当前位置: 仪器信息网 > 行业主题 > >

水质镍标准样品标样

仪器信息网水质镍标准样品标样专题为您提供2024年最新水质镍标准样品标样价格报价、厂家品牌的相关信息, 包括水质镍标准样品标样参数、型号等,不管是国产,还是进口品牌的水质镍标准样品标样您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水质镍标准样品标样相关的耗材配件、试剂标物,还有水质镍标准样品标样相关的最新资讯、资料,以及水质镍标准样品标样相关的解决方案。

水质镍标准样品标样相关的资讯

  • 《红土镍矿取样制样及检验标准》通过评审
    日前,在亚太地区红土镍矿合作组织首届理事会上,来自亚太地区12个国家和地区的98家单位近200位代表参加了会议,与会代表一致表决通过了由中国检验认证集团检验有限公司组织编写的《红土镍矿取样制样及检验标准》。   我国自2006年起开始大量进口红土镍矿,至今进口量已达3500万吨,且正呈逐年递增的趋势发展。由于国内国际均没有统一的红土镍矿取样制样及检验标准,在近几年的红土镍矿进口贸易中,各家使用各自不同检测手段与方法,时常因装卸货港镍矿的品质及水分差异较大等问题产生争议,制订和颁布统一的《红土镍矿取样制样及检验标准》迫在眉睫。   《红土镍矿取样制样及检验标准》由中国检验认证集团检验有限公司组织编写。在编写过程中,得到了矿产行业多家单位的大力支持,尤其是辽宁检验检疫局国家级矿产品检测重点实验室在检测技术与方法上给予了大力支持。与会代表一致认为:《红土镍矿取样制样及检验标准》的出台填补了行业的一个空白,必将规范杂乱无序的红土镍矿市场,为保护贸易双方的合法权益提供重要的制度保障。
  • 欧盟新含镍标准比旧标准严格10倍
    从今年3月起,欧盟执行最新的镍含量标准EN1811:2011,取代原先的EN1811:2008.普门对市场监管十分严格,不符合标准的产品将面临被退货、折价处理或就地销毁。   EN1811:2011要求,对于与皮肤长期直接接触产品的镍释放限量为0.5微克/平方厘米/周的则判样品不合格,在0.28~0.88微克/平方厘米/周之间的则没有明确的评判结论。   EN1811:2011和EN1811:2008主要有两部分技术差异:一是释放溶液pH值调整溶液不同,同样样品经过新旧两个标准的释放溶液浸泡,在新标准释放溶液中的镍洗出量较大 而是检测结果的校准处理不同,就标准要求对最终检测机构乘以一个校准系数0.1,而新标准则没有要求。   因此,同样的样品在同样条件下释放镍,新标准的最终结果相当于比旧标准严格了10倍。机遇以上的技术差异,原用EN1811:2008检测不超标的样品,若按照新标准EN1811:2011检测结果则有可能会超标。
  • 欧盟镍释放限量标准变化需关注
    今年3月,欧盟出台最新规定,各成员国对纺织服装中金属配件和辅件的镍含量采用全新标准(EN 1811:2011)。据江苏南京检验检疫局介绍,新旧标准的一个重要差异在于对检测结果的校准处理不同,旧标准对最终检测结果先乘以校准系数0.1,校准后的结果再按照是否超过0.5μg/cm2/week进行评判 而新标准没有要求乘以校准系数,由此可见,新标准比旧标准严格近10倍。   新标准实施后,欧盟对进口服装产品实施严查,这对我国输欧服装贸易产生巨大影响。在纺织服装生产过程中,金属纽扣、拉链、装饰件等配件和辅助件均可释放出镍离子,对此,南京局专门走进企业宣传新规定,提醒外贸公司、生产厂家和相关机构:一是要求企业高度重视欧盟新标准的变化,严格控制自身产品质量 二是要把新规定出台前生产的样品按照新标准EN 1811:2011进行检测,对产品质量进行摸底 三是要求生产企业应调整工艺,使用不含镍材料的原料制品 四是按照新标准进行抽样检测和质量监督,发现问题及时预警,做好质量控制,规避退货索赔风险。
  • 广东省拟编制三项水质在线监测仪技术标准
    仪器信息网编辑近日从中国政府采购网获悉,广东省环保厅拟对《生物毒性水质自动在线监测仪技术要求和检测方法》、《锌水质自动在线监测仪技术要求和检测方法》、《镍水质自动在线监测仪技术要求和检测方法》等三项标准编制工作进行单一来源采购。   根据招标公告,《生物毒性水质自动在线监测仪技术要求和检测方法》拟制定的供应商为广东经信清洁生产促进中心。理由为该单位在推广应用水质自动监控等清洁生产技术中积累的丰富的经验,参与完成《生态监控水质在线监测系统的研发》(省科技计划项目)、《LumiFox手持式水质毒性分析仪及试剂研发》等地方科技项目。该单位目前已与省内从事生物毒性水质自动在线监测仪生产的骨干企业合作,开展了生物毒性水质自动在线监测仪检测方法及相关参数指标的研究工作,具有良好的工作基础和研究制定《生物毒性水质自动在线监测仪技术要求和检测方法》的专业能力。   水质生物毒性的标准分析方法主要为分光光度法,现有的生物检测仪器所利用的生物有水蚤、藻类、发光细菌、贻贝以及鱼,其中发光细菌的反应面广,检测谱最宽,灵敏度高,成本低,能够第一时间判断水质毒性程度。目前,发光细菌法已经成为一种简单、快速的生物毒性检测手段、广泛应用于质检、环境监测、水产养殖等领域,并被列入国际标准(ISO11348)和我国国家标准(GB/T15441)。   根据调查,国外欧美等发达国家对生物毒性在线监测设备的研发起步较早,比较成熟的有美国哈希、日本岛津、意大利希思迪、德国布朗卢比等公司生产的产品。目前国内有深圳朗石、深圳宇星等多家企业所生产的生物毒性自动在线监测仪等产品已广泛应用于我国主要饮用水源生物毒性的在线检测。由于没有统一的标准,在光损、精密度、灵敏度、实际水样比对试验只能参考国外或国内其他已有的标准,因此,制定针对性的行业标准显得尤为迫切。   为了反映规定光损、精密度、灵敏度、实际水样比对试验等仪器性能指标的科学性,标准编制组为各仪器生产厂配置了标准样品进行测试比对 收集各厂家测试数据结果,对监测数据进行了分析讨论。   《锌水质自动在线监测仪技术要求和检测方法》拟制定的供应商为广东环协环保职业技能培训中心。理由为该中心持有由广东省劳动和社会保障厅批准的&ldquo 中华人民共和国民办学校许可证&rdquo (劳社民4400003060003号),负责全省自动监控环境污染治理设施运营现场管理人员和操作人员的培训工作。中心在编制自动连续监测运营操作工培训教材、现场操作技能培训以及相关环保标准宣贯培训中积累的丰富的经验,具有参与《广东省印染废水治理技术规范》、《广东省印染、印制电路板行业污染减排技术应用现状调研》等科研项目的工作经历。该单位目前已与省内从事锌水质自动在线监测仪生产的骨干企业合作,开展了锌水质自动在线监测仪检测方法及相关参数指标的研究工作,具有良好的工作基础和研究制定《锌水质自动在线监测仪技术要求和检测方法》的专业能力。   水质锌的标准分析方法主要有分原子吸收,色谱法,分光光度法,以及滴定法等,在以上分析方法中,分光光度法是水质自动在线监测仪最常用的分析监测方法。根据调查,国外欧美等发达国家对镍在线监测设备的研发起步较早,比较成熟的有美国哈希、日本岛津、意大利希思迪、德国布朗卢比等公司生产的产品。国内有中兴仪器、广州怡文、广东伟创、深圳朗石、深圳宇星、深圳世纪天源等多家企业生产锌自动在线监测仪等产品。   此次标准的制定目标为针对锌水质自动在线监测仪的性能指标、试验方法及技术要求制定标准,主要包括仪器组成以及示值误差、零点漂移、量程漂移、加标回收率、实际水样比对试验等性能指标。   《镍水质自动在线监测仪技术要求和检测方法》拟制定的供应商为广东省环境保护产业协会。理由是该协会是由我省从事环境保护科研、设备生产,自然保护与资源综合利用、开发经营、服务等方面的企、事业单位等自愿组成的非营利性社会团体,制定行业规范及行业标准是协会实现行业服务的主要工作之一,长期从事我省环境保护类地方标准编制工作,具有承担《环境工程技术规范&mdash 工程设计文件要求》(国家环保部标准编制计划)、《印制电路板行业废水治理工程技术规范》《印染行业废水治理工程技术规范》、《生态监控水质在线监测系统的研发》、《广东省&ldquo 十二五&rdquo 节能环保产业发展规划(2011-2015年)》等业绩。该单位目前已与省内从事镍水质自动在线监测仪生产的骨干企业合作,开展了镍水质自动在线监测仪检测方法及相关参数指标的研究工作,具有良好的工作基础和研究制定《镍水质自动在线监测仪技术要求和检测方法》的专业能力。   水质镍的标准分析方法主要有分光光度法、原子吸收光度法、电化学法、电感耦合等离子体发射光谱法等,在以上分析方法中,自动在线监测仪最常采用分析的方法有阳极溶出伏安法和化学比色法。根据调查,国外欧美等发达国家对镍在线监测设备的研发起步较早,比较成熟的有美国哈希、日本岛津、意大利希思迪、德国布朗卢比等公司生产的产品。国内有中兴仪器、广州怡文、广东伟创、深圳朗石、深圳宇星、深圳世纪天源等多家企业生产镍自动在线监测仪等产品。   此次标准的制定目标为针对镍水质自动在线监测仪的性能指标、试验方法及技术要求制定标准,主要包括仪器组成以及示值误差、零点漂移、量程漂移、加标回收率、实际水样比对试验等性能指标。
  • SGS首次研制工业硅国家标准样品获标样委认可
    近日,在全国有色金属标准样品鉴定会上,全球领先的检验、鉴定、测试和认证机构SGS研制的三个工业硅国家标准样品获得标样委鉴定认可。SGS首次主持研制国家标准样品即获成功,标志着其标准样品研制的整体实力和综合水平迈向了新台阶。SGS标准样品的覆盖领域进一步拓宽,也体现国际第三方检测机构在工业硅生产,贸易行业内的技术权威性,先进性和扎实的技术研发实力。  工业硅是现代工业尤其是高科技产业必不可少的材料,被广泛应用于信息产业、钢铁冶炼和电子电气行业等领域。虽然我国硅产量世界第一,但是我国工业硅标准样品在牌号Si1101等硅含量高于99.60%的区域,几乎没有标准样品覆盖 ,严重制约了我国硅产业的健康发展。众所周知,标准样品在建立测量结果溯源性方面发挥着重要作用,它使得检验、分析和测量以及实验室间测量值的互相传递成为可能。科学研制工业硅标准样品,完善工业硅标准样品体系,针对工业硅在生产、贸易过程中的杂质元素进行规范检测和有效质量控制,对于硅产业的发展有积极的促进作用和长远的现实意义。SGS矿产部专家参与评审  SGS矿产实验室科研人员结合我国工业硅产业的实际市场需求,根据GB/T 2881-2014 《工业硅》对于主要杂质元素的分布梯度要求,借鉴国内外研制经验,反复摸索试验,克服各种困难,牢牢控制住标样的均匀性、稳定性和准确性的关键环节,经过长达两年的数据积累和分析测试,最终完成了一定化学梯度分布的三个工业硅标准样品的研制和定值。  这样的技术成果,为SGS作为第三方检测机构,不论是在国际贸易环节的质量验证,还是行业生产环节的质量技术支持,或者贸易品质争议中的仲裁服务,储备了核心竞争力,主导和占据市场领先地位,提供国际认可的,具有高度权威性和技术领先性的质量技术服务。  SGS矿产实验室分布在中国的有13个能源实验室,5个综合实验室,沿海经济圈呈全网络覆盖式发展,并拥有分析测试服务、冶金选矿服务、实验室咨询服务、培训服务等全产业链服务优势。SGS矿产实验室引进一流的仪器设备及其内部卓越的管理模式,严格执行质量控制,精确把控服务模块的每一个环节。  关于SGS  SGS是全球领先的检验、鉴定、测试和认证机构,是公认的质量和诚信的基准。SGS集团在世界各地共有85,000多名员工,分布在1,800多个分支机构和实验室,构成了全球性的服务网络。  SGS通标标准技术服务有限公司是SGS集团和隶属于原国家质量技术监督局的中国标准技术开发公司共同于1991年成立,经过20多年的发展,在全国已建成了50多个分支机构和100多间实验室,拥有13,000多名训练有素的专业人员。  在中国,SGS的服务能力已全面覆盖到工业及建筑业、汽车、矿产、石化、农产及食品、纺织品及服装鞋类、电子电气、轻工家居、玩具及婴幼儿用品、生命科学、化妆品及个人护理产品、医疗器械等多个行业的供应链上下游。凭借全球化技术优势和本地化服务理念,我们不断创新,通过一流的检测、认证服务,致力在企业组织、政府和个人间传递信任,更助力本土及全球客户加速业务成功、提升可持续发展竞争力。
  • 《水质 氨氮的测定 气相分子吸收光谱法》等五项国家生态环境标准征求意见
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,生态环境部组织编制了《水质 氨氮的测定 气相分子吸收光谱法》等五项国家生态环境标准征求意见稿,现公开征求意见。请于2022年8月8日前将意见建议书面反馈生态环境部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。联系人:生态环境部监测司杜祯宇。水质 氨氮的测定 气相分子吸收光谱法(征求意见稿)(点击下载)为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》和《中华人民共和国海洋环 境保护法》,防治生态环境污染,改善生态环境质量,规范水中氨氮的测定方法,制定本标准。 本标准规定了测定地表水、地下水、生活污水、工业废水和海水中氨氮的气相分子吸收光谱法。 本标准是对《水质 氨氮的测定 气相分子吸收光谱法》(HJ/T 195-2005)的修订。修订的主要内容如下: ——增加了氨氮的定义、试样制备、质量保证和质量控制、废物处置以及注意事项等条款; ——删除了气液分离装置、无氨水的制备; ——修改了方法适用范围、规范性引用文件、试剂配制、样品保存时间、校准曲线标准物质以及结 果计算与表示; ——完善了干扰和消除、光源类型、载气类型、校准曲线类型等内容; ——细化了仪器参考条件。水质 总氮的测定 气相分子吸收光谱法(征求意见稿)(点击下载)为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》和《中华人民共和国海洋环境保护法》,防治生态环境污染,改善生态环境质量,规范水中总氮的测定方法,制定本标准。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中总氮的气相分子吸收光谱法。本标准是对《水质 总氮的测定 气相分子吸收光谱法》(HJ/T 199-2005)的修订。主要修订内容如下:——增加了总氮的定义、试样的制备、质量保证和质量控制、废物处置以及注意事项等条款;——删除了气相分子吸收光谱法的术语和定义、无氨水的制备; ——修改了方法适用范围、规范性引用文件、方法原理、试剂和材料、样品的采集与保存;——完善了干扰和消除、光源类型、载气类型、前处理方式、校准曲线类型、结果计算与表示;——细化了仪器参考条件。水质 硫化物的测定 气相分子吸收光谱法(征求意见稿)(点击下载)为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》和《中华人民共和国海洋 环境保护法》,防治生态环境污染,改善生态环境质量,规范水中硫化物的测定方法,制定本标准。 本标准规定了测定地表水、地下水、生活污水、工业废水和海水中硫化物的气相分子吸收光谱法。 本标准是对《水质 硫化物的测定 气相分子吸收光谱法》(HJ/T 200-2005)的修订。主要修订内容如下: ——增加了硫化物的术语和定义、质量保证和质量控制、废物处置; ——删除了适用范围中的“饮用水”、气相分子吸收光谱法的术语和定义、气液分离装置; ——修订了样品的采集与保存、絮凝沉淀分离法、载流液(酸化剂)的配制、计算公式; ——完善了干扰和消除、光源类型、载气类型、校准曲线的建立、结果与表示。铜水质自动在线监测仪技术要求及检测方法(征求意见稿)(点击下载)为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》,防治生态环 境污染,改善生态环境质量,规范铜水质自动在线监测仪的技术性能,制定本标准。 本标准规定了铜水质自动在线监测仪的技术要求、性能指标及检测方法。 本标准为首次发布。镍水质自动在线监测仪技术要求及检测方法(征求意见稿)(点击下载)为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》,防治生态环 境污染,改善生态环境质量,规范镍水质自动在线监测仪的技术性能,制定本标准。 本标准规定了镍水质自动在线监测仪的技术要求、性能指标及检测方法。 本标准为首次发布。征求意见单位名单(点击下载)
  • 2013第一批拟立项国家标准样品研复制项目公布
    2013年11月4日,国家标准化管理委员会发布对2013年第一批拟立项国家标准样品研复制项目征求意见的通知,通知全文如下:   各有关单位:   经研究,国家标准委决定对2013年第一批拟立项国家标准样品研复制项目(见附件)公开征求意见,其中新研制项目20项,复制项目76项。征求意见截止时间为2013年11月18日。   请将国家标准样品立项意见回复表发至电子信箱:crm@sac.gov.cn。   附件:1.2013年第一批拟立项国家标准样品研复制项目   2. 国家标准样品立项意见回复表   2013年11月4日   附件: 2013年第一批拟立项国家标准样品研复制项目 项目名称 研复制 被复制标样号 对应文字标准 研制单位 钕同位素比值分析标准样品 研制   GB/T 17672-1999岩石中铅、锶、钕同位素测定方法 中国地质科学院地质研究所 正己烷中2,2&rsquo ,4,5,5&rsquo -五氯联苯分析校准用标准样品(PCB101) 研制     环境保护部标准样品研究所 正己烷中2,2' ,3,4,4' ,5' -六氯联苯分析校准用标准样品(PCB138) 研制     环境保护部标准样品研究所 丙酮中菲-D10分析校准用标准样品 研制     环境保护部标准样品研究所 氮气中二氧化硫气体标准样品 (10&mu mol/mol) 研制     环境保护部标准样品研究所 环境基体 土壤重金属元素分析标准样品 研制   GB15168-1995《土壤环境质量标准》及HJ 332-2006《食用农产品产地环境质量评价标准》 环境保护部标准样品研究所 环境基体 烟尘重金属元素分析标准样品 研制     环境保护部标准样品研究所 甲醇/二氯甲烷中苯并(j)荧蒽分析校准用标准样品 研制     环境保护部标准样品研究所 甲醇中硝基苯-D5分析校准用标准样品 研制     环境保护部标准样品研究所 水质 碘化物分析校准用标准样品 研制     环境保护部标准样品研究所 水质 铋分析校准用标准样品 研制     环境保护部标准样品研究所 氮气中丙烯气体标准样品 研制     环境保护部标准样品研究所 22种氯代烃混合气体标准样品 研制     环境保护部标准样品研究所 甲醇中十氯酮分析校准用标准样品 研制     环境保护部标准样品研究所 甲醇中五氯苯分析校准用标准样品 研制     环境保护部标准样品研究所 A类火灾试验用塑料杯组合体燃烧物标准样品 研制   用于灭火系统灭火试验的标准火源(计划号20110730-T-312) 公安部天津消防研究所 A类火灾试验用纸杯组合体燃烧物标准样品 研制     公安部天津消防研究所鞋类勾心纵向刚度性能标准样品 研制   GB 28011-2011鞋类钢勾心 GB/T 3903.34-2008鞋类 勾心试验方法纵向刚度 QB/T 1813-2000皮鞋勾心纵向刚度试验方法 中国皮革和制鞋工业研究院 鞋底耐磨性能标准样品 研制   GB/T 3903.2-2008鞋类 通用试验方法 耐磨性能 中国皮革和制鞋工业研究院 家用燃气灶具检测用标准容器 研制   GB16410 家用燃气灶具 中国标准化协会、浙江苏泊尔股份有限公司 金属材料拉伸用标准样品 复制 GSB 03-2039-2006 GB/T 228.1-2010金属材料 拉伸试验 第1部分:室温试验方法 钢铁研究总院 钢研纳克检测技术有限公司 金属夏比冲击试验机用标准样品L-级 复制 GSB 03-2040-2006 GB/T 18658-2002摆锤式冲击试验机检验用夏比V型缺口标准试样 钢铁研究总院 钢研纳克检测技术有限公司 金属夏比冲击试验机用标准样品M-级 复制 GSB 03-2041-2006   钢铁研究总院 钢研纳克检测技术有限公司 金属夏比冲击试验机用标准样品H-级 复制 GSB 03-2042-2006   钢铁研究总院 钢研纳克检测技术有限公司 金属夏比冲击试验机用标准样品UH-级 复制 GSB 03-2043-2006   钢铁研究总院钢研纳克检测技术有限公司 含钼、铜、铌、氮不锈钢光谱光谱用系列标准样品 复制 GSB 03-2028-2006 GB/T 11170-2008不锈钢 多元素含量的测定 火花放电原子发射光谱法(常规法) 钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 合金铸铁光谱分析用系列标准样品1# 复制 GSB 03-2152-2007 GB/T 14203-1993钢铁及合金光电发射光谱分析法通则 钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 合金铸铁光谱分析用系列标准样品2#复制 GSB 03-2153-2007   钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 合金铸铁光谱分析用系列标准样品3# 复制 GSB 03-2154-2007   钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 合金铸铁光谱分析用系列标准样品4# 复制 GSB 03-2155-2007   钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 合金铸铁光谱分析用系列标准样品5# 复制 GSB 03-2156-2007   钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 合金铸铁光谱分析用系列标准样品6# 复制 GSB 03-2157-2007   钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 锰硅合金(FeMn67Si23)标准样品 复制 GSB 03-1359-2001 GB/T4008-2008锰硅合金 中钢集团吉林铁合金股份有限公司 微碳铬铁(FeCr65C0.10)标准样品 复制 GSB 03-1314-2000 GB/T5683-2008铬铁 中钢集团吉林铁合金股份有限公司 钛精矿标准样品 复制 GSB 03-1686-2004 YB/T 159.1~7-1999钛精矿(岩矿)化学分析方法 攀钢集团攀枝花钢铁研究院有限公司 铝合金3003(含Pb)光谱标准样品 复制 GSB 04-1708-2004 GB/T 7999-2007铝及铝合金光电直读发射光谱分析方法 西南铝业(集团)有限责任公司熔铸厂 氟化铝标准样品 复制 GSB 04-1477-2002 GB/T 8156.1~10-1987工业用氟化铝化学分析方法 湖南有色湘乡氟化学有限公司&ensp &ensp &ensp &ensp &ensp 点燃式发动机检测用油标准样品 复制 GSB 06-1631-2010 GB 17930-1999车用无铅汽油 中国石油乌鲁木齐石化总厂研究院、中国石油乌鲁木齐石化总厂西峰工贸总公司、辽宁省标准样品开发中心 压燃式发动机检测用油标准样品 复制 GSB 06-1632-2010 GB/T19147-2003《车用柴油》标准以及我国汽车排放试验用基准燃料的技术规格GB 18352.3,GB/T19147 中国石油乌鲁木齐石化总厂研究院、中国石油乌鲁木齐石化总厂西峰工贸总公司、辽宁省标准样品开发中心 水泥用石灰石成分分析标准样品 复制 GSB 08-1345-2010 GB/T5762&mdash 2000建材用石灰石化学分析方法 中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心 水泥用粘土成分分析标准样品 复制 GSB 08-1347-2010 JC/T 874&mdash 2009水泥用硅质原料化学分析方法 中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心 水泥用矾土成分分析标准样品 复制 GSB 08-1351-2001 GB/T 205&mdash 2008铝酸盐水泥化学分析方法 中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心 水泥生料成分分析标准样品 复制 GSB 08-1353-2013 GB/T 176&mdash 2008水泥化学分析方法 中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心 水泥熟料成分分析标准样品 复制 GSB 08-1355-2013 GB/T 176&mdash 2008水泥化学分析方法 中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心 普通硅酸盐水泥成分分析标准样品 复制 GSB 08-1356-2013 GB/T176&mdash 2008水泥化学分析方法 中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心 铝酸盐水泥成分分析标准样品 复制 GSB 08-1533-2003 GB/T 205&mdash 2008铝酸盐水泥化学分析方法 中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心 水泥细度用萤石粉标准样品(80&mu m筛余和比表面积) 复制 GSB 08-2184-2008 GB/T1345-2005 水泥细度检验方法 筛析法GB/T8074-2008 水泥比表面积测定方法 勃氏法 中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心 水泥细度用萤石粉标准样品(45µ m筛余和比表面积) 复制 GSB 08-2185-2008 GB/T1345-2005 水泥细度检验方法 筛析法 GB/T8074-2008 水泥比表面积测定方法 勃氏法 中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心 中国ISO标准砂 复制 GSB 08-1337-2013 GB/T17671-1999水泥胶砂强度检验方法(ISO法) 中国建筑材料科学研究总院 厦门艾思欧标准砂有限公司 水泥细度和比表面积标准样品 复制 GSB 14-1511-2010 GB/T208-1994水泥密度测定方法 GB/T 1345-2005水泥细度检验方法 筛析法 GB/T8074-2008水泥比表面积测定方法 勃氏法 中国建筑材料科学研究总院 水泥与科学新型建筑材料研究院 食品分析用丙酸溶液标准样品 复制 GSB 11-2358-2008 GB/T 5009.120-2003食品中丙酸钠、丙酸钙的测定 沈阳标准样品研究所 食品分析用环己基氨基磺酸钠溶液标准样品 复制 GSB 11-2359-2008 GB/T 5009.97-2003食品中环已基氨基磺酸钠的测定 沈阳标准样品研究所 食品分析用乙酰磺胺酸钾、糖精钠溶液标准样品 复制 GSB 11-2360-2008 GB/T 5009.28-2003食品中糖精钠的测定 沈阳标准样品研究所 食品分析用锑溶液标准样品 复制 GSB 11-2361-2008 GB/T 5009.137-2003食品中锑的测定 沈阳标准样品研究所 食品分析用脱氢乙酸溶液标准样品 复制 GSB 11-2362-2008 GB/T 5009.121-2003食品中脱氢乙酸的测定 沈阳标准样品研究所 食品分析用乙酰磺胺酸钾溶液标准样品 复制 GSB 11-2363-2008 GB/T 5009.28-2003食品中糖精钠的测定 沈阳标准样品研究所 食品分析用丁二酸溶液标准样品 复制 GSB 11-2364-2008 GB/T 5009.157-2003食品中有机酸的测定 沈阳标准样品研究所 食品分析用对羟基苯甲酸丙酯溶液标准样品 复制 GSB 11-2365-2008 GB/T 5009.31-2003食品中对羟基苯甲酸酯类的测定 沈阳标准样品研究所 食品分析用对羟基苯甲酸乙酯、丙酯溶液标准样品 复制 GSB 11-2366-2008 GB/T 5009.31-2003食品中对羟基苯甲酸酯类的测定 沈阳标准样品研究所 食品分析用对羟基苯甲酸乙酯溶液标准样品 复制 GSB 11-2367-2008 GB/T 5009.31-2003食品中对羟基苯甲酸酯类的测定 沈阳标准样品研究所 食品分析用钠、钾溶液标准样品 复制 GSB 11-2368-2008 GB/T 5009.91-2003食品中钾、钠的测定 沈阳标准样品研究所 食品分析用钾溶液标准样品 复制 GSB 11-2369-2008 GB/T 5009.91-2003食品中钾、钠的测定 沈阳标准样品研究所 食品分析用酒石酸溶液标准品 复制 GSB 11-2370-2008 GB/T 5009.157-2003食品中有机酸的测定 沈阳标准样品研究所 食品分析用没食子酸丙酯溶液标准样品 复制 GSB 11-2371-2008GB/T 5009.32-2003油酯中没食子酸丙酯(PG)测定 沈阳标准样品研究所 食品分析用钠溶液标准样品 复制 GSB 11-2372-2008 GB/T 5009.91-2003食品中钾、钠的测定 沈阳标准样品研究所 食品分析用柠檬酸溶液标准样品 复制 GSB 11-2373-2008 GB/T 5009.157-2003食品中有机酸的测定 沈阳标准样品研究所 食品分析用牛磺酸溶液标准样品 复制 GSB 11-2374-2008 GB/T 5009.169-2003食品中牛磺酸的测定 沈阳标准样品研究所 食品分析用苹果酸溶液标准样品 复制GSB 11-2375-2008 GB/T 5009.157-2003食品中有机酸的测定 沈阳标准样品研究所 食品分析用有机酸溶液标准样品 复制 GSB 11-2376-2008 GB/T 5009.157-2003食品中有机酸的测定 沈阳标准样品研究所 食品分析用苯甲酸溶液标准样品 复制 GSB 11-2377-2008 GB/T 5009.29-2003食品中山梨酸、苯甲酸的测定 沈阳标准样品研究所 食品分析用钙溶液标准样品 复制 GSB 11-2378-2008 GB/T5009.92-2003食品中钙的测定 沈阳标准样品研究所 食品分析用汞溶液标准样品 复制 GSB 11-2379-2008 GB/T 5009.17-2003食品中总汞及有机汞的测定 沈阳标准样品研究所 食品分析用磷溶液标准样品 复制 GSB 11-2380-2008 GB/T 5009.87-2003食品中磷的测定 沈阳标准样品研究所 食品分析用山梨酸溶液标准样品 复制 GSB 11-2381-2008 GB/T 5009.29-2003食品中山梨酸、苯甲酸的测定 沈阳标准样品研究所 食品分析用糖精钠溶液标准样品 复制 GSB 11-2382-2008 GB/T 5009.28-2003食品中糖精钠的测定 沈阳标准样品研究所食品分析用亚硝酸钠溶液标准样品 复制 GSB 11-2383-2008 GB/T 5009.33-2008食品中亚硝酸盐与硝酸盐的测定 沈阳标准样品研究所 食品分析用镉溶液标准样品 复制 GSB 11-2085-2007 GB/T5009.15-2003食品中镉的测定 沈阳标准样品研究所 食品分析用铝溶液标准样品 复制 GSB 11-2086-2007 GB/T5009.182-2003面制食品中铝的测定 沈阳标准样品研究所 食品分析用镁溶液标准样品 复制 GSB 11-2087-2007 GB/T5009.90-2003食品中铁、镁、锰的测定 沈阳标准样品研究所 食品分析用锰溶液标准样品 复制 GSB 11-2088-2007 GB/T5009.90-2003食品中铁、镁、锰的测定 沈阳标准样品研究所 食品分析用镍溶液标准样品 复制 GSB 11-2089-2007 GB/T5009.138-2003食品中镍的测定 沈阳标准样品研究所 食品分析用铅溶液标准样品 复制 GSB 11-2090-2007 GB/T5009.12-2010食品中铅的测定 沈阳标准样品研究所 食品分析用铁溶液标准样品 复制 GSB 11-2091-2007 GB/T5009.90-2003食品中铁、镁、锰的测定 沈阳标准样品研究所 食品分析用铜溶液标准样品 复制 GSB 11-2092-2007 GB/T5009.13-2003食品中铜的测定 沈阳标准样品研究所 食品分析用锡溶液标准样品 复制 GSB 11-2093-2007 GB/T5009.16-2003食品中锡的测定 沈阳标准样品研究所 食品分析用锌溶液标准样品 复制 GSB 11-2094-2007 GB/T5009.14-2003食品中锌的测定 沈阳标准样品研究所 河豚毒素标准样品 复制 GSB 11-2533-2009   国家海洋局第三海洋研究所 食品中菌落总数标准样品 复制 GSB 11-2219-2008   中国检验检疫科学研究院 鳕鱼中金黄色葡萄球菌标准样品 复制 GSB 11-2224-2008   中国检验检疫科学研究院 鳕鱼中副溶血性弧菌标准样品 复制 GSB 11-2223-2008   中国检验检疫科学研究院 奶粉中单核细胞增生李斯特氏菌标准样品 复制 GSB 11-2274-2008   中国检验检疫科学研究院 奶粉中沙门氏菌标准样品 复制 GSB 11-2275-2008   中国检验检疫科学研究院 测定聚乙烯树脂熔体流动速率用标准样品PE-T 复制 GSB 15-1160-2008 GB/T 3682-2000热塑性塑料熔体质量流动速率和熔体体积流动速率的测定 中国石油化工股份有限公司北京燕山分公司树脂应用研究所 测定聚丙烯树脂熔体流动速率用标准样品PP-M 复制 GSB 15-1313-2010   中国石油化工股份有限公司北京燕山分公司树脂应用研究所 标准贴衬织物(棉、毛、丝、苎麻、聚酯、聚丙烯腈、粘胶、聚酰胺) 复制 GSB 16-2082-2010 GB/T7568.1~6 纺织品色牢度试验标准贴衬织物规格 GB/T13765-1992纺织品色牢度试验 亚麻和苎麻标准贴衬织物规格 上海市纺织工业技术监督所 评定变色、沾色用灰色样卡 复制 GSB 16-2083-2010 GB/T250-2008 纺织品 色牢度试验 评定变色用灰色样卡 GB/T251-2008纺织品 色牢度试验 评定沾色用灰色样卡 上海市纺织工业技术监督所
  • 江苏省市场监督管理局批准发布《植物样品中砷、镉、铬、铜、镍、铅、锌的测定 能量色散X射线荧光光谱法》等14项江苏省地方标
    江苏省市场监督管理局拟批准发布14项江苏省地方标准,现将标准报批文本予以公示(见附件1),公示期为2024年8月13日至2024年9月11日。如对公示文本有异议,请于2024年9月11日前向江苏省市场监督管理局书面提出,并提交《江苏省地方标准征求意见反馈表》(见附件2)。单位提出意见的需加盖单位公章,个人提出意见的需实名并提供联系方式。联系地址:南京市草场门大街107号龙江大厦1802室,联系电话:025-85012023,电子邮箱:jssbzhc@163.com。附件1:2024年第10批江苏省地方标准报批文本目录及内容.rar附件2:江苏省地方标准征求意见反馈表.doc江苏省市场监督管理局2024年8月13日 附件下载.zip相关标准如下:大球盖菇菌种生产技术规程脱毒大蒜蒜种生产技术规程植物样品中砷、镉、铬、铜、镍、铅、锌的测定 能量色散X射线荧光光谱法
  • GB 5084-2021《农田灌溉水质标准》正式实施,您需要的解决方案来了
    为了分质用水、协调水土体系,生态环境部与国家市场监督管理总局联合发布的GB 5084-2021《农田灌溉水质标准》在2021年7月1日起实施,从而保证水土标准体系的整体性、协调性。 农田灌溉水质标准的限值变化与控制项目请见上一篇介绍☟☟☟推动分质用水,协调水土体系——生态环境部发布GB 5084-2021《农田灌溉水质标准》点击链接:https://mp.weixin.qq.com/s?__biz=MzIwMzM4NTc3NA==&mid=2247497112&idx=1&sn=a8588cd3b2ee3d13d2f8aa4998dcfa8b&scene=21#wechat_redirect今天,根据农田灌溉水质标准的项目要求,在这里给大家带来岛津详细的水质分析方案。 挥发性有机物&半挥发性有机物 GCMS结合吹扫捕集测定土壤中60种挥发性有机物 仪器配置:岛津气质谱联用仪GCMS-QP2020 NXCDS 7400 水土一体自动进样器CDS 7000E 吹扫捕集 仪器条件:样品前处理:50 mL 容量瓶中加入20 μL 内标溶液(ρ=25 μg/mL),用水样定容至50 mL,将添加内标的水样转移至40 mL 棕色吹扫捕集瓶中,放置于CDS 7400 自动进样器中。5 mL 水样自动吸入,氦气将脱附的VOCs 载入到气相色谱- 质谱联用仪 57 种挥发性有机物TIC 图(5.0 μg/L)样品色谱图 GCMS法测定生活饮用水中半挥发性有机物 仪器 GCMS-QP2020 NX 分析条件: 前处理:取1 L自来水水样,用固相萃取柱(填料为聚甲基丙烯酸酯-苯乙烯)吸附萃取,待测物经洗脱后浓缩定容,待上机分析。SVOCs和内标的TIC图 (浓度:10 µg/mL)样品色谱图 GCMS 易用性:Smart SIM数据库 & 智能钟功能 智能钟功能:自动检漏自动调谐,准确掌控停机时间 无机阴离子分析 应对HJ 84-2016 色谱条件:氢氧根体系,梯度洗脱色谱柱:Shodex IC SI-36 4D;保护柱:Shodex IC SI-90G淋洗液:A:50mM KOH ;B:水流速:0.7 mL/min(泵压:14.3MPa)柱温:35 ℃ 标准曲线:重现性:连续进样6次,保留时间和峰面积的RSD值七种阴离子的保留时间重复性≤0.07%,峰面积重复性≤0.88% 金属元素分析 ICPMS --- 江河水中金属元素分析 对微量的铅(Pb)、铬 (Cr)、镉 (Cd) 、硒 (Se)、砷(As) 、铜(Cu) 、铁 (Fe)、锰 (Mn) 、锌(Zn) 、硼 (B)、铝 (Al)、镍(Ni)、钡 (Ba)、钼(Mo)、铀 (U)、钾 (K)、钠 (Na)、镁 (Mg) 以及钙 (Ca)等19种成分进行了分析。向样品内添加了内标元素Be、Co、Ga、Y、In、Tl使其浓度分别达到5μg/L。 直接分析江河水标准物质:JSAC0301-3, 0302-3,ICP-MS会由于多原子离子形成的谱线干扰,造成灵敏度下降以及测量值产生误差。ICPMS-2030通过使用碰撞,系统消除谱线56Fe的40Ar16O、75As的40Ar35Cl与78Se的40Ar38A等的干扰,提高灵敏度,降低检测限。 ICP/ICPMS极低运行成本 —— 三大技术使运行成本降至常规的30%。ICPMS 提升分析效率 —— 方法开发与诊断助手。水质应用扩展 水质异味分析系统,无需标准品对100多种水质异味进行半定量筛查GCMS + Compound Composer 快速筛查数据库,能快速应对突发性环境污染事故,对900多种有机污染物进行半定量筛查GCMS Compound composer快速筛查数据库 AOE-LCMS/MS 大体积进样系统,自动化快速前处理,应对SVOC分析难题
  • 标样所研制完成多溴二苯醚标准样品,助力新污染物调查监测
    为充分发挥新污染物标准样品的量值溯源和质量控制作用,标样所依托国家生态环境标准项目和新污染物调查监测试点项目,成功研制土壤中多溴二苯醚和异辛烷中十溴二苯醚溶液等2项标准样品,并于近期提供监测机构试用,目前反馈良好。 标样所将继续积极落实生态环境部关于新污染调查监测试点的有关工作部署,紧盯《重点管控新污染物清单(2023年版)》,有序开展壬基酚、全氟化合物等新污染物标准样品制备技术研究,提升新污染物标准样品科技创新能力,持续完善新污染物标准样品体系,加快推进新污染物标准样品应用转化,为新污染物治理提供质量管理技术支撑。
  • 水/海洋环保新政下,有哪些市场爆点?2024年上半年水/海洋政策标准汇总
    回顾2024年上半年,我国在水生态、水资源、水环境以及海洋环境保护等等多个领域,实施了一系列具有战略意义和实际效力的措施。这些措施的实施,不仅凸显了我国对于保护和改善水环境及海洋生态系统的坚定态度,也显现了我国在推动海洋经济可持续发展方面的坚强决心。这一系列行动不仅能够帮助我们更加全面地了解中国在水和海洋生态环境保护方面的政策布局和实践成果。还为推动我国水环境与海洋生态保护工作走向深入,提供了有力的政策支持和实践依据。仪器信息网梳理了生态环境领域涉及水、海洋的相关重要政策和标准,让我们一起梳理下都有哪些。2024年相关政策法规《中华人民共和国海洋环境保护法》实施时间:2024年1月1日内容概述:为了保护和改善海洋环境,保护海洋资源,防治污染损害,保障生态安全和公众健康,维护国家海洋权益,建设海洋强国,推进生态文明建设,促进经济社会可持续发展,实现人与自然和谐共生,根据宪法,制定本法。《关于全面推进美丽中国建设的意见》发布时间:2024年1月11日内容概述:明确了全面推进美丽中国建设的重点任务,提出要持续深入推进污染防治攻坚、加快发展方式绿色转型、提升生态系统多样性稳定性持续性、守牢美丽中国建设安全底线、打造美丽中国建设示范样板、开展美丽中国建设全民行动、健全美丽中国建设保障体系。《节约用水条例》发布时间:2024年3月20日内容概述:对节水潜力大、使用面广的用水产品实行水效标识管理,并逐步淘汰水效等级较低的用水产品。对符合条件的节水项目,按照国家有关规定给予补助。对节水成绩显著的单位和个人,按照国家有关规定给予表彰、奖励。自2024年5月1日起施行。《美丽海湾建设提升行动方案》发布时间:2024年6月内容概述:到2025年,在100余个海湾重点推进美丽海湾建设,整体建设质量稳步提升,基本建成80个左右美丽海湾,“一湾一策”海洋生态环境治理得到有效加强,纳入《“十四五”海洋生态环境保护规划》的生态保护修复工程目标高质量完成,近岸海域范围内所有入海排污口完成排查,重点海湾的入海排污口整治基本完成。到2027年,美丽海湾建成率达到40%左右,厦门市等7个沿海地市全域推进美丽海湾建设任务力争完成,全国纳入监测的典型海洋生态系统健康状况比例继续提升,美丽海湾建设范围内入海排污口基本完成整治。《沿海城市海洋垃圾清理行动方案》发布时间:2024年6月内容概述:充分借鉴福建等地海洋垃圾治理经验和胶州湾等11个重点海湾专项清漂行动成果,充分考虑地方已有工作基础,紧盯65个城市建成区毗邻海湾,组织相关沿海地方全面启动“一湾一策”海洋垃圾清理活动,明确了到2025年“65个海湾内岸滩垃圾得到及时有效清理,海面漂浮垃圾密度明显下降”,到2027年“65个海湾内海洋垃圾密度大幅下降,常态化达到清洁水平”等目标。《长江三角洲区域生态环境行政处罚裁量规则》实施时间:2024年6月15日内容概述:推进长江三角洲区域生态环境行政执法一体化、精细化,提升执法能力和水平,根据《中华人民共和国行政处罚法》《生态环境行政处罚办法》及其他有关法律、法规、规章等规定,制定本规则。2024年相关标准国家标准《工业浓盐水回用技术导则》(GB/T)发布时间:2024年4月25日内容概述:中国国家标准,旨在规范工业浓盐水的回用技术,以促进水资源的节约和循环利用。这份文件为工业浓盐水的回用提供了一套详细的技术指导,涵盖了从预处理到后处理的各个环节,并对水质监测、污泥处理等关键环节提出了具体要求。通过这些规范,可以有效地促进工业废水的资源化利用,减少环境污染,同时提高水资源的利用效率。《水处理剂分析方法 第2部分:砷、汞、镉、铬、铅、镍、铜含量的测定 电感耦合等离子体质谱法(ICP-MS)》(GB/T 43098.2-2023)实施时间:2024年6月1日内容概述:描述了用电感耦合等离子体质谱法测定水处理剂中砷、汞、镉、铬、铅、镍、铜含量的方法。本文件适用于水处理剂中砷、汞、镉、铬、铅、镍、铜含量的测定,各元素含量测定范围为0.001 ug/g~10 ug/g。行业标准《水生态监测技术指南 湖泊和水库水生生物监测与评价(试行)》(HJ 1296-2023)实施时间:2024年1月1日内容概述:防治生态环境污染,改善生态环境质量,规范湖泊和水库水生态监测中水生生物监测与评价工作,制定本标准。本标准规定了湖泊和水库水生态监测中水生生物监测点位布设与监测频次、监测方法、质量保证和质量控制、评价方法等技术内容。《饮用水水源地生态环境保护执法监管遥感调查技术规范》(HJ 1356-2024)实施时间:2024年5月1日内容概述:为防治环境污染,改善生态环境质量,规范和指导饮用水水源地生态环境保护执法监管遥感调查工作,制定本标准。本标准规定了利用卫星、无人机等遥感技术对饮用水水源地生态环境保护执法监管遥感调查的工作流程、数据准备、遥感解译、线索筛查、线索生成、成果归档等相关要求。本标准为首次发布。《水质 硫化物的测定 气相分子吸收光谱法》(HJ 200-2023)实施时间:2024年6月1日内容概述:防治生态环境污染,改善生态环境质量,规范水中硫化物的测定方法,制定本标准。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中硫化物的气相分子吸收光谱法。《水质 氨氮的测定 气相分子吸收光谱法》(HJ 195-2023)实施时间:2024年6月1日内容概述:防治生态环境污染,改善生态环境质量,规范水中氨氮的测定方法,制定本标准。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中氨氮的气相分子吸收光谱法。《水质 总氮的测定 气相分子吸收光谱法》(HJ 199-2023)实施时间:2024年6月1日内容概述:防治生态环境污染,改善生态环境质量,规范水中总氮的测定方法,制定本标准。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中总氮的气相分子吸收光谱法。地方标准深圳市《生活饮用水水质监督检查技术规范》(DB4403/T 435-2024 )实施时间:2024年5月1日内容概述:规定了水质监督检查中监督检查点的设置、频率、指标、现场监督检查、检测方法和质量控制、水质在线监测数据、结果的判定、上报和处理、水质信息公开和资料保存及水质异常事件处理等技术内容。河南省《医疗机构水污染物排放标准》(DB41/ 2555-2023)实施时间:2024年5月1日内容概述:规定了医疗机构污水、污水处理站废气和污水处理站污泥的排放控制、监测监控及实施与监督要求。适用于医疗机构污水、污水处理站废气和污水处理站污泥的排放管理,新建医疗机构的环境影响评价、环境保护设施设计、竣工环境保护验收、排污许可证核发及其投产后的污染物排放管理,也适用于重大疫情防控中的方舱医院、集中隔离场所的污染物排放管理。山东省《海水养殖尾水排放标准》(DB37/ 4676-2023 )实施时间:2024年5月24日内容概述:规定了海水养殖尾水排放控制要求、监测要求、达标判定等内容。本文件适用于海水池塘养殖和海水工厂化养殖的尾水排放管理。河南省《水产养殖尾水污染物排放标准》(DB41/ 2575-2024)实施时间:2024年6月1日内容概述:本文件规定了水产养殖尾水污染物排放一般要求、受纳水域划分、排放控制要求、监测要求、达标判定及实施与监督。本文件适用于集中连片池塘养殖、漏斗型池塘养殖以及工厂化养殖尾水的排放管理。河南省《工业集聚区地下水环境监测技术规范》(DB41/T 2666-2024 )实施时间:2024年6月11日内容概述:规定了工业集聚区地下水监测准备、监测点布设、监测井建设与管理、监测项目与频次、样品采集及测试分析、质量保证和质量控制、监测报告编制等要求。本文件适用于工业集聚区地下水环境监测。河南省《黑膜沼气废水处理工程运行与维护技术规程》(DB41/T 2644-2024)实施时间:2024年6月11日内容概述:本文件规定了黑膜沼气废水处理工程的启动、运行、维护和安全要求。本文件适用于黑膜沼气池处理畜禽养殖废水的工程运行维护与管理。河南省《污染场地地下水修复技术可行性评估规范》(DB41/T 2629-2024)实施时间:2024年6月11日内容概述:本文件确立了污染场地地下水修复技术可行性评估的基本原则、工作程序和工作内容,规定了场地条件确认、修复模式选择、修复技术筛选和评估、修复技术方案确定和修复技术可行性评估报告编制相关工作环节的技术要求。本文件适用于污染场地地下水修复技术可行性评估工作。本文件不适用于放射性污染和致病性生物污染场地。团体标准《土壤污染重点监管单位周边土壤和地下水监测质量控制技术规范》(T/GXSES 0003-2024)实施时间:2024年5月5日内容概述:界定了土壤污染重点监管单位周边土壤和地下水监测质量控制涉及的术语和定义,规定了土壤污染重点监管单位周边土壤和地下水监测的监测方案编制、人员要求、仪器与设备、样品采集、样品流转、样品制备、样品分析测试、质量评价、质量体系等质量控制技术要求。以上为仪器信息网小编不完全统计(按时间排序),仅供查阅使用及参考,如有遗漏等需修改请联系:wangyh@instrument.com.cn尽管目前与海洋相关的政策标准较少,但2024年1月1日,新修订《海洋环境保护法》正式实施。这部法律的出台标志着我国在海洋环境保护领域的法制建设迈上了新台阶,为实现海洋生态文明建设提供了坚实的法律保障。随后,国务院新闻办公室7月11日发布了《中国的海洋生态环境保护》白皮书。这份白皮书全面总结了近年来我国在海洋生态环境保护方面取得的成绩与经验,同时也明确了未来一段时间内我国海洋环境保护的工作重点和发展方向。这些标准和政策体现了我国对于海洋生态环境保护的重视。通过实施更严格的法律法规,希望进一步改善水质和海洋生态环境,促进可持续发展。小编大胆猜测2024年下半年,会有更多配套措施出台,以确保上述政策的有效执行。除却国家政策外,各省市也会紧跟步伐发布一系列政策标准助力水环境治理,继续加大对水质与海洋生态环境保护的投入,努力构建人与自然和谐共生的美好未来。
  • 国标委下达96项国家标准样品研复制项目计划
    全国标准样品技术委员会:   为加强相关领域国家标准样品研复制工作,满足有关方面对国家标准样品的需求,国家标准化管理委员会决定下达&ldquo 钕同位素比值分析标准样品&rdquo 等96项国家标准样品研复制项目计划(见附件)。   请你委员会高度重视,认真组织,加强与有关方面的协调沟通,广泛听取意见,按时保质完成国家标准样品研复制任务。   附件:96项国家标准样品研复制计划项目清单.doc   国家标准委   2013年12月13日 96项国家标准样品研复制计划项目清单 序号 项目编号 项目名称 研/复制 被复制标样号 完成时间 (年) 研(复)制单位 1 S2013001 钕同位素比值分析标准样品 研制 2015 中国地质科学院地质研究所 2 S2013002 正己烷中2,2&rsquo ,4,5,5&rsquo -五氯联苯分析校准用标准样品(PCB101) 研制 2014 环境保护部标准样品研究所 3 S2013003 正己烷中2,2' ,3,4,4' ,5' -六氯联苯分析校准用标准样品(PCB138) 研制 2014 环境保护部标准样品研究所 4 S2013004 丙酮中菲-D10分析校准用标准样品 研制 2014 环境保护部标准样品研究所 5 S2013005 氮气中二氧化硫气体标准样品 (10&mu mol/mol) 研制 2014 环境保护部标准样品研究所 6 S2013006 环境基体 土壤重金属元素分析标准样品 研制 2014 环境保护部标准样品研究所 7 S2013007 环境基体 烟尘重金属元素分析标准样品 研制 2014 环境保护部标准样品研究所 8 S2013008 甲醇/二氯甲烷中苯并(j)荧蒽分析校准用标准样品 研制 2014 环境保护部标准样品研究所 9 S2013009 甲醇中硝基苯-D5分析校准用标准样品 研制 2014 环境保护部标准样品研究所 10 S2013010 水质 碘化物分析校准用标准样品研制 2014 环境保护部标准样品研究所 11 S2013011 水质 铋分析校准用标准样品 研制 2014 环境保护部标准样品研究所 12 S2013012 氮气中丙烯气体标准样品 研制 2014 环境保护部标准样品研究所 13 S2013013 挥发性22种氯代烃混合气体标准样品 研制 2014 环境保护部标准样品研究所 14 S2013014 甲醇中十氯酮分析校准用标准样品 研制 2014 环境保护部标准样品研究所 15 S2013015 甲醇中五氯苯分析校准用标准样品 研制 2014 环境保护部标准样品研究所 16S2013016 A类火灾试验用燃烧物标准样品1 研制 2015 公安部天津消防研究所 17 S2013017 A类火灾试验用燃烧物标准样品2 研制 2015 公安部天津消防研究所 18 S2013018 鞋类勾心纵向刚度性能标准样品 研制 2015 中国皮革和制鞋工业研究院 19 S2013019 鞋底耐磨性能标准样品 研制 2015 中国皮革和制鞋工业研究院 20 S2013020 家用燃气灶具检测用标准容器 研制 2015 中国标准化协会、浙江苏泊尔股份有限公司 21 S2013021 金属材料拉伸用标准样品 复制 GSB 03-2039-2006 2014 钢铁研究总院、钢研纳克检测技术有限公司 22 S2013022 金属夏比冲击试验机用标准样品-L级 复制 GSB 03-2040-2006 2014 钢铁研究总院、钢研纳克检测技术有限公司 23 S2013023 金属夏比冲击试验机用标准样品-M级 复制 GSB 03-2041-2006 2014 钢铁研究总院、钢研纳克检测技术有限公司 24 S2013024 金属夏比冲击试验机用标准样品-H级 复制 GSB 03-2042-2006 2014 钢铁研究总院、钢研纳克检测技术有限公司 25 S2013025 金属夏比冲击试验机用标准样品-UH级 复制 GSB 03-2043-2006 2014 钢铁研究总院、钢研纳克检测技术有限公司 26 S2013026 含钼、铜、铌、氮不锈钢光谱用系列标准样品 复制 GSB 03-2028-2006 2014 钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 27 S2013027 合金铸铁光谱分析用系列标准样品1# 复制 GSB 03-2152-2007 2014 钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 28 S2013028 合金铸铁光谱分析用系列标准样品2# 复制 GSB 03-2153-2007 2014 钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 29 S2013029 合金铸铁光谱分析用系列标准样品3#复制 GSB 03-2154-2007 2014 钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 30 S2013030 合金铸铁光谱分析用系列标准样品4# 复制 GSB 03-2155-2007 2014 钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 31 S2013031 合金铸铁光谱分析用系列标准样品5# 复制 GSB 03-2156-2007 2014 钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 32 S2013032 合金铸铁光谱分析用系列标准样品6# 复制 GSB 03-2157-2007 2014 钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 33 S2013033 锰硅合金(FeMn67Si23)标准样品 复制 GSB 03-1359-2001 2014 中钢集团吉林铁合金股份有限公司 34 S2013034 微碳铬铁(FeCr65C0.10)标准样品 复制 GSB 03-1314-2000 2014 中钢集团吉林铁合金股份有限公司 35 S2013035 钛精矿标准样品 复制 GSB 03-1686-2004 2014 攀钢集团攀枝花钢铁研究院有限公司 36 S2013036 铝合金3003(含Pb)光谱标准样品 复制 GSB 04-1708-2004 2014 西南铝业(集团)有限责任公司熔铸厂 37 S2013037 氟化铝标准样品 复制 GSB 04-1477-2002 2014 湖南有色湘乡氟化学有限公司 38 S2013038 点燃式发动机检测用油标准样品 复制 GSB 06-1631-2010 2013 中国石油乌鲁木齐石化总厂研究院、中国石油乌鲁木齐石化总厂西峰工贸总公司、辽宁省标准样品开发中心39 S2013039 压燃式发动机检测用油标准样品 复制 GSB 06-1632-2010 2013 中国石油乌鲁木齐石化总厂研究院、中国石油乌鲁木齐石化总厂西峰工贸总公司、辽宁省标准样品开发中心 40 S2013040 水泥用石灰石成分分析标准样品 复制 GSB 08-1345-2010 2014 中国建材检验认证集团股份有限公司、国家水泥质量监督检验中心 41 S2013041 水泥用粘土成分分析标准样品 复制 GSB 08-1347-20102014 中国建材检验认证集团股份有限公司、国家水泥质量监督检验中心 42 S2013042 水泥用矾土成分分析标准样品 复制 GSB 08-1351-2001 2015 中国建材检验认证集团股份有限公司、国家水泥质量监督检验中心 43 S2013043 水泥生料成分分析标准样品 复制 GSB 08-1353-2013 2014 中国建材检验认证集团股份有限公司、国家水泥质量监督检验中心 44 S2013044 水泥熟料成分分析标准样品 复制 GSB 08-1355-2010 2014 中国建材检验认证集团股份有限公司、国家水泥质量监督检验中心 45 S2013045 普通硅酸盐水泥成分分析标准样品 复制 GSB 08-1356-2013 2014 中国建材检验认证集团股份有限公司、国家水泥质量监督检验中心 46 S2013046 铝酸盐水泥成分分析标准样品 复制 GSB 08-1533-2003 2015 中国建材检验认证集团股份有限公司、国家水泥质量监督检验中心 47 S2013047 水泥细度用萤石粉标准样品(80&mu m筛余和比表面积) 复制 GSB 08-2184-2008 2014 中国建材检验认证集团股份有限公司、国家水泥质量监督检验中心 48 S2013048 水泥细度用萤石粉标准样品(45µ m筛余和比表面积) 复制 GSB 08-2185-2008 2014 中国建材检验认证集团股份有限公司、国家水泥质量监督检验中心 49 S2013049 中国ISO标准砂 复制 GSB 08-1337-2013 2014 中国建筑材料科学研究总院 、厦门艾思欧标准砂有限公司 50 S2013050 水泥细度和比表面积标准样品 复制 GSB 14-1511-2010 2014 中国建筑材料科学研究总院、水泥与科学新型建筑材料研究院 51 S2013051 食品分析用丙酸溶液标准样品 复制 GSB 11-2358-2008 2014 沈阳标准样品研究所 52 S2013052 食品分析用环己基氨基磺酸钠溶液标准样品 复制 GSB 11-2359-2008 2014 沈阳标准样品研究所 53 S2013053 食品分析用乙酰磺胺酸钾、糖精钠溶液标准样品 复制 GSB 11-2360-2008 2014 沈阳标准样品研究所 54 S2013054 食品分析用锑溶液标准样品 复制 GSB 11-2361-20082014 沈阳标准样品研究所 55 S2013055 食品分析用脱氢乙酸溶液标准样品 复制 GSB 11-2362-2008 2014 沈阳标准样品研究所 56 S2013056 食品分析用乙酰磺胺酸钾溶液标准样品 复制 GSB 11-2363-2008 2014 沈阳标准样品研究所 57 S2013057 食品分析用丁二酸溶液标准样品 复制 GSB 11-2364-2008 2014 沈阳标准样品研究所 58 S2013058 食品分析用对羟基苯甲酸丙酯溶液标准样品 复制 GSB 11-2365-2008 2014 沈阳标准样品研究所 59 S2013059 食品分析用对羟基苯甲酸乙酯、丙酯溶液标准样品 复制 GSB 11-2366-2008 2014 沈阳标准样品研究所 60 S2013060 食品分析用对羟基苯甲酸乙酯溶液标准样品 复制 GSB 11-2367-2008 2014 沈阳标准样品研究所 61 S2013061 食品分析用钠、钾溶液标准样品 复制 GSB 11-2368-2008 2014 沈阳标准样品研究所 62 S2013062 食品分析用钾溶液标准样品 复制 GSB 11-2369-2008 2014 沈阳标准样品研究所 63 S2013063 食品分析用酒石酸溶液标准品 复制 GSB 11-2370-2008 2014 沈阳标准样品研究所 64 S2013064 食品分析用没食子酸丙酯溶液标准样品 复制 GSB 11-2371-2008 2014 沈阳标准样品研究所 65 S2013065 食品分析用钠溶液标准样品 复制 GSB 11-2372-2008 2014 沈阳标准样品研究所 66 S2013066 食品分析用柠檬酸溶液标准样品 复制 GSB 11-2373-2008 2014 沈阳标准样品研究所 67 S2013067 食品分析用牛磺酸溶液标准样 复制 GSB 11-2374-2008 2014 沈阳标准样品研究所 68 S2013068 食品分析用苹果酸溶液标准样品 复制 GSB 11-2375-2008 2014 沈阳标准样品研究所 69 S2013069 食品分析用有机酸溶液标准样品 复制 GSB 11-2376-2008 2014 沈阳标准样品研究所 70 S2013070 食品分析用苯甲酸溶液标准样品 复制 GSB 11-2377-2008 2014 沈阳标准样品研究所 71 S2013071 食品分析用钙溶液标准样品 复制 GSB 11-2378-2008 2014 沈阳标准样品研究所 72 S2013072 食品分析用汞溶液标准样品 复制 GSB 11-2379-2008 2014 沈阳标准样品研究所 73 S2013073 食品分析用磷溶液标准样品 复制 GSB 11-2380-2008 2014 沈阳标准样品研究所 74 S2013074 食品分析用山梨酸溶液标准样品 复制 GSB 11-2381-2008 2014 沈阳标准样品研究所 75 S2013075 食品分析用糖精钠溶液标准样品 复制 GSB 11-2382-2008 2014 沈阳标准样品研究所 76 S2013076 食品分析用亚硝酸钠溶液标准样品 复制 GSB 11-2383-2008 2014 沈阳标准样品研究所 77 S2013077 食品分析用镉溶液标准样品 复制 GSB 11-2085-2007 2014 沈阳标准样品研究所 78 S2013078 食品分析用铝溶液标准样品 复制 GSB 11-2086-2007 2014 沈阳标准样品研究所 79 S2013079 食品分析用镁溶液标准样品 复制 GSB 11-2087-2007 2014 沈阳标准样品研究所 80 S2013080 食品分析用锰溶液标准样品 复制 GSB 11-2088-2007 2014 沈阳标准样品研究所 81 S2013081 食品分析用镍溶液标准样品 复制 GSB 11-2089-2007 2014沈阳标准样品研究所 82 S2013082 食品分析用铅溶液标准样品 复制 GSB 11-2090-2007 2014 沈阳标准样品研究所 83 S2013083 食品分析用铁溶液标准样品 复制 GSB 11-2091-2007 2014 沈阳标准样品研究所 84 S2013084 食品分析用铜溶液标准样品 复制 GSB 11-2092-2007 2014 沈阳标准样品研究所 85 S2013085 食品分析用锡溶液标准样品 复制 GSB 11-2093-2007 2014 沈阳标准样品研究所 86 S2013086 食品分析用锌溶液标准样品 复制 GSB11-2094-2007 2014 沈阳标准样品研究所 87 S2013087 河豚毒素标准样品 复制GSB 11-2533-2009 2014 国家海洋局第三海洋研究所 88 S2013088 食品中菌落总数标准样品 复制 GSB 11-2219-2008 2014 中国检验检疫科学研究院 89 S2013089 鳕鱼中金黄色葡萄球菌标准样品 复制 GSB 11-2224-2008 2014 中国检验检疫科学研究院 90 S2013090 鳕鱼中副溶血性弧菌标准样品 复制 GSB 11-2223-2008 2014 中国检验检疫科学研究院 91 S2013091 奶粉中单核细胞增生李斯特氏菌标准样品 复制 GSB 11-2274-2008 2014 中国检验检疫科学研究院 92 S2013092 奶粉中沙门氏菌标准样品 复制 GSB 11-2275-2008 2014 中国检验检疫科学研究院 93 S2013093 测定聚乙烯树脂熔体流动速率用标准样品PE-T 复制 GSB 15-1160-2008 2015 中国石油化工股份有限公司北京燕山分公司树脂应用研究所 94 S2013094 测定聚丙烯树脂熔体流动速率用标准样品PP-M 复制 GSB 15-1313-2010 2015 中国石油化工股份有限公司北京燕山分公司树脂应用研究所 95 S2013095 标准贴衬织物(棉、毛、丝、苎麻、聚酯、聚丙烯腈、粘胶、聚酰胺) 复制 GSB 16-2082-2010 2014 上海市纺织工业技术监督所 96 S2013096 评定变色、沾色用灰色样卡 复制 GSB 16-2083-2010 2014 上海市纺织工业技术监督所
  • 水质中氰化物测定环保标准发布
    为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,规范环境监测工作,环境保护部批准《水质 氰化物等的测定 真空检测管-电子比色法》为国家环境保护标准,并予发布。   标准名称、编号如下:   《水质 氰化物等的测定 真空检测管-电子比色法》(HJ 659-2013)。   该标准规定了测定水中氰化物、氟化物、硫化物、二价锰、六价铬、镍、氨氮、苯胺、硝酸盐氮、亚硝酸盐氮、磷酸盐和化学需氧量等污染物的真空检测管法。本标准为首次发布,自2013年9月20日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。
  • 85项《地下水质分析方法》标准发布 7月1日起实施
    近日,《地下水质分析方法》等85项系列行业标准已通过全国自然资源与国土空间规划标准化技术委员会审查,现予批准、发布,自2021年7月1日起实施。编号及名称如下表所示。(文末附下载链接)据了解,本次发布的《地下水质分析方法》系列行业标准主要包括色度、pH值、电导率、砷、钙、镁、硬度、总铬、六价铬、铁等项目的测定,并涉及了比色法、电极法、原子吸收分光光度法、电感耦合等离子体发射光谱法、火焰发射光谱法、原子荧光光谱法、气相色谱法及气体同位素质谱计等多种水质分析方法。近些年,我国人口不断上升,经济发展迅速,社会对于地下水的需求量也日益增大,尤其是城市污水、工业废水的肆意排放,农药化肥的过量使用,使我国地下水位严重下降,污染程度逐步加深。相关部门对于地下水的监测力度也相应加大。相关数据表明,2019年,全国10168个国家级地下水水质监测点中,I~III类水质监测点占14.4%,IV类占66.9%,V类占18.8%。全国2830处浅层地下水水质监测井中,I~III类水质监测井占23.7%,IV类占30.0%,V类占46.2%。超标指标为锰、总硬度、碘化物、溶解性总固体、铁、氟化物、氨氮、钠、硫酸盐和氯化物。保护地下水环境的安全和稳定迫在眉睫,这要求不仅要建立健全的地下水环境监管体系,强化监督检查,还需要不断完善相应的法规标准、加强执法管理。与大气监测和地表水监测相比,地下水监测还有很多工作要做,对于地下水监测工作,国家已陆续投资几十亿元,未来两年全国地下水监测项目的市场比较可观。  85项系列行业标准编号及名称序号行业标准编号标准名称代替标准号1DZ/T 0064.1-2021地下水质分析方法 第1部分:一般要求DZ/T 0064.1-19932DZ/T 0064.2-2021地下水质分析方法 第2部分:水样的采集和保存DZ/T 0064.2-19933DZ/T 0064.3-2021地下水质分析方法 第3部分:温度的测定 温度计(测温仪)法DZ/T 0064.3-19934DZ/T 0064.4-2021地下水质分析方法 第4部分:色度的测定 铂-钴标准比色法DZ/T 0064.4-19935DZ/T 0064.5-2021地下水质分析方法 第5部分:pH值的测定 玻璃电极法DZ/T 0064.5-19936DZ/T 0064.6-2021地下水质分析方法 第6部分:电导率的测定 电极法DZ/T 0064.6-19937DZ/T 0064.7-2021地下水质分析方法 第7部分:Eh值的测定电位法DZ/T 0064.7-19938DZ/T 0064.8-2021地下水质分析方法 第8部分:悬浮物的测定 重量法DZ/T 0064.8-19939DZ/T 0064.9-2021地下水质分析方法 第9部分:溶解性固体总量的测定 重量法DZ/T 0064.9-199310DZ/T 0064.10-2021地下水质分析方法 第10部分:砷量的测定 二乙基二硫代氨基甲酸银分光光度法DZ/T 0064.10-199311DZ/T 0064.11-2021地下水质分析方法 第11部分:砷量的测定 氢化物发生—原子荧光光谱法DZ/T 0064.11-199312DZ/T 0064.12-2021地下水质分析方法 第12部分:钙和镁量的测定 火焰原子吸收分光光度法DZ/T 0064.12-199313DZ/T 0064.13-2021地下水质分析方法 第13部分:钙量的测定 乙二胺四乙酸二钠滴定法DZ/T 0064.13-199314DZ/T 0064.14-2021地下水质分析方法 第14部分:镁量的测定 乙二胺四乙酸二钠滴定法DZ/T 0064.14-199315DZ/T 0064.15-2021地下水质分析方法 第15部分:总硬度的测定 乙二胺四乙酸二钠滴定法DZ/T 0064.15-199316DZ/T 0064.17-2021地下水质分析方法 第17部分:总铬和六价铬量的测定 二苯碳酰二肼分光光度法DZ/T 0064.17-199317DZ/T 0064.18-2021地下水质分析方法 第18部分:总铬和六价铬量的测定 催化极谱法DZ/T 0064.18-199318DZ/T 0064.20-2021地下水质分析方法 第20部分:铜、铅、锌、镉、镍和钴量的测定 螯合树脂交换富集火焰原子吸收分光光度法DZ/T 0064.20-199319DZ/T 0064.21-2021地下水质分析方法 第21部分:铜、铅、锌、镉、镍、铬、钼和银量的测定 无火焰原子吸收分光光度法DZ/T 0064.21-199320DZ/T 0064.22-2021地下水质分析方法 第22部分:铜、铅、锌、镉、锰、铬、镍、钴、钒、锡、铍及钛量的测定 电感耦合等离子体发射光谱法DZ/T 0064.22-199321DZ/T 0064.23-2021地下水质分析方法 第23部分:铁量的测定二氮杂菲分光光度法DZ/T 0064.23-199322DZ/T 0064.24-2021地下水质分析方法 第24部分:铁量的测定硫氰酸盐分光光度法DZ/T 0064.24-199323DZ/T 0064.25-2021地下水质分析方法 第25部分:铁量的测定 火焰原子吸收分光光度法DZ/T 0064.25-199324DZ/T 0064.26-2021地下水质分析方法 第26部分:汞量的测定冷原子吸收分光光度法DZ/T 0064.26-199325DZ/T 0064.27-2021地下水质分析方法 第27部分:钾和钠量的测定火焰发射光谱法DZ/T 0064.27-199326DZ/T 0064.28-2021地下水质分析方法 第28部分:钾、钠、锂和铵量的测定 离子色谱法DZ/T 0064.28-199327DZ/T 0064.29-2021地下水质分析方法 第29部分:锂量的测定火焰发射光谱法DZ/T 0064.29-199328DZ/T 0064.30-2021地下水质分析方法 第30部分:锂量的测定火焰原子吸收分光光度法DZ/T 0064.30-199329DZ/T 0064.31-2021地下水质分析方法 第31部分:锰量的测定过硫酸铵分光光度法DZ/T 0064.31-199330DZ/T 0064.32-2021地下水质分析方法 第32部分:锰量的测定 火焰原子吸收分光光度法DZ/T 0064.32-199331DZ/T 0064.33-2021地下水质分析方法 第33部分:钼量的测定催化极谱法DZ/T 0064.33-199332DZ/T 0064.36-2021地下水质分析方法 第36部分:铷和铯量的测定火焰发射光谱法DZ/T 0064.36-199333DZ/T 0064.37-2021地下水质分析方法 第37部分:硒量的测定催化极谱法DZ/T 0064.37-199334DZ/T 0064.38-2021地下水质分析方法 第38部分:硒量的测定氢化物发生-原子荧光光谱法DZ/T 0064.38-199335DZ/T 0064.39-2021地下水质分析方法 第39部分:锶量的测定火焰发射光谱法DZ/T 0064.39-199336DZ/T 0064.42-2021地下水质分析方法 第42部分:钙、镁、钾、钠、 铝、铁、锶、钡和锰量的测定电感耦合等离子体发射光谱法DZ/T 0064.42-199337DZ/T 0064.43-2021地下水质分析方法 第43部分:酸度的测定滴定法DZ/T 0064.43-199338DZ/T 0064.44-2021地下水质分析方法 第44部分:硼量的测定H酸-甲亚胺分光光度法DZ/T 0064.44-199339DZ/T 0064.45-2021地下水质分析方法 第45部分:硼量的测定甘露醇碱滴定法DZ/T 0064.45-199340DZ/T 0064.46-2021地下水质分析方法 第46部分:溴化物的测定溴酚红分光光度法DZ/T 0064.46-199341DZ/T 0064.47-2021地下水质分析方法 第47部分:游离二氧化碳的测定滴定法DZ/T 0064.47-199342DZ/T 0064.48-2021地下水质分析方法 第48部分:侵蚀性二氧化碳的测定滴定法DZ/T 0064.48-199343DZ/T 0064.49-2021地下水质分析方法 第49部分:碳酸根、重碳酸根和氢氧根离子的测定 滴定法DZ/T 0064.49-199344DZ/T 0064.50-2021地下水质分析方法 第50部分:氯化物的测定 银量滴定法DZ/T 0064.50-199345DZ/T 0064.51-2021地下水质分析方法第51部分:氯化物、氟化物、溴化物、硝酸盐和硫酸盐的测定离子色谱法DZ/T 0064.51-199346DZ/T 0064.52-2021地下水质分析方法第52部分:氰化物的测定吡啶-吡唑啉酮分光光度法DZ/T 0064.52-199347DZ/T 0064.53-2021地下水质分析方法 第53部分:氟化物的测定茜素络合物分光光度法DZ/T 0064.53-199348DZ/T 0064.54-2021地下水质分析方法 第54部分:氟化物的测定离子选择电极法DZ/T 0064.54-199349DZ/T 0064.55-2021地下水质分析方法 第55部分:碘化物的测定催化还原分光光度法DZ/T 0064.55-199350DZ/T 0064.56-2021地下水质分析方法 第56部分:碘化物的测定淀粉分光光度法DZ/T 0064.56-199351DZ/T 0064.57-2021地下水质分析方法 第57部分:氨氮的测定纳氏试剂分光光度法DZ/T 0064.57-199352DZ/T 0064.58-2021地下水质分析方法 第58部分:硝酸盐的测定二磺酸酚分光光度法DZ/T 0064.58-199353DZ/T 0064.59-2021地下水质分析方法 第59部分:硝酸盐的测定紫外分光光度法DZ/T 0064.59-199354DZ/T 0064.60-2021地下水质分析方法 第60部分:亚硝酸盐的测定分光光度法DZ/T 0064.60-199355DZ/T 0064.61-2021地下水质分析方法 第61部分:磷酸盐的测定磷铋钼蓝分光光度法DZ/T 0064.61-199356DZ/T 0064.62-2021地下水质分析方法 第62部分:硅酸的测定硅钼黄分光光度法DZ/T 0064.62-199357DZ/T 0064.63-2021地下水质分析方法 第63部分:硅酸的测定硅钼蓝分光光度法DZ/T 0064.63-199358DZ/T 0064.64-2021地下水质分析方法 第64部分:硫酸盐的测定乙二胺四乙酸二钠—钡滴定法DZ/T 0064.64-199359DZ/T 0064.65-2021地下水质分析方法第65部分:硫酸盐的测定比浊法DZ/T 0064.65-199360DZ/T 0064.66-2021地下水质分析方法第66部分:硫化物的测定碘量法DZ/T 0064.66-199361DZ/T 0064.67-2021地下水质分析方法第67部分:硫化物的测定对氨基二甲基苯胺分光光度法DZ/T 0064.67-199362DZ/T 0064.68-2021地下水质分析方法第68部分:耗氧量的测定酸性高锰酸钾滴定法DZ/T 0064.68-199363DZ/T 0064.69-2021地下水质分析方法 69部分:耗氧量的测定碱性高锰酸钾滴定法DZ/T 0064.69-199364DZ/T 0064.70-2021地下水质分析方法 第70质谱法新制定标准下载链接:《地下水质分析方法》
  • 新版欧盟镍释放测试标准开始实施
    2013年3月1日起,欧盟旧版的镍释放标准EN 1811:1998+A1:2008被新版标准EN 1811:2011替代。   1. 新旧版标准的比对   新版的标准较旧版的标准主要有以下不同:   (1) 范围扩大至所有与人体长期接触的物品,以及延伸至刺穿人体的部件   (2) 测试溶剂的制备进行测试和有所改变   (3) 校正因子0.1被弃用,引入了测试不准的概念,即在不确定的范围内无法断定合格与否   (4) 添入了一个新的标准附录C   (5) 新版标准EN 1811:2011将太阳镜和眼镜框架排除在外,而太阳镜和眼镜框架的镍的释放测试使用EN 16128:2011。   2. 欧盟关于镍释放的规定   欧盟在REACH法规的附件XVII中就对于与皮肤长期接触的镍的含量有相应的规定:   在由穿刺引起的伤口愈合过程中插入耳孔或人体其他部位的耳钉或其他类似物品,其镍释放量应低于0.2μg/cm2/周   与皮肤长期直接接触的制品,如戒指、手镯等其镍释放量应低于0.5μg/cm2/周。   3. 业界关注   由于校正因子0.1被弃用,引入了测试不准的概念,因此在实际测试中:   与皮肤长期直接接触的制品中的镍释放量不大于0.28μg/cm2/周(含0.28μg/cm2/周)时被判定为合格 而当0.28μg/cm2/周含量0.88μg/cm2/周时被判定为结果未知(即不能判断为合格或不合格) 镍释放量大于等于0.88μg/cm2/周时被判定为不合格   由穿刺引起的伤口愈合过程中插入耳孔或人体其他部位的耳钉或其他类似物品中的镍释放量不大于0.11μg/cm2/周(含0.11μg/cm2/周)时被判定为合格 而当0.11μg/cm2/周含量0.35μg/cm2/周时被判定为结果未知(即不能判断为合格或不合格) 镍释放量大于等于0.35μg/cm2/周时被判定为不合格。   4. 相关知识   镍是一种常见的金属,在饰品中常以镀层或合金的形式存在。与皮肤长期接触的过程中,这些产品释放的镍可能会导致皮肤过敏甚至皮炎。慢性吸入镍可导致心、脑、肝等退变。
  • 生态环境部发布《水质 铜、铅、镉、镍、铬的测定 石墨炉原子吸收分光光度法(征求意见稿)》
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《水质 铜、铅、镉、镍、铬的测定 石墨炉原子吸收分光光度法》国家生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。各机关团体、企事业单位和个人均可提出意见和建议。请于2023年5月22日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。联系人:生态环境部监测司 陈春榕、滕曼电话:(010)65646262传真:(010)65646236邮箱:zhiguanchu@mee.gov.cn地址:北京市东城区东安门大街82号邮编:100006附件:1.征求意见单位名单2.水质 铜、铅、镉、镍、铬的测定 石墨炉原子吸收分光光度法(征求意见稿)3.《水质 铜、铅、镉、镍、铬的测定 石墨炉原子吸收分光光度法(征求意见稿)》编制说明生态环境部办公厅2023年4月12日
  • 国家海洋局发布11项海洋行业标准 含多项仪器检测新标
    日前,国家海洋局批准发布《海洋石油勘探开发原油样品采集技术规程》等11项海洋行业标准,填补了多项海洋行业标准空白。这11项标准将于2017年2月1日起实施。  此次发布的11项海洋行业标准中,涉及仪器检测相关标准有海洋沉积物和生物体中铁、锰、镍、钾、钠、钙、镁的测定及原子吸收分光光度法、海洋仪器设备产品与检测标准体系、移动式反渗透淡化装置、反渗透膜亲水性测试方法、中空纤维超/微滤膜断裂拉伸强度测定方法等,其中10项为新制定的海洋行业标准 工程海冰技术规范为在原有规范基础上进行修订后发布实施的。这些标准涉及海洋环境监测、海洋观测预报与防灾减灾、海洋调查、海水淡化与综合利用、海洋仪器设备制造与监测等领域。  国家海洋局科学技术司有关人员表示,近年来,我国海洋产业发展迅速,但很多海洋行业尚无统一行业标准,为了满足各海洋领域对海洋行业标准的需求,由国家海洋环境监测中心等单位起草,并按海洋行业标准制修订相关规定广泛征求意见后制定发布了相关标准。这一系列海洋行业标准的实施将为海洋相关行业提供技术指导和技术保障,引导其健康发展。 以下为公告原文:国家海洋局关于批准发布《海洋石油勘探开发原油样品采集技术规程》等11项海洋行业标准的公告   国家海洋局批准《海洋石油勘探开发原油样品采集技术规程》等11项海洋行业标准,现予以公布,自2017年2月1日起实施。  附件:批准发布的11项海洋行业标准清单国家海洋局  2016年11月9日
  • 《地下水质量标准》发布新版 指标增加54项(附全文)
    p   我国目前现行的《地下水质量标准》是1993年发布的,14年来,我国地下水污染状况有了新的变化,水质监测的技术也有了长足的进步。近日,由国土资源部和水利部共同提出的新版《地下水质量标准》正式发布,此次标准对原有内容进行了很多修改,主要技术变化如下: /p p   水质指标由GB/T14848-1993的39项增加至93项,增加了54项 /p p   将地下水质量指标划分为常规指标和非常规指标 /p p   感官性状及一般化学指标由17项增至20项,增加了铝、硫化物和钠3项指标 用耗氧量替换了高锰酸盐指数,修订了总硬度、铁、锰、氨氮4项指标 /p p   毒理学指标中无机化合物指标由16项增加至20项,增加了硼、锑、银和铊4项指标,修订了亚硝酸盐、碘化物、汞、砷、镉、铅、铍、钡、镍、钴和钼11项指标 /p p   毒理学指标中有机化合物指标由2项增至49项,增加了三氯甲烷、四氯化碳、1,1,1-三氯乙烷、三氯乙烯、四氯乙烯、二氯甲烷、1,2-二氯乙烷、1,1,2-三氯乙烷、1,2-二氯丙烷、三溴甲烷、氯乙烯、1,1-二氯乙烷、1,2-二氯乙烯、氯苯、邻二氯苯、对二氯苯、三氯苯(总量)、苯、甲苯、乙苯、二甲苯、苯乙烯、2,4-二硝基甲苯、2,6-二硝基甲苯、萘、蒽、荧蒽、苯并(b)荧蒽、苯并(a)芘、多氯联苯(总量)、六六六(林丹)、六氯苯、七氯、莠去津、五氯酚、2,4,6-三氯酚、邻苯二甲酸二(2-乙基已基)酯、克百威、涕灭威、敌敌畏、甲基对硫磷、马拉硫磷、乐果、百菌清、2,4涕、毒死蜱和草甘膦 滴滴滴和六六六分别用滴滴涕(总量)和六六六(总量)代替,并进行了修订 /p p   放射性指标中修订了总阿尔法放射性 /p p   修订了地下水质量综合评价的有关规定。 /p p style=" line-height: 16px "   附件: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201711/ueattachment/69ac7083-d005-492b-8dec-180dbffa0efe.docx" GBT14848-2017 地下水质量标准.docx /a /p p br/ /p
  • 五项国家生态环境标准意见,涉及水质、氮氨的仪器检测
    关于公开征求《水质 氨氮的测定 气相分子吸收光谱法(征求意见稿)》等五项国家生态环境标准意见的通知  索 引 号000014672/2022-00260  分  类环境标准  发布机关生态环境部办公厅  生成日期2022-07-07  文  号环办标征函〔2022〕22号  主 题 词关于公开征求《水质 氨氮的测定 气相分子吸收光谱法(征求意见稿)》等五项国家生态环境标准意见的通知    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《水质 氨氮的测定 气相分子吸收光谱法》等五项国家生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。请于2022年8月8日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。  联系人:生态环境部监测司杜祯宇  电话:(010)65646262  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:1.征求意见单位名单     2.水质 氨氮的测定 气相分子吸收光谱法(征求意见稿)     3.《水质 氨氮的测定 气相分子吸收光谱法(征求意见稿)》编制说明     4.水质 总氮的测定 气相分子吸收光谱法(征求意见稿)     5.《水质 总氮的测定 气相分子吸收光谱法(征求意见稿)》编制说明     6.水质 硫化物的测定 气相分子吸收光谱法(征求意见稿)     7.《水质 硫化物的测定 气相分子吸收光谱法(征求意见稿)》编制说明     8.铜水质自动在线监测仪技术要求及检测方法(征求意见稿)     9.《铜水质自动在线监测仪技术要求及检测方法(征求意见稿)》编制说明     10.镍水质自动在线监测仪技术要求及检测方法(征求意见稿)     11.《镍水质自动在线监测仪技术要求及检测方法(征求意见稿)》编制说明  生态环境部办公厅  2022年7月4日  (此件社会公开)
  • ICP-MS将首入水质检测标准
    仪器信息网讯 日前,环保部公布了国家环境保护标准《水质 65种元素的测定 电感耦合等离子体质谱法》(征求意见稿),这是ICP-MS法(电感耦合等离子体质谱法)首次进入我国水质检测标准,而且和EPA 200.8、EPA 6020A、EPA 200.1、ISO 17294-2等国际标准相比,这一新标准可用于更多水中元素的测定。以ICP-MS法对水中铁(Fe)、钛(Ti) 、铌(Nb)三种元素的测定,尚未在其他国内外标准方法中被采用。另外,由于目前国内需要消解处理的地表水和废水(处理设施出口)中无机元素总量的测定尚没有统一的前处理方法,新标准也采用了电热板消解和微波消解的方法对地表水和废水(处理设施出口)进行处理。   新标准适用于地表水、地下水、生活污水、工业废水(处理设施出口) 中银、铝、砷、金、硼、钡、铍、铋、钙、镉、铈、钴、铬、铯、铜、镝、铒、铕、铁、镓、钆、锗、铪、钬、铟、铱、钾、镧、锂、镥、镁、锰、钼、钠、铌、钕、镍、磷、铅、钯、镨、铂、铷、铼、铑、钌、锑、钪、硒、钐、锡、锶、铽、碲、钍、钛、铊、铥、铀、钒、钨、钇、镱、锌、锆的测定。   目前的水质监测方法标准中,测定以上元素通常有分光光度法、原子吸收分光光度法(火焰与石墨炉)、原子荧光法、极谱法、电感耦合等离子体发射光谱法(ICP-AES)等,这些方法各有其优点,也各有其局限性。分光光度法前处理复杂,需萃取、浓缩富集或抑制干扰 原子吸收分光光度法、原子荧光光谱法不能进行多组分或多元素的同时分析 原子吸收分光光度法对部分元素的检测限或灵敏度达不到指标要求,对某些元素无法测定或准确度不高。由于检测项目大量增加,而且它们在环境中的含量都非常低,常用的多元素分析方法如电感耦合等离子体发射光谱技术对硒、铍、砷、铅、铊、铀等元素不能达到检测限要求,必须与石墨炉原子吸收分光光度法(GF-AAS)和汞冷原子吸收(CV-AAS)技术结合使用才能达到大部分元素的分析要求。电感耦合等离子体质谱法是一种微量与超微量多元素同时分析的方法,具有灵敏度高、检出限低,分析过程快捷,分析取样量少等优点,它可以同时测量周期表中大多数元素,测定分析物浓度可低至纳克/升(ppt)的水平,是目前最有效的痕量元素的检测且可以测定现有技术难以分析的饮用水标准中特殊要求的铀和铊。ICP-MS技术的优势,使其在很大程度上可以取代ICP-AES、GF-AAS和CV-AAS等方法,将成为未来的发展趋势。   ICP-MS法首次成为水质分析的标准方法,将开启电感耦合等离子体质谱仪在水质分析中的应用,促进ICP-MS技术的发展和ICP-MS仪器的销售,但ICP-MS较高的价格和使用难度,对其推广普及形成了一定阻碍。   新标准方法对65种元素的检出限和测定下限:   标准下载:《水质 65种元素的测定 电感耦合等离子体质谱法》(征求意见稿)
  • “土十条”土壤样品前处理标准解读及解决方案
    土壤,作为人类乃至整个生物界赖以生存的根基,为人类提供了栖息地和食物,随着人类的活动,污染越来越严重。??土壤重金属污染(heavy metal pollution of the soil)是指由于人类活动,土壤中的微量金属元素在土壤中的含量超过背景值,过量沉积而引起的含量过高,统称为土壤重金属污染。土壤重金属是指由于人类活动将金属加入到土壤中,致使土壤中重金属明显高于原生含量、并造成生态环境质量恶化的现象。??污染土壤的重金属主要包括汞(hg)、镉(cd)、铅(pb)、铬(cr)和类金属砷(as)等生物毒性显著的元素,以及有一定毒性的锌(zn)、铜(cu)、镍(ni)等元素。主要来自农药、废水、污泥和大气沉降等,如汞主要来自含汞废水,镉、铅污染主要来自冶炼排放和汽车废气沉降,砷则被大量用作杀虫剂、杀菌剂、杀鼠剂和除草剂。??2016年5月28日,国务院印发了《土壤污染防治行动计划》,简称“土十条”。这一计划的发布可以说是整个土壤修复事业的里程碑事件。??计划中明确提及重点监测土壤中镉、汞、砷、铅、铬等重金属和多环芳烃、石油烃等有机污染物,重点监管有色金属矿采选、有色金属冶炼、石油开采、石油加工、化工、焦化、电镀、制革等行业,以及产粮(油)大县、地级以上城市建成区等区域。??不同用途的土壤对于金属元素含量要求也不同建设用地土壤污染风险筛选指导值中规定金属元素限制如下表(单位:mg/kg)农用地土壤污染物基本项目含量限值(单位:mg/kg)农用地土壤污染物其他项目含量限值(单位:mg/kg)涉及到土壤中金属元素分析的相关分析方法土壤样品前处理方法:??目前常见的土壤消解方法有两种:微波消解法和敞口电热板消解法,由于敞口电热板方法使用酸的种类多,一般都要使用硝酸,氢氟酸,高氯酸,且使用量大,消解时间长,且使用到高氯酸,危险系数大,耗时耗力,目前很多方法都采用微波消解法,微波消解法具有全密闭,高温,高压,消解完全的优点。??现在已经有很多方法已经明确提出使用微波消解法处理土壤样品:??hj 803-2016 土壤和沉积物 12种金属元素的测定 王水提取-电感耦合等离子体质谱法??hj 491-2009 土壤 总铬的测定 火焰原子吸收分光光度法??hj 737-2015 土壤和沉积物 铍的测定 石墨炉原子吸收分光光度法??hj 680-2013 土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法??从检测元素来看,微波消解法已经覆盖了土壤和沉积物中的铬(cr),钴(co),镉(cd),铜(cu),锰(mn),镍(ni),铅(pb),锌(zn),钒(v), 汞(hg),砷(as),硒(se),铋(bi),锑(sb),钼(mo),铍(be)等16种元素,完全满足土壤中元素分析的前处理要求。微波消解常用方法:??称取风干、过筛的样品0.1~0.5g(精确至0.0001g。样品中元素含量低时,可将样品称取量提高至1.0g)置于溶样杯中,用少量实验用水润湿。在通风橱中,先加入6ml 盐酸,再慢慢加入2ml 硝酸,混匀使样品与消解液充分接触。若有剧烈化学反应,待反应结束后再将溶样杯置于消解罐中密封。将消解罐装入消解罐支架后放入微波消解仪的炉腔中。按照推荐的升温程序进行微波消解,程序结束后冷却。待罐内温度降至室温后在通风橱中取出,缓慢泄压放气,打开消解罐盖。??把玻璃小漏斗插于50ml 容量瓶的瓶口,用慢速定量滤纸将消解后溶液过滤、转移入容量瓶中,实验用水洗涤溶样杯及沉淀,将所有洗涤液并入容量瓶中,最后用实验用水定容至标线,混匀。??安东帕高性能微波消解、萃取系统multiwave pro微波消解系统,可以配备各种不同型号规格的转子,满足您对于所有土壤,沉积物浸提,消解,萃取等分析前处理要求。最高安全标准唯一获北美etl和欧盟gs(“认可的安全”)双安全认证的微波样品制备设备操作简便无需任何工具,手动即可完成所有操作不折不扣的安全性能全面地温度压力控制保证消解效果,无线传输数据,避免了酸性环境下的连线和接口即调即用成熟方法库全面验证的综合方法库提供涵盖所有样品类型的成熟方法库,支持即调即用
  • 《羽绒羽毛标准样品(样照)》正式发布
    近日,国家标准委下达的国家标准制标项目《羽绒羽毛标准样品(样照)》(编号:S2005-101)(以下简称《样照》)正式发布。专家指出,该样照真实、准确、系统地显现了样品外观形态特征,它的出台不仅有利于技术交流与统一,方便检测人员的教育与培训,从长远看可以促进我国羽绒羽毛行业的发展和产品质量的提高,帮助企业跨越贸易技术壁垒,协助企业取得国际市场认可和推进产品顺利进入国际市场,其研制水平达到了国际先进水平。   提高检验能力刻不容缓   据了解,我国是羽毛绒资源极其丰富的国家,是世界上最大的羽绒及制品的生产国和出口国,也是最大的消费国,出口贸易额占据了世界羽绒市场70%以上。凭借羽绒资源和劳动力资源的优势,我国羽绒行业在国际市场中具有举足轻重的地位。   “当前,以环保生态为由的贸易壁垒正在加剧,这对我国出口羽毛绒制品提出了许多挑战。”据无锡出入境检验检疫局纺检中心主任田林辉介绍,检验水平不高是我国很多羽绒出口企业和外贸公司存在的普遍问题,这一问题也成为企业和产品顺利进入国际市场的障碍。在日常的检验中发现,一些出口企业和外贸公司不了解感官检测的方法标准,不知道如何组织生产和验货,遭遇退货和索赔的现象屡屡发生。“因此,加强羽毛绒的检验能力,提高我国产品的国际竞争力,保持我国产品在国际市场上的地位已刻不容缓。”   无锡出入境检验检疫局纺检中心副主任邓瑾介绍,从各国的标准看,对羽毛绒的检验,大部分不能通过仪器进行,尤其是成分分析阶段,如采用传统的感官检验方法,测试人员通过视觉、触觉检查产品的特性,通过感官分析来识别其属性,如成分分析、种类鉴定、透明度双十字线的确定等。感官检验的依据是按照标准上的文字定义,但由于文字描述外观特性有一定的局限性,检验人员难以准确掌握,检验标准难以统一,检测结果常受检验人员的情绪因素、操作技术、专业知识水平的影响而产生波动。“因此,迫切需要研制一套《样照》,作为文字标准的补充,以提高检测水平,不断提高检验质量。”   五重突破提高感官检测能力   据介绍,此次研制的《样照》与《羽绒羽毛》(GB/T 17685-2003)相配套,以实物对照国家标准中各定义文字,使抽象的文字说明辅以实物标样,直观感强,便于识别和统一目光,可供商检、外贸和各羽毛加工厂专业技术人员使用。据了解,与原重庆进出口商品检验局发布的《出口羽毛标准样品(样照)》相比,新样照从种类鉴定、微生物菌落状态、成分分析和透明度双十字线的清晰度以及形态演变5方面进行了完善和突破,以全面提高羽毛绒感官检测能力。   首先,《样照》明确不同种类填充物的鉴定方法。据介绍,鹅绒和鸭绒,鹅毛和鸭毛、鸡毛等在外观上并无明显的区别,然而,在作为羽毛绒填充物的保暖性能方面却有着明显的差异,相同含量的鹅绒的保暖效果要优于鸭绒,市场上的价格也较高。而许多不法商贩为了牟取暴利,常在鹅毛绒中掺入鸭毛绒或陆禽毛加以销售,给消费者造成了损失。因此,毛绒的鉴别成为羽毛绒检测中重要的一项。   “不同的标准对于鹅、鸭毛绒种类鉴别的说法各有不同,这也给不法商贩以可乘之机。因而,我们明确提出了不同填充物的种类鉴定方法。”邓瑾给记者列举了鸭绒的鉴定方法,即鸭毛绒子和羽毛根部的羽枝远端有三角形的棱节,鸭毛绒的棱节较大,呈三个一组较有规律地排列于小羽枝末端,棱节间距离较短,约等于棱节的长度。   同时,《样照》增加了微生物菌落状态。据了解,因为羽毛绒为禽类皮肤的衍生物,虽然经过清洗、加工、储存、包装过程,但仍不可避免地会受到生态方面的关注。许多国家,特别是欧盟对羽毛绒及其制品都提出了生态要求。同时,随着人们绿色消费意识的加深,不少消费者不惜高价购买挂有“绿色标签”的羽毛绒制品。“基于此,我们在《样照》中增加菌落的状态,这将会使相关人员有一个更直观的认识,便于检测人员更快地掌握标准。”邓瑾说。   羽绒标准体系将进一步完善   业内人士称,《样照》是目前为止最为完善、最为完整的《羽绒羽毛标准样品(样照)》,它的出台将使整个羽绒羽毛标准体系更为完整、科学。   中国羽绒工业协会秘书长姚小曼认为,本标准的研制,与中国羽绒羽毛文字标准相配套,使整个标准更为完整、科学,标准更具权威性、公正性,在国际贸易中发挥更大的作用。此外,样照真实、准确、系统地显现了样品外观形态特征。采用计算机数字图像新技术,使样照更为清晰,容易辨认。并为今后样照的研制提供了新的手段与经验。   中国畜产加工研究会羽绒分会会长王敦洲说,《样照》的出台将有利于技术的交流与统一,方便检测人员的教育与培训。从长远看,不仅可以促进我国羽绒羽毛行业的发展和提高羽绒羽毛产品质量,而且可以帮助企业跨越贸易技术壁垒,协助企业取得国际市场认可和推进产品顺利进入国际市场。
  • 环保部:地表水水质月报评价项目及标准
    根据国家环保总局环函[2003]2号文的规定,河流评价项目为水温、pH值、电导率、溶解氧、高锰酸盐指数、五日生化需氧量、氨氮、汞、铅、挥发酚、石油类和流量。   湖库评价项目为水温、pH值、电导率、溶解氧、高锰酸盐指数、五日生化需氧量、氨氮、汞、铅、挥发酚、石油类、总磷、总氮、透明度、叶绿素a和水位。   水质评价标准执行《地表水环境质量标准(GB3838-2002)》,按Ⅰ类~劣Ⅴ类六个类别进行评价。   湖泊、水库富营养化评价方法执行中国环境监测总站总站生字[2001]090号文,按贫营养~重度富营养六个级别进行评价。
  • 安东帕:“土十条”土壤样品前处理标准解读及解决方案
    土壤,作为人类乃至整个生物界赖以生存的根基,为人类提供了栖息地和食物,随着人类的活动,污染越来越严重。 土壤重金属污染(Heavy Metal Pollution of the Soil)是指由于人类活动,土壤中的微量金属元素在土壤中的含量超过背景值,过量沉积而引起的含量过高,统称为土壤重金属污染。土壤重金属是指由于人类活动将金属加入到土壤中,致使土壤中重金属明显高于原生含量、并造成生态环境质量恶化的现象。 污染土壤的重金属主要包括汞(Hg)、镉(Cd)、铅(Pb)、铬(Cr)和类金属砷(As)等生物毒性显著的元素,以及有一定毒性的锌(Zn)、铜(Cu)、镍(Ni)等元素。主要来自农药、废水、污泥和大气沉降等,如汞主要来自含汞废水,镉、铅污染主要来自冶炼排放和汽车废气沉降,砷则被大量用作杀虫剂、杀菌剂、杀鼠剂和除草剂。 2016年5月28日,国务院印发了《土壤污染防治行动计划》,简称“土十条”。这一计划的发布可以说是整个土壤修复事业的里程碑事件。 计划中明确提及重点监测土壤中镉、汞、砷、铅、铬等重金属和多环芳烃、石油烃等有机污染物,重点监管有色金属矿采选、有色金属冶炼、石油开采、石油加工、化工、焦化、电镀、制革等行业,以及产粮(油)大县、地级以上城市建成区等区域。 不同用途的土壤对于金属元素含量要求也不同 建设用地土壤污染风险筛选指导值中规定金属元素限制如下表(单位:mg/kg) 农用地土壤污染物基本项目含量限值(单位:mg/kg) 农用地土壤污染物其他项目含量限值(单位:mg/kg) 涉及到土壤中金属元素分析的相关分析方法 土壤样品前处理方法:目前常见的土壤消解方法有两种:微波消解法和敞口电热板消解法,由于敞口电热板方法使用酸的种类多,一般都要使用硝酸,氢氟酸,高氯酸,且使用量大,消解时间长,且使用到高氯酸,危险系数大,耗时耗力,目前很多方法都采用微波消解法,微波消解法具有全密闭,高温,高压,消解完全的优点。 现在已经有很多方法已经明确提出使用微波消解法处理土壤样品:HJ 803-2016 土壤和沉积物 12种金属元素的测定 王水提取-电感耦合等离子体质谱法HJ 491-2009 土壤 总铬的测定 火焰原子吸收分光光度法HJ 737-2015 土壤和沉积物 铍的测定 石墨炉原子吸收分光光度法HJ 680-2013 土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法从检测元素来看,微波消解法已经覆盖了土壤和沉积物中的铬(Cr),钴(Co),镉(Cd),铜(Cu),锰(Mn),镍(Ni),铅(Pb),锌(Zn),钒(V), 汞(Hg),砷(As),硒(Se),铋(Bi),锑(Sb),钼(Mo),铍(Be)等16种元素,完全满足土壤中元素分析的前处理要求。 微波消解常用方法:称取风干、过筛的样品0.1~0.5g(精确至0.0001g。样品中元素含量低时,可将样品称取量提高至1.0g)置于溶样杯中,用少量实验用水润湿。在通风橱中,先加入6ml 盐酸,再慢慢加入2ml 硝酸,混匀使样品与消解液充分接触。若有剧烈化学反应,待反应结束后再将溶样杯置于消解罐中密封。将消解罐装入消解罐支架后放入微波消解仪的炉腔中。按照推荐的升温程序进行微波消解,程序结束后冷却。待罐内温度降至室温后在通风橱中取出,缓慢泄压放气,打开消解罐盖。把玻璃小漏斗插于50ml 容量瓶的瓶口,用慢速定量滤纸将消解后溶液过滤、转移入容量瓶中,实验用水洗涤溶样杯及沉淀,将所有洗涤液并入容量瓶中,最后用实验用水定容至标线,混匀。 安东帕高性能微波消解、萃取系统Multiwave PRO微波消解系统,可以配备各种不同型号规格的转子,满足您对于所有土壤,沉积物浸提,消解,萃取等分析前处理要求。 最高安全标准唯一获北美ETL和欧盟GS(“认可的安全”)双安全认证的微波样品制备设备 操作简便无需任何工具,手动即可完成所有操作 不折不扣的安全性能全面地温度压力控制保证消解效果,无线传输数据,避免了酸性环境下的连线和接口 即调即用成熟方法库全面验证的综合方法库提供涵盖所有样品类型的成熟方法库,支持即调即用
  • 色谱检测新标准来啦——HJ 1267-2022水质 6种苯氧羧酸类除草剂和麦草畏的测定
    苯氧羧酸类除草剂和麦草畏是一种广泛应用于农业生产的选择性除草剂,具有价格低廉、除草速度快、除草谱广等优点。然而,它们的使用会导致水质污染,残留于土壤中,并通过雨水和地下水流入河流和湖泊,对水质造成影响。随着环保要求的提高,水质监测变得越来越重要,对环境保护至关重要。因此,对苯氧羧酸类除草剂和麦草畏进行检测对于保障水质安全具有重要意义。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中6 种苯氧羧酸类除草剂和麦草畏的高效液相色谱法。※本标准中结果的定性分析是根据样品中目标化合物与标准系列中目标化合物的保留时间定性,标准还提到:“必要时,可采用液相色谱-质谱法确认目标化合物”并在附录中提供了液相色谱-三重四极杆质谱法仪器条件。岛津提供LCMS-8045、LCMS-8050、LCMS-8060等多款液相色谱-三重四极杆质谱可选,满足标准要求。如需进一步了解,您可前往https://www.shimadzu.com.cn/an/lcms/index.html本文内容非商业广告,仅供专业人士参考。
  • 63项国家标准样品研复制计划项目公示
    各相关单位:  根据国家标准样品管理程序要求,经审查合格,国家标准委拟对《钕铁硼合金标准样品》等63项国家标准样品研复制计划项目进行立项。现将63项研复制计划项目(见附件)进行公示,公示期间,如有异议,请将意见回复至电子邮箱:zengxl@sac.gov.cn。公示时间为2017年1月6日至1月22日。  附件:《钕铁硼合金标准样品》等63项国家标准样品研复制计划项目汇总表序号 项目名称 研/复制 完成时间(年) 研制单位 1钕铁硼合金标准样品研制2018包头稀土研究院 瑞科稀土冶金及功能材料国家工程研究中心有限公司2稀土镁合金(WE43)标准样品研制2018包头稀土研究院 瑞科稀土冶金及功能材料国家工程研究中心有限公司3稀土抛光粉标准样品研制2017包头稀土研究院、瑞科稀土冶金及功能材料国家工程研究中心有限公司4难熔金属铌粉氧系列标准样品研制2017株洲硬质合金集团有限公司分测中心5甲醇中1,3,5-三氯苯分析校准用标准样品研制2017环境保护部标准样品研究所6甲醇中1,2,3,5-四氯苯分析校准用标准样品研制2017环境保护部标准样品研究所7水质 钡分析校准用标准样品研制2017环境保护部标准样品研究所8水质 钛分析校准用标准样品研制2017环境保护部标准样品研究所9水质 银分析校准用标准样品研制2017环境保护部标准样品研究所10正己烷中3,3&rsquo ,4,4&rsquo ,5-五氯联苯分析校准用标准样品(PCB126)研制2017环境保护部标准样品研究所11正己烷中3,3&rsquo ,4,4&rsquo ,5,5&rsquo -六氯联苯分析校准用标准样品(PCB169)研制2017环境保护部标准样品研究所12甲醇中毒死蜱分析校准用标准样品研制2017环境保护部标准样品研究所13甲醇中灭草松分析校准用标准样品研制2017环境保护部标准样品研究所14水质 锂分析校准用标准样品研制2017环境保护部标准样品研究所15水质 铝分析校准用标准样品研制2017环境保护部标准样品研究所16甲醇中1,2,4,5-四氯苯分析校准用标准样品研制2017环境保护部标准样品研究所17甲醇中1,4-二氯苯-D4分析校准用标准样品研制2017环境保护部标准样品研究所18甲醇中甲苯-D8分析校准用标准样品研制2017环境保护部标准样品研究所19氮气中丁烯气体标准样品研制2017环境保护部标准样品研究所20氮气中正丁烷气体标准样品研制2017环境保护部标准样品研究所21油井水泥稠化时间检验标准样品研制2017中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心22RoHS检测X荧光分析用PP塑料中铅、镉﹑铬﹑汞和溴标准样品研制2017东莞出入境检验检疫局检验检疫综合技术中心,东莞中思检测电子科技有限公司23塑料简支梁冲击性能测定用标准样品 C40研制2018北京华塑晨光科技有限责任公司、中国石化北京燕山分公司树脂应用研究所24塑料拉伸性能测定用标准样品 E13研制2018北京华塑晨光科技有限责任公司、中国石化北京燕山分公司树脂应用研究所25D-木糖标准样品研制2019山东省分析测试中心26L-阿拉伯糖标准样品研制2019山东省分析测试中心27槲皮素标准样品研制2019山东省分析测试中心28麦芽糖醇标准样品研制2019山东省分析测试中心29没食子酸标准样品研制2019山东省分析测试中心30木糖醇标准样品研制2019山东省分析测试中心31人参皂苷Rd标准样品研制2019山东省分析测试中心32人参皂苷Re标准样品研制2019山东省分析测试中心33山柰酚标准样品研制2019山东省分析测试中心34辣木米辛标准样品研制2018中国科学院过程工程研究所35辣木宁A标准样品研制2018中国科学院过程工程研究所36丹酚酸B标准样品研制2018河北海山生物制药有限公司37酱油中氨基酸态氮、氯化钠、三氯蔗糖分析标准样品研制2018中国检验检疫科学研究院38酱油中山梨酸、苯甲酸分析标准样品研制2018中国检验检疫科学研究院39饲料中钙、镁、铜、铁、锌、钾、钠、锰分析标准样品研制2018中国检验检疫科学研究院40茶叶中联苯菊酯、毒死蜱分析标准样品研制2018中国检验检疫科学研究院41化妆品乳液中氯霉素、甲硝唑分析标准样品研制2018中国检验检疫科学研究院42化妆品乳液中铅、砷、镉、汞分析标准样品研制2018中国检验检疫科学研究院43化妆品乳液中二恶烷分析标准样品研制2018中国检验检疫科学研究院44食用油酸价、过氧化值分析标准样品研制2018中国检验检疫科学研究院45植物油中苯并芘分析标准样品研制2018中国检验检疫科学研究院46植物油中丁基羟基茴香醚(BHA)、二丁基羟基甲苯(BHT)、叔丁基对苯二酚(TBHQ)分析标准样品研制2018中国检验检疫科学研究院47大豆油中饱和脂肪酸、单不饱和脂肪酸、多不饱和脂肪酸分析标准样品研制2018中国检验检疫科学研究院48食用油中邻苯二甲酸二(2-乙基)己酯(DEHP)、邻苯二甲酸二丁酯(DBP)定量分析标准样品研制2018中国检验检疫科学研究院49乳粉中硝酸盐、亚硝酸盐分析标准样品研制2018中国检验检疫科学研究院50乳粉中总砷、铬、铅分析标准样品研制2018中国检验检疫科学研究院51乳粉中黄曲霉毒素M1、黄曲霉毒素B1分析标准样品研制2018中国检验检疫科学研究院52鱼肉中总孔雀石绿、结晶紫、氯霉素、氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星分析标准样品研制2018中国检验检疫科学研究院53虾中氯霉素、四环素分析标准样品研制2018中国检验检疫科学研究院54啤酒酒精度、原麦芽汁浓度、总酸分析标准样品研制2018中国检验检疫科学研究院55葡萄酒中酒精度、甲醇、总酸、挥发酸分析标准样品研制2018中国检验检疫科学研究院56葡萄酒中山梨酸、苯甲酸、柠檬酸分析标准样品研制2018中国检验检疫科学研究院57葡萄酒中铁、铅分析标准样品研制2018中国检验检疫科学研究院58染料染色机织产品标准深度色卡标准样品研制2018上海市纺织工业技术监督所59豆浆机测试标准干大豆标准样品研制2018中标能效科技(北京)有限公司,九阳股份有限公司60宣纸标准样品研制2018安徽省质量和标准化研究院、中国宣纸股份有限公司、宣城市产品质量监督检验所61建筑涂料涂层耐沾污性试验用灰标准样品复制2018上海市建筑科学研究院(集团)有限公司62鳗鲡中恩诺沙星、环丙沙星和磺胺二甲嘧啶标准样品复制2018福建出入境检验检疫局检验检疫技术中心63鸡蛋中苏丹红Ⅰ、苏丹红Ⅱ、苏丹红Ⅲ和苏丹红Ⅳ标准样品复制2018福建出入境检验检疫局检验检疫技术中心
  • 水质分析中的常见指标以及标准物质在其中的作用
    在此,我们将依据GB 5749-2022《生活饮用水卫生标准》中的表1,对水质常规指标进行深入浅出的解读。这些数据,就如同体检报告上的各项指标,默默讲述着水质的故事。让我们一起,探索那数据背后的意义,守护我们的饮水安全。一、微生物指标饮用水需要检测微生物指标,如菌落总数、总大肠菌群、大肠埃希氏菌等,如果这些指标不合格,易引发细菌感染、寄生虫病,使人出现腹痛、腹泻等消化道症状。二、感官性状指标1、色度:天然水或处理后的各种水进行颜色定量测定时的指标。标准限值:15度。2、浑浊度:水中悬浮及胶体状态的颗粒。标准限值:1NTU。3、臭和味:被污染的水体往往具有不正常的气味。用鼻子闻到的叫做臭,口尝到的叫做味。标准限值:无异臭、无异味。4、肉眼可见物:水中存在的、可以肉眼观察到的颗粒或其他悬浮物质。标准限值:不得含有。超标危害:感官性状指标主要是其他指标的表征体现,一般没有直接危害。如浑浊度超标水样中悬浮物容易吸附细菌、病毒等。三、一般化学指标1、pH值:氢离子浓度倒数的对数。标准限值:6.50~8.50。超标危害:对管道的腐蚀进而引起间接中毒。2、总硬度:主要是指水中钙、镁离子的含量。硬度分为碳酸盐硬度及非碳酸盐硬度。碳酸盐硬度和非碳酸盐硬度的总和称总硬度。标准限值:450mg/L。超标危害:引起胃肠道功能紊乱,容器结垢,腐蚀设备等。3、溶解性总固体(TDS):溶解在水里的无机盐和有机物的总称,主要成分有Ca2+、Mg2+、Na+、K+、CO32-、HCO3-、SO42-、NO3-等。标准限值:1000mg/L。超标危害:味道差,口感差,水壶结垢。四、无机非金属指标1、硫酸盐:主要来自石膏和其他含硫酸盐沉积物的溶解。标准限值:250mg/L。超标危害:大量摄入导致腹泻、脱水、胃肠道紊乱。2、氯化物:广泛存在于水中,来源于天然矿物沉积、海水入侵、农业灌溉等。标准限值:250mg/L。超标危害:腐蚀管路,引入咸味,对胃液分泌、水代谢有影响,从而诱发各种疾病。3、氟化物:广泛存在于水中,来源于天然矿物沉积。标准限值:1.0mg/L。超标危害:适量的氟对身体有益,可预防龋齿。摄入过多对人体有害,容易导致氟斑牙、氟骨症。4、氰化物:自然水体一般不存在氰化物,水中来源主要是工业污染、石油化工、农药、电镀等。标准限值:0.05mg/L。5、硝酸盐氮、氨氮:硝酸盐、亚硝酸盐和氨是氮循环的组成部分。除来自地层外,还主要来源工业废水、生活污水、肥料等。标准限值:硝酸盐氮10mg/L,氨氮0.5mg/L。超标危害:本体无毒。在体内形成亚硝酸盐,可导致高铁血红蛋白症。在胃肠道形成亚硝胺,使动物致畸、致癌、致突变。五、金属指标1、铝:来源于工业污染及混凝剂(如硫酸铝、聚合氯化铝、明矾等)的使用,产生的铝化合物随污水进入水体。标准限值:0.20mg/L。超标危害:铝是一种低毒金属元素,并非人体需要的微量元素,不会导致急性中毒,人体摄入铝后仅有10%-15%能排泄到体外,大部分会在体内蓄积,与多种蛋白质、酶等人体重要成分结合,影响体内多种生化反应,长期摄入会损伤大脑,导致痴呆,还可能出现贫血、骨质疏松等疾病。2、铁:铁是人体的必需元素。铁是地壳层中第二丰富的金属,以多种形式存在于天然水中。水中的铁通常以Fe3+的形式出现,而较易溶解的Fe2+可能在脱氧的情况下出现。标准限值:0.30mg/L。超标危害:当水中含铁量超过0.30mg/L会使衣服、器皿、设备等着色。在含铁量大于 0.50mg/L时,水的色度可能会大于30度。饮用水铁过多可引起食欲不振、呕吐、腹泻、胃肠道紊乱、大便失常等症状。3、锰:是地壳中较为丰富的元素之一,地下水中锰的质量浓度可以达到每升几毫克。常和铁结合在一起。标准限值:0.10 mg/L。超标危害:高浓度锰有毒性,锰主要危害中枢神经系统,可以出现颓废、肌张力增加、震颤和智力减退等中毒症状。但还未达到此水平时根据味道就需对水进行处理了。当锰的质量浓度超过0.10mg/L,会使饮用水发出令人不快的味道,并使器皿和洗涤的衣服着色。如果溶液中Mn2+的化合物被氧化,会形成沉淀,造成结垢。4、铜:是一种存在于地壳和海洋中的金属。在地壳中的含量约0.01%。自然界中的铜多数以化合物(铜矿物)存在。标准限值:1.0mg/L。超标危害:铜是人体重要的必需微量元素,但重金属又有一定毒性。毒性强弱与重金属进入人体的方式和剂量有关。金属铜不易溶解,毒性比铜盐(醋酸铜和硫酸铜)小。铜超标引起急性和慢性中毒,急性中毒有急性胃肠炎、溶血和贫血;慢性中毒有记忆力减退、注意力不集中,易激动、多发性神经炎等。5、锌:在自然界中多以硫化物状态存在。主要含锌矿物是闪锌矿。也有少量氧化矿,如菱锌矿,电池的重要原料。水中锌含量很小,但水流经镀锌管道可能被污染,使水的浑浊度升高,具有不舒服的金属味。标准限值:1.0mg/L。超标危害:锌是人体不可缺少的微量元素,但锌超标也有危害:1.锌与硒有拮扰性,人体大量摄入锌后降低了硒的解毒作用,容易引起某些有毒元素的慢性中毒或诱发某些疾病;2.大量的锌能抑制吞噬细胞的活性和杀菌力,从而降低人体的免疫功能,使抗病能力减弱;3.过量的锌致使铁参与造血机制发生障碍从而使人体发生顽固性缺铁性贫血;4.长期大剂量锌摄入可诱发人体的铜缺乏。6、砷:在地壳中广泛存在,大多以硫化砷或金属砷酸盐和砷化物形式存在。某些地区水砷偏高(地方病),有的来自治炼废水、矿物溶出。标准限值:0.01mg/L。超标危害:砷是饮水中一种重要的污染物,国际癌症研究机构 (IARC)确认是使人致癌的物质之一。7、汞:在自然界中分布量很少,但普遍存在,一般动物植物中都含有微量的汞。汞的用途广泛,人类活动造成水体汞污染,主要来自系碱、塑料、电池、电子、化工废水还有农药、化肥等使用。标准限值:0.001mg/L。超标危害:金属汞和无机汞损伤肝脏和肾脏,但一般不形成累积中毒。有机汞(如甲基汞)等毒性高,能损伤大脑,在体内停留时间长,即使剂量很少也可累积致毒,如日本的水俣病。8、镉:在自然界中常以化合物状态存在,一般水中含量很低。镉在电镀、颜料、塑料、稳定剂、Ni-Cd电池工业、电视显像管制造等工业领域使用广泛。镉的污染主要来源工业排放。标准限值:0.005mg/L。超标危害:镉是人体非必需元素,正常环境状态下,不会影响人体健康。镉被人体吸收后,在体肉形成镉硫蛋白,选择性地蓄积在肝肾中。从而影响肝、肾器官中酶系统的正常功能,使骨路的生长代谢受阻碍,从而造成骨路疏松、萎缩、变形等。如日本的痛痛病。9、铬(六价):铬属于分布较广的元素之一。自然界中主要以铬铁矿FeCr204形式存在。铬的污染源有含铬矿石的加工,金属表面处理、皮革鞣制、印染等排放的污水。标准限值(六价铬):0.05mg/L。超标危害:铬是人体必需的微量元素,在机体的糖代谢和脂代谢中发辉特殊作用。铬的毒性与其价态有关,金属铬对人体几乎无害,六价铬才有毒。六价铬比三价铬毒性高。六价铬对人主要是慢性毒害,它可以通过消化道、呼吸道、皮肤和粘膜侵入人体,在体内主要蓄积在肝、肾和内分泌腺中。通过呼吸道进入的易积存在肺部。10、铅:铅在地壳中含量为0.16%,很少以游离态存在于自然界,工业中含铅废气、废水、废渣等可以污染水源。自来水的铅还来自含铅的管道系统,如输水管、焊料、管件及其接头,聚氯乙烯水管材、管件可能含铅,因为铅作为稳定剂用于生产该种塑料管。标准限值:0.01mg/L。超标危害:铅中毒对机体的影响是多器官、全身性的,临床表现复杂,且缺乏特异性,比较明确的是:1、引起血红蛋白合成障碍;2、损害神经系统;3、损害肾脏;4、损害生殖器官;5、影响子代。病期较长的患者并有贫血,面容呈灰色,伴心悸、气促、乏力等。牙与指甲因铅质沉者而染黑色,有的牙龈出现黑色。编辑搜图六、有机物(综合)指标1、高锰酸盐指数(以O₂ 计):是指水样在规定的氧化剂和氧化条件下的可氧化物质的总量。标准限值:3mg/L。超标危害:高锰酸盐指数是反应饮用水中有机污染物总体水平的一项指标,与肝癌和胃癌死亡率之间有非常显著的相关关系。2、三氯甲烷:是一种有机合成原料,主要用来生产氟氯昂。可用于有机合成及麻醉剂,脂肪、橡胶、树脂、油类、蜡、磷、碘和粘合压克力的溶剂,青霉素,精油、生物碱等的萃取剂,在生产过程中的废水污染水体。饮用水中三氯甲烷的形成在很大程度上取决于用作消毒剂的氯和在水源中存在的前体之间相互反应。标准限值:0.06mg/L。超标危害:主要作用于中枢神经系统,具有麻醉作用,对心,肝,肾有损害,主要引起肝脏损害,并有消化不良、乏力、头痛、失眠等症状。并认为对人具有潜在的致癌危险性。在使用相关仪器设备对水质进行检测的同时,需要确保已有仪器的正确值,这就需要用到相关的标准物质进行校准,那标准物质在其中起到了什么作用呢?水质检测标准物质主要用于保证水质检测结果的准确性。这些标准物质在环境监测中起到重要的作用,可以用于测定水样中污染物质的浓度。此外,这些标准物质还可以被用于制定一些环境标准,如水质标准,以保证水质监测检测结果的合理性和可靠性,进而保证公众的生命健康和生活的安全。具体来说,水质检测标准物质有以下用途:1. 质量控制:在实验室内部的质量控制程序中,标准物质可被用作质控样品,通过比较实际测试结果与标准物质的不确定度,来评估实验的准确度和精密度。2. 比对试验:标准物质可以作为基准,用于比较不同实验室或不同测量方法的结果,以评估其准确性和一致性。3. “盲样”分析:在某些情况下,标准物质会被混入实际样品中,以测试实验室对特定污染物的检测能力。4. 校准仪器:标准物质可用于校准测量仪器,确保其准确性。5. 标定溶液浓度:标准物质可以用来标定用于样品前处理的溶液,确保这些溶液的浓度准确无误。6. 评价分析方法:通过使用标准物质,可以对新开发或改进的分析方法进行验证,确保其有效性。值得注意的是,某些特殊的水质检测标准物质如水中氨氮溶液标准物质和水中铵离子溶液标准物质,不仅可用于上述用途,还可以直接用于对排放的氨氮污染物进行准确测定,为环保领域的新技术新方法研究、新标准验证、质量控制、能力验证样品检测等方面提供技术保障。
  • 中关村材料试验技术联盟立项《镍基合金中厚板超声检测方法》等13项团体标准
    经中国材料与试验标准化委员会(以下简称:CSTM标准化委员会)标准化领域委员会审查,CSTM标准化委员会批准(具体标准如下,详细公告内容请至CSTM官网查看),特此公告。序号标准名称标准立项号所属委员会1镍基合金中厚板超声检测方法CSTM LX 0100 01438—2024FC012复合材料挖补修复打磨工艺通用要求CSTM LX 0311 01439—2024FC03/TC113功能复合材料夹层结构修复技术通用要求CSTM LX 0311 01440—2024FC03/TC114生物基聚氨酯地坪材料CSTM LX 0327 01441—2024FC03/TC275地坪工程现场验收检测方法 第9部分 防静电性的测定CSTM LX 0327 00556.9—2024FC03/TC276地坪工程现场验收检测方法 第10部分 防滑性的测定CSTM LX 0327 00556.10—2024FC03/TC277渗透型液体硬化剂化学成分分析方法CSTM LX 0327 01442—2024FC03/TC278低释放树脂地坪材料CSTM LX 0327 01443—2024FC03/TC279铺装型环氧卷材地坪CSTM LX 0327 01444—2024FC03/TC2710石膏基自流平砂浆集中采购通用要求CSTM LX 0327 01445—2024FC03/TC2711火花放电原子发射光谱仪使役性能评价方法CSTM LX 9804 01446—2024FC98/TC0412中阶梯光栅电感耦合等离子体发射光谱仪使役性能测试及评价方法 第1部分:金属及合金成分分析CSTM LX 9804 01447.1—2024FC98/TC0413仪器使役性能评价机构通用要求CSTM LX 9804 01448—2024FC98/TC04联系方式如有单位或个人愿意参与该标准项目的工作,请与项目牵头单位联系。CSTM标准化委员会秘书处联系方式联系人:陈鸣,范小芬办公电话:010-62187521手机:13011072266,13426028810邮箱:chenming@ncschina.com,fanxiaofen@ncschina.com通讯地址:北京市海淀区高梁桥斜街13号钢研集团新材料大楼1020邮编:100081
  • 水质28种有机磷农药检测标准来了,您准备好了吗?
    导读有机磷农药,指含有磷元素的有机物农药,主要用于植物病虫害防治,具有明显的刺激性气味及较强的挥发性,因在农业生产中大量使用,并受地表径流等汇集作用而在环境水体中存在不同程度的残留。为规范环境水中有机磷农药的测定方法,生态环境部颁布了《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021),并将于2022年4月1日起正式实施。 有机磷农药的危害有机磷农药具有神经毒性,通过与胆碱酯酶结合,形成磷酰化胆碱酯酶,抑制胆碱酯酶活性,使胆碱酯酶失去催化乙酰胆碱水解作用,积聚的乙酰胆碱进而引起神经毒性。有机磷见光易分解、受热不稳定、在碱性条件下更是会迅速降解,目前常用的有机磷农药主要有乐果、敌敌畏、甲拌磷、毒死蜱、甲基对硫磷等。图1. 4种常见有机磷农药 有机磷农药可经地表径流汇入地表饮用水源,并通过食物链富集进入动物及人体内,对人类健康造成不可忽视的风险。此外,有机磷农药一旦渗入地下水,在地下环境中受光照及温度影响较小,难以自然降解,极易造成长期残留,因此对水体中有机磷农药残留量监测变得刻不容缓。 新标准实施在即,岛津GCMS助您从容应对参考HJ 1189-2021标准,使用岛津气质联用仪GCMS-QP2020 NX建立了一种快速准确测定环境水中28种有机磷农药含量的方法,同位素内标定量,轻松应对新标准。图2. 岛津气质联用仪(GCMS-QP2020 NX) ◦分析条件图3. 有机磷农药及内标溶液色谱图1、萘-d8(内标)2、敌敌畏3、(E)-速灭磷4、(Z)-速灭磷5、苊-d10(内标)6、内吸磷7、灭线磷8、治螟磷9、甲拌磷10、特丁硫磷11、二嗪磷12、地虫硫磷13、异稻瘟净14、(E)-磷胺15、菲-d10(内标)16、氯唑磷17、乐果18、甲基毒死蜱19、(Z)-磷胺20、甲基对硫磷21、毒死蜱22、马拉硫磷23、杀螟硫磷24、对硫磷25、甲基异柳磷26、溴硫磷27、水胺硫磷28、稻丰散29、苯线磷30、丙溴磷31、三唑磷32、䓛-d12(内标)33、蝇毒磷 ◦样品处理流程参照HJ 1189-2021标准,水样中敌百虫经碱解转化为敌敌畏间接测定,其他27种有机磷农药经萃取浓缩后直接测定。图4. 样品前处理流程简图 ◦方法学结果考察0.2-20 μg/mL浓度范围内各目标物线性关系,将0.5 μg/mL标准溶液连续进样6次计算峰面积重复性以考察进样精密度,并以50 μg/L浓度添加回收试验并平行处理3份进行回收率测试。结果表明,方法准确度及精密度均满足相关标准要求。 表1. 28种有机磷农药方法学考察结果 结语使用岛津GCMS-QP2020 NX气质联用仪,可准确测定环境水中有机磷农药含量,轻松应对《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021)标准要求,水质监测刻不容缓,岛津方案助您从容应对。 本文内容非商业广告,仅供专业人士参考。
  • 4月1日起 这5项水质相关的环境标准将实施
    4月1日起这5项水质相关的环境标准将实施4月1日起有5项水质相关的环境标准将实施,涉及到气相色谱-质谱仪、高效液相色谱仪、生物学检测法、分光光度等仪器设备。HJ 1189-2021水质 28种有机磷农药的测定 气相色谱-质谱法 本标准为首次发布本标准规定了测定水中有机磷农药的气相色谱 -质谱法 。本标准适用于地表水、地下水、海水、生活污水和工业废水中敌敌畏、速灭磷、内吸磷、灭线磷、治螟磷、甲拌磷、特丁硫磷、二嗪磷、地虫硫磷、异稻瘟净、乐果、氯唑磷、甲基毒死蜱、磷胺、甲基对硫磷、毒死蜱、杀螟硫磷、马拉硫磷、对硫磷、溴硫磷、甲基异柳磷、水胺硫磷、稻丰散、丙溴磷、苯线磷、三唑磷、蝇毒磷、敌百虫等28 种有机磷农药的测定。当地表水、地下水和海水取样量为1 L,定容体积为1.0 ml 时,28 种有机磷农药的方法检出限为0.3 μg/L~0.6 μg/L,测定下限为1.2 μg/L~2.4 μg/L;当生活污水和工业废水取样量为100 ml,定容体积为1.0 ml 时,28 种有机磷农药的方法检出限为4 μg/L~7 μg/L,测定下限为16 μg/L~28 μg/L。警告:实验中使用的有机试剂和标准物质均为有毒化合物,试剂配制和样品前处理过程应在通风橱内进行;操作时应按要求佩戴防护器具,避免接触皮肤和衣物。HJ 1190-2021水质 灭菌生物指示物(枯草芽孢杆菌黑色变种)的鉴定 生物学检测法 本标准为首次发布本标准规定了鉴定水中灭菌生物指示物(枯草芽孢杆菌黑色变种)的生物学方法。本标准适用于微生物实验室灭菌效果的评价。警告:检测人员应采取必要的生物安全防护措施(包括但不仅限于一次性手套、口罩、防护服、防护眼镜、鞋套等防护用品);检测时应做好无菌防护,在无菌操作设备内进行。HJ 1191-2021水质 叠氮化物的测定 分光光度法 本标准为首次发布本标准规定了测定水中叠氮化物的分光光度法。本标准适用于地表水、地下水、生活污水和工业废水中叠氮化物的测定。当取样体积为150 ml,试样制备体积为100 ml,使用10 mm 光程比色皿时,方法检出限为0.08 mg/L(以叠氮根计),测定下限为0.32 mg/L(以叠氮根计)。警告:实验中所使用的叠氮化钠为剧毒试剂,具有爆炸性;盐酸具有强挥发性和腐蚀性;高氯酸铁具有强氧化性和腐蚀性。试剂配制和样品前处理过程应在通风橱内进行,操作时应按要求佩戴防护器具,避免吸入呼吸道或接触皮肤和衣物。HJ 1192-2021水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法 本标准为首次发布本标准规定了测定水中烷基酚类化合物和双酚A 的高效液相色谱法。本标准适用于地表水、地下水、生活污水和工业废水中4-叔丁基苯酚、4-丁基苯酚、4-戊基苯酚、4-己基苯酚、4-庚基苯酚、4-辛基苯酚、4-支链壬基酚、4-叔辛基苯酚和4-壬基酚等9 种烷基酚类化合物和双酚A 的测定。警告:实验中所使用的有机溶剂、标准物质和标准溶液均有一定的毒性,试剂配制和样品前处理过程应在通风橱中进行,操作时应按规定要求佩戴防护器具,避免吸入呼吸道、接触皮肤和衣物。HJ 1230—2021工业企业挥发性有机物泄漏检测与修复 技术指南 本标准为首次发布本标准规定了工业企业挥发性有机物泄漏检测与修复的项目建立、现场检测、泄漏修复、质量保证与控制以及报告等技术要求。本标准适用于工业企业开展设备与管线组件、废气收集系统输送管道组件挥发性有机物泄漏检测与修复工作。Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近70万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制