现,可以将待测细胞精确聚焦在样本流的中心位置,每个细胞样本都可以准确地聚焦在激光检测区,即使在高流速1ml/min进样速度也能保证信号的变异系数较小,数据质量更高。同时伴随注射泵式的上中下三点混匀模式和推入式进样可以最大限度避免细胞堵塞,从而实现提高样本通量的同时,保证读取样品速度及获取的数据质量和精度。平台配备这种高通量流式检测设备可以提升科研的效率,有效节约科研工作者的时间成本。二、流式细胞分选2.1 传统流式细胞分选常规流式细胞分选早期是基于空气激发原理,此类流式分选仪低压高频的分选特点保证样品分选速度快,对分选后细胞的活性保持得更好。但是它需要手动校准光路和液路,对仪器操作者的技术要求很高,对环境条件的要求也比较苛刻。随着技术发展,现在大型仪器平台都会配备基于石英杯激发原理的流式分选仪,因为是固定光路,只需对仪器进行基本的质控校准和液滴延迟校准,使得分选仪开机工作变得相对简便。加电式的分选模式基本对细胞的活性都会有损伤,所以在分选速度、纯度和活性三者之间如何进行条件优化也是对仪器操作者的一种考验。对激光器的配置要求可以根据实验需求来决定。以我们平台为例,因为有大量的分选实验涉及单倍体细胞的分选,需要使用核酸染料Hoechst 33342,以区别不同倍型细胞中处于不同减数分裂时期的细胞,因此需要功率可调的355nm激光器进行激发,保证此类核酸染料的激发效率。根据DNA浓度和DNA构型,使用450/50(Hoechst Blue)和670/30 (Hoechst Red)带通滤光片双指数显示获取数据。但是核酸染料的使用也往往造成管路、流动室等位置会有样品或染料残留,需要更多的维护时间和人力成本,同时不可避免地减少了可使用机时。因此从平台的用户群角度出发,可以将355nm激光器和405nm激光器分开配置到两台设备,这样可以兼顾保证核酸染料用户群和多色分选用户群的使用需求,也最大程度地避免了两类样品的交叉污染。2.2 芯片式流式细胞分选芯片式流式分选仪最大的特点在于“分选芯片-喷嘴一体化”代替传统的石英杯与喷嘴,因此避免了因流动室或喷嘴支架无法更换造成的样品残留和污染。更换了新的芯片后,可以真正将样本在流动室中的残留率降低到零,这种设计对细胞移植和生物危害性样本分选等对交叉污染零容忍的分选应用更为友好。传统流式细胞分选仪在实验前须对仪器进行一系列复杂的调试步骤,包括光路校准,液流断点优化、侧液流校准和液滴延迟计算等,对仪器操作人员的依赖性更大,普通用户短时间内难以掌握。微流体芯片分选仪已经实现了上述所有调试和校准步骤自动化,并能在分选过程中对液滴状态进行实时监控和自动调节,简化了仪器操作过程,保证了每日仪器状态的稳定性,而且还能匹配不同规格的微流体芯片(70um,100um,130um)可以适用于更多的细胞类型。校准模式中还设计了大液滴模式,液流会更加稳定,更加适用于大细胞和多孔板(96或者384孔板)的分选。鉴于这种芯片式流式分选的特性,平台中一些抗体的单克隆筛选,384孔板测序建库,原代神经细胞等实验会借助这种分选平台进行。2.3 磁珠分选免疫磁珠分选主要基于细胞表面抗原能与连接有磁珠的特异性单抗相结合,在外加磁场中,通过抗体与磁珠相连的细胞被吸附而滞留在磁场中,而没有这种表面抗原的细胞由于不能与连接着磁珠的特异性单抗结合而没有磁性,先被洗脱下来,撤离了磁场后,带有抗体的细胞再被洗脱下来。因此,可以快速地分选得到阴选和阳选的细胞。作为一种功能较为独立的分选设备,磁珠分选主要应用于简单抗体标记的细胞分选和稀有细胞样品前期的富集,提高目的细胞的比例,可以帮助缩短在后期的流式细胞分选的时间提高获取细胞的纯度。分选后细胞纯度高、活性大,通过阳选,还能有效去除细胞碎片。但是对于一些需要内源蛋白标记的细胞还不能通过这种技术实现快速的分选。三、流式平台管理心得和未来可提升空间第一、 在流式使用方面,日常的维护是必不可少的,特别是使用频率特别高或者使用核酸染料样品较多的设备,可以将仪器维护频率提高到一周一次大清洗,同时在每一个用户实验结束后配合使用高浓度clean液-Rinse液-去离子水的冲洗流程,最大程度地保证管路和流式室的清洁,保证仪器正常的使用状态。第二、 对流式技术人员的要求日渐提升,除了会日常的开关机、维护、指导学生上机实验外,需要技术人员对不同样品的特性有更多的认知,判断其数据采集或分选过程中结果不如预期的潜在关键所在,此外还需要具备简单故障排除和硬件故障断定的能力,以缩短流式维修时间成本。第三、 平台设备需要密切结合用户群的实验特性、使用频次、科研目的等关键指标进行合理的配置,同时也要关注平台的技术空白和短板,予以填补和提升。第四、 随着对外泌体、病毒、细菌、亚细胞结构如线粒体等天然纳米颗粒检测需求的提升,可识别直径小于100nm颗粒的纳米级流式细胞术因其在外泌体研究、囊泡运输、纳米药物开发等方面的应用,可以作为纳米尺度小颗粒检测的金标准。第五、 随着光谱分析技术的提升,解决了光谱数据实时解析的问题后,整合了空气激发、低压高频、全自动校准、生物安全等功能的全光谱流式细胞分选仪势必在高参数高速流式分选中发挥更重要的作用。最后,国产流式技术团队在整机开发、配套试剂、技术能力、科研应用、售后服务等方面的不断提升,例如国产光谱流式、国产质谱流式在科研平台的落地化比例逐年上升。作者简介:俞珺璟 细胞分析技术平台副主任/高级工程师俞珺璟,中国科学院分子细胞科学卓越创新中心(生物化学和细胞生物学研究所)细胞分析技术平台副主任,博士,高级工程师。2004-2009中国科学院生物物理研究所获博士学位;2007-2009年美国密苏里州Stowers Institute for Medical Research访问学者;2010-2018在中国科学院生物物理所感染与免疫重点实验室从事细胞生物学及天然免疫学相关研究;2018年9月加入中科院生物化学和细胞生物学研究所细胞分析平台,副主任,主要负责流式平台仪器运维、大型仪器理论及实操培训,承担院级功能开发研制项目等,曾作为特邀主编,编撰《流式细胞术实验手册》,已在线发表于Bio-Protocol。2021年被评选为"中国科学院关键技术人才"。相关阅读:细胞生物学研究的利器——仪器平台负责人经验谈点击进入话题页面
  • 2019年,美国在治疗非小细胞肺癌方面有哪些新突破?
    p   肺癌是世界范围内癌症死亡第一常见的原因,也是发病率最高的癌症。大约85%的患者为非小细胞肺癌(NSCLC),包括肺腺癌(和肺鳞癌、大细胞肺癌。其中肺腺癌占比最多,约40%多。 br/ /p p   近年来,非小细胞肺癌(NSCLC)的治疗取得了重大进展。靶向药及免疫治疗药物的问世,将5%的五年生存率提高到15%,即便给这里患者人群带来了前所未有的生存益处,但是将NSCLC变成慢性病还有很长的路要走。 /p p   然而,非小细胞肺癌的总体治愈率和生存率仍然很低,特别是发生转移后,治疗难度不可预知。 因此,需要继续研究新药、新技术、联合治疗将临床益处扩大到更广泛的患者人群,提高非小细胞肺癌患者的总体生存期,改善生活质量。 /p p   美国是医学技术发展最快的国家之一,我们来盘点一下,对于NSCLC,2019年美国有哪些治疗新技术? /p p    strong span style=" color: rgb(192, 0, 0) " 1.靶向治疗及免疫治疗 /span /strong /p p   药物治疗是所有癌症治疗应用最广泛的方法。NSCLC是目前获批靶向药最多的癌症,最常见的靶点包括:EGFR、ALK、BRAF、HER2、MEK、ROS1、PD-L1、VEGF等。具体药物清单如下: /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/6d9661fa-bec0-4e7e-830e-4e973755c6ac.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p   靶向药及免疫治疗药物治疗之前,需进行基因检测,找到突变的靶点才能采用相对应的靶向药治疗,若无突变,将与靶向药失之交臂。 /p p   但在癌症的治疗过程当中,有一部分人在接受靶向治疗前,选择不做基因检测,而这种治疗方法就叫做盲试。对比基因检测,盲试也有自己的优势,比如即能省钱又能节省时间。除非万不得已,否则不建议这样做!!以下两种情况可以选择盲试: /p p   ①可选择药物单一时:一些种类的癌症,可能突变类型比较单一,有效的化疗药也较少,对于靶向药也没有可选余地,这种情况下,可以选择盲试,一旦发现没有效果,就立即更换其他疗法。NSCLC靶向药这么多,不建议盲试!一次全面的基因检测,可以指导患者获得最精准的治疗方案,这么多靶向药,总有一个可用吧!新年基因检测福利大放送: /p p   ②生存期不乐观时:对于一些癌友,可能医生的预估生存期不足3个月,并且经济条件也不好,这种情况,如果拿半个月等一个不确定的结果的话,就显得太冒险,所以不如直接进行盲试,把钱用在刀刃上,挑选概率最大的药进行尝试,“得之我幸,失之我命”,一切看天意了。 /p p   span style=" color: rgb(192, 0, 0) " strong  2.电场疗法 /strong /span /p p   2000年,以色列教授Yoram Palti利用他在生物物理学的研究成果研究出一种全新的治疗实体肿瘤的技术,这种技术会消灭肿瘤细胞,同时对健康细胞没有任何副作用, 这项黑科技的全称叫肿瘤治疗电场(Tumor Treating Fields,简称电场疗法或者TTF)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/4a1ff426-1ba6-44bd-80cb-896788632b85.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 像上图中这位患者,睡着觉就可以轻松治疗肺癌? /span /p p   这是一种需要量身定做的可穿戴设备,英文名字叫Optune,作为一种轻便的可穿戴设备,Optune不影响患者睡觉、聊天、带孩子、甚至工作。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/ee75376e-95f6-4a39-b510-ae5233951437.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p   肿瘤治疗电场属于新时代的黑科技。因为癌细胞与正常的细胞在分裂速度上有区别,理论上可以通过控制电场的频率,来精确扰乱癌细胞的分裂,而对正常细胞不造成影响。目前,美国已经批准TTF用药脑胶质瘤的一线治疗。 /p p   除此之外,电场治疗在其他癌症治疗领域也收获颇丰,包括肺癌、卵巢癌、胰腺癌等多种恶性肿瘤。 /p p   瑞士温特图医院癌症中心的医学肿瘤学主任Miklos Pless在2010年欧洲医学肿瘤协会(ESMO)上发表了重要数据:在瑞士的四个中心进行一项单臂二期临床研究,招募了42名患有局部晚期和转移性的NSCLC(IIIb-IV期)患者,这些患者先前化疗失败,每天接受TTF治疗12个小时,并联合使用培美曲塞(爱宁达,礼来公司),直到病情恶化。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/a5178420-0f85-4bc1-975b-099af6f584e7.jpg" title=" 4.png" alt=" 4.png" / /p p    span style=" color: rgb(192, 0, 0) " 结果显示: /span /p p   接受TTF联合培美曲塞治疗组相比单独培美曲塞治疗平均存活时间为13.8 vs 8.3个月 /p p   联合治疗一年生存率为57%,单独培美曲塞治疗只有30% /p p   当TTF联合培美曲塞治疗,无进展的存活时间增加了一倍多,达到了22-28周,单独培美曲塞治疗仅为12周! /p p   唯一报告的TTF治疗不良反应是在治疗位轻微到中度的皮肤刺激。 /p p   2018年12月28日,TTF疗法已经正式用于治疗首位香港脑胶质瘤患者,正式登陆香港,全球肿瘤医生网可以协助国内癌症患者联系香港或美国,进行TTF治疗,致电400-626-9916。 /p p    span style=" color: rgb(192, 0, 0) " strong 3.古巴肺癌疫苗 /strong /span /p p   越来越多的肺癌患者已经知道,古巴有一种非小细胞肺癌疫苗可以延长晚期肺癌患者的生存期,并且,有一些正在接受肺癌疫苗治疗的晚期肺癌患者已经回到了正常的生活! /p p   古巴肺癌疫苗可以通过激发免疫系统产生一种抗体,绑定和去除癌细胞生长所必需的表皮生长因子(EGF),从而有效减缓肿瘤进展。目前,肺癌疫苗已经在古巴、秘鲁等地批准临床使用多年,美国目前正在进行临床试验。 /p p   这个肺癌疫苗也不是所有患者都能用的,要求是已经采用手术、化疗、放疗或者靶向治疗等将病情控制住的非小细胞肺癌患者,不能有脑转移,不能有胸水、腹水、心包积液等,需要患者将病历资料发送给古巴的医生,评估通过之后,才能获得购买资格。 /p p   但是,患者必选要清楚的是古巴肺癌疫苗是控制肺癌继续进展速度的疫苗而不是治愈肺癌的疫苗。目前,古巴科学家已经研制成功两代疫苗,分别是Vaxira和CIMAvax,两代疫苗价格一样,具体使用哪种,需古巴医生决定,但是,每次只能购买半年的用量。据估计第一年的药价需10多万人民币,后续治疗会越来越少。古巴肺癌疫苗咨询及购买请致电全球肿瘤医生网400-626-9916。 /p p span style=" color: rgb(192, 0, 0) "    /span span style=" color: rgb(192, 0, 0) " strong 4.质子治疗 /strong /span /p p   质子治疗是放疗技术的一种,但与世人所知的放疗有所不同的是照射线不同,质子治疗采用的是质子线,也就是通过一些机器从氢原子中分离出来质子,然后再发射出去,集中照射到肿瘤部位,达到杀伤肿瘤的目的。 /p p   普通放疗采用的是X射线,由于X射线有辐射,照射过程中在对达肿瘤之前的皮肤及肿瘤周边、后方的组织会有很严重的损害,如果控制不好剂量,放疗带来的副作用可能会威胁生命。质子线照射有一个特别的机制,可以形成布拉格峰。 /p p   如同放烟花一样,质子线从离开加速器到肿瘤之前,几乎不会释放能量,到达肿瘤才一下释放全部的能量,在肿瘤部位“爆炸”,肿瘤后面也不会有残余的能量照射,没有遭受损害。 /p p   因此,质子治疗被誉为 “肿瘤治疗神器”。虽然没有那么夸张,但是质子治疗绝对是“高配版”放疗,放疗中的法拉利,已被全世界认可。质子治疗适用于各种实体瘤。对于没有全身转移,病灶小于3个的实体瘤质子治疗都适用,不分癌种,只要是实体瘤就可以。换句话说,只要医生建议或评估可以采用放疗治疗,这样的患者都可以选择质子治疗。 /p p   55岁男性,无明显诱因出现走路左偏,左侧上肢抽搐,发作时意识清醒,持续时间约1-2分钟,可自行缓解。PET-CT显示:左肺上叶尖后段肺癌 并右侧顶叶脑转移,在全麻下行“脑转移瘤切除术”,术后症状明显改善。 /p p   病理检测无基因突变,术后行化疗2周期,后拟行手术治疗,因肺部肿瘤靠近大血管,不能手术,经专家会诊,行质子放射治疗。质子治疗一个月后,肿瘤体积缩小65%。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/0036f2fc-4c99-4739-bd33-c9b06159ce39.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center " span style=" color: rgb(192, 0, 0) " span style=" color: rgb(0, 0, 0) " 质子治疗前后对比CT /span /span /p p    span style=" color: rgb(192, 0, 0) " strong 5.细胞免疫治疗 /strong /span /p p   3年前,细胞免疫治疗曾因魏则西事件被推至风口浪尖,在国内销声匿迹。但是,一个社会事件不能阻挡科学的发展,细胞免疫治疗技术强势回归。 /p p   2017年8月,FDA批准诺华的CAR-T疗法Kymriah(tisagenlecleucel)上市,用于治疗罹患B细胞前体急性淋巴性白血病(ALL),且病情难治或出现两次及以上复发的25岁以下患者,这是人类历史上批准的首款CAR-T疗法。 /p p   紧接着,2个月后,FDA宣布批准了Kite Pharma公司开发的用于治疗特定类型大B细胞淋巴瘤成人患者的CAR-T疗法Yescarta(axicabtagene ciloleucel)上市。这两项都是获批治疗血液癌症的,针对实体瘤的细胞免疫治疗技术正在全球各地如火如荼地开展着。 /p p    strong 细胞免疫疗法治疗流程是这样的 /strong /p p   用先进的血细胞分离机采集患者自体外周单核细胞。 /p p   在GMP实验室里,分离单个核细胞置于培养瓶中,加入培养液和细胞因子刺激免疫细胞使其活化增殖,同时对树突状细胞进行处理,加入抗原或者通过基因工程修饰,与免疫细胞共培养,提高免疫细胞具有识别杀伤肿瘤的能力。 /p p   经过7~14天细胞培养,细胞数增至原有数量的几百到上千倍,免疫杀伤能力增加20~100倍。 /p p   回收免疫细胞,在GMP实验室进行质量检测。 /p p   质检合格的免疫细胞方可给患者回输。 /p p   细胞免疫治疗的目的是通过激活人体免疫系统而对抗癌细胞,但由于整体治疗费较高,患者仍然需要谨慎选择!结合正规治疗,可考虑作为辅助治疗,提高身体免疫力。 /p
  • 赛默飞推出专业诊断新技术,为临床实验室提高效率和准确性
    中国上海,2012年7月24日&mdash 全球服务科学的领导者,赛默飞世尔科技(以下简称:赛默飞)藉参加美国临床化学协会(AACC)年会之际,隆重推出全系列专业诊断产品,致力于帮助临床实验室创新,从样品采集和存储,到新的免疫测定和质量控制等各方面协助客户实现更高效率。 &ldquo 医疗专业人员越来越需要依靠新型诊断工具来提供所需信息,从而帮助他针对病患治疗作出重要诊断决策&rdquo ,赛默飞总裁兼首席执行官Marc N. Casper 表示,&ldquo 我们不断丰富的专业诊断产品能够协助医生更快速、更准确地作出诊断,最终提高病患治疗效果&rdquo 。 提高临床实验室生产力的解决方案 公司发布的新款赛默飞QMS&trade 他克莫司免疫测定产品已经获得 CE 认证,可在欧盟销售。这款液态的即用免疫测定产品内含条形码编码试剂,可供赛默飞 Indiko 台式生化分析仪使用。该产品目前尚未在美国销售。 公司同时还推出了新一代 Indiko 平台,赛默飞 Indiko® Plus® 分析仪。Indiko Plus 分析仪承袭了先前产品的紧凑设计,能够为包括药物滥用测试、治疗药物监测等在内的日常临床研究应用带来更高通量。 此外,赛默飞还推出了免疫测定和化学控制仪,通过将若干分析物浓缩到单个小瓶中,改进临床实验室的工作流程。新款的赛默飞MAS Omni&bull CORE&trade 控制仪将常规化学和血清蛋白质量控制流程合并成单个解决方案,进而提供不同的测试级别,优化工作流程并降低成本。新推出的赛默飞 MAS Omni&bull Immune&trade 控制仪则强化并整合了日常免疫测定、肿瘤标记器和特殊的免疫监测质量管理流程。 领先的免疫诊断产品,提高病患治疗效果 赛默飞持续增强自身在临床诊断和过敏检测、哮喘和自身免疫疾病方面的强大实力。作为面向医生提供的可靠和简单工具,赛默飞 EliA&trade 类风湿因子分析仪于 2011 年 11 月获 FDA 批准,能够辅助对风湿性关节炎进行早期诊断。除此之外,赛默飞 ImmunoCAP&trade 类胰蛋白酶分析仪于 2012 年 2 月获得 FDA 批准,能够测量血清或血浆内的专一性酶水平,在早期识别出系统性肥大细胞增多症,一种罕见的血液疾病。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity? Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞中国 赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳等地设立了分公司,目前已有超过1900名员工、6家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大规模工厂2012年也将投产。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 《细胞》:科学家首次成功提取大鼠胚胎干细胞
    这将使科学家借助动物模型更方便地对人类顽疾进行研究   美国南加州大学一个科研小组12月24日宣布,他们首次成功地从大鼠胚胎中提取干细胞,这将使科学家借助动物模型更方便地对诸多人类顽疾进行研究。   英国科学家马丁埃文斯早在1981年就成功地从小鼠胚胎中提取出第一个小鼠胚胎干细胞。但大鼠胚胎干细胞的提取尚属首次。   研究负责人、华人科学家应其龙在新闻公报中说,这是干细胞研究领域的一项重大进展,“因为我们知道,与小鼠相比,大鼠在生物学的许多方面与人类更为相近”。应其龙认为,提取大鼠胚胎干细胞研究被证实可行之后,世界许多干细胞实验室的研究方向都将因此而改变。   此前,科研人员尝试提取大鼠胚胎干细胞都因为技术障碍宣告失败。此次,应其龙的科研小组采取了一种特殊的“信号阻断”方法,他们利用特殊的分子抑制大鼠胚胎中3个特定基因发出信号。正常情况下,这3个基因发出的信号是胚胎干细胞分化的“命令”。信号被阻断后,大鼠胚胎干细胞就能够“停下分化的脚步”,保持在原始胚胎阶段。   科研小组认为,能够提取大鼠胚胎干细胞,朝着今后科学家通过基因敲除技术人为地给大鼠胚胎剔除一个或多个基因、培养“定制”大鼠进行疾病研究又向前迈进了一步。   这一成果将发表在定于12月26日出版的《细胞》杂志上。
  • 流式新技术|魏勋斌团队:在体流式细胞检测技术(IVFC)揭示循环肿瘤细胞昼夜节律
    光域生物医学完成数千万天使轮融资——自主知识产权的在体流式细胞检测技术(点击查看此前报道)光域生物医学宣布已经完成天使轮融资,由专业医疗投资机构苇渡创投独家投资。本轮融资资金主要用于研发投入和临床技术创新。公开资料显示,光域生物医学科技(苏州)有限公司成立于2022年4月,其核心技术是国际首创并具有自主知识产权的在体流式细胞检测技术,基于该技术可实现免抽血、实时、动态、连续、无创、定量检测/监测人体或动物循环系统中的细胞、分子、纳米颗粒等目标物质,获取多维度的科研或临床数据,直接反映人或实验动物体内环境真实的分子、生理、代谢、药物等方面的参数和状态,区别于传统离体检测方式。光域生物医学即将上市发布的IVFC-1000系列科研仪器将成为国际上首台基于IVFC技术的商用仪器,开创一项全新的活体细胞学检测方法,并具有完全自主知识产权。魏勋斌教授开发“体内流式细胞术”(IVFC)癌症是人类生命的巨大威胁,癌症转移是癌症患者死亡的主要原因。循环肿瘤细胞(ctc)是肿瘤转移的临床生物标志物之一。目前检测血液样本中ctc的体外方法都是基于ctc在外周血中的分布不随时间发生显著变化的假设 然而,最近的研究对这种方法的正确性提出了挑战。由于连续抽取患者或实验动物的血液,研究CTC计数的每日振荡是不现实的,理想的方法是在体内长时间监测CTC。在发表于《光科学与应用》(Light Science & Application)杂志上的一篇新论文中,以上海交通大学医学- x研究所和生物医学工程学院、北京大学生物医学工程系魏勋斌教授为首的一组科学家,和同事开发了一种非侵入性光学方法来监测异种移植瘤模型中的ctc。他们开发的光学系统被命名为“体内流式细胞术”(IVFC),这与传统的“体外”流式细胞术不同,后者只能在体外检测荧光标记的细胞。在IVFC中,调整激光聚焦于实验小鼠耳的微动脉。当荧光标记的CTC通过光片时,荧光被激发并被光电倍增管(PMT)检测。为了说明这种光学结构的意义,血液循环中的ctc可以无创、反复、连续检测。“我们的IVFC技术不同于目前用于CTC检测的实验室或临床方法。操作系统不需要抽血。由于反复采血不会破坏生物环境,因此我们可以长期定期、无创地监测ctc。”他们说。通过这项技术,他们在前列腺癌原位小鼠模型中监测了24小时内不同癌症进展阶段的gfp表达ctc。在CTC计数方面,他们观察到,在夜间开始时,也就是啮齿动物的活跃阶段,每天都有惊人的振荡。在第6天、第12天、第18天和第24天用IVFC实时检测ctc,结果显示在转移性循环早期出现了明显的爆发活性。结果表明,前期爆发的概率高于后期。“这些发现可能会扩展我们对ctc和时间框架之间关系的理解。ctc并非全天均匀分布于血液中。他们在白天和晚上是不同的。提示昼夜节律可能调节CTC释放。临床检测ctc时应考虑到这一因素。”“ctc似乎比人们预期的更复杂。本研究为我们提供了一个影响临床CTC检测的潜在因素。了解CTC是否昼夜变化和爆发,从而加深对其分布规律的认识,是非常重要的。IVFC技术不需要在不同的时间点采血,重复的采血过程可能会改变生物环境。毫无疑问,我们越来越了解ctc和癌症转移。ctc的检测比以往任何时候都更加精确。”生物学家和临床医生说。用血管代替流动室,IVFC和FCM相似在使用这种类型的IVFC检测CTC之前,需要对感兴趣的细胞进行标记。 基于荧光的IVFC的基本原理与传统的FCM相似,只是使用生物体内的天然血管代替常规流式细胞仪中的流动室。 当荧光标记的细胞通过聚焦在血管上的激光束的狭缝时,可以激发它发射荧光。 然后可以通过PMT检测该信号(结构详见下图)。 因此,可以长时间获得生物信息而无需抽血。参考文献Wei Xunbin,Zhou Jian,Zhu Xi et al. A Noninvasive and Real-Time Method for Circulating Tumor Cell Detection by In Vivo Flow Cytometry.[J] .Methods Mol. Biol., 2017, 1634: 247-262DOI:10.1038/s41377-021-00542-5文献作者:魏勋斌,博士,博士生导师,博雅特聘教授,国家杰出青年科学基金获得者,SPIE(国际光学工程组织)Fellow(会士)。1993 年于中国科技大学物理系光电子技术专业获学士,1999 年获美国加州大学 Irvine 分校生物物理学博士,1999-2001 年在哈佛大学从事博士后研究。2001-2006 年任哈佛大学生物医学光学中心研究助理教授。2006 年回国,国内工作期间获得国家杰出青年科学基金、教育部新世纪优秀人才、科技部 973 国家重大基础研究计划、国家传染病重大专项、国家自然科学基金仪器专项、上海市领军人才、上海市优秀学科带头人、上海市曙光学者、上海市浦江人才计划等项目资助。共发表 NATURE、PNAS、NATURECOMMUNICATIONS 等 100 余篇,总影响因子400,他引 3600 余次。获得国家三类医疗注册证一项,国内外专利20 余项。1)可用于肿瘤光学早期检测的“在体流式图像细胞仪”; 2)在体肿瘤光学分子影像技术及近红外纳米光学探针技术; 3)活体光学细胞操纵技术研究; 4)激光医学与老年痴呆症的光治疗技术。
  • 马光辉院士/魏炜研究员团队开发工程化细胞外囊泡治疗胶质母细胞瘤
    通过交叉科学研究,提出并发展生物医学前沿新技术,是提高重大疾病治疗效果的重要手段。胶质瘤是发病率和死亡率最高的中枢神经系统肿瘤,其中胶质母细胞瘤(GBM)是最恶性的肿瘤,也被称为“癌中之王”。临床上治疗GBM以外科手术为主,同时辅助放化疗,但是效果非常有限;以手术和替莫唑胺联合治疗为例,5年生存率小于5%。因此,亟需开发新型高效的GBM治疗策略。 GMB治疗棘手的原因主要有三方面。首先, 血脑屏障(BBB) 的存在阻止了药物进入中枢神经系统,需要发展更有效的药物递送策略;其次,单一化疗药物的使用易导致耐药性的产生,需要联合新的肿瘤杀伤手段;另外,GBM具有复杂的肿瘤微环境,对其快速生长和向周围组织的浸润起到重要作用,在治疗的过程中不容忽视。 近日,中科院过程工程所生化工程国家重点实验室 魏炜 研究员、 马光辉 院士、深圳市第二人民医院 李维平 教授,作为共同通讯作者 在 Signal Transduction and Targeted Therapy 期刊发表了题为: Exploration and functionalization of M1-macrophage extracellular vesicles for effective accumulation in glioblastoma and strong synergistic therapeutic effects 的研究论文。 该研究基于工程化细胞外囊泡发展了“ 免疫调控-化学动力-乏氧激活 ”多级联动的治疗新策略,为胶质母细胞瘤的治疗带来了新思路。针对胶质母细胞瘤治疗难题,过程工程所生化工程国家重点实验室基于具有定向趋化能力的巨噬细胞的细胞外囊泡 (EVs) 和工程化的设计,提出了“免疫调控-化学动力-乏氧激活”多级联动的治疗新策略,并联合深圳市第二人民医院交叉合作,进行了个体化创新药物制剂的研发。 研究团队首先基于胶质瘤患者的临床样本和小鼠模型进行了免疫组化的研究,发现胶质瘤恶性程度越高,肿瘤组织中浸润的M2型巨噬细胞/M1型巨噬细胞的比例也相应更高,并且这些巨噬细胞大多来源于外周血。在此基础上,研究团队提出了以M1巨噬细胞EVs作为载体,一方面可以利用M1巨噬细胞的趋化特性在GBM部位大量蓄积,另一方面可以通过调控巨噬细胞表型实现GBM微环境的免疫调控。图1 胶质瘤样本中巨噬细胞的表型及其来源分析:a. 胶质瘤患者临床样本中巨噬细胞表型分析示意图;b. 不同级别胶质瘤中M1、M2和Ki67(细胞增殖指标)的分析;c. 基于TCGA数据库分析不同级别胶质瘤中M2/M1比例;d. 基于TCGA数据库分析胶质瘤患者瘤内M2/M1比例与生存曲线的关系;e. GBM组织中小胶质细胞和M1巨噬细胞的共定位分析;f. 免疫荧光染色分析GBM组织中小胶质细胞和M2巨噬细胞的共定位;g. 小鼠胶质瘤样本中巨噬细胞表型分析示意图;h. 在不同胶质瘤细胞系(U87MG、G422和GL261)中M1、M2和Ki67的分析;i. 免疫荧光染色分析不同鼠胶质瘤组织中小胶质细胞和M1或M2巨噬细胞的共定位情况;图中标尺均为50 μm 研究团队进一步在M1EVs的细胞膜和内腔差异化装载了化学激发分子对 (CPPO和Ce6) 以及乏氧药物 (AQ4N) ,以此将肿瘤微环境调控、化学激发动力学及肿瘤乏氧治疗合理有序地集成于M1EVs递送系统中。上述仿生剂型 (CCA-M1EVs) 静脉注射后,M1EVs可以携带上述组分穿过BBB进入GBM病灶,进而实现多级联动治疗:M1EVs调控免疫微环境产生大量过氧化氢,从而激发CPPO和Ce6生成自由基 (ROS) ,同时该反应消耗氧气激活细胞毒性药物AQ4N。借助上述作用的协同,在小鼠原位胶质瘤模型和患者来源的 (PDX) 模型上显著抑制了疾病的进程,大幅延长了生存期。图2 基于M1EVs的仿生剂型构建方案、抗肿瘤机制及PDX疗效:a. 仿生剂型的构建示意图;b. 仿生剂型在GBM模型中的累积及免疫调节、化学激发动力学和乏氧触发化疗的协同作用示意图;c. 基于光声成像分析仿生剂型在PDX小鼠GBM病灶中的累积;d. 各组PDX小鼠的抑瘤效果(20天核磁成像);e. 各组PDX小鼠的生存期分析;f. 各组PDX小鼠的TUNEL分析(标尺50 μm) 十余年来,过程工程所生化室魏炜研究员和马光辉院士创制了一系列仿生递送新剂型,利用其体内的天然路径和属性,在动物模型上成功用于肿瘤、传染病、炎症性疾病的防治,并且部分剂型已通过医院伦理批准进入个体化临床前和临床研究。 深圳市第二人民医院 王晓君 博士和丁辉博士为该论文的共同第一作者,中科院过程工程所生化工程国家重点实验室魏炜研究员、马光辉院士和深圳市第二人民医院李维平教授为共同通讯作者。论文链接 : https://www.nature.com/articles/s41392-022-00894-3
  • 空间代谢组学:单细胞空间代谢流分析新方法
    空间代谢组学:单细胞空间代谢流分析新方法原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼刘甜生物体内的代谢物和脂质不仅是细胞的关键组成模块,它们在信号传导、表观基因组调控、免疫、炎症和癌症发展中同样具有重要作用和意义。代谢组学分析是我们了解、评估生物体、器官和细胞状态的重要方式。而单细胞技术通过展示组织内部甚至单克隆细胞之间的细胞异质性,将生物学研究推进至新维度。质谱成像(MSI)技术可以从样品中创建特定化合物的图像,这些图像是由样品表面获得的数千个质谱生成的。每个记录的质谱都会为图像贡献一个像素,而每个质谱中的峰都可以生成一个图像。与其他成像方法相比,MSI无需化合物标记,可实现非靶向分析。本次与大家分享的是一篇最新发表于bioRxiv上的有关单细胞空间代谢流分析方法的文章[1]。研究人员基于AP-SMALDI Orbitrap平台开发了一种命名为“13C-SpaceM”的新方法,通过13C标记的葡萄糖示踪葡萄糖依赖性脂肪酸从头合成途径(glucose-dependent de novo lipogenesis)。本方法应用超高分辨率的基质辅助激光解吸/电离实现了单细胞质谱成像,并通过全离子碎裂模式(AIF)模拟了脂肪酸分析前处理过程中的皂化反应,对包括甘油磷脂在内的主要脂质中的脂肪酸部分实现了共同分析。超高灵敏度、高分辨质谱检测器为单细胞内脂肪酸同位素检测提供了准确的定性、定量结果。研究人员通过鼠肝癌细胞的常氧-低氧模型,对检测方法进行了验证,确认方法的有效性。之后应用本方法分别检测了ATP柠檬酸裂解酶基因敲降(ACLY knockdown)鼠肝癌细胞以及携带异柠檬酸脱氢酶(IDH)突变的小鼠胶质瘤脑组织切片,通过比较脂肪酸的同位素丰度变化评估脂肪酸从头合成比例以及外源性脂肪酸摄取的变化。分析结果揭示了在脂肪酸从头合成过程中,乙酰辅酶A池(Acetyl-CoA pool)中存在大量的空间异质性,这表明在微环境适应过程中发生了代谢重编程。01研究背景脂质在生物体生命过程中承担着多种重要作用,多数脂质是由脂肪酸合成而来。成年哺乳动物体内的细胞通常由血液中摄取脂肪酸,而脂肪、肝脏以及癌细胞还可以Acetyl-CoA为底物,从头合成脂肪酸[2]。Acetyl-CoA经过一系列代谢反应,可以生成含有16个碳的饱和脂肪酸棕榈酸(16:0),之后棕榈酸发生碳链延长或去饱和反应生成不同的饱和、不饱和脂肪酸,从而影响脂质组成。而Acetyl-CoA同样有多种来源,除了葡萄糖经由TCA循环生成的柠檬酸在ACLY作用下生成Acetyl-CoA以外,在缺氧环境下,葡萄糖后续代谢产物丙酮酸会转化为乳酸,从而无法合成Acetyl-CoA、进入脂肪酸合成途径。在此情况下,谷氨酰胺可通过还原羧化反应生成柠檬酸,进而合成Acetyl-CoA [3,4] 。另有文献报道,缺氧环境下的癌细胞还可以将乙酸作为脂肪酸合成的前体 [5,6] 。而Acetyl-CoA除了作为脂肪酸合成底物以外,对于蛋白翻译后修饰、基因表达等均有重要作用。通过监控脂肪酸合成和Acetyl-CoA代谢间的互动可以帮助我们深入理解癌细胞的生存状态。02分析方法大气压MALDI成像分析是通过AP-SMALDI5离子源配合Q Exactive plus高分辨质谱仪实现的。激光像素设置为 10×10 µ m,激光衰减器角度设置为33°。质谱在负离子模式下采用一级全扫描和全离子碎裂(AIF)扫描模式。AIF模式的隔离范围为 m/z 600-1000,扫描范围为m/z 100-400,分辨率 140k,最大注入时间500 ms,碰撞能量NC 25%。(图1)图1. 单细胞代谢流质谱成像分析流程(点击查看大图)MALDI分析前后,分别应用显微镜检测,确定细胞影像位置及MALDI消融标记位置。通过检测MALDI的消融标记,将其与细胞影像叠加,并通过应用数学公式进行解卷积,从而整合显微镜图像和MALDI图像。实现了应用MALDI成像质谱检测到的单细胞分子轮廓。(图2)图2. 整合显微镜和MALDI-MS分析结果实现单细胞质谱成像(点击查看大图)03鼠肝癌细胞常氧-低氧模型单细胞成像分析鼠肝癌细胞在添加25 mM的12C-葡萄糖或U-13C-葡萄糖后,用含1mM醋酸、2 mM谷氨酰胺和10%透析胎牛血清的无葡萄糖DMEM细胞培养基培养,在37°C、5% CO2的培养箱中在常氧(20% O2)或低氧(0.5% O2)条件下培养72小时。选择72小时的时间点是为了确保棕榈酸的同位素标记已经达到稳态。(图3)在低氧条件下培养的细胞被表达绿色荧光蛋白(GFP)标记。在共培养实验中,常氧和低氧细胞使用胰酶分离,每种条件下混合10000个细胞,在同一张玻璃片上进行培养,并在固定之前允许其附着3小时。图3. 由稳定同位素标记的13C6-葡萄糖生成细胞质Acetyl-CoA以及后续的脂肪酸和脂质合成途径(点击查看大图)通过质谱一级全扫描分析,质谱成像共检测到64种脂质,包括磷脂酸(PA)、磷脂酰肌醇(PI)、磷脂酰乙醇胺(PE)、磷脂酰丝氨酸(PS)等。具体脂质鉴定结果经过了常规LCMS脂质分析确认。在AIF模式下,检测到了11种含量最高的脂肪酸,相应检测结果同样与常规LCMS分析结果相符。为了验证本方法,研究人员检测了常氧-低氧培养的鼠肝癌细胞混合样本。通过对氨基酸同位素峰的定量分析,发现13C标记的棕榈酸(M0)主要在正常细胞中检出,而缺氧细胞中的棕榈酸以未标记状态(M+0)为主。通过GFP标记结果的对照,证明了本方法可以通过同位素峰分布有效识别不同培养状态的细胞。图4. 在常氧(GFP阴性)和低氧(GFP阳性)条件下的原代鼠肝癌细胞共培养模型的显微镜和质谱成像结果(点击查看大图)图5. 通过GFP标记验证识别不同培养模式细胞的准确性(点击查看大图)04单细胞Acetyl-CoA池标记水平分析研究人员使用了两种表达不重叠的shRNA序列(ACLYkd oligo1和ACLYkd oligo 2)细胞系以及一个对照组细胞系。通过使用1 μg/mL的四环素处理细胞72小时实现了ACLY沉默。质谱成像数据是以10 μm的像素大小获得的,每个细胞的平均面积为550μm2,平均每个细胞有12个像素。通过应用二项式模型计算每个细胞的acetyl-CoA池标记程度p值,从而量化细胞质中acetyl-CoA池中从葡萄糖衍生的同位素标记acetyl-CoA的比例。测试结果与预期相符,ACLYkd细胞中的acetyl-CoA池标记水平低于对照组。值得注意的是,两种ACLYkd细胞之间的差异非常明显。ACLYkd oligo1的结果呈双峰分布,p值的差异明显较大,表明该细胞系存在两个亚群体。其中一个模式显示的p值与对照组相近,说明存在一个“沉默失败”的细胞亚群。ACLYkd oligo1第二个模式具有的p值明显则低于ACLYkd oligo 2,表明ACLYkd oligo 1中还存在一个“强沉默”的亚群,在这些细胞中,沉默效率非常高,导致acetyl-CoA同位素标记比例大幅降低。在ACLYkd oligo 2中,acetyl-CoA池的标记程度以及GFP报告基因强度显示出更均一的分布。M+2峰是最能表现出ACLYkd oligo1细胞中“强沉默”群体的低acetyl-CoA标记表型的质谱峰。M+8峰则为对照组细胞的特征标记峰。M+2和M+8之间的差异可以作为显示异质性的指标,用于展示葡萄糖对细胞质中acetyl-CoA的相对贡献。因此,13C-SpaceM能够检测ACLY敲降细胞中的异质性,并识别不同的亚群体。这种单细胞和空间异质性无法通过整体分析揭示,显示了13C-SpaceM方法的独特优势。图6. 细胞ACLY敲降后acetyl-CoA的同位素标记程度分析(点击查看大图)05肿瘤组学中氨基酸合成异质性的空间组学分析研究人员分析了从横向植入表达突变型异柠檬酸脱氢酶(IDH)和红色荧光蛋白(RFP)的GL261胶质瘤细胞的小鼠大脑组织切片。在采集组织前的48小时,小鼠被喂食未标记的或含有U-13C葡萄糖的液体饮食。首先,研究人员分析了12C-葡萄糖饮食的肿瘤携带小鼠大脑切片中的酯化脂肪酸组成。通过比较质谱TIC与显微镜明场和荧光成像,发现整个大脑(包括肿瘤区域)的质谱离子响应很高(图7a)。测试过程中,肿瘤区域与组织切片的其余部分分别采用10μm和50μm激光分辨率进行分析。对不同脂肪酸的空间分析揭示了在非肿瘤携带的脑半球组织中,脂肪酸丰度存在高度的异质性,我们可以仅根据它们的脂肪酸组成来识别的某些结构,如胼胝体和前连合部,这两个区域都富含油酸(18:1)且棕榈酸(16:0)、硬脂酸(18:0)和花生四烯酸(20:4)的含量低。有趣的是,尽管棕榈酸、油酸、硬脂酸和花生四烯酸在肿瘤和周围的大脑组织中的含量相似,肉豆蔻酸(14:0)和棕榈酸(16:1)在肿瘤组织中则明显增加。与大脑其它部分相比,肿瘤中必需脂肪酸亚麻油酸(18:2)和α/γ亚麻酸(18:3)也明显增高。之后,研究人员分析了喂食含有U-13C葡萄糖饮食的小鼠肿瘤组织,从肿瘤组织中选择性分离出的5种主要从头合成的脂肪酸的同位素分布(图7c)。三种饱和脂肪酸肉豆蔻酸(14:0)、棕榈酸(16:0)和硬脂酸(18:0)的13C摄入丰度较高,同位素分布最大分别可至M+10,M+12和M+14。其中,肉豆蔻酸M+0的强度极低,几乎完全源自脂肪酸从头合成。由于肉豆蔻酸对一些重要信号蛋白的翻译后修饰很重要,这一发现表明胶质瘤可能选择性地上调肉豆蔻酸的合成以促进自身生长。相比之下,两种单不饱和脂肪酸,棕榈酸(16:1)和油酸(18:1)的M+0同位素的相对丰度较高。硬脂酸和油酸的M+2同位素丰度明显增加,表明它们是由未标记的前体(即棕榈酸和棕榈酸)延长形成的。研究人员进一步利用棕榈酸的同位素分布计算acetyl-CoA池中源自葡萄糖的比例,发现肿瘤组织内的该比例同样具有显著的空间异质性(图7d)。图7. 小鼠脑胶质瘤组织内部脂肪酸代谢空间异质性分析(点击查看大图)总结本文作者开发了一种全新的单细胞代谢流成像检测方法,将超高激光分辨率的大气压MALDI与高分辨率、高灵敏度的质谱检测器相结合,对细胞和肿瘤组织内的葡萄糖依赖性脂肪酸从头合成途径实现单细胞层面的空间分析。不仅为单细胞水平空间探测代谢活动提供了新的方法,还为正常和癌症组织中的脂肪酸摄取、合成和修饰分析提供了前所未有的视角。参考文献:1. Buglakova E, Ekelö f M, Schwaiger-Haber M, et al. 13C-SpaceM: Spatial single-cell isotope tracing reveals heterogeneity of de novo fatty acid synthesis in cancer. Preprint. bioRxiv. 2024 2023.08.18.553810. Published 2024 Feb 28. doi:10.1101/2023.08.18.5538102. Rö hrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016 16(11):732-749. doi:10.1038/nrc.2016.893. Metallo CM, Gameiro PA, Bell EL, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2011 481(7381):380-384. Published 2011 Nov 20. doi:10.1038/nature106024. Wise DR, Ward PS, Shay JE, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A. 2011 108(49):19611-19616. doi:10.1073/pnas.11177731085. Kamphorst JJ, Chung MK, Fan J, Rabinowitz JD. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab. 2014 2:23. Published 2014 Dec 11. doi:10.1186/2049-3002-2-236. Schug ZT, Peck B, Jones DT, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015 27(1):57-71. doi:10.1016/j.ccell.2014.12.002如需合作转载本文,请文末留言。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制