当前位置: 仪器信息网 > 行业主题 > >

醋磺内酯钾安赛蜜钾

仪器信息网醋磺内酯钾安赛蜜钾专题为您提供2024年最新醋磺内酯钾安赛蜜钾价格报价、厂家品牌的相关信息, 包括醋磺内酯钾安赛蜜钾参数、型号等,不管是国产,还是进口品牌的醋磺内酯钾安赛蜜钾您都可以在这里找到。 除此之外,仪器信息网还免费为您整合醋磺内酯钾安赛蜜钾相关的耗材配件、试剂标物,还有醋磺内酯钾安赛蜜钾相关的最新资讯、资料,以及醋磺内酯钾安赛蜜钾相关的解决方案。

醋磺内酯钾安赛蜜钾相关的资讯

  • 赛默飞发布食醋中安赛蜜检测解决方案
    2014年5月7日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布食醋中安赛蜜检测解决方案。在现有国家标准和参考文献基础上,进一步消除基质干扰,确保分析过程快速、准确。 安赛蜜(化学名:乙酰磺胺酸钾Acesulfame-k,又称AK 糖),属第四代合成甜味剂,其甜度为蔗糖的200 倍,具有口感好,对热、酸稳定性好、安全性高等特点,我国卫生部于1992 年5 月已正式批准安赛蜜用于食品、饮料领域。但在食醋酿造工业中,为了确保产品的原始风味,防止商家借助添加剂擅自改变醋液口感并进行商业炒作,在GB 2760-2011 食品安全国家标准《食品添加剂使用标准》中规定,安赛蜜在食醋中不得检出。目前安赛蜜检测常用洗脱系统为硫酸铵或醋酸铵体系,分析柱通常为C18 色谱柱,但采用上述方法检测食醋中的安赛蜜时发现:由于检测波长接近末端吸收,基线噪音较大(特别是醋酸盐体系);同时由于食醋的基质干扰较强,导致难以通过检测结果直观判定食醋样品中是否含有安赛蜜。赛默飞使用Thermo Scientific Dionex UltiMate 3000液相色谱系统,通过优选色谱柱,以磷酸盐- 乙腈洗脱系统实现了安赛蜜色谱峰与基质成份的良好分离,方法快速简便(测试周期约为10min),灵敏度高、精密度和回收率好,为食醋类样品中安赛蜜的测定提供了较好的方法参考。 下载应用文章请点击:http://www.thermo.com.cn/Resources/201404/913554146.pdf 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 利安德巴赛尔增加范围3等温室气体减排目标
    全球化学行业领先企业利安德巴赛尔(纽约证券交易所股票代码:LYB)今天宣布,与2020年基准相比,公司2030年温室气体(GHG)范围1和范围2减排目标将从30%提高到42%。此外,该公司将根据科学目标计划(SBTi)的指南,制定2030年温室气体范围3减排目标(与2020年基准相比),目标为30%。该公司此前宣布的到2050年实现范围1和范围2温室气体净零排放的目标保持不变。利安德巴赛尔增加包括范围3在内的温室气体减排目标利安德巴赛尔首席执行官Peter Vanacker表示:"我们相信,更雄心勃勃的温室气体减排目标是可以实现的,并将为我们所有利益相关者创造巨大价值。在减少排放的同时,还需要建立世界一流的循环和低碳解决方案业务,以满足我们在整个价值链中期望的需求。 这种方法不仅有利于社会,而且有利于商业。我们将遵循严格的方法来确定高回报项目的优先次序,并将继续满足我们的回报期望。"实现减排目标所需的资本支出估计数额已纳入公司的长期计划。这些投资预计不会占今后三年资本支出总额的很大一部分,也不会改变资本分配战略。虽然许多温室气体减排项目仍处于早期开发阶段,但公司将根据每个项目的回报率评估、开展温室气体排放投资并确定其优先次序。利安德巴赛尔将向SBTi提交其气候目标,以根据SBTi指南进行验证。SBTi定义并推广符合最新气候科学的企业温室气体排放目标设定的最佳实践。在近期内,利安德巴赛尔将继续执行先前宣布的减排计划,包括:在德克萨斯州启动四项电力购买协议,相当于公司每年约40万公吨范围2温室气体排放在其德国韦瑟灵工厂逐步淘汰煤炭的使用,每年使该工厂的范围2排放减少约17万公吨正如2022年4月宣布的那样,该公司有望在2023年12月底前关闭休斯顿炼油厂。预计这将使范围1和范围2温室气体排放量每年减少300多万公吨,范围3的温室气体排放量每年减少约4000万吨。利安德巴赛尔还旨在确保到2030年从低碳电源获得其全球至少75%的电力,其中大部分将来自其现有目标,即从可再生能源采购至少50%的全球电力。 计划到2030年实施的许多温室气体减排举措将于2024年及以后开始,因为公司将利用其最大厂点的现有资产周转时间表,其中包括:工程热回收项目、大型工艺涡轮机的电气化以及2024年德国韦瑟灵工厂的蒸汽需求的优化2025年,通过在德克萨斯州钱纳尔维尤的工厂进行先进数字化、效率改进和燃料管理,优化加热设备此外,公司此前宣布的循环和低碳解决方案业务将专注于实现到2030年每年生产和销售200万公吨回收和可再生聚合物的目标,进一步减少范围3排放。 价值链协作仍然是该公司的首要任务。最近,利安德巴赛尔加入了世界经济论坛低碳排放技术(LCET)集团,帮助加速开发和升级化工行业和相关价值链所需的低碳排放技术,以到2050年实现净零排放。有关公司转型计划、气候风险和资本分配方法及其与气候相关财务披露工作组(TCFD)要求一致性的其他信息将包含在2022年利安德巴赛尔可持续发展报告中。有关公司可持续发展方法的更多信息,请点击此处。关于利安德巴赛尔 作为全球化学行业领导者,利安德巴赛尔每天都在努力成为行业中最安全、最佳运营、最有价值的公司。公司的产品、材料和技术正在100多个国际市场推动食品安全、清洁用水、医疗和燃油效率可持续解决方案的进步。利安德巴赛尔高度重视多元化、公平性和包容性,以我们的地球、我们运营所在的社区,以及我们未来的员工队伍为重点,推动善的发展。公司以世界一流的技术和以客户为中心而感到自豪。LyondellBasell加强了循环与气候的雄心和行动来应对塑料废物和脱碳的全球挑战。2022年,利安德巴赛尔连续第五年被《财富》杂志列入"全球最受尊敬公司"名单。前瞻性陈述本新闻稿中有关非历史事实事项的陈述均为前瞻性陈述。这些前瞻性陈述基于利安德巴赛尔管理层的期望和假设,包括基于第三方信息和预测的期望,这些期望和假设在作出时被认为合理,但受到重大风险和不确定性的影响。当在本新闻稿中使用"估计"、"相信"、"继续"、"可能"、"打算"、"或许"、"计划"、"潜在"、"战略"、"目的"、"雄心"、"实现"、"道路"、"支持"、"目标"、"应该"、"将 "、"预期"和类似表达时,这些表达旨在识别前瞻性陈述,尽管并非所有前瞻性陈述都包含此类识别词。此外,提到利安德巴赛尔2030年目标、净零目标以及相关努力、活动和预期资本支出的陈述均为前瞻性陈述。实际结果可能因以下因素存在重大差异:包括但不限于市场条件、化工、聚合物和炼油行业的商业周期性;原材料和公用事业的可用性、成本和价格波动,特别是石油、天然气和相关液化天然气的成本;我们安全运营、增加可回收和可再生聚合物的产量以及减少温室气体排放和能源使用的能力;新技术的实施和实现预期效益的能力;我们获得资金支持气候相关举措的能力;欧盟排放交易制度(EU ETS)的发展,以及我们降低相关成本的能力;我们根据《美国减少通货膨胀法》获得利益的能力;我们的供应商和客户采取的行动,包括使用Circulen系列产品;我们获得可再生和低碳能源并减少对煤炭依赖的能力;竞争性产品和价格压力;劳动条件;操作中断;我们及合资企业产品的供需平衡,以及行业产能和开工率的相关影响;我们的成本管理能力;未来的财务和经营业绩;气候变化发展;法律和环境程序;税务裁定、后果或程序;技术发展以及我们开发新产品和工艺技术的能力;以及潜在的政府监管行动,包括与气候相关的信息披露要求。其他可能导致结果与前瞻性陈述中描述的结果存在重大差异的因素,请参见我们截至2021年12月31日的10-K表年度报告以及后续向SEC提交的文件中中的"风险因素"部分。前瞻性陈述仅代表发表之日的情况,并基于做出陈述时利安德巴赛尔管理层的估计和观点。如果环境或管理层的预计或意见发生改变,除非法律要求,否则利安德巴赛尔不承担并明确否认任何更新前瞻性陈述的义务。本新闻稿提及某些框架和举措。提及它们并不意味着公司打算认可或采纳这些框架,也不会永久认可或采纳这些框架。公司对这些组织对特定条款或建议的使用或定义或任何举措的可行性不作任何表示或保证。利安德巴赛尔报告的排放和预期减排基于测量和估计数据的组合,并基于行业标准和最佳实践,包括《温室气体议定书》以及IPIECA和美国石油研究所的指导。报告的排放量仅为估计值,随着方法、数据质量和技术改进,数据可能会发生变化。利安德巴赛尔的减排目标是基于当前相关数据和方法的真诚努力,随着我们确定、测量和处理排放的方法不断发展,这些努力可以改变或完善。
  • 质检总局麦片抽检:微生物、安赛蜜超标
    组织部门:   国家质量监督检验检疫总局   抽查范围:北京、天津、河北、吉林、上海、江苏、浙江、山东、广东、广西等10个省、直辖市、自治区64家企业生产的100种产品   抽查概况:   对麦片产品的重金属(总砷、铅)、甜味剂(甜蜜素、糖精钠、安赛蜜)、黄曲霉毒素B1、菌落总数、大肠菌群、致病菌(沙门氏菌、志贺氏菌、金黄色葡萄球菌)、霉菌等12个项目进行了检验,产品实物合格率87%   主要问题:   微生物指标超标,部分产品超范围使用甜味剂安赛蜜         专家选购建议   分类   麦片是以燕麦、大麦、小麦、荞麦、玉米、大米等禾谷类为主要原料制成的即食或加热食用的食品。麦片分为两大类:纯麦片和混合型麦片。纯麦片是指单以燕麦、大麦、小麦、荞麦等麦类为原料,经粉碎(或不粉碎)、熟化、压片成型、干燥等工艺制成的即食或加热食用的可冲调性定型包装食品。混合型麦片是以燕麦、大麦、小麦、荞麦、玉米、大米等谷类为原料,添加(或不添加)奶、植脂末、糖等辅料,经粉碎、熟化、压片、干燥等工艺制成的即食可冲调性定型包装食品。   选购   要选购标识说明完整详细的产品。国家标准中规定标签必须包括:产品名称、净含量、配料表、制造者或经销者的名称和地址、产品标准号、生产日期、保质期,特别要注意是否有生产日期和保质期,尽量购买近期生产的产品。(国家农副产品质检中心主任、高工 杨军)
  • 百灵威独家提供Ferak Berlin β-丙内酯
    新春伊始,百灵威与德g有名高纯化学品生产商&mdash &mdash Ferak Berlin GmbH签署战略合作协议,百灵威将在中g(包括香港、澳门)dj代理Ferak公司明星产品&beta -丙内酯(&beta -Propiolactone),并全面负责销售、技术应用与支持等各项业务。 在疫苗生产用原、辅料的全球制造商中,s屈y指的是德gFerak Berlin公司。该公司提供的&beta -丙内酯,是专用于预防狂犬病、出血热等灭活类疫苗生产的z佳灭活剂。创立于1954年的Ferak Berlin,主要业务是实验室化学品,外包研发和有机合成产品,尤其是高难度的化合物合成与工艺开发。公司有3个生产基地,产品远销世界40多个g家地区。明星产品&beta -丙内酯(BPL)具有COS by the EDQM、DINISO9001:2008权威认证,易水解、无残留、无危害,可直接作用于病毒或病原物核酸;灭活时间短,效果明显,可大大缩短疫苗的生产周期。因此,自1984年&beta -丙内酯作为狂犬病疫苗灭活剂问世以来,已被世界各g的工厂广泛应用于人和动物疫苗的生产之中,在造福人类的救治活动中发挥了显著的作用。 目前,百灵威已具备提供50万种化学品和数百项专业服务的能力,包括生命科学、药物研发和环境保护等l域。这些产品和服务推动了祖g科技和工业生产的蓬勃发展,创造出了大量的高纯精细产品,对食品安全,净化空气环境,高效药物研发,征服人类顽症以及新能源开发等,正在发挥出j其重要的作用和贡献。
  • 【通知】培安公司正式成为ISCO柱塞泵独家代理
    培安公司将于今天(2021年4月1日)正式成为美国ISCO柱塞泵的中国地区独家代理,全权负责产品的技术支持、市场销售和售后服务。培安公司将携手ISCO公司为广大用户提供更优质和快捷的服务,特此通告。热烈欢迎广大客户来电咨询,感谢您的支持。 ISCO成立于1958年,总部位于美国,内布拉斯加州,林肯市。ISCO以其实验室设备快速制备色谱和高压高精度柱塞泵产品线而享誉世界。 ISCO 高压高精度柱塞泵提供高精度计量、进料、配料、配分等泵送功能,用于化学品进料,反应物添加,催化剂添加,超临界流体输送,岩心驱替实验,发泡挤出工艺,高效液相色谱系统,新能源研究。高压:高达30,000psi(2068 bar)的压力;低流速:流速可达10nL/min- 400 mL/min 高准确度:0.5%流速准确度,0.5%压力准确度(0.1%可选);无脉冲流动。 1. 药物研发制造:无论在药物实验室,大规模生产都需要精确计量,在连续流制药和新药研究过程中发生的许多化学反应中,流速控制是实验成功的关键,1)产品开发-精确的流体输送(±0.5%或更高)可产生高质量的结果。 2)无脉冲流的高可重复性,用于工艺开发/中试规模/生产中的故障排除和概念验证。 2. 塑料制品工艺:ISCO泵可以泵送液化气体,这对泡沫结构的研究和开发至关重要。 提供在挤出过程中添加颜色或材料的泵送,在往复运动管路可提供恒定的泵压力,在旋转成型过程中提供帮助。1)保持无论实验室研究或恶劣的工业环境运行性能的高可靠性 2)处理和泵送液化气体二氧化碳和其他气体的能力 3. 石油化工工艺:ISCO泵在石油化工市场上拥有广泛的应用和成功经验,包括但不限于岩心驱替和反应进料。 精密的流量功能和更高压力功能使ISCO柱塞泵在设计实验或中试过程时成为您的最佳选择。1)连续恒定流量或压力-长时间无忧运行 2)流体的精确计量—流量范围为0.00001至408 mL / min
  • 培安公司将成为ISCO柱塞泵独家代理通知
    根据美国方面通知,培安公司将于2021年4月以后成为美国ISCO柱塞泵的中国地区独家代理,全权负责产品的技术支持、市场销售和售后服务。培安公司将携手ISCO公司为广大用户提供更优质和快捷的服务,特此通告。 ISCO成立于1958年,总部位于美国,内布拉斯加州,林肯市。ISCO以其实验室设备快速制备色谱和高压高精度柱塞泵产品线而享誉世界。 ISCO 高压高精度柱塞泵提供高精度计量、进料、配料、配分等泵送功能,用于化学品进料反应物添加,催化剂添加,超临界流体输送,岩心驱替实验,发泡挤出工艺,高效液相色谱系统,新能源研究。高压:高达30,000psi(2068 bar)的压力;低流速:流速可达10nL/min- 400 mL/min 高准确度:0.5%流速准确度,0.5%压力准确度(0.1%可选);无脉冲流动。 1.药物研发制造:无论在药物实验室,大规模生产都需要精确计量,在连续流制药和新药研究过程中发生的许多化学反应中,流速控制是实验成功的关键,1)产品开发-精确的流体输送(±0.5%或更高)可产生高质量的结果。 2)无脉冲流的高可重复性,用于工艺开发/中试规模/生产中的故障排除和概念验证。 2.塑料制品工艺:ISCO泵可以泵送液化气体,这对泡沫结构的研究和开发至关重要。 提供在挤出过程中添加颜色或材料的泵送,在往复运动管路可提供恒定的泵压力,在旋转成型过程中提供帮助。 1)保持无论实验室研究或恶劣的工业环境运行性能的高可靠性 2)处理和泵送液化气体二氧化碳和其他气体的能力 3.石油化工工艺:ISCO泵在石油化工市场上拥有广泛的应用和成功经验,包括但不限于岩心驱替和反应进料。 精密的流量功能和更高压力功能使ISCO柱塞泵在设计实验或中试过程时成为您的最佳选择。1)连续恒定流量或压力-长时间无忧运行 2)流体的精确计量—流量范围为0.00001至408 mL / min
  • 月饼硫残留是公开秘密 国家标准无相关限制
    “今年油、面粉、糖和做馅用的各种原料价格上涨,月饼主要生产企业整体市场零售价随之上涨10%,然而市场上仍有相当一部分小的月饼厂家借机大打价格战,为了缩减制作成本,月饼馅料二氧化硫残留有可能发展成产业内的一场'三聚氰胺危机’。”日前,华南月饼制造业资深人士卢超明(化名)告诉本报记者。记者4日在广州某大超市看到,店内至少销售20款月饼,价格参差不齐,以一盒四个普通装双黄白莲蓉月饼为例,最低不到30元一盒,而最高超过200元一盒。卢超明称,国内月饼市场容量达200亿元,而前十名的大企业只占约10%的市场份额,中小品牌众多以及巨大的市场空间给行业的质量监控提高了难度。   原材料价格上涨月饼普涨   “受农副产品市场价格影响,今年生产月饼的主要原材料成本与去年同比大幅上涨,如莲子价格约为4.8万元/吨,同比上涨165% 五仁类原材料同比上涨40%-60% 糖约为5500元/吨,同比上涨30% 花生油约为1.7万元/吨,同比上涨50% 面粉约为5000元/吨,同比上涨15%。”广州酒家集团利口福食品有限公司总经理吴家威告诉本报记者,广州酒家今年中秋月饼原材料成本平均升幅高达30%。由于主要原材料成本大幅上涨,记者发现去年广式月饼主要品牌月饼系列的价格不超过百元的月饼占到六七成,但是今年预计单价超过或接近百元左右的品种占月饼总销量的70%。“从1994年开始,安琪月饼只提过一次价,今年是第二次。”深圳市场月饼龙头老大深圳安琪食品有限公司董事长梁球胜告诉本报记者,今年安琪双黄白莲蓉月饼每盒零售价从原来的108元提高10元,标价118元,产品平均增幅在10%左右。   从制定国内月饼国家标准,到生产企业强制Q S认证,国内月饼市场近年得到较大程度的规范,然而国内月饼市场容量达200亿元,而前十名大企业只占约10%的市场份额。“国内目前月饼的生产巨头有上海杏花楼、广州酒家、深圳安琪、北京稻香村、北京好利来和东莞华美等大品牌,销售额最大的杏花楼不过3亿元左右,广州酒家约2.5亿元,深圳安琪约2亿元,排名前十位的生产企业的市场销售总额接近20亿元,只占200亿的市场整体容量的10%份额。”华南月饼制造业资深人士卢超明(化名)告诉本报记者。   以劣充好,食品安全隐患上升   依据国家月饼标准,包括以莲子为主要原料加工成馅的月饼,除油、糖外的馅料原料中,莲子含量应不低于60%,然而由于今年莲蓉价格大涨,不少企业以“薯粉”冒充莲蓉。然而化学物在月饼中的残留,造成的质量影响更大。“月饼制作过程中不少企业为图价格优势,使用硫化糖,该类糖含有一定的二氧化硫残留,并容易带入月饼馅料中。除此外,莲蓉的制作过程中,为令莲子漂白,行内普遍用食用碱水,但是有不法商家为加快进程,用一种含有二氧化硫的化学物,这无疑增加了莲子硫残留风险。”卢超明称。当前关于月饼的国家标准中,并没有针对硫残留含量限制的相关条款,而月饼的硫残留已成为行业公开的秘密。   乳业三聚氰胺危机令乳业巨头掀起奶源基地兴建热潮,苏丹红风波令食品行业加强对色素的监管,而月饼行业的安全隐患却鲜为人知。“广式月饼的主要原料有莲子、蛋黄、面粉、糖、油等,其中又属莲子和蛋黄最关键。”安琪董事长梁球胜告诉记者。为把控莲蓉的品质监控,今年安琪在湖北仙桃建立逾万亩湘莲种植基地,并与武汉大学开展无公害莲业科研合作,该项合作被列为“十一五”国家支撑计划重大项目。而在湖北仙桃沙湖,安琪也建立了非饲料养殖的养鸭基地。“苏丹红事件后,使用工业色素'上色’的投机行为少了,但市场上不少表面看上去颜色鲜亮的咸蛋黄,其实养殖过程中鸭农仍然喂饲了可食用的胡萝卜素。相比之下富含天然胡萝卜素的麦黄角草是沙湖的特产,以该草料喂养的鸭子所产咸蛋,出油、起沙和色泽都是最出色的。该莲子和养鸭基地一年可以为安琪提供充足的莲蓉和咸蛋黄,这标志着安琪正突破当前月饼产业收购莲子中间存在原料多重购销环节的模式,从莲子种植、莲业研发、莲蓉制作,到月饼产销,开创月饼全产业链时代。”梁球胜称。
  • 广西标准化协会《水质 2种林可酰胺类和4种大环内酯类抗生素的测定 高效液相色谱-串联质谱法》等3项团体标准通过专家审定
    2023年4月28日,广西标准化协会在南宁组织专家对由广西环境科学学会提出,广西壮族自治区生态环境监测中心、广电计量检测(南宁)有限公司、广西新桂环保科技集团有限公司、广西润测检测技术有限公司、广西壮族自治区分析测试研究中心等单位共同起草的团体标准《水质 2种林可酰胺类和4种大环内酯类抗生素的测定 高效液相色谱-串联质谱法》,广西壮族自治区生态环境监测中心、广西新桂环保科技集团有限公司、广电计量检测(南宁)有限公司、广西润测检测技术有限公司、广西壮族自治区分析测试研究中心等单位共同起草的团体标准《水质 8种喹诺酮类抗生素的测定 高效液相色谱-串联质谱法》《水质 7种青霉素的测定 高效液相色谱-串联质谱法》进行了审定。(审定会现场)来自广西产品质量检验研究院、广西标准技术研究院、广西大学化学化工学院、广西分析测试协会、广西博测检测技术服务有限公司等单位专家在听取标准起草单位对标准起草情况的汇报后,对标准进行了逐条逐款认真审定,一致认为《水质 2种林可酰胺类和4种大环内酯类抗生素的测定 高效液相色谱-串联质谱法》等3项团体标准是在深入调研,广泛收集整理水质抗生素的测定相关资料,结合试验方法验证的基础上制定,所采用的技术路线正确,内容完整,具有科学性、先进性和可操作性。《水质 2种林可酰胺类和4种大环内酯类抗生素的测定 高效液相色谱-串联质谱法》等3项团体标准的发布实施,为测定水环境中各类抗生素残留量提供快速、灵敏、准确的分析方法,有效提高水质中抗生素的测定效率,对完善水质污染检测标准体系建设,促进环境保护具有重要的意义,专家一致同意通过审定。(审定会现场)广西标准化协会谢宏昭会长/高级工程师、广西环境科学学会谢佳凝副秘书长、广西自治区生态环境监测中心黄宁高级工程师、王锦工程师、广电计量检测(南宁)有限公司韦革主任、梁丽霞副主任、农汉榜有机主管、广西新桂环保科技集团有限公司陈德翼高级工程师等起草小组成员参加了此次团体标准审定。
  • 食品添加剂检测方案 赛智科技正积极研究
    食品添加剂本意是让食品更安全,改善食品色、香、味等品质,以及为防腐和加工工艺的需要而加入食品中的化合物质或者天然物质。目前我国食品添加剂有23个类别,2000多个品种,包括酸度调节剂、抗结剂、消泡剂、抗氧化剂、漂白剂、膨松剂、着色剂、护色剂、酶制剂、增味剂、营养强 化剂、防腐剂、甜味剂、增稠剂、香料等。  成人每天大概要吃进八九十种添加剂  泡菜里有着色剂,果冻里有防腐剂;一支雪糕含16种食品添加剂,一袋方便面中有14种̷̷近九成的食品含有添加剂,而生活中的“食品添加剂”有2000多种。不管是直接添加,还是间接添加,每个成人每天大概要吃进八九十种添加剂。  食品添加剂不可怕,可怕的是滥用、违法使用等。  合理使用食品添加剂,对丰富食品生产和促进人体健康都有好处。但也必须看到,食品添加剂毕竟不是食品的天然成分,如使用不当,或添加剂本身混入一些有害成分,就可能对人体健康带来一定危害。  近年来食品安全问题层出不穷,食品添加剂的滥用、违法使用等现象频曝,而我们日常生活中食品添加剂又无处不在,导致吃什么都心慌慌。赛智科技(杭州)有限公司作为一家有社会责任感的高科技企业,正在积极利用企业自主研发生产的液相色谱仪研究食品添加剂的检测方案。谨请关注!                              赛智科技(杭州)有限公司                             市场部
  • 2014年度‘安莱立思杯’水处理实验技能大奖赛
    南京工业大学与安莱立思科技公司共建水处理实验室揭牌。 在秋高气爽的金陵大地,在六朝古都美丽的南京工业大学江浦校区,南京工业大学与安莱立思仪器科技(上海)有限公司联合举办《2014年度‘安莱立思杯’水处理实验技能大奖赛》开幕仪式,大赛于2014年10月16号正式启动! 仪式由南京工业大学理学院党委书记马明辉主持。出席本次启动仪式的有南京工业大学副校长崔益虎,南京工业大学学生处处长郭万牛、资产处处长蔡海彪、校团委书记刘大卫、教务处副处长陈新民、理学院院长沈临江、理学院党委书记杨文忠,安莱立思仪器科技公司总经理唐璘、安莱立思仪器科技公司副总经理徐琨等。各学院的参赛选手参加了本次仪式。 理学院院长沈临江教授致辞对给予本次大赛支持和帮助的安莱立思仪器科技公司、以及学校各职能部门表示衷心的感谢。 安莱立思仪器科技公司唐璘总经理与南京工业大学学生处郭万牛处长共同签署了合作协议书。 资产处蔡海彪处长与唐总共同为南京工业大学与安莱立思科技公司共建水处理实验室揭牌。 唐总和徐总向理学院杨文忠书记颁发大赛启动资金十万元支票。 教务处陈新民副处长向安莱立思徐总颁发了南京工业大学校外实习基地牌匾。 安莱立思仪器科技(上海)有限公司唐总经理在讲话中,具有百年办学历史的南京工业大学是国家“高等学校创新能力提升计划”的14所高校之一,是江苏省重点建设高校,江苏省人才强校,教育部卓越工程师培养计划与专业学位研究生教育综合改革试点高校。高校与企业的合作与互动是新时期人才培养的重要途径之一,举办《‘安莱立思杯’水处理实验技能大奖赛》是“以赛促学、以赛促教、互相交流、共同提高”的具体方法,我们坚信,南京工业大学与安莱立思仪器科技(上海)有限公司《‘安莱立思杯’水处理实验技能大奖赛》的举办,共建实验室、校外实习基地等系列活动对推动同学们的实践能力、创新能力的培养,对强化实践教学,积极推进科技创新活动应该具有积极的示范导向作用。南京工业大学崔益虎副校长作了热情洋溢的总结讲话。 他指出,开展校企联合,建立新型的校企合作关系,既是企业依靠科技进步、立足全球发展、实施国际化经营的需要,也是高等教育面向社会、促进学校自身发展的需要,同时也是推动中国制造向中国创造迈进的有力步伐。他同时鼓励同学们把对科学的精神追求作为人生的价值,把不断完善自我作为奋斗的动力。对安莱立思一直以来给予南工学子的资助和与南京工业大学的合作表示由衷的谢意,对安莱立思仪器科技公司勇担社会责任的态度和企业家精神表示敬佩,对南京工业大学与安莱立思仪器科技公司在人才培养、科学研究等发面的进一步合作表示热切期待。安莱立思 专业生产第四代电化学仪器安莱立思仪器科技(上海)有限公司,主要是意欲将国外的分析测试仪器的先进的设计理念,制造技术,工艺控制流程以及销售经验和售后服务技术引进到国内,并逐步实现国产化,为国内分析测试仪器的整体水准的提高,为质检计量系统,工业生产系统的质量监控水平的提高增添新的高新技术设备,并为帮助中国内地由中国制造向中国创造转型贡献—份力量。安莱立思仪器科技(上海)有限公司全面引进和采用第四代技术生产高性能,高精度的电化学分析测量仪器,这项技术将填补国内空白,为中国分析测试仪器领域的基础测量仪器分支增添新技术,新产品以及新的市场机会。 安莱立思仪器科技(上海)有限公司的成立,将以创立自主品牌,建立科、工、贸结合的创新型企业,在通用分析测试仪器领域填补国内空白,创造社会效益和经济效益为己任,为质量检测与控制水平的提高做出应有贡献。产品特点电化学分析仪器主要有以下特点:一、设计理念:共技术平台,共模具和完全模块化设计二、前沿技术:高度集成化,标准化,系列化,ARM化,USB化三、结构设计:外观,模具,电路基板,BIOS基本操作系统,数据储存,元器件,接口通用性强,维修服务,产品扩充功能极佳.软件操作界面和显示屏幕实现人机对话,符合潮流和方便未来的扩充性四、标准和参数:涵盖国际主要标准,技术参数先进,并紧贴法规要求,溶氧参数遵循中国法律法规五、USB输出数据带日期和时间标记,符合GLP法规要求六、巨大的Data Logger数据储存器。
  • 第三届“安莱立思”杯水处理实验技能竞赛即将举办
    江苏省普通高等学校大学生第三届“安莱立思”杯水处理实验邀请赛竞赛将于2016年11月18日-20日在南京工业大学举办。此次邀请赛竞赛由江苏省高校实验室研究会、江苏省化学化工学会、江苏省高校化学化工实验教学示范中心联席会主办,南京工业大学、安莱立思仪器科技(上海)有限公司承办。  举办邀请赛竞赛的主要目的是为了传播绿色发展理念,强化化学、化工实验的基础理论、基础知识、基础技能,树立环境保护理念,培养学生创新意识、创新能力和创新精神,促进化学化工的可持续绿色发展,提高化学实验教学水平和质量,推动高等教育培养模式和实验教学改革,加强普通高等学校水处理的大学生实验动手能力与实践创新能力的交流和训练。“安莱立思”杯水处理实验邀请赛从2014年举办以来,受到社会各界人氏的一致好评。  (以下为往届竞赛图片)  (第一届安莱立思杯)  (第二届安莱立思杯)  预祝2016年第三届“安莱立思”杯水处理实验技能竞赛圆满成功!!
  • 国家药监局发布《化妆品中脱水穿心莲内酯琥珀酸半酯的测定》化妆品补充检验方法
    近日,根据《化妆品监督管理条例》,国家药监局批准发布了《化妆品中脱水穿心莲内酯琥珀酸半酯的测定》化妆品补充检验方法。本方法规定了化妆品中脱水穿心莲内酯琥珀酸半酯的测定方法,适用于膏霜乳类、液体类、凝胶类、贴膜类化妆品中脱水穿心莲内酯琥珀酸半酯的定性和定量测定。
  • 2019 英国皇家化学会『Top 1% 高被引中国作者』全榜单
    为彰显中国作者对国际化学研究领域的突出贡献,英国皇家化学会对旗下四十多本期刊发表论文的引用情况进行统计,按照综合化学类、材料类、物理化学类、能源与可持续类、无机化学类、有机与药物化学类、环境科学类、分分析、生物与化学交叉等大类进行划分,在每个大类中按照论文的被引次数进行排序。将 2017、2018 年发表的论文在 2019 年的被引频次在全球排名前 1% 的名单进行筛选,整理出了通讯作者来自于中国高校和科研院所的论文,后根据通讯作者的信息整理出“Top 1% 高被引中国作者”列表。  近日,2019年榜单已陆续发布,仪器信息网将各类榜单进行了汇总,共有415位中国作者入选2019年英国皇家学会“TOP 1%高被引中国作者”列表。(以下名单无前后顺序)  Top 1% 高被引中国作者:综合化学类 白若鹏重庆大学步文博华东师范大学曹荣中科院福建物质结构研究所陈少永四川大学陈浩铭台湾大学陈大钦杭州电子科技大学陈烽西安交通大学陈涛中科院宁波材料技术与工程研究所陈令新中科院烟台海岸带研究所陈冠英哈尔滨工业大学陈雨中科院上海硅酸盐研究所陈长伦中科院等离子物理研究所陈人杰北京理工大学成会明清华大学-伯克利深圳学院池振国中山大学丁松园厦门大学范壮军哈尔滨工程大学冯玮复旦大学傅强中科院大连化学物理研究所官建国武汉理工大学郭新闻大连理工大学沈国震中科院半导体研究所何纯挺中山大学洪学传武汉大学胡文平天津大学黄飞鹤浙江大学黄鹏深圳大学吉岩清华大学姜波江苏师范大学江海龙中国科学技术大学蓝宇重庆大学雷廷平华侨大学李兴伟中科院大连化学物理研究所李富友复旦大学李先锋中科院大连化学物理研究所李剑锋厦门大学李祥龙国家纳米科学中心梁叔全中南大学林伟英济南大学林静深圳大学刘刚国家纳米科学中心刘鸣华国家纳米科学中心刘凤玉大连理工大学刘进轩大连理工大学刘碧录清华大学-伯克利深圳学院鲁统部天津理工大学马凤才辽宁大学潘国庆江苏大学钱国栋浙江大学渠凤丽曲阜师范大学沈明武东华大学石枫江苏师范大学施剑林中科院上海硅酸盐研究所史向阳东华大学宋术岩中科院长春应用化学研究所宋春山大连理工大学/宾州州立大学孙旭平电子科技大学孙耀华中师范大学孙世国西北农林科技大学孙萌涛北京科技大学谭必恩华中科技大学谭平恒中科院半导体研究所唐本忠香港科技大学童明良中山大学化学学院屠树江江苏师范大学王心晨福州大学王博北京理工大学王成亮华中科技大学王祥科华北电力大学王飞中科院福建物质结构研究所危岩清华大学闻利平中科院理化技术研究所吴季怀华侨大学吴宇平复旦大学夏吾炯哈尔滨工业大学谢劲南京大学邢华斌浙江大学邢明阳华东理工大学熊宇杰中国科学技术大学徐艺军福州大学许建斌香港中文大学徐建铁华南理工大学严锋苏州大学杨青西安交通大学余孝其四川大学俞书宏中国科学技术大学于振涛南京大学喻国灿浙江大学(现美国国立卫生研究院)于法标中科院烟台海岸带研究所俞寿云南京大学曾海波南京理工大学张兵天津大学张志明天津理工大学张洪杰中科院长春应用化学研究所张亚杰中科院宁波材料技术与工程研究所张华民中科院大连化学物理研究所张锦北京大学张书圣临沂大学张强清华大学张泽会中南民族大学张健中科院福建物质结构研究所张袁健东南大学张晓兵湖南大学张金龙华东理工大学张新波中科院长春应用化学研究所赵娟中山大学赵勇河南大学郑炎松华中科技大学智林杰国家纳米科学中心周江中南大学朱宏伟清华大学朱成建南京大学邹志刚南京大学Top 1% 高被引中国作者:材料类包西昌中科院青岛生物能源与过程研究所蔡孟秋湖南大学曹茂盛北京理工大学陈光明中科院化学研究所陈玉金哈尔滨工程大学陈海宁北京航空航天大学成中军哈尔滨工业大学池振国中山大学丁辉中国矿业大学董显林中科院上海硅酸盐研究所董晓臣南京工业大学杜淼郑州轻工业学院杜亚平南开大学段炼清华大学段吉安中南大学房晓勇燕山大学顾宏伟苏州大学顾晓重庆大学郭志光中科院兰州化学物理研究所韩奎华山东大学何农跃东南大学何军中南大学贺艳兵清华大学深圳研究生院胡陈果重庆大学姬广斌南京航空航天大学赖跃坤苏州大学李立宏中科院化学研究所李东升三峡大学李建丰兰州交通大学李春电子科技大学李越中科院固体物理研究所李春燕哈尔滨工程大学李卫平北京航空航天大学李兴华西北大学梁瑞虹中科院上海硅酸盐研究所刘春森郑州轻工业学院刘生忠中科院大连化学物理研究所刘献明洛阳师范学院卢英杰郑州大学马录芳洛阳师范学院马建中陕西科技大学马忠雷陕西科技大学木士春武汉理工大学彭争春深圳大学渠凤丽曲阜师范大学单崇新郑州大学邵路哈尔滨工业大学邵光杰燕山大学邵进军南京工业大学宋延林中科院化学研究所宋宏伟吉林大学孙旭平电子科技大学汤龙程杭州师范大学陶凯宁波大学王志飞东南大学汪宏西安交通大学王鸿静浙江工业大学王丽熙南京工业大学王海宇吉林大学王静中山大学王祥科华北电力大学危岩清华大学魏志义中科院物理研究所吴竹莲西南大学吴明娒中山大学吴伟武汉大学吴兴隆东北师范大学吴昊四川大学谢志刚中科院长春应用化学研究所邢宏龙安徽理工大学闫培光深圳大学杨会静唐山师范学院杨志涌中山大学杨栋陕西师范大学易院平中科院化学研究所殷小伟西北工业大学余家国武汉理工大学袁杰中央民族大学张小勇南昌大学张楷亮天津理工大学张晗深圳大学张浩力兰州大学张华新加坡赵乃勤天津大学郑敏长春工业大学周子渊中国农业大学周迪西安交通大学朱春玲哈尔滨工程大学朱满洲安徽大学Top1%高被引中国作者:物理化学类张德元中山大学附属第一医院陈建荣浙江师范大学陈祥树江西师范大学陈红征浙江大学陈建中山东交通学院陈宝玖大连海事大学陈全中科院长春应用化学研究所戴洪兴北京工业大学董红军江苏大学董锦明南京大学高鹏中科院上海高等研究院高国华华东师范大学郭强辽宁大学绿源能源与环境科学研究院郭三栋西安邮电大学侯廷军浙江大学胡斌中科院兰州化学物理研究所胡文平天津大学黄慧苏州大学黄敏中科院武汉物理与数学研究所靳治良北方民族大学康振辉苏州大学李鑫华南农业大学李学兵中科院青岛生物能源与过程研究所李朝晖福州大学李妍北京科技大学李庆忠烟台大学李永庆辽宁大学李先锋中科院大连化学物理研究所李学锋湖北工业大学刘温霞齐鲁工业大学刘阳苏州大学刘中民中科院大连化学物理研究所刘治田武汉工程大学卢章辉江西师范大学马宁哈尔滨工程大学牟天成中国人民大学牛晓宇黑龙江大学牛承岗湖南大学潘勇西南石油大学萨百晟福州大学施敏敏浙江大学宋爽浙江工业大学孙志梅北京航空航天大学孙予罕中科院上海高等研究院孙振宇北京化工大学孙明磊东南大学汤文成东南大学田宝柱华东理工大学王风云南京理工大学王忠中科院青岛生物能源与过程研究所王剑波北京大学王进安中科院上海药物研究所(现堪萨斯大学)汪萨克金陵科技学院魏迎旭中科院大连化学物理研究所吴波福州大学吴西林浙江师范大学吴再生福州大学徐安武中国科学技术大学许运华天津大学徐赛大连海事大学严凯中山大学杨宗献河南师范大学叶青北京工业大学于雪莲中国地质大学袁忠勇南开大学曾光明湖南大学曾大文华中科技大学张金龙华东理工大学张泽会中南民族大学张锐郑州航空工业管理学院张小涛天津大学张华民中科院大连化学物理研究所赵彪郑州航空工业管理学院赵景祥哈尔滨师范大学朱宇君黑龙江大学Top1%高被引中国作者:能源与可持续类包信和中科院大连化学物理研究所曹少文武汉理工大学陈军南开大学陈立泉中科院物理研究所陈煜陕西师范大学党锋山东大学董崇礼淡江大学杜红亮空军工程大学何良年南开大学何卫民湖南科技学院黄飞华南理工大学黄福志武汉理工大学黄洪伟中国地质大学康振辉苏州大学雷永鹏中南大学李福军南京大学李阳光东北师范大学李宝华清华大学深圳研究生院李亚飞南京师范大学李昌治浙江大学梁叔全中南大学刘生忠中科院大连化学物理研究所刘兆清广州大学吕伟清华大学深圳研究生院马紫峰上海交通大学马华空军工程大学南策文
  • 基金委与英国皇家学会合作交流项目初审结果公布
    经过公开征集,国家自然科学基金委员会(NSFC)共收到与英国皇家学会(RS)合作交流项目191项,经初步审查并与英方核对清单,确定有效申请118项,现将通过初审的项目公布如下: 序号 学科代码 项目名称 中方申请人 中方申请人单位 英方申请人 英方合作单位 1 A011201 安全约束最优潮流的样本平均近似方法 童小娇 衡阳师范学院 Huifu Xu 南安普敦大学 2 A030101 微波背景辐射数据分析与研究 李惕碚 清华大学 Tom Shanks 杜伦大学 3 A040403 香蕉形液晶的新型光折变效应 项颖 广东工业大学 Helen Gleeson 英国曼彻斯特大学 4 A050702 短波长超短脉冲辐射自由电子激光研究 邓海啸 中国科学院上海应用物理研究所 Brian McNeil 英国斯特拉思克莱德大学物理系 5 A050202 夸克味物理的格点QCD研究 刘朝峰 中国科学院高能物理研究所 Matthew Wingate 英国剑桥大学应用数学与理论物理系 6 A040409 金属纳米线阵列的亚波长等离子体孤子的形成 叶芳伟 上海交通大学 Nicolae Panoiu 伦敦大学学院 7 A01 交互作用分枝系统与排队网络的随机建模 李俊平 中南大学 Anyue Chen 英国利物浦大学 8 A010103 主动脉夹层的分析方法和并行FEM模拟技术 聂玉峰 西北工业大学 Nicholas Hill 格拉斯哥大学数学与统计学院 9 A020311 沙质斜坡切向水流-渗流共同作用下的环境水动力研究 谢立全 同济大学 Ya-kun Guo 阿伯丁大学工学院 10 A0108 非线性守恒律及相关问题的分析 张永前 复旦大学 Gui-Qiang Chen 英国牛津大学 11 A050401 多束离子同时辐照/注入和原位表征 郭立平 武汉大学 Nianhua Peng 萨里大学离子束中心 12 A040409 高激光损伤阈值的中红外非线性光学晶体计算机辅助设计 林哲帅 中国科学院理化技术研究所 Paul Bristowe 英国剑桥大学材料系 13 A020314 使用反问题分析方法、波长扫描干涉和磁共振技术研究主动脉根部的性质 周延周 广东工业大学 Ricky Wildman 英国,拉夫堡大学 14 B061201 具有抗生物垢性能的新型纳米氧化镁复合材料制备及评价研究 宁桂玲 大连理工大学 Qi Zhao 邓迪大学 15 B0306 传感和催化中的多界面过程研究 龙亿涛 华东理工大学 Frank Marken 巴斯大学 16 B040308 新型碱性阴离子交换膜的制备及其在燃料电池中的应用 徐铜文 中国科学技术大学 John Robert Varcoe 萨里大学 17 B060306 磷酸促进型掺锆二氧化硅纳米管/聚偏氟乙烯杂化膜的研究 张裕卿 天津大学 Xianfeng Fan 爱丁堡大学 18 B05 新型纳米药物输运的方法学研究 朱俊杰 南京大学 yiming CHAO 英国东英吉利大学 19 B0103 卤化多孔超分子有机框架材料:存储与分离 吕健 中国科学院福建物质结构研究所 Martin Schrö der 诺丁汉大学 20 B070302 超声/非均相氧化体系降解有机污染物的研究 张晖 武汉大学 David Bremner 阿伯泰邓迪大学 21 B030301 类沸石多级有序骨架结构材料的合成与性能 唐颐 复旦大学 Yongde Xia 英国埃克塞特大学工程,数学和物理科学学院功能材料组 22 B060306 金属有机骨架中空纤维膜的制备及其手性分子识别和选择性分离研究 金万勤 南京工业大学 Kang Li 帝国理工学院 23 B070302 处理老龄渗滤液的垃圾生物反应器脱氮研究 谢冰 华东师范大学 Jan Dofing 纽卡斯尔大学 24 B040502 仿绿色体树枝状色素分子的光学性能机理 贾欣茹 北京大学 Yanyan Huang 剑桥大学化工与生物工程系 25 B0405 自组装形成用于靶向药物传输和可控释放纳米粒子的研究 杜建忠 同济大学 Caglar Remzi Becer 华威大学 26 B070403 镉胁迫下植物绕过DNA损伤检验点的研究 刘宛 中国科学院沈阳应用生态研究所 Dennis Francis 英国卡地夫大学 27 B020104 新型活性分子骨架的催化合成及其抗白血病活性研究 邓卫平 华东理工大学 John Fossey 伯明翰大学 28 C010201 Streptomyces jamaicensis的天然产物的化学与生物合成多样性研究虞沂 武汉大学 Hai Deng 阿伯丁大学 29 C1803 猪口蹄疫病毒CTL表位的设计和筛选 高凤山 大连大学 Yanmin Li 英国动物健康研究所Pirbright实验室 30 C040501 中国蚜小蜂科生物系统分类、DNA 条形码和生物防治的研究 黄建 福建农林大学 Andrew Polaszek 英国自然历史博物馆 31 C060502 根瘤菌比较基因组与进化 陈文新 中国农业大学 Peter Young 约克大学 32 C0606 群体感应在Serratia plymuthica与植物寄主跨界信号交流中的作用 曹军 江苏大学 Miguel Cámara 英国诺丁汉大学 33 C0402 黑暗中的演化——洞穴鱼类平行辐射的系统演化基因组学分析 赵亚辉 中国科学院动物研究所 Bernd Hä nfling 赫尔大学 34 C010702 欧亚大陆两栖动物壶菌的比较种群基因组学 李义明 中国科学院动物研究所 Matthew Fisher 倫敦帝国学院 35 C170202 基于 RNA 测序的植物耐旱性比较研究 王锁民 兰州大学 Anna Amtmann 格拉斯哥大学 36 C180503 胸膜肺炎放线杆菌ApxIVA基因调节子与疫苗研究 雷连成 吉林大学 PAUL LANGFORD 伦敦帝国理工学院 医学院儿科系分子传染病组 37 C090105 对不公正行为惩罚中的情绪效应 朱莉琪 中国科学院心理研究所 Michaela Gummerum 英国普利茅斯大学心理学院 38 C200103 动物性食品中化学污染物代谢研究新技术平台构建 陈刚 中国农业科学院农业质量标准与检测技术研究所 Olena Doran 西英格兰大学 39 C120112 人类胚胎干细胞中纺锤体形成检查点的功能研究 那洁 清华大学 Peter Andrews 英国谢菲尔德大学干细胞中心 40 C1704 华北地区熊蜂鉴定导航系统的构建 安建东 中国农业科学院蜜蜂研究所 Paul Hugh Williams 英国自然历史博物馆,昆虫系 41 C031201 生物多样性热点地区的植物分化与物种共存 黄双全 武汉大学 William Armbruster 英国 普茨茅斯大学 生物科学院 42 C020502 种子发育过程中控制胚乳细胞凋亡基因的鉴定 杨素欣 山东师范大学 Justin Goodrich 爱丁堡大学植物分子科学研究所 43 C040203 青藏高原沙蜥的物种形成 金园庭 中国计量学院 Richard Brown 利物浦约翰摩尔斯大学 44 C090101 阅读中的字母/汉字位置编码:一项关于汉语和英语的跨语言研究 李兴珊 中国科学院心理研究所 Simon Liversedge 英国南安普顿大学心理学院 45 C080105 利用尿细胞和 VHL 基因编辑建立肾癌体外细胞模型 MA Esteban 中国科学院广州生物医药与健康研究院 Patrick Maxwell 伦敦帝国学院医学部肾脏实验室 46 D0207 江南-雪峰隆起北缘成藏流体活动定年 沈传波 中国地质大学(武汉) David Selby 英国杜伦大学地球科学系 47 D0205 岩浆铜镍硫化物矿床热液流体作用与铂族元素活动性比较研究 王焰 中国科学院广州地球化学研究所 Hazel Prichard 卡地夫大学地球和海洋学院48 D010507 锌镉污染土壤伴矿景天-水稻轮作下的土-植微界面过程研究 吴龙华 中国科学院南京土壤研究所 Hao Zhang 兰卡斯特大学 49 E020803 双层结构超疏水植物叶片上的毛细爬行行为 郭志光 湖北大学 Haifei Zhang 英国利物浦大学化学系 50 E070501 高压电磁装备磁化建模的改进理论与方法研究 李庆民 山东大学 Wah Hoon Siew 斯特拉斯克莱德大学 51 E010901 热电磁对流对纯Ni及Cu-Ni二元合金过冷熔体中枝晶生长动力学的影响 高建荣 东北大学 Koulis Pericleous 英国格林威治大学数值模拟与过程分析中心 52 E050501 摩擦磨损精密测试技术及设备 杨学锋 济南大学 Mao Ken 英国华威大学 53 E0508 齿轮精密轧制成形理论及工艺研究 王宝雨 北京科技大学 Jianguo LIN 帝国理工大学 54 E0107 热变形对氮化物强化低活化马氏体耐热钢中氮化物析出行为的影响 严伟 中国科学院金属研究所 wei sha 贝尔法斯特女王大学 55 E060408 高层建筑火灾中外壁面开口火焰溢出行为研究 胡隆华 中国科学技术大学 Michael Delichatsios 英国阿尔斯特大学火灾安全工程与技术研究中心 56 E050301 基于数学形态谱的人体功能状态评估方法研究 阳建宏 北京科技大学 Xianghong Ma 英国艾斯顿大学 57 E060407 固体废物热解碳吸附烟气中单质汞 沈伯雄 南开大学 Williams Paul T. 利兹大学 58 E080701 能源与环境目标下的交通网络设计优化研究 陈群 中南大学 Haibo Chen 利兹大学交通研究所 59 E0605 气力输送中颗粒荷电特性及静电传感器信号失准研究 周宾 东南大学 Jianyong Zhang 蒂赛德大学 60 E051102 金刚石砂轮地貌的精密测量和表征 崔长彩 华侨大学 Xiangqian Jiang 赫德斯菲尔德 61 E050202 浮力摆式波浪能发电装置关键技术深入研究 林勇刚 浙江大学 Xiandong Ma 英国兰卡斯特大学 62 E090102 流域汇流模型尺度变化的规律研究 李致家 河海大学 YI HE 丁铎尔气候变化研究中心,英国东英吉利大学 63 E080506 非一致地震激励作用下近海超长沉管隧道的破坏机理研究 陈之毅 同济大学 Nicholas Alexander 布里斯托尔大学 64 E060502 基于高效纳米光催化材料的新型直接太阳能制氢系统的构建 郭烈锦 西安交通大学 Junwang Tang 伦敦大学学院 65 E010503 负泊松比金属橡胶材料形变机理和力学性能试验研究 马艳红 北京航空航天大学 Fabrizio Luciano Scarpa 布里斯托尔大学航空航天工程学院 66 E060203 涡轮叶顶泄露流中三维涡流结构与激波的互动效应 张强 上海交通大学 Li He 牛津大学 67 E080704 High speed railwayoptimal room layout selection based on environmental noise analysis 吴小萍 中南大学 Benjaming Heydecker 伦敦大学学院 68 E041606 腐蚀与磨损自敏减摩涂层的研究 李文生 兰州理工大学 Shuncai Wang 南安普敦大学, 国家先进摩擦学中心 69 E0503 用‘超模型’定位有限元模型的误差 臧朝平 南京航空航天大学 Michael Friswell 斯旺西大学 70 E060605 缸内直喷汽油机喷雾及燃烧可视化技术交流与合作研究 王建昕 清华大学 Hongming Xu 英国伯明翰大学 71 E060304 仿生表面微纳米尺度流动与相变传热 徐进良 华北电力大学 Yuying Yan 诺丁汉大学 72 E091001 深海顶张力立管参激—涡激耦合振动研究 唐友刚 天津大学 Nigel Barltrop 英国格拉斯哥市斯特拉斯克莱德大学 73 E0509 精密系统表面形貌测量与建模 金鑫 北京理工大学 Paul Scott 哈德斯菲尔德大学 74 E080805 高温下钢-混凝土组合节点动态抗冲击性能研究 霍静思 湖南大学 Feng Fu 布拉德福德大学 75 E050601 面向创新设计的知识融合与协作通信的联合研究 胡洁 上海交通大学 Xiaohong Peng 阿斯顿大学 76 E080601 高速列车荷载作用下轨道路基的全比尺试验和DEM模拟 边学成 浙江大学 Jian-Fei Chen 英国爱丁堡大学 77 E051102 用于航空燃油密度检测的乐甫波器件 陈智军 南京航空航天大学 McHale Glen 诺丁汉特伦特大学 78 E050902 效率20%以上晶硅太阳电池用纳米硅墨低成本制备基础研究 汪炜 南京航空航天大学 Qi Zhang 克兰菲尔德大学 79 E090303 鱼类行为对水力特征的响应 石小涛 三峡大学 Paul Kemp 南安普敦大学 80 E080510 地震损伤对砖石古塔动力特性的影响 李胜才 扬州大学 Dina D'Ayala 英国巴斯大学 81 F020508 图像分类中的局部泛化误差SVM 优化方法 吴永贤 华南理工大学 Daming Shi 英国米德萨克斯大学 82 F010705 声表面波驱动碳纳米管生物传感器的构筑及应用研究 胡平安 哈尔滨工业大学 Richard Fu 西苏格兰大学 83 F040306 有机-无机杂化太阳电池异质结的光电性能调控研究 孙宝全 苏州大学 Henning Sirringhaus 剑桥大学卡文迪许实验室 84 F010406 基于计算智能技术的集成生物标记识别研究 朱泽轩 深圳大学 Shan He 伯明翰大学 计算机科学学院 85 F010104 物联网环境中基于情景感知与规则推理技术的自动监护系统的设计与实现研究 胥正川 复旦大学 Kenneth Turner 斯特灵大学 86 F020502 超窄基线双目图像高精度亚像元匹配研究 刘怡光 四川大学 Jianguo Liu 帝国理工大学 87 F030603 面向野外场景的空中-地面多机器人协作环境探索 庄严 大连理工大学 Huosheng Hu 计算机科学与电子工程学院, 艾塞克斯大学 88 F020202 Measurement-based Approaches to Managing Inconsistency in Software Requirements 牟克典 北京大学 Weiru Liu 贝尔法斯特女王大学 89 F030120 分布式环境下多学科CAE异构系统的协同机制及其实现技术 张和明 清华大学 Hongwei Wang 英国朴茨茅斯大学机械与设计工程系 90 F02 基于隐函数的血管几何建模 田捷 中国科学院自动化研究所 Qingde Li 赫尔大学 91 F010202 逼近理论性能增益的无线网络编码实现方案和先进技术 彭木根 北京邮电大学 zhiguo ding 纽卡斯尔大学 92 F010703 低温下药片的超高分辨率太赫兹时域成像 金飚兵 南京大学 YaoChun Shen 英国利物浦大学 93 F030212 基于智能计算的大规模随机多级库存优化策略研究 宋士吉 清华大学 Kang Li 贝尔法斯特女王大学电子电气工程与计算机科学学院 94 F020701 混沌系统在数字域的动力学退化 李澄清 湘潭大学 Shujun Li 萨里大学 95 F030117 GPS/SINS超紧耦合导航系统完好性监测 王新龙 北京航空航天大学 Shaojun Feng 英国帝国理工大学 96 F030406 基于稀疏图嵌入的图像特征提取方法研究 钟德星 西安交通大学 Edwin Hancock 约克大学 97 F010306 集成学习中个体学习器的互补性研究 曾晓勤 河海大学 Shengli Wu 阿尔斯特大学 98 F040403 低比导通电阻的SOI功率MOSFET及其集成技术 罗小蓉 电子科技大学 Florin Udrea 剑桥大学 99 F040302 电泵浦有机半导体激光 赖文勇 南京邮电大学 Ruidong Xia 英国伦敦帝国学院 100 F020809 用于无线传感器网络实时支撑的博弈市场模型研究 李欢 北京航空航天大学 Xiaotie Deng 英国利物浦大学 101 F020106 面向对象程序的模块化验证:理论和技术 裘宗燕 北京大学 Shengchao Qin 英国,提赛得大学,计算学院 102 F010402 基于手背静脉识别的安全认证 王一丁 北方工业大学 Lik-Kwan Shark 英国中兰开夏大学 103 F030511 基于人-机器人协作的智能共享控制 马宏宾 北京理工大学 Phil Culverhouse 英国普利茅斯大学机器人及神经系统中心 104 F010102 算术码码谱及其应用研究 方勇 西北农林科技大学 Xingang Wang 考文垂大学 105 F020208 大规模分布式系统的可信保障技术研究 李建欣 北京航空航天大学 Lu Liu 英国德比大学 106 F030116 基于强化学习的风力发电机组浆距角优化控制 秦斌 湖南工业大学 Zi-Qiang Lang 英国谢菲尔德大学 107 F020501 基于不确定性可视分析的流体动画参数控制 杨旭波 上海交通大学 Feng Dong 英国贝德福德大学 108 F030406 复杂场景下的多模态生物特征识别 孙哲南 中国科学院自动化研究所 Norman Poh 英国萨里大学 109 F010404 视频异常排序 姚远 北京大学 Tao Xiang 英国伦敦大学玛丽皇后学院 110 G0312 基于生命周期评价的产业生态系统关键产业温室气体排放研究 耿涌 中国科学院沈阳应用生态研究所 Dabo Guan 英国利兹大学 111 G0110 不确定环境下双边装配线平衡方法研究 胡小锋 上海交通大学 Wenjuan Zhang 华威大学商学院 112 H0507 醛固酮的非基因组作用: 通过ATP自分泌/旁分泌调控肾上皮钠通道活性 张彦军 国家纳米技术与工程研究院 Yuri Korchev 伦敦帝国理工学院 113 H1618 低氧诱导因子1α和线粒体在脑胶质瘤干细胞中抗凋亡作用的研究赵宁辉 昆明医学院 Qian An 朴茨茅斯大学 114 H2708 中药对糖尿病大鼠肠道菌群的影响研究 谭周进 湖南中医药大学 Niall Logan 英国Glasgow Caledonian大学健康与生命科学学院 115 H2201 间充质干细胞对放射性脊髓损伤髓鞘再生作用研究 游华 中国人民解放军军事医学科学院 Chao Zhao 剑桥大学 116H1606 Protease Nexin-1在肿瘤微环境中的作用机制研究. 徐丹梅 华中科技大学 Ruth Muschel 牛津大学 117 H1204 基因治疗新策略对视网膜神经变性疾病有效性的活体实时评估研究 吴继红 复旦大学 LI Guo 英国伦敦大学学院眼科研究所 118 H2819 一种用于从药用植物中获取先导化合物的色谱联用方法研究 张敏 华东理工大学 Svetlana Ignatova 布鲁内尔大学生物工程研究所   联系人:国际合作局西欧处 李文聪 范英杰   电 话:010 6232 7014, 010 6232 5309   传 真:010 6232 7004   Email:liwc@nsfc.gov.cn, fanyj@nsfc.gov.cn
  • 安捷伦科技颁发2012年度拉塞尔瓦里安核磁共振创新奖
    安捷伦科技为Ray Freeman和Weston A.Anderson颁发2012年度拉塞尔· 瓦里安(Russell Varian)核磁共振创新奖 2012 年 10 月 17 日,加利福尼亚州圣克拉拉市&mdash &mdash 安捷伦科技公司(纽约证交所:A)今日宣布,两名科学家 Ray Freeman 博士和 Weston A. Anderson 博士因其在 1962 年的《物理化学杂志》(Journal of Chemical Physics) 上发表的开创性论文&ldquo Use of Weak Perturbing Radio-Frequency Fields in Nuclear Magnetic Double Resonance&rdquo 而荣膺 2012 年度拉塞尔· 瓦里安(Russell Varian)核磁共振创新奖。 这两位科学家的合作所取得的突破在过去 50 年里推动了核磁共振领域的飞速发展。 安捷伦产品研发部总经理 Regina Schuck 博士谈到:&ldquo 我们非常荣幸能够为核磁共振技术的早期创新者颁发这个奖项。他们的研究成果是无价的,为解析复杂的核磁共振波谱和分子结构提供了简单可行的方法,也是多个重要技术发展的促进剂,比如目前二维核磁共振技术的基础理论部分。&rdquo Freeman 和 Anderson 是从二十世纪六十年代初开始了NMR的合作研究,当时 Freeman 在瓦里安公司获得博士后的职位,而 Anderson 正是瓦里安的首席科学家。现在,两位科学家退休后分别居住在英国和美国。 Freeman 回忆说:&ldquo 我离开英国到瓦里安公司就是想与 Wes Anderson 共事,我想成为魔法师的门徒,当然另一个原因也是瓦里安对我的最初研究有很大的兴趣。入职后几天,我向大家大致介绍了我在英国的研究工作,其中一页幻灯片展示了一些双共振波谱。当有位同事不经意地提到&ldquo 有条特殊的轨迹似乎表现出微扰效应&rdquo 时,我似乎看到了幸运之神正在朝我招手。正是这一发现激发了我们合作实验的想法。&rdquo Anderson 补充说道:&ldquo 我们两个人的分工主要是我负责理论分析,Ray Freeman 负责具体实验。我和 Freeman 博士在此之前都在独立进行双共振实验,所以我们二人对合作进行核磁共振领域的其他研究的想法一拍即合。我们共同发现,经弱射频场照射单个谱线后,具有与被照射谱线相同能级的所有谱线都将分成双重峰。这一过程最终对复杂波谱分析起到了重要作用。&rdquo 拉塞尔· 瓦里安(Russell Varian)奖是为了纪念率先推出世界上第一台商品化核磁共振波谱仪的先驱同时也是瓦里安公司(如今归入安捷伦科技旗下)的合伙创始人:拉塞尔· 瓦里安(Russell Varian)。获奖对象是那些做出了已证实对核磁共振现有技术具有广泛影响的单项创新贡献(一篇论文、一项专利、一次演讲或一块硬件)和做出了推动科学技术重要发展的最初贡献的研究人员。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是化学分析、生命科学、诊断学、电子和通信领域的技术领导者。公司的 20,000 名员工为 100 多个国家的客户提供服务。在 2011 财政年度,安捷伦的业务净收入为 66 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。
  • 东南科仪推出“激爽e夏,冰点放价”安莱立思促销活动
    尊敬的客户: 您好!为了感谢广大客户对东南科仪的支持,在这个炎热的夏天,东南科仪举办安莱立思促销活动,为您带来一丝清爽,这个火辣的促销活动,您一定不会错过!快来“放价”吧,一起冰爽e夏啦!活动内容: 安莱立思alalis ph400酸度计 原价:2808元/套 促销特价:1880元 安莱立思alalis CD400电导率仪 原价:3510元/套 促销特价:2280元采购热线:400-113-3003 ,这个夏天你不能错过,快来订购吧! 安莱立思全面引进和采用第四代技术生产高性能、高精度的电化学分析测量仪器,这项技术将填补国内空白,为中国分析测试仪器领域的基础测量仪器分支添加新技术。东南科仪与安莱立思强强联合,东南科仪秉承“把世界最优秀的仪器介绍到中国,把中国最专业化的服务提供给用户”的宗旨,诚意向您推荐世界领先水平的电化学分析仪器。 欢迎来电咨询东南科仪:400-113-3003请戳 www.sinoinstrument.com 查询更多产品优惠信息。扫描以下二维码或是添加微信号“dongnankeyi”,加入东南科仪的微信平台,和我们一起互动吧! 广州市天河区天河北路华庭路4号富力天河商务大厦1506-1507(510610) 电话:020-66618088 传真:020-83510388公司网址: www.sinoinstrument.comE-mail:dongnan@sinoinstrument.com【东南科仪创建于1992年。自创建伊始,即致力于向中国引进世界最先进的检测仪器。目前拥有十多个欧、美、日顶级品牌的总代理及一级代理权,产品资源丰富,种类齐全。品牌包括有ATAGO,ALP,VELP,Brookfield,Binder,Lovibond,X-rite,METTLER TOLEDO,alalis,Millipore,Nabertherm ,NICHIRYO,YSI,CURIOX,interscience, EYELA, Telstar,coleparmer等】
  • 培安公司“Thalesnano H-Cube 连续流动氢化反应系统”特价促销
    培安公司作为 ThalesNano 公司在中国大陆地区的独家授权代理,负责该公司旗下的 Cube 系列连续流动化学反应器在中国市场的推广、销售和售后服务工作,此举开创了国内流动化学的新时代,为国内微量化学领域带来革命性的进步。 为感谢新老用户选用培安公司先进技术和优质的技术与产品,并感谢广大用户过去几十年对我们工作的支持和厚爱。培安公司针对各大高校、中科院、研究所等学术研究领域,特推出5台特价 H-Cube 连续流动氢化反应系统,超乎想象的优惠条件,详情请垂涵培安公司。 H-Cube 连续流动氢化反应系统产品简介 H-Cube 连续流动氢化反应系统,利用独特的微流动技术和出色的软件控制系统可以显著的增加反应效率,提高重现性、稳定性和安全性。利用特殊设计封装的催化剂柱,替代传统高压釜系统中的催化剂,从而大大降低了催化剂使用和过滤产生的危险和劳动量。H-Cube 连续流动氢化反应系统内置氢气发生器,避免实验室使用危险的氢气钢瓶。在 Cube 系列反应器中,可以分别满足进气、排气、进液、排液、快速反应、快速加热和冷却、氢气泄漏检测、在线修改反应条件、连续灌注等要求,全系列产品适合研发、中试和生产等任务的要求。目前,该产品在全球的药化、石化、精细化工领域已经得到众多著名公司的广泛使用。 更多详情,请联系培安公司: 电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288 Email: sales@pynnco.com 网站:www.pynnco.com
  • 探秘《止咳药被检出硫磺》的行业“潜规则”!
    今天,关于“止咳药被检出硫磺”的新闻,在朋友圈已经开启了刷屏模式。因为使用了经过硫磺熏蒸的浙贝作为原料,国内多家知名药厂或被牵涉其中。  更让我们痛心的是,硫磺熏蒸浙贝犹如医药行业的“三聚氰胺”,已经成为中药材行业的潜规则,而有关检测的缺失则让这一潜规则发展成为“明规则”!    为您的食品药品安全保驾护航,海能应用实验室运用专业的检测仪器——SOA100二氧化硫残留量测定仪,迅速对止咳常用药中的二氧化硫含量进行测定,提供一手资料,希望对大家有所帮助!  1引言  硫磺燃烧产生二氧化硫,直接杀死虫卵、蛹等,抑制霉菌、真菌滋生,达到防虫防霉作用。二氧化硫与药材中的水分子结合形成亚硫酸。具有脱水、漂白作用。二氧化硫使表皮细胞破坏,促进干燥,特别象产地在南方潮湿地区天麻、 山药等。从毒理学上来说,硫磺属低毒化学品,但其蒸汽及硫磺燃烧后发生的二氧化硫对人体有剧毒。食用二氧化硫超标的食品,容易产生恶心、呕吐等胃肠道反应,此外,还可影响钙吸收,促进机体钙流失。过量进食引起的急性中毒可出现眼、鼻黏膜刺激症状,严重时产生喉头痉挛、喉头水肿、支气管痉挛等。  药典规定山药,牛膝,粉葛等11种传统习用硫磺熏蒸的中药材及其饮片,二氧化硫残留量不得超400mg/kg,其他中药材及其饮片的二氧化硫残留量不得超过150mg/kg,上述限量标准均在世界卫生组织(WHO)认可的安全标准范围内。测定中药及其饮片成品药中二氧化硫含量是为保障人体健康做的最后一道防线,预防救命药变成毒药。  2参考文献  2015版《中国药典》  3药典原理步骤  取药材或饮片细粉约10g(如二氧化硫残留量较高,超过1000mg/kg,可适当减少取样量,但应不少于5g),精密称定,置两颈圆底烧瓶中,加水300-400ml,打开回流冷凝管开关给水,将冷凝管的上端E口处连接一橡胶导气管置于100ml锥形瓶底部。锥形瓶内加入3%过氧化氢溶液50ml作为吸收液(橡胶导气管的末端应在吸收液面一下)。使用前,在吸收液中加入3滴甲基红乙醇溶液指示剂(2.5mg/ml),并用0.01mol/L的氢氧化钠滴定液滴定至黄色(即终点,如果超过终点,则应舍弃该吸收溶液)。开通氮气,使用流量计调节气体流量至约0.2L/min,打开分液漏斗C的活塞,使盐酸溶液(6mol/L)10ml流入蒸馏瓶,立即加热两颈烧瓶内的溶液至沸,并保持微沸,烧瓶内的水沸腾至1.5h后,停止加热。吸收液放冷后,置于磁力搅拌器上不断搅拌,用氢氧化钠滴定液(0.01mol/L)滴定,至黄色持续时间20s不褪,并将滴定结果用空白试验校正。  4反应方程式  SO32- + 2H+→ H2O + SO2  SO2 + H2O2→H2SO4  H2SO4 + NaOH →Na2SO4 + H2O  5仪器  SOA100二氧化硫分析仪(如图1)  T860自动电位滴定仪  pH复合电极  烧杯  6试剂  60%磷酸  3%H2O2  NaOH滴定液(C(NaOH)=0.02mol/L) (图 1)  去离子水  供试品  7试样处理  取药材或饮片细粉约10g(如二氧化硫残留量较高,超过1000mg/kg,可适当减少取样量,但应不少于5g),精密称定,置于400ml蒸馏管中。  (取样如图2)    (图2)  测定蒸馏: 开机,设置参数,进行实验。(图3)  参数设置(如图3)  自动测试  稀释水量:50ml  接收液量: 25ml  加酸体积:10ml  蒸馏时间:7min  淋洗水量:10ml  (蒸馏过程如图4)   (图4)  l 滴定  参数设置  终点设置滴定  终点数:1  终点结束体积:10.00ml  终点pH: 6.20  最小添加体积:0.01ml  初次添加体积:0.02ml  终点预控范围:1.50pH  (滴定过程如图5)    (图5)  SO2总含量计算:  二氧化硫残留量(ug/g)=(A-B)*C*0.032*106/W  式中 A---供试品溶液消耗氢氧化钠滴定液的体积,ml  B---空白消耗氢氧化钠滴定液的体积,ml  C---氢氧化钠滴定液摩尔浓度,mol/L  0.032---1ml氢氧化钠滴定液(1mol/L)相当于二氧化硫的质量,g  W ---供试品的重量,g  实验结果  2 中药材:浙贝母    备注:实验结果只用于为验证实验方法  8结果与讨论  实验选取的浙贝母中二氧化硫的平均含量为644.13ug/g(mg/kg),明显超国家规定的400mg/kg。而含浙贝的止咳药中均检出二氧化硫且含量很高,相比同类止咳药川贝类药品中二氧化硫含量明显低于浙贝产品。国家药典委员会规定山药,牛膝,粉葛等11种传统习用硫磺熏蒸的中药材及其饮片,二氧化硫残留量不得超400mg/kg,其他中药材及其饮片的二氧化硫残留量不得超过150mg/kg。  在使用药典法测试液体类样品中二氧化硫含量时,需剧烈振摇样品或者超声加热除去其中的二氧化碳,因为在滴定过程中二氧化碳会消耗滴定剂氢氧化钠。  在使用SOA100采用药典法进行蒸馏时,建议将6mol/L的盐酸换作60%的磷酸,由于机器蒸馏功率大,易挥发的盐酸很容易蒸馏到吸收液中,造成结果偏大,而磷酸作为中强酸,沸点比盐酸高,不易挥发,效果更好。日本公定法及台湾药典均采用磷酸而非盐酸。  采用药典法进行测试时,由于吸收液过氧化氢不稳定,易分解生成水和氧气,需即用即配。  在使用SOA100采用药典法进行蒸馏时,实验之前需将吸收液H2O2调至pH=6.2,因为过氧化氢显酸性,滴定过程中会消耗氢氧化钠,造成实验结果偏大。  中药中淀粉含量较大,若测试试样为粉末状,在称样前需在蒸馏管中加入20ml蒸馏水,将样品放入后进行摇匀,防止实验时样品结块,造成结果偏低。
  • 检测工具箱中添加内置工作通道内窥镜的3个原因
    商业航空公司飞机的起飞时间要严格遵守时刻表中的安排。但是,只有在飞机检测如期进行的情况下才能做到这一点,而且要做到这点,首先要为检测团队配备合适的视频内窥镜或管道镜等检测设备。本文将会探究为检测工具箱添加内置工作通道内窥镜的3个原因。使用高度柔性工具快速找回异物碎片在飞机检测过程中,螺母和螺栓之类的小物件可能会随时掉入发动机中。这些不需要的物件通常被称为异物碎片(FOD),而且商业飞机的检测人员需要尽快找回这些异物碎片。使用即需即用的内置工作通道工业内窥镜,可以轻松地找回异物碎片。IPLEX NX工业视频内窥镜的内置工作通道工业内窥镜是一种多功能检测解决方案,其标准配置包含六个使用便捷的抓取工具:鳄口式、套取式、吊兰式、抓取式、磁吸式、挂钩式。如果标配工业内窥镜性能下降,可以迅速换用RVI备份设备飞机发动机对于插入工具来说可谓是恶劣的环境,因为发动机内充满了钢制和陶瓷制的坚硬边缘,而插入工具需要在这种狭窄的空间游走,完成检测工作。现实情况是,您用于检测的标准工业内窥镜会随着时间的推移而受到磨损。使用时间越长,损坏的可能性就越大。如果在检测过程中,工业内窥镜突然发生故障,最坏的情形就是没有备份设备。那么要如何应对这种情况呢?只需要带上内置工作通道工业内窥镜。内置工作通道工业内窥镜通常被视为特殊工具,即一种专用于捡拾异物碎片或检测通道的工具,它们也可以用于标准的工业内窥镜检测。内置工作通道工业内窥镜不仅具有与标准插入工业内窥镜相同的功能,而且通常还会处于更好的状态,因为一般来说检测人员很少使用它。为了降低成本,您甚至可以在常规检测和特殊检测时都使用它。符合人体工程学的要求,可以有效地完成工作飞机检测人员需要在狭窄的地方操控内窥镜,因此他们的设备需尽可能地符合人体工程学的要求。问题是,在使用常规工作通道内窥镜进行检测时,由于参与操作的组件太多,给人的感觉就像是一种平衡表演。为了说明这点,这里为您描述使用常规内窥镜取出异物碎片的情形:检测人员右手拿着抓取工具驱动器。左手控制插入管在检测区域的移动情况。他们还要腾出一只手,操控屏幕,并截取图像。但是,又如何做到呢?检测人员的手不够用。使用了正确的工具,可以显著提高效率和生产率。现代的内置工作通道内窥镜提供了便于检测人员更加舒适地进行操控的功能,IPLEX NX视频内窥镜的内置工作通道内窥镜配备有一个宽大的LCD屏幕,您不仅可以轻松观察屏幕的内容,还可以将屏幕拆下来,将其挂在一个方便操控的地方。这款内置工作通道内窥镜还配备了一个轻巧的遥控器,可使您从舒适的位置控制屏幕。奥林巴斯IPLEX NX视频内窥镜内置工作通道内窥镜符合人体工程学的要求,可舒适地操控设备,从而有助于操作人员集中精力完成检测工作。遥控器也可与驱动器方便地联结在一起。将驱动器和遥控器握在同一只手中,可以快速换用这两个装置,与此同时使用另一只手操控插入管。这种现代化设置有助于减轻手腕疲劳,并提高检查效率。
  • 林赛斯中标纳米及应用国家工程中心“热分析项目”
    林赛斯上海销售经理以真诚的销售服务成功中标纳米及应用国家工程中心“热分析项目”。欢迎广大客户咨询本公司产品。
  • 安杰科技与您 乘梦飞翔 共创辉煌
    因为走过的路美丽沧桑因为心中有梦总放眼前方有梦想 就会有力量迎着金色的霞光乘梦飞翔共创辉煌会上,行政、人事、财务、研发、生产、技术、测试、售后、销售、市场等各个部门主管对一年来的工作进行了回顾和分析,并在新的一年找到工作经验和方向。最后由安杰科技领导郝俊与大家共同分享2018年安杰科技取得的成果及工作中的不足,从“产品、架构、品牌”等多个方面,提出“结果导向、创造价值”。安杰科技首席科学家藏平安先生对安杰科技的飞速发展感到欣慰,并强调每个安杰人都要“不忘初心,砥砺前进,挽起袖子加油干”。一个公司的发展,离不开一群人的奉献一群人的奉献,凝聚成一个公司的发展新的一年已经向我们走来,新年代表梦想,代表开始,代表憧憬。在新的一年我们将面临新的挑战和新的机遇。安杰科技将一直秉承“源于传承、勇于创新、精于技术、重于服务”的经营宗旨,做事踏实认真,待人宽容诚恳,追求一流品质,发展永无止境。安杰科技将继续努力,不断追求一流的产品品质,一流的服务质量,将安杰科技打造成水质检测领域的品牌企业。
  • 传赛百味添加偶氮二甲酰胺或为偶氮甲酰胺
    网上疯传的&ldquo 赛百味:食物中含鞋底成分&rdquo ,让正在赛百味啃三明治的张先生有点食不知味。   美国一个知名美食博客的博主曝光了赛百味的三明治面包中有Azodicarbonamide(国内媒体将其翻译为偶氮二甲酰胺)这一成分,在被CNN(美国有线电视新闻网)曝光后,赛百味承认在北美出售的食物中的确含有这种化学物质。CNN还称,市面上大部分连锁,包括麦当劳、星巴克出售的面包都含有此成分。   赛百味中国总部马上联系了第三方检测机构,就供应商提供的面包做了检测。赛百味中国官网发布信息显示,此次检测并未发现偶氮二甲酰胺。接着赛百味也在中国区官网上公布了供应商的名单。   昨天记者向多位食品工业专家咨询,他们纷纷表示头一次听说&ldquo 偶氮二甲酰胺&rdquo 这个化学式。   偶氮二甲酰胺,这个听起来有点拗口的化学名词到底是什么?为什么要将它添加到面包中?   网传赛百味添加的偶氮二甲酰胺 原始报道实指偶氮甲酰胺   偶氮二甲酰胺,是一种工业泡沫塑料发泡剂,通常用作瑜伽垫、橡胶鞋底或者人工皮革等,以增加产品的弹性。它是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。   偶氮二甲酰胺既然不溶于水,如何添加到面包中呢?   记者在查看了CNN的原始报道后发现,CNN报道中提到的Azodicarbonamide,缩写为ADA,实为偶氮甲酰胺。这是一种面粉增筋剂,具有漂白和氧化双重作用,其自身与面粉不起作用,当将其添加于面粉中加水搅拌成面团时,能快速释放出活性氧。在欧盟和澳大利亚,偶氮甲酰胺被禁止使用在食品工业,也有部分国家(包括中国)是允许将其作为添加剂用在食品工业中的。   面包配方对口感影响很大   张先生回忆这些年吃赛百味的经历,发现面包的确有在悄悄变化。&ldquo 前几年,面包坯很扎实,很有嚼劲,现在感觉越来越蓬松了,有时服务员在切面包,如果刀子不够锋利,面包还会被压成一团,是不是就是因为添加了东西啊?&rdquo 张先生好奇。   赛百味浙江地区总代理虞予说:&ldquo 我们的面包全部由总部委托国内一家基层供应商生产,面包的成分、配比也严格按照总部要求执行,之所以顾客会觉得面包口感变了,是因为我们的配方变了。&rdquo 在美国,由于肥胖的人群较多,面包中的小麦粉、植物性原料的比例时常在变,于是国内面包的大小、克数、口感也就跟着变了。有时吃起来偏甜,有时吃起来口感更蓬松。   添加剂是面包配方的一部分   CNN原始报道中,美国面包协会称,在过去美国FDA(食品药品监督管理局)曾指出,少量且恰当地使用ADA作为面团的改良剂,可以使面包更好地成型,能改善面包的质量。   在我国,卫生部公布的《食品添加剂使用标准》(GB2760-2011)中明文指出,偶氮甲酰胺可用于小麦粉,最大使用量为0.045g/kg。   在面粉熟化处理的过程中,添加偶氮甲酰胺能氧化小麦粉中的半胱氨酸,从而使面粉筋度增加,提高面包气体保留量,增加烘焙制品的弹性和韧性。   简单来说,被作为面粉改良剂添加的偶氮甲酰胺主要是让面粉的延展性、加工性能变得更好。&ldquo 加强面筋蛋白的组织结构,使其形成更好的网络结构,改良形态的同时,也能增加面包的嚼劲和延长面包的保质期。&rdquo 中国计量学院标准化学院食品安全标准化研究所的杨勇教授说。自己在家制作的面包放置一段时间以后就容易变塌,也更容易掉渣,跟没有添加偶氮甲酰胺有一定的关系。   关于发泡剂的说法,杨教授表示,发泡并不是我们直接联想到的蓬松。&ldquo 一般在遇到蛋液的时候,才需要添加发泡剂。&rdquo 偶氮甲酰胺与面粉作用,主要是让面粉完成了快速氧化的过程。   食品工业少不了添加剂   本报曾对白吐司用到的添加剂做过调查,发现其中一个样本使用了12种食品添加剂。   面包粉中常见的添加剂有磷酸氢二钠、单硬脂酸甘油酯、羟丙基淀粉、羟丙基二淀粉磷酸酯、磷酸酯双淀粉等,以及食用香精。   面包改良剂中常见的添加剂有醋酸酯淀粉、单、双甘油脂肪酸酯、双乙酰酒石酸单双甘油酯、维生素C、谷朊粉等。   此外还有&alpha -淀粉酶、半纤维素酶等各种酶制剂。   它们中的有一些可以锁住吐司中的水分,有一些使面包变大变蓬变松软,有一些使吐司内部的质地更均匀,烤制后表皮的色泽更好看,还有一些能防止面包老化。它们中的许多都是被复合使用的,才能达到最理想的效果。   为什么外面买的面包总比自家做的面包保鲜度更持久,口感更好,这都是添加剂在起作用。使用几种以及使用哪些种类,各厂家会有自己的做法。但不管来自哪种原料,前提条件是种类和用量都要符合国标规定。   杨教授说,如果把面包中添加的盐写成氯化钠,而恰巧你对氯化钠又不熟悉,是不是也会认为这是一种不好的添加剂?&ldquo 只要没有超标,在国家规定的使用范围内,使用添加剂都是合法、正常的。&rdquo 食品企业有自律性,质检部门也会定期检查、抽查,完全没有必要对食品添加剂过度恐慌。   偶氮甲酰胺,英文简称ADA,是一种黄色至橘红色结晶性粉末。ADA具有漂白和氧化双重作用,是一种速效面粉增筋剂。本品自身与面粉不起作用,当将其添加于面粉中加水搅拌成面团时,能快速释放出活性氧,此时面粉蛋白质中氨基酸的硫氢基被氧化成二硫键,使蛋白质链相互联结而构成立体网状结构,改善面团的弹性、韧性、均匀性,使生产出的面制品具有较大的体积和较好的组织结构。   偶氮二甲酰胺,英文简称ADC,是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。广泛用作聚氯乙烯、聚乙烯、聚苯乙烯、聚丙烯,ABS树脂等的发孔剂。   偶氮甲酰胺是对面粉增白增筋和促进成熟作用以提高烘焙制品品质的一类食品添加剂。过去人们大量使用溴酸钾,目前已被世界卫生组织和FDA认定具有较强致癌性,欧美早已禁用。ADA是当今国际上风行和公认的可安全用于食品的面粉改良剂。是溴酸钾的理想替代品。   偶氮二甲酰胺,英文简称ADC,是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。广泛用作聚氯乙烯、聚乙烯、聚苯乙烯、聚丙烯,ABS树脂等的发孔剂。
  • 欧盟修订/制定食品中甲磺隆残留限量
    今年1月,欧洲食品安全局(EFSA)就多种植物及动物源性食品中甲磺隆的最大残留限量提出修订/制定意见。具体如下:亚麻子中的最大残留限量由现行的0.05mg/kg修订为0.02mg/kg,大麦、燕麦、稻米、黑麦和小麦中的最大残留限量由现行的0.05mg/kg修订为0.01mg/kg,牛、绵羊和山羊三种动物的肉、脂、肝、肾和奶中的最大残留限量修订为0.01mg/kg。   对此,检验检疫部门提醒相关出口企业:一是详细了解EFSA修改意见的详细内容,尽快核实输欧亚麻子、牛羊肉等产品在种植和养殖过程中是否使用了甲磺隆,且所使用的剂量是否有超标风险 二是联系检验检疫部门,对上述输欧产品中甲磺隆残留量加大检测力度,确保产品符合要求,避免退运或召回贸易风险 三是推进生产工序升级和优化,同时做好动植物用药监控工作,减少产品中甲磺隆的残留量。
  • 全自动特性粘度仪在聚己内酯(PCL)材料中的应用
    聚己内酯(PCL)材料是一种以二元醇为引发剂,由己内酯开环聚合而得到的热塑性结晶聚酯。熔点为59~64℃,玻璃化转变温度约为-60~65℃,表现为典型的树脂特性,具有一定刚性和强度,与高分子材料相容性好,可作为改性剂提高其他高聚物的某些性能。聚已内酯(PCL)材料的结构单元由五个非极性亚甲基和一个极性酯基组成,这种结构使得聚己内酯(PCL)材料具有很好的柔韧性和加工型,并且这种结构特点也使其具有良好的生物相容性和可降解性,因而广泛应用于绿色环保材料和医用材料领域之中。根据GB/T 37642-2019标准中规定了聚己内酯(PCL)材料在生产及研发品控中的各项指标及方法,其中乌氏粘度法测定的特性黏度是其核心指标之一。聚己内酯(PCL)材料特性黏度的测定过程中,常使用自动特性粘度仪作为分析仪器,在大幅减轻人员操作负担的同时,更精准、高效的进行实验。IV3000系列全自动特性粘度仪具有操作方便,分子量适用范围广泛,数据重复性良好等优点,所以成为聚己内酯(PCL)材料等高分子材料化验分析中的常用实验仪器,为聚己内酯(PCL)材料的研发及生产提供更精准的实验数值参照。以杭州卓祥科技有限公司的IV3000系列全自动特性粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV3000系列全自动特性粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV3000系列全自动特性粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV3000系列全自动特性粘度仪可实现自动测试、自动排废液、自动清洗及干燥,告别了粘度管是耗材的时代。
  • 岛津推出猪肉中大环内酯类抗生素的三重四极杆质谱法检测方案
    大环内酯类抗生素(Macrolide antibiotics, MALs)是由放线杆菌或小单孢菌产生的一类抗生素。MALs已经成为全世界需求量和销售速度增长最快的抗生素之一。由于MALs具有广谱抗菌作用,可抵抗革兰氏阳性菌、支原体和部分革兰氏阴性菌,因此被广泛应用于治疗猪、牛、羊、虾及家禽的呼吸性和倡导传染性疾病,或在低剂量下作为饲料添加剂促进动物生长发育。食品中的大环内酯类抗生素残留易引起过敏河携带耐药因子菌株的扩散。和其他兽药一样,大环内酯类药物在动物源性食品中的残留监测与控制已经受到许多国家包括我国政府的高度重视。农业部公告第235号规定,红霉素在动物组织、奶和蛋中的最大残留限量(MRL)为40-200 &mu g/kg;替米考星在动物组织和奶中的MRL为50-l500 &mu g/kg;秦乐菌素在动物组织、奶和蛋中的MRL为50-200 &mu g/kg。 本方案立了一种使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8040联用快速测定猪肉中大环内酯类抗生素的方法。8种大环内酯类抗生素在4分钟内得到快速分离和检测。螺旋霉素、替米考星在5- 200 &mu g/L;竹桃霉素、秦乐菌素、北里霉素、红霉素、交沙霉素、罗红霉素在1-500 &mu g/L浓度范围内线性良好,标准曲线的相关系数均在0.9996以上;对5 &mu g/L、20 &mu g/L和200 &mu g/L混合标准溶液进行精密度实验,连续6次进样保留时间和峰面积相对标准偏差分别在1.87%和5.04%以下,系统精密度良好。 了解详情,请点击&ldquo 超高效液相色谱三重四极杆质谱联用法检测猪肉中大环内酯类抗生素&rdquo 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 【赛纳斯】拉曼光谱仪助力国家“寄递渠道禁毒百日攻坚行动”
    近年来,我国寄递业快速发展,在服务生产、促进消费、便利生活、畅通循环等方面发挥了积极作用。但是,一些不法分子借助寄递企业网点分布广、运输交付快等优势便利,进行跨区域走私、贩运dupin等犯罪活动,特别是在疫情防控常态化条件下,“互联网+寄递”已成为日益突出的贩毒方式。针对这一态势,公安部、国家邮政局、国家禁毒办决定,2021年9月1日至12月10日,集中时间、集中力量、集中攻坚开展百日行动,全力打击整治寄递渠道涉毒活动。今年8月份以来截至目前,烟台海关连续在70批次进境快件中查获含有违禁成分麻黄碱的减肥药,而麻黄碱是制造bingdu的主要原料。 这样的减肥药你敢吃吗?2021年4月1日,辽宁省大连市公安局禁毒支队成功破获跨国邮寄贩卖dupin案件,经对快递包裹进行开包、检查,发现藏在洗发水瓶中的疑似bingdu20条,重约500克。 洗发水瓶中藏bingdu9月10日,湖北武汉警方与北京警方联手查获一起通过寄递渠道寄运dupin案,对该包裹进行开箱检查,在枕芯内发现了一只透明塑料袋,袋内有一些透明晶体,疑似bingdu。 枕头藏bingdu除了伪装成邮寄品进行邮寄,新型dupin花样百出,除种类繁多以外,制毒者还为dupin制造了各类“伪装”,此类“伪装”dupin迷惑性极强,令人防不胜防。同时,一些看似平凡的药物,在滥用过后同样会成瘾,比如外表伪装成跳跳糖、奶茶、鸡尾酒等。也加剧了禁毒工作的难度。拉曼光谱非接触式检测,助力伪装dupin筛查厦门赛纳斯基于拉曼光谱技术研发了手持式1064nm拉曼光谱仪(SHINS-P1000)、手持式785nm拉曼光谱仪(SHINS-P700T)两款非接触式新型dupin检测仪器,特别适合现场快速安全鉴别,尤其是1064 nm波长的拉曼光谱仪可穿透快递包裹包材检测,拉曼光谱仪一键式采集检测操作,智能分析匹配,快速给出结果并警报提醒,且手持终端上能进行现场物证信息的输入和确认,便于办案现场迅速获取结果,及时办案。 厦门赛纳斯自主研发手持式拉曼光谱仪 革新技术(表面增强拉曼光谱技术)完美解决dupin检测难题针对伪装dupin、掺杂dupin(dupin含量0.01%)、强荧光干扰等dupin检测难题,厦门赛纳斯基于表面增强拉曼光谱技术还研发了dupin检测专用增强试剂和增强芯片,可现场快速鉴别多种新精神活性物质等新型dupin,具有灵敏度高、准确性高的检测特点,适用于固体、液体、黏稠胶状等检材,已实现200多种dupin(含70种以上芬太尼类、合成大麻素)的高灵敏特异定性鉴别,检出限低至pg~ng级别,特别适用于伪装dupin、制毒吸毒现场残留dupin、快递包裹表面残留dupin等场景检测。该方法拓展性强,对于层出不穷的新型dupin具有很好的适用拓展性,利用仪器自建库功能,可快速建立新型dupin数据库,迅速开展缉毒工作。 检测步骤
  • 戈壁归来成铁军 | 艾威科技敦煌国际企业戈壁挑战赛凯旋归来
    2017年8月21日,由工业和信息化部人才交流中心指导,敦煌市人民市政府、领军企业研究院和香港大公文汇传媒集团主办的领军新丝路2017(第四届)敦煌国际企业戈壁徒步挑战赛在甘肃敦煌市圆满闭幕。 该项赛事共吸引了来自全国近300名领军企业家组成的29支战队及50余名「领二代」胡杨苗队成员,展开了从西土沟雅丹出发,途径寿昌阳关镇等,终点到沙漠第一村的90公里戈壁徒步挑战。经过三天的角逐,最终,第一次组团参赛的艾威科技队表现强劲,力拔头筹夺得了企业组冠军。 让我们回顾艾威科技及胡杨苗成员的精彩表现!出征篇 有无数个理由,让勇于挑战的人站在起点;也有无数个理由,让懦弱的人回避艰辛;然而,路只有一条,无论你怎么选,它始终在那里,沉默,坚硬,无从回避。做企业,既然选择了这么一条艰辛的道路,就要去思考选择企业的这条路,怎么走,怎么走好。奔跑篇在戈壁中徒步,是一个从身到心都净化的过程。在最初的兴奋过后,前进的速度不同将你与前后左右的队友拉开,无论在雅丹地貌的魔鬼城,古河道;还是在沙漠绿洲,春风十里的阳关镇;抑或在百年不死,千年不倒,万年不朽的胡杨林;当你独自一人,视力范围内只有指示前进方向的旗帜时,最先涌上心头的,肯定是最近那张棘手的合同̷̷(笑)独处,伤痛,疲劳,这些都是思考的催化剂;无论你是工程师,中层经理,高管,企业创始人,在茫茫戈壁上,思维和耳边刮过的8级阵风一样,呼啸而过,真正的头脑风暴。(PS:有销售经理在Day2大本营通过电话签了两个合同,真乃艾威企业文化之楷模)旗帜篇旗帜,是标识,也是带领我们前进的指引,更是一种精神力量,经过公司的旗帜,停下来合影留念,默默承诺:此生为你守候。团队篇一个人的奔跑很容易,向前就行了。但带领一个团队完整地抵达终点不是一件容易的事情,体力分配,战术策略,团队角色,牺牲与奉献,这些要素紧密地结合在一起,奠定了团队成绩的基础。艾威科技此次赛事发挥抢眼,除了队员积极训练,实力卓越外,清晰有效的战术亦是成功因素之一:轮换领先冲击成绩,后勤队员牺牲个人成绩陪同女队员,保证完赛率等等。优秀的战术配合完美的执行力,使100%的团队发挥出了120%的战斗力,三天赛程分段冠军从未旁落,强势制霸全场!花絮篇痛与乐并存,乐观积极的精神贯穿于每一个艾威人身上。成绩篇企业组团体:冠军个人成绩:第九,十,十四,十八名胡杨苗青少年组(12—16岁):冠军,亚军胡杨苗儿童组(8—12岁):季军胡杨林奖:团体完赛奖胡杨苗篇合抱之木,生于毫末;九层之台,起于累土;千里之行,始于足下。孩子,给他一个环境,他会成为我们最好的老师。风光篇无需多言!“一个人可以走得很快,但一群人可以走得更远,希望大家不要忘记相互扶持的战友情谊和伟大的团队力量。同时要不断挑战极限,挖掘自身潜能,戈壁可以看作是一种精神,坚持、担当,这是一段无法量化的经历,‘戈壁归来成铁军’。希望企业家朋友珍惜这次极限体验,将感动和领悟牢记于心,运用到企业经营管理之中,在全国各地点亮中小企业领军梦想,为‘一带一路’和西部大开发战略,为国家繁荣富强贡献力量。”工业和信息化部人才交流中心陈新副书记的总结词,亦是艾威科技向前的动力,让我们真正做到:戈壁归来成铁军!2018,戈壁再见!
  • 福建省食品企业商会发布《食品中安赛蜜的测定 液相色谱法》、《食品中苯甲酸、山梨酸、糖精钠和脱氢乙酸 的测定》等3项团体标准征求意见稿
    福建省食品企业商会发布《食品中安赛蜜的测定 液相色谱法》、《食品中苯甲酸、山梨酸、糖精钠和脱氢乙酸 的测定》、《非即食薯类粉》团体标准征求意见稿《非即食薯类粉》团体标准征求意见函.pdf《食品中安赛蜜的测定 液相色谱法》团体标准征求意见函.pdf《食品中苯甲酸、山梨酸、糖精钠和脱氢乙酸的测定》团体标准征求意见函.pdf
  • 感恩十五载,赛智赢未来 | 赛智科技十五周年感恩月正式开启
    尊敬的客户:赛智科技(杭州)有限公司是一家以先进色谱、光谱仪及相关软件为主业,以色谱数据工作站为核心,集研发、生产、销售与技术服务为一体的高科技企业。公司致力于为中小企业、检测机构、科研院校和政府部门等用户提供高性价比的色谱和光谱分析测试、药品检测解决方案。赛智科技的前身为浙江大学智达信息工程有限公司。2006年5月9日创业团队组建赛智科技(杭州)有限公司,拥有了第一台完全自主知识产权的液相色谱仪STI—501。“新赛智、新产品、新服务”是赛智科技的企业目标。建立新的管理体系和经营理念,以人为本,高效工作。在原有产品的基础上,研发创新,推出更高质量的新产品。加强售后服务,解决客户问题,满足客户需求。赛智科技创立至今,一路风雨兼程,历经十五个春秋岁月。在公司全体同仁共同努力下,十五年来铸产品,铸精品,铸人品,用客户至上的精神铸就了公司发展的一个又一个辉煌。为庆祝赛智科技走过风雨十五年,并感恩一路相伴,鼎力支持的新老客户,公司决定开展公司周年庆系列活动。十五周年感恩月具体活动:活动一:“一路同行,感恩回馈” 五月满立减、满立送促销活动活动二:“工欲善其事,必先利其器” 赛智全方位系列培训活动活动三:“凝聚力量,放松心情” 公司员工团建活动(活动详情咨询各区域销售经理,赛智科技享有本次活动的最终解释权)
  • 五月枇杷黄似橘 | 蜜枇杷叶配方颗粒
    五月枇杷黄似橘 | 那年枇杷黄澄澄枇杷果の夏天眼下正是枇杷的成熟季节,个个都是黄澄澄的,皮薄多汁,酸甜可口。枇杷全身都是宝,果实,枇杷花,枇杷叶等都有各自的功效。蜜枇杷叶配方颗粒蔷薇科枇杷属植物枇杷的叶经蜜制后并按标准汤剂的主要质量指标加工制成的配方颗粒,具有润肺止咳、养胃止渴等功效。此次使用日立Primaide高效液相色谱仪和技尔InertSustain C18色谱柱,参照国家药品监督管理局国家药品标准对蜜枇杷叶配方颗粒进行测定。实验仪器及耗材液相色谱仪:日立Primaide色谱柱:InertSustain C18 250×4.6mm, 5μm(P/N:5020-07346)GL Filter针式过滤器(GLS0604 25mm×0.22μm Nylon)GL Vial样品瓶(GLS0008 2mL透明瓶 带刻度+GLS0143 红膜白胶垫片)特征图谱色谱条件色谱柱:InertSustain C18 250×4.6mm, 5μm (P/N:5020-07346)流动相A:乙腈 流动相B:0.4%磷酸水溶液※完全符合标准流速:1.0 mL/min柱温:35℃检测波长:UV 300 nm进样量:10 μL柱压:6.8 MPa仪器型号:日立 Primaide溶液配置对照品溶液的制备:取绿原酸对照品适量,精密称定,加50%甲醇制成每1mL含30μg的溶液,即得。供试品溶液的制备:取本品适量,研细,取约0.2g,精密称定,置具塞锥形瓶中,精密加入50%甲醇25ml,密塞,称定重量,超声处理(功率600W,频率40kHz)30分钟,放冷,再称定重量,用50%甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。系统适用性要求供试品色谱中应呈现6个特征峰,其中峰3、峰4、峰5、峰6应与对照药材参照物色谱中的4个特征峰保留时间相对应,与绿原酸参照物峰相对应的峰为S峰,计算各特征峰与S峰的相对保留时间,其相对保留时间应在规定值的±10%范围之内。规定值为:0.339(峰1)、0.454(峰2)、0.742(峰3)、0.939(峰4)、1.061(峰6)。 实验结果含量测定色谱条件以十八烷基硅烷键合硅胶为填充剂(250×4.6mm, 5μm);以乙腈为流动相A,以0.4%磷酸溶液水流动相B,按下表中的规定进行梯度洗脱;柱温为35℃,检测波长为327nm。溶液配置对照品溶液的制备:取绿原酸对照品适量,精密称定,加50%甲醇制成每1mL含30μg的溶液,即得。供试品溶液的制备:取本品适量,研细,取约0.2g,精密称定,置具塞锥形瓶中,精密加入50%甲醇25ml,密塞,称定重量,超声处理(功率600W,频率40kHz)30分钟,放冷,再称定重量,用50%甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。系统适应性要求理论板数按绿原酸峰计算应不低于5000。实验结果标准品供试品重现性以绿原酸计:说明:此实验根据国家药品标准进行,无改动。结论蜜枇杷叶配方颗粒按照国家药品标准测定。特征图谱测定中,各特征峰的相对保留时间在规定值的±10%之内。含量测定中,绿原酸理论塔板数皆大于70000,且5次实验重复性良好。实验结果表明,使用日立Primaide高效液相色谱仪和技尔InertSustain C18色谱柱完全满足蜜枇杷叶配方颗粒的检测需求。THE END公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制