当前位置: 仪器信息网 > 行业主题 > >

布洛芬峰鉴定标准品

仪器信息网布洛芬峰鉴定标准品专题为您提供2024年最新布洛芬峰鉴定标准品价格报价、厂家品牌的相关信息, 包括布洛芬峰鉴定标准品参数、型号等,不管是国产,还是进口品牌的布洛芬峰鉴定标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合布洛芬峰鉴定标准品相关的耗材配件、试剂标物,还有布洛芬峰鉴定标准品相关的最新资讯、资料,以及布洛芬峰鉴定标准品相关的解决方案。

布洛芬峰鉴定标准品相关的资讯

  • 布洛芬等药品产量激增,制药企业VOCs治理跟得上吗?
    布洛芬、对乙酰氨基酚等药品最近成了“抢手货”。据工信部消息,日前,两类解热镇痛药的产能产量大幅提高,日产能达2.02亿片,产量达1.9亿片,多家药企24小时满负荷生产。这种情况下,制药企业产生的主要污染物——挥发性有机物(VOCs)的排放量也随之增加。这些制药企业的VOCs治理能跟得上吗?当前形势下,企业能否从容应对?冲击有限:取决于企业末端治理技术水平和管理能力多位业内人士认为,制药企业满负荷生产、产量激增对其VOCs处理能力的冲击有限。江苏省苏州市生态环境综合执法局郑兴春告诉记者:“制药企业安装VOCs处理设施时,我们要求设备处理能力达到满负荷运行的设计标准。大多数企业平时的运行效率只有30%—40%,即使现在运行效率提高了,也在可控范围内。而且,由于制药企业的生产能力强,每批次可以生产很多药品,所以很少出现超负荷运行的情况。例如,近期我们检查的几家苏州制药企业,虽然产量增加,但都没有超负荷运行。”但这并不意味着VOCs排放量增加对制药企业没有影响。中国环境科学研究院大气环境研究所副研究员王洪昌说:“影响大小,主要取决于企业VOCs末端治理的控制技术水平。”目前,制药企业选择的VOCs末端处理技术相差较大、治理水平参差不齐。一些企业采用燃烧法,安装投资和运行成本较高的RTO(蓄热式热力焚化炉)或RCO(蓄热催化燃烧装置),处理效率较高,能够较好应对生产负荷变化。但是,大多数制药企业采用的仍然是投资和运行成本较低的冷凝、吸收、吸附等技术,处理效率不高,对满负荷冲击的适应能力相对较差。“治理技术水平偏低的企业,当前可能更加频繁地出现VOCs排放浓度瞬时或小时超标问题。”王洪昌说。郑兴春表示,这就要求制药企业提高运维管理能力,加大环境治理力度,根据VOCs排放量的变化,更加及时地调整易耗品更换频率、优化处理设备参数,有效应对生产负荷增加的冲击。他举例说,未采用燃烧法的企业,需要提高易耗品更换频率。比如,采用活性炭吸附技术的企业,要提高活性炭更换频次;采用喷淋技术的企业,要及时更换碱液、调整碱液pH值等。采用燃烧法的企业,当VOCs收集量增加、燃烧时间变长、气体浓度变高时,设备温度也要调高。“企业对VOCs产生环节和收集管道也要实时检测,检查管道密闭性是否达到要求,防止气体泄漏。”郑兴春说。不容忽视:VOCs治理是制药企业重难点事实上,VOCs治理一直是制药企业的重难点,即使是制药行业头部企业,在这方面也吃过不少罚单。华东理工大学资源与环境工程学院党委书记、教授修光利告诉记者,从客观方面看,这与制药行业本身VOCs治理的复杂性相关。“制药企业生产品种多、所涉原料广,特别是原料药制备过程中使用了较多的有机原料和有机溶剂,导致其产生的VOCs种类繁多,排放成分复杂、性质差异大。不仅如此,制药企业生产流程长,VOCs产生环节多,无组织排放情况较多,序批式的生产操作方式导致排放的波动性较大,增加了企业污染治理难度。”修光利说。一些大企业能生产上千种药品。药品所用原料可分为活性药物成分(原料药)、非活性成分(辅料)和包装原料,其中,生产原料药的企业污染较重,利用原料药生产片剂、胶囊等的单纯制剂类企业污染较轻。在浙江,原料药约占全省医药工业一半比重。通常情况下,只有大型企业才有能力生产原料药,小型企业购买原料药做片剂或精包装。一些地区采用合同加工外包(CMO—Contract Manufacture Organization)式的制药企业,其药品品种复杂,也值得关注。药品所用原料越多,生产过程中发生的化学反应越多,产生的VOCs物种也越多。比如,生产布洛芬类消炎止痛药产生的主要大气污染物至少7种,生产对乙酰氨基酚等解热镇痛药则至少产生氨、氮氧化物、硫酸雾等21种大气污染物。“需要注意的是,制药企业所用的原辅料,有时还涉及医药中间体的生产和使用,比如布洛芬制药过程需要用到中间体异丁苯乙酮。医药中间体所用原料更加复杂,一些制药企业并不生产医药中间体,而是从其他化工企业购买。也就是说,药品产量激增,不仅带动制药企业VOCs排放量增加,还带动提供医药中间体的化工企业VOCs排放量的增加。”修光利说。他还指出,生产药品从第一步到最后一步可能有几十个环节,VOCs排放至少涉及7—8个环节,生产环节涉及的连接部件多,泄漏排放风险大。同时,药厂的药品一般都按批次生产,一批药品经过几小时的化学反应(或发酵)后再进入下一环节。物料的间歇式进出,导致产生的VOCs间歇排放,气体浓度波动变化大;更换药品品种需要清洗生产系统,清洗环节排放浓度高,这些都挑战着企业的治理能力。修光利告诉记者,受现有技术条件限制,制药企业产生的部分VOCs物种还缺乏监测方法,特别是一些低阈值特征污染物,虽然单一物质排放浓度达标,但综合恶臭(异味)仍十分明显,治理难度大;类似二氯甲烷等卤代烃的使用比较普遍,挥发性和毒性都很强,直接使用燃烧法会带来二次污染风险。但目前预处理技术非常不成熟,吸附脱附回收利用技术效果也不稳定。制药企业VOCs物种的复杂性对高效的RTO等处理设备的稳定运行也造成了很大影响。亟待解决:加强全过程管控、高效治理技术研发“对于制药企业的检查,我们面临的最大问题就是检测虽然合格,但异味还在。”郑兴春坦言。他希望,制药企业能在原有效率较低的VOCs处理设备上,加装二级、三级处理装置。处理装置升级是优化制药企业VOCs治理的末端环节。王洪昌指出,更应加强全过程管控,从原辅材料替代、工艺改进、过程控制、治污设施建设、监测监管等方面提出一体式优化控制路线。一是加大源头控制力度,积极推广绿色制药技术、推进清洁生产。鼓励采用酶促法、酶法裂解等无污染或低污染的先进药品回收工艺,对于6—APA产品,用酶法裂解替代化学裂解法,可以减少65%的有机溶媒和化学品;推广密闭化、管道化、连续化生产工艺与设备,采用无毒无害或低毒、低害的原料替代高度和难以去除高毒的原料等。二是加强设备密封操作要求,全面提升装备水平。采用国内先进设备,并进行垂直流设置,利用设备之间的层高差实现无缝化对接;生产装置采用DCS自动化控制,采用先进的温度测量、压力测量、液位测量仪器、仪表;鼓励使用无泄漏设备和连接部件。三是强化以资源化为目的的VOCs分类收集、分质处理。目前,很多制药企业采用同一系统收集处理混合VOCs废气,不利于有机溶剂资源回收,还大幅增加VOCs治理难度和费用。分类分质收集,不仅能有效提高废气浓度和物质纯度、降低风量,也便于采用深度冷凝、高效真空脱附等技术,提高溶剂回收率。修光利表示,2021年,由华东理工大学牵头制定、三省一市发布实施的长三角地区统一的《制药工业大气污染物排放标准》(以下简称《标准》),就明确要求对VOCs分类收集、分质处理。“分类收集、分质处理有助于推动VOCs治理技术低碳化改造。另外,分类收集可以考虑与《标准》中的控制项目结合起来。国家和地方标准针对制药行业都提出了总挥发性有机物(TVOC)以及一些特征污染物的控制指标,基本覆盖了化学药品原料药企业涉及VOCs的典型种类,我们也在《标准》的附录中基于产品进行了细致的分类,企业可根据使用的原辅料、生产工艺过程、生产产品等情况,从中筛选需要控制的VOCs。”修光利说:“未来,还要进一步研发适合不同种类VOCs的监测技术方法。”他透露,今年,适用于长三角地区的制药工业大气污染物防治技术规范正在制定,VOCs治理技术将遵循高效安全、节能低碳方向,综合考虑经济、环境和社会效益,构建全过程控制技术体系。同时,鼓励企业对有机溶剂回收利用。通过标准规范引领技术改造,推动化学合成类制药、发酵类制药等行业转型升级。
  • 强生召回婴幼儿布洛芬 总局:国内未售
    强生召回20万瓶婴幼儿布洛芬 食药总局:召回产品未在我国销售   美国食品药品管理局(FDA)官网日前公告称,因生产时鉴别有误,强生公司已在美国开始召回20万瓶可能含有微小塑料颗粒的婴幼儿布洛芬药物,该颗粒物被指易引发潜在危险。国家食品药品监督管理总局9月12日通报了强生公司在美国召回布洛芬产品有关情况,确认此次召回的产品未在我国销售。   产品存在潜在风险   据了解,本次召回涉及布洛芬原始浆果风味悬滴剂(Motrin Infants' Drops Original Berry Flavor)的三批产品,该产品主要用于2岁或2岁以下婴幼儿的退烧及镇痛。该药品的制造商——强生在美国的一家子公司麦克尼尔(McNeil)表示,公司从正在生产的一个批次产品中发现有微小的塑料颗粒,这种颗粒来自于第三方布洛芬原料供应商。由于可能存在潜在风险,公司现已启动主动召回程序。   被确认召回的产品可通过批号鉴别,分别为:DCB3T01、DDB4R01及DDB4S01。麦克尼尔告诫消费者,药品中可能含有一定的聚四氟乙烯(PTFE),常用于特氟隆涂料中,建议尽快停用该产品。截止目前,尚未发现任何伤痛病例。   据记者了解,强生旗下的布洛芬药物在中国也有销售。上海强生制药有限公司生产的美林布洛芬混悬滴剂,主治6-36个月的婴幼儿发热及感冒引起的头痛、咽喉痛等症。对此,上海强生制药有限公司表示,强生制药在中国市场销售的非处方药均在中国大陆生产,且生产工厂已通过新版GMP认证。问题产品并未销往中国大陆和香港,消费者可放心服用。   9月12日,国家食品药品监管总局针对此事公告称,近日,强生公司向监管部门报告,强生在美国主动召回特定批次的布洛芬产品,召回的原因是国外供应商提供的布洛芬原料存在质量问题。食品药品监管总局经核实确认,未批准强生公司进口布洛芬产品。强生公司在中国注册的布洛芬产品产地为中国上海市,原料供应商为中国本地公司,此次召回的产品在中国市场没有销售。   强生陷入召回怪圈   这并非布洛芬第一次“出事”。此前的一起美国官司,让经典解热镇痛药布洛芬陷入质疑漩涡。美国一女童在服用强生美林布洛芬后双目失明,强生公司为此被判赔偿6300万美元。   而对于强生而言,“召回”似乎成了其近年来的代名词。自2009年以来,强生因生产质量问题屡次宣布召回,而2010年更被外界戏称为强生“召回年”。在2010年,强生大大小小有15次召回,产品包括感冒药、止疼片、抗过敏药以及隐形眼镜等,公司损失金额高达数亿美元。   有媒体统计发现,作为全球500强企业之一的强生,近些年其产品频频遭遇“质量门”,短短7年时间,强生产品召回就高达51次。值得注意的是,在这51次的召回中,48次的召回跟中国无缘,一度引发业内质疑。今年6月份,强生也因此成为因质量召回被国家药监局首家约谈的外企。   对于强生屡次陷入“召回门”的原因,有观点认为,这属于罕见的系统性问题,原因可能在于强生错误地将生产和质量控制的监管分散化。也有观点认为,强生的问题在于过分追求降低成本。据外媒报道,强生出于节约成本的考虑没有重视麦克尼尔工厂生产中存在的问题,此外强生最近几年在投资新设备方面总是犹豫不决,因为投资新设备和确保生产质量需要大量的资金投入。   专家指出,召回事件频发,对强生的形象带来严重的负面影响。不过,召回是一种正常现象,要肯定召回制度建立的正面作用,这是一个公司敢于负责的行为,也有利益公司的风险控制。同时,强生的召回事件也给国内的药品生产企业敲响了警钟,中国应加快健全商品的召回制度,并完善召回后续赔偿等配套措施。
  • 欧盟拟放宽山葵中布洛芬残留限量
    今年8月7日,据欧洲食品安全局(EFSA)消息,欧洲食品安全局就放宽山葵和欧芹根中布洛芬(Trifloxystrobin)的最大残留限量发表了意见。   据了解,依据欧盟委员会(EC)No.396/2005法规第六章的规定,比利时收到一家公司要求放宽山葵和欧芹根中布洛芬最大残留限量的申请。为协调布洛芬的最大残留限量(MRL),比利时建议对其残留限量进行修订。   依据欧盟委员会(EC)No.396/2005法规第八章的规定,比利时起草了一份评估报告,并提交至欧委会,之后转至欧洲食品安全局。欧洲食品安全局对评估报告进行评审后,作出决定:山葵中布洛芬的最大残留限量由现行的0.02mg/kg放宽至0.08mg/kg,欧芹根中布洛芬的最大残留限量由现行的0.04mg/kg放宽至0.08mg/kg。
  • 农业部复原乳鉴定标准实施 新增液相色谱法
    近日,农业部发布新修订的《巴氏杀菌乳和UHT灭菌乳中复原乳的鉴定》标准(以下简称《标准》),标准号NY/T 939-2016,代替农业行业标准NY/T 939-2005,自2016年4月1日起实施。该《标准》的修订出台,完善了我国复原乳鉴定标准,为监管违规添加复原乳提供了科学依据,对维护消费者知情权,促进奶业健康发展将起到积极的推动作用。  该《标准》由中国农业科学院北京畜牧兽医研究所、农业部奶及奶制品质量监督检验测试中心(北京)修订,增加了超高效液相色谱测定糠氨酸的方法、修改了原有乳果糖的测定方法,有效地缩短了检测时间,提高了检测效率。经多家检测机构验证,该《标准》能够确保检出结果的准确性。  专家组介绍,《标准》选取的标示物--糠氨酸和乳果糖,均为生乳中含量极低的物质。糠氨酸是牛奶热加工过程中出现的副产物,乳果糖是牛奶在加热过程中乳糖发生碱基异构的产物。作为乳品工业的一种乳原料,奶粉在复原之后至少还得再经过一次商业性热杀菌,总体上复原乳制品所经受的热伤害程度强于以生鲜乳为原料的乳产品。《标准》主要原理是根据生鲜乳、巴氏杀菌乳、UHT灭菌乳和奶粉在生产过程中糠氨酸和乳果糖变化的规律显著不同,通过测定糠氨酸和乳果糖的含量并结合其比值建立模型,来判定巴氏杀菌乳和UHT灭菌乳中是否添加了复原乳,因此修订后的标准可以准确鉴定复原乳。
  • 《中药分子鉴定通则》团体标准正式发布
    2016年12月12日,中华中医药学会批准《中药分子鉴定通则(T/CACM 010-2016)》标准,并予以公告。该通则由中国中医科学院中药资源中心、中国食品药品检定研究院、国药种业有限公司起草,集结了我国中药分子鉴定二十余年发展成果,综合考虑中药分子鉴定中不同送检样本对物种、变种、种质鉴定的技术需求,兼顾准确、简便、高通量、低成本的特点,将为分子鉴定应用于中药生产全链条质量控制发挥重要作用。  本标准的全部技术内容为推荐性。  本标准在遵从《中华人民共和国药典》的基础上,提出了《中药分子鉴定标准通则》。  本标准由中华中医药学会归口。  适用范围  本标准适用于对主要中药材、中药饮片、中药提取物、中成药、中药材种子种苗生产基地、加工、经营等场所开展的抽样检验活动中,需要对其进行真实性验证或身份鉴定的,允许采用DNA分子检测方法。  标准内容  中药鉴定范围包括中药材、中药饮片、中药提取物、中成药、中药材种子种苗,在实际生产、加工、经营过程中鉴定需求不同,如中药材、中药饮片、中药提取物、中成药主要侧重于物种水平的基原鉴别 而中药材种子种苗还侧重于种下水平的种质或品种鉴定。且由于不同检测样本中DNA含量和质量存在显著差异,因此本标准分为三个部分,即第1部分:中药材与中药饮片、第2部分:中药提取物与中成药、第3部分:中药材种子种苗。  本标准主要内容包括范围、规范性引用文件、术语和定义、方案选择要求、仪器设备、试剂、溶液配制、检验程序、结果分析和表示、结果报告、质量保证、废弃物处理。每个部分内容分别依据各分子鉴定技术特点确定,且均遵循科学性、实用性、先进性原则。  中药分子鉴别发展历程  1994年,单引物PCR扩增用于中药材人参和西洋参鉴别(香港中文大学,Cheung K S 等)。  1995年,提出分子生药学概念,明确分子标记鉴别研究方向(中国中医科学院,黄璐琦)。  1995年,随机扩增多态 DNA技术应用于蛇类的分类学研究和鉴定(南京师范大学,王义权等)。  1996年,Cytb序列分析用于鉴别鸡内金和鸭内金(中国科学院昆明动物所,王建云, 王文等)。  1997年,PCR-RFLP和MASA技术用于人参、西洋参和竹节参药材鉴别(Toyama Medical and Pharmaceutical University, Fushimi H等)  1998年,RAPD技术被用于鉴定中药复方制剂玉屏风散中黄芪、白术、防风等3味生药(台北医学院,Cheng K T等)   1999年,RAPD技术对瓜蒌农家品种种苗进行鉴别(中国中医科学院,黄璐琦等)。  2000年,《分子生药学(第一版)》中提出生药鉴定分子标记研究在近源生药品种、名贵易混淆生药、动物类生药、药材道地性、生药野生与家种(养)、中药原粉制剂、中医药古迹、药用植物种子种苗鉴别的应用前景,以及技术规范化的重要性。  2001年,ITS2序列被用于16种石斛属物种鉴别(香港中文大学,Lau D T W等)  2003年,加拿大科学家提出了DNA条形码鉴别的概念并随后发起了国际生命条形码计划(iBOL)  2004年,《中药分子鉴定》出版(香港中文大学,邵鹏柱、曹晖主编)   2005年,利用SCAR标记对续命汤等40个中药汤剂中人参属物种基原进行了鉴别(韩国中央大学,Shim Y H等)  2006年,《分子生药学(第二版)》在第一版的基础上,增加了SNP标记技术、基因芯片技术、DNA生物条形编码等中药分子鉴定新技术,并提出要充分利用我国丰富的生物资源进行DNA条形编码工作。  2007年,提出ITS2通用引物,并用于48科药材基原鉴别(台湾清华大学,Chiou SJ等) 提出了中药DNA条形码(中国医学科学院药用植物研究所,陈士林等)  2008年,我国正式加盟国际生命条形码研究计划(iBOL)。  2009年,启动中国维管植物DNA条形码计划。  2010年,蕲蛇、乌梢蛇饮片聚合酶链式反应鉴别法被2010版《中国药典》收载,成为世界上首个中药、天然药分子鉴定国家标准(中国中医科学院,黄璐琦等起草)   2011年,启动中国动物药材DNA条形码研究计划及建立动物药材分子鉴定标准数据库(中国中医科学院,黄璐琦等)  2011年,推荐ITS作为种子植物的核心DNA条形码(中国植物BOL工作组)  2012年,川贝母聚合酶链式反应-限制性酶切长度多态性鉴别法被2010版《中国药典》第二增补本收载(中国药科大学,李萍等起草)   2012年,《中药DNA条形码分子鉴定》出版(中国医学科学院药用植物研究所,陈士林主编)  2012年,高通量测序技术用于牙痛一粒丸等15种中成药中的原料药材鉴定(澳大利亚莫道克大学,Coghlan ML等)  2013年,使用碱裂解法快速提取130余种药材DNA(中国中医科学院中药资源中心,蒋超等)  2013年,提出中药材分子鉴别现场运用策略(中国中医科学院中药资源中心,袁媛等)   2013年,提出中药材DNA条形码分子鉴定指导原则(中国医学科学院药用植物研究所、中国中医科学院中药研究所陈士林等)   2014年,提出中药分子鉴定使用原则(中国中医科学院中药资源中心,黄璐琦等)  2014年,中药材DNA条形码分子鉴定指导原则被《中国药典》第三增补本收载(陈士林等起草,国家食品药品监督管理总局2014年第53号公告)   2014年,《中药分子鉴定操作指南》出版(中国中医科学院中药资源中心,黄璐琦主编)   2014年,CCP-based FRET检测技术用于中药鉴定,DNA检测灵敏度可达ng级(中国中医科学院中药资源中心,袁媛等)   2015年,建立金银花种苗DNA身份证(中国中医科学院中药资源中心,黄璐琦等)  2016年,团体标准《中药分子鉴定通则》由中华中医药学会发布(中国中医科学院,黄璐琦等起草)   2016年,《中国药典》聚合酶链式反应鉴别法(通则)修订项目立项(中国中医科学院,袁媛、黄璐琦等起草)
  • 原油水含量自动测定标准实施 填补国家空白
    记者在锦州市经信委获悉,由锦州电子技术研究所研究起草的原油水含量自动测定标准填补国家标准空白。   《GB/T25104-2010原油水含量的自动测定射频法》国家标准于2010年12月1日正式实施。这一标准由中国机械工业联合会提出,由全国工业过程测量和控制标准化技术委员会管理,由锦州电子技术研究所研究起草国家标准,促进含水测量技术规范化、标准化。这一标准填补了原油水含量自动测定方面国家标准的空白,充分证明了锦州电子技术研究所在原油水含量自动测定方面的技术水平与实力,同时也表明锦研制造的射频含水分析仪及自动测定系统软件处于国内技术领先地位。
  • 美国可持续服装联盟发布生态服装新评定标准
    近日,美国可持续服装联盟(SAC)发布了生态服装的新评定标准(Higg Index)。 Higg Index标准是由SAC根据现有的行业环保评定标准,经讨各成员论研究后制定的。SAC期望该标准能更好地评估服装制作销售过程中对社会及环境造成的影响。   Higg Index不仅用于衡量服装产业链的各个环节是否符合“持久发展”原则,同时,也给期望长远发展的相关企业一个更准确的参考,促进技术革新。目前,HiggIndex标准主要考察以下几个方面的因素:生产过程中的用水量及对水质的影响、能源损耗及二氧化碳排放量、化学制剂的使用及是否产生有毒物质。   可持续服装联盟成员包括服装品牌商、零售商、制作商、行业专家及社会机构,如阿迪达斯、Gap、H&M、玛莎百货和沃尔玛等。其致力于设定共同目标,降低全球成衣制造和销售对生态环境及社会产生的不良影响。
  • 王健委员:制定标准 促进中药国际贸易
    随着中医药对外交流与合作不断深入,中药被更多的国家接受和认可,越来越多的各国民众选择中医药作为医疗保健手段。为了更好地推进中医药贸易工作,全国政协委员、中医药防治艾滋病研究中心副主任王健呼吁,应尽快制定标准,加强监管,使中药产业顺利进入国际市场。   目前,中医药已传播到160多个国家和地区,全世界每年约有30%的当地人、超过70%的华人接受中医医疗保健服务。去年我国中药出口突破14亿美元,中成药出口已达95个国家和地区。但是,不可否认在中医药进入国际市场过程中也存在一些问题,尤以中药为主。   由于我国政府对中药产品的出口无统一标准,无监管机构,造成某些假冒伪劣产品冲击优质中药,使中药在国际市场上声誉受损。此外,中药剂型无统一标准,得不到西方药政部门认可,也妨碍中药以药品身份进入国际市场。   王健说,在国外,常听到外国人这样问:“你们政府为什么不给我们国家推荐一些你们认可的传统药物和方法?”或是,“我们面对的中药很多,但不知道该如何选择?如果你们国家能出台某个认证标志的话,我们就认为可信”。这些问题给了王健很大的触动。   王健强调,建立与国际接轨的行业检测、监管出口中药质量的标准组织实为当务之急,应制定标准,对产品质量进行严格检测。还可利用国际ISO中医药标准制定的契机,有针对性地在全国范围内选择1~2家声誉、规模、质量较好的中药企业,给予政策支持及指导,打造成中医药走出国门的样板企业,并将其推荐到国外,以点带面,进而打造中医药的国际品牌。   针对国外一些中医诊所或中药经营机构以个体居多、缺乏规模、水平参差不齐的现象,王健提出,我国可建立中医药国际贸易服务网络,加强各级政府与企业(行业)相结合,确立范围、优势,给予充分的政策支持,在条件具备的国家打造2~3家高质量、高标准的中医药服务治疗中心。
  • 2024年8月份有241份标准将实施 ——多项食品安全标准密集发布为食品保驾护航
    2024年8月份有241份标准将实施——多项食品安全标准密集发布为食品保驾护航随着8月的到来,一批新的国家标准、行业标准及地方标准开始实施,涵盖了多个领域,包括农林牧渔食品、环境保护、医药卫生、石油天然气、冶金矿产、化工塑料、轻工纺织、电力半导体、机械车辆等多个领域。这些新标准的实施将进一步推动相关行业的规范化发展,提升产品质量和安全水平。其中,食品安全国家标准占据相当大的比重,涵盖了食品添加剂、营养强化剂、微生物检验等多个方面。环境保护领域的标准聚焦于土地复垦、生态修复、碳循环监测等热点话题。医药卫生方面发布了包括车辆驾驶人员血液酒精含量阈值在内的重要准。此外,本次发布的标准还包括多项与新兴技术相关的内容,如柔性显示器件、纳米材料、燃料电池电动汽车等。值得注意的是绿色制造、数字化治理等领域也有多项标准出台,反映了当前产业发展的趋势。另外还有大量的计量检定规程实施,这为仪器校准提供了依据。这些新标准的实施将对相关行业的规范化发展和技术进步起到重要推动作用,有利于提高产品质量和服务水平,促进经济社会可持续发展。具体2024年8月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓校准规范标准(33份)JJF 633-2024气体容积式流量计 JJF 738-2024出租汽车计价器检定装置 JJF 959-2024光时域反射计 JJF 976-2024透射式烟度计 JJF 1029-2024电子探针定量分析用标准物质研制(生产)技术要求 JJF 1184-2024热电偶检定炉温度场测试技术规范 JJF 2091-2024X、γ辐射个人剂量当量 Hp(10)监测仪型 式评价 大纲 JJF 2092-2024射频与微波衰减器校准规范 JJF 2093-2024高加速寿命和应力筛选试验 系统校准规范 JJF 2094-2024行星式 水泥胶砂搅拌机 校准规范 JJF 2095-2024压力数据采集仪校准规范 JJF 2096-2024软包装件密封性试验仪 校准规范 JJF 2097-2024骨导助听器电声特性校准规范JJF 2098-2024高声强定向声源测试技术规范JJF 2099-2024光学接触角测量仪校准规范 JJF 2100-2024色温表校准规范 JJF 2101-2024血液辐照仪校准规范 JJF 2102-2024X 射线安全检查计算机断层成像装置(CT)校准规范 JJF 2103-2024原子时 标标准 技术要求 JJF 2104-2024海水溶解氧测量仪校准规范 JJF 2105-2024海水温盐测量仪校准规范 JJF 2106-2024基于导航卫星的陆地定向系统校准规范 JJF 2107-2024OIML 证书指定实验室通用规则 JJF 2108-2024OIML 证书试验附加要求 OIML R46(有功电能表) JJF 2109-2024标准物质定值技术要求 有机同位素稀释质谱法 JJF 2110-2024稳定同位素标准物质研制 (生产)技术要求 JJG 633-2024气体容积式流量计检定规程 JJG 643-2024标准表法流量标准装置检定规程 JJG 738-2024出租汽车计价器检定装置 检定规程 JJG 959-2024光时域反射计检定规程 JJG 976-2024透射式烟度计检定规程 JJG 2075-2024电容计量器具检定系统表 JJG 2076-2024电感计量器具检定系统表 农林牧渔食品标准(81份)GB 1886.96-2024 食品安全国家标准 食品添加剂 松香季戊四醇酯 GB 1886.98-2024食品安全国家标准 食品添加剂 乳糖醇(又名4-β-D 吡喃 半乳糖-D-山梨醇) GB 1886.104-2024食品安全国家标准 食品添加剂 喹啉黄 GB 1886.174-2024食品安全国家标准 食品添加剂 食品工业用酶制剂 GB 1886.227-2024食品安全国家标准 食品添加剂 吗 啉 脂肪酸 盐果蜡 GB 1886.256-2024食品安全国家标准 食品添加剂 甲基纤维素 GB 1886.374-2024食品安全国家标准 食品添加剂 纤维素 GB 1886.375-2024食品安全国家标准 食品添加剂 氢氧化钙 GB 1886.376-2024食品安全国家标准 食品添加剂 5- 戊基 -3H-呋喃-2-酮 GB 1886.377-2024食品安全国家标准 食品添加剂 爱 德万甜 GB 1886.378-2024食品安全国家标准 食品添加剂 茶黄素 GB 1886.379-2024食品安全国家标准 食品添加剂 皂树皮提取物 GB 1886.380-2024食品安全国家标准 食品添加剂 甲酸钠 GB 1886.381-2024食品安全国家标准 食品添加剂 酒石酸铁 GB 1903.65-2024食品安全国家标准 食品营养强化剂 花生四烯酸油脂(发酵法) GB 1903.66-2024食品安全国家标准 食品营养强化剂 二十二碳六烯酸油脂(发酵法) GB 1903.67-2024食品安全国家标准 食品营养强化剂 植物甲 萘醌 (维生素K1) GB 1903.68-2024食品安全国家标准 食品营养强化剂 钼酸铵 GB 1903.69-2024食品安全国家标准 食品营养强化剂 5'-单磷酸尿苷 GB 1903.70-2024食品安全国家标准 食品营养强化剂 电解铁 GB 1903.71-2024食品安全国家标准 食品营养强化剂 全反式视黄 醇 GB 4789.4-2024食品安全国家标准 食品微生物学检验 沙门氏菌检验 GB 4789.17-2024食品安全国家标准 食品微生物学检验 肉与肉制品采样和 检样 处理 GB 4789.18-2024食品安全国家标准食品 微生物学检验 乳与乳制品采样和 检样 处理 GB 4789.19-2024食品安全国家标准食品 微生物学检验 蛋与蛋制品采样和 检样 处理 GB 4789.20-2024食品安全国家标准食品 微生物学检验 水产品及其制品采样和 检样 处理 GB 4789.22-2024食品安全国家标准食品 微生物学检验 调味品采样和 检样 处理 GB 4789.23-2024食品安全国家标准食品 微生物学检验 豆制品采样和 检样 处理 GB 4789.24-2024食品安全国家标准食品 微生物学检验 糖果、巧克力和代可可脂巧克力及其制品、可可制品采样和 检样 处理 GB 4789.25-2024食品安全国家标准食品 微生物学检验 酒类、饮料、冷冻饮品采样和 检样 处理 GB 4789.28-2024食品安全国家标准食品 微生物学检验 培养基和试剂的质量要求 GB 4789.33-2024食品安全国家标准食品 微生物学检验 粮食制品采样和 检样 处理 GB 4789.40-2024食品安全国家标准 食品微生物学检验 克罗诺杆菌 检验 GB 4789.46-2024食品安全国家标准食品 微生物学检验 生鲜果 蔬 及其制品、食用菌制品、坚果 与籽类食品 采样和 检样 处理 GB 4789.47-2024食品安全国家标准食品 微生物学检验 食用油脂制品采样和 检样 处理 GB 4789.48-2024食品安全国家标准 食品微生物学检验 蜂产品采样和 检样 处理 GB 4789.49-2024食品安全国家标准食品 微生物学检验 产志贺 毒素大肠埃希氏菌检验 GB 5009.2-2024食品安全国家标准 食品相对密度的测定 GB 5009.11-2024食品安全国家标准 食品中 总砷及无机 砷的测定 GB 5009.138-2024食品安全国家标准 食品中镍的测定 GB 5009.191-2024食品安全国家标准食品 中氯丙醇及其脂肪酸酯、缩水甘油酯的测定 GB 5009.205-2024食品安全国家标准食品 中二噁英及其类似物毒性当量的测定 GB 5009.299-2024食品安全国家标准食品 中乳铁蛋白的测定 GB/T 51461-2024农业工程术语标准 DB63/T 2299-2024 高海拔城镇针叶树种养护规范 DB63/T 2298-2024 草 畜平衡 核算及评价技术 DB63/T 2297-2024 蕨麻良种繁育技术规范DB63/T 2296-2024 黄 帚橐 吾防治技术规范 DB5306/T 132-2024柑橘实蝇为害调查及为害程度评价规程 DB41/T 613-2024 地理标志产品 淮阳黄花菜 DB41/T 2675-2024 月季苗木质量分级规程 DB41/T 2674-2024 芝麻种质资源表型性状精准鉴定技术规程 DB41/T 2673-2024 牛至栽培技术规程 DB41/T 2672-2024 白花蛇舌草栽培技术规程 DB14/T 3022—2024 地方习用对照药材制备通用技术要求 DB14/T 3021—2024 中药材产地加工技术规程 射干 DB14/T 3020—2024 中药材产地加工技术规程 小秦艽 DB14/T 3019—2024 中药材产地加工技术规程 苦参 DB14/T 3018—2024 中药材产地加工技术规程 北苍术 DB14/T 3017—2024 中药材产地加工技术规程 药用山楂 DB14/T 3016—2024 中药材产地加工技术规程 山桃仁 DB5227/T 130-2024 病死畜禽及病害畜禽产品收运 贮 技术规范 DB44/T 2516—2024 猪牛鸡生理、生产与环境数据采集技术规范 DB35/T 2176-2024 海峡两岸共通 中式插花技艺通用要求 DB35/T 2182-2024 茶园栽培管理技术农事导则
  • 农业部征求兽药图谱真实性判定标准等意见
    近日,为净化兽药注册环境,维护申请人的利益,切实保证兽药安全、有效和质量可控,农业部兽药评审中心组织起草发布了《兽用化学药品研究资料及图谱真实性问题判定标准(征求意见稿)》(附件1)和《兽药研究色谱数据工作站及色谱数据管理要求(征求意见稿)》(附件2),公开征求社会各方意见,意见可于2013年6月30日前以传真或电子邮件形式反馈至农业部兽药评审中心。   传真:010-62103560   电子邮箱:moavdec@163.com   附件1:兽药研究色谱数据工作站及色谱数据管理要求(征求意见稿).doc   附件2:兽用化学药品(含中药)研究资料及图谱真实性问题判定标准(征求意见稿).doc
  • 我国乳品标准被指倒退 菌落数高欧美20倍
    今年6月1号起,由卫生部批准公布的乳品安全国家标准正式实施,其中共包括66项具体标准,涉及生乳、巴氏杀菌乳、灭菌乳等所有乳类和乳制品。这是2008年“三聚氰胺事件”发生后,有关部门对1986年颁布的乳品标准进行的一次重大修订,因此也被称为乳品新国标。然而,正是这个新国标却在行业内外引发了一场激烈争论。   这是2008年“三聚氰胺事件”发生后,有关部门对乳液新标准进行的一次重大修订。然而,新国标从标准正式发布到实施,引发无数争论。争论焦点之一是蛋白质含量,新国标中,蛋白含量每100克含2.8克,这个数字低于国际标准3.0克,也低于1986年旧国标的2.95克 争论焦点之二是每毫升牛奶中的菌落总数,新标准由原来的50万上升到了200万,比美国、欧盟10万的标准高出20倍,被业界惊呼为一夜倒退25年。更有舆论指出,这个乳业新国标让“中国原奶质量降到了全世界最低”。   新国标制定专家起草组组长 国家疾控中心营养与食品安全所副所长王竹天   王竹天:这个标准是适合于我们国家现在的这种养殖方式下的一个标准   中国畜产品加工研究会名誉会长农业部(奶类)顾问 骆承庠   骆承庠:中国的乳品工业恐怕要完了。   中国奶业协会乳品工业委员会副主任、卫生部原乳品订标组副组长副组长 曾寿瀛   曾寿瀛:不能像某些领导所讲的,这个标准是相互协调,相互照顾,这样的一个产物。   围绕乳品新国标,我们听到了两种针锋相对的声音。争论第一大焦点就是1986年颁布的生鲜牛乳收购标准和2003年卫生部的鲜乳卫生标准,都要求蛋白质含量为2.95%,新国标却把蛋白质含量降低为2.8%。那么,这项标准究竟是怎么定下来的?能否保证今后原奶的质量呢?我们再来看看专家的分析。   中国农科院北京畜牧兽医研究所副所长 王加启   王加启:不是说这个蛋白质的含量从2.95降到2.8以后,这个牛奶就不能喝了,   中国奶业协会乳品工业委员会副主任 全国乳与乳制品订标组 副组长 曾寿瀛   曾寿瀛 国际上没有一个标准,原料奶、生奶是2.8的,没有。   对于蛋白质标准,支持者和反对者各执一词,记者注意到,我国1986年的“国标”2.95与国际标准已有明显差距,2010年的标准在其基础上为何又降到了2.8呢?参与这次国标制定的中国农科院北京畜牧兽医研究所副所长王加启告诉记者,影响奶蛋白含量的因素很多,饲料是其中最关键的一个因素,而目前中国奶业有76%都是散户养殖,在精饲料投入不足,这不可避免地影响了奶蛋白含量。1986年制定标准时,我国以国营农场为主,奶牛数量少,都是集中养殖,2.95的指标就当时的情况来说并不高。而现在的情况已经大不一样了。   中国农科院北京畜牧兽医研究所 中国奶业协会 副理事长 王加启   王加启:分散饲养、多种模式饲养的这么一个奶业发展的局面,那么这就导致了奶牛的品种,饲养的水平,管理的水平和饲养的环境参差不齐。   中国农业大学的李胜利教授是国家奶牛产业技术体系首席科学家。他告诉我们,新国标中,蛋白质含量的标准,是根据检测部门长期监测得出的数据确定的。此前中国农业大学在全国设立了24个试验站,150个辐射点收集信息,相当一部分企业的奶蛋白含量实际上达不到2.95。这是工作人员在黑龙江省一个国内大型乳制品生产企业监测的数据,我们看到,这家企业在东北地区奶蛋白含量达到2.95以上的比例是75.1%,中南地区是63.7%,西北地区仅为23.6%。   中国农业大学 国家奶牛产业技术体系首席科学家 李胜利   李胜利:超过2.95的你看只有多少,它基本上有接近一半都活不了,你算吧。   记者:这也是一个很大的企业吗?   李胜利:很大的企业。   对于新国标把奶蛋白含量标准最终定为2.8, 86岁高龄的中国奶业协会顾问曾寿瀛则有不同的观点。   中国奶业协会顾问曾寿瀛   曾寿瀛:我看到材料上介绍的,内蒙、黑龙江有6%和10%的奶牛达不到2.95,只能达到2.8,那么这些地方的是不是应该分析一下,他为什么达不到。   从1985年开始,曾寿瀛老人作为主要标准制定者和起草人,参与了《消毒牛奶》《酸牛奶》《全脂奶粉》等8项目乳品卫生标准的制定,参与并见证了1986年的乳业国标制定。   中国奶业协会乳品工业委员会副主任 全国乳与乳制品订标组 副组长 曾寿瀛  曾寿瀛:以前过去中国那时候有一个叫北方奶牛一宗族,中国南方奶牛一宗族,那个资料都充分地显示,都是收购的牛奶在2.95,或者接近2.95,或者高于2.95,2.8是三级品,是等外品,2.95才是正品,现在是次品变正品。   曾寿瀛认为规范养殖和科学饲喂,达到2.95以上并不困难。他给记者拿出了一组数据。这是位于福建南平的一家大型乳制品生产企业,从2007年到2009年生鲜牛乳主要指标中,记者看到,除了个别月份乳蛋白的含量在2.96以上,其他均在3.0以上,2009年4月份的最高数值达到了3.08。   对于目前的乳业生产状况,两方给出了不同的数据,那个数据更接近真实的情况呢?记者选择了双方提供的两个奶牛养殖基地进行了调研,一个位于江苏省常州市,一个位于黑龙江哈尔滨南岗区。   在黑龙江哈尔滨南岗区的红旗满族乡,在这儿呢,奶牛养殖是当地的支柱产业,同时也是农民的主要收入,据了解当地农户都是分散式的小规模养殖,而且每户养殖八到十头,能占到90%以上的比例。   在村子里,我们碰到了几位在路边放牛的奶牛养殖户。他们告诉记者,家里的玉米秸秆喂完了,暂时把牛栓在路上补充些青草。   黑龙江红旗满族乡农民 付明禹   付明禹:现在苞米秸秆一块钱一捆,你算算,啥都是钱,现在工钱都没有,我们俩的工钱都没有。   记者:我们养牛不赚钱吗?   付明禹:赚啥钱,多少年没赚钱,四五年没赚钱了。   养了20多年牛的农户付明禹告诉记者,饲料的连年上涨,奶牛养殖户的利润越来越小。跟去年比,今年的玉米价格,每公斤上涨了四毛多,豆饼每吨上涨了三四百元,配合饲料每吨也上涨了500元,饲养一头牛每月的饲料成本直接增加200多元,而现在每公斤奶的价格是2.7元,一直没有太大的变化。养牛不挣钱,养殖户都喂不起精饲料。   黑龙江红旗满族乡农民 付明禹   付明禹:要是有盈利了就多给点,没有盈利就少给点,我还没有吃饭钱,得给我对付点吃饭钱。   记者在红旗满族乡走访了多户村民,发现这些分散饲养的奶牛的饲料多是玉米秸秆,豆饼,或是混合饲料,每天每头牛的饲料成本都不超过30元。当地的奶牛合作社站长告诉记者,饲料的情况,直接影响了奶蛋白含量,从他们收奶的情况来看,大部分养殖户送来的奶,蛋白含量在2.8-2.9的占50%,2.9以上高指标的奶占50%。   黑龙江浩源奶业合作社站长 关凤春   记者:你们想收高指标的奶吗?   关凤春:想,为啥不想收过指标奶。   记者:收得上来吗?   关凤春:收不上来,因为奶户这一块,牛本身出的奶就稀,就出那个奶。   随后记者又来到了位于双城县幸福乡的庆源牧业,这里是有着900头奶牛的规模牧场。记者主要,这里每头牛每天的饲喂成本达到了40多元,为提高蛋白还添加了每吨1200元的羊草。但是厂长告诉我们,按照DHI来检测的话,还有20%奶蛋白含量达不到2.8。   黑龙江庆源牧业场长 薛英峰   薛英峰:就是增加饲养这块,调整个体牛的营养指标。   薛英峰告诉记者,一定的资金实力和规模至少能保障80%的奶品奶蛋白含量达到2.9以上。但是他们所在的双城县,像他这样具备同等实力的牧场不过三家,对于有着22万头奶牛存栏量的双城县来讲,90%以上的散户小规模养殖,难以达到2.9的标准。   黑龙江奶业协会秘书长 吴和平   吴和平:原因就是这个时间呢,它的一个饲料结构,也就是营养结构,牛体状况和气侯条件所影响的。   吴和平认为2.8的数据符合奶牛泌乳期规律,而北方地区奶牛养殖量占全国的82%,其中70%以上是农户散养,又是一个不得不面对的客观事实。那么农户养牛到底有没有突破?能否养出奶蛋白在2.95以上的奶牛来呢?中国奶业协会乳品工业委员会副主任曾寿瀛告诉我们这并不难,老人带记者来到了江苏省常州市横山镇的这家奶牛合作社进行了调研。   常州横山镇苏农奶牛专业合作社顾春元   顾春元:喂的是玉米粉,还有黄豆、豆粕什么,混合的。   中国奶业协会乳品工业委员会副主任 曾寿瀛   曾寿瀛:你要给奶牛吃好,奶牛才能给人吃好,如果你给奶牛天天吃的稻草,水葫芦,水花生,在青饲料里面也克扣它,它怎么能让你牛奶里营养成分好呢?   顾春元告诉记者,他们每天给牛配备的精料有十几种,达九公斤,除此之外每天还要给牛配备青饲料50公斤,分三次喂食。   常州横山镇苏农奶牛专业合作社 张正东   记者:你觉得就高好了还是就低好呢?奶蛋白。   张正东:那肯定高好了。   记者:为什么呢?但是你要增加成本,你高了之后。   张正东:成本是,但是有回报。   陈建国说,奶蛋白含量是2.8,2.9还是3.0,三个数字表面看起来差异不大,但是实际上事关成本大小。按照他们的计算,蛋白含量每提高0.1个百分点,喂饲料成本就得相应增加五块钱左右。这个合作社实行的是按质论价,他们以奶蛋白2.9为标准,以每公斤牛奶3元钱为相应的定价基础,每高出0.1个蛋白含量就会增加5分钱。同样,每低于0.1个百分点会有相应的惩罚性罚款。计算下来,每产一公斤奶,蛋白含量2.95要比2.8,能多卖1.23元左右。   常州横山镇苏农奶牛专业合作社 负责人 陈建国   陈建国:你一头牛(一年),那就算300块钱,一头牛一年它就要相差三百。   曾寿瀛的课题组长期对这个合作社进行质量检测,他们发现,在合作社实施按质论价的体系后,从日常监测数据来看,牛奶蛋白达到2.95的比例占95%以上。   中国奶业协会乳品工业委员会副主任 曾寿瀛   曾寿瀛:每天要检测,一个月三十天,他一年下来要多少份数,三年的份数,证实了他的牛奶常年维持到2.95。   在采访中,我们还得到了一组数据,目前发达国家的原奶奶蛋白含量可以达到3.2%,加拿大的奶蛋白含量在3.3%,新西兰能够达到3.8%。显然,只有先进的集中饲养模式才能培育更好的牛,吃上更好的饲料,产出更好的牛奶。但对中国乳品行业来说,完成这个庞大的系统工程不是一朝一夕的事。面对这种困境,国家标准到底应该是就高还是就低呢?   对于中国乳品行业来说,短时间内改变散户养殖占90%的传统模式确实很难,所以很多人认为,新国标如果提高奶蛋白标准,结果只能是纸上谈兵。而反对方的观点是,不能因为发展水平低,就降低标准,以至于整个产业陷入恶行循环,更何况从操作环节看,可以实行优质优价的办法,用市场手段推行高标准。这个两难的问题似乎陷入了无解的尴尬。   中国农业大学 国家奶牛产业技术体系首席科学家 李胜利   李胜利:如果采用原来的国标的话,意味着我们有将近20%多比例的奶,都可能成为不合格的。大部分人进不去,可能有一些奶农会出现倒奶的可能性。   李胜利认为,针对目前全国70%以上乳品来自散户养殖的现状,过高的蛋白标准,只能催发更多的倒奶事件发生。   在李胜利看来,过高的标准对提高奶品质量也是有害无益。   中国农业大学 国家奶牛产业技术体系首席科学家 李胜利   李胜利:三聚氰胺在发生之前就是因为奶源过剩。   李胜利分析,正是因为达不到企业的收购标准,一些人为了把牛奶卖出去,宁愿铤而走险添加三聚氰胺。但是对于低标准一直持反对态度的曾寿瀛并不认同这个观点。   中国奶业协会乳品工业委员会副主任 卫生部原乳品订标组副组长副组长 曾寿瀛   曾寿瀛:三聚氰氨它是这种见利忘义,对不对,怎么会是被迫呢?怎么会是因为2.95的问题?你2.8就不掺假了?   曾寿瀛告诉记者,现在把标准降低,无法遏制不法分子添加三聚氰胺,而且,他认为低标准也会带来另外一种隐患,乃蛋白含量低会影响牛奶固有的香味和脂气味,难以避免一些企业不用添加剂或者脱水奶粉以次充好。   中国奶业协会乳品工业委员会副主任 卫生部原乳品订标组副组长副组长 曾寿瀛   曾寿瀛:带来的是你用这个原料奶做出来的所有的成品都要受到影响的问题,   奶蛋白数据的降低,会不会使生产企业为提高口感而使用添加剂呢?低标准对企业加工又会有什么影响呢?带着这样的疑问,我们的记者联系了多家大型乳品企业,最终只有北京三元食品股份有限公司接受了我们的采访。   北京三元食品股份有限公司总经理 钮立平   记者:为了保持以前这个品质,或者口感,会增加其它的添加剂,有没有这样的情况?   钮立平:我们这个企业不存在这个问题,一方面呢就是我刚才说了,一个产品线很丰富,2.8的奶也可以生产出产品,2.95以上也可以生产出自己的产品,   记者:如果要生产我们的极致奶,只有2.8奶蛋白这样的奶,那我们。   钮立平:不能生产,就不能生产。是不能够添加任何东西的,你只能用优质的奶源去生产。   记者:普通的一些中型或小型企业。   钮立平:因为小型企业呢,我觉得它主要是一个,当然它也有成本上的考虑。因为它的脂肪可能低了,为了达到你那个标准去添加一些东西,这个说不好。   看来,奶蛋白含量标准高低对乳品行业究竟会带来什么影响,还有很多未知数。而围绕乳品新国标的争论中还有另一个焦点就是菌落总数。新标准由原来的50万调高到了200万,比美国、欧盟10万的标准高出了20倍,被业界惊呼为一夜倒退25年。那么,这个标准又是如何确定的?   新国标制定专家起草组组长 国家疾控中心营养与食品安全所副所长 王竹天   王竹天:就是如果是真的把它整到50万的话,就会把这一些大量的这些牛奶拒之门外。   中国畜产品加工研究会名誉会长、农业部(奶类)顾问 骆承庠   骆承庠:韩国的(菌落总数)不是7000吗?你们中国的奶200万,这不是开玩笑吗?   参与国标制定工作的中国农科院北京畜牧兽医研究所副所长王加启告诉我们菌落总数定在200万的原因。   中国农科院北京畜牧兽医研究所副所长 王加启   王加启:在新的标准里面,菌落总数定的是200万,在1986年的标准里面分了四级,一级是50万,二级是100万,三级是200万,四级是400万,所以说你比较两个标准的话,你会发现新的标准,既没有严格,也没有放松,它相当于原来标准的三级的那种标准。   王加启认为依照中国目前的养殖现状菌落总数如果设置在50万,会有一半牛奶被拒之门外。而曾寿瀛则认为菌落指标过高会直接影响牛奶的安全性。   中国奶业协会乳品工业委员会副主任 卫生部原乳品订标组副组长副组长 曾寿瀛   曾寿瀛:你200万的细菌数,我们不可能把所有的细菌杀灭掉,那么牛奶中残存了一定量的数量,这个数量对牛奶在运转的过程中,保质期必然要缩短。   那么菌落值在50万和200万到底对安全性的影响有多大呢?农业部奶及奶制品质量监督检测室王俊博士,向我们展示了菌落总数在50万和200万的照片。照片上白点菌群的分布情况差异很大。   农业部奶及奶制品质量监督检验测试中心检测室主任 王俊博士   王俊:如果是50万的数的话,在这个挤奶的奶站里面,应该大家能觉得,就是说进去一看的话,应该觉得比较干净,地面上没有残余的牛奶。200万的话应该就是比较脏的条件,应该基本上来说夏天苍蝇是满处飞的,然后会有一些残余的牛奶散落在地面上,卫生设备,有些时候可能会闻到一些异味。   王俊认为,菌群数量不同,对乳品的安全性有一定的影响。不过,在国家疾控中心,负责营养与食品安全的王竹天副所长则认为菌落微生物不是致病菌,不会影响乳品安全。   新国标制定专家起草组组长 国家疾控中心营养与食品安全所副所长 王竹天   王俊:大的方面来讲的话,菌落总数,不是一个直接的食品安全指标,它和我们人类的致病没有关系。   菌群数量的不同,到底对乳品会有什么影响呢,采访中,我们找到了有20年乳品安全生产经验的王炎场长。   记者:有的人说微生物含量它不是致病菌,而且还有后续的加工,说影响不到这个品质。   王炎:不可能的,不可能的,那是肯定能够影响的。   记者:根据您的经验。   王炎:肯定是影响的,但是因为他消毒,可能说不能够给人致病,但是它的新鲜感,它的口感肯定是要受影响的,   王炎告诉记者,菌落总数体现出牛奶生产的卫生状况,同时也影响着奶制品的保质期。冷链生产控制,牛奶挤下后进入这些储罐中,温度迅速降到4度以下,然后再装冷藏车,运往加工厂。整个过程一直在低温下运行,这样细菌总数可以控制在10万以下。对企业来说,相应设备的投入和改造则需要大笔资金。而很多企业会把成本转移到终端产品上去。   乳品厂管理人员:今年将近三百万投入,光北京地区。   记者:如果全范围内来讲都投入到的话又是多大?   乳品厂管理人员:那得上千万了。   在我们的印象中,社会在进步,技术在提高,消费需求在提升,相关的行业标准似乎也应该芝麻开花节节高。但是,在乳品新国标的制定中,却出现了相反的动向。这种反常的现象背后,到底折射出中国乳品行业的哪些困境?我们也听到了不少声音。   尽管对此次乳业新国标的一直是支持态度的,但是王加启认为,现行乳业新标准确实偏低,他认为这个标准会在一两年的时间内协调改进,而优质优价体系势在必行。   中国农科院北京畜牧兽医研究所副所长 王加启   王加启:企业实施真正的优质优价的体系,是推动牛奶品质提高的绝对性力量,其它的都是辅助性力量,因为市场它是一个最大的推动力量。   王加启说,在美国乳制品安全体系中最重要的《A级高温灭菌奶法令》被记录于美国《联邦法规法典》,该法规为美国奶制品的检验检测提供了可靠依据。   中国农科院北京畜牧兽医研究所副所长 王加启   王加启:监管的力度和规范,在这一点我们国家比较欠缺。   黑龙江奶协秘书长吴和平同样赞同从事实出发制定新国标,但是针对目前中国奶业的发展,他认为应该用奶粉贮备流转制度和相应的金融服务体系对奶业行业进行保障。   黑龙江奶业协会秘书长 吴和平   吴和平:在我们国内制订一个长期的一个奶粉储备流转的制度,它会对稳定行业高峰低谷这种不断的变化起到一个稳定作用。   作为卫生部原乳品订标组副组长:曾寿瀛,一直坚持用高标准引领行业发展,他告诉我们,乳蛋白含量指标定在2.8,菌落总数定在200万的低标准严重制约了我国乳业的发展。中国乳业发展可以借鉴新西兰,建立第三方检测机构。新西兰拥有全球领先的乳品第三方检测机构-SAITL乳品检测中心。第三方检测实验室的建立可以为奶户和乳制品企业提供公正的交易平台,与按质论价价格体系相结合,保障奶农与企业利益的均衡,促使奶农主动提高生鲜乳质量。   中国奶业协会乳品工业委员会副主任 卫生部原乳品订标组副组长副组长 曾寿瀛   曾寿瀛:我们国家对生乳的标准,是不是能够分级,不要实行一个项目只有一个指标,例如蛋白质就是2.8,例如菌落总数就是200万,为什么不可以考虑分级呢?这个分级对消费者来讲是有好处,对乳品企业来讲也有好处,对奶农来讲它也有好处   乳品新国标究竟是订高了还是低了,我们不是专业人士,也很难给出一个定论。这场没有结果的争论里,却让我们看到了乳品行业的窘境。客观地讲,中国乳品行业最近十几年确实取得了跨越式发展,但是很多结构性的缺陷一直被表面繁荣所掩盖。一个很简单的道理,喝上好奶,必须养好奶牛。然而,过去大量投资都集中在乳品生产销售环节,并不缺少先进的技术设备,对行业基础的养殖环节,反倒没有相应规划,以至于产业链前后脱节,养殖水平落后于很多国家,原奶质量不稳。扭曲的产业结构不仅给国家标准怎么制定带来了一系列两难,也对乳制品的安全构成了隐患。不过,我想不管怎么样,安全和品质都应该是一个产业发展始终不渝的目标,作为制定标准的主管部门,在顾及现实利益的同时,千万别忘了这点。
  • 国家标准委等十一部门印发《碳达峰碳中和标准体系建设指南》
    碳达峰碳中和标准体系建设指南》已经2023年2月6日国务院标准化协调推进部际联席会议全体会议通过,现印发给你们,请结合实际认真贯彻落实。国家标准化管理委员会 国家发展和改革委员会 工业和信息化部自然资源部 生态环境部 住房和城乡建设部交通运输部 中国人民银行 中国气象局国家能源局 国家林草局2023年4月1日(此件公开发布)附件碳达峰碳中和标准体系建设指南为贯彻落实党中央、国务院关于碳达峰碳中和重大战略决策,深入实施《国家标准化发展纲要》,根据《建立健全碳达峰碳中和标准计量体系实施方案》相关要求,加快构建结构合理、层次分明、适应经济社会高质量发展的碳达峰碳中和标准体系,制定本指南。一、总体要求(一)指导思想以习近平新时代中国特色社会主义思想为指导,全面贯彻落实党的二十大精神,深入践行习近平生态文明思想,立足新发展阶段,完整、准确、全面贯彻新发展理念,加快构建新发展格局,坚持系统观念,突出标准顶层设计、强化标准有效供给、注重标准实施效益、统筹推进国内国际,持续健全标准体系,努力为实现碳达峰、碳中和目标贡献标准化力量。(二)基本原则坚持系统布局。加强顶层设计,优化政府颁布标准和市场自主制定标准二元结构,强化跨行业、跨领域标准协同,提升标准的适用性和有效性,实现各级各类标准的衔接配套。坚持突出重点。加快完善基础通用标准。聚焦重点领域和重点行业,加强节能降碳标准制修订。及时将碳达峰碳中和技术创新成果转化为标准,以科技创新推动绿色发展。坚持稳步推进。锚定碳达峰碳中和近期目标与长远发展需求,加快标准更新升级,扎实推进标准研制,坚持系统推进和急用先行相结合,分年度分步骤有序稳妥实施。坚持开放融合。扎实推动标准化国际交流合作,积极参与国际标准规则制定,强化国际标准化工作统筹,加大中国标准国外推广力度,促进国内国际协调一致。(三)主要目标围绕基础通用标准,以及碳减排、碳清除、碳市场等发展需求,基本建成碳达峰碳中和标准体系。到2025年,制修订不少于1000项国家标准和行业标准(包括外文版本),与国际标准一致性程度显著提高,主要行业碳核算核查实现标准全覆盖,重点行业和产品能耗能效标准指标稳步提升。实质性参与绿色低碳相关国际标准不少于30项,绿色低碳国际标准化水平明显提升。二、标准体系框架碳达峰碳中和标准体系包括基础通用标准子体系、碳减排标准子体系、碳清除标准子体系和市场化机制标准子体系等4个一级子体系,并进一步细分为15个二级子体系、63个三级子体系。该体系覆盖能源、工业、交通运输、城乡建设、水利、农业农村、林业草原、金融、公共机构、居民生活等重点行业和领域碳达峰碳中和工作,满足地区、行业、园区、组织等各类场景的应用。本标准体系根据发展需要进行动态调整。三、标准重点建设内容(一)基础通用标准子体系1. 术语、分类和碳信息披露标准重点制修订温室气体与应对气候变化管理相关术语及定义、碳排放数据分类与编码技术规范、碳排放信息采集方法及要求、碳信息披露等标准。2. 碳监测核算核查标准规范重点制修订二氧化碳、甲烷等温室气体监测方法、监测设备、在线监测系统和碳管控平台建设等标准,大气成分物理化学特性长期动态观测、监测、评估、预报相关标准。制修订地区、园区等区域碳排放核算和报告标准。加快制修订能源、冶金、建材、化工、有色、纺织、机械、信息通信、交通运输、畜禽养殖等重点行业企业碳排放核算和报告标准以及数据质量相关标准规范。完善能效提升、可再生能源利用、原燃料替代、余能利用、生物海洋林草土壤固碳、畜禽养殖等典型项目碳减排量评估标准。研制产品碳足迹量化和种类规则等通用标准,探索制定重点产品碳排放核算及碳足迹标准。制修订碳排放核查程序、人员和机构等基础共性标准。3. 低碳管理及评价标准重点制修订城市、设施、企业、供应链、园区、技术等绿色低碳评价、环境影响评价标准,绿色产品评价标准,绿色低碳产业统计核算相关标准,碳中和评价通则标准,以及不同应用场景的碳达峰碳中和相关规划设计、管理体系及实施评价等通用标准。(二)碳减排标准子体系1. 节能标准加快制修订火电、钢铁、建材、化工、有色、煤炭、采矿、轻工、机械、交通运输等重点行业强制性能耗限额标准,推动实现能耗限额指标与碳排放强度指标相协调。坚持减污与降碳协同、源头与末端结合,发挥标准倒逼、优化、调整、促进作用。对标国际先进水平,提升家用电器、农村居民供暖设备、制冷及冷链物流设备、工业设备、照明产品、数据中心、新能源和可再生能源设备、机械制造装备等重点产品和设备强制性能效标准。加快完善与强制性节能标准配套的能耗计算、能效检测、节能评估、节能验收、能源审计等标准。加快制定节能设计规划、能量平衡测算、能源管理体系、能源绩效评估、经济运行、合理用能、节能诊断、节能服务、绿色节约型组织评价等基础标准。完善能效对标、节能技术评价、系统节能、能量回收、余能利用、能量系统优化、高效节能设备、节能监测、节能量测量和验证、能源计量、数字赋能技术、区域能源系统、分布式能源系统、能源管控中心等节能共性技术标准。2. 非化石能源标准水力发电领域重点制修订水电机组扩容增效、宽负荷稳定运行、运行状态评估与延寿等标准,以及小水电绿色改造、生态流量、安全鉴定等绿色发展技术标准。风力发电领域重点制修订风能资源监测、评估以及风力预报预测等标准,风力发电机组、关键零部件标准,消防系统标准,风电塔筒用材料标准,海上风力发电工程施工标准以及并网标准,风电系统稳定性计算标准。光伏发电领域重点制修订太阳能资源监测、评估以及辐射预报预测等技术标准,高效光伏电池、组件及关键材料、电气部件、支撑结构关键产品的技术要求、阻燃耐火性能要求、检测方法和绿色低碳标准,光伏组件、支架、逆变器等主要产品及设备修复、改造、延寿及回收再利用标准。光热利用领域重点制修订光热发电设备标准,以及太阳能法向直接辐射预报预测等标准。完善太阳能集热关键部件材料产品标准和检测评估标准,太阳能供热、制冷系统以及太阳能多能互补系统标准。核能发电领域重点制修订核电技术标准、核电厂风险管理标准、维护有效性评价标准,以及核动力厂厂址评价标准。生物质能领域重点制修订生活垃圾焚烧发电、农林生物质热电、生物质清洁供热、生物天然气(沼气)、生物质热解气化、生物质液体燃料和生物质成型燃料等方面的原料质量控制、重点技术和设备、产品质量分等分级等标准。氢能领域重点完善全产业链技术标准,加快制修订氢燃料品质和氢能检测等基础通用标准,氢和氢气系统安全、风险评估标准,氢密封、临氢材料、氢气泄漏检测和防爆抑爆、氢气安全泄放标准,供氢母站、油气氢电综合能源站安全等氢能安全标准,电解水制氢系统及其关键零部件标准,炼厂氢制备及检测标准,氢液化装备与液氢储存容器、高压气态氢运输、纯氢/掺氢管道等氢储输标准,加氢站系统及其关键技术和设备标准,燃料电池、冶金等领域氢能应用技术标准。海洋能、地热能领域重点制修订海洋能发电设备测试、评估、部署、运行等标准以及地热能发电设备标准。3. 新型电力系统标准电网侧领域重点制修订变电站二次系统技术标准,交直流混合微电网运行、保护标准,新能源并网、配电网以及能源互联网等技术标准。电源侧领域重点制修订分布式电源运行控制、电能质量、功率预测等标准。负荷侧领域重点制修订电力市场负荷预测,需求侧管理,虚拟电厂建设、评估、接入等标准。储能领域重点制修订抽水蓄能标准,电化学、压缩空气、飞轮、重力、二氧化碳、热(冷)、氢(氨)、超导等新型储能标准,储能系统接入电网、储能系统安全管理与应急处置标准。4. 化石能源清洁利用标准煤炭领域重点制修订煤炭筛分、沉陷区地质环境调查、生态修复成效评价、智能化煤炭制样、化验系统性能、组分类型测定等标准。石油领域重点制修订低碳石油开采、炼油技术标准,低排放、高热值、高热效率燃料标准。天然气领域重点制修订液化天然气质量、流量测量、取样导则、成分分析及测定、尾气处理及评价、管道输送要求标准以及页岩气技术标准。5. 生产和服务过程减排标准工业生产过程减碳领域重点制修订钢铁、石化、化工、有色金属、建材、机械、造纸、纺织、汽车、食品加工等行业低碳固碳技术、低碳工艺及装备、非二氧化碳温室气体减排技术、原燃料替代技术、低碳检测技术、低碳计量分析技术、绿色制造、节水等关键技术标准及配套标准样品。交通运输绿色低碳领域重点制修订铁路、公路、水运、民航、邮政等领域基础设施和装备能效标准,以及物流绿色设备设施、高效运输组织、绿色出行、交通运输工具低碳多元化动力适用、绿色交通场站设施、交通能源融合、行业减污降碳等标准。加快完善轨道交通领域储能式电车、能量储存系统、动力电池系统、电能测量等技术标准。完善道路车辆能源消耗量限值及标识、能耗计算试验及评价方法相关标准。加快完善电动汽车驱动系统、充换电系统、动力电池系统相关安全要求、性能要求、测试方法、远程服务管理、安全技术检验等标准。加快研究制订机动车下一阶段排放标准,推进机动车减污降碳协同增效。基础设施建设和运行减碳领域重点制修订城市基础设施低碳建设、城镇住宅减碳、低碳智慧园区建设、农房低碳改造、绿色建造、污水垃圾资源化利用、海水淡化等标准,建筑废物循环利用设备、空气源热泵设备等标准,以及面向节能低碳目标的通信网络、数据中心、通信机房等信息通信基础设施的工程建设、运维、使用计量、回收利用等标准。农业生产减碳领域重点制修订种植业温室气体减排技术标准以及动物肠道甲烷减排技术、畜禽液体粪污减排技术等养殖业生产过程减排标准,完善工厂化农业、规模化养殖、农业机械等节能低碳标准。公共机构节能低碳领域重点制修订机关、医院、学校等典型公共机构能源资源节约、绿色化改造标准,节约型机关、绿色学校、绿色医院、绿色场馆等评价标准,以及公共机构低碳建设、低碳经济运行等管理标准。6. 资源循环利用标准重点制修订循环经济管理、绩效评价等标准。推动制修订清洁生产评价通则标准,稀土、钒钛磁铁矿综合利用标准以及磷石膏、赤泥、熔炼废渣等大宗固废综合利用标准。制修订废金属、废旧纺织品、废塑料、废动力电池等再生资源回收利用标准。加快完善水回用标准。制修订汽车零部件、内燃机、机械工具等再制造标准。制修订林草产业资源循环利用标准。(三)碳清除标准子体系1. 生态系统固碳和增汇标准重点制修订陆地、湖泊和海洋生态系统碳汇及木质林产品碳汇相关术语、分类、边界、监测、计量等通用标准,森林、草原、人工草地、林地、湿地、荒漠、矿山、岩溶、海洋、土壤、冻土等资源保护、生态修复、水土资源保护和水土流失综合治理、固碳增汇、经营增汇减排评估标准和技术标准,林草资源保护和经营技术标准,森林增汇经营、木竹替代、林业生物质产品标准,以及生物碳移除和利用、高效固碳树种草种藻种的选育繁育等标准。研究制定生态修复气象保障相关标准。2. 碳捕集利用与封存标准重点制修订碳捕集利用与封存(CCUS)相关术语、评估等基础标准,燃烧碳排放捕集标准,完善二氧化碳管道输送等标准。推动制定二氧化碳驱油(EOR)、化工利用、生物利用、燃料利用等碳利用标准,以及陆上封存、海上封存等碳封存标准。3. 直接空气碳捕集和储存标准重点制修订直接空气碳捕集和储存(DACS)应用条件、技术要求、实施效果评估等标准。(四)市场化机制标准子体系1. 绿色金融标准重点制修订绿色金融术语、金融机构碳核算、银行企业和个人碳账户管理、气候投融资和转型金融分类目录等基础通用标准,绿色贷款、绿色债券、绿色保险、碳金融衍生品交易等绿色金融产品服务标准。推动制修订绿色债券信用评级等绿色金融评价评估标准。完善金融机构和金融业务环境信息披露等标准。2. 碳排放交易相关标准规范制修订碳排放配额分配、调整、清缴、抵销等标准规范。完善碳排放权交易实施规范,以及碳排放权交易机构和人员要求相关标准规范。推动制修订重点领域自愿减排项目减排量核算方法等标准规范。完善可再生能源消纳统计核算、监测、评估以及绿电交易等绿色能源消费标准。完善绿色低碳技术评估服务、合同能源管理、碳资产管理等标准。3. 生态产品价值实现标准重点制修订自然资源确权、生态产品信息调查、生态产品动态监测等标准。完善生态产品、生态资产、生态系统服务功能、生态系统生产总值等评价标准。健全生态综合整治、矿山矿坑修复、水生态治理、水土流失综合治理、土地综合整治等标准,以及生态农业、生态产品质量追溯等标准。推动制修订生态环境损害鉴定评估技术标准以及生态产品价值实现绩效评估等标准。四、国际标准化工作重点(一)形成国际标准化工作合力成立由市场监管总局(标准委)、国家发展改革委、工业和信息化部、生态环境部牵头,外交、商务、国际合作、科技、自然资源、住房城乡建设、交通运输、农业农村、能源、林业和草原等部门参与的碳达峰碳中和国际标准化协调推进工作组,积极稳妥推进国际标准化工作。充分发挥我国在碳捕集与封存、新型电力系统、新能源等领域技术优势,设立一批国际标准创新团队,凝聚科技攻关人员和标准化专家的力量,同步部署科研攻关和国际标准制定工作。(二)加强国际交流合作加强与联合国政府间气候变化专门委员会(IPCC)、国际标准组织(ISO、IEC、ITU)等机构的合作对接,聚焦能源绿色转型、工业、城乡建设、交通运输、新型基础设施、碳汇、绿色低碳科技发展、循环经济等重点,跟踪碳达峰碳中和领域最新国际动态。深入研究欧盟、美国等区域和国家相关标准化政策和技术性贸易措施。加强与重点区域、国家的标准化交流与合作,推进绿色“一带一路”建设。在标准化对外援助培训或海外工程项目中加大中国碳达峰碳中和标准的宣传与使用。推动金砖国家、亚太经合组织等框架下开展节能低碳标准化对话,发展互利共赢的标准化合作伙伴关系。(三)积极参与国际标准制定重点推动提出温室气体排放监测核算、林草固碳和增汇、能源领域的传统能源清洁低碳利用、智能电网与储能、新型电力系统、清洁能源、绿色金融、信息通信领域与数字赋能等国际标准提案,推动标准研制。积极争取在国际标准组织中成立区域能源系统、医用冷冻装备、生态碳汇等技术机构。深入参与国际标准组织应对气候变化治理工作,推荐中国专家参加气候变化协调委员会(CCCC)、环境社会治理(ESG)协调委员会、联合国秘书长独立咨询委员会能源结构专委会(CEET)等战略研究和协调治理机构。积极联合相关国家共同制定并发布《多能智慧耦合能源系统》《多源固废能源化》等政策白皮书。(四)推动国内国际标准对接开展碳达峰碳中和国内国际标准比对分析,重点推动温室气体管理、碳足迹、碳捕集利用与封存、清洁能源、节能等领域适用的国际标准转化为我国标准,及时实现“应采尽采”。成体系推进碳达峰碳中和国家标准、行业标准、地方标准等外文版制定和宣传推广,通过产品与服务贸易、国际合作、海外工程等多种渠道扩大我国标准海外应用。五、组织实施(一)坚持统筹协调加强碳达峰碳中和标准体系建设的整体部署和系统推进,发挥国家碳达峰碳中和标准化总体组的统筹与技术协调作用,加强对各标准子体系建设工作的指导,强化国家标准和行业标准的协同。建立完善全国标准化技术委员会联络机制,通过成立联合工作组、共同制定、联合归口等方式,共同推进跨行业跨领域标准的研制工作。发挥行业有关标准化协调推进组织的作用,在本行业内统筹推进碳达峰碳中和标准化工作。(二)强化任务落实各行业各领域要按照碳达峰碳中和标准体系建设内容,加快推进相关国家标准、行业标准制修订,做好专业领域标准与基础通用标准、新制定标准与已发布标准的有效衔接。各地方、社会团体等加强与标准化技术组织合作,依法因地制宜、多点并行推动碳达峰碳中和地方标准、团体标准制修订。不断加大投入力度,支持关键标准研究、制定、实施、国际交流等工作。(三)加强宣贯实施广泛开展碳达峰碳中和标准化宣传工作,充分利用广播、电视、报刊、互联网等媒体,普及碳达峰碳中和标准化知识,提高公众绿色低碳标准化意识。适时组织开展碳达峰碳中和标准体系建设评估,及时总结碳达峰碳中和标准化典型案例,推广先进经验做法。主送:外交部、教育部、科技部、财政部、农业农村部、商务部、卫生健康委、国资委、统计局、国管局、中科院、工程院、银保监会、证监会、铁路局、民航局,各省、自治区、直辖市和新疆生产建设兵团市场监管局(厅、委)、发展改革委、工业和信息化主管部门、自然资源主管部门、生态环境厅(局)、住房城乡建设厅(局)、交通运输厅(局、委)、气象局、能源局、林业和草原主管部门。国家标准化管理委员会秘书处 2023年4月17日印发
  • 生态环境部发布水中油测定标准 新增紫外法
    p   自2013年列入计划以来,水中油标准的修订就一直备受关注,曾征求过意见的方法包括红外分光光度法、紫外分光光度法、荧光分光光度法和重量法。近日,生态环境部正式发布两项水中油测定标准,其中为红外分光光度法和紫外分光光度法。 /p p   《 img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201810/attachment/f687d27d-0ae4-4d62-85ee-026bb064f452.pdf" title=" 水质 石油类和动植物油类的测定 红外分光光度法(HJ 637-2018代.pdf" 水质 石油类和动植物油类的测定 红外分光光度法(HJ 637-2018代HJ 637-2012).pdf /a 》为修订标准,主要修订内容为: br/ /p p   标准适用范围从“地表水、地下水、工业废水和生活污水”修改为“工业废水和生活污水” /p p   修改“总油”名称为“油类” /p p   萃取剂从“四氯化碳”修改为“四氯乙烯”。   /p p    img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201810/attachment/3cba346a-0a19-419a-b664-ba90e24804d0.pdf" title=" 水质 石油类的测定 紫外分光光度法(试行)(HJ 970-2018).pdf" 水质 石油类的测定 紫外分光光度法(试行)(HJ 970-2018).pdf /a 为新增标准, br/ /p p   本标准适用于地表水、地下水和海水中石油类的测定。萃取剂为正已烷。 /p p   也就是说,2019年1月1日以后,工业废水和生活污水的水中油检测仍将使用红外测油仪,而对于地表水、地下水和海水等较为干净的水,将采用紫外分光光度法的仪器。 /p
  • 加强食品安全须严格制定标准
    p   在“两会”即将召开之际,新华网梳理了连着百姓心事的几件“两会”大事。其中就有 a style=" color: rgb(255, 0, 0) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/application/industry-S03.html" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 食品安全 /strong /span /a 问题——怎样为“舌尖上的安全”把好关?据了解,已经有一些代表和委员准备了与食品安全有关的提案。近年来,人们对食品安全越来越关注,它将是今年“两会”的热点话题之一。 /p p   在工业生产中,既有安全标准,也有质量标准。不言而喻,安全标准是第一位的标准,这一点在食品药品安全的重要性上体现得最为突出。安全标准和质量标准在实践中常常融合为一个标准。近年的一些食品安全事件(如三聚氰胺牛奶事件)反映我国的安全标准还有待提升和完善。比如,牛奶已经成为居民消费必需品,但标准和监管体制并未相应升级。又如,实行包产到户后,农业生产者高度分散的业态难以保证饲养规范和奶源品质,等等。问题的核心在于,奶业市场标准出现了失控,龙头企业竞相进口成本更低的乳清粉制作液态常温奶,再以成本价倾销的方式将竞争对手排挤出市场。规范养殖下的鲜奶成本太高,难以与之竞争,导致违规养殖和加工盛行,利益相关者挖空心思,通过添加三聚氰胺来实现蛋白质含量达标。再加上食品监管体系不健全,最终导致了这一震惊世界的食品安全事件。 /p p   日本也曾发生过森永毒奶粉事件。上世纪50年代,日本经济持续高速增长,对牛奶和奶制品的需求增长迅速,但监管体制相对滞后,在这一背景下,1955年爆发了森永毒奶粉事件:由于制作奶粉的添加剂中混入了砷,导致一百多名婴儿中毒死亡,一万多人留下终身疾患。在消费者维权团体的不懈努力下,这一事件直到1973年才得以定案,森永两名员工被判刑,同时对受害者或其遗属提供终身赔偿,迄今为止,平均每年支付超过10亿日元的赔偿金。围绕这一事件过失责任的认定,成为日本法律史上关于侵权责任的著名案例。 /p p   两起事件的根源,都在于标准过低且无约束力。森永毒奶粉事件爆发的根源,就在于企业使用劣质奶源,制成的奶粉兑水后不易均匀化开,于是加入添加剂帮助溶解,结果使用了含砷的劣质添加剂,导致重大安全事故。三聚氰胺事件是鲜奶和还原奶的错位竞争所致,和森永事件一样,本质上也是因为质量标准和安全标准过低。 /p p   两起事件的处置也值得深思。森永事件后,日本牛奶及奶制品国标向荷兰等奶业发达国家标准看齐,并在立法和修法中对食品卫生、添加剂使用等进行了严格的法律限定,并对消费者寻求质量安全、表达意见的权利及知情权、选择权给予法律保护。经过长期努力,日本食品安全标准已经成为受到广泛信赖、具有国际影响力的标准。在三聚氰胺牛奶事件的处置中,虽然对具体行为和具体责任方进行了处罚,但后续赔偿存在争议,而且,乳品安全国家标准非但没有得到促进,反而在修订过程中受龙头企业等多方利益诉求影响,出现了蛋白质含量、菌落总数等关键标准相对于原国标大幅度退步的怪象。 /p p   总结两起案例,可以看到,安全和质量合一的标准,要求有多高,要求有多严,决定了一个产业乃至一个经济体的竞争力。为什么这么多中产阶级消费者信不过中国制造?原因很简单,中国市场上既有严格符合标准的产品,也有不符合标准的非标产品,还有大量形式上有标准认证实质上却没有认证的产品。 /p p   全世界的普遍规律是国标低于行业共同制定的行标,行标又低于大企业的企标。在很多领域,中国的情况则恰恰相反,大企业不通过质量提升、研发创新去寻求高于行业平均的利润率,反而通过恶性竞争谋求基于市场垄断的超额利润,和一百年前美国企业不择手段抢占市场份额、简单依靠规模扩张增长的方式如出一辙。 /p p   因此,要实现中国创造,关键在于把标准作为提升产业竞争力的核心,肃清市场环境。鉴于我国市场经济体制规范程度还不高,提升标准可以小步快进,但方向必须明确,只能是就高不就低,对非标产品公然上市、企标行标屡屡突破国标下限的现象必须零容忍。 /p
  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • 质检总局公布我国最新食品添加剂标准目录
    国家质检总局7月26日消息,我国最新的食品添加剂标准目录公布,详细见下表: 食品添加剂品种名称 标准名称 备注 1.食品添加剂 柠檬酸 GB 1987-2007 食品添加剂 柠檬酸   2.食品添加剂 乳酸 GB 2023-2003 食品添加剂 乳酸   3.食品添加剂 dl-酒石酸 GB 15358-2008 食品添加剂 dl-酒石酸   4.食品添加剂 L(+)-酒石酸 GB 25545-2010 食品添加剂 L(+)-酒石酸 卫生部公告2010年第19号 5.食品添加剂 L-苹果酸 GB 13737-2008 食品添加剂 L-苹果酸   6.食品添加剂 DL-苹果酸 GB 25544-2010 食品添加剂 DL-苹果酸 卫生部公告2010年第19号 7.食品添加剂 冰乙酸(冰醋酸) GB 1903-2008 食品添加剂 冰乙酸(冰醋酸)   8.食品添加剂 碳酸钾 GB 25588-2010 食品添加剂 碳酸钾 卫生部公告2010年第19号 9.食品添加剂 柠檬酸钾 GB 14889-1994 食品添加剂 柠檬酸钾   10.食品添加剂 柠檬酸钠 GB 6782-2009 食品添加剂 柠檬酸钠   11.食品添加剂 富马酸 GB 25546-2010 食品添加剂 富马酸 卫生部公告2010年第19号 12.食品添加剂 磷酸三钾 GB 25563-2010 食品添加剂 磷酸三钾 卫生部公告2010年第19号 13.食品添加剂 碳酸氢三钠(倍半碳酸钠) GB 25586-2010 食品添加剂 碳酸氢三钠(倍半碳酸钠) 卫生部公告2010年第19号 14.食品添加剂 盐酸 GB 1897-2008 食品添加剂 盐酸   15.食品添加剂 氢氧化钠 GB 5175-2008 食品添加剂 氢氧化钠   16.食品添加剂 碳酸钠 GB 1886-2008 食品添加剂 碳酸钠   17.食品添加剂 氢氧化钙 GB 25572-2010 食品添加剂 氢氧化钙 卫生部公告2010年第19号 18.食品添加剂 氢氧化钾 GB 25575-2010 食品添加剂 氢氧化钾 卫生部公告2010年第19号 19.食品添加剂 碳酸氢钾 GB 25589-2010 食品添加剂 碳酸氢钾 卫生部公告2010年第19号 20.食品添加剂 磷酸二氢钾 GB 25560-2010 食品添加剂 磷酸二氢钾 卫生部公告2010年第19号 21.食品添加剂 磷酸三钠 GB 25565-2010 食品添加剂 磷酸三钠 卫生部公告2010年第19号 22.食品添加剂 磷酸二氢钙 GB 25559-2010 食品添加剂 磷酸二氢钙 卫生部公告2010年第19号 23.食品添加剂 磷酸氢钙 GB 1889-2004食品添加剂 磷酸氢钙   24.食品添加剂 焦磷酸二氢二钠 GB 25567-2010 食品添加剂 焦磷酸二氢二钠 卫生部公告2010年第19号 25.食品添加剂 焦磷酸钠 GB 25557-2010 食品添加剂 焦磷酸钠 卫生部公告2010年第19号 26.食品添加剂 乳酸钠(溶液) GB 25537-2010 食品添加剂 乳酸钠(溶液) 卫生部公告2010年第19号 27.食品添加剂 磷酸 GB 3149-2004 食品添加剂 磷酸   28.食品添加剂 六偏磷酸钠 GB 1890-2005 食品添加剂 六偏磷酸钠   29.食品添加剂 硫酸钙 GB 1892-2007 食品添加剂 硫酸钙   30.食品添加剂 乳酸钙 GB 6226-2005 食品添加剂 乳酸钙   31.食品添加剂 L-乳酸钙 GB 25555-2010 食品添加剂 L-乳酸钙 卫生部公告2010年第19号 32.食品添加剂 磷酸三钙 GB 25558-2010 食品添加剂 磷酸三钙卫生部公告2010年第19号 33.食品添加剂 柠檬酸一钠 食品添加剂 柠檬酸一钠 卫生部公告2011年第8号指定标准 34.食品添加剂 亚铁氰化钾(黄血盐钾) GB 25581-2010 食品添加剂 亚铁氰化钾(黄血盐钾) 卫生部公告2010年第19号 35.食品添加剂 二氧化硅 GB 25576-2010 食品添加剂 二氧化硅 卫生部公告2010年第19号 36.食品添加剂 硅铝酸钠 GB 25583-2010 食品添加剂 硅铝酸钠 卫生部公告2010年第19号 37.食品添加剂 滑石粉 GB 25578-2010 食品添加剂 滑石粉 卫生部公告2010年第19号 38.食品添加剂 微晶纤维素 食品添加剂 微晶纤维素 卫生部公告2011年第8号指定标准 39.食品添加剂 叔丁基-4-羟基茴香醚 GB1916-2008 食品添加剂 叔丁基-4-羟基茴香醚   40.食品添加剂 二丁基羟基甲苯(BHT) GB 1900-2010 食品添加剂 二丁基羟基甲苯(BHT) 卫生部公告2010年第19号 41.食品添加剂 没食子酸丙酯 GB 3263-2008食品添加剂 没食子酸丙酯   42.食品添加剂 茶多酚 QB 2154-1995(2009)食品添加剂 茶多酚   43.食品添加剂 植酸(肌醇六磷酸) HG 2683—1995(2007)食品添加剂 植酸(肌醇六磷酸)   44.食品添加剂 特丁基对苯二酚 GB 26403-2011食品添加剂 特丁基对苯二酚 卫生部公告2011年第7号 45.食品添加剂 甘草抗氧物 QB 2078-1995(2009)食品添加剂 甘草抗氧物   46.食品添加剂 抗坏血酸钙 GB 15809-1995食品添加剂 抗坏血酸钙   47.食品添加剂 L-抗坏血酸棕榈酸酯 GB 16314-1996食品添加剂 L-抗坏血酸棕榈酸酯 食品添加剂 抗坏血酸棕榈酸酯 卫生部公告2011年第8号指定标准 48.食品添加剂 迷迭香提取物 QB/T 2817-2006食品添加剂 迷迭香提取物   49.食品添加剂 D-异抗坏血酸钠 GB 8273-2008食品添加剂 D-异抗坏血酸钠   50.食品添加剂 D-异抗坏血酸 GB 22558-2008食品添加剂 D-异抗坏血酸   51.食品添加剂 抗坏血酸钠 GB 16313-1996食品添加剂 抗坏血酸钠   52.食品添加剂 维生素E(dl-a-醋酸生育酚) GB 14756-2010食品添加剂 维生素E(dl-a-醋酸生育酚) 卫生部公告2010年第19号 53.食品添加剂 山梨酸 GB 1905-2000食品添加剂 山梨酸   54.食品添加剂 山梨酸钾 GB 13736-2008食品添加剂 山梨酸钾   55.食品添加剂 羟基硬脂精(氧化硬脂精) 食品添加剂 羟基硬脂精(氧化硬脂精) 卫生部公告2011年第8号指定标准 56.食品添加剂 硫代二丙酸二月桂酯 食品添加剂 硫代二丙酸二月桂酯 卫生部公告2011年第8号指定标准 57.食品添加剂 连二亚硫酸钠(保险粉) GB 22215-2008食品添加剂 连二亚硫酸钠(保险粉)   58.食品添加剂 焦亚硫酸钠 GB 1893-2008食品添加剂 焦亚硫酸钠   59.食品添加剂 无水亚硫酸钠 GB 1894-2005食品添加剂 无水亚硫酸钠   60.食品添加剂 焦亚硫酸钾 GB 25570-2010 食品添加剂 焦亚硫酸钾 卫生部公告2010年第19号 61.食品添加剂 亚硫酸氢钠 GB 25590-2010 食品添加剂 亚硫酸氢钠 卫生部公告2010年第19号 62.食品添加剂 硫磺 GB 3150—2010 食品添加剂 硫磺 卫生部公告2010年第19号 63.食品添加剂 碳酸氢铵 GB 1888-2008食品添加剂 碳酸氢铵   64.食品添加剂 酒石酸氢钾 GB 25556-2010 食品添加剂 酒石酸氢钾 卫生部公告2010年第19号 65.食品添加剂 复合膨松剂 GB 25591-2010 食品添加剂 复合膨松剂 卫生部公告2010年第19号 66.食品添加剂 硫酸铝钾 GB 1895-2004食品添加剂 硫酸铝钾   67.食品添加剂 硫酸铝铵 GB 25592-2010 食品添加剂 硫酸铝铵 卫生部公告2010年第19号 68.食品添加剂 羟丙基淀粉醚 QB 1229-1991(2009)食品添加剂 羟丙基淀粉醚   69.食品添加剂 山梨糖醇液 GB 7658-2005食品添加剂 山梨糖醇液   70.食品添加剂 聚葡萄糖 GB 25541-2010 食品添加剂 聚葡萄糖 卫生部公告2010年第19号 71.食品添加剂 碳酸氢钠 GB 1887-2007食品添加剂 碳酸氢钠   72.食品添加剂 碳酸钙 GB 1898-2007食品添加剂 碳酸钙   73.食品添加剂 碳酸镁 GB 25587-2010 食品添加剂 碳酸镁 卫生部公告2010年第19号 74.食品添加剂 偶氮甲酰胺 食品添加剂 偶氮甲酰胺 卫生部公告2011年第8号指定标准 75.食品添加剂 苋菜红 GB 4479.1—2010 食品添加剂 苋菜红 卫生部公告2010年第19号 76.食品添加剂 苋菜红铝色淀 GB 4479.2-2005食品添加剂 苋菜红铝色淀   77.食品添加剂 胭脂红 GB 4480.1-2001食品添加剂 胭脂红   78.食品添加剂 胭脂红铝色淀 GB 4480.2-2001食品添加剂 胭脂红铝色淀   79.食品添加剂 柠檬黄 GB 4481.1—2010 食品添加剂 柠檬黄 卫生部公告2010年第19号 80.食品添加剂 柠檬黄铝色淀 GB 4481.2—2010 食品添加剂 柠檬黄铝色淀 卫生部公告2010年第19号 81.食品添加剂 日落黄 GB 6227.1—2010 食品添加剂 日落黄 卫生部公告2010年第19号 82.食品添加剂 日落黄铝色淀 GB 6227.2-2005食品添加剂 日落黄铝色淀   83.食品添加剂 亮蓝 GB 7655.1-2005食品添加剂 亮蓝   84.食品添加剂 亮蓝铝色淀 GB 7655.2-2005食品添加剂 亮蓝铝色淀   85.食品添加剂 新红 GB 14888.1-2010 食品添加剂 新红 卫生部公告2010年第19号 86.食品添加剂 新红铝色淀 GB 14888.2-2010 食品添加剂 新红铝色淀 卫生部公告2010年第19号 87.食品添加剂 诱惑红 GB 17511.1-2008食品添加剂 诱惑红   88.食品添加剂 诱惑红铝色淀 GB 17511.2-2008食品添加剂 诱惑红铝色淀   89.食品添加剂 赤藓红 GB 17512.1-2010 食品添加剂 赤藓红 卫生部公告2010年第19号 90.食品添加剂 赤藓红铝色淀 GB 17512.2-2010 食品添加剂 赤藓红铝色淀 卫生部公告2010年第19号 91.食品添加剂 β-胡萝卜素 GB 8821—2010 食品添加剂 β-胡萝卜素 卫生部公告2010年第19号 92.食品添加剂 天然β-胡萝卜素 QB 1414-1991(2009)食品添加剂 天然β-胡萝卜素   93.食品添加剂 甜菜红 QB/T 3791-1999(2009)食品添加剂 甜菜红   94.食品添加剂 紫胶红色素 GB 4571—1996食品添加剂 紫胶红色素   95.食品添加剂 辣椒红 GB 10783-2008食品添加剂 辣椒红   96.食品添加剂 焦糖色(亚硫酸铵法、氨法、普通法) GB 8817-2001食品添加剂 焦糖色(亚硫酸铵法、氨法、普通法)   97.食品添加剂 红米红 GB 25534-2010 食品添加剂 红米红 卫生部公告2010年第19号 98.食品添加剂 栀子黄 GB 7912-2010 食品添加剂 栀子黄 卫生部公告2010年第19号 99.食品添加剂 菊花黄 QB 3792-1999(2009)食品添加剂 菊花黄   100.食品添加剂 黑豆红 QB 3793-1999(2009)食品添加剂 黑豆红   101.食品添加剂 高粱红 GB 9993-2005食品添加剂 高粱红   102.食品添加剂 可可壳色素 GB 8818-2008食品添加剂 可可壳色素   103.食品添加剂 红曲米(粉) GB 4926-2008食品添加剂 红曲米(粉)   104.食品添加剂 红曲红 GB 15961-2005食品添加剂 红曲红   105.食品添加剂 天然苋菜红 QB 1227-1991(2009)食品添加剂 天然苋菜红   106.食品添加剂 姜黄色素 QB 1415-1991(2009)食品添加剂 姜黄色素   107.食品添加剂 叶绿素铜钠盐 GB 26406-2011 食品添加剂 叶绿素铜钠盐 卫生部公告2011年第7号 108.食品添加剂 萝卜红 GB 25536-2010 食品添加剂 萝卜红 卫生部公告2010年第19号 109.食品添加剂 二氧化钛 GB 25577-2010 食品添加剂 二氧化钛 卫生部公告2010年第19号 110.食品添加剂 蔗糖脂肪酸酯 食品添加剂 蔗糖脂肪酸酯 GB 8272-2009食品添加剂 蔗糖脂肪酸酯   食品添加剂 蔗糖脂肪酸酯(丙二醇法) GB 10617-2005食品添加剂 蔗糖脂肪酸酯(丙二醇法)   食品添加剂 蔗糖脂肪酸酯(无溶剂法) QB 2245-1996(2009)食品添加剂 蔗糖脂肪酸酯(无溶剂法)   111.食品添加剂 酪蛋白酸钠 QB/T 3800-1999(2009)食品添加剂 酪蛋白酸钠(原GB 10797-89)   112.食品添加剂 蒸馏单硬脂酸甘油酯 GB 15612-1995 食品添加剂 蒸馏单硬脂酸甘油酯   113.食品添加剂 山梨醇酐单硬脂酸酯(司盘60) GB 13481-2010 食品添加剂 山梨醇酐单硬脂酸酯(司盘60) 卫生部公告2010年第19号 114.食品添加剂 山梨醇酐单油酸酯(司盘80) GB 13482-2010 食品添加剂 山梨醇酐单油酸酯(司盘80) 卫生部公告2010年第19号 115.食品添加剂 单、双硬脂酸甘油酯 GB 1986-2007食品添加剂 单、双硬脂酸甘油酯   116.食品添加剂 辛癸酸甘油酯 QB 2396-1998(2009)食品添加剂 辛癸酸甘油酯   117.食品添加剂 聚氧乙烯木糖醇酐单硬脂酸脂 QB/T 3790-1999(2009)食品添加剂 聚氧乙烯木糖醇酐单硬脂酸脂   118.食品添加剂 木糖醇酐单硬脂酸酯 QB/T 3784-1999(2009)食品添加剂 木糖醇酐单硬脂酸酯   119.食品添加剂 改性大豆磷脂LS/T 3225-1990食品添加剂 改性大豆磷脂(原GB 12486-90)   120.食品添加剂 山梨醇酐单月桂酸酯(司盘20) GB 25551-2010 食品添加剂 山梨醇酐单月桂酸酯(司盘20) 卫生部公告2010年第19号 121.食品添加剂 山梨醇酐单棕榈酸酯(司盘40) GB 25552-2010 食品添加剂 山梨醇酐单棕榈酸酯(司盘40) 卫生部公告2010年第19号 122.食品添加剂 双乙酰酒石酸单双甘油酯 GB 25539-2010 食品添加剂 双乙酰酒石酸单双甘油酯 卫生部公告2010年第19号 123.食品添加剂 三聚甘油单硬脂酸酯 GB 13510-1992食品添加剂 三聚甘油单硬脂酸酯   124.食品添加剂 聚氧乙烯(20)山梨醇酐单硬脂酸酯(吐温60) GB 25553-2010 食品添加剂 聚氧乙烯(20)山梨醇酐单硬脂酸酯(吐温60) 卫生部公告2010年第19号 125.食品添加剂 聚氧乙烯(20)山梨醇酐单油酸酯(吐温80) GB 25554-2010 食品添加剂 聚氧乙烯(20)山梨醇酐单油酸酯(吐温80) 卫生部公告2010年第19号 126.食品添加剂 果胶 GB 25533-2010 食品添加剂 果胶 卫生部公告2010年第19号 127.食品添加剂 卡拉胶 GB 15044-2009食品添加剂 卡拉胶   128.食品添加剂 藻酸丙二醇酯 GB 10616-2004食品添加剂 藻酸丙二醇酯   129.食品添加剂 松香甘油酯和氢化松香甘油酯 GB 10287-1988食品添加剂 松香甘油酯和氢化松香甘油酯 食品添加剂 氢化松香甘油酯 卫生部公告2011年第8号指定标准 130.食品添加剂 乳酸脂肪酸甘油酯 食品添加剂 乳酸脂肪酸甘油酯 卫生部公告2011年第8号指定标准 131.食品添加剂 乙酰化单、双甘油脂肪酸酯 食品添加剂 乙酰化单、双甘油脂肪酸酯 卫生部公告2011年第8号指定标准 132.食品添加剂 硬脂酸钙 食品添加剂 硬脂酸钙 卫生部公告2011年第8号指定标准 133.食品添加剂 硬脂酸镁 食品添加剂 硬脂酸镁 卫生部公告2011年第8号指定标准 134.食品添加剂 硬脂酰乳酸钙 食品添加剂 硬脂酰乳酸钙 卫生部公告2011年第8号指定标准135.食品添加剂 硬脂酰乳酸钠 食品添加剂 硬脂酰乳酸钠 卫生部公告2011年第8号指定标准 136.食品添加剂 丙二醇脂肪酸酯 食品添加剂 丙二醇脂肪酸酯 卫生部公告2011年第8号指定标准 137.食品添加剂 聚甘油脂肪酸酯 食品添加剂 聚甘油脂肪酸酯 卫生部公告2011年第8号指定标准 138.食品添加剂 乳糖醇 食品添加剂 乳糖醇 卫生部公告2011年第8号指定标准 139.食品添加剂 α-淀粉酶制剂 GB 8275-2009食品添加剂 α-淀粉酶制剂   140.食品添加剂 糖化酶制剂 GB 8276-2006食品添加剂 糖化酶制剂   141.食品添加剂 果胶酶制剂 QB 1502-1992(2009)食品添加剂 果胶酶制剂   142.食品添加剂 真菌α-淀粉酶 QB 2526-2001(2009)食品添加剂 真菌α-淀粉酶   143.食品添加剂 α-葡萄糖转苷酶 QB 2525-2001(2009)食品添加剂 α-葡萄糖转苷酶   144.食品添加剂 a-乙酰乳酸脱羧酶制剂 GB 20713-2006食品添加剂 a-乙酰乳酸脱羧酶制剂   145.食品添加剂 纤维素酶制剂 QB 2583-2003 纤维素酶制剂   146.食品工业用酶制剂 GB 25594-2010 食品添加剂 食品工业用酶制剂 卫生部公告2010年第19号 147.食品添加剂 5'-鸟苷酸二钠 QB/T 2846-2007食品添加剂 5'-鸟苷酸二钠   148.食品添加剂 呈味核苷酸二钠 QB/T 2845-2007食品添加剂 呈味核苷酸二钠   149.食品添加剂 甘氨酸(氨基乙酸) GB 25542-2010 食品添加剂 甘氨酸(氨基乙酸) 卫生部公告2010年第19号 150.食品添加剂 L-丙氨酸 GB 25543-2010 食品添加剂 L-丙氨酸 卫生部公告2010年第19号 151.食品用石蜡 GB 7189-1994食品用石蜡   152.食品级白油 GB 4853-2008食品级白油   153.食品添加剂 吗啉脂肪酸盐果蜡 GB12489-2010 食品添加剂 吗啉脂肪酸盐果蜡 卫生部公告2010年第19号 154.食品添加剂 紫胶(虫胶) LY 1193—1996 食品添加剂 紫胶(虫胶)   155.食品添加剂 松香季戊四醇酯 食品添加剂 松香季戊四醇酯 卫生部公告2011年第8号指定标准 156.食品添加剂 巴西棕榈蜡 食品添加剂 巴西棕榈蜡 卫生部公告2011年第8号指定标准 157.食品添加剂 蜂蜡 食品添加剂 蜂蜡 卫生部公告2011年第8号指定标准 158.食品添加剂 三聚磷酸钠 GB 25566-2010 食品添加剂 三聚磷酸钠 卫生部公告2010年第19号 159.食品添加剂 磷酸氢二钾 GB 25561-2010 食品添加剂 磷酸氢二钾 卫生部公告2010年第19号 160.食品添加剂 磷酸二氢铵 GB 25569-2010 食品添加剂 磷酸二氢铵 卫生部公告2010年第19号 161.食品添加剂 磷酸氢二钠 GB 25568-2010 食品添加剂 磷酸氢二钠 卫生部公告2010年第19号 162.食品添加剂 磷酸二氢钠 GB 25564-2010 食品添加剂 磷酸二氢钠 卫生部公告2010年第19号 163.食品添加剂 L-赖氨酸盐酸盐 GB 10794-2009 食品添加剂 L-赖氨酸盐酸盐   164.食品添加剂 牛磺酸 GB 14759-2010食品添加剂 牛磺酸 卫生部公告2010年第19号 165.食品添加剂 左旋肉碱 GB 17787-1999 食品添加剂 左旋肉碱 食品添加剂 左旋肉碱 卫生部公告2011年第8号指定标准 166.食品添加剂 维生素A GB 14750-2010 食品添加剂 维生素A 卫生部公告2010年第19号 167.食品添加剂 维生素B1(盐酸硫胺) GB 14751-2010 食品添加剂 维生素B1(盐酸硫胺) 卫生部公告2010年第19号 168.食品添加剂 维生素B2(核黄素) GB 14752-2010 食品添加剂 维生素B2(核黄素) 卫生部公告2010年第19号 169.食品添加剂 维生素B6(盐酸吡哆醇) GB 14753-2010 食品添加剂 维生素B6(盐酸吡哆醇) 卫生部公告2010年第19号 170.食品添加剂 维生素C(抗坏血酸) GB 14754-2010 食品添加剂 维生素C(抗坏血酸) 卫生部公告2010年第19号 171.食品添加剂 维生素D2(麦角钙化醇) GB 14755-2010 食品添加剂 维生素D2(麦角钙化醇) 卫生部公告2010年第19号 172.食品添加剂 烟酸 GB 14757-2010 食品添加剂 烟酸 卫生部公告2010年第19号 173.食品添加剂 叶酸 GB 15570-2010 食品添加剂 叶酸 卫生部公告2010年第19号 174.食品添加剂 乳酸亚铁 GB 6781-2007 食品添加剂 乳酸亚铁   175.食品添加剂 柠檬酸钙 GB 17203-1998 食品添加剂 柠檬酸钙   176.食品添加剂 葡萄糖酸钙 GB 15571-2010食品添加剂 葡萄糖酸钙 卫生部公告2010年第19号 177.食品添加剂 生物碳酸钙 QB 1413-1999(2009)食品添加剂 生物碳酸钙   178.食品营养强化剂 煅烧钙 GB 9990-2009 食品营养强化剂 煅烧钙   179.食品添加剂 L-苏糖酸钙 GB17779-2010 食品添加剂 L-苏糖酸钙 卫生部公告2010年第19号 180.食品添加剂 乙酸钙 GB 15572-1995 食品添加剂 乙酸钙及第1号修改单   181.食品添加剂 葡萄糖酸锌 GB 8820-2010 食品添加剂 葡萄糖酸锌 卫生部公告2010年第19号 182.食品添加剂 天然维
  • 国家卫生健康委发布《尿中硫氰酸根测定标准 离子色谱法》等13项国家职业卫生标准及1项标准修改单
    现发布《职业性慢性氯丙烯中毒诊断标准》等13项国家职业卫生标准及1项标准修改单,编号和名称如下:一、强制性国家职业卫生标准1.GBZ 6—2024职业性慢性氯丙烯中毒诊断标准(代替GBZ 6—2002)2.GBZ 10—2024职业性急性溴甲烷中毒诊断标准(代替GBZ 10—2002)3.GBZ 15—2024职业性急性氮氧化物中毒诊断标准(代替GBZ 15—2002)4.GBZ 23—2024职业性急性一氧化碳中毒诊断标准(代替GBZ 23—2002)5.GBZ 27—2024职业性汽油中毒诊断标准(代替GBZ 27—2002)6.GBZ 37—2024职业性铅及其无机化合物中毒诊断标准(代替GBZ 37—2015)7.GBZ 40—2024职业性急性硫酸二甲酯中毒诊断标准(代替GBZ 40—2002)8.GBZ 89—2024职业性汞中毒诊断标准(代替GBZ 89—2007)9.GBZ 331—2024职业卫生技术服务工作规范二、推荐性国家职业卫生标准10.GBZ/T 332—2024尿中硫氰酸根测定标准 离子色谱法(代替 WS/T 39—1996)11.GBZ/T 333—2024尿中铍测定标准 电感耦合等离子体质谱法(代替WS/T 46—1996)12.GBZ/T 334—2024尿中亚硫基二乙酸测定标准 离子色谱法(WS/T 63—1996)13.GBZ/T 335—2024尿中三氯乙酸测定标准 顶空气相色谱法(代替WS/T 96—1996)三、标准修改单《工作场所有害因素职业接触限值 第1部分:化学有害因素》(GBZ 2.1—2019)第2号修改单上述强制性标准及标准修改单自2025年5月1日起施行,GBZ 6—2002、GBZ 10—2002、GBZ 15—2002、GBZ 23—2002、GBZ 27—2002、GBZ 37—2015、GBZ 40—2002、GBZ 89—2007同时废止。上述推荐性标准自2024年11月1日起施行,WS/T 39—1996、WS/T 46—1996、WS/T 63—1996、WS/T 96—1996同时废止。特此通告。国家卫生健康委2024年5月9日附件:1.国卫通〔2024〕9 号 13项标准文本+1项修改单.rar
  • 美国UL着手开发涉及LED安全评定标准
    UL(UnderwritersLaboratoriesInc。)是美国一家从事产品安全认证和标准安全制订的组织,在北美乃至全世界都有很大影响。总部位于美国,从事产品评估和标准编制已有110年的历史,每年测试的产品有18,000多种,使用在产品上的UL标志有超过190亿,遍布与世界各地的子公司有60多家。据UL公司照明策划商务部总经理EliPuszkar透露:UL正在着手开发一系列涉及LED(产品)的安全评定标准。   在照明领域的技术革新中,LED的应用毫无疑问是最令人振奋的,它将改变整个照明市场的结构,其广泛应用指日可待。说到LED,其技术本身并不是一个很新的东西,在很多年之前,就已开始使用LED来作仪器和设备的指示灯。随着技术发展,芯片和材料在性能上都有新的改善和提高,使得LED的亮度和寿命都有了极大的改进,从而也推动了LED更为广泛的使用。   如今,很多厂商都推出了自己的LED灯具产品,随着LED灯具产品大规模的使用,不久以后我们就会看到LED将是照明应用的主流。超长的寿命和几乎不需要维护这两大特点深深地吸引着众多的灯具设计者,再加上其耗能低、适应性强、颜色和亮度的可控性好等优点,使LED灯具成为照明产品的新宠儿。   为了保证新的LED照明产品能够像普通照明灯具一样为大众所接受和信赖,UL已开始着手编制LED的安全性评定标准。   当开发设计一款新产品的时候,生产商应该考虑以下几个影响安全的因素:   触电:   为了防止触电,一般针对两种情况分别对待:①用Class2电源供电器供电的LED产品;②直接连接到电网中或使用非Class2电源供电器供电的LED灯具。对于①使用Class2电源供电的器具,由于电源自身有电压和电流的限制,故不存在触电的危险;对于②使用其它电源供电的产品则需要对其绝缘性能和带电体的可触及性进行评估,并符合标准的要求。但是使用Class2电源供电,要考虑到一个特殊的使用场合--潮湿环境,如果产品使用在潮湿环境,则其开路电压不能超过15V交流(30V直流)。   火灾:   为避免引起火灾,要对产品作很多方面的测试和评估,如LED间距、散射片的构造和用料、外壳的类别和安装位置及工作方式等等。尽管在设计产品时我们使用了Class2类型的电源供给器来限制产品的能量从而避免或减少火灾,但根据UL以往的经验,该类产品仍然有可能达到90℃度以上的高温(美国国家建筑法规里面规定安装在普通可燃性材料表面设备温度不能超过90℃)。因此,在设计LED灯具产品时,应考虑到这一方面,并且需要通过温度测试(灯具中各元件的表面温度均应在自己的额定温度范围之内)。   生理危害:   LED发出的光对视力或皮肤等其它生理部位可能会产生危害,这一直受人们关注,但到目前为止,一直未能有一个决议性的研究来表明使用LED不会引起重大生理危害。对于任何类光源,使用散射片来减弱光强度可以有效地降低对人身的辐射伤害。   UL在LED方面的举措:   大概到今年1月底,UL将正式发布一个新的标准UL8750--灯具用LED的评估草案。以此为依据,UL将对使用LED作为光源的灯具进行LED安全方面的评估。UL强调UL8750是一个与其它标准并列的标准(并不隶属于哪一个具体的灯具标准),在评定产品时,除了用该标准评估LED的安全性外,整个灯具产品仍然以现有的灯具标准为评定依据。例如:固定式灯具,如果使用LED作为光源,就要使用UL8750来评估LED光源本身,除此之外,还要使用UL1598来评估整个灯具的安全性能。同样地,对于使用LED作为光源的可移式灯具,也要使用UL8750和UL153进行产品安全性的评估。   标准技术专家组(STP):   2007年第一季度,UL将形成由生产者、测试认证机构、建筑监理员、政府官员、消费者、商业/工业用户等等组成的标准技术专门小组(就是我们熟悉的STP-StandardTechnicalPanel),该小组以上述草案为基础,将起草并发布一个合适的LED美国国家标准(ANSI标准),用来评定销往北美的LED灯具产品。
  • 美国食品和药物管理局(FDA)增设奶粉安全标准
    美国食品和药物管理局(FDA)28日为婴儿奶粉中三聚氰胺含量设定标准:如果奶粉中不同时含有三聚氰胺及其衍生物三聚氰酸且任一者含量不超过百万分之一,则为安全产品。   FDA官员称,按照这一新标准,几天前被这一机构检测出含“极微量”三聚氰胺的两款美产奶粉“没有安全问题”。   ■设定标准   FDA下属食品安全与应用营养学中心主任森德洛夫28日在新闻发布会上公布上述标准。他说,如果婴儿奶粉中只含三聚氰胺或三聚氰酸,且含量在百万分之一以下,不会给人体带来任何健康风险。因而,“美国国产婴儿奶粉是安全的”。   FDA25日公布的检测结果显示,美赞臣Enfamil LIPIL补铁婴儿奶粉样本含微量三聚氰胺,雀巢Good Start强化补铁婴儿奶粉样本含微量三聚氰酸,两者含量均远低于百万分之一。   ■转变态度   按照FDA一个多月前的说法,对婴儿而言,任何含量的三聚氰胺都无安全可言。   FDA10月3日在其网站上发表声明,表明当局对含三聚氰胺奶粉的“零容忍”态度。   声明说,研究人员无法为婴儿食品制定出三聚氰胺及其衍生物含量的安全范围,因为尚不能确定这些化学物质对婴儿的长期影响。而就在两款知名美产奶粉被检测出含微量三聚氰胺短短几天后,FDA迅速转变态度,划定三聚氰胺含量的“安全线”。   森德洛夫强调,美赞臣和雀巢的两款奶粉均只单独含三聚氰胺或三聚氰酸。这两种化学物质是否同时存在,对奶粉安全标准的制定至关重要。   他说,动物实验表明,单独摄入大量三聚氰胺对老鼠没有造成损害。而三聚氰胺和三聚氰酸混合后会形成黄色结晶,可能有损肾脏。但当局针对两者混合作用的研究尚未完成。   ■不做猜测   森德洛夫说,一些食品包装,如罐头内壁涂料等,含有三聚氰胺;而三聚氰酸则可用于清洗生产设备。当局尚不清楚为什么一些奶粉样品中检测出化学物质,而另一些则没有。   消费者团体显然并不满意FDA28日做出的种种解释。美国消费者权益组织“环境工作组”高级分析师伦德尔说:“FDA和这些奶粉生产商欠婴儿父母们一个承诺,即尽快设立限制、防止婴儿奶粉中出现这些本可避免的污染,同时提供数据证明微量三聚氰胺无害。”
  • 检测方法不一 鉴定行业亟需建立强制标准
    提高鉴定机构准入标准  据华东理工大学宝石检测中心有关工作人员透露,自去年9月至今,已经遇到近20起因对“天价”鉴定机构出具的报告不信任而前来申请鉴定的情况。这类鉴定机构的鉴定报告制作得相当精美,但缺乏国内权威机构一般都有的计量认证资质。  而且,市场上这类鉴定机构五花八门,收费标准不尽相同,从几千到数万不等。这类机构往往声称珠宝里面有不同的元素,只有检测出来这些元素,才能证明是真的珠宝。而按照检测的元素收费,一种元素至少收几千元,检测多种元素,最高的总价可以高达10余万。  为何没有资质又漫天要价的“天价”鉴定机构层出不穷?  “在代理陈先生的案子中,我们了解到,诸如文物、珠宝鉴定公司的成立门槛非常低,不需要什么资质,审批手续也很简单,而且对这类机构目前的监管也较为宽松。要整治珠宝鉴定行业的乱象,首先应加强对鉴定公司设立资质的审查和监管,提高鉴定机构的准入门槛,建立规范的市场准入机制。”原告陈先生的代理律师、上海市百良律师事务所胡嘉沁建议道。  建立鉴定行业强制标准  外高桥法庭副庭长、此案主审法官陆罡表示,虽然此案的双方当事人最终在法庭主持下达成调解协议,由被告赔偿原告两次鉴定费及交通损失,并且当场执行完毕,但该案件反映出的珠宝检测行业所存在的问题值得关注。特别是珠宝鉴定行业监管混乱,缺乏统一标准,给案件处理带来一定的困难,具体体现在四个方面:  首先,不同检测机构检测方法不一。华东理工大学检测中心和国家金银制品质量监督检验中心通过检验折射率等特征,得出该宝石是海蓝宝石的结论,而文物研究院通过测试对比宝石元素含量,作出该宝石非天然海蓝宝石的结论。  其次,不同检测机构的检测项目不同。就采用折射率的方法而言,同样是具有“CMA”认证资质的两家机构的检测项目也不尽相同。两份检测报告除常规的报告编号、样本名称、重量等常规定性检测外,其他项目的检测,如光性特征、相对密度等的有关结果均有所不同。  再次,不同检测机构结论表述不同。文物研究院的检测报告结论表述为“非天然海蓝宝石”,但另两个机构的鉴定结果为“海蓝宝石”。对此,天然海蓝宝石与海蓝宝石是否为同一概念,非专业人士难以作出判断,尤其现今宝石优化技术运用普遍,天然与非天然的界线因人工因素变得更为模糊。  最后,不同检测机构收费差距甚大。鉴于检测方法与项目不同,该行业又缺乏统一的收费标准,针对同样的样品,检测费用会相差15倍之多。  一个令人担忧的现象是,目前珠宝鉴定行业普遍适用的只有较为宽松的GB类国家标准,而这一标准并非强制性标准,对鉴定机构没有约束效力。  对此,陆罡建议,应尽快完善黄金珠宝行业相关标准规范,特别是对鉴定行业的收费、项目名称、技术手段等项目应设立全国统一的行业鉴定标准,最大限度地保障检测结果的客观公正。
  • 《2019全国标准化工作要点》:激发市场自主制定标准的活力
    p   日前,国家标准化管理委员会印发《2019年全国标准化工作要点》的通知。通知中明确提出,要充分激发市场自主制定标准的活力。 /p p   具体来说: /p p   要加强团体标准、企业标准监督管理的顶层设计和具体实施,各地区、各部门根据地方、行业实际情况,制定有针对性的措施,积极采用“双随机、一公开”方式,开展团体标准、企业标准的事中事后监管,加大对违法违规团体标准、企业标准的查处力度。 /p p   持续拖动实施团体标准、企业标准自我声明公开和监督制度,激励市场主体提升标准质量和水平,引领产品和服务质量提升。 /p p   实施团体标准培优计划,推进团体标准良好行为评价,深入推进团体标准试点,加强对试点的指导和协调,加快形成可推广、可复制的经验模式,培育优秀团体标准制定者。 /p p   确定并公布2019年度企业标准“领跑者”重点领域,鼓励更多的权威技术机构进行企业标准水平评估,发布企业标准排行榜,推出2019年度企业标准“领跑者”。推进企业标准化良好行为评价和第三方评估。 /p p br/ /p
  • 俄将执行新小麦面筋数量和质量判定标准
    原标题:俄罗斯将执行新的小麦面筋数量和质量判定标准   近年来,俄罗斯出口小麦数量大幅增加,出口势头良好,按照进口国的检验要求,开始越来越多的应用国际标准来评价面筋的含量及指标。为此,从2013年1月1日起,俄罗斯将对小麦面筋数量和质量判定标准执行新的国家标准(ГОСТ Р 54478-2011),而在此之前执行的标准(ГОСТ 13586.1-68)将停止使用。   新标准提供了两种方法确定面筋:手工和机械化。在标准中执行的计量方法符合国际要求和强制性标准要求,两种方法取得的最终结果相一致。新标准规定了食用水的硬度要求为2.7 mmol/.dm3,此方法只需10分钟,对受检样品进行离心分离后,确定面筋指数,显示出它的松紧弹性性能,这与原有的评价小麦面筋质量参数方法不同。
  • 81项食品安全国家标准详解(理化检测、微生物检验、辐照食品鉴定)
    1月9日傍晚,卫计委发布了127项食品安全国家标准。涉及到多个类别,食品580将各个标准的替代情况及主要变化分为两部分。此部分为理化检测、微生物检验、辐照食品鉴定类,共涉及81项标准。  微生物检验  食品微生物学检验标准共发布15项。  GB 4789.1-2016 食品安全国家标准 食品微生物学检验 总则  实施日期:2017-6-23  替代情况:代替GB4789.1-2010《食品微生物学检验 总则》  主要变化:  增加了附录A,微生物实验室常规检验用品和设备 —修改了实验室基本要求  修改了样品的采集  修改了检验  修改了检验后样品的处理  删除了规范性引用文件  GB 4789.2-2016 食品安全国家标准 食品微生物学检验 菌落总数测定  实施日期:2017-6-23  替代情况:代替GB4789.2-2010《食品微生物学检验 菌落总数测定》  GB 4789.3-2016 食品安全国家标准 食品微生物学检验 大肠菌群计数  实施日期:2017-6-23  替代情况:代替GB4789.3-2010《食品微生物学检验 大肠菌群计数》、GBT4789.32-2002《食品卫生微生物学检验 大肠菌群的快速检测》和SNT0169-2010《进出口食品中大肠菌群、粪大肠菌群和大肠杆菌检测方法》大肠菌群计数部分。  主要变化:  增加了检验原理  修改了适用范围  修改了典型菌落的形态描述  修改了第二法平板菌落数的选择  修改了第二法证实试验  修改了第二法平板计数的报告  GB 4789.4-2016 食品安全国家标准 食品微生物学检验 沙门氏菌检验  实施日期:2017-6-23  替代情况:代替GB4789.4-2010《食品微生物学检验 沙门氏菌检验》、SN0170-1992《出口食品沙门氏菌属(包括亚利桑那菌)检验方法》、SNT2552.5-2010《乳及乳制品卫生微生物学检验方法 第5部分:沙门氏菌检验》。  主要变化:  修改了检测流程和血清学检测操作程序  修改了附录A 和附录B  GB 4789.6-2016 食品安全国家标准 食品微生物学检验 致泻大肠埃希氏菌检验  实施日期:2017-6-23  替代情况:代替GBT4789.6-2003《食品卫生微生物学检验 致泻大肠埃希氏菌检验》  主要变化:  增加了术语和定义、缩略语  增加了血清学试验中H 抗原鉴定  增加了PCR确认试验  增加了附录A  修改了设备和材料  修改了培养基和试剂  修改了检验程序  修改了血清学试验中致泻大肠埃希氏菌所包括的O 抗原群  删除了肠毒素试验  GB 4789.10-2016 食品安全国家标准 食品微生物学检验 金黄色葡萄球菌检验  实施日期:2017-6-23  替代情况:代替GB4789.10-2010《食品微生物学检验 金黄色葡萄球菌检验》、SNT0172-2010《进出口食品中金黄色葡萄球菌检验方法》、SNT2154-2008《进出口食品中凝固酶阳性葡萄球菌检测方法 兔血浆纤维蛋白原琼脂培养基技术》  主要变化:  试验用增菌液统一为7.5%氯化钠肉汤  GB 4789.12-2016 食品安全国家标准 食品微生物学检验 肉毒梭菌及肉毒毒素检验  实施日期:2017-6-23  替代情况:代替GBT4789.12-2003《食品卫生微生物学检验 肉毒梭菌及肉毒毒素检验》  主要变化:  增加了PCR鉴定方法  增加了结果与报告  增加了附录A  修改了设备和材料  修改了培养基和试剂  修改了检验程序  规范了样品制备过程  修改了操作步骤中增菌和分离培养部分试验方法  GB 4789.16-2016 食品安全国家标准 食品微生物学检验 常见产毒霉菌的形态学鉴定  实施日期:2017-6-23  替代情况:代替GBT4789.16-2003《食品卫生微生物学检验 常见产毒霉菌的鉴定》  主要变化:  增加了检验程序  增加了黑曲霉、炭黑曲霉、棒曲霉、红曲霉等产毒菌种  修改了标准名称  修改了设备和材料  修改了培养基和试剂  修改了各菌种形态描述  修改了附录A  删除了黄绿青霉、岛青霉、皱褶青霉、产紫青霉、红青霉等菌种  删除检索表原附录B、附录C、附录D  GB 4789.30-2016 食品安全国家标准 食品微生物学检验 单核细胞增生李斯特氏菌检验  实施日期:2017-6-23  替代情况:代替GB4789.30-2010《食品微生物学检验 单核细胞增生李斯特氏菌检验》。  主要变化:  增加了“第二法 单核细胞增生李斯特氏菌平板计数法”  增加了“第三法 单核细胞增生李斯特氏菌MPN 计数法”  修改了范围  GB 4789.34-2016 食品安全国家标准 食品微生物学检验 双歧杆菌检验  实施日期:2017-6-23  替代情况:代替GB4789.34-2012《食品微生物学检验 双歧杆菌的鉴定》  主要变化:  增加了双歧杆菌的计数方法  增加了MRS培养基  修改了标准的适用范围  修改了附录B为可选项  GB 4789.35-2016 食品安全国家标准 食品微生物学检验 乳酸菌检验  实施日期:2017-6-23  替代情况:代替GB4789.35-2010《食品微生物学检验 乳酸菌检验》、SNT1941.1-2007《进出口食品中乳酸菌检验方法 第1部分:分离与计数方法》  主要变化:  增加了乳酸菌总数计数培养条件的选择及结果说明  修改了改良MRS培养基成分  修改了平板计数的接种方法和接种量  GB 4789.36-2016 食品安全国家标准 食品微生物学检验 大肠埃希氏菌O157H7NM检验  实施日期:2017-6-23  替代情况:代替GBT4789.36-2008《食品卫生微生物学检验大肠埃希氏菌O157:H7/NM 检验》  主要变化:  修改了标准的范围  修改了设备和材料  修改了培养基和生化反应的文字描述  删除“第二法免疫磁珠捕获法的原理”  删除“第三法全自动酶联荧光免疫分析仪筛选法”  删除“第四法全自动病原菌检测系统筛选法”  GB 4789.40-2016 食品安全国家标准 食品微生物学检验 克罗诺杆菌属(阪崎肠杆菌)检验  实施日期:2017-6-23  替代情况:代替GB4789.40-2010《食品微生物学检验 阪崎肠杆菌检验》、SNT1632.1-2013《出口奶粉中阪崎肠杆菌(克罗诺杆菌属)检验方法 第1部分:分离与计数》。  主要变化:  修改了可疑菌落的挑取数量  GB 4789.42-2016 食品安全国家标准 食品微生物学检验 诺如病毒检验  实施日期:2017-6-23  替代情况:代替SNT1635-2005《贝类中诺沃克病毒检测方法 普通RT-PCR方法和实时荧光RTPCR方法》。  主要变化:  标准检测范围从“贝类”扩增为“食品”  修改“操作步骤”  增加“质量控制要求”,可参见附录C  删除“普通RT-PCR方法”  GB 4789.43-2016 食品安全国家标准 食品微生物学检验 微生物源酶制剂抗菌活性的测定  实施日期:2017-6-23  新发布  食品通用理化检测  此次共发布52项食品通用理化检测标准。   GB 5009.5-2016 食品安全国家标准 食品中蛋白质的测定  实施日期:2017-6-23  替代情况:代替 GB5009. 5-2010《食品安全国家标准 食品中蛋白质的测定》、GBT14489.2-2008《粮油检验植物油料粗蛋白质的测定》、GBT15673-2009 《食用菌中粗蛋白含量的测定》、GBT5511-2008《谷物和豆类 氮含量测定和粗蛋白质含量计算 凯氏法》、GBT9695.11-2008《肉与肉制品 氮含量测定》和 GBT9823-2008《粮油检验 植物油料饼粕总含氮量的测定》  主要变化:  增加附录 A 蛋白质折算系数。  GB 5009.6-2016 食品安全国家标准 食品中脂肪的测定  实施日期:2017-6-23  替代情况:代替 GBT5009. 6-2003《食品中脂肪的测定》、GBT9695. 1-2008 《肉与肉制品 游离脂肪含量测定》、GB5413.3 -2010《食品安全国家标准 婴幼儿食品和乳品中脂肪的测定》、GBT9695.7-2008《肉与肉制品 总脂肪含量测定》、GBT14772-2008《食品中粗脂肪的测定》、GBT5512-2008《粮油检验 粮食中粗脂肪含量测定》、GBT15674-2009 《食用菌中粗脂肪含量的测定》、GBT22427. 3-2008 《淀粉总脂肪测定》、GBT10359-2008《油料饼粕 含油量的测定 第1部分:己烷(或石油醚)提取法》  主要变化:  修改了肉制品、淀粉的酸水解及抽提步骤  增加了碱水解法、盖勃法  GB 5009.8-2016 食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.8-2008《食品中蔗糖的测定》、 GBT18932.22-2003 《蜂蜜中果糖、葡萄糖、蔗糖、麦芽糖含量的测定方法 液相色谱示差折光检测法》、GBT22221-2008《食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定 高效液相色谱法》  主要变化:  增加了部分样品前处理  GB 5009.9-2016 食品安全国家标准 食品中淀粉的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.9-2008 《食品中淀粉的测定》、GBT5514-2008 《粮油检验 粮食、油料中淀粉含量测定》、GBT9695.14-2008 《肉制品 淀粉含量测定》  主要变化:  增加了低含量样品测定操作  增加了试剂空白测定  修改了第一法中的计算公式  增加了第三法 肉制品中淀粉含量测定  GB 5009.22-2016 食品安全国家标准 食品中黄曲霉毒素B族和G族的测定  实施日期:2017-6-23  替代情况:代替GBT5009.22-2003《食品中黄曲霉毒素B1 的测定》、GBT5009.23-2006《食品中黄曲霉毒素B1、B2、G1、G2的测定》、GB5009.24-2010《食品安全国家标准食品中黄曲霉毒素M1和B1的测定》、GBT23212-2008《牛奶和奶粉中黄曲霉毒素B1、B2、G1、G2、M1、M2的测定 液相色谱-荧光检测法》、GBT18979-2003《食品中黄曲霉毒素的测定 免疫亲和层析净化高效液相色谱法和荧光光度法》、SN0339-1995《出口茶叶中黄曲霉毒素B1检验方法》、SNT1664-2005《牛奶和奶粉中黄曲霉毒素M1、B1、B2、G1、G2含量的测定》、SNT1101-2002《进出口油籽及粮谷中黄曲霉毒素的检验方法》、SN0637-1997《出口油籽、坚果及坚果制品中黄曲霉毒素的检验方法 液相色谱法》、SNT1736-2006《进出口蜂蜜中黄曲霉毒素的检验方法 高效液相色谱法》、NYT1286-2007《花生黄曲霉毒素B1的测定 高效液相色谱法》。  主要变化:  根据GB2761—2011的要求,增加了方法的适用范围  增加了同位素稀释液相色谱-串联质谱法为第一法  增加了高效液相色谱-柱前衍生法为第二法  增加了高效液相色谱-柱后衍生法为第三法  修改了酶联免疫法,并将方法名称更改为酶联免疫吸附筛查法  增加了免疫亲和柱以及酶联免疫试剂盒质量判定要求与方法  修改了测定组分为黄曲霉毒素B族和G族化合物  GB 5009.24-2016 食品安全国家标准 食品中黄曲霉毒素M族的测定  实施日期:2017-6-23  替代情况:代替 GB5413.37-2010《食品安全国家标准 乳和乳制品中黄曲霉毒素M1的测定》、GB5009.24-2010《食品安全国家标准食品中黄曲霉毒素M1和B1的测定》、 GBT23212-2008《牛奶和奶粉中黄曲霉毒素B1、B2、G1、G2、M1、M2的测定高效液相色谱法-荧光检测法》和 SNT1664-2005《牛奶和奶粉中黄曲霉毒素 M1、B1、B2、 G1、G2含量的测定》  主要变化:  增加了方法适用范围   增加了对黄曲霉毒素 M 2 的检测   修改了酶联免疫法,并修改第三法名称为酶联免疫吸附筛查法   修改了液相色谱 - 质谱联用法   修改了液相色谱法的前处理方法   删除了免疫层析净化荧光分光度法。  GB 5009.25-2016 食品安全国家标准 食品中杂色曲霉素的测定  实施日期:2017-6-23  替代情况:代替 GBT5009. 25-2003 《植物性食品中杂色曲霉素的测定》和SNT2483-2010《进出口粮谷中柄曲霉素含量检测方法 液相色谱法》  主要变化:  增加了液相色谱 - 串联质谱法  增加了液相色谱法  GB 5009.26-2016 食品安全国家标准 食品中N-亚硝胺类化合物的测定  实施日期:2017-6-23  替代情况:代替GBT5009.26-2003 《食品中N-亚硝胺类的测定》  主要变化:  将原方法中的填充色谱柱修改为毛细管色谱柱  将原方法中的气相色谱高分辨质谱仪修改为气相色谱质谱仪  GB 5009.27-2016 食品安全国家标准 食品中苯并(a)芘的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.27-2003 《食品中苯并(a)芘的测定》、GBT22509-2008 《动植物油脂苯并(a )芘的测定 反相高效液相色谱法》、SCT3041-2008《水产品中苯并( a )芘的测定 高效液相色谱法》和 NYT1666-2008 《肉制品中苯并( a )芘的测定 高效液相色谱法》  主要变化:  修改了方法的适用范围  修改了样品前处理方法  删除了荧光分光光度法与目测比色法  GB 5009.28-2016 食品安全国家标准 食品中苯甲酸、山梨酸和糖精钠的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.29-2003《食品中山梨酸、苯甲酸的测定》和 GBT5009.28-2003《食品中糖精钠的测定》、GBT23495-2009 《食品中苯甲酸、山梨酸和糖精钠的测定 高效液相色谱法》、GB21703-2010《食品安全国家标准 乳和乳制品中苯甲酸和山梨酸的测定》、SNT2012-2007《进出口食醋中苯甲酸、山梨酸的检测方法 液相色谱法》、SBT10389-2004《肉与肉制品中山梨酸的测定》  主要变化:  增加了“多点校正”方法制作标准曲线  修改了样品前处理方法  删除了气相色谱法中填充柱色谱柱分离的内容  增加了气相色谱法中毛细管色谱柱分离的内容  GB 5009.32-2016 食品安全国家标准 食品中9种抗氧化剂的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.32-2003 《油脂中没食子酸丙酯(PG)的测定》和 GBT23373-2009 《食品中抗氧化剂丁基羟基茴香醚(BHA)、二丁基羟基甲苯(BHT)与叔丁基对苯二酚( TBHQ)的测定》  主要变化:  增加了抗氧化剂的种类  增加了方法的适用范围  增加了液相色谱法、气相色谱法、液相色谱串联质谱法和气相色谱质谱联用法  GB 5009.33-2016 食品安全国家标准 食品中亚硝酸盐与硝酸盐的测定  实施日期:2017-6-23  替代情况:代 替 GB5009.33-2010 《食品中亚硝酸盐与硝酸盐的测定》、NYT1375-2007《植物产品中亚硝酸盐与硝酸盐的测定 离子色谱法》、NYT1279-2007 《蔬菜、水果中硝酸盐的测定 紫外分光光度法》、 SNT3151-2012 《出口食品中亚硝酸盐和硝酸盐的测定 离子色谱法》  主要变化:  合并原第二法、第三法为第二法  增加了蔬菜、水果中硝酸盐的测定的紫外分光光度法  GB 5009.36-2016 食品安全国家标准 食品中氰化物的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.36-2003 《粮食卫生标准的分析方法》的 4.4 氰化物、 GB/T5009.48-2003《蒸馏酒与配制酒卫生标准的分析方法》的 4.7 氰化物和 GBT8538-2008《饮用天然矿泉水检验方法》的4.45氰化物  GB 5009.82-2016 食品安全国家标准 食品中维生素A、D、E的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.82-2003《食品中维生素A和维生素E的测定》、GB5413.9-2010 《婴幼儿食品和乳品中维生素 A、D、E的测定》、GBT9695.26-2008 《肉与肉制品 维生素A 含量测定》、GBT9695.30-2008 《肉与肉制品 维生素E含量测定》、NYT1598-2008 《食用植物油中维生素E组分和含量的测定 高效液相色谱法》  主要变化:  增加了“食品中维生素 E 的测定 正相高效液相色谱法”  增加了“食品中维生素 D 的测定 液相色谱 - 串联质谱法”  增加了“食品中维生素 D 的测定 高效液相色谱法”  修改了“食品中维生素 A 和维生素 E 的测定 反相高效液相色谱法”  修改了维生素 E 异构体的反相色谱分离条件,可同时分离测定 4 种生育酚异构体  删除了苯并芘内标定量法,改用外标法定量  删除了“比色法”测定维生素 A  GB 5009.83-2016 食品安全国家标准 食品中胡萝卜素的测定  实施日期:2017-6-23  替代情况:代替 GB5413.35-2010《婴幼儿食品和乳品中β -胡萝卜素的测定》、GBT5009.83-2003 《食品中胡萝卜素的测定》和 NYT82.15-1988 《果汁测定方法β -胡萝卜素的测定》  主要变化:  增加了普通食品的前处理方法  增加了需要区分 α - 胡萝卜素、β - 胡萝卜素的色谱条件  修改了胡萝卜素的结果表达  GB 5009.85-2016 食品安全国家标准 食品中维生素B2的测定  实施日期:2017-6-23  替代情况:代替GBT5009.85-2003 《食品中核黄素的测定》、GBT9695.28-2008 《肉与肉制品维生素B2 含量测定》、GBT7629-2008 《谷物中维生素 B2 测定》和 GB5413.12-2010 《婴幼儿食品和乳品中维生素B2的测定》  主要变化:  增加了高效液相色谱法  删除了微生物法  GB 5009.87-2016 食品安全国家标准 食品中磷的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.87-2003 《食品中磷的测定》、GB5413.22-2010 《食品安全国家标准 婴幼儿食品和乳品中磷的测定》、GBT22427.11-2008 《淀粉及其衍生物磷总含量测定》、GBT9695. 4 -2009 《肉与肉制品 总磷含量测定》、GBT18932.11-2002 《蜂蜜中钾、磷、铁、钙、锌、铝、钠、镁、硼、锰、铜、钡、钛、钒、镍、钴、铬含量的测定方法电感耦合等离子体原子发射光谱(ICP-AES )法》、GBT23375-2009 《蔬菜及其制品中铜、铁、锌、钙、镁、磷的测定》、NYT1018-2006 《蔬菜及其制品中磷的测定》、NYT1738-2009 《农作物及其产品中磷含量的测定 分光光度法》、SNT0446-1995《出口乳制品中磷的检验方法》、SNT0801.2-2011《进出口动植物油脂 第 2 部分:含磷量检测方法》中磷的测定方法。  主要变化:  删除重量法  GB 5009.89-2016 食品安全国家标准 食品中烟酸和烟酰胺的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.89-2003 《食品中烟酸的测定》、 GB5413.15-2010 《婴幼儿食品和乳品种烟酸和烟酰胺的测定》和GBT9695.25-2008 《肉与肉制品 维生素PP含量测定》  主要变化:  调整了试剂顺序和格式  修改并细化了适用于不同食品种类的前处理方法(第一法)  增加了标准溶液浓度校正方法(第二法)  重新评估了检出限,增加了定量限  GB 5009.90-2016 食品安全国家标准 食品中铁的测定  实施日期:2017-6-23  替代情况:代替 GB5413.21-2010 《食品安全国家标准 婴幼儿食品和乳品中钙、铁、锌、钠、钾、镁、铜和锰的测定》、GBT23375-2009 《蔬菜及其制品中铜、铁、锌、钙、镁、磷的测定》、GBT5009.90-2003《食品中铁、镁、锰的测定》、GBT14609-2008 《粮油检测 谷物及其制品中铜、铁、锰、锌、钙、镁的测定火焰原子吸收光谱法》、GBT18932.12-2002 《蜂蜜中钾、钠、钙、镁、锌、铁、铜、锰、铬、铅、镉含量的测定方法 原子吸收光谱法》、GBT9695.3-2009 《肉与肉制品 铁含量测定》、NYT1201-2006 《蔬菜及其制品中铜、铁、锌的测定》中铁含量测定方法  主要变化:  增加了微波消解、压力罐消解和干法消解  增加了电感耦合等离子体发射光谱法  增加了电感耦合等离子体质谱法  删除分光光度法  GB 5009.92-2016 食品安全国家标准 食品中钙的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.92-2003 《食品中钙的测定》、GB5413.21-2010 《食品安全国家标准 婴幼儿食品和乳品中钙、铁、锌、钠、钾、镁、铜和锰的测定》、GBT23375-2009 《蔬菜及其制品中铜、铁、锌、钙、镁、磷的测定》、GBT14609-2008 《粮油检验 谷物及其制品中铜、铁、锰、锌、钙、镁的测定 火焰原子吸收光谱法》、GBT14610- 2008 《粮油检验谷物及制品中钙的测定》、GBT9695.13-2009 《肉与肉制品 钙含量测定》和 NY82.19-1988 《果汁测定方法 钙和镁的测定》中钙的测定方法  主要变化:  增加了微波消解、压力罐消解  修改了火焰原子吸收光谱法和 EDTA 滴定法  增加了电感耦合等离子体发射光谱法  增加了电感耦合等离子体质谱法  GB 5009.96-2016 食品安全国家标准 食品中赭曲霉毒素A的测定  实施日期:2017-6-23  替代情况:代替 GBT23502-2009 《食品中赭曲霉毒素A的测定 免疫亲和层析净化高效液相色谱法》、GBT25220-2010 《粮油检验 粮食中赭曲霉毒素A的测定 高效液相色谱法和荧光光度法》、GBT5009.96-2003 《谷物和大豆中赭曲霉毒素A的测定》、SNT1746-2006 《进出口大豆、油菜籽和食用植物油中赭曲霉毒素A的检验方法》、SNT1940-2007 《进出口食品中赭曲霉毒素A的测定方法》和 SN0211-1993 《出口粮谷中棕曲霉毒素A的检验方法》  主要变化:  增加了第三法免疫亲和层析净化液相色谱 - 串联质谱法和第四法酶联免疫吸附测定法  增加了适用范围并优化了提取方法  删除了免疫亲和柱层析净化荧光光度法  GB 5009.111-2016 食品安全国家标准 食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定  实施日期:2017-6-23  替代情况:代替GB/T5009.111-2003《谷物及其制品中脱氧雪腐镰刀菌烯醇的测定》、GB/T23503-2009《食品中脱氧雪腐镰刀菌烯醇的测定 免疫亲和层析净化高效液相色谱法》、SN/T1571-2005《进出口粮谷中呕吐毒素检验方法 液相色谱法》。  主要变化:  增加了方法的适用范围  增加了食品中脱氧雪腐镰刀菌烯醇乙酰化衍生物的测定  增加了同位素稀释液相色谱-串联质谱法
  • 生态环境部发布两项ODS测定标准 采用气质联用仪
    p   生态环境部发布两项测定消耗臭氧层物质(简称“ODS”)的测定标准,采用的仪器分别为气质联用仪和便携式气质。两项标准于2019年10月31日开始实施。 /p p   一、 img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201911/attachment/56864efc-9456-4dc3-9144-dc4ad66b88ed.pdf" title=" 组合聚醚中 HCFC-22、CFC-11 和 HCFC-141b 等消 耗臭氧层物质的测定 顶空 气相色谱-质谱法(HJ 1057-2019).pdf" style=" font-size: 12px color: rgb(0, 102, 204) " 组合聚醚中 HCFC-22、CFC-11 和 HCFC-141b 等消 耗臭氧层物质的测定 顶空/气相色谱-质谱法(HJ 1057-2019).pdf /a /p p   本标准规定了测定组合聚醚中二氟一氯甲烷(HCFC-22)、一氟三氯甲烷(CFC-11)和一氟二氯乙烷(HCFC-141b)等消耗臭氧层物质的顶空/气相色谱-质谱法。 /p p   本标准适用于组合聚醚中HCFC-22、CFC-11和HCFC-141b等消耗臭氧层物质的测定。 /p p   当取样量为1g时,本标准测定HCFC-22、CFC-11和HCFC-141b的方法检出限均为0.2μg/g,测定下限均为0.8μg/g。 /p p   二、 img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201911/attachment/5896492a-1332-4e04-a522-afffcf63c3c6.pdf" title=" 硬质聚氨酯泡沫和组合聚醚中 CFC-12、HCFC-22 CFC-11 和 HCFC-141b 等消耗臭氧层物质的测定 便携式顶空 气相色谱-质谱法(HJ 1058-2019).pdf" style=" font-size: 12px color: rgb(0, 102, 204) " 硬质聚氨酯泡沫和组合聚醚中 CFC-12、HCFC-22 CFC-11 和 HCFC-141b 等消耗臭氧层物质的测定 便携式顶空/气相色谱-质谱法(HJ 1058-2019).pdf /a /p p   本标准规定了测定硬质聚氨酯泡沫和组合聚醚中二氟二氯甲烷(CFC-12)、二氟一氯甲烷(HCFC-22)、一氟三氯甲烷(CFC-11)和一氟二氯乙烷(HCFC-141b)等消耗臭氧层物质的便携式顶空/气相色谱-质谱法。 /p p   本标准适用于硬质聚氨酯泡沫和组合聚醚中CFC-12、HCFC-22、CFC-11和HCFC-141b的定性检测。 /p p   当以硬质聚氨酯泡沫为检测对象时,在本标准规定的条件下,CFC-12、HCFC-22、CFC-11和HCFC-141b的方法检出限分布为2μg、2μg、2μg和0.6μg。 /p p   当以组合聚醚为检测对象时,在本标准规定的条件下,CFC-12、HCFC-22、CFC-11和HCFC-141b的方法检出限分布为3μg、2μg、2μg和0.9μg。 /p
  • 环保部针对“烟气汞”测定标准征求意见
    p    strong 仪器信息网讯 /strong strong & nbsp /strong 近日,环保部发布“关于征求《水质 叶绿素a的测定 分光光度法》(征求意见稿)等七项国家环境保护标准意见的函”此次征求意见的七项国家标准主要为水质和大气标准,其中两项为 a style=" COLOR: #0070c0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/zc/1692.html" target=" _self" span style=" COLOR: #0070c0" strong 烟气汞 /strong /span /a 测定标准。 /p p   《固定污染源废气 气态汞的测定 活性炭吸附/热裂解原子吸收法(征求意见稿)为首次发布,由国家环境分析测试中心起草。 span style=" COLOR: #0070c0" 采样方式采用了活性炭吸附管 /span 。标准部分截图如下: /p p style=" TEXT-ALIGN: center" img title=" 活性炭吸附管.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/d0d90708-20ef-402f-9809-bd99bcf27450.jpg" / /p p   固定污染源废气 总汞的测定 冰浴吸收瓶采样-冷原子吸收分光光度法(征求意见稿)为首次修订,由清华大学、中国环境科学研究院、中日友好环境保护中心共同起草。此次修订主要 span style=" COLOR: #0070c0" 修改了采样方法、分析试剂和材料、数据处理方法等内容 /span 。标准部分截图如下: /p p style=" TEXT-ALIGN: center" img title=" 采样系统.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/236259fb-c1f6-4425-94e1-9f165afbf6ab.jpg" / /p p   征求意见稿全文如下: /p ol style=" LIST-STYLE-TYPE: decimal" class=" list-paddingleft-2" li p img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201510/ueattachment/426a597e-3d08-4b9d-92ea-e587b4f06246.pdf" 固定污染源废气 气态汞的测定 活性炭吸附 热裂解原子吸收法(征求意见稿).pdf /a /p /li li p style=" LINE-HEIGHT: 16px" img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201510/ueattachment/4394622d-f0b2-4c8b-9e5d-790b70c5d197.pdf" 固定污染源废气 总汞的测定 冰浴吸收瓶采样-冷原子吸收分光光度法(征求意见稿).pdf /a /p /li /ol p   另外五项征求意见的标准为水质叶绿素a、氨基甲酸酯类农药和COD以及环境空气中有机氯农药、多氯联苯农药,征求意见稿全文如下: /p p 1. img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201510/ueattachment/12bbee9d-8b91-488c-aad5-6bcfa9cc5fb7.pdf" 水质 叶绿素a的测定 分光光度法(征求意见稿).pdf /a /p p 2. img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201510/ueattachment/8b44ce0b-35e1-41f5-b189-c52610d78657.pdf" 环境空气 气相和颗粒物中 有机氯农药的测定 气相色谱-质谱法(征求意见稿).pdf /a /p p 3. img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201510/ueattachment/c7f6569e-ddf0-4010-911a-bdbef428c115.pdf" 环境空气 气相和颗粒物中 多氯联苯的测定 气相色谱-质谱法(征求意见稿).pdf /a /p p 4. img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201510/ueattachment/c71fc845-8b68-480b-86ab-ab5c64b616e2.pdf" 水质 氨基甲酸酯类农药的测定 液相色谱-质谱法(征求意见稿).pdf /a /p p 5. img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201510/ueattachment/d4c18b32-2329-4785-a516-2154ad7419b0.pdf" 水质 化学需氧量的测定 重铬酸盐法(征求意见稿).pdf /a /p p & nbsp /p
  • 玩具材料中短链氯化石蜡测定标准即将颁布
    导语遥控汽车、拼图积木… … 又到了欢乐“六一”,想好给孩子们送什么玩具礼物了吗?随着社会的发展和进步,玩具花样也越来越多。但另一方面,玩具的安全性,如化学添加物质(增塑剂、阻燃剂等)也愈发引起关注。2017年,欧盟RAPEX通报了27起中国出口的消费品短链氯化石蜡超标案例,其中有6起涉及儿童玩具产品,包括了玩具小马、玩具步枪、绳子、沐浴玩具、塑料娃娃等。为适应国内外市场的要求,2019年,由上海海关机电产品检测技术中心牵头,着手开展制定《玩具材料中短链氯化石蜡含量的测定 气相色谱-质谱联用法》的国家标准。期间,岛津分析中心积极协助上海海关专家,参与了标准品和玩具材料实际样品的验证工作,并就技术问题与制标单位专家进行协商和沟通,推动项目的进展,目前该标准已通过报批程序,即将颁布并实施(标准号:GB/T 41524-2022),一起来看看吧! 氯化石蜡——年产量超过百万吨的化学品短链氯化石蜡(SCCPs,碳原子数10-13个)是一类人工合成的直链正构烷烃氯代衍生物。SCCPs主要用作金属加工润滑剂、增塑剂、涂料、皮革加脂剂以及阻燃剂等。SCCPs具有持久性、生物富集性以及潜在生物毒性,被IARC归为2B类致癌物。2007年,欧盟REACH将SCCPs列入第一批高关注物质清单;EU 2015/2030规定物品中的短链氯化石蜡含量不得等于或大于0.15%,否则不能投放市场。2017年4月,SCCPs被正式列入关于持久性有机污染的《斯德哥尔摩公约》受控名单(附录A)中。 表1. 关于SCCPs的管控情况中国是世界第一大氯化石蜡生产国,2013年的年产量超过100万吨,年产能超过160万吨。同时,我国也是世界玩具生产大国和出口大国,每年全球约75%的玩具来自中国,氯化石蜡常作为增塑剂和阻燃剂添加至玩具中,玩具材料中短链氯化石蜡的过量使用不仅会成为影响我国玩具出口的重大隐患,也会影响了我国玩具制造业的国际形象。图1. 氯化石蜡全球产量与使用量[1] 短链氯化石蜡——分析化学的前沿热点之一氯化石蜡及短链氯化石蜡的检测一直是环境、消费品等分析化学的难点之一。下图是市售某氯含量的短链氯化石蜡标准品谱图,由于同族分子种类众多,在仪器谱图上呈现簇峰,且保留时间跨度范围大,易与其它污染物干扰。因此,氯化石蜡及短链氯化石蜡的分析需要综合考虑前处理分离、仪器的分离度、分辨率、灵敏度等因素。迄今,尚无关于其检测的统一/黄金方法标准。 图2. 典型氯化石蜡的工业标准品谱图 相对而言,气相色谱-负化学电离质谱联用法(NCI-GCMS)目前是分析短链氯化石蜡常用的方法之一。 表2. NCI-GCMS的分析SCCPs的特点需要特别指出一点,NCI-GCMS的响应随氯原子数增大而增大,这会导致样品与标准品若氯含量有明显差异,则得到的定量结果不准确[2]。因此若使用NCI-GCMS,目前主流的方法是使用氯含量-响应因子做校准曲线[3]。图3. NCI模式下,相同浓度下不同氯含量的响应对比,由下到上依次为50ppm,氯含量51.5%、53.5%、55.5%、56.25%、57.75%、59.25%和63%的总离子流图。 岛津应对利器使用NCI-GCMS法,岛津分析中心协助上海海关机电中心对开展标准制订工作用的标准品和玩具样品进行方法学验证。图4. GCMS-QP2020 NX及方法参数信息 l 方法学结果节选——质量色谱图图5. 氯含量55.5%的SCCPs工业标准品单体质量色谱图(以CnCl7为例) l 某玩具材料样品的实例谱图图6. 某玩具材料样品的TIC谱图(浓度约2000 mg/kg) 结语作为世界知名的仪器产商,岛津公司始终秉持“为了人类和地球健康“的经营理念,不仅提供优良性能的仪器,同时也提供丰富的理化检测解决方案,针对国内外关注的玩具中短链氯化石蜡超标问题,协助国内制标单位开展标准制定工作,让下一代玩的放心,拥有快乐的童年。 参考文献[1] Gluge J., Wang Z.J., Bogdal C et al. Global production, use, and emission volumes of short-chain chlorinated paraffins – A minimum scenario. Science of the Total Environment, 2016, 573: 1132-1146.[2] Reth M., Oehme M. Limitations of low resolution mass spectrometry in the electron capture negative ionization mode for the analysis of short- and medium-chain chlorinated paraffins. Anal Bioanal Chem, 2004, 378: 1741-1747.[3] Reth M., Zencak Z., Oehme M et al. New quantification procedure for the analysis of chlorinated paraffins using electron capture negative ionization mass spectrometry. Journal of Chromatography A, 2005, 1081:225-231. 本文内容非商业广告,仅供专业人士参考。
  • 2023年色谱标准盘点:司法鉴定和石化两大领域标准占近七成
    色谱是一种物理化学分析方法,它利用不同溶质(样品)与固定相和流动相之间的作用力(分配、吸附、离子交换等)的差别,当两相做相对移动时,各溶质在两相间进行多次平衡,使各溶质达到相互分离。该技术广泛应用于石化、食品、环境、生物医药等领域。按两相状态分类,色谱可分为气相色谱、液相色谱和超临界流体色谱。本文整理的2023年色谱标准仅包括气相色谱和液相色谱(离子色谱除外)的国家标准和行业标准,且不涉及与质谱等其他技术联用的标准。2023年离子色谱标准盘点已单独成文并发布,详见2023 年 离子色谱标准解读上:从国标看 IC 新的市场机会和2023 年 离子色谱标准解读下:从行业标准看在线离子色谱市场机会。编辑对2023年发布的色谱标准进行盘点,数据主要统计自各网站公开信息,如有遗漏、错误欢迎在留言区补充。据不完全统计,2023年发布的气相色谱和液相色谱相关标准总计74项,其中气相色谱标准40项,液相色谱标准34项,具体内容见下图。行业应用分析74项标准中除1项气相色谱柱校准规范外,主要涉及六大行业,如下图所示,主要包括司法鉴定、石化、食品、农林、生活用品和环境行业,其中司法鉴定和石化两大重点领域标准数量占近七层。(1)司法鉴定行业2023年所发布的色谱标准中,司法鉴定行业发布的标准最多,主要有30项,详细内容见下表。《国家标准化发展纲要》实施以来,公安部不断强化公共安全行业标准的研制、供给和实施。这些标准主要由全国刑标委归口,涉及毒物毒品、微量物证、痕迹等专业领域,是刑标委支撑实战、服务诉讼,不断优化标准体系、持续加强标准供给的集中体现。这些标准的发布,为刑法、刑事诉讼法、禁毒法、治安管理处罚法的实施提供了全方位的技术支持,成为侦查、诉讼、审判过程的科学依据和操作守则。30项标准中涉及气相色谱有14项,液相色谱有16项。司法鉴定行业主要使用的仪器是色谱仪和质谱仪,定量分析只使用色谱仪,而定性分析要色谱仪和质谱仪混用。序号标准类别标准名称发布日期1行业标准GA/T 819-2023法庭科学 纤维上染料检验 薄层色谱和液相色谱法2023/3/12行业标准GA/T 2030-2023法庭科学 疑似毒品中杜冷丁检验气相色谱和气相色谱-质谱法2023/3/13行业标准GA/T 2038-2023法庭科学 疑似毒品中曲马多检验 气相色谱和气相色谱-质谱法2023/3/14行业标准GA/T 2043-2023法庭科学 疑似止咳水中可待因检验 气相色谱和气相色谱-质谱法2023/3/15行业标准GA/T 2035-2023法庭科学 疑似毒品中咖啡因检验液相色谱和液相色谱-质谱法2023/3/16行业标准GA/T 2026-2023法庭科学 疑似毒品中苯环利定检验气相色谱和气相色谱-质谱法2023/3/17行业标准GA/T 2031-2023法庭科学 疑似毒品中杜冷丁检验液相色谱和液相色谱-质谱法2023/3/18行业标准GA/T 2036-2023法庭科学 疑似毒品中尼美西泮检验气相色谱和气相色谱-质谱法2023/3/19行业标准GA/T 2040-2023法庭科学 疑似毒品中异丙嗪检验 液相色谱和液相色谱-质谱法2023/3/110行业标准GA/T 2044-2023法庭科学 疑似止咳水中可待因检验 液相色谱和液相色谱-质谱法2023/3/111行业标准GA/T 2039-2023法庭科学 疑似毒品中曲马多检验 液相色谱和液相色谱-质谱法2023/3/112行业标准GA/T 2028-2023法庭科学 疑似毒品中丁丙诺啡检验气相色谱和气相色谱-质谱法2023/3/113行业标准GA/T 2027-2023法庭科学 疑似毒品中苯环利定检验液相色谱和液相色谱-质谱法2023/3/114行业标准GA/T 2037-2023法庭科学 疑似毒品中尼美西泮检验 液相色谱和液相色谱-质谱法2023/3/115行业标准GA/T 2032-2023法庭科学 疑似毒品中二氢埃托啡检验气相色谱和气相色谱-质谱法2023/3/116行业标准GA/T 2029-2023法庭科学 疑似毒品中丁丙诺啡检验液相色谱和液相色谱-质谱法2023/3/117行业标准GA/T 2051-2023法庭科学 疑似易制毒化学品中溴素检验 气相色谱和气相色谱-质谱法2023/3/118行业标准GA/T 2033-2023法庭科学 疑似毒品中二氢埃托啡检验液相色谱和液相色谱-质谱法2023/3/119行业标准GA/T 2022-2023法庭科学 疑似毒品中5F-AMB和5F-APINACA检验 气相色谱和气相色谱-质谱法2023/3/120行业标准GA/T 2024-2023法庭科学 疑似毒品中5-MeO-DiPT和5-MeO-MiPT 检验 气相色谱和气相色谱-质谱法2023/3/121行业标准GA/T 2023-2023法庭科学 疑似毒品中5F-AMB和5F-APINACA 检验液相色谱和液相色谱-质谱法2023/3/122行业标准GA/T 2025-2023法庭科学 疑似毒品中5-MeO-DiPT和5-MeO-MiPT 检验液相色谱和液相色谱-质谱法2023/3/123行业标准GA/T 2021-2023法庭科学 疑似毒品中2'-氯地西泮和4'-氯地西泮检验 气相色谱和气相色谱-质谱法2023/3/124行业标准GA/T 2045-2023法庭科学 疑似易制毒化学品中1-苯基-2-丙酮等8种物质检验 气相色谱-质谱和液相色谱法2023/3/125行业标准GA/T 2041-2023法庭科学 疑似恰特草中卡西酮、去甲伪麻黄碱和去甲麻黄碱检验气相色谱和气相色谱-质谱法2023/3/126行业标准GA/T 2042-2023法庭科学 疑似怡特草中卡西酮、去甲伪麻黄碱和去甲麻黄碱检验 液相色谱和液相色谱-质谱法2023/3/127行业标准GA/T 2020-2023法庭科学 疑似毒品中 2-氟苯丙胺等168种新精神活性物质检验 气相色谱-质谱、红外光谱和液相色谱法2023/3/128行业标准GA/T 2047-2023法庭科学 疑似易制毒化学品中苯乙腈、3-氧-2-苯基丁酰胺、3-氧-2-苯基丁酸甲酯检验 气相色谱和气相色谱-质谱法2023/3/129行业标准GA/T 2046-2023法庭科学 疑似易制毒化学品中N-苯乙基-4-哌啶酮和4-苯胺基-N-苯乙基哌啶检验 红外光谱、气相色谱-质谱和液相色谱法2023/3/130行业标准GA/T 2075.3-2023法庭科学 常见易燃液体及其残留物检验 第3部分:热脱附-气相色谱/质谱法2023/3/1(2)石化行业2023年发布的色谱标准中,石化行业占20项,其中气相色谱18项,液相色谱2项,详细内容见下表。在石化行业的分析检测中,GC是非常重要的。气相色谱技术在石化分析方面的应用主要涉及气体分析、汽油组成分析、烃类物质分析、含氧化合物分析等。其应用范围也较为广泛,由于其分离和定量能力以及高性价比,从石油勘探、石油加工、化学工业研究到生产控制和产品质量把关都有不可替代的地位。尤其值得一提的是NB/SH/T 6078-2023喷气燃料中苯系和萘系烃组成的测定全二维气相色谱法的发布。对于成分复杂的样品体系,样品基质是多样化的,一维色谱峰容量有限,会出现严重的组分共流出现象。最新理论和实验证明,全二维气相色谱在相同的分析时间和检测限的条件下,全二维的峰容量可以达到传统一维色谱的10倍;而一维色谱要获得同样的峰容量,理论上需要用到比目前长100倍的分离柱、高10倍的柱头压、和1000倍的分析时间。序号标准类别标准名称发布日期1国家标准GB/T 27894.3-2023天然气 用气相色谱法测定组成和计算相关不确定度 第3部分:精密度和偏差2023/3/172国家标准GB/T 42307-2023肥料和土壤调理剂 尿素基肥料中缩二脲含量的测定 高效液相色谱法2023/3/173国家标准GB/T 42357-2023|非水溶性染料纯度的测定 液相色谱法2023/3/174国家标准GB/T 9722-2023化学试剂 气相色谱法通则2023/8/65国家标准GB/T 23961-2023低碳脂肪胺含量的测定 气相色谱法2023/9/76国家标准GB/T 8038-2023焦化甲苯 烃类杂质含量的测定 气相色谱法2023/9/77国家标准GB/T 17530.2-2023工业丙烯酸及酯的试验方法第2部分:工业用丙烯酸酯有机杂质及纯度的测定气相色谱法2023/11/278国家标准GB/T 23986.2-2023色漆和清漆挥发性有机化合物(VOC)和/或半挥发性有机化合物(SVOC)含量的测定第2部分:气相色谱法2023/11/279国家标准GB/T 3392-2023工业用丙烯中烃类杂质的测定气相色谱法2023/11/2710国家标准GB/T 3394-2023工业用乙烯、丙烯中微量一氧化碳、 二氧化碳和乙炔的测定气相色谱法2023/11/2711国家标准GB/T 43362-2023气体分析微型热导气相色谱法2023/11/2712行业标准NB/SH/T 6069-2023石油馏分氮和烃沸程分布的测定 气相色谱法2023/2/613行业标准NB/SH/T 6070-2023石油馏分硫和烃沸程分布的测定 气相色谱法2023/2/614行业标准SH/T 1674-2023工业用环己烷纯度及烃类杂质的测定 气相色谱法2023/4/2115行业标准SH/T 1628.2-2023工业用乙酸乙烯酯 第2部分:纯度及有机杂质的测定 气相色谱法2023/4/2116行业标准HG/T 4095-2023化工用在线气相色谱仪2023/12/2017行业标准YB/T 6137-2023煤焦油 联苯、苊、芴含量的测定 气相色谱法2023/12/2018行业标准NB/SH/T 0713-2023汽油中苯和甲苯含量的测定气相色谱法2023/12/2819行业标准NB/SH/T 6078-2023喷气燃料中苯系和萘系烃组成的测定全二维气相色谱法2023/12/2820行业标准SN/T 5681-2023工业单羧脂肪酸含量的测定 气相色谱法2023/12/29(3)食品行业食品行业的7项标准中,气相色谱标准4项,液相色谱标准3项;发布单位包括海关、农业部等。序号标准类别标准名称发布日期1行业标准GH/T 1393-2022蜂蜜中阿洛酮糖含量的测定 高效液相色谱法2023/2/92行业标准GH/T 1405-2022果蔬贮藏过程中乙烯释放速率的测定 气相色谱法2023/2/93行业标准NY/T 4311-2023动物骨中多糖含量的测定液相色谱法2023/2/174行业标准JJF 2022-2023白酒分析气相色谱仪校准规范2023/3/155行业标准SN/T 5561-2023出口食品中乙嘧硫磷残留量的测定 气相色谱法2023/11/16行业标准SN/T 5658.1-2023蒸馏酒质量鉴别方法 第1部分:18种挥发性成分含量的测定 气相色谱法2023/11/17行业标准SN/T 5658.2-2023蒸馏酒质量鉴别方法 第2部分:橡木浸出物的测定 超高效液相色谱法2023/11/1(4)农林业农林业发布的7项标准中均使用液相色谱进行分析检测。序号标准类别标准名称发布日期1行业标准NY/T 4310-2023饲料中吡啶甲酸铬的测定高效 液相色谱法2023/2/172行业标准NY/T 4305-2023植物油中2,6-二甲氧基-4-乙烯 基苯酚的测定高效液相色谱法2023/2/173行业标准NY/T 4354-2023禽蛋中卵磷脂的测定高效液相色谱法2023/4/114行业标准NY/T 4357-2023植物源性食品中叶绿素的测定高效液相色谱法2023/4/115行业标准NY/T 4355-2023农产品及其制品中嘌呤的测定高效液相色谱法2023/4/116行业标准NY/T 4352-2023浆果类水果中花青苷的测定高效液相色谱法2023/4/117行业标准NY/T 4356-2023植物源性食品中甜菜碱的测定高效液相色谱法2023/4/11(5)生活用品行业生活用品行业发布的标准均使用液相色谱进行分析检测。序号标准类别标准名称发布日期1国家标准GB/T 42423-2023化妆品中二氯苯甲醇和氯苯甘醚的测定 高效液相色谱法2023/3/172国家标准GB/T 42425-2023化妆品中功效组分辛酰水杨酸、苯乙基间苯二酚、阿魏酸的测定 高效液相色谱法2023/3/173国家标准GB/T 42462-2023化妆品色谱分析结果确认准则2023/3/174行业标准QB/T 5831-2023口腔清洁护理用品 牙膏中三氯蔗糖的测定 高效液相色谱法2023/4/215行业标准QB/T 5832-2023口腔清洁护理用品 牙膏中厚朴酚、和厚朴酚含量的测定 高效液相色谱法2023/4/216行业标准QB/T 5833-2023口腔清洁护理用品 牙膏中p-氯-m-甲酚、六氯酚、双氯酚、溴氯芬、苄氯酚、氯二甲酚6种氯酚类防腐剂含量的测定 高效液相色谱法2023/4/21(6)环境行业
  • 2023年12月份有371项标准将实施
    2023年12月份有371项标准将实施我们通过国家标准信息平台查询到,在2023年12月份将有371项与仪器及检测行业的国家标准、行业标准和地方标准将实施,具体数量明细如下:在12月份新实施的标准中,与机械车辆相关的标准有91个,占据了25%,紧随其后的领域为食品和冶金矿产。与机械车辆相关的91个标准中,主要为国家推荐性标准,主要包括机动车、自行车、轴承、紧固件等相关标准。食品相关标准56个,主要涉及食品产品标准、植物源成分检测和致病菌检测等。在12月份新实施的标准中,包含了多品类科学仪器,如:实时荧光PCR仪 、气相色谱-质谱仪 、液相色谱-质谱/质谱仪 、液相色谱-四级杆/飞行时间质谱仪 、在线燃烧-离子色谱仪 、电感耦合等离子体质谱仪 、气相色谱-质谱/质谱仪 、电感耦合等离子体发射光谱仪 、X射线衍射仪 、火焰原子吸收光谱仪 、高频-红外吸收仪 、原子荧光光谱仪 、裂解/气相色谱-质谱仪 等。具体2023年12月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓仪器仪表与计量标准(10个)GB/T 12274.401-2023 有质量评定的石英晶体振荡器 第4-1部分:空白详细规范 能力批准 GB/T 27700.1-2023 有质量评定的声表面波滤波器 第1部分 : 总规范 GB/T 22362-2023 实验室玻璃仪器 烧瓶 GB/T 42555-2023 计量器具控制软件的通用要求 GB/T 42554-2023 计量器具环境试验的通用要求 GB/T 42754-2023 干式化学分析仪性能评价通则 SN/T 5566-2023 激光显微拉曼光谱分析方法通则 GB/T 42753-2023 实时荧光定量PCR仪性能评价通则 GB/T 42431-2023 飞机交流感应电动机驱动的变量液压泵通用规范 GB/T 9452-2023热处理炉有效加热区测定方法农林牧渔食品标准(56个)GB 1352-2023 大豆 GB 1351-2023 小麦 GB/T 42538.2-2023 农林拖拉机 安全 第2部分: 窄 轮距和小型拖拉机 GB/T 42538.1-2023 农林拖拉机 安全 第1部分:基本型拖拉机 GB/T 25419-2023 果树剪枝机 GB/T 21016-2023 小麦 干燥技术 规范 GB/T 25171-2023 畜禽养殖环境与废弃物管理术语 GB/T 26938-2023 牛体内胚胎生产与移植技术规程 GB/T 18781-2023 珍珠分级 SN/T 5563-2023 进出口肥料检验规程 SN/T 5560-2023 化妆品光毒性试验 光反应性的测定 活性氧试验 SN/T 5522.10-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第10部分:豌豆淀粉 SN/T 5522.9-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第9部分:绿豆淀粉 SN/T 5522.8-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第8部分:小麦淀粉 SN/T 5522.7-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第7部分:玉米淀粉 SN/T 5522.6-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第6部分:山药淀粉 SN/T 5522.5-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第5部分:葛根淀粉 SN/T 5522.4-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第4部分: 藕 淀粉 SN/T 5522.3-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第3部分:马铃薯淀粉 SN/T 5522.2-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第2部分:木薯淀粉 SN/T 5522.1-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第1部分:红薯淀 粉 SN/T 5516.16-2023 出口食品中致病菌荧光重组酶 介导链 替换核酸扩增(RAA)检测方法 第16部分:创伤弧菌 SN/T 5516.15-2023 出口食品中致病菌荧光重组酶 介导链 替换核酸扩增(RAA)检测方法 第15部分:霍乱弧菌 SN/T 5516.14-2023 出口食品中致病菌荧光重组酶 介导链 替换核酸扩增(RAA)检测方法 第14部分:产气荚膜梭菌 SN/T 5516.13-2023 出口食品中致病菌荧光重组酶 介导链 替换核酸扩增(RAA)检测方法 第13部分:蜡样芽孢杆菌 SN/T 5516.12-2023 出口食品中致病菌荧光重组酶 介导链 替换核酸扩增(RAA)检测方法 第12部分:铜绿假单胞菌 SN/T 5516.11-2023 出口食品中致病菌荧光重组酶 介导链 替换核酸扩增(RAA)检测方法 第11部分:肺炎克雷伯氏菌 SN/T 5516.10-2023 出口食品中致病菌荧光重组酶 介导链 替换核酸扩增(RAA)检测方法 第10部分:小肠结肠炎耶尔森氏菌 SN/T 5516.9-2023 出口食品中致病菌荧光重组酶 介导链 替换核酸扩增(RAA)检测方法 第9部分:单核细胞增生李斯 特 氏菌 SN/T 5516.8-2023 出口食品中致病菌荧光重组酶 介导链 替换核酸扩增(RAA)检测方法 第8部分:空肠弯曲菌 SN/T 5516.7-2023 出口食品中致病菌荧光重组酶 介导链 替换核酸扩增(RAA)检测方法 第7部分: 产志贺 毒素大肠埃希氏菌 SN/T 5516.6-2023 出口食品中致病菌荧光重组酶介导链 替换核酸扩增(RAA)检测方法 第6部分:大肠埃希氏菌O157 SN/T 5516.5-2023 出口食品中致病菌荧光重组酶 介导链 替换核酸扩增(RAA)检测方法 第5部分: 克罗诺杆菌 属 SN/T 5516.4-2023 出口食品中致病菌荧光重组酶 介导链 替换核酸扩增(RAA)检测方法 第4部分:副溶血性弧菌 SN/T 5516.3-2023 出口食品中致病菌荧光重组酶 介导链 替换核酸扩增(RAA)检测方法 第3部分:金黄色葡萄球菌 SN/T 5516.2-2023 出口食品中致病菌荧光重组酶 介导链 替换核酸扩增(RAA)检测方法 第2部分:志贺氏菌 SN/T 5516.1-2023 出口食品中致病菌荧光重组酶 介导链 替换核酸扩增(RAA)检测方法 第1部分:沙门氏菌 SN/T 5511-2023 出口调味料、调味面制品及肉制品中罂粟碱、那可丁、蒂巴因、吗啡和可待因的测定 液相色谱-质谱/质谱法 SN/T 5509-2023 进出口婴幼儿咀嚼辅食器安全要求 SN/T 5503-2023 进出口化妆品中乙酸乙烯酯的测定 顶空气相色谱-质谱法 SN/T 5326.5-2023 进出口食品化妆品专业分析方法验证指南 第5部分:免疫学方法 SN/T 2775-2023 商品化食品检测试剂 盒评价 方法 SN/T 2108-2023 进出口化妆品中巴比妥类的测定 SN/T 1781-2023 进出口化妆品中咖啡因的测定 DB31/T 1426-2023 农产品质 量安全 基层监督管理工作规范 DB31/T 1424-2023 林业有害生物防治服务组织能力评价导则 DB31/T 1420-2023 冷 链食品 及相关物体表面新型冠状病毒样本采集技术规范 DB36/T 1786-2023 淡水鱼苗种产地检疫技术规范 DB36/T 1785-2023 丘陵果园机械化开沟施肥技术规程 DB36/T 1784-2023 水稻生产托管服务规范 DB36/T 1783-2023 幼龄猕猴桃果园套种羽扇 豆 技术规程 DB36/T 1782-2023 “金艳”和“红阳”猕猴桃鲜果品质标准 DB36/T 1781-2023 香芹大棚越夏生产技术规程 DB36/T 780-2023 草鱼疫苗免疫技术规程 GB/T 42780-2023 肉桂产品质量等级 GB/T 22561-2023 真空热处理 环境环保标准(23个)SN/T 5572-2023 进口货物固体废物属性鉴别 通用程序 SN/T 5571-2023 固体废物鉴别抽样导则 GB/T 42866-2023 煤化工废水处理与回用技术导则 GB/T 42867-2023 煤矿预排水综合利用技术导则 GB/T 14416-2023 锅炉蒸汽的采样方法 GB/T 41339.4-2023 海洋生态修复技术指南 第4部分:海草床生态修复 GB/T 42640-2023 多波束水下地形测量技术规范 GB/T 13277.1-2023 压缩空气 第1部分:污染物净化等级 GB/T 42629.3-2023 国际海底区域和公海环境调查规程 第3部分:海洋生物调查 GB/T 3785.1-2023 电声学 声级计 第1部分:规范 GB/T 42559-2023 声学 干涉型光纤水听器相移灵敏度测量 GB/T 21228.2-2023 声学 表面声 散射特性 第2部分:自由场方向性扩散系数测量 GB/T 42552.1-2023 声学 小楼板模块测量 覆 面层撞击声改善量的实验室方法 第1部分:重质密实楼板 GB/T 42557-2023 射电望远镜电磁环境保护技术规范 GB/T 42532-2023 湿地退化评估技术规范 SN/T 5493-2023 固体和液体样品中29种芬太尼的测定 液相色谱-四级杆/飞行时间质谱法 SN/T 0570-2023 进口再生原料放射性污染检验规程 GB/T 42632-2023 海洋生态环境水下有缆在线监测系统技术要求 GB/T 42631-2023 近岸海洋生态健康评价指南 GB/T 42629.2-2023 国际海底区域和公海环境调查规程 第2部分:海洋化学调查 GB/T 42629.1-2023 国际海底区域和公海环境调查规程 第1部分:总则 GB/T 26747-2023 水处理装置用复合材料罐 GB/T 42529-2023 新型墙 体材料湿传导 及相变呼吸功能的评价要求 医药卫生标准(20个)GB/T 14191.3-2023 假肢学和矫形器学 术语 第3部分:矫形器术语 GB/T 42770-2023 造口 栓 GB/T 42769-2023 假肢和矫形器 功能缺失 矫形器治疗的患者、临床治疗目标、矫形器功能要求的描述 GB/T 42763-2023口腔清洁护理用品安全评估指南GB/T 42761-2023 口腔清洁护理液对牙齿硬组织潜在腐蚀性的评估方法 GB 11236-2021含铜宫内节育器 技术要求与试验方法WS/T 823—2023 产房医院感染预防与控制标准 WS/T 822—2023 蚤 类密度监测方法标准 DB14/T 2804—2023 同一法人药品批发企业和零售连锁企业 统一储配管理规范 DB14/T 2803—2023 药品委托储存配送管理规范 DB31/T 1425-2023 狂犬病防疫示范村建设规范 DB31/T 1419-2023 医疗付费“一件事”应用规范 DB31/T 1421-2023 室内空气中新型冠状病毒采样和分析技术规范 YY/T 1821-2022 X射线计算机体层摄影设备体型特异性剂量估算值计算方法YY/T 1817-2022 甲状腺球蛋白测定试剂盒(化学发光免疫分析法) SN/T 5454-2023 病媒生物形态学鉴定标准编写技术要求 GB/T 23698-2023 三维扫描人体测量方法的一般要求 GB/T 20783-2023稳定性二氧化氯溶液GB/T 42525-2023微滤膜除菌过滤系统技术规范GB/Z 42540-2023 制药装备密闭性技术指南 固体制剂 石油天然气标准(19个)GB/T 42864-2023 液化天然气的取样设施及取样性能检验 GB/T 22513-2023石油天然气钻采设备 井口装置和采油树GB/T 42638-2023 煤矿井下煤层瓦斯抽采半径直接测定方法 抽采量法 GB/T 13813-2023 煤矿用金属材料摩擦火花安全性试验方法和判定规则 GB/T 29119-2023 煤层气资源勘查技术规范 GB/T 20322-2023 石油及天然气工业 往复压缩机 GB/T 25359-2023石油及天然气工业 集成撬装往复压缩机GB/T 42541-2023 燃气管道涂覆钢管 GB/T 15663.2-2023 煤矿科技术语 第2部分:井巷工程 GB/T 42601.3-2023 石油、重化学和天然气工业 润滑、轴密封和控制油系统及辅助设备 第3部分:一般用途的油系统 GB/T 42601.1-2023石油、重化学和天然气工业 润滑、轴密封和控制油系统及辅助设备 第1部分:一般要求SN/T 5576-2023 煤中氟和氯的测定 在线燃烧-离子色谱法 SN/T 5559-2023 汽油中铅、铁、锰的测定 电感耦合等离子体质谱法 SN/T 5565-2023 原油船货油舱用耐腐蚀球扁钢 GB/T 269-2023 润滑脂和 石油脂 锥入度测定法 GB/T 18604-2023 用气体超声流量计测量天然气流量 煤粉给料三通换向阀 GB/T 16674.3-2023 六 角法兰面螺栓 小系列 A级( 扳拧特性 按B级) GB/T 4502-2023
  • 报名中!第三届食品真实性及产地溯源鉴定新技术网络研讨会全日程公布
    食品真实性,与食品安全、食品质量共同构成食品本身属性。习近平总书记在二十大报告中强调,要切实加强食品药品安全监管。食品的真实性研究能很好解决虚假标注,以次充好、掺假等问题,欧美发达国家要求政府和行业关注食品真实性,并制定相应法规和指导手册,用以指导食品企业加强食品真实性问题防范,我国也高度重视食品真实性研究和成果推广应用,并取得了显著成效。食品真实性检测和溯源技术是保障食品质量安全和食品真实性的重要手段。食品真实性辨别包括食品掺假、食品掺杂、食品伪造等分析,目前组学技术、同位素法、NMR技术、质谱技术、PCR技术、光谱技术、生物成像技术及各类无损检测和快速检测技术等在该领域应用较广。食品质量溯源技术可以采用自动识别和IT技术记录食品生产、流通全过程的关键信息,有效地保障食品质量安全,目前区块链技术及与数据库双模存储机制为该领域的重要应用之一。为一定程度促进食品真实性及溯源技术的进步,仪器信息网将于9月13日举办“第三届食品真实性及产地溯源鉴定新技术”主题网络研讨会 ,我们将会邀请权威专家及厂商技术人员带来精彩分享,把最新的技术和科研成果呈现给大家。点击图片,免费报名参会第三届食品真实性及产地溯源鉴定新技术 全日程报告时间专家报告专家姓名单位09:00--09:30食品真实性多组学分析技术及标准应用张九凯中国检验检疫科学研究院 副主任/研究员09:30--10:00食用植物油真实性鉴别技术研究进展张良晓中国农业科学院油料作物研究所 研究员10:00--10:30稳定同位素生态学与食品产地溯源吴浩厦门大学环境与生态学院副教授10:30--11:00应用多模态深度学习模型的食品真实性鉴别研究云永欢海南大学食品科学与工程学院 副院长/副教授14:00--14:30蜂蜜的形成机制及真实性研究进展曹炜西北大学食品科学与工程学院 副院长/教授14:30--15:00基于POCT技术的肉类掺假现场鉴别技术研究陈爱亮中国农业科学院农业质量标准与检测技术研究所研究室 主任/研究员15:00--15:30不同产地粳米食味品质评价方法的建立与品质表征史波林中国标准化研究院农业食品所研究室 副主任/副研究员16:00--16:30食品真实性保障:DNA存储技术在食品防伪溯源中的创新应用邢冉冉中国检验检疫科学研究院 副研究员16:30--17:00食品新鲜度智能监测材料的制备与应用郭宗林华南农业大学食品学院 副教授
  • 科众精密仪器-水滴角测试方法及判定标准
    水滴角测试是一种常用于表面性质评估的方法,用于确定液体滴在固体表面上形成的接触角度。这个角度可以提供有关表面润湿性和亲水性/疏水性的信息。以下是水滴角测试的一般方法和常见的判定标准:方法:准备工作:清洁和干燥测试表面,以确保没有杂质和污垢影响测试结果。将待测试液体滴在表面上:使用滴管或针管将液滴小心地滴在固体表面上。观察和测量:用显微镜或相机记录液滴在表面上的形态,并测量液滴与表面接触线之间的角度。判定标准: 根据液滴在表面上的形态和接触角度,可以将表面分为三类:亲水性、疏水性和中性。亲水性表面:液滴在表面上展开,形成较小的接触角(通常小于90度)。液滴容易在表面上弥漫和扩散。表面被液滴湿润,液滴保持较平坦的形状。疏水性表面:液滴在表面上形成较大的接触角(通常大于90度)。液滴难以在表面上弥漫和扩散。表面对液滴呈现不易附着的性质,液滴形成较高的凸起。超疏水接触角:超疏水接触角是指接触角大于150度的情况,即液滴与固体表面之间的相互作用极其微弱。超疏水表面具有更强的抗粘附性,液滴在表面上几乎不会停留,可以在一定程度上实现自清洁效果。这种特性在微纳米技术、光学涂层、防污染材料等领域有重要应用。总之,疏水接触角和超疏水接触角是指液滴在固体表面上无法展开并呈现球形的情况,其在防水、自洁和抗粘附等方面具有广泛应用价值。中性表面:液滴在表面上形成接触角度接近90度。表面对液滴的湿润程度适中。需要注意的是,水滴角测试的结果可能受到多种因素的影响,包括表面粗糙度、化学成分、温度等。因此,在进行水滴角测试时,需要进行多次测试以确保结果的准确性,并参考相关文献或标准来进行判定。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制