当前位置: 仪器信息网 > 行业主题 > >

水质银标准样品标样

仪器信息网水质银标准样品标样专题为您提供2024年最新水质银标准样品标样价格报价、厂家品牌的相关信息, 包括水质银标准样品标样参数、型号等,不管是国产,还是进口品牌的水质银标准样品标样您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水质银标准样品标样相关的耗材配件、试剂标物,还有水质银标准样品标样相关的最新资讯、资料,以及水质银标准样品标样相关的解决方案。

水质银标准样品标样相关的资讯

  • “雷磁”水质分析解决方案助力生活饮用水标准检测方法
    最新版《生活饮用水卫生标准》(GB 5749-2022)于2022年3月15日获批发布,2023年4月1日实施,这次修订历时16年之久。日前,国家市场监督管理总局批准发布GB/T 5750-2023《生活饮用水标准检验方法》系列标准,并定于2023年10月1日起实施,以代替实施16年之久的GB/T 5750-2006 《生活饮用水标准检验方法》系列标准。据悉,此次修订除了满足GB 5749《生活饮用水卫生标准》中水质指标的检验需求,提高饮用水水质检验工作的效率,更主要的是为了解决GB/T 5750-2006存在的问题和不足。事关饮水健康!16年之后,生活饮用水卫生标准及检验方法迎来了哪些改变?同时对生活饮用水检测的相关仪器市场会产生怎样的影响?仪器信息网邀请上海仪电科学仪器股份有限公司(简称仪电科仪)为大家进行了详细解答。仪器信息网:本次《生活饮用水卫生标准》和《生活饮用水标准检验方法》的修订,具有什么重要的意义?是基于怎样的需求做出这样的改变?重点解决哪些方面的问题? 上海仪电科仪:我国经济飞速发展,水环境及饮用水卫生状况发生了较大变化,净水工艺也在不断提高,原标准已逐渐无法满足人民群众日益增长的美好生活需要。为适应现阶段我国饮用水国情,保证居民饮水用水安全,国家进行了本次《生活饮用水卫生标准》和《生活饮用水标准检验方法》的修订。这次修订不仅完善了城乡一体化的饮用水水质评价要求,还进一步强化了“从水源到水龙头”全过程全链条的管理,内容涉及生活饮用水水质要求,水源水质要求,集中式供水单位卫生要求,二次供水卫生要求,涉及饮用水卫生安全的产品卫生要求等。仪器信息网:《生活饮用水卫生标准》相较于之前有哪些重要的变化?新增或者删减了哪些指标? 上海仪电科仪:本次标准修订指标遴选的主要原则是反映我国当前的水质问题和水质风险,因此更加关注感官指标、消毒副产物指标、风险变化等,既可反映我国当前的饮用水水质状况,同时也体现了污染物健康效应的最新研究成果。调整内容如下: 1) 调整指标分类方法: 根据水质指标的特点,将指标分类方法由原标准的“常规指标和非常规指标”调整为“常规指标和扩展指标”,修改后指标分类表述更确切,避免了歧义的产生。其中,常规指标指反映生活饮用水水质基本状况的水质指标;扩展指标指反映地区生活饮用水水质特征及在一定时间内或特殊情况下水质状况的指标。 2) 调整指标限值、数量和项目: 新标准根据最新的人群流行病学和毒理学等相关学科的研究成果,结合我国实际情况,修订调整了9项指标限值,其中8项指标限值都比原标准有所提升。同时,水质指标由原标准中的106项调整为97项,包括常规指标43项和扩展指标54项。仪器信息网:相对应的,GB/T 5750-2023《生活饮用水标准检验方法》在哪些方面完善了原标准的不足之处?有哪些新增加的、调整的仪器方法或者技术? 上海仪电科仪:GB/T 5750-2023大幅增加了高通量的分析方法,扩展了质谱技术的应用范畴,也重点加强了自动化程度高检测方法,进一步强化了以人为本的制标理念,充分体现了方法标准的配套性和前瞻性,增加了现场检测的方法便利性(余氯、总氯)。 新增内容:例如,相比GB/T 5750.7,新版修订内容增加了高锰酸盐指数2种方法:分光光度法、电位滴定法;相比GB/T 5750.11,新版修订内容对原有指标中游离余氯、总氯进行了修订,增加了2个检验方法:生活饮用水中游离氯的现场 N,N-二乙基对苯二胺(DPD)、生活饮用水中总氯的现场 N,N-二乙基对苯二胺(DPD)。 调整内容:例如增加了部分术语和定义:最低检测质量 (minimum detectable mass),能够准确测定的被测物的最低质量;最低检测质量浓度(minimum detectable mass concentration),最低检测质量所对应的被测物的质量浓度。仪器信息网:新版《生活饮用水卫生标准》和《生活饮用水标准检验方法》的相继实施会对生活饮用水检测及相关仪器市场产生怎样的影响?是否会引起相关仪器市场的增加? 上海仪电科仪:标准和检验方法的变化,首先影响到的是仪器应用上的要求,会对相关第三方检测机构及仪器生产厂商的仪器设备提出新的要求,比如氨(以N计),从非常规指标变为常规指标;对一些现场检测方法进行了拓展,比如余氯、总氯等的现场检测等;一些新的方法得到了大量应用,比如流动注射法、连续流动法、液相-原子荧光联用、液相-质谱联用等,新方法的应用,将会引发这一类仪器的市场增量。仪器信息网:应对新标准的变化,贵单位可以提供哪些相关的仪器和解决方案?有哪些突出的技术优势? 上海仪电科仪:一是对于高锰酸盐指数——电位滴定法,推荐仪器是ZDJ-5B型自动滴定仪。这款产品的技术优势包括:①采用阀门滴定管一体化设计,直接更换,有效避免干扰;②支持动态滴定、等量滴定、预设终点滴定、恒滴定和手动滴定等多种滴定模式;③可定义计算公式,直接显示计算结果;④支持滴定方法的建立、编辑、拷贝和查阅,以及滴定结果重新计算功能,满足复杂滴定;⑤支持数据管理,可存储100套滴定方法和200套符合GLP要求的滴定结果;⑥支持数据统计分析和用户管理功能;⑦支持USB、RS232连接PC,双向通讯,支持U盘即插即用,随机赠送REX滴定专用软件;⑧可直接连接自动进样器实现批量样品的自动测量。ZDJ-5B型自动滴定仪二是对于高锰酸盐指数——分光光度法,公司可推荐仪器及解决方案是:DGB-425便携式水质分析仪+COD-401-1便携式消解器。仪器内置了基于酸性高锰酸钾氧化法-比色法测高锰酸盐指数的测试方法。检测方法直接调用,无需进行波长选择,也可直接读取测量结果,无需换算,自动锁定测量值。同时还提供高锰酸盐指数校准溶液和工作试剂包,一套可以实现100次样品的测量,满足批量多次实验要求。三是对于游离余氯——生活饮用水中游离氯的现场 N,N-二乙基对苯二胺(DPD)、总氯——生活饮用水中总氯的现场 N,N-二乙基对苯二胺(DPD)的检测,可推荐仪器是DGB-402F型便携式余氯/总氯测定仪。DGB-402F型便携式余氯/总氯测定仪• DPD法测量原理,直测量程0.02-3.00 mg/L,通过稀释法可拓展至10 mg/L,精度±3%或±0.02mg/L,重复性≤1.0%• 内置校准曲线,一键校零,一键完成测量• 标配余氯、总氯校准试剂包以及工作试剂包和便携式防护箱仪器信息网:您如何评价水质检测市场未来发展的需求情况?有哪些新技术或者应用方向值得关注? 上海仪电科仪:未来,水质检测实验室分析将对高通量的分析方法以及自动化程度高检测方法需求会提高,现场检测对便携式或移动式检测仪器的标准符合性以及现场快速的配套需求也会增加,预制试剂包特定场景化应用值得关注。仪器信息网:未来贵单位在水质检测领域有什么样的发展布局?有哪些新的产品或者技术即将推出? 上海仪电科仪:在水质检测领域,未来上海仪电科仪将进一步完善产品线,比如比色法水质分析仪,以及高通量自动化系列产品和饮用水在线监测类仪表。涉及到的应用场景会有饮用水城镇供水,饮用水农村供水,管道分质供水,饮用水污染开展饮用水应急监测,二次供水,直饮水,重大活动,饮用水水质监测等。今年,即将推出的新品将有:1、 实验室分析以及现场检测仪器:1)升级版 DGB-403F型便携式消毒剂测定仪集成2个特定吸收峰波长的 LED 光源,可实现余氯/总氯/一氯胺/二氧化氯/亚氯酸盐/氯酸盐/过氧化氢等7项消毒剂类检测项目,无需稀释,直接取样测量,余氯和总氯的直测范围可到12.0mg/L。DGB-403F2) 钨灯光源浊度计系列台式和便携式全覆盖3) 升级版LED光源浊度计系列4)升级版DGB-480型多参数水质分析仪集成8个特定吸收峰波长的 LED 光源,可实现60多个水质项目的检测。2、 二次供水/饮用水水质在线监测类仪表:1)SJG-702饮用水水质多参数水质分析仪• 模块化设计,支持pH值,TDS,浊度,余氯/总氯/二氧化氯,温度的测定,各测量参数可自由组合,灵活配置• 适用于测量饮用水管网水,二次供水水质监测2)SJG-791B在线消毒剂监测仪• 电极法测量余氯,总氯,二氧化氯或臭氧• 适用于测量自来水水源,饮用水管网水,二次供水水箱,污水消毒工艺,医疗污水及游泳池的消毒剂含量3)WZT-701B型在线浊度监测仪• 适用于低浊度样品如自来水、饮用水、二次供水、工业过程用水的浊度值测量• 测量量程为0.005-20.000NTU
  • 兰州自来水异味 水质检测已符合饮用标准
    据兰州市官方9日通报称,经市环保、市疾控中心等有关部门对威立雅水务公司供水水质连续跟踪监测表明:兰州市自来水水厂取水、供水出水、自来水末梢水各项监测数据呈现下降趋势,尤其是产生异味的氨氮含量下降明显,异味已逐渐消失,水质已基本无味, 水质检测后符合国家安全饮用标准。 兰州市环保局在水厂取水口水质检测数据:高锰酸盐1.9mg/L(国标 6mg/L)、硝酸盐1.63mg/L(国标 10mg/L)、氨氮0.495mg/L(国标 1mg/L)、氯化物39.7mg/L(国标 250mg/L)、阴离子表面活性剂未检出(国标 0.2mg/L)。执行《地表水环境质量标准》(GB3838-2002),以上指标全部达标。自来水 自来水是指水厂将江河、湖泊的淡水经过“混凝、沉淀、过滤、消毒”等净水工序,最后由机泵通过输配水管道供给用户的水。一些国家和地区规定,必须符合国家生活饮用水卫生标准。 水质检测不达标的水,容易引发腹泻、霍乱、伤寒、肝炎、痢疾等传染病和氟中毒、砷中毒等地方病。城市自来水的国家标准(GB5749-85) 总大肠菌群(MPN/100mL或CFU/100mL)不得检出;耐热大肠菌群(MPN/100mL或CFU/100mL)不得检出;大肠埃希氏菌(MPN/100mL或CFU/100mL)不得检出;菌落总数(CFU/mL)100。 色度 度不超过15度;浑浊度 NTU 不超过3度;嗅和味 不得有异嗅异味;肉眼可见物不得含有;PH 6.5-8.5;总硬度(以CaCO3计)mg/L 450;铁 mg/L 0.3;锰 mg/L 0.1;铜 mg/L 1.0;锌 mg/L 1.0;挥发酚(以苯酚计)g/L 0.002;阴离子合成洗涤剂 g/L 0.3;硫酸盐 g/L 250;氯化物 g/L 250;溶解性总固体 g/L 1000;氟化物 g/L 1.0;氰化物 g/L 0.05;  氯仿 g/L 60;细菌总数 个/L 100;总大肠菌群 个/L 3;余氯 g/L ≥0.30。自来水消毒 现在自来水消毒大都采用氯化法,氯气用于自来水消毒具有消毒效果好,费用较低,几乎没有有害物质的优点。但我们经过对理论资料了解、研究,认为氯气用于自来水消毒还是有在一定的弊端。氯化消毒后的自来水能产生致癌物质,目前有关方面专家也提出了许多改进措施。 目前世界上安全的自来水消毒方法是臭氧消毒,不过这种方法的处理费用太昂贵,而且经过臭氧处理过的水,它的保留时间是有限的,至于能保留多长时间,目前还没有一个确切的概念。所以目前只有少数的发达国家才使用这种处理方法。水质检测 水是生命之源,人类在生活和生产活动中都离不开水,生活饮用水水质的优劣与人类健康密切相关。随着社会经济发展、科学进步和人民生活水平的提高,人们对生活饮用水的水质要求不断提高,饮用水水质标准也相应地不断发展和完善。北京智云达科技有限公司专业研发、生产的ZYD-HF水质检测仪,在使用配套试剂的情况下,不需要配制标准溶液、绘制标准曲线,可直接将样品或稀释溶液放入仪器进行定量水质检测, 水质检测结果准确,操作简便。
  • SGS首次研制工业硅国家标准样品获标样委认可
    近日,在全国有色金属标准样品鉴定会上,全球领先的检验、鉴定、测试和认证机构SGS研制的三个工业硅国家标准样品获得标样委鉴定认可。SGS首次主持研制国家标准样品即获成功,标志着其标准样品研制的整体实力和综合水平迈向了新台阶。SGS标准样品的覆盖领域进一步拓宽,也体现国际第三方检测机构在工业硅生产,贸易行业内的技术权威性,先进性和扎实的技术研发实力。  工业硅是现代工业尤其是高科技产业必不可少的材料,被广泛应用于信息产业、钢铁冶炼和电子电气行业等领域。虽然我国硅产量世界第一,但是我国工业硅标准样品在牌号Si1101等硅含量高于99.60%的区域,几乎没有标准样品覆盖 ,严重制约了我国硅产业的健康发展。众所周知,标准样品在建立测量结果溯源性方面发挥着重要作用,它使得检验、分析和测量以及实验室间测量值的互相传递成为可能。科学研制工业硅标准样品,完善工业硅标准样品体系,针对工业硅在生产、贸易过程中的杂质元素进行规范检测和有效质量控制,对于硅产业的发展有积极的促进作用和长远的现实意义。SGS矿产部专家参与评审  SGS矿产实验室科研人员结合我国工业硅产业的实际市场需求,根据GB/T 2881-2014 《工业硅》对于主要杂质元素的分布梯度要求,借鉴国内外研制经验,反复摸索试验,克服各种困难,牢牢控制住标样的均匀性、稳定性和准确性的关键环节,经过长达两年的数据积累和分析测试,最终完成了一定化学梯度分布的三个工业硅标准样品的研制和定值。  这样的技术成果,为SGS作为第三方检测机构,不论是在国际贸易环节的质量验证,还是行业生产环节的质量技术支持,或者贸易品质争议中的仲裁服务,储备了核心竞争力,主导和占据市场领先地位,提供国际认可的,具有高度权威性和技术领先性的质量技术服务。  SGS矿产实验室分布在中国的有13个能源实验室,5个综合实验室,沿海经济圈呈全网络覆盖式发展,并拥有分析测试服务、冶金选矿服务、实验室咨询服务、培训服务等全产业链服务优势。SGS矿产实验室引进一流的仪器设备及其内部卓越的管理模式,严格执行质量控制,精确把控服务模块的每一个环节。  关于SGS  SGS是全球领先的检验、鉴定、测试和认证机构,是公认的质量和诚信的基准。SGS集团在世界各地共有85,000多名员工,分布在1,800多个分支机构和实验室,构成了全球性的服务网络。  SGS通标标准技术服务有限公司是SGS集团和隶属于原国家质量技术监督局的中国标准技术开发公司共同于1991年成立,经过20多年的发展,在全国已建成了50多个分支机构和100多间实验室,拥有13,000多名训练有素的专业人员。  在中国,SGS的服务能力已全面覆盖到工业及建筑业、汽车、矿产、石化、农产及食品、纺织品及服装鞋类、电子电气、轻工家居、玩具及婴幼儿用品、生命科学、化妆品及个人护理产品、医疗器械等多个行业的供应链上下游。凭借全球化技术优势和本地化服务理念,我们不断创新,通过一流的检测、认证服务,致力在企业组织、政府和个人间传递信任,更助力本土及全球客户加速业务成功、提升可持续发展竞争力。
  • 标样所研制完成多溴二苯醚标准样品,助力新污染物调查监测
    为充分发挥新污染物标准样品的量值溯源和质量控制作用,标样所依托国家生态环境标准项目和新污染物调查监测试点项目,成功研制土壤中多溴二苯醚和异辛烷中十溴二苯醚溶液等2项标准样品,并于近期提供监测机构试用,目前反馈良好。 标样所将继续积极落实生态环境部关于新污染调查监测试点的有关工作部署,紧盯《重点管控新污染物清单(2023年版)》,有序开展壬基酚、全氟化合物等新污染物标准样品制备技术研究,提升新污染物标准样品科技创新能力,持续完善新污染物标准样品体系,加快推进新污染物标准样品应用转化,为新污染物治理提供质量管理技术支撑。
  • 63项国家标准样品研复制计划项目公示
    各相关单位:  根据国家标准样品管理程序要求,经审查合格,国家标准委拟对《钕铁硼合金标准样品》等63项国家标准样品研复制计划项目进行立项。现将63项研复制计划项目(见附件)进行公示,公示期间,如有异议,请将意见回复至电子邮箱:zengxl@sac.gov.cn。公示时间为2017年1月6日至1月22日。  附件:《钕铁硼合金标准样品》等63项国家标准样品研复制计划项目汇总表序号 项目名称 研/复制 完成时间(年) 研制单位 1钕铁硼合金标准样品研制2018包头稀土研究院 瑞科稀土冶金及功能材料国家工程研究中心有限公司2稀土镁合金(WE43)标准样品研制2018包头稀土研究院 瑞科稀土冶金及功能材料国家工程研究中心有限公司3稀土抛光粉标准样品研制2017包头稀土研究院、瑞科稀土冶金及功能材料国家工程研究中心有限公司4难熔金属铌粉氧系列标准样品研制2017株洲硬质合金集团有限公司分测中心5甲醇中1,3,5-三氯苯分析校准用标准样品研制2017环境保护部标准样品研究所6甲醇中1,2,3,5-四氯苯分析校准用标准样品研制2017环境保护部标准样品研究所7水质 钡分析校准用标准样品研制2017环境保护部标准样品研究所8水质 钛分析校准用标准样品研制2017环境保护部标准样品研究所9水质 银分析校准用标准样品研制2017环境保护部标准样品研究所10正己烷中3,3&rsquo ,4,4&rsquo ,5-五氯联苯分析校准用标准样品(PCB126)研制2017环境保护部标准样品研究所11正己烷中3,3&rsquo ,4,4&rsquo ,5,5&rsquo -六氯联苯分析校准用标准样品(PCB169)研制2017环境保护部标准样品研究所12甲醇中毒死蜱分析校准用标准样品研制2017环境保护部标准样品研究所13甲醇中灭草松分析校准用标准样品研制2017环境保护部标准样品研究所14水质 锂分析校准用标准样品研制2017环境保护部标准样品研究所15水质 铝分析校准用标准样品研制2017环境保护部标准样品研究所16甲醇中1,2,4,5-四氯苯分析校准用标准样品研制2017环境保护部标准样品研究所17甲醇中1,4-二氯苯-D4分析校准用标准样品研制2017环境保护部标准样品研究所18甲醇中甲苯-D8分析校准用标准样品研制2017环境保护部标准样品研究所19氮气中丁烯气体标准样品研制2017环境保护部标准样品研究所20氮气中正丁烷气体标准样品研制2017环境保护部标准样品研究所21油井水泥稠化时间检验标准样品研制2017中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心22RoHS检测X荧光分析用PP塑料中铅、镉﹑铬﹑汞和溴标准样品研制2017东莞出入境检验检疫局检验检疫综合技术中心,东莞中思检测电子科技有限公司23塑料简支梁冲击性能测定用标准样品 C40研制2018北京华塑晨光科技有限责任公司、中国石化北京燕山分公司树脂应用研究所24塑料拉伸性能测定用标准样品 E13研制2018北京华塑晨光科技有限责任公司、中国石化北京燕山分公司树脂应用研究所25D-木糖标准样品研制2019山东省分析测试中心26L-阿拉伯糖标准样品研制2019山东省分析测试中心27槲皮素标准样品研制2019山东省分析测试中心28麦芽糖醇标准样品研制2019山东省分析测试中心29没食子酸标准样品研制2019山东省分析测试中心30木糖醇标准样品研制2019山东省分析测试中心31人参皂苷Rd标准样品研制2019山东省分析测试中心32人参皂苷Re标准样品研制2019山东省分析测试中心33山柰酚标准样品研制2019山东省分析测试中心34辣木米辛标准样品研制2018中国科学院过程工程研究所35辣木宁A标准样品研制2018中国科学院过程工程研究所36丹酚酸B标准样品研制2018河北海山生物制药有限公司37酱油中氨基酸态氮、氯化钠、三氯蔗糖分析标准样品研制2018中国检验检疫科学研究院38酱油中山梨酸、苯甲酸分析标准样品研制2018中国检验检疫科学研究院39饲料中钙、镁、铜、铁、锌、钾、钠、锰分析标准样品研制2018中国检验检疫科学研究院40茶叶中联苯菊酯、毒死蜱分析标准样品研制2018中国检验检疫科学研究院41化妆品乳液中氯霉素、甲硝唑分析标准样品研制2018中国检验检疫科学研究院42化妆品乳液中铅、砷、镉、汞分析标准样品研制2018中国检验检疫科学研究院43化妆品乳液中二恶烷分析标准样品研制2018中国检验检疫科学研究院44食用油酸价、过氧化值分析标准样品研制2018中国检验检疫科学研究院45植物油中苯并芘分析标准样品研制2018中国检验检疫科学研究院46植物油中丁基羟基茴香醚(BHA)、二丁基羟基甲苯(BHT)、叔丁基对苯二酚(TBHQ)分析标准样品研制2018中国检验检疫科学研究院47大豆油中饱和脂肪酸、单不饱和脂肪酸、多不饱和脂肪酸分析标准样品研制2018中国检验检疫科学研究院48食用油中邻苯二甲酸二(2-乙基)己酯(DEHP)、邻苯二甲酸二丁酯(DBP)定量分析标准样品研制2018中国检验检疫科学研究院49乳粉中硝酸盐、亚硝酸盐分析标准样品研制2018中国检验检疫科学研究院50乳粉中总砷、铬、铅分析标准样品研制2018中国检验检疫科学研究院51乳粉中黄曲霉毒素M1、黄曲霉毒素B1分析标准样品研制2018中国检验检疫科学研究院52鱼肉中总孔雀石绿、结晶紫、氯霉素、氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星分析标准样品研制2018中国检验检疫科学研究院53虾中氯霉素、四环素分析标准样品研制2018中国检验检疫科学研究院54啤酒酒精度、原麦芽汁浓度、总酸分析标准样品研制2018中国检验检疫科学研究院55葡萄酒中酒精度、甲醇、总酸、挥发酸分析标准样品研制2018中国检验检疫科学研究院56葡萄酒中山梨酸、苯甲酸、柠檬酸分析标准样品研制2018中国检验检疫科学研究院57葡萄酒中铁、铅分析标准样品研制2018中国检验检疫科学研究院58染料染色机织产品标准深度色卡标准样品研制2018上海市纺织工业技术监督所59豆浆机测试标准干大豆标准样品研制2018中标能效科技(北京)有限公司,九阳股份有限公司60宣纸标准样品研制2018安徽省质量和标准化研究院、中国宣纸股份有限公司、宣城市产品质量监督检验所61建筑涂料涂层耐沾污性试验用灰标准样品复制2018上海市建筑科学研究院(集团)有限公司62鳗鲡中恩诺沙星、环丙沙星和磺胺二甲嘧啶标准样品复制2018福建出入境检验检疫局检验检疫技术中心63鸡蛋中苏丹红Ⅰ、苏丹红Ⅱ、苏丹红Ⅲ和苏丹红Ⅳ标准样品复制2018福建出入境检验检疫局检验检疫技术中心
  • 《健康直饮水水质标准》首发,涉及25项指标
    近日,“健康直饮水工程”启动仪式在京举行,《健康直饮水水质标准》发布,首次定义健康直饮水,明确了水质标准,将于4月10日实施。据了解,《健康直饮水水质标准》由中国检验检疫科学研究院综合检测中心、北京包装饮用水行业协会等十余家机构和企业联合制定,填补了国内健康直饮水无标准的空白。标准明确,健康直饮水是以符合生活饮用水水质标准的自来水或水源水为原水,经处理后具有一定矿化度,符合食品安全国家标准规定,可供直接饮用的水。其中多项指标严于WHO、日本、美国和欧盟的饮用水水质标准。《健康直饮水水质标准》在满足《生活饮用水卫生标准 (GB5749)》(点击下载)和《饮用净水水质标准 (CJ94)》(点击下载)的前提下,对溶解性总固体(50~300 mg/L)、总硬度(25~200 mg/L)和总有机碳TOC(≤1.0 mg/L) 3项重点指标及3项微生物指标、19项限量指标进行了限制。
  • 亚硝胺成致癌“隐型杀手” 水质标准亟待出台
    p   由于具有高致癌性、高检出率以及在我国可能被纳入水质检测标准,饮用水中的亚硝胺类消毒副产物得到了国内外研究人员的空前关注。 /p p   “我们从全国23个省、44个大中小城市和城镇、共155个点位采集了164个水样,包括出厂水、用户龙头水和水源水。研究中测试了当前已知的全部9种亚硝胺类消毒副产物,其中NDMA(亚硝基二甲胺)的浓度最高。”清华大学环境学院国家环境模拟与污染控制重点实验室陈超副研究员12日告诉科技日报记者,其课题组今年的一项重点研究工作就是关于全国饮用水系统中亚硝胺类消毒副产物的普查。该结果已于日前在市政和环境领域顶尖期刊《水研究》上发表,“饮用水中的亚硝胺问题有紧迫性,需要尽快研究和进行工程改造!”陈超呼吁。 /p p   strong  饮用水亚硝胺检出率不容忽视 /strong /p p   在过去三年中,陈超及其团队分别测试了44个城市供水系统中的亚硝胺类消毒副产物及其前体物。在已检测的全部水样中,出厂水和龙头水中的NDMA平均浓度分别为11ng/L和13ng/L,水源水中的NDMA生成潜能平均为66ng/L。他表示,与美国环保局在2012年公开的一项大规模普查数据相比,亚硝胺在中国出厂水和龙头水中的检出率是美国的3.6倍。而西欧国家的饮用水亚硝胺浓度比美国还低。 /p p   在课题组检测的长江三角洲地区的近10个供水系统中,出厂水和龙头水中的NDMA平均浓度分别为27ng/L和28.5ng/L,水源水中的NDMA生成潜能为204ng/L。 /p p   陈超表示,在已经鉴别出的700多种消毒副产物中,亚硝胺是健康风险最大的消毒副产物类别之一,特别是NDMA。 /p p    strong 与消化道癌症密切相关 /strong /p p   医学界在50年代就发现亚硝胺是一类强致癌物,当时主要研究食品、烟草和工业污染中的亚硝胺。饮用水中的亚硝胺类消毒副产物研究始于20世纪末。“前期的流行病学研究表明,亚硝胺与中国某些区域的消化道癌症密切相关。”陈超说,他们此次监测到这些区域的自来水受到来自工业废水的严重的亚硝胺污染。同时,今年南京大学某课题组在华东地区江苏省多座城市的水源水中也发现了严重的亚硝胺污染。 /p p   “据报道,根据毒理学试验结果,NDMA终生饮用的百万分之一致癌风险浓度是0.7ng/L,据悉美国环保署正力图制定的美国亚硝胺浓度标准,其限值可能在百万分之一至万分之一致癌风险浓度的范围之内。”陈超透露。 /p p   strong  中国尚无饮用水亚硝胺水质标准 /strong /p p   陈超说,目前已经有部分发达国家和地区建立了饮用水中NDMA的标准。“世界卫生组织在2008年提出了100ng/L的推荐值,加拿大,澳大利亚都有了国家标准,分别是40ng/L、100ng/L 加拿大安大略省、美国麻省和加州的标准更严,分别是9ng/L、10ng/L、10ng/L。” /p p   “不难看出,我们的饮用水中亚硝胺检出情况比这些地方都严重。”陈超说,但是我国饮用水水质标准中还没有这一个项目。 /p p   一旦将亚硝胺纳入标准,进行大范围的监测是否困难呢?陈超表示,亚硝胺监测是有一定困难,要测试水中ng/L量级的微量亚硝胺,需要使用气相色谱或者液相色谱再加上串联质谱,监测设备两三百万一台,每个水样的测试成本也较高。不过他也表示国内已有十几家自来水公司有该设备,还需要进一步开发检测方法。清华大学等少数高校和科研院所已经建立了亚硝胺的检测能力,目前大型自来水公司的水质是有保障的。 /p p    strong 人口密、污染重的区域风险更高 /strong /p p   记者从报告看到,亚硝胺风险高的水样主要来自两个区域——华东区和华南区。检出龙头水中最高值达到19ng/L。 /p p   在人口密集的其他区域,如华北和华中,虽然水源水中NDMA生成潜能浓度不高,但其龙头水平均浓度达到12ng/L和18ng/L。“原因也许与不同的水处理工艺有关,采用臭氧活性炭深度处理或者彻底的折点氯化,大部分亚硝胺前体物比较容易被游离氯氧化分解,可有效降低超标风险。但一旦水源受到污染,使用传统工艺的自来水厂对亚硝胺的控制效果有限。”陈超说道。 /p p   值得关注的是,长江三角洲地区既是中国经济最发达、人口最密集的区域,也是亚硝胺浓度最高的区域,NDMA浓度分别为27ng/L和29ng/L。 /p p   “我们在该区域的某县城检出了全国出厂水和龙头水中NDMA的最高浓度,是44个城市中唯一超过世界卫生组织100ng/L标准的。”陈超说,那些龙头水中检出高浓度NDMA的城市很可能是其水源受到来自工业和生活污水的NDMA前体物污染。 /p
  • 水质分析中的常见指标以及标准物质在其中的作用
    在此,我们将依据GB 5749-2022《生活饮用水卫生标准》中的表1,对水质常规指标进行深入浅出的解读。这些数据,就如同体检报告上的各项指标,默默讲述着水质的故事。让我们一起,探索那数据背后的意义,守护我们的饮水安全。一、微生物指标饮用水需要检测微生物指标,如菌落总数、总大肠菌群、大肠埃希氏菌等,如果这些指标不合格,易引发细菌感染、寄生虫病,使人出现腹痛、腹泻等消化道症状。二、感官性状指标1、色度:天然水或处理后的各种水进行颜色定量测定时的指标。标准限值:15度。2、浑浊度:水中悬浮及胶体状态的颗粒。标准限值:1NTU。3、臭和味:被污染的水体往往具有不正常的气味。用鼻子闻到的叫做臭,口尝到的叫做味。标准限值:无异臭、无异味。4、肉眼可见物:水中存在的、可以肉眼观察到的颗粒或其他悬浮物质。标准限值:不得含有。超标危害:感官性状指标主要是其他指标的表征体现,一般没有直接危害。如浑浊度超标水样中悬浮物容易吸附细菌、病毒等。三、一般化学指标1、pH值:氢离子浓度倒数的对数。标准限值:6.50~8.50。超标危害:对管道的腐蚀进而引起间接中毒。2、总硬度:主要是指水中钙、镁离子的含量。硬度分为碳酸盐硬度及非碳酸盐硬度。碳酸盐硬度和非碳酸盐硬度的总和称总硬度。标准限值:450mg/L。超标危害:引起胃肠道功能紊乱,容器结垢,腐蚀设备等。3、溶解性总固体(TDS):溶解在水里的无机盐和有机物的总称,主要成分有Ca2+、Mg2+、Na+、K+、CO32-、HCO3-、SO42-、NO3-等。标准限值:1000mg/L。超标危害:味道差,口感差,水壶结垢。四、无机非金属指标1、硫酸盐:主要来自石膏和其他含硫酸盐沉积物的溶解。标准限值:250mg/L。超标危害:大量摄入导致腹泻、脱水、胃肠道紊乱。2、氯化物:广泛存在于水中,来源于天然矿物沉积、海水入侵、农业灌溉等。标准限值:250mg/L。超标危害:腐蚀管路,引入咸味,对胃液分泌、水代谢有影响,从而诱发各种疾病。3、氟化物:广泛存在于水中,来源于天然矿物沉积。标准限值:1.0mg/L。超标危害:适量的氟对身体有益,可预防龋齿。摄入过多对人体有害,容易导致氟斑牙、氟骨症。4、氰化物:自然水体一般不存在氰化物,水中来源主要是工业污染、石油化工、农药、电镀等。标准限值:0.05mg/L。5、硝酸盐氮、氨氮:硝酸盐、亚硝酸盐和氨是氮循环的组成部分。除来自地层外,还主要来源工业废水、生活污水、肥料等。标准限值:硝酸盐氮10mg/L,氨氮0.5mg/L。超标危害:本体无毒。在体内形成亚硝酸盐,可导致高铁血红蛋白症。在胃肠道形成亚硝胺,使动物致畸、致癌、致突变。五、金属指标1、铝:来源于工业污染及混凝剂(如硫酸铝、聚合氯化铝、明矾等)的使用,产生的铝化合物随污水进入水体。标准限值:0.20mg/L。超标危害:铝是一种低毒金属元素,并非人体需要的微量元素,不会导致急性中毒,人体摄入铝后仅有10%-15%能排泄到体外,大部分会在体内蓄积,与多种蛋白质、酶等人体重要成分结合,影响体内多种生化反应,长期摄入会损伤大脑,导致痴呆,还可能出现贫血、骨质疏松等疾病。2、铁:铁是人体的必需元素。铁是地壳层中第二丰富的金属,以多种形式存在于天然水中。水中的铁通常以Fe3+的形式出现,而较易溶解的Fe2+可能在脱氧的情况下出现。标准限值:0.30mg/L。超标危害:当水中含铁量超过0.30mg/L会使衣服、器皿、设备等着色。在含铁量大于 0.50mg/L时,水的色度可能会大于30度。饮用水铁过多可引起食欲不振、呕吐、腹泻、胃肠道紊乱、大便失常等症状。3、锰:是地壳中较为丰富的元素之一,地下水中锰的质量浓度可以达到每升几毫克。常和铁结合在一起。标准限值:0.10 mg/L。超标危害:高浓度锰有毒性,锰主要危害中枢神经系统,可以出现颓废、肌张力增加、震颤和智力减退等中毒症状。但还未达到此水平时根据味道就需对水进行处理了。当锰的质量浓度超过0.10mg/L,会使饮用水发出令人不快的味道,并使器皿和洗涤的衣服着色。如果溶液中Mn2+的化合物被氧化,会形成沉淀,造成结垢。4、铜:是一种存在于地壳和海洋中的金属。在地壳中的含量约0.01%。自然界中的铜多数以化合物(铜矿物)存在。标准限值:1.0mg/L。超标危害:铜是人体重要的必需微量元素,但重金属又有一定毒性。毒性强弱与重金属进入人体的方式和剂量有关。金属铜不易溶解,毒性比铜盐(醋酸铜和硫酸铜)小。铜超标引起急性和慢性中毒,急性中毒有急性胃肠炎、溶血和贫血;慢性中毒有记忆力减退、注意力不集中,易激动、多发性神经炎等。5、锌:在自然界中多以硫化物状态存在。主要含锌矿物是闪锌矿。也有少量氧化矿,如菱锌矿,电池的重要原料。水中锌含量很小,但水流经镀锌管道可能被污染,使水的浑浊度升高,具有不舒服的金属味。标准限值:1.0mg/L。超标危害:锌是人体不可缺少的微量元素,但锌超标也有危害:1.锌与硒有拮扰性,人体大量摄入锌后降低了硒的解毒作用,容易引起某些有毒元素的慢性中毒或诱发某些疾病;2.大量的锌能抑制吞噬细胞的活性和杀菌力,从而降低人体的免疫功能,使抗病能力减弱;3.过量的锌致使铁参与造血机制发生障碍从而使人体发生顽固性缺铁性贫血;4.长期大剂量锌摄入可诱发人体的铜缺乏。6、砷:在地壳中广泛存在,大多以硫化砷或金属砷酸盐和砷化物形式存在。某些地区水砷偏高(地方病),有的来自治炼废水、矿物溶出。标准限值:0.01mg/L。超标危害:砷是饮水中一种重要的污染物,国际癌症研究机构 (IARC)确认是使人致癌的物质之一。7、汞:在自然界中分布量很少,但普遍存在,一般动物植物中都含有微量的汞。汞的用途广泛,人类活动造成水体汞污染,主要来自系碱、塑料、电池、电子、化工废水还有农药、化肥等使用。标准限值:0.001mg/L。超标危害:金属汞和无机汞损伤肝脏和肾脏,但一般不形成累积中毒。有机汞(如甲基汞)等毒性高,能损伤大脑,在体内停留时间长,即使剂量很少也可累积致毒,如日本的水俣病。8、镉:在自然界中常以化合物状态存在,一般水中含量很低。镉在电镀、颜料、塑料、稳定剂、Ni-Cd电池工业、电视显像管制造等工业领域使用广泛。镉的污染主要来源工业排放。标准限值:0.005mg/L。超标危害:镉是人体非必需元素,正常环境状态下,不会影响人体健康。镉被人体吸收后,在体肉形成镉硫蛋白,选择性地蓄积在肝肾中。从而影响肝、肾器官中酶系统的正常功能,使骨路的生长代谢受阻碍,从而造成骨路疏松、萎缩、变形等。如日本的痛痛病。9、铬(六价):铬属于分布较广的元素之一。自然界中主要以铬铁矿FeCr204形式存在。铬的污染源有含铬矿石的加工,金属表面处理、皮革鞣制、印染等排放的污水。标准限值(六价铬):0.05mg/L。超标危害:铬是人体必需的微量元素,在机体的糖代谢和脂代谢中发辉特殊作用。铬的毒性与其价态有关,金属铬对人体几乎无害,六价铬才有毒。六价铬比三价铬毒性高。六价铬对人主要是慢性毒害,它可以通过消化道、呼吸道、皮肤和粘膜侵入人体,在体内主要蓄积在肝、肾和内分泌腺中。通过呼吸道进入的易积存在肺部。10、铅:铅在地壳中含量为0.16%,很少以游离态存在于自然界,工业中含铅废气、废水、废渣等可以污染水源。自来水的铅还来自含铅的管道系统,如输水管、焊料、管件及其接头,聚氯乙烯水管材、管件可能含铅,因为铅作为稳定剂用于生产该种塑料管。标准限值:0.01mg/L。超标危害:铅中毒对机体的影响是多器官、全身性的,临床表现复杂,且缺乏特异性,比较明确的是:1、引起血红蛋白合成障碍;2、损害神经系统;3、损害肾脏;4、损害生殖器官;5、影响子代。病期较长的患者并有贫血,面容呈灰色,伴心悸、气促、乏力等。牙与指甲因铅质沉者而染黑色,有的牙龈出现黑色。编辑搜图六、有机物(综合)指标1、高锰酸盐指数(以O₂ 计):是指水样在规定的氧化剂和氧化条件下的可氧化物质的总量。标准限值:3mg/L。超标危害:高锰酸盐指数是反应饮用水中有机污染物总体水平的一项指标,与肝癌和胃癌死亡率之间有非常显著的相关关系。2、三氯甲烷:是一种有机合成原料,主要用来生产氟氯昂。可用于有机合成及麻醉剂,脂肪、橡胶、树脂、油类、蜡、磷、碘和粘合压克力的溶剂,青霉素,精油、生物碱等的萃取剂,在生产过程中的废水污染水体。饮用水中三氯甲烷的形成在很大程度上取决于用作消毒剂的氯和在水源中存在的前体之间相互反应。标准限值:0.06mg/L。超标危害:主要作用于中枢神经系统,具有麻醉作用,对心,肝,肾有损害,主要引起肝脏损害,并有消化不良、乏力、头痛、失眠等症状。并认为对人具有潜在的致癌危险性。在使用相关仪器设备对水质进行检测的同时,需要确保已有仪器的正确值,这就需要用到相关的标准物质进行校准,那标准物质在其中起到了什么作用呢?水质检测标准物质主要用于保证水质检测结果的准确性。这些标准物质在环境监测中起到重要的作用,可以用于测定水样中污染物质的浓度。此外,这些标准物质还可以被用于制定一些环境标准,如水质标准,以保证水质监测检测结果的合理性和可靠性,进而保证公众的生命健康和生活的安全。具体来说,水质检测标准物质有以下用途:1. 质量控制:在实验室内部的质量控制程序中,标准物质可被用作质控样品,通过比较实际测试结果与标准物质的不确定度,来评估实验的准确度和精密度。2. 比对试验:标准物质可以作为基准,用于比较不同实验室或不同测量方法的结果,以评估其准确性和一致性。3. “盲样”分析:在某些情况下,标准物质会被混入实际样品中,以测试实验室对特定污染物的检测能力。4. 校准仪器:标准物质可用于校准测量仪器,确保其准确性。5. 标定溶液浓度:标准物质可以用来标定用于样品前处理的溶液,确保这些溶液的浓度准确无误。6. 评价分析方法:通过使用标准物质,可以对新开发或改进的分析方法进行验证,确保其有效性。值得注意的是,某些特殊的水质检测标准物质如水中氨氮溶液标准物质和水中铵离子溶液标准物质,不仅可用于上述用途,还可以直接用于对排放的氨氮污染物进行准确测定,为环保领域的新技术新方法研究、新标准验证、质量控制、能力验证样品检测等方面提供技术保障。
  • 莱伯泰科Astation多功能样品制备进样平台应用方案集,助您轻松应对饮用水检测
    近年来,生活饮用水的质量越来越受到国民关注,国民对生活饮用水的需求也从干净饮用水逐渐过渡到安全饮用水及可口饮用水。生活饮用水的质量直接关系我国国民的日常用水安全,相关水质检测在保证生活饮用水的质量和饮水安全方面具有至关重要的现实意义,主要涉及到生活污水、饮用水中有机物检测。(来源:国家饮用水产品质量检验检测中心)在饮用水水质检测过程中,样品前处理过程至关重要,它将直接影响到分析结果的准确性和重现性。目前,水质检测的难点主要还是集中在前处理过程中。饮用水中有机物检测种类繁多,前处理过程步骤繁杂且接触大量有机试剂,严重影响实验操作人员的实验结果准确性和健康安全。 采用近年来发展成熟且先进的全自动多功能在线样品前处理技术和设备。例如,采用在线全自动化顶空和吹扫捕集设备分析挥发性有机物 (VOC)、用 SPME 技术分析嗅味化合物、用 μSPE 技术分析半挥发性有机物 (SVOC) 等,不但操作简单、效率更高,而且避免了使用大量有毒有害的有机试剂。 高通量、智能化、准确化检测是未来饮用水检测的趋势。莱伯泰科Astation全自动多功能样品制备进样平台将常规液体进样、微凝胶净化、微固相萃取、吹扫捕集、静态顶空、动态顶空、多次顶空等功能跟样品稀释、标液配制、涡旋混合、振荡、液液萃取、衍生、开盖关盖、移液枪取液等样品前处理步骤集合在一个平台上,实现从样品制备到进样分析的一体化操作,同时各功能模块可自动切换,实现多种制备方式灵活搭配,大大提高了分析效率、准确度和实验员健康安全,且降低了分析成本。Astation 全自动多功能样品制备进样平台Astation 技术特点,化繁为简,一站式全自动多功能样品制备进样平台Astation 功能Astation全自动多功能样品制备进样平台可搭载各大品牌的GC、GC-MS、GC-MS/MS、LC、LC-MS、LC-MS/MS等仪器,可为它们提供更加完善的样品前处理和进样服务。相比于常规进样器,Astation全自动多功能样品制备进样平台具有节省溶剂、效率高、省人工等多种特点,已经被广泛应用于食品、疾控、环境、化工、制药、生物等行业。饮用水有机物检测对于饮用水水质的检测,莱伯泰科参考相关标准,结合Astation全自动多功能样品制备进样平台,为客户提供《全自动固相微萃取测定水中臭味物质》、《固相微萃取SPME Arrow对水中16种多环芳烃的定量分析》、《吹扫捕集气相色谱质谱法测定水中54种VOC》和《Astation-CDS 7000C 吹扫捕集系统在 US EPA 8260C 方法中的应用》等解决方案。同时我们与多家科研机构、高校、第三方检测单位积极合作,在水中农药残留、二恶烷、亚硝胺等其他污染物的检测中,也提供了准确、便捷、可靠的前处理解决方案。 莱伯泰科近年来开发出多样化的饮用水中异味物质分析解决方案供您选择,助您省力、省时地获得可靠的分析结果。其中包括: ✦生活饮用水土臭素和2-甲基异莰醇的自动SPME Arrow气质分析方案基于GB/T 5750.8-XXXX 中方法75.1的全自动化解决方案,适用于分析生活饮用水的土臭素和2-甲基异莰醇;✦生活饮用水二甲基二硫醚和二甲基三硫醚的自动吹扫捕集气质分析方案 基于GB/T 5750.8-XXXX中方法85.1的全自动化解决方案,适用于分析生活饮用水中二甲基二硫醚和二甲基三硫醚;✦自动SPME Arrow-GC/MS/MS异味物质筛查分析方案✦固相微萃取SPME Arrow对水中16种多环芳烃的定量分析解决方案✦Astation-CDS 7000C吹扫捕集系统在US EPA 8260C 方法中的应用✦吹扫捕集气相色谱质谱法测定水中54种VOC解决方案一 全自动固相萃取测定水中臭味物质近年来,国民对水中异味的投诉比较高,土臭素、2-甲基异茨醇作为最常见的两种异味物质,一直受到人们的关注。我国大多数饮用水为地下水,存在土臭素和2-甲基异崁醇的几率非常高,因此对水体中这些物质含量进行测定极为重要。Astation 全自动多功能样品制备进样平台SPME萃取流程:测定结果:土臭素和2-甲基异莰醇(含内标)总离子流图2-甲基异莰醇重叠色谱图(10ng/L)土臭素重叠色谱图(10ng/L)加标回收率:土臭素和2-甲基异莰醇加标回收率结果(纯水)土臭素和2-甲基异莰醇加标回收率结果(自来水)参考标准:《GB/T 32470-2016 生活饮用水臭味物质 土臭素和2-甲基异莰醇检验方法》《GB 5749-2022 生活饮用水卫生标准》 GB 5750.8《生活应用水标准检验方法 第8部分:有机物指标》征求意见稿解决方案二 固相微萃取SPME Arrow对水中16种多环芳烃的定量分析多环芳烃(PAHs)是一类持久性有机污染物,具有较强的致癌、致畸、致突变性,普遍存在于大气、土壤、水体、沉积物等环境介质中。水体中的悬浮颗粒物对PAHs具有强烈的吸附作用,因此PAHs能够在沉积物中不断富集,对水体造成污染。PAHs最终可通过食物链在动物和人体中发生生物蓄积,对生态系统和人类健康造成潜在的威胁。Astation 全自动多功能样品制备进样平台SPME萃取流程:测定结果:多环芳烃色谱图固相萃取进样色谱图解决方案三 Astation CDS 7000C吹扫捕集系统在US EPA 8260C方法中的应用美国环保局8260C方法利用气相色谱质谱联用仪(GC/MS)方法测定挥发性有机物(VOCs)是GC/MS在环境领域的重要之一,检测对象包括各种固体废物、地表水、地下水、土壤、沉积物等基质中的VOCs。在测定水样品中的VOCs时,吹扫捕集是主要的水中分析物提取和向GC/MS上样的工具。当样品量较大时,往往需要自动化样品处理平台作为辅助工具来替代大量的人工操作。Astation-CDS 7000C系统将Astation强大而丰富的自动化样品制备功能和CDS历经数十年考验的稳定可靠的吹扫捕集技术结合在一起,在水质VOCs检测中起到良好的作用。Astation-CDS 7000C 吹扫捕集系统吹扫捕集条件:吹扫捕集系统条件测定结果:65种VOCs总离子流色谱图1µg/L标样多次重复进样谱图参考标准:US EPA 8260C 采用气相色谱法质谱分析法(GCMS)测定挥发性有机化合物解决方案四 吹扫捕集气相色谱法测定水中54种VOC挥发性有机物(VOCs)主要为烃类、芳香烃类、氮烃及硫烃类化合物,广泛分布于空气、水、土壤及其他介质中。由于VOCs沸点低、易挥发、种类繁多,而且在水中浓度通常为痕量级别,因此,在分析测定水中VOCs时,前处理技术和检测方法显得尤其重要。LabTech AStation全自动多功能样品制备进样平台与CDS7000C全自动吹扫捕集联用,具有取样量少、富集效率高、受基体干扰小,容易实现在线检测的特点,可以将被测物进行富集,从而大大提高方法的灵敏度。Astation-CDS 7000C 吹扫捕集系统吹扫捕集条件:吹扫温度:室温;吹扫流速:40ml/min;吹扫时间:11min;干吹扫时间:1min;吸附温度:40℃,预脱附温度:190℃;脱附温度:200℃;脱附时间:2min;烘烤温度:250℃;烘烤时间:5min;除湿阱就绪温度:50℃;除湿阱烘烤温度:260℃;阀箱温度:130℃;GC传输线:130℃。测定结果:54种目标物和3种内标物的混标SCAN色谱图自来水的检测色谱图桶装水的检测色谱图参考标准:《HJ 639-2012 水质 挥发性有机物的测定吹扫捕集/气相色谱-质谱法》
  • 《羽绒羽毛标准样品(样照)》正式发布
    近日,国家标准委下达的国家标准制标项目《羽绒羽毛标准样品(样照)》(编号:S2005-101)(以下简称《样照》)正式发布。专家指出,该样照真实、准确、系统地显现了样品外观形态特征,它的出台不仅有利于技术交流与统一,方便检测人员的教育与培训,从长远看可以促进我国羽绒羽毛行业的发展和产品质量的提高,帮助企业跨越贸易技术壁垒,协助企业取得国际市场认可和推进产品顺利进入国际市场,其研制水平达到了国际先进水平。   提高检验能力刻不容缓   据了解,我国是羽毛绒资源极其丰富的国家,是世界上最大的羽绒及制品的生产国和出口国,也是最大的消费国,出口贸易额占据了世界羽绒市场70%以上。凭借羽绒资源和劳动力资源的优势,我国羽绒行业在国际市场中具有举足轻重的地位。   “当前,以环保生态为由的贸易壁垒正在加剧,这对我国出口羽毛绒制品提出了许多挑战。”据无锡出入境检验检疫局纺检中心主任田林辉介绍,检验水平不高是我国很多羽绒出口企业和外贸公司存在的普遍问题,这一问题也成为企业和产品顺利进入国际市场的障碍。在日常的检验中发现,一些出口企业和外贸公司不了解感官检测的方法标准,不知道如何组织生产和验货,遭遇退货和索赔的现象屡屡发生。“因此,加强羽毛绒的检验能力,提高我国产品的国际竞争力,保持我国产品在国际市场上的地位已刻不容缓。”   无锡出入境检验检疫局纺检中心副主任邓瑾介绍,从各国的标准看,对羽毛绒的检验,大部分不能通过仪器进行,尤其是成分分析阶段,如采用传统的感官检验方法,测试人员通过视觉、触觉检查产品的特性,通过感官分析来识别其属性,如成分分析、种类鉴定、透明度双十字线的确定等。感官检验的依据是按照标准上的文字定义,但由于文字描述外观特性有一定的局限性,检验人员难以准确掌握,检验标准难以统一,检测结果常受检验人员的情绪因素、操作技术、专业知识水平的影响而产生波动。“因此,迫切需要研制一套《样照》,作为文字标准的补充,以提高检测水平,不断提高检验质量。”   五重突破提高感官检测能力   据介绍,此次研制的《样照》与《羽绒羽毛》(GB/T 17685-2003)相配套,以实物对照国家标准中各定义文字,使抽象的文字说明辅以实物标样,直观感强,便于识别和统一目光,可供商检、外贸和各羽毛加工厂专业技术人员使用。据了解,与原重庆进出口商品检验局发布的《出口羽毛标准样品(样照)》相比,新样照从种类鉴定、微生物菌落状态、成分分析和透明度双十字线的清晰度以及形态演变5方面进行了完善和突破,以全面提高羽毛绒感官检测能力。   首先,《样照》明确不同种类填充物的鉴定方法。据介绍,鹅绒和鸭绒,鹅毛和鸭毛、鸡毛等在外观上并无明显的区别,然而,在作为羽毛绒填充物的保暖性能方面却有着明显的差异,相同含量的鹅绒的保暖效果要优于鸭绒,市场上的价格也较高。而许多不法商贩为了牟取暴利,常在鹅毛绒中掺入鸭毛绒或陆禽毛加以销售,给消费者造成了损失。因此,毛绒的鉴别成为羽毛绒检测中重要的一项。   “不同的标准对于鹅、鸭毛绒种类鉴别的说法各有不同,这也给不法商贩以可乘之机。因而,我们明确提出了不同填充物的种类鉴定方法。”邓瑾给记者列举了鸭绒的鉴定方法,即鸭毛绒子和羽毛根部的羽枝远端有三角形的棱节,鸭毛绒的棱节较大,呈三个一组较有规律地排列于小羽枝末端,棱节间距离较短,约等于棱节的长度。   同时,《样照》增加了微生物菌落状态。据了解,因为羽毛绒为禽类皮肤的衍生物,虽然经过清洗、加工、储存、包装过程,但仍不可避免地会受到生态方面的关注。许多国家,特别是欧盟对羽毛绒及其制品都提出了生态要求。同时,随着人们绿色消费意识的加深,不少消费者不惜高价购买挂有“绿色标签”的羽毛绒制品。“基于此,我们在《样照》中增加菌落的状态,这将会使相关人员有一个更直观的认识,便于检测人员更快地掌握标准。”邓瑾说。   羽绒标准体系将进一步完善   业内人士称,《样照》是目前为止最为完善、最为完整的《羽绒羽毛标准样品(样照)》,它的出台将使整个羽绒羽毛标准体系更为完整、科学。   中国羽绒工业协会秘书长姚小曼认为,本标准的研制,与中国羽绒羽毛文字标准相配套,使整个标准更为完整、科学,标准更具权威性、公正性,在国际贸易中发挥更大的作用。此外,样照真实、准确、系统地显现了样品外观形态特征。采用计算机数字图像新技术,使样照更为清晰,容易辨认。并为今后样照的研制提供了新的手段与经验。   中国畜产加工研究会羽绒分会会长王敦洲说,《样照》的出台将有利于技术的交流与统一,方便检测人员的教育与培训。从长远看,不仅可以促进我国羽绒羽毛行业的发展和提高羽绒羽毛产品质量,而且可以帮助企业跨越贸易技术壁垒,协助企业取得国际市场认可和推进产品顺利进入国际市场。
  • 水质、空气质量的测定等多项国家环境保护标准发布
    关于发布《水质 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法》等四项国家环境保护标准的公告   为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》、《中华人民共和国大气污染防治法》和《中华人民共和国固体废物污染环境防治法》,保护环境,保障人体健康,规范二噁英类的测定方法,现批准《水质 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法》等四项标准为国家环境保护标准,并予发布。   标准名称、编号如下:   一、水质 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(HJ 77.1-2008)   二、环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(HJ 77.2-2008)   三、固体废物 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(HJ 77.3-2008)   四、土壤和沉积物 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(HJ 77.4-2008)   以上标准自2009年4月1日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。   自标准实施之日起,《多氯代二苯并二噁英和多氯代二苯并呋喃的测定 同位素稀释高分辨毛细管气相色谱/高分辨质谱法》(HJ/T 77-2001)废止。   十八项标准为国家环境保护标准发布   为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,现批准《水质 多环芳烃的测定 液液萃取和固相萃取高效液相色谱法》等十八项标准为国家环境保护标准,并予发布。   标准名称、编号如下:     一、 《水质 多环芳烃的测定 液液萃取和固相萃取高效液相色谱法》(HJ 478-2009) ;   二、 《环境空气 氮氧化物(一氧化氮和二氧化氮)的测定 盐酸萘乙二胺分光光度法》(HJ 479-2009) ;   三、 《环境空气 氟化物的测定 滤膜采样氟离子选择电极法》(HJ 480-2009) ;   四、 《环境空气 氟化物的测定 石灰滤纸采样氟离子选择电极法》(HJ 481-2009) ;   五、 《环境空气 二氧化硫的测定 甲醛吸收-副玫瑰苯胺分光光度法》(HJ 482-2009) ;   六、 《环境空气 二氧化硫的测定 四氯汞盐吸收-副玫瑰苯胺分光光度法》(HJ 483-2009) ;   七、 《水质 氰化物的测定 容量法和分光光度法》(HJ 484-2009) ;   八、 《水质 铜的测定 二乙基二硫代氨基甲酸钠分光光度法》(HJ 485-2009) ;   九、 《水质 铜的测定 2,9-二甲基-1,10菲萝啉分光光度法》(HJ 486-2009) ;   十、 《水质 氟化物的测定 茜素磺酸锆目视比色法》(HJ 487-2009) ;   十一、 《水质 氟化物的测定 氟试剂分光光度法》(HJ 488-2009) ;   十二、 《水质 银的测定3,5-Br2-PADAP分光光度法》(HJ 489-2009) ;   十三、 《水质 银的测定 镉试剂2B分光光度法》(HJ 490-2009) ;   十四、 《土壤 总铬的测定 火焰原子吸收分光光度法》(HJ 491-2009) ;   十五、 《空气质量 词汇》(HJ 492-2009) ;   十六、 《水质采样 样品的保存和管理技术规定》(HJ 493-2009) ;   十七、 《水质 采样技术指导》(HJ 494-2009) ;   十八、 《水质 采样方案设计技术指导》(HJ 495-2009) 。   以上标准自2009年11月1日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。   自以上标准实施之日起,由原国家环境保护局批准、发布的下述二十项国家环境保护标准废止,标准名称、编号如下:   一、《水质 六种特定多环芳烃的测定 高效液相色谱法》(GB 13198—91)   二、《空气质量 氮氧化物的测定 盐酸萘乙二胺比色法》(GB 8969-88)   三、《环境空气 氮氧化物的测定 Saltzman法》(GB/T 15436-1995)   四、《环境空气 氟化物质量浓度的测定 滤膜氟离子选择电极法》(GB/T 15434-1995)   五、《环境空气 氟化物的测定 石灰滤纸氟离子选择电极法》(GB/T 15433-1995)   六、《环境空气 二氧化硫的测定 甲醛吸收-副玫瑰苯胺分光光度法》(GB/T 15262-94)   七、《空气质量 二氧化硫的测定 四氯汞盐-盐酸副玫瑰苯胺比色法》(GB 8970-88)   八、《水质 氰化物的测定 第一部分 总氰化物的测定》(GB 7486-87)   九、《水质 氰化物的测定 第二部分 氰化物的测定》(GB 7487-87)   十、《水质 铜的测定 二乙基二硫代氨基甲酸钠分光光度法》(GB 7474-87)   十一、《水质 铜的测定 2,9-二甲基-1,10-菲啰啉分光光度法》(GB 7473-87)   十二、《水质 氟化物的测定 茜素磺酸锆目视比色法》(GB 7482-87)   十三、《水质 氟化物的测定 氟试剂分光光度法》(GB 7483-87)   十四、《水质 银的测定3,5-Br2-PADAP分光光度法》(GB 11909-89)   十五、《水质 银的测定 镉试剂2B分光光度法》(GB 11908-89)   十六、《土壤质量 总铬的测定 火焰原子吸收分光光度法》(GB/T 17137-1997)   十七、《空气质量 词汇》(GB 6919—86)   十八、《水质采样 样品的保存和管理技术规定》(GB 12999-91)   十九、《水质 采样技术指导》(GB 12998-91)   二十、《水质 采样方案设计技术规定》(GB 12997-91)。   关于发布《水质 总有机碳的测定 燃烧氧化—非分散红外吸收法》等六项国家环境保护标准的公告   为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,现批准《水质 总有机碳的测定 燃烧氧化—非分散红外吸收法》等六项标准为国家环境保护标准,并予发布。   标准名称、编号如下:   一、《水质 总有机碳的测定 燃烧氧化—非分散红外吸收法》(HJ 501-2009);   二、《水质 挥发酚的测定 溴化容量法》(HJ 502-2009);   三、《水质 挥发酚的测定 4-氨基安替比林分光光度法》(HJ 503-2009);   四、《环境空气 臭氧的测定 靛蓝二磺酸钠分光光度法》(HJ 504-2009);   五、《水质 五日生化需氧量(BOD5)的测定 稀释与接种法》(HJ 505-2009);   六、《水质 溶解氧的测定 电化学探头法》(HJ 506-2009)。   以上标准自2009年12月1日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。   自以上标准实施之日起,由原国家环境保护局或原国家环境保护总局批准、发布的下述七项国家环境保护标准废止,标准名称、编号如下:   一、《水质 总有机碳(TOC)的测定 非色散红外线吸收法》(GB 13193-91);   二、《水质 总有机碳的测定 燃烧氧化-非分散红外吸收法》(HJ/T 71-2001);   三、《水质 挥发酚的测定 蒸馏后溴化容量法》(GB 7491-87);   四、《水质 挥发酚的测定 蒸馏后4-氨基安替比林分光光度法》(GB 7490-87);   五、《环境空气 臭氧的测定 靛蓝二磺酸钠分光光度法》(GB/T 15437-1995);   六、《水质 五日生化需氧量(BOD5)的测定 稀释与接种法》(GB 7488-87);   七、《水质 溶解氧的测定 电化学探头法》(GB 11913-89)。
  • 新版《生活饮用水卫生标准》发布 水质指标由106项调整为97项(附详细目录)
    日前,国家市场监督管理总局、国家标准化管理委员会批准发布《生活饮用水卫生标准》GB 5749—2022,2023年4月1日开始实施。现行 GB 5749—2006《生活饮用水卫生标准》于 2006 年 12 月由原卫生部和国家标准委员会联合发布,自 2007 年 7 月 1 日开始实施。 在近年的应用中,逐渐反映出一些问题。因此,从 2018 年 3 月至今,国家卫生健康委联合有关部委开展了新一轮标准修订 工作。本次标准修订对标准的范围进行更加明确的表述,对规范性引用文件进行更新,对集中式供水、小型集中式供 水、二次供水、出厂水、末梢水、常规指标和扩展指标等术语和定义进行修订完善或增减,对全文一些条款中的文 字进行编辑性修改。在此基础上,与 GB 5749—2006 相比, 修订主要内容有:1、指标数量的调整标准正文中的水质指标由 GB 5749—2006 的 106 项调整到 97 项,修订后的文本包括常规指标 43 项和扩展指标 54 项。其中增加了 4 项指标,包括高氯酸盐、乙草胺、2- 甲基异莰醇和土臭素;删除了 13 项指标,包括耐热大肠菌群、三氯乙醛、硫化物、氯化氰(以 CN-计)、六六六(总量)、对硫磷、甲基对硫磷、林丹、滴滴涕、甲醛、1,1,1- 三氯乙烷、1,2-二氯苯和乙苯。2、指标分类方法的调整 根 据 水 质 指 标 的 特 点 , 将 指 标 分 类 方 法 由 GB 5749—2006 的“常规指标和非常规指标”调整为“常规指标和扩展指标”,修改后指标分类表述更确切,避免了歧义的产生。其中,常规指标指反映生活饮用水水质基本状况的 水质指标;扩展指标指反映地区生活饮用水水质特征及在 一定时间内或特殊情况下水质状况的指标。3、指标限值的调整根据水质指标的监测意义以及在人群健康效应或毒理 学方面最新的研究成果,结合我国的实际情况,调整了 8 项指标的限值,包括硝酸盐(以 N 计)、浑浊度、高锰酸 盐指数(以 O2计)、游离氯、硼、氯乙烯、三氯乙烯和乐 果。4、指标名称的调整根据水质指标表达的涵义,调整了2项指标的名称, 包括耗氧量(CODMn法,以 O2计)和氨氮(以 N计)。5、指标分类的调整根据水质指标的监测意义、检出情况及浓度水平,调整了11 项指标的分类,包括一氯二溴甲烷、二氯一溴甲烷、三溴甲烷、三卤甲烷(三氯甲烷、一氯二溴甲烷、二氯一溴甲烷、三溴甲烷的总和)、二氯乙酸、三氯乙酸、氨(以N 计)、硒、四氯化碳、挥发酚类(以苯酚计)和阴离子合成洗涤剂。6、增加了总β放射性指标进行核素分析评价前扣除 40K 的要求及微囊藻毒素-LR 指标的适用情况 钾是人体必需的元素,总β放射性测定包括了钾-40。 基于评价总β放射性指标综合致癌风险时应排除钾-40 筛 查水平的考量,本次修订明确了总β放射性扣除钾-40 后仍 然大于 1 Bq/L,应进行核素分析和评价,判定能否饮用。每克天然钾中含有 31.2 Bq/g 的钾-40,可用于计算钾-40 对 总β活度浓度的贡献。 基于只有在藻类暴发情况发生时才有可能出现微囊藻 毒素-LR 暴露风险的考量,本次修订将微囊藻毒素-LR 表 达的形式调整为微囊藻毒素-LR(藻类暴发情况发生时), 使表述更有针对性。7、删除小型集中式供水和分散式供水部分水质指标及 限值的暂行规定 统筹考虑现阶段我国城乡的饮用水水质状况,本次修 订删除了 GB 5749—2006 中表 4“小型集中式供水和分散式 供水部分水质指标及限值”的过渡性要求。同时结合现阶段 我国小型集中式供水和分散式供水的现状,因水源与净水 技术限制时对菌落总数、氟化物、硝酸盐(以 N 计)和浑 浊度等 4 项指标保留了过渡性要求8、完善对饮用水水源水质的要求 鉴于我国个别地区存在饮用水水源水质暂时无法达到 相应国家标准要求但限于条件限制又必须加以利用的实际 情况,本次修订对生活饮用水水源水质要求加以完善,提出当水源水质不能满足相应要求,但“限于条件限制需加以利用,应采用相应的净化工艺进行处理,处理后的水质应 满足本文件要求”9、删除涉及饮用水管理方面的内容 鉴于技术标准中不宜提出行政管理性要求,本次修订删除了相关要求,同时删除了 GB 5749—2006 中“水质监测” 的相关内容10、附录 A 中水质参考指标的调整 附录 A(资料性)水质参考指标由 GB 5749—2006 的 28 项调整到 55 项。其中新增了 29 项指标,包括钒、六六 六(总量)、对硫磷、甲基对硫磷、林丹、滴滴涕、敌百 虫、甲基硫菌灵、稻瘟灵、氟乐灵、甲霜灵、西草净、乙 酰甲胺磷、甲醛、三氯乙醛、氯化氰(以 CN-计)、亚硝 基二甲胺、碘乙酸、1,1,1-三氯乙烷、乙苯、1,2-二氯苯、 全氟辛酸、全氟辛烷磺酸、二甲基二硫醚、二甲基三硫醚、 碘化物、硫化物、铀和镭-226;删除了 2 项指标,包括 2- 甲基异莰醇和土臭素;修改了 2 项指标的名称,包括二溴乙烯和亚硝酸盐;调整了 1 项指标的限值,为石油类(总量)。 GB5749生活饮用水卫生标准(报批稿).pdf 生活饮用水卫生标准编制说明.pdf
  • 水质28种有机磷农药检测标准来了,您准备好了吗?
    导读有机磷农药,指含有磷元素的有机物农药,主要用于植物病虫害防治,具有明显的刺激性气味及较强的挥发性,因在农业生产中大量使用,并受地表径流等汇集作用而在环境水体中存在不同程度的残留。为规范环境水中有机磷农药的测定方法,生态环境部颁布了《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021),并将于2022年4月1日起正式实施。 有机磷农药的危害有机磷农药具有神经毒性,通过与胆碱酯酶结合,形成磷酰化胆碱酯酶,抑制胆碱酯酶活性,使胆碱酯酶失去催化乙酰胆碱水解作用,积聚的乙酰胆碱进而引起神经毒性。有机磷见光易分解、受热不稳定、在碱性条件下更是会迅速降解,目前常用的有机磷农药主要有乐果、敌敌畏、甲拌磷、毒死蜱、甲基对硫磷等。图1. 4种常见有机磷农药 有机磷农药可经地表径流汇入地表饮用水源,并通过食物链富集进入动物及人体内,对人类健康造成不可忽视的风险。此外,有机磷农药一旦渗入地下水,在地下环境中受光照及温度影响较小,难以自然降解,极易造成长期残留,因此对水体中有机磷农药残留量监测变得刻不容缓。 新标准实施在即,岛津GCMS助您从容应对参考HJ 1189-2021标准,使用岛津气质联用仪GCMS-QP2020 NX建立了一种快速准确测定环境水中28种有机磷农药含量的方法,同位素内标定量,轻松应对新标准。图2. 岛津气质联用仪(GCMS-QP2020 NX) ◦分析条件图3. 有机磷农药及内标溶液色谱图1、萘-d8(内标)2、敌敌畏3、(E)-速灭磷4、(Z)-速灭磷5、苊-d10(内标)6、内吸磷7、灭线磷8、治螟磷9、甲拌磷10、特丁硫磷11、二嗪磷12、地虫硫磷13、异稻瘟净14、(E)-磷胺15、菲-d10(内标)16、氯唑磷17、乐果18、甲基毒死蜱19、(Z)-磷胺20、甲基对硫磷21、毒死蜱22、马拉硫磷23、杀螟硫磷24、对硫磷25、甲基异柳磷26、溴硫磷27、水胺硫磷28、稻丰散29、苯线磷30、丙溴磷31、三唑磷32、䓛-d12(内标)33、蝇毒磷 ◦样品处理流程参照HJ 1189-2021标准,水样中敌百虫经碱解转化为敌敌畏间接测定,其他27种有机磷农药经萃取浓缩后直接测定。图4. 样品前处理流程简图 ◦方法学结果考察0.2-20 μg/mL浓度范围内各目标物线性关系,将0.5 μg/mL标准溶液连续进样6次计算峰面积重复性以考察进样精密度,并以50 μg/L浓度添加回收试验并平行处理3份进行回收率测试。结果表明,方法准确度及精密度均满足相关标准要求。 表1. 28种有机磷农药方法学考察结果 结语使用岛津GCMS-QP2020 NX气质联用仪,可准确测定环境水中有机磷农药含量,轻松应对《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021)标准要求,水质监测刻不容缓,岛津方案助您从容应对。 本文内容非商业广告,仅供专业人士参考。
  • 水质检测项目、检测标准、检测仪器一览表
    水质检测标准和实验室常用仪器配置清单检测项目/参数标准条款/检测细则编号仪器设备名称、型号/规格序号名称1色度《生活饮用水标准检验方法感官性状和物理指标》GB/T5750.4-2006中的1.1色度仪2浑浊度《生活饮用水标准检验方法感官性状和物理指标》GB/T5750.4-2006中的2.1实验室浊度仪3臭和味《生活饮用水标准检验方法感官性状和物理指标》GB/T5750.4-2006中的3.1/4肉眼可见物《生活饮用水标准检验方法感官性状和物理指标》GB/T5750.4-2006 中的4.1/5pH《生活饮用水标准检验方法感官性状和物理指标》GB/T5750.4-2006 中的5.1实验室pH计、全自动离子分析仪[1]、HC800全自动离子分析仪[2]5液相,气相,原子吸收,原子荧光标液配置与实验分析所需超纯水设备G120-E 4全自动离子分析仪、HC800全自动离子分析仪6总硬度(以CaCO3计)《生活饮用水标准检验方法感官性状和物理指标》GB/T5750.4-2006 中的7.1滴定管、全自动离子分析仪[1]、HC800全自动离子分析仪[2]或专用玻璃仪器7铝《生活饮用水标准检验方法金属指标》GB/T5750.6-2006中的1.1原子吸收分光光度计(带石墨炉自动进样器及相关附件)《生活饮用水标准检验方法金属指标》GB/T5750.6-2006 中的1.5电感耦合等离子体质谱仪/7500a8铁《生活饮用水标准检验方法金属指标》GB/T5750.6-2006 中的2.4电感耦合等离子体质谱仪《生活饮用水标准检验方法金属指标》GB/T5750.6-2006 中的2.2原子吸收分光光度计(带石墨炉自动进样器及相关附件)9铜《生活饮用水标准检验方法金属指标》GB/T5750.6-2006中的4.6原子吸收分光光度计(带石墨炉自动进样器及相关附件)10锰《生活饮用水标准检验方法金属指标》GB/T5750.6-2006 中的3.6电感耦合等离子体质谱仪/7500a《生活饮用水标准检验方法金属指标》GB/T5750.6-2006 中的3.2原子吸收分光光度计(带石墨炉自动进样器及相关附件)11锌《生活饮用水标准检验方法金属指标》GB/T5750.6-2006 中的5.6原子吸收分光光度计(带石墨炉自动进样器及相关附件)12挥发酚类(以苯酚计)《生活饮用水标准检验方法感官性状和物理指标》GB/T5750.4-2006中的9.1紫外可见分光光度计TU1913阴离子合成洗涤剂《生活饮用水标准检验方法感官性状和物理指标》GB/T5750.4-2006 中的10.1紫外可见分光光度计14硫酸盐《生活饮用水标准检验方法无机非金属指标》GB/T5750.5-2006 中的1.3《生活饮用水标准检验方法无机非金属指标》GB/T5750.5-2006 中的1.2离子色谱仪15氯化物《生活饮用水标准检验方法无机非金属指标》GB/T5750.5-2006 中的2.2离子色谱仪、全自动离子分析仪、HC800全自动离子分析仪《生活饮用水标准检验方法无机非金属指标》GB/T5750.5-2006 中的2.1全自动离子分析仪、HC800全自动离子分析仪16溶解性总固体《生活饮用水标准检验方法感官性状和物理指标》GB/T5750.4-2006 中的8.1电子分析天平17耗氧量(以O2计)《生活饮用水标准检验方法有机物综合指标》GB/T5750.7-2006 中的1.1电热恒温水浴锅18砷《生活饮用水标准检验方法金属指标》GB/T5750.6-2006 中的6.6原子荧光光度计(相关附件)AFS-230E19镉《生活饮用水标准检验方法金属指标》GB/T5750.6-2006 中的9.7原子荧光光度计(相关附件)AFS-230E20铬(六价)《生活饮用水标准检验方法金属指标》GB/T5750.6-2006 中的10.1可见分光光度计/72121氰化物《生活饮用水标准检验方法感官性状和物理指标》GB/T5750.4-2006 中的4.1紫外可见分光光度计TU1922铅《生活饮用水标准检验方法金属指标》GB/T5750.6-2006 中的11.7原子吸收23氟化物《生活饮用水标准检验方法无机非金属指标》GB/T5750.5-2006 中的3.2离子色谱仪、全自动离子分析仪、HC800全自动离子分析仪《生活饮用水标准检验方法无机非金属指标》GB/T5750.5-2006 中的3.1离子活度计、全自动离子分析仪、HC800全自动离子分析仪24汞《生活饮用水标准检验方法金属指标》GB/T5750.6-2006中的8.2原子荧光《生活饮用水标准检验方法金属指标》GB/T5750.6-2006 中的1.5电感耦合等离子体质谱仪25硒《生活饮用水标准检验方法金属指标》GB/T5750.6-2006 中的7.7原子荧光26硝酸盐(以N计)《生活饮用水标准检验方法无机非金属指标》GB/T5750.5-2006 中的5.3离子色谱仪、全自动离子分析仪、HC800全自动离子分析仪《生活饮用水标准检验方法无机非金属指标》GB/T5750.5-2006 中的5.2紫外可见分光光度计27四氯化碳《生活饮用水标准检验方法有机物指标》GB/T5750.8-2006 中的1.2气相色谱仪78928三氯甲烷《生活饮用水标准检验方法有机物指标》GB/T5750.8-2006 中的1.2气相色谱仪78929菌落总数《生活饮用水标准检验方法微生物指标》GB/T5750.12-2006 中的1.1电热恒温培养箱30总大肠菌群《生活饮用水标准检验方法微生物指标》GB/T5750.12-2006 中的2.2总氮《水质分析方法(国家)标准汇编》(第二分册)中的GB11894-89
  • 从标准应对到精准预警,多方案把控饮用水异味来源!
    新版GB 5749-2022《生活饮用水卫生标准》已于3月15日正式颁布,水质检测指标变更为97项:常规指标43项,扩展指标54项,其中扩展指标中新增2-甲基异莰醇及土臭素两种嗅味物质。嗅味物质因其阈值浓度(OTC)低,且易引起消费者的感官不适,因此近年来饮用水的异味投诉日渐增多,饮用水中异味来源逐渐成为关注的焦点!然而嗅味物质因其浓度低、易挥发等特点,给嗅味分析带来众多难点;同时引起嗅味的物质众多。如何精准、快速锁定嗅味来源,也成为分析工作者应对异味突发事件中亟待解决的难题!岛津公司结合自身产品优势,从标准应对自动化嗅味检测,到现有系统嗅味应用扩展,再到专属系统精准预警水质嗅味突发事件,让您无忧应对水质嗅味分析难题!土臭素及2-甲基异莰醇 知多少?土臭素和2-甲基异莰醇是一种由地表水中蓝藻(蓝绿藻)和放线菌(细菌)产生的一种天然萜烯醇化合物。当这些生物繁殖的时候,会在水中产生一种泥土发霉的气味,这种味道很难通过传统的水处理方法去除。然而痕量的土臭素和2-甲基异莰醇却会影响到饮用水的感官特性及消费者的接受度,严格把控这两种嗅味物质成为水质保障必不可少的环节。 方案在手,应对无忧! 如何快速应对饮用水中嗅味物质测定及异味来源,别急!小编总结岛津多种检测方案,让您轻松应标,同时精准预警异味来源! 自动处理、轻松应标SPME-GCMS法测定土臭素及2-甲基异莰醇 GB/T 5750-202X《生活饮用水标准检验方法》征求意见稿中,对土臭素及2-甲基异莰醇的测定采用固相微萃取(SPME)结合GCMS的方法测定。标准中水样的处理采用手动SPME的方式富集,但手动SPME存在操作繁琐、不易自动化且重复性差等问题,成为广大水质分析工作者的分析难题。 AOC-6000 Plus+GCMS-QP2020 NX 岛津AOC-6000 Plus自动进样器提供在线全自动SPME萃取,结合气相色谱质谱联用仪GCMS-QP 2020 NX仪器可实现饮用水中土臭素及2-甲基异莰醇的自动化测定。两种嗅味物质在5~500 ng/L浓度范围内,线性相关系数均大于0.999;两种物质的检出限按照标样最低浓度的3倍信噪比计算,其均小于1 ng/L,满足GB 5749-2022对于两种物质10 ng/L的限量要求。 现有配置、更多可能P&T-GCMS测定5种嗅味物质 吹扫捕集法(P&T)是一种动态顶空技术,用流动气体将样品中的挥发性成分“吹扫”出来,再用一个捕集器将吹扫出来的有机物吸附,随后经热解吸将样品送入气相色谱质谱仪进行分析。吹扫捕集法具有取样量少、富集效率高、受基体干扰小及容易实现在线检测等优点;同时测定饮用水中的VOCs也需要使用到P&T,因此P&T-GCMS也是众多水质分析实验室必备的分析仪器。 5种嗅味物质的TIC图(2 µg/L)1、甲硫醚;2、二甲基二硫醚;3、异氟尔酮;4、土臭素;5、2-甲基异莰醇 岛津公司与行业内用户合作,利用P&T结合GCMS-QP2020 NX仪器检测水中的5种嗅味物质,在10~500 ng/L范围内标准曲线线性良好,相关系数均在0.999以上;各组分的检出限按照最低浓度标样的3倍信噪比来计算,除异氟尔酮外,其余4个组分检出限均低于1 ng/L,同样满足GB 5749-2022对于土臭素和2-甲基异莰醇的限值要求。 专属系统,精准预警岛津Off-flavor嗅味分析系统 2-甲基异莰醇和土臭素只是众多嗅味物质中有代表性的两种,能引起异味的物质有很多,一旦发生饮用水嗅味突发事故,我们该如何快速准确的找到嗅味来源呢?今天小编为大家推荐岛津专属的Off-flavor嗅味分析系统。 AOC-6000 Plus+GCMS-TQ8040 NX+嗅辨仪 岛津Off-flavor嗅味分析系统采用的是和GB/T 5750.8-202X《生活饮用水标准检验方法》征求意见稿中相同的固相微萃取方式(SPME)富集目标组分,也是目前流行的嗅味物质萃取方法。异味分析数据库整合了目前容易引起人类感官不适的大量异味物质,其中GB 5749-2022规定的土臭素和2-甲基异茨醇以及参考指标中的二甲二硫醚、二甲三硫醚均收录其中,除此之外还兼具以下优势: 温馨提醒:嗅味分析中得到嗅味物质的含量只是分析的开始,同时也要结合嗅味物质的阈值以及嗅味样品的气味,才能真正快速锁定嗅味来源,达到精准预警的目的!!! 结 语水是我们的生命之源,与我们的生活息息相关,一旦发生问题,会导致一系列恶果。饮用水中的嗅味问题,需要尽快找到嗅味来源,采取相应措施。岛津公司针对中国饮用水标准新增的2种嗅味物质检测,推出了多种解决方案;此外还有专门为嗅味分析开发的嗅味数据库,并对引起嗅味的物质以及嗅味物质的感官信息进行了整理。一旦发生饮用水嗅味问题,可以快速找到嗅味来源,从而根治,契合了岛津公司“为了人类和地球的健康”的经营理念。 撰稿人:孙谦 *本文内容非商业广告,仅供专业人士参考。
  • 最新发布9项国家生态环境标准:水质的气相分子吸收光谱法测定标准3项
    为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》《中华人民共和国海洋环境保护法》,防治生态环境污染,改善生态环境质量,规范水中氨氮、总氮和硫化物的测定方法,制定《水质 氨氮的测定 气相分子吸收光谱法》、《水质 总氮的测定 气相分子吸收光谱法》和《水质 硫化物的测定 气相分子吸收光谱法》共3项标准。三项标准由生态环境部生态环境监测司、法规与标准司组织制订,自 2024 年6月1日起实施,规定了测定地表水、地下水、生活污水、工业废水和海水中氨氮、总氮和硫化物的气相分子吸收光谱法。《水质 氨氮的测定 气相分子吸收光谱法》(HJ 195—2023代替HJ/T 195—2005)《水质 氨氮的测定 气相分子吸收光谱法》(HJ/T195—2005)首次发布于2005 年,起草单位为上海宝钢工业检测公司宝钢环境监测站、苏州市环境监测中心站、上海市宝山区环境监测站、江苏省张家港市环境监测站、辽宁省庄河市环境监测站、杭州市环境监测中心暨淳安县环境监测站。本次为第一次修订,主要修订内容如下:①增加了氨氮的定义、试样的制备、质量保证和质量控制、废物处置以及注意事项等内容;②删除了方法适用范围中活饮用水、气液分离装置的描述、无氨水的制备等内容;③修改了试剂的配制、样品的采集和保存、结果计算与表示;④完善了干扰和消除、光源类型、载气类型、标准曲线的建立;⑤细化了仪器参考条件。本标准主要起草单位:江西省生态环境监测中心、安徽省生态环境监测中心、湖北省生态环境监测中心站。本标准验证单位:重庆市生态环境监测中心、广东省生态环境监测中心、辽宁省大连生态环境监测中心、江西省宜春生态环境监测中心、广东省汕头生态环境监测中心站、辽宁省抚顺生态环境监测中心、甘肃省酒泉生态环境监测中心。《水质 总氮的测定 气相分子吸收光谱法》(HJ 199—2023代替HJ/T 199—2005)《水质 总氮的测定 气相分子吸收光谱法》(HJ/T199—2005)首次发布于2005年,起草单位为上海宝钢工业检测公司宝钢环境监测站。本次为第一次修订,主要修订内容如下: ①增加了总氮的定义、试样的制备、质量保证和质量控制、废物处置以及注意事项等内容; ②删除了气液分离装置的描述、无氨水的制备等内容;③修改了方法适用范围、规范性引用文件、方法原理、试剂的配制、样品的采集和保存、校准曲线的类型和建立、结果计算与表示;④完善了干扰和消除、光源类型、载气类型、试样的制备;⑤细化了仪器参考条件。本标准主要起草单位:江西省生态环境监测中心、重庆市生态环境监测中心、辽宁省大连生态环境监测中心。本标准验证单位:湖南省生态环境监测中心、湖北省生态环境监测中心站、四川省生态环境监测总站、江西省宜春生态环境监测中心、广东省汕头生态环境监测中心站、甘肃省酒泉生态环境监测中心。《水质 硫化物的测定 气相分子吸收光谱法》(HJ 200—2023代替HJ/T 200—2005)《水质 硫化物的测定 气相分子吸收光谱法》(HJ/T200—2005)首次发布于2005年,起草单位为上海宝钢工业检测公司宝钢环境监测站、苏州市环境监测中心站、上海市宝山区环境监测站、江苏省张家港市环境监测站、辽宁省庄河市环境监测站、杭州市环境监测中心暨淳安县环境监测站。本次为第一次修订,主要修订内容如下:①增加了硫化物的定义、试样的制备、质量保证和质量控制、废物处置以及注意事项等内容;②删除了方法适用范围中生活饮用水、气液分离装置的描述、碱性除氧去离子水等内容;③修改了试剂的配制、絮凝沉淀分离法、样品的采集与保存以及结果计算与表示;④完善了干扰和消除、光源类型、载气类型、标准曲线的建立;⑤细化了仪器参考条件。本标准主要起草单位:江西省生态环境监测中心、辽宁省大连生态环境监测中心、重庆市生态环境 监测中心。本标准验证单位:安徽省生态环境监测中心、山西省生态环境监测和应急保障中心、湖北省生态环境监测中心站、甘肃省酒泉生态环境监测中心、广东省汕头生态环境监测中心站、辽宁省抚顺生态环境监测中心。附件:水质 氨氮的测定 气相分子吸收光谱法(HJ 195-2023代替HJT195-2005).pdf水质 总氮的测定 气相分子吸收光谱法(HJ 199-2023代替HJT199-2005).pdf水质 硫化物的测定 气相分子吸收光谱法(HJ 200-2023代替HJT200-2005).pdf
  • 环保部:地表水水质月报评价项目及标准
    根据国家环保总局环函[2003]2号文的规定,河流评价项目为水温、pH值、电导率、溶解氧、高锰酸盐指数、五日生化需氧量、氨氮、汞、铅、挥发酚、石油类和流量。   湖库评价项目为水温、pH值、电导率、溶解氧、高锰酸盐指数、五日生化需氧量、氨氮、汞、铅、挥发酚、石油类、总磷、总氮、透明度、叶绿素a和水位。   水质评价标准执行《地表水环境质量标准(GB3838-2002)》,按Ⅰ类~劣Ⅴ类六个类别进行评价。   湖泊、水库富营养化评价方法执行中国环境监测总站总站生字[2001]090号文,按贫营养~重度富营养六个级别进行评价。
  • 色谱检测新标准来啦——HJ 1267-2022水质 6种苯氧羧酸类除草剂和麦草畏的测定
    苯氧羧酸类除草剂和麦草畏是一种广泛应用于农业生产的选择性除草剂,具有价格低廉、除草速度快、除草谱广等优点。然而,它们的使用会导致水质污染,残留于土壤中,并通过雨水和地下水流入河流和湖泊,对水质造成影响。随着环保要求的提高,水质监测变得越来越重要,对环境保护至关重要。因此,对苯氧羧酸类除草剂和麦草畏进行检测对于保障水质安全具有重要意义。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中6 种苯氧羧酸类除草剂和麦草畏的高效液相色谱法。※本标准中结果的定性分析是根据样品中目标化合物与标准系列中目标化合物的保留时间定性,标准还提到:“必要时,可采用液相色谱-质谱法确认目标化合物”并在附录中提供了液相色谱-三重四极杆质谱法仪器条件。岛津提供LCMS-8045、LCMS-8050、LCMS-8060等多款液相色谱-三重四极杆质谱可选,满足标准要求。如需进一步了解,您可前往https://www.shimadzu.com.cn/an/lcms/index.html本文内容非商业广告,仅供专业人士参考。
  • 深圳发布《生活饮用水水质标准》地标 增十项检测指标
    p   深圳市市场监督管理总局日前发布了《DB4403/T 60-2020 生活饮用水水质标准》,此标准包含水质指标116项,其中常规指标52项,非常规指标64项。 /p p   为提高我国饮用水安全,中国疾病预防控制中心也正在修订国家标准《生活饮用水卫生标准》。上海也颁布了地标,其中规定的水质指标为111项。可见,无论是国家整体层面,还是一些重视饮用水安全的地区,生活饮用水检测加严是一个趋势。 /p p   深圳市《生活饮用水水质标准》与国际标准对比如下: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/30297c90-6d53-40bc-bec3-1d522847ba94.jpg" title=" 981696e8-8e38-41a2-bd6b-aa291c47f9d3.png" alt=" 981696e8-8e38-41a2-bd6b-aa291c47f9d3.png" / /p p style=" text-align: right " (图片来源:深圳水务局) /p p   深圳市《生活饮用水水质标准》与国家现行标准相比,增加了10项指标,提升了52项指标(含消毒剂) 附录由原来的28项增加到45项 考核方法上提升了出厂水和管网水合格率要求,增加了嗅味物质和消毒副产物的检测,重点关注龙头水水质。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/533b5a3b-552e-4487-8fd8-c34a57730e4e.jpg" title=" bcbeaee0-8200-4398-933d-ebbaf5949ef3.png" alt=" bcbeaee0-8200-4398-933d-ebbaf5949ef3.png" / /p p style=" text-align: right " (图片来源:深圳市水务局) /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/2efca4be-2752-48d3-91ab-4b9eec1be03a.jpg" title=" e3815be5-6bb5-4971-bbcd-59ba0946ab8f.png" alt=" e3815be5-6bb5-4971-bbcd-59ba0946ab8f.png" / /p p style=" text-align: right " (图片来源:深圳水务局) /p p   附件:《 img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://www.instrument.com.cn/download/shtml/949596.shtml" target=" _blank" title=" DB4403 T 60-2020 生活饮用水水质标准.pdf" span style=" font-size: 14px " DB4403/T 60-2020 生活饮用水水质标准.pdf /span /a 》 /p p br/ /p
  • 号外!坛墨质检新品-水质色度标准溶液 问世了!
    产品名称:水质色度标准溶液产品编号:BW20030-500-C-20技术指标:500度包装规格:20mL(安瓿瓶)应用领域:水质检测中色度指标监测相关国标:GB 11903-89及《水和废水监测分析方法》一 概念普及 水的颜色定义为“改变透射可见光光谱组成的光学性质”,可区分为“表观颜色”和“真实颜色”。水的表观颜色,指由溶解物质及不溶解性悬浮物产生的颜色,用未经过滤或离心分离的原始样品测定。而水的真实颜色,是指仅由溶解物质产生的颜色,用经0.45μm滤膜过滤器过滤的样品测定。没听过的,自行脑补。 色度的标准单位是度:在每升溶液中含有2mg六水合氯化钴(Ⅱ)和1mg铂[以六氯铂(Ⅳ)酸的形式]时产生的颜色为1度。二 产品介绍1.名称及配制 本产品《色度标准溶液》,依据国标GB 11903-89及《水和废水监测分析方法》相关指标,购买昂贵的含铂原料,配制成Pt-Co标准溶液,以供水质监测市场需求。2.应用范围 适用于黄色色调的天然水、饮用水、受工业废水污染的地表水以及纺织、印刷、造纸、食品、有机合成工业的废水等的测定,以满足水质监测领域的需求。不适用于非黄色的其他颜色种类的测定。3.产品特点 本产品为深黄色液体,用20mL安瓿瓶包装,推荐避光冷藏储存,配制所用原料均为溶解性物质,故溶液颜色稳定,透明,为均相体系,均匀性可靠,用户可放心使用。三 测试结果1.仪器与材料 哈希DR3900分光光度计;20mL比色皿;2.测试结果 采用分光光度法测定,使用计量院的色度标准溶液(GBW(E)080345)为参考基准,测试结果相对偏差均在2%以下或1度以下,表明此产品的色度值准确可靠。四 探讨延伸 分光光度法测水质色度准确度高,灵敏度、精密度好,最低适宜测试度数为2.2度,最高测试度数可达70度以上,可以避免因分析人员的视觉差异而带来的误差。用户也可根据情况借鉴引用。 传统的铂钴标准比色法和稀释倍数法,肉眼凡胎直接观察,易造成较大误差,而且不同人员不同环境下观察,误差大小也会有所不同。相对而言,使用仪器比色可以大幅度提高色度测定的灵敏度准确度。 但是,分光光度法测定色度值毕竟只测试单点波长的吸光度,从而计算出色度值,万不能代替人眼的可见光范围,所以国标方法适用范围会更广。如果水样浑浊,或者水样显现其他颜色种类,则不能使用此种方法定值。 此外,笔者查阅大量资料发现,某些学者老师采用紫外可见分光光度计,在350~600nm的波长范围内求出峰面积,然后以峰面积对色度绘制标准曲线,从而得出色度值。据文献介绍,此种方法比最大吸收波长法更为准确,有兴趣的用户也可以试验对比。在分析检测方法中,可使用重铬酸钾来代替氯铂酸钾配制标准色列,但此溶液不宜久存,具体见《水和废水监测分析方法》。故在此寻求讨论学习,望有志之士、有识之师留言交流。请赐教!
  • GB 5084-2021《农田灌溉水质标准》正式实施,您需要的解决方案来了
    为了分质用水、协调水土体系,生态环境部与国家市场监督管理总局联合发布的GB 5084-2021《农田灌溉水质标准》在2021年7月1日起实施,从而保证水土标准体系的整体性、协调性。 农田灌溉水质标准的限值变化与控制项目请见上一篇介绍☟☟☟推动分质用水,协调水土体系——生态环境部发布GB 5084-2021《农田灌溉水质标准》点击链接:https://mp.weixin.qq.com/s?__biz=MzIwMzM4NTc3NA==&mid=2247497112&idx=1&sn=a8588cd3b2ee3d13d2f8aa4998dcfa8b&scene=21#wechat_redirect今天,根据农田灌溉水质标准的项目要求,在这里给大家带来岛津详细的水质分析方案。 挥发性有机物&半挥发性有机物 GCMS结合吹扫捕集测定土壤中60种挥发性有机物 仪器配置:岛津气质谱联用仪GCMS-QP2020 NXCDS 7400 水土一体自动进样器CDS 7000E 吹扫捕集 仪器条件:样品前处理:50 mL 容量瓶中加入20 μL 内标溶液(ρ=25 μg/mL),用水样定容至50 mL,将添加内标的水样转移至40 mL 棕色吹扫捕集瓶中,放置于CDS 7400 自动进样器中。5 mL 水样自动吸入,氦气将脱附的VOCs 载入到气相色谱- 质谱联用仪 57 种挥发性有机物TIC 图(5.0 μg/L)样品色谱图 GCMS法测定生活饮用水中半挥发性有机物 仪器 GCMS-QP2020 NX 分析条件: 前处理:取1 L自来水水样,用固相萃取柱(填料为聚甲基丙烯酸酯-苯乙烯)吸附萃取,待测物经洗脱后浓缩定容,待上机分析。SVOCs和内标的TIC图 (浓度:10 µg/mL)样品色谱图 GCMS 易用性:Smart SIM数据库 & 智能钟功能 智能钟功能:自动检漏自动调谐,准确掌控停机时间 无机阴离子分析 应对HJ 84-2016 色谱条件:氢氧根体系,梯度洗脱色谱柱:Shodex IC SI-36 4D;保护柱:Shodex IC SI-90G淋洗液:A:50mM KOH ;B:水流速:0.7 mL/min(泵压:14.3MPa)柱温:35 ℃ 标准曲线:重现性:连续进样6次,保留时间和峰面积的RSD值七种阴离子的保留时间重复性≤0.07%,峰面积重复性≤0.88% 金属元素分析 ICPMS --- 江河水中金属元素分析 对微量的铅(Pb)、铬 (Cr)、镉 (Cd) 、硒 (Se)、砷(As) 、铜(Cu) 、铁 (Fe)、锰 (Mn) 、锌(Zn) 、硼 (B)、铝 (Al)、镍(Ni)、钡 (Ba)、钼(Mo)、铀 (U)、钾 (K)、钠 (Na)、镁 (Mg) 以及钙 (Ca)等19种成分进行了分析。向样品内添加了内标元素Be、Co、Ga、Y、In、Tl使其浓度分别达到5μg/L。 直接分析江河水标准物质:JSAC0301-3, 0302-3,ICP-MS会由于多原子离子形成的谱线干扰,造成灵敏度下降以及测量值产生误差。ICPMS-2030通过使用碰撞,系统消除谱线56Fe的40Ar16O、75As的40Ar35Cl与78Se的40Ar38A等的干扰,提高灵敏度,降低检测限。 ICP/ICPMS极低运行成本 —— 三大技术使运行成本降至常规的30%。ICPMS 提升分析效率 —— 方法开发与诊断助手。水质应用扩展 水质异味分析系统,无需标准品对100多种水质异味进行半定量筛查GCMS + Compound Composer 快速筛查数据库,能快速应对突发性环境污染事故,对900多种有机污染物进行半定量筛查GCMS Compound composer快速筛查数据库 AOE-LCMS/MS 大体积进样系统,自动化快速前处理,应对SVOC分析难题
  • 解析影响水质检测仪的因素国家标准
    解析影响水质检测仪的因素国家标准 影响因素在使用多参数水质检测仪检测水质过程中,能够影响水质检测的因素主要有来源因素和类别因素。首先是来源因素,在平时的工作中,有时候工作人员会将需要检测的水质样品的来源弄错,这样就会导致无法正确的进行水质结果分析,从而导致无法提供解决问题的方法。其次针对不同的水质样品,应该在多参数水质检测仪上选择不同的参数检测方法。比如地面水质与地下水质所使用的检测方法就大不同。通过对水体的水位、流速和流向的变化及沿岸城市分布、工业布局、污染源及其排污情况、城市给排水情况等可对地面的水质进行初步的采样。但是地下水质的采集就不适用于这种方法,它需要根据水质区域内的城市发展、工业分布情况、土地利用率等情况来进行水样收集。假如没有正确认识到各类水质的差别,就会影响水到质检测的结果的正确性。水资源可利用量是有限的,水资源并不是取之不尽、用之不竭的,因此要重视节约用水和开发利用的关系,节流要抓,开源也要抓。中国已经提出了建设节约型社会的总体要求,《节约用水管理条例》也正在紧张的起草当中,应当以此为契机,积极推广节水技术,积极推进节水意识,大力提高水资源的利用效率,同时严格控制用水总量,实行用水定额控制管理。根据水资源的分布范围和承载能力,正确引导工业产业聚集方式,在节流的同时,加强水资源保护工作,大力改善水环境以及水资源质量,增加可利用水资源总量,在水质问题日益突出,水量相对丰富的地区推行有效的开源措施。将多参数水质检测仪应用到日常加工生产过程中去 国家标准国家标准规定:总大肠菌群(MPN/100mL或CFU/100mL)不得检出;耐热大肠菌群(MPN/100mL或CFU/100mL)不得检出;大肠埃希氏菌(MPN/100mL或CFU/100mL)不得检出;菌落总数(CFU/mL)100。色度不超过15度;浑浊度 NTU 不超过3度;嗅和味 不得有异嗅异味;肉眼可见物不得含有;PH 6.5-8.5;总硬度(以CaCO3计)mg/L 450;铁 mg/L 0.3;锰 mg/L 0.1;铜 mg/L 1.0;锌 mg/L 1.0;挥发酚(以苯酚计)g/L 0.002;阴离子合成洗涤剂 g/L 0.3;硫酸盐 g/L 250;氯化物 g/L 250;溶解性总固体 g/L 1000;氟化物 g/L 1.0;氰化物 g/L 0.05; 氯仿 g/L 60;细菌总数 个/L 100;总大肠菌群 个/L 3;余氯 g/L ≥0.30。 [2]氯化消毒自来水消毒大都采用氯化法,氯气用于自来水消毒具有消毒效果好,费用较低,几乎没有有害物质的优点。但我们经过对理论资料了解、研究,认为氯气用于自来水消毒还是有在一定的弊端。氯化消毒后的自来水能产生致癌物质,有关方面专家也提出了许多改进措施。世界上安全的自来水消毒方法是臭氧消毒,不过这种方法的处理费用太昂贵,而且经过臭氧处理过的水,它的保留时间是有限的,至于能保留多长时间,还没有一个确切的概念。所以只有少数的发达国家才使用这种处理方法
  • GB 5749-2022 生活饮用水卫生标准解读
    GB 5749-2022 生活饮用水卫生标准将于2023年4月1日正式实行,代替GB 5749-2006生活饮用水卫生标准。标准规定了生活饮用水水质要求、生活饮用水水源水质要求、集中式供水单位卫生要求、二次供水卫生要求、涉及饮用水卫生安全的产品卫生要求、水质检验方法。本标准适用于各类生活饮用水。GB5749-2022版相比2006版的变化新标准的水质指标由原来的106项调整为97项,包括常规指标43项和扩展指标54项,将高氯酸盐、乙草胺、2-二甲基异茨醇、土臭素正式作为扩展指标加入到新标准中。另外参考指标由之前的28项调整为55项,其中主要增加项目为有机磷农药及全氟化合物(全氟辛酸、全氟辛烷磺酸)、臭味化合物如二甲基二硫醚、二甲基三硫醚、硫化物等。相应的2022版《生活饮用水标准检验方法》GB/T 5750意见稿变动很大,其中有机污染物的部分尤为明显。其中的第八部分主要规定了饮用水中常见的有机污染物,如微囊藻毒素,烷基酚,环烷酸,PPCPs等的检测方法,第九部分则明确了饮用水中痕量农残的检测项目,方法及指标,此外意见稿的第十及第五部分则为主要针对饮用水中消毒副产物残留,如氯酸盐,高氯酸盐等的检测方法。 GERSTEL饮用水检测解决方案GERSTEL饮用水检测解决方案可实现的方法和技术包括:在线SPE-LC/MS/MS直接液体进样搅拌棒吸附萃取SBSE-GC/MS(/MS)在线固相微萃取SPME-GC/MS(/MS)气相色谱-嗅闻技术 GC-O-MS可以实现对以下污染物和臭味物质超痕量的监测,一网打尽GB5749-2022标准中的目标分析物:臭味化合物:2-二甲基异茨醇、土臭素、二甲基二硫醚、二甲基三硫醚、硫化物全氟化合物:如全氟辛酸、全氟辛烷磺酸消毒副产物残留:氯酸盐、高氯酸盐邻苯二甲酸盐农药残留激素、药物残留有机污染物:如微囊藻毒素、烷基酚、丙烯酰胺等应用案列01水中痕量土臭素和2-甲基异崁醇的测定GB 5749《生活饮用水卫生标准》征求意见稿和GB/T 5750《生活饮用水标准检验方法》征求意见稿均规定采用固相微萃取技术(SPME)对水体中痕量土臭素和2-甲基异崁醇进行测定,该方法具有无需有机溶剂、灵敏度高等特点,集采样、萃取、浓缩、进样于一体,能直接应用于气相色谱、气质联用、液相色谱等仪器。能够分析40mL/60mL的水质样品,标配24位样品盘,无需减少取样量,符合GB/T 5750《生活饮用水标准检验方法》标准要求(40mL水样),检出限更低、灵敏度更高。对2种目标物5ng/L,10ng/L,20ng/L,50ng/L,100ng/L进行线性研究,2-甲基异莰醇R2为0.998,土臭素R2为0.997,线性良好。2-甲基异莰醇、土臭素两种目标物具有更低的方法检出限,分别达到2.7ng/L、0.47ng/L,符合标准要求,并且结果稳定RSD 4% (n=6)。 02水中全氟化合物,草甘膦的检测GB5750.8 有机物指标增加检测项目:全氟辛酸&全氟辛烷磺酸原理:水样经混合型弱阴离子交换反相吸附剂(WAX)固相萃取小柱富集浓缩后氮吹至近干,复溶后上机测定;以超高效液相色谱串联质谱的多反应监测(MRM)模式检测,根据保留时间以及特征峰离子定性,采用同位素内标法定量分析。GERSTEL推出在线SPE-LC-MS/MS的自动化方法测定全氟碳酸和全氟磺酸。此方法在0.2– 2.0 ng/L的线性范围内最低检测质量浓度LOD远低于1 ng/L,完全符合标准中3 ng/L 和 5ng/L的要求 。通过对不同来源的加标水样进行分析,证明了该方法的准确性。相对标准偏差RSD10%,正确度在80% -110% 之间。 分析前无需过滤水样或用甲醇稀释。对不同来源的水样验证了方法的加标回收率和精密度。目标待测物英文缩写LOD (ng/L)全氟丁酸PFBA0.14全氟戊酸PFPA0.27全氟己酸PFHxA0.13全氟庚酸PFHpA0.19全氟辛酸PFOA0.22全氟壬酸PFNA0.13全氟癸酸PFDA0.20全氟丁烷磺酸PFBS0.20全氟己烷磺酸PFHxS0.18全氟庚烷磺酸PFHpS0.24全氟辛烷磺酸PFOS0.23对不同来源的水样饮用水,河水,山泉水,矿泉水验证了方法的加标回收率和精密度,以下是生活饮用水进行加标回收率测定举例,分别添加低(5 ng/L)、高(50 ng/L)2个浓度水平,按照所建立的方法进行样品处理及测定,每个浓度重复5份平行样品,计算平均加标回收率和精密度。 组分低浓度高浓度回收率%RSD%回收率%RSD%PFBA1137952PFPA748767PFHxA941923PFHpA953921PFOA1173972PFNA954932PFDA921923PFBS925814PFHxS919922PFHpS799913PFOS886973标准溶液 (50 ng/L) 水溶液的示例色谱图在线SPE-GC-MS/MS应用详情请见:根据欧盟饮用水指令和DIN38407标准使用在线SPE-LC-MS/MS测定饮用水中的PFAS同样的配置被成功应用于草甘膦及其主要代谢物氨基甲基膦酸(AMPA)的检测,对于水中草甘膦和AMPA的测定,结果达到了10 ng/L的最佳定量限(LOQ)并达到0.999的显著线性系数。使用FMOC-Cl衍生化,随后进行自动固相萃取SPE步骤。自动样品制备过程在25分钟内完成。LC-MS/MS循环时间小于20分钟。使用GERSTEL的重叠样品制备功能PrepAhead,使样品制备和分析完全同步,以最大限度地提高生产率和通量。0.1、0.5、1.0 和5.0 ng/ml草甘膦标准品色谱图031水中消毒副产物检测GB5750征求意见稿第10部分消毒副产物指标中,要求适用液液萃取衍生气相色谱法, 要求使用MTBE进行液-液萃取,然后衍生化(甲基化),然后带有电子捕获检测器的气相色谱分析测定水中的一氯乙酸 MCAA,二氯乙酸DCAA,三氯乙酸TCAA。若取水样25 mL水样测定,本方法最低检测质量浓度分别为:5.0 μg/L、2.0 μg/L、1.0 μg/L。使用离子色谱-电导检测法最低检测质量浓度分别为:一氯乙酸(MCAA)1.9 μg/L、二氯乙酸(DCAA)3.7 μg/L、三氯乙酸(TCAA)4.4 μg/L、一溴乙酸(MBAA)3.0 μg/L、二溴乙酸(DBAA)8.3 μg/L。GERSTEL解决方案自动化液液萃取和在线衍生,完全自动化标准中的手动制样过程:如调整PH值至5,使用甲基叔丁醚萃取,加入硫酸甲溶液在50 ℃加热块上衍生2小时,加入碳酸氢钠溶液中和,取上清液注入GC。使复杂繁琐的液液萃取和衍生步骤变得简单。节省人力和物力。 该系统每天可以分析32个样品,技术人员仅需1小时的时间来进行样品加载、制备和进一步处理。小型化的方案需要消耗的溶剂少得多,从而节省了成本并改善了实验室的整体工作环境。方法的测定限为1 ppb;对所有测定的卤代酸进行了验证,在0.5 -50 μg/L的线性很好R² 0.999。1μg/L 和 40 μg/L的重复性高 (RSD 4.8%)(n=3)卤代酸HAAsR² (0.5 - 50 ppb)LODμg/LRSD % (n=3)1 μg/L40 μg/L一氯乙酸0.9990.14.10.8二氯乙酸1.0000.11.51.8三氯乙酸1.0000.23.70.8一溴乙酸1.0000.14.81.4二溴乙酸0.9990.051.40.6法国威立雅环境在巴黎用于自动测定水中卤代酸(HAAs)的系统同时这套解决方案还可以实现对三氯甲烷,三溴甲烷、二氯一溴甲烷、一氯二溴甲烷、二氯甲烷、二溴甲烷、氯溴甲烷的检测,使用顶空气相色谱法。对2,4,6-三氯酚(TCP)的检测可以使用自动化顶空固相微萃取HS-SPME标准方法来实现,或者对更低浓度的痕量化合物,使用搅拌棒吸附萃取SBSE来实现。04感官气相色谱对臭味物质的测定通过化学分析与感官评价方法结合,可对水中未知嗅味物质进行鉴定。主要采用气相色谱-嗅闻技术(gas chromatography-olfactometry,GC-O) 的方法,通过GC分离混合物中的组分,部分样品分流至闻测杯后,测试人员对不同时间流出的气体样品进行嗅闻,协助从大量色谱峰中寻找相应物质。此技术也可以帮助改善饮用水处理工艺。成功案例:中国科学院生态环境研究中心:感官气相色谱对水中不同化合物嗅味特征的同步测定感官闻测耦合仪器分析: 水务部门给臭气”定罪”的黑科技去除土臭素和 2-MIB的整体饮用水处理工艺研究05水中多环芳烃和多氯联苯的检测GB5750 检测多环芳烃使用固相萃取SPE-高效液相色谱HPLC:水中多环芳烃经苯乙烯二苯乙烯聚合物柱富集后,甲醇水溶液淋洗杂质,二氯甲烷洗脱,浓缩后用乙腈水溶液复溶,经高效液相色谱分离,紫外串联荧光检测器检测,保留时间定性,峰面积外标法定量。GERSTEL提供绿色高效的检测方法,使用搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS,样品无需复杂的前处理,直接通过搅拌棒萃取,大大节省了溶剂的使用量,并且提高了检测的灵敏度。下表是标准中的16种多环芳烃化合物使用两种方法可以达到的最低检测质量浓度LOD, 只需100ml的水样,SBSE的检测下限提高了数十倍。 对加标浓度接近各自LOQ的水样品进行重复分析 (n=6),显示所有化合物的相对标准偏差RSD在1%到15%之间,平均RSD为6.9%。大多数分析物的加标回收率在90到110%之间。16种多环芳烃化合物组分GERSTELSBSE-GC-MS/MS LOD(ng/L)GB5750SPE-HPLCLOD (ng/L)SBSE加标回收率 %SBSE精密度 %100 mL水样500 mL水样 n=6萘5.020.01022.5苊烯0.108.01134.5苊1.08.09615芴0.4516.0926.5菲2.520.0935.2蒽0.06112.0816.2荧蒽0.4516.0 9211芘0.4512.0855.8苯并(a)蒽0.0764.61055.2䓛 0.0278.01163.6苯并(b)荧蒽 0.0788.0873.8苯并(k)荧蒽0.0818.0922.3 苯并(a)芘0.0334.610212二苯并(a,h)蒽0.0738.01163.6苯并(g,h,i)苝0.0497.71067.3茚并(1,2,3-cd)芘0.0445.81044.6GB5750 检测多氯联苯使用固相萃取SPE-气相色谱质谱法GC-MS:水样中多氯联苯被C18固相萃取柱吸附,用二氯甲烷和乙酸乙酯洗脱,洗脱液经浓缩,用气相色谱毛细管柱分离各组分后,以质谱作为检测器,进行测定。GERSTEL的搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS,使用共一个方法检测多氯联苯化合物。样品无需复杂的前处理,直接通过搅拌棒萃取,大大节省了溶剂的使用量,并且提高了检测的灵敏度。下表是标准中的12种多氯联苯化合物使用两种方法可以达到的最低检测质量浓度LOD, 只需100ml的水样而非1L,SBSE的检测下限提高了数十倍。 对加标浓度接近各自LOQ的水样品进行重复分析 (n=6),显示所有化合物的相对标准偏差RSD 5 %。分析物的加标回收率在96到109%之间。12种多氯联苯化合物组分GERSTELSBSE-GC-MS/MSLOD (ng/L)GB5750SPE-GC-MSLOD (ng/L)SBSE加标回收率 %SBSE精密度 %100 mL水样1000 mL水样n=6PCB810.0397 983.2PCB770.0416 994.2PCB1230.03710 983.6PCB1180.012101014.3PCB1140.03612 1084.7PCB1050.043111094.1PCB1260.05014982.8PCB1670.04412 1002.5PCB1560.04691021.6PCB1570.04712 1032.7PCB1690.05481021.2PCB1890.05417 961.5GERSTEL的搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS被成功应用于欧盟水框架指令,能够在一次分析运行中从仅仅100mL的地表水样品中测定约100种相关污染物,如塑化剂(DEHP),各种农残,包括颗粒吸附化合物,绝大多数分析物的检测限在ng/L甚至到pg/L范围内。详情请见:欧盟水框架指令使用SBSE技术轻松搞定食品中400多种农残分析
  • 水质SVOCs新标将至,岛津提前帮您准备好啦
    导 • 读 为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,生态环境部已于4月下旬发布了最新国家生态环境标准《水质 半挥发性有机物的测定 气相色谱-质谱法》征求意见稿。适用于地表水、地下水、工业废水和生活污水中 64 种半挥发性有机物的筛查鉴定和定量分析。 (生态环境部官网截图) SVOCs • 危害 SVOCs(半挥发性有机化合物)种类较多,包括多环芳烃、氯苯类、硝基苯类、硝基甲苯类、邻苯二甲酸酯类、亚硝基胺类、苯胺类、氯代苯胺类、氯代烃类、氯代醚类、联苯胺类、氯代联苯胺类、氯代酚类和硝基酚类等。 饮用水、污水、 地表水中的有害半挥发性有机物,如酚类、苯胺类、多环芳烃、酞酸酯类等对环境破坏很大,其中多环芳烃具有强致癌性,而环境中检出的酞酸酯类物质属于环境激素污染物,主要来源于塑料的增塑剂,已造成对各环境介质的普遍污染。如果长期接触,会造成人体慢性中毒,引发癌症,还会直接影响到生殖和神经系统,严重危害人体健康。所以水中的半挥发性有机物的分析是环境分析中的一项重要内容。 新标来袭 • 无忧应对 岛津参考最新发布《水质 半挥发性有机物的测定 气相色谱-质谱法(征求意见稿)》,采用岛津GCMS-QP2020 NX气相色谱质谱联用仪,建立分析水质64种半挥发性有机物的测定方法,该方法操作简单、灵敏度高,满足标准的要求。 GCMS-QP2020 NX 样品前处理图1 水样前处理过程图 测试结果注:表中所列为64种SVOCs目标物、6种内标和6种替代物 图2 部分目标组分标准曲线及质量色谱图(1.0 μg/mL) 在1.0~20 μg/mL浓度范围内标准曲线线性良好,线性相关系数均在0.998以上。取浓度为1.0 μg/mL混合标准溶液连续6针测试,各组分峰面积比的RSD%范围在0.58~6.73%之间,方法的精密度优良。 小 • 结 环境治理留住青山绿水,绿色发展赢得金山银山。在环境污染物检测方面、岛津公司一直积极关注新标准、新污染物检测方法的发布和实施,及时提供完整的应对解决方案。
  • 符合浸银标准IPC –4553A,避免PCB板表面氧化
    浸银是几种符合RoHS标准的表面处理方法之一,可保护基底铜免受氧化。作为一种薄浸镀镀层,它在电路板制造中的主要功能是作为可焊性防护层,为焊接处留出清洁的铜表面并可融入焊料。此外,在其整个使用寿命期间,银层有助于防止印刷电路板的铜发生氧化作用。 IPC-4553A条例详细说明了生产环境中浸银表面处理的参数,从而确保可重现的,稳定的焊接。IPC-4553A帮助制造商提高焊接的可靠性第一份浸银规范IPC-4553发布于2005年,反映了当时印刷电路板生产的主流实践,即两种可用的不同类型的商业浸银镀层指南(业内称之为“厚”和“薄”)。然而,随着时间的推移,“薄”镀层的使用逐渐减少,“厚”镀层逐渐成为行业常规。2009年,为反映这一现象,对该条例进行了更新,随后IPC-4553A便应运而生。修订后的规范的亮点在于对浸银镀层厚度规定了上限和下限要求。这对于制造过程中的质量控制和现场的部件可靠性至关重要。如果镀层厚度过薄,则铜会在焊接过程中氧化,生产中的焊接可能会失效。如果镀层太厚,焊接可能最终会被弱化并在现场失效。该条例旨在依据IPC J-STD-003针对12个月的保质期提供可靠的表面处理。除了表面厚度规格之外,IPC-4553A还提供了以下参数:孔隙率、附着力、清洁度、电解腐蚀、耐化学性和高频信号损耗。此外,由于银是一种活性物质,当其与硫结合时会失去光泽。因此,为最大限度地减少银表面与环境的接触,该规范还提供了包装和储存指南。本规范的未来版本可能会涵盖浸银表面处理的额外用途,如铝丝焊接和金属弹片触点。对XRF设备进行合规的正确校准IPC-4553A规范给出了特定焊盘尺寸(60× 60密耳)*的最大和最小银层厚度。这一点极为重要,因为镀层沉积的厚度会因镀位面积的大小而变化。镀层厚度采用X射线荧光仪器测量。但对于浸银厚度测量而言,设备的正确设置极其重要。本规范已给出了相关的详细指南,然而最重要的是对XRF设备定期进行严格校准。制造商必须使用铜上镀银的标准片校准,其镀层厚度和焊盘尺寸应与实际生产值的为同一数量级。日立分析仪器是IPC的成员,其大力推荐遵循IPC指南以实现印刷电路板表面处理的质量和可靠性,包括浸银。我们开发的XRF仪器与快速发展的PCB技术保持同步,旨在帮助您实现生产的一致性和可靠性。
  • 地下水质分析方法系列标准更新,坛墨为您提供标准品解决方案!
    2021年2月22日,国家自然资源部发布了DZ/T 0064《地下水质分析方法》的系列标准,该标准替换了93年的老标准,对85个子标准全部进行了更新。该系列标准的适用领域是地下水的测定,在经过方法验证后也可适用于地表水和饮用水的测定。新标准已于2021年7月1日实施。坛墨质检一直以来紧跟检验检测行业标准规定,在环境、食品、职业卫生、化妆品、药品、地质等各个检测领域都提供产品方案,且提供定制服务。根据这次地下水质系列标准的要求,坛墨质检已准备好配套的产品方案,欢迎咨询!在系列标准中有机物检测标准主要有三个:DZ/T 0064.71-2021,DZ/T 0064.72-2021和DZ/T 0064.91-2021。①DZ/T 0064.71-2021《地下水质分析方法 第71部分:α-六六六、β-六六六、 γ-六六六、δ-六六六、六氯苯、p, p′-滴滴伊、p, p′-滴滴滴、o,p′-滴滴涕和p,p′-滴滴涕的测定 气相色谱法》有机氯农药是水体中的常见污染物,对人体健康和生态环境有着巨大的危害,该方法以正己烷为萃取溶剂,采用液-液萃取方式提取地下水样品中有机氯农药,提取的有机相经脱水、净化、浓缩后气相色谱毛细管柱分离,电子捕获检测器检测。新标准调整了检测范围,增加了精密度和准确度数据并且增加了质量保证和质量控制的要求,为方法的实施提供了大量实验数据的支撑。坛墨质检DZ/T 0064.71-2021标准物质解决方案:官网产品链接:https://www.gbw-china.com/info/170005095.html正己烷中9种有机氯农药混标/DZ/T 0064.71-2021产品编码CAS号名称标准值单位81693b319-84-6α-六六六1000μg/mL319-85-7β-六六六1000μg/mL58-89-9γ-六六六1000μg/mL319-86-8δ-六六六1000μg/mL72-55-94,4’-滴滴伊1000μg/mL789-02-62,4' -滴滴涕1000μg/mL72-54-84,4’-滴滴滴1000μg/mL50-29-34,4' -滴滴涕1000μg/mL118-74-1六氯苯1000μg/mL(点击产品编码即可查询产品)②DZ/T 0064.72-2021《地下水质分析方法 第72部分:敌敌畏、甲拌磷、乐果、甲基对硫磷、马拉硫磷、毒死蜱和对硫磷的测定 气相色谱法》敌敌畏、甲拌磷、乐果、甲基对硫磷、马拉硫磷、毒死蜱和对硫磷均为水体中毒性较强的有机磷污染物,方法以丙酮、二氯甲烷为萃取溶剂,采用液-液萃取方式提取地下水样品中有机磷农药,提取有机相液经脱水、净化、浓缩后毛细管气相色谱柱分离,火焰光度检测器检测,其他类似的有机磷农药通过验证后也可适用于该方法。该方法操作简单,灵敏度高,检出限达到ng/L。坛墨质检DZ/T 0064.72-2021标准物质解决方案:官网产品链接:https://www.gbw-china.com/info/170001628.html丙酮中7种有机磷农药混标/DZ/T 0064.72-2021产品编码CAS号名称标准值单位溶剂81601a62-73-7敌敌畏100μg/mL丙酮298-02-2甲拌磷100μg/mL丙酮60-51-5乐果100μg/mL丙酮298-00-0甲基对硫磷100μg/mL丙酮121-75-5马拉硫磷100溶剂81457b75-01-467-66-3三氯甲烷1000μg/mL甲醇71-55-6甲醇79-01-6三氯乙烯1000μg/mL甲醇
  • 饮用水新标准强势来袭,你准备好了吗?
    俗话说:水是生命之源,人体内的水分含量占体重的60~70%,自然界中的生物生存无一不依赖水源,然而以环境为代价的工业发展却致使水源污染日趋严重。饮用水水质的安全性面临着严峻的形势,为了保障公民的健康,各国政府和相关组织均制定了饮用水水质标准,而且为了控制饮用水中不断增加的对人体不安全的组分,标准中所列的检测指标也在不断更新。在水体的各种污染中,以有机物和消毒副产物污染尤为严重。水体中的有机物来源于两个方面:一是外界向水体中排放的有机物;二是生长在水体中的生物群体产生的有机物以及水体底泥释放的有机物。前者包括地面径流和浅层地下水从土壤中渗沥出的有机物,主要是腐植质、农药、杀虫剂、化肥及城市污水和工业废水向水体排放的有机物、大气降水携带的有机物、水面养殖投加的有机物、各种事故排放的有机物等。后者一般情况下在总的有机物中所占的比例很小,但是对于富营养化水体,如水库等是不可忽略的因素。2023年3月17日经国家市场监督管理总局批准发布GB/T 5750-2023《生活饮用水标准检验方法》系列标准,代替了原有的GB/T 5750-2006《生活饮用水标准检验方法》。此标准将于2023年10月1日起正式实施。而本次修订主要特点在于:增添了高通量的分析方法,扩展了质谱技术的应用范围,加强了自动化程度高的检测方法。大大提高了检测效率,使实验过程更智能,更高效。Detelogy根据即将实施的GB/T 5750.8-2023 《生活饮用水标准检验方法 第8部分:有机物指标》提供饮用水中16种多环芳烃的前处理解决方案:01 水样的采集与保存采集水样时,若含有余氯,先加抗坏血酸于采样瓶中(每升水样加0.1g 抗坏血酸;余氯含量高时可增加用量)。采集2-4L水样,加磷酸调节至ph<2,密封;水样于0℃~4℃避光保存,保存时间为 7 d。注:为降低本底值,试验用玻璃器皿需在马弗炉中300℃烘烤2h,或是盛水样前用5-10ml甲醇润洗玻璃瓶瓶壁两遍,去除瓶中的多环芳烃本底。本底值可能来自溶剂、试剂和玻璃器皿,如使用塑料材料,可选择聚四氟乙烯材质。(尽量避免使用塑料材质的物品)。02 水样的富集与净化取水样 500 mL于广口玻璃瓶或聚四氟乙烯的瓶中,加入 10 mL甲醇,摇匀;将HLB柱固定于iSPE-864全自动智能固相萃取仪,对上述水样进行净化。注:为保证更高的准确性,建议上样结束后用10 mL50%甲醇水溶液(pH2)润洗样品瓶后一并过柱。03 浓缩定容浓缩:向洗脱液表面滴加100 μL吐温-20的甲醇溶液后氮吹,置于FV32plus全自动高通量智能平行浓缩仪中氮吹至近干,加入1.0毫升50%乙腈水复溶,在MultiVortex多样品涡旋混合器震荡混匀,过滤膜,待测。注:氮吹时需控制水浴温度在 40℃以下,用微弱气流氮吹,不要吹干,吹干会导致损失增加。实验仪器优选
  • 5项水质检测国家环境保护标准征求意见
    各有关单位:   为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制订《水质 挥发酚的测定 流动注射分析-分光光度法》等5项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,并于2011年4月15日前反馈我部。   联系人:环境保护部科技标准司 谷雪景   通信地址:北京市西直门内南小街115号   邮政编码:100035   联系电话:(010)66556214   传真:(010)66556213   联系人:环境保护部环境标准研究所 黄翠芳 周羽化   联系电话:(010)84934068   附件:1、征求意见单位名单   2、 《水质 挥发酚的测定 流动注射分析-分光光度法》(征求意见稿).pdf   3、 《水质 挥发酚的测定 流动注射分析-分光光度法》(征求意见稿)编制说明.pdf   4、 《水质 硫化物的测定 流动注射分析-分光光度法》(征求意见稿).pdf   5、 《水质 硫化物的测定 流动注射分析-分光光度法》(征求意见稿)编制说明.pdf   6、 《水质 氰化物和总氰化物的测定 流动注射分析-分光光度法》(征求意见稿).pdf   7、 《水质 氰化物和总氰化物的测定 流动注射分析-分光光度法》(征求意见稿)编制说明.pdf   8、 《水质 阴离子表面活性剂的测定 流动注射分析-分光光度法》(征求意见稿).pdf   9、 《水质 阴离子表面活性剂的测定 流动注射分析-分光光度法》(征求意见稿)编制说明.pdf   10、 《水质 总氮的测定 流动注射分析-分光光度法》(征求意见稿).pdf   11、 《水质 总氮的测定 流动注射分析-分光光度法》(征求意见稿)编制说明.pdf 二○一一年三月十四日   附件一:   征求意见单位名单   住房城乡建设部办公厅   水利部办公厅   中国气象局办公室   各省、自治区、直辖市环境保护厅(局)   各省、自治区、直辖市环境监测站(中心)   各环境保护重点城市环境监测站(中心)   新疆生产建设兵团环境监测中心站   中国环境科学研究院   中国环境监测总站   中日友好环境保护中心   环境保护部对外合作中心   环境保护部南京环境科学研究所   环境保护部华南环境科学研究所   环境保护部环境规划院   环境保护部环境工程评估中心   中国环境科学学会   中国环境保护产业协会   环境保护部标准样品研究所   国家环境分析测试中心   中国疾病预防控制中心   农业部环境保护科研监测所   中国科学院生态环境研究中心   中国城市规划设计研究院   国家城市给水排水工程技术中心   长江流域水资源保护局   中国气象科学院农气所   北京中兵北方环境科技发展有限责任公司   中国船舶重工集团公司第七一八研究所   中国化工防治污染技术协会   泰州市环境监测中心站   上海市浦东新区环境监测站   (部内征求机关各部门意见)
  • 252.8万!海委水文局地下水测站水质样品检测项目
    项目编号:HWSWJHT2022-032项目名称:海委水文局地下水测站水质样品检测预算金额:252.8000000 万元(人民币)最高限价(如有):252.8000000 万元(人民币)采购需求:主要工作内容包括配合甲方开展海河流域565个地下水测站(包括25个地下水水源地取水口、186个保留生产井、354个国家地下水监测工程监测井)水质样品采集的有关协调工作,完成海河流域790个地下水样品的实验室检测分析,检测指标为《地下水质量标准》(GB/T14848-2017)中39项地下水质量常规指标:色、嗅和味、浑浊度、肉眼可见物、pH、总硬度、溶解性总固体、硫酸盐、氯化物、铁、锰、铜、锌、铝、挥发性酚类、阴离子表面活性剂、耗氧量(CODMn法)、氨氮、硫化物、钠、总大肠菌群、菌落总数、亚硝酸盐、硝酸盐、氰化物、氟化物、碘化物、汞、砷、硒、镉、铬(六价)、铅、三氯甲烷、四氯化碳、苯、甲苯、总α放射性、总β放射性。出具地下水水质样品检测报告和相关数据。合同履行期限:自合同生效之日起1年本项目( 不接受 )联合体投标。
  • 《水质 氨氮的测定 气相分子吸收光谱法》等五项国家生态环境标准征求意见
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,生态环境部组织编制了《水质 氨氮的测定 气相分子吸收光谱法》等五项国家生态环境标准征求意见稿,现公开征求意见。请于2022年8月8日前将意见建议书面反馈生态环境部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。联系人:生态环境部监测司杜祯宇。水质 氨氮的测定 气相分子吸收光谱法(征求意见稿)(点击下载)为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》和《中华人民共和国海洋环 境保护法》,防治生态环境污染,改善生态环境质量,规范水中氨氮的测定方法,制定本标准。 本标准规定了测定地表水、地下水、生活污水、工业废水和海水中氨氮的气相分子吸收光谱法。 本标准是对《水质 氨氮的测定 气相分子吸收光谱法》(HJ/T 195-2005)的修订。修订的主要内容如下: ——增加了氨氮的定义、试样制备、质量保证和质量控制、废物处置以及注意事项等条款; ——删除了气液分离装置、无氨水的制备; ——修改了方法适用范围、规范性引用文件、试剂配制、样品保存时间、校准曲线标准物质以及结 果计算与表示; ——完善了干扰和消除、光源类型、载气类型、校准曲线类型等内容; ——细化了仪器参考条件。水质 总氮的测定 气相分子吸收光谱法(征求意见稿)(点击下载)为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》和《中华人民共和国海洋环境保护法》,防治生态环境污染,改善生态环境质量,规范水中总氮的测定方法,制定本标准。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中总氮的气相分子吸收光谱法。本标准是对《水质 总氮的测定 气相分子吸收光谱法》(HJ/T 199-2005)的修订。主要修订内容如下:——增加了总氮的定义、试样的制备、质量保证和质量控制、废物处置以及注意事项等条款;——删除了气相分子吸收光谱法的术语和定义、无氨水的制备; ——修改了方法适用范围、规范性引用文件、方法原理、试剂和材料、样品的采集与保存;——完善了干扰和消除、光源类型、载气类型、前处理方式、校准曲线类型、结果计算与表示;——细化了仪器参考条件。水质 硫化物的测定 气相分子吸收光谱法(征求意见稿)(点击下载)为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》和《中华人民共和国海洋 环境保护法》,防治生态环境污染,改善生态环境质量,规范水中硫化物的测定方法,制定本标准。 本标准规定了测定地表水、地下水、生活污水、工业废水和海水中硫化物的气相分子吸收光谱法。 本标准是对《水质 硫化物的测定 气相分子吸收光谱法》(HJ/T 200-2005)的修订。主要修订内容如下: ——增加了硫化物的术语和定义、质量保证和质量控制、废物处置; ——删除了适用范围中的“饮用水”、气相分子吸收光谱法的术语和定义、气液分离装置; ——修订了样品的采集与保存、絮凝沉淀分离法、载流液(酸化剂)的配制、计算公式; ——完善了干扰和消除、光源类型、载气类型、校准曲线的建立、结果与表示。铜水质自动在线监测仪技术要求及检测方法(征求意见稿)(点击下载)为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》,防治生态环 境污染,改善生态环境质量,规范铜水质自动在线监测仪的技术性能,制定本标准。 本标准规定了铜水质自动在线监测仪的技术要求、性能指标及检测方法。 本标准为首次发布。镍水质自动在线监测仪技术要求及检测方法(征求意见稿)(点击下载)为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》,防治生态环 境污染,改善生态环境质量,规范镍水质自动在线监测仪的技术性能,制定本标准。 本标准规定了镍水质自动在线监测仪的技术要求、性能指标及检测方法。 本标准为首次发布。征求意见单位名单(点击下载)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制