当前位置: 仪器信息网 > 行业主题 > >

纤维蛋白溶酶原牛血

仪器信息网纤维蛋白溶酶原牛血专题为您提供2024年最新纤维蛋白溶酶原牛血价格报价、厂家品牌的相关信息, 包括纤维蛋白溶酶原牛血参数、型号等,不管是国产,还是进口品牌的纤维蛋白溶酶原牛血您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纤维蛋白溶酶原牛血相关的耗材配件、试剂标物,还有纤维蛋白溶酶原牛血相关的最新资讯、资料,以及纤维蛋白溶酶原牛血相关的解决方案。

纤维蛋白溶酶原牛血相关的资讯

  • 仪器实验室公司Instrumentation Laboratory Co.对凝血酶原时间和纤维蛋白原测定试剂盒(凝固法) HemosIL ReadiPlasTin主动召回
    据北京市药品监督管理局网站2022年3月7日消息,仪器实验室公司Instrumentation Laboratory Co.对凝血酶原时间和纤维蛋白原测定试剂盒(凝固法) HemosIL ReadiPlasTin主动召回。沃芬医疗器械商贸(北京)有限公司报告,由于仪器实验室公司Instrumentation Laboratory Co.近期收到了客户对批号N0806224凝血酶原时间和纤维蛋白原测定试剂盒(凝固法)(国械注进20152402017)个别瓶试剂性能问题的投诉,包括不精确度增加、质量控制超出范围、样本结果延长。因此对上述批号的产品采取主动召回措施,召回级别为:二级。涉及产品的型号、规格及批次等详细信息见《医疗器械召回事件报告表》。
  • 权威验证系列(二) 湖北省药检院使用Panta对人纤维蛋白原质品进行快速质量控制
    前 言*图片来源于湖北药检所官网人纤维蛋白原(human fibrinogen, Fg)是一种由肝脏合成的球蛋白,发挥止血和凝血功能。Fg可用于治疗先天性和获得性Fg缺乏症患者的凝血功能障碍。目前Fg制剂是由健康人血浆经分离、提纯并经病毒去除和灭活处理、冻干制成。Fg这类蛋白质药物具有大分子、多电荷、结构复杂等特点,其稳定性往往较差。而稳定性是保证药物发挥其作用的基础。2023年3月,湖北省药品监督检验研究院王文晞博士近期发表“多功能蛋白质稳定性分析仪在人纤维蛋白原制品质量控制中的应用”,借助NanoTemper公司的PR Panta对不同企业生产的Fg产品的质量进行快速分析质控。/ 实验步骤/NanoTemper多功能蛋白质稳定性分析仪PR Panta可用于快速测定蛋白质的热稳定性,通过热变性、粒径分布聚集倾向和粒径大小等参数对产品进行评估。使用毛细管吸取10uL 20mg/ml样品置于PR Panta上,首先在DLS模块上检测Fg的水力学半径(Rh),然后进行1℃/min的升温(25℃-95 ℃)。使用1份样品,同时且实时的检测获得Fg的样品热变性中点温度(Tm)、蛋白质初始去折叠温度(Tonset)、粒径开始变化温度(Tsize)和流体力学半径(Rh)等多种参数。/ 研究结果/nanoDSF检测模块结果显示21批次样品Tm 值为51.20~53.31 ℃(表1)。不同企业产品Tm值存在一定差异,最高相差 2.1 ℃, 表明各企业间产品稳定性存在较大差异。其中企业F产品Tm值最高(53.28℃),企业A产品Tm值最低(51.22℃),差别2.06℃。表1 不同企业Fg蛋白热变性中点温度Tm值测定结果21批次样品的Tonset值为47.29~49.32 ℃(表2),不同企业产品Tonset值存在一定差异。其中企业F的产品Tonset值最高,企业A Tonset值最低,总体与Tm值趋势一致。表2 不同企业Fg蛋白质初始去折叠温度Tonset值测定结果21批次样品Tsize值45.36~46.99 ℃,不同企业产品Tsize值差异较小。表3 不同企业Fg蛋白粒径开始变化温度Tsize值结果 21批次样品Rh值 19.03~30.75 nm,不同企业产品Rh值存在一定差异。表4 不同企业Fg蛋白流体力学半径 Rh 值结果综上可知企业F产品热稳定性最好,企业A产品热稳定最差。除稳定性外,纯度是反映Fg产品中可凝固蛋白与总蛋白的比值是产品有效性的重要指标。作者通过凯氏定氮仪进行样品检测后并依据下方公式计算纯度。结果显示21批次样品纯度80.3%~95.9%(表5),其中企业F产品纯度最高,平均94.6%。企业A产品纯度最低平均83.2%。表5 Fg纯度测定结果作者将纯度与在PR Panta检测得到的Tm值进行相关性分析,结果显示相关系数为0.729,P<0.05 。即产品纯度与Tm值呈显著相关, 热稳定性高的产品纯度较高。为了明确Fg的组分分布,作者采用HPSEC-MALLS测定纯度最高与最低产品的组分分布。企业F产品(稳定性&纯度最佳)由Fg单体和多聚物2个组分组成,企业A产品(稳定性&纯度最佳最差)由 Fg单体、多聚物和蛋白质降解产物3个组分组成。结合以上部分稳定性与纯度呈相关性的结果可以进一步分析得出,Fg热稳定性较差,在生产、存放、复溶后放置的过程中会形成可溶性寡聚体,导致产品纯度降低。因此可根据产品热稳定性测定结果初步分析不同企业产品纯度高低,进而能简单、快速 地对不同企业间产品质量进行初步评估,为企业工艺优化和制剂筛选提供更加快速、准确的依据。多功能蛋白质稳定性分析仪可以测定产品纯度与稳定性,为人纤维蛋白原产品保护剂的筛选和生产工艺优化提供相应数据参考,且能对不同企业产品的质量进行初步分析,仪器操作简便、检测时间短、检测效率高。——摘自本文文献对PR Panta的评价
  • 已上市及临床试验中以CHO细胞为生产平台的蛋白亚单位疫苗概述
    从18世纪天花的接种实践到通过接种牛痘预防天花,疫苗的开发与应用领域有着持续进步的丰富历史。1930年,可用于体外病毒繁殖的动物细胞培养物的引入,为20世纪下半叶针对麻疹、腮腺炎、风疹和脊髓灰质炎等疾病的减毒、灭活疫苗的成功开发奠定了基础。而随后的在酵母、细菌、昆虫和哺乳细胞中引入重组DNA技术的建立,使得新型疫苗的开发成为可能。本文将对当前上市或临床试验中的,以CHO细胞为生产平台的蛋白亚单位疫苗类型进行梳理。一CHO细胞表达系统特征CHO细胞包括从CHO-ori细胞系衍生出CHO-DXB11 (DHFR+/-) 、CHO-DG44 (-/-) 、CHO-GS、CHO-K1SV等多种细胞系,各具特定的特征,可分离稳定的转染物并获得高产量。与其他重组蛋白质生产细胞系相比,CHO细胞具有更高的生产力,流加批次培养可达到1-10 g/L。而相较于293细胞,病毒不易感染CHO细胞并在其中复制。CHO细胞对于蛋白的翻译后加工修饰与人类细胞的高度相似,如糖基化、二硫键形成以及蛋白的水解加工,但是也与人类细胞在翻译后修饰的特定模式与结构上存在微妙差异,没有工程化修饰过的CHO细胞不能合成某些人源聚糖键,比如:α-2,6-唾液酸化、二分N聚糖和α-1,3/4-岩藻糖基化,为了在CHO细胞内实现目的蛋白的糖基化,不同的团队也开发了相应的糖工程方法。CHO细胞可以进行高密度无血清悬浮培养,并将目的蛋白分泌到培养基中,因而是一个经济有效的大规模重组蛋白表达平台。CHO细胞中重组蛋白的表达可受到多种因素影响,包括:表达质粒、启动子的选择、培养条件(培养基成分、温度、溶氧)、CHO细胞系的选择和表达系统的选择等。利用CHO细胞进行重组蛋白表达包括瞬时表达和稳定表达两种方式。瞬时表达系统中含有目的基因的cDNA会随着细胞分裂而被稀释,表达周期较短。尽管瞬时表达的效率低于稳定表达,但优化策略后的蛋白产量也可高达1 g/L。而瞬时表达减少了与细胞系开发相关的时间和成本,被广泛用于临床前研究中蛋白的快速生产。CHO细胞稳转则是大规模生物制造的标准方法。二蛋白亚单位疫苗蛋白亚单位疫苗是基于病原体的一种或几种分离或选定的成分,通常是免疫显性抗原(全蛋白、蛋白结构域或多肽),可在佐剂刺激下使产生体液和/或细胞免疫。蛋白亚单位疫苗因为没有恢复到致病形式的风险,也被认为比灭活疫苗或减毒活疫苗更安全。蛋白亚单位疫苗已被批准用于多种病毒感染性疾病的预防,如:SARS-CoV-2、水痘-带状疱疹病毒、呼吸道合胞病毒和流感,剂量范围从5到180 ug。尽管新冠的蛋白亚单位疫苗应用范围没有其他类型疫苗广,但仍是目前临床前和临床候选疫苗的主要选择。蛋白亚单位疫苗的一个潜在挑战是免疫原性较低,这也凸显了识别抗原以引起强大保护性免疫的重要性。三CHO细胞生产的已批准或处于临床阶段的蛋白亚单位疫苗基于CHO细胞作为治疗性重组蛋白表达系统的优势,CHO细胞已成为蛋白亚单位疫苗生产的主要选择之一。从近40年前开始,各种基于CHO细胞的治疗药物被监管机构批准,与新的细胞系或使用较少的细胞系相比,生物制药公司、CDMO公司以及供应商可以基于CHO细胞生产平台的熟悉度大大减少了疫苗生产的时间和风险。利用CHO细胞生产蛋白亚单位疫苗的上下游工艺与生产其他重组蛋白相似。接下来我们将梳理已获批或正在临床开发的蛋白亚单位疫苗(如图1)。图1:CHO细胞生产平台的应用 (a) 已获批或临床候选药物的蛋白亚单位疫苗;呼吸道合胞病毒呼吸道合胞病毒是全球呼吸道感染的主要原因,在幼儿、老年人和慢性病患者中可引起严重疾病,2019年全球幼儿死亡人数超过100000人,在高收入国家中造成2.2万到4.7万人死亡。早期使用甲醛灭活的RSV疫苗,甲醛导致病毒抗原产生羰基集团,阻碍了抗原在细胞质中的加工,产生了低亲和力的抗体,从而导致了增强型的RSV疾病,表现为:高烧、支气管炎和呼吸困难。目前RSV表面的病毒融合 (F) 蛋白作为疫苗开发的潜在靶点,这种预融合稳定形式的设计已被证明可以产生有效的中和抗体。但也有研究表明,即使采用低剂量预融合F蛋白在动物上也可能产生增强型RSV疾病。相比之下,预融合的F蛋白在成人接种时表现出较好的结果,也导致葛兰素史克开发的RSV疫苗Arexvy疫苗 (RSVPreF3 OA) 的获批上市。该疫苗使用CHO细胞生产,由F蛋白的1-513号残基组成,通过T4纤维蛋白结构单元三聚体化。预融合形式通过将F1的Ser155和Ser290替换为半胱氨酸而实现,在不稳定的N端和结构刚性中心区域之间建立了二硫键,另外引入S190F和V207L突变以填充F1N端空隙,增加疏水相互作用。在早期临床试验展现良好的安全性,并确认其诱导产生中和抗体的能力后,和AS01E佐剂一起进入了III期临床,在17个国家25000名60岁以上成年人中评估有效性。研究结果显示,单剂该疫苗对RSV相关的下呼吸道疾病的有效性为82.6%,对严重表现的有效性为94.1%,对RSV相关急性呼吸道感染的有效性为71.7%。第二个获批的RSV疫苗是辉瑞公司的Abrysvo,是由CHO细胞生产的针对RSV A和B亚群的双价融合前F蛋白。在III期临床中,对RSV相关的下呼吸道疾病有66.7%的有效性,对严重RSV相关疾病有85.7%的有效性,且严重不良事件发生率低,安全性无明显问题。并且也作为孕妇疫苗进行评估,接种孕妇时间为妊娠第24-36周,该疫苗显示在新生儿出生后的前90天内,预防严重RSV相关呼吸道疾病有81.8%的有效性,因此获批做为预防婴儿RSV的母亲疫苗。以上两个疫苗受到了市场的广泛接受,在三个月内达到了12.35亿美元的销售额,也凸显了CHO细胞在疫苗制备中的商业潜力。水痘-带状疱疹病毒 (VZV)VZV可引起水痘,是一种与典型皮疹和轻微症状相关的高度传染性感染。初次感染后,病毒可在神经元中持续存在,多年后重新激活会引起带状疱疹;重新激活后以皮疼痛性水疱性皮疹为特征,在免疫受损的宿主中可能导致出血性病变,最主要的并发症为急性神经炎和带状疱疹后神经痛,影响50岁以上的25%-50%的患者。为了保护年长或免疫缺陷的成年人,重组VZV疫苗Shingrix于2017年由FDA获批,一年后获批EMA。Shringrix是以VZV病毒表面最普遍的gE蛋白为抗原,是中和抗体和T细胞识别的关键靶标。该疫苗由CHO细胞生产,并由于去除了C端和跨膜结构域而可以被分泌到细胞外。在抗原产生过程中,CHO细胞的培养条件优化后,使用20 L的波浪式反应器进行批培养,最终每升产量在2.44 g。在50岁以上人群中,有效性达97.2%以上。人巨细胞病毒 (HCMV)HCMV是一种感染了全球约80%人口的病原体,一旦个体免疫降低就会引发健康风险。并且也与各种癌症进展有关,其先天性感染也是出生缺陷的主要原因。即便如此,目前也没有批准上市的疫苗。但有几款疫苗在临床试验中,其中有几款疫苗基于HCMV表面的gB蛋白由CHO细胞产生,与病毒入侵过程中的膜融合至关重要,并且包含中和抗体的多个识别表位,该蛋白与佐剂MF59正处于临床II期进行测试。赛诺菲的gB基因来源于HCMV Towne毒株,不含跨膜结构域和弗林切割位点。gB/MF59疫苗在移植后患者、产后妇女和健康的青春期女孩等不同受众中均获得了良好的效果,结果显示,gB结合抗体滴度增加,CD4+T细胞反应增强,HCMV病毒血症降低。葛兰素史克的另一款gB蛋白亚单位疫苗处于临床I期试验中,抗原基于AD169毒株,其修饰与赛诺菲相似。另外,来自单纯疱疹病毒1型的gD氨基酸序列融合在AD169 gB序列以促进分泌。最近葛兰素史克开发的针对HCMV的新型佐剂,由gB蛋白和五聚体抗原组成。HCMV五聚体复合物也是疫苗开发中的具有吸引力的抗原,相比于gB蛋白,能诱导更有效的抗体中和进入上皮细胞。因此,葛兰素史克使用CHO-K1和CHO-DXB11衍生的细胞克隆获得400 mg/L的五聚体复合物,并在小鼠中诱导了有效的中和免疫反应。五聚体/gB 蛋白亚单位疫苗候选药物目前正在健康成人受试者中进行评估。人类免疫缺陷病毒 (HIV)即使在发现HIV病毒40年后,HIV功能性疫苗的挑战仍然存在,主要原因包括逆转录酶中缺乏3’核酸外切酶的校对活性,使得病毒gp41和gp120可快速突变。而中和抗体靶向的抗原表位位于HIV包膜蛋白的gp可变区域,在免疫系统的筛选压力下也会导致突变体的产生。HIV env gp重组三聚体是目前作为疫苗开发最有潜力的靶点,可能会引发广泛的中和抗体。始终保持融合前构象的早期可溶性三聚体称为“SOSIP”,其中包括gp120-gp41之间的工程化二硫键 (SOS) 以及有助于维持融合前构象的螺旋断裂突变(I559P,称为IP)。最近的临床试验中的SOSIP三聚体已经进行了改进,包括CHO细胞的改进。其中某些env蛋白,尤其是HIV分支B的env蛋白容易受蛋白水解影响。为了解决这个问题,采用了工程化的C1蛋白酶缺陷的CHO细胞系,从而减少蛋白降解。三聚体4571 (BG505 DS-SOSIP.664) 是基于HIV A分支的高度稳定的与融合闭合可溶性包膜糖蛋白三聚体。该三聚体在gp120中结合了201C-433C二硫键突变以防止CD4诱导的构象变化。最近三聚体4571在I期临床试验中进行了独立评估,并在异源方案中作为加强剂量中做了评估,结果显示三聚体4571是安全的,没有引起不良反应,并能够成功诱导特异性抗体产生,主要是集中在三聚体上的无聚糖基底上的抗体。但是对于天然三聚体,通常由于免疫系统无法接触到无聚糖基底而导致其在临床试验中具有更明显的非中和反应。为了减少这种基底定向免疫,未来CHO细胞生产的蛋白亚基疫苗可以使用聚糖进行工程设计以掩盖三聚体基底结构域,减少非中和抗体的产生。严重急性呼吸系统综合症冠状病毒2 (SARS-CoV-2)为抗击COVID-19大流行研发了多种疫苗,包括:灭活病毒疫苗、基于蛋白质的疫苗、核酸疫苗以及载体疫苗。源自SARS-CoV-2刺突 (S) 蛋白的蛋白亚单位疫苗由CHO细胞产生,不同的候选药物在特定国家/地区获得紧急使用或在临床试验阶段。表1:截止2023.12临床审批的CHO细胞生产的蛋白亚单位疫苗SARS-CoV-2蛋白亚单位疫苗开发最广泛使用的策略之一是使用S蛋白的胞外结构域 (ECD) 作为抗原。Medigen Vaccine Biologics Corporation开发的MVC-COV1901疫苗基于融合前稳定的S ECD三聚体,该三聚体具有K986P和V987P突变,以及在S1/S2连接处具有弗林蛋白酶切割位点682突变 (RRARGGAS) ,以提高稳定性并增加了T4纤维蛋白三聚体化结构域。CHO细胞用于生成表达该S抗原的稳定克隆,该抗原被证明类似于人HEK293细胞表达的SARS-CoV-2 S蛋白的结构。该候选疫苗用氢氧化铝(明矾)和CpG 1018佐剂,CpG 1018是一种TLR-9激动剂,通过刺激CD4+/CD8+T淋巴细胞来增强免疫原性。II期临床试验 (NCT04695652) 表明,MVC-COV1901是安全的且耐受性良好,并且在年轻人和老年人中都能诱导高中和抗体滴度。MVC-COV1901还与牛津-阿斯利康的ChAdOx1 nCoV-19病毒载体疫苗进行了比较,其中MVC-COV1901被证明更优越,可诱导更广泛的IgG亚类和更高的抗Omicron (BA.1) 变体的中和抗体滴度。MVC-COV1901已获准在斯威士兰、巴拉圭、索马里兰和台湾使用。SARS-CoV-2 S蛋白内的受体结合域 (RBD) 是中和抗体的主要靶点。因此,它已被用于生产各种蛋白亚单位疫苗。已经探索了不同的策略来进一步增强其抗原性,例如使用单体、二聚体或多聚体形式。ZIFIVAX (ZF2001) 疫苗由安徽智飞龙康生物制药公司开发,由三剂基于RBD的疫苗和明矾佐剂组成。ZF2001是由两个拷贝的RBD (R319-K537) 形成并在CHO细胞中产生串联重复的二聚体。这种RBD二聚体与RBD单体保持相似的亲和力,而且能够有效地与人ACE2受体结合。在I期和II期临床试验中,ZF2001在人体中表现出安全特征和免疫原性。在多个国家/地区进行的III期临床试验显示,在完全接种疫苗后至少六个月内对有症状和重度至危重的COVID-19具有安全性和有效性。ZF2001疫苗已获准在中国、哥伦比亚、印度尼西亚和乌兹别克斯坦使用。CHO细胞的广泛使用和抗原表达的翻译后修饰使得CHO细胞在面临非快速反应环境中生产疫苗更为可取,尤其是CHO细胞的可操作性、安全性和稳定性。CHO细胞作为更具成本效益和高效的疫苗生产平台的潜力会越来越的到业界认可。在CHO细胞培养过程中,HyClone可以提供多种商品化CHO细胞培养基,包括:Actipro、HyCell CHO、PSL A01和PSL A02等多种基础培养基以及包括Cell boost 7a、Cell boost 7b等多种补料。参考文献:CHO cells for virus-like particle and subunit vaccine manufacturing声明:本文为作者原创首发,严禁私自转发或抄袭,如需转载请联系并注明转载来源,否则将追究法律责任
  • 干血斑分析技术进展与应用——基于干血斑的蛋白质分析技术
    干血斑(Dried Blood Spot, DBS)是一种微量血液采集、干燥和储存的生物采样技术。该技术由Robert Guthrie于1963年首次应用于新生儿苯丙酮尿症(PKU)筛查[1]。相比于临床检验中常用的液态血液基质,干血斑技术具有采血量少、操作简便、一般不需冷冻或冷藏、储存和运输成本低等优点,已应用于新生儿疾病筛查、流行病学样本分析、药物研发等领域。将干血斑应用于蛋白质研究,拓宽了蛋白质分析研究的生物样本采集形式,具有很好的临床研究和实际应用价值。本文重点讨论两种常见干血斑蛋白质分析技术及应用。1. 基于干血斑的蛋白分析技术1.1 酶联免疫吸附分析法原理:酶联免疫吸附分析法(ELISA)是指将可溶性的抗原或抗体结合到聚苯乙烯等固相载体上,利用抗原抗体特异性结合,进行免疫反应的定性和定量分析,具有灵敏、特异、及易于自动化操作等特点。根据免疫识别和信号输出方式的不同,ELISA可以分为双抗体夹心法、直接免疫竞争法和非直接免疫竞争法等。实验材料及分析仪器:研究人员可通过购买固相载体、抗体或抗原进行包被制备ELISA试剂盒或购买市售试剂盒。酶联免疫吸附测定试剂盒已成为实验中不可缺少的工具,目前国内外Elisa试剂盒生产厂家很多,如上海酶联生物、Abcam、BioVision等,科研人员可根据研究需求选择高质量的试剂盒品牌,以提升分析效率及结果有效性。干血斑处理:以干血斑HIV分析为例:用HIV阴性混合血液样本对阳性混合血液样本进行梯度稀释后,以固定体积点样至干血斑收集卡,室温下干燥。采用干血斑打孔设备获得一定直径的干血斑样片,用300 μL PBST(0.05% Tween20)室温静置洗脱,洗脱液经酶标仪测定样本吸光度值(OD值)。分析和结果处理:以标准曲线样品的浓度为横坐标,以测得的OD值为纵坐标,根据不同类型ELISA本身的特点拟合标准曲线(如竞争法和夹心法可以采用四参数拟合回归方程),选择R值大于0.99的拟合方式,并根据标准曲线计算样品浓度。分析仪器:酶标仪(MicroplateReader)即酶联免疫检测仪,是对酶联免疫检测(EIA)实验结果进行读取和分析的专业仪器。酶标仪可分为普通酶标仪和多功能酶标仪,普通酶标仪的主要功能一是充当分光光度计的角色,二是基于免疫反应的ELISA分析,价格相对较低;多功能酶标仪可实现吸光度、荧光强度、时间分辨荧光、荧光偏振和化学发光等多种检测模式拓展,满足生化分析、免疫检测、细胞研究、药物筛选和机制探索等众多领域检测需要。目前酶标仪市场常用的仪器品牌进口的有:伯腾、帝肯、美谷分子、珀金埃尔默和赛默飞等;国产的有:安图生物、奥盛和闪谱等。1.2 基于质谱技术的蛋白质分析技术基于质谱(Mass Spectrometry, MS)技术的蛋白质分析方法具有高通量、自动化程度高、分离能力强等特点,已逐渐成为蛋白质分析和鉴定的重要技术。原理:蛋白酶将样本中的蛋白质消化成肽段混合物,可采用鸟枪法(Shotgun)对蛋白组进行全谱分析,在最小限度分离蛋白质的同时实现复杂混合物中成千上万种蛋白质的鉴定和定量;或用液相色谱法(Liquid Chromatography, LC)对酶解肽段进行分离,经基质辅助激光电离(MALDI)或电喷雾电离(ESI)等软电离技术将其离子化,带电蛋白质离子通过质量分析器将具有特定质荷比的肽段离子分离,然后经检测器分析。质谱技术与干血斑技术的结合为蛋白质组学研究和蛋白生物标志物筛选提供了强有力手段。图1 基于质谱技术的蛋白质组学分析流程[2]样本处理:采用干血斑打孔设备获得一定直径的干血斑样片,转移至EP管中,加入少量水后用组织研磨器或匀浆机快速、彻底破碎干血斑样片,剧烈摇晃试管。后续处理与常规样本的蛋白提取相似:加入蛋白裂解液(如SDS、SDC、RIPA等),冰上裂解约半小时(辅以震荡),低温、高转速离心后取上清,得干血斑蛋白提取物。分析和结果处理:蛋白质组学数据分析和结果处理包括:①应用数据库搜库对蛋白进行鉴定并相对定量分析,借助如主成分分析、相关性分析、聚类分析等方法掌握数据的整体情况;②对蛋白的生物学功能进行注释,例如GO功能注释、KEGG注释等;③通过蛋白的生物学功能或参与的信号通路可以进一步筛选与研究目标相关的蛋白进行后续的分析。分析仪器:蛋白质组学分析主要使用高分辨液质联用系统进行。可进行蛋白质组学分析的液质联用系统目前以进口为主,常见仪器主要有布鲁克、赛默飞、沃特世和SCIEX的Q-TOF、Q-Orbitrap、Q-Trap质谱仪等。2. 干血斑蛋白分析应用实例分享2.1 采用ELISA法分析干血斑中HIV抗体1996年美国食品药品监督管理局(FDA)批准了以干血斑为载体的样本邮寄传递检测模式,并证明其可作为传统检测模式的良好补充,极大地推动了干血斑技术在传染性疾病分析中的应用。在我国,全国艾滋病检测技术规范(2020年修订版)第二章第4部分“常规HIV抗体或HIV抗体抗原联合检测方法”中指出:ELISA试验可使用血液(包含血清、血浆和干血斑)或尿液样本检测HIV抗体,也可联合检测HIV抗体抗原,说明干血斑在基于ELISA技术的HIV抗体检测中是可代替血浆、血清的生物样本基质,具有广阔的应用前景。近年来,相关专家多推荐受检者使用HIV自主采样包,根据说明采集干血斑样本,匿名寄至专业实验室,通过电话等方式获取结果。图2 RDA Spot公司的干血斑自主采样包(包含一次性采血针,消毒湿巾,样本采集卡,使用说明书及用于运输的特殊包装)图片来源:https://www.rdaspot.com/2.2 基于质谱技术的干血斑蛋白质组学分析研究人员建立了应用Thermo UltiMate 3000 RSLCnano纳升液相色谱联合Q Exactive HF-X质谱技术的干血斑蛋白质组学分析方法,并于2020年在Journal of Proteome Research中报道了该项工作[3]。由于全血中含有较多可溶性蛋白(如血红蛋白、白蛋白、纤维蛋白原等),研究人员为克服干扰、提高分析灵敏度,采用碳酸钠沉淀法(SCP)成功去除干血斑中可溶性蛋白并富集目标分析物疏水性蛋白。采用基于数据非依赖采集模式(DIA)的蛋白质组学分析方法,进行EMBL-EBI(针对人类蛋白GO功能分析的综合注释数据库)蛋白组学搜库分析,通过限定质谱扫描范围和延长离子累积时间等提高了分析方法的检测灵敏度。该研究最终在健康受试者干血斑样本中鉴定到1977种蛋白质,其中包含585种疾病相关蛋白。3. 小结与展望干血斑是一种先进的血液采集及保存技术,具有操作简单、对人体损伤小、便于运输和储存等优势,在临床快检中受到关注。干血斑技术与蛋白质研究的结合将有效推动蛋白质研究成果临床转化。随着分析技术的发展和相关研究的不断深入,前处理自动化仪器、高通量分析仪器和成熟的蛋白分析流程将成为干血斑蛋白质分析的有力工具,干血斑蛋白质分析定将在蛋白质分析中发挥重要作用,为高通量诊断、差异蛋白分析和疾病生物标志物挖掘等拓展新的技术平台。参考文献:[1] R. Guthrie, & Susi, A., A Simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants., Pediatrics, 32 (1963) 338–343.[2] B. Kuster, M. Schirle, P. Mallick, R. Aebersold, Scoring proteomes with proteotypic peptide probes, Nature Reviews Molecular Cell Biology, 6 (2005) 577-583.[3] D. Nakajima, Y. Kawashima, H. Shibata, T. Yasumi, M. Isa, K. Izawa, R. Nishikomori, T. Heike, O. Ohara, Simple and sensitive analysis for dried blood spot proteins by sodium carbonate precipitation for clinical proteomics, Journal of proteome research, 19 (2020) 2821-2827.
  • 西安交通大学第二附属医院576.00万元采购基因测序仪,流式细胞仪,核酸蛋白分析,细胞计数器,核酸提...
    html,body{-webkit-user-select:text }*{padding:0 margin:0 }.web-box{width:100% text-align:center }.wenshang{margin:0auto width:80% text-align:center padding:20px10px010px }.wenshangh2{display:block color:#900 text-align:center padding-bottom:10px border-bottom:1pxdashed#ccc font-size:16px }.sitea{text-decoration:none }.content-box{text-align:left margin:0auto width:80% margin-top:25px text-indent:2em font-size:14px line-height:25px }.biaoge{margin:0auto /*width:643px */width:100% margin-top:25px }.table_content{border-top:1pxsolid#e0e0e0 border-left:1pxsolid#e0e0e0 font-family:Arial /*width:643px */width:100% margin-top:10px margin-left:15px }.table_contenttrtd{line-height:29px }.table_content.bg{background-color:#f6f6f6 }.table_contenttrtd{border-right:1pxsolid#e0e0e0 border-bottom:1pxsolid#e0e0e0 }.table-left{text-align:left padding-left:20px }详细信息西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告陕西省-西安市状态:公告更新时间:2022-07-29招标文件:附件1西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告发布时间:2022072915:11:08西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告项目概况西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目招标项目的潜在投标人应在线上获取招标文件,并于2022年08月24日09时30分(北京时间)前递交投标文件。一、项目基本情况项目编号:XBMH2022152项目名称:西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目预算金额:576万元/年采购需求:西安交通大学第二附属医院采购分子组及大明宫院区医用试剂一批。本项目共分24个标段,各标标段具体采购的标的物及预算如下:标段号序号采购标的物名称检测方法采购预算(万元/年)中标家数参数要求招标最小单位第1标段(180万)1乙型肝炎病毒核酸定量检测PCR荧光探针法180万1家每测试2沙眼衣原体核酸检测每测试3淋球菌核酸测定每测试4解脲脲原体核酸检测每测试5单纯疱疹病毒II型核酸测定每测试7人巨细胞病毒核酸定量检测每测试8结核分枝杆菌核酸检测每测试9肺炎支原体核酸检测试剂盒每测试10EB病毒核酸检测每测试11幽门螺旋杆菌核酸检测每测试12肠道病毒71型核酸检测每测试13肠道病毒通用型核酸检测每测试14乙型肝炎病毒基因分型检测每测试15丙型肝炎病毒基因分型检测试剂盒每测试16人感染H7N9禽流感病毒RNA检测每测试17甲型H1N1流感病毒RNA检测每测试18季节性流感病毒H3亚型核酸检测每测试19季节性流感病毒H1亚型核酸检测每测试20Ⅰ群肠道沙门氏菌核酸检测每测试21发热伴血小板减少综合征布尼亚病毒核酸检测每测试22柯萨奇病毒A16型核酸检测每测试23柯萨奇病毒A6型核酸检测每测试24柯萨奇病毒A10型核酸检测每测试25呼吸道合胞病毒核酸检测试剂盒每测试26登革病毒核酸检测每测试27HIV1核酸测定试剂盒每测试28中东呼吸综合征冠状病毒核酸检测每测试29寨卡病毒核酸检测每测试30B族链球菌核酸检测每测试31人博卡病毒核酸检测每测试32腺病毒核酸检测每测试33人鼻病毒核酸检测每测试34乙型肝炎病毒前C区/BCP区突变检测PCR反向点杂交法每测试35乙型肝炎病毒YMDD基因突变检测每测试36人乳头瘤病毒核酸检测及基因分型(至少标段含20种)PCR反向点杂交法每测试372019nCoV核酸快速检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等耗材)荧光PCR法(快速扩增)1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限小于等于500copy/L5快速核酸释放技术6扩增时间小于50分钟每测试382019nCoV核酸检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限≤500copy/mL每测试39诺如病毒RNA荧光PCR法每测试40多瘤病毒(BKV、JCV)每测试41人偏肺病毒(HMPV)每测试42副流感病毒PIV每测试43甲型流感病毒每测试44乙型流感病毒每测试45呼吸道病毒核酸六重联检(甲、乙型流感病毒、腺病毒、呼吸道合胞病毒、副流感病毒1型、副流感病毒2型)每测试46白血病融合基因每测试47细小病毒(B19)胶体金法每测试第2标段(145万)1核酸提取或纯化试剂磁珠法145万1家每测试2丙型肝炎病毒核酸定量检测PCR荧光探针法每测试3丙型肝炎病毒基因分型检测每测试4HBVDNA/HCVRNA/HIVRNA(1+2)型三联检测每测试5乙型肝炎病毒核酸定量检测(高敏)检测下限≤10copies/mL每测试6乙型肝炎病毒基因分型检测每测试7丙型肝炎病毒核酸定量检测(高敏)检测下限≤25copies/mL每测试8丙型肝炎病毒核酸定量检测(超敏)检测下限≤15copies/mL每测试9EB病毒核酸定量检测检测下限≤400copies/mL每测试10人巨细胞病毒核酸定量检测检测下限≤400copies/mL每测试11沙眼衣原体核酸检测、解脲脲原体核酸检测、淋球菌核酸检测检测下限≤400copies/mL每测试12新型冠状病毒2019nCoV核酸检测,最低检测下限≤200copy/L(标段含采样管及保存液、提取试剂、扩增试剂、八连管)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4最低检测下限≤200copy/mL每测试13高危型人乳头状瘤病毒DNA检测(15种)荧光PCR法(无需杂交)每测试132019nCoV、甲型流感病毒、乙型流感病毒核酸三联检荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL14腺病毒核酸检测荧光PCR法每测试第3标段(30万)新冠核酸快检试剂2019nCoV核酸快速检测试剂(标段含采样管及保存液、保存管、提取试剂、扩增试剂、吸头、八连管等)快速核酸检测30万1家1磁珠法提取;2.全检测流程≤80分钟3检测模式:核酸提取、扩增检测均在同一封闭;4独立模块,随来随测,独立检测。5.目的基因不少于双靶标(ORFlab基因、N基因);6检测最低下限小于500copy/mL;7检测通量≥8;每测试第4标段(6万)(MTHFRC677T基因检测+高血压个体化治疗基因检测+HLAB27核酸检测等)MTHFRC677T基因检测(3个位点)PCR熔解曲线法6万1家每测试人类CYP2C19基因分型检测每测试CYP2D6*10、CYP2C9*3、ADRB1(1165GC)、AGTR1(116AC)、ACE(I/D)检测每测试人运动神经元存活基因1(SMN1)检测每测试测序反应通用试剂盒(高血压个体化治疗基因检测)聚合酶链杂交法每测试测序反应通用试剂盒(叶酸)每测试测序反应通用试剂盒(他汀类)每测试测序反应通用试剂盒(氯比格雷)每测试测序反应通用试剂盒(华法林)每测试测序反应通用试剂盒(硝酸甘油)每测试人类HLAB27核酸检测荧光PCR法每测试高血压个体化治疗基因检测试剂(5个位点)每测试人类HLAB*5801基因每测试B族链球菌核酸检测每测试结核分枝杆菌复合群核酸检测恒温扩增荧光法每测试MTHERC677基因检测PCR金磁微粒层析法每测试第5标段(20万)(免费按需提供检测的质控品、校准品、辅助试剂及一次性耗材)恒温扩增相关试剂(20万)结核TBRNA检测恒温扩增法20万1家每测试乙肝HBVRNA检测每测试泌尿生殖道病原体RNA检测(沙眼衣原体、解脲脲原体、淋病奈瑟菌、生殖支原体)每测试第6标段(5万)细菌耐药基因检测耐甲氧西林金黄色葡萄球菌耐药基因检测荧光PCR法5万1家每测试碳青霉烯耐药基因KPC检测每测试鲍曼不动杆菌耐碳青霉烯类抗生素基因(OXA23)检测每测试耐万古霉素肠球菌基因(vanA,vanB)检测每测试第7标段(20万)呼吸道病原菌核酸检测呼吸道病原菌核酸检测(标段括常见细菌、特殊病原体如嗜肺军团菌、结核分枝杆菌、肺炎支原体、肺炎衣原体、流感嗜血杆菌等)恒温扩增芯片法20万1家每测试第8标段(30万)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱30万1家每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试类固醇激素类类固醇激素18项(二氢睾酮、脱氢表雄酮硫酸酯、脱氢表雄酮、皮质醇(氢化可的松)、雌酮、17α羟孕酮、孕烯醇酮、皮质酮、11去氧皮质醇、脱氧皮质酮、雄烯二酮、17α羟孕烯醇酮、睾酮、醛固酮、雌二醇、雌三醇、可的松(皮质素)、孕酮)1.82.5ng串联质谱每测试原醛激素5项(醛固酮、血管紧张素I,皮质醇,脱氧皮质酮、可的松)每测试四种激素萃取液(醛固酮、皮质醇,脱氧皮质酮、可的松)每测试血儿茶酚胺代谢检测(肾上腺素、去甲肾上腺素、多巴胺、变肾上腺素、去甲变肾上腺素)每测试尿儿茶8项(DA,E,NE,MN,NMN,3MT,HVA,VMA)每测试高香草酸和香草扁桃酸萃取液每测试人体代谢物浓度胆汁酸谱15项(胆酸、牛磺胆酸、甘氨脱氧胆酸、石胆酸、甘氨胆酸、牛磺熊脱氧胆酸、脱氧胆酸、牛磺石胆酸、甘氨熊脱氧胆酸、熊脱氧胆酸、甘氨石胆酸、牛磺鹅脱氧胆酸、鹅脱氧胆酸、牛磺脱氧胆酸、甘氨鹅脱氧胆酸)串联质谱每测试药物浓度检测免疫抑制剂(他克莫司、环孢霉素A、西罗莫司)药物浓度检测串联质谱每测试抗癫痫药(卡马西平、卡马西平10,11环氧化物、奥卡西平、10羟基卡马西平、丙戊酸/苯巴比妥、苯妥英钠、拉莫三嗪、托吡酯、左乙拉西坦)药物浓度检测每测试抗菌药(万古霉素、伏立康唑、替考拉宁、利奈唑胺、美洛培南、替加环素、莫西沙星、氟康唑)药物浓度检测每测试抗肿瘤药(甲氨蝶呤、氟尿嘧啶、多西他赛、多柔比星)每测试镇静催眠药(阿普唑仑、氯硝西泮、咪达唑仑、劳拉西泮、奥沙西泮、唑吡坦、艾司唑仑、替马西泮、溴西泮)药物浓度检测每测试抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰、艾司西酞普兰、文拉法辛、O–去甲文拉法辛、曲唑酮、氟西汀+去甲氟西汀、氟伏沙明、度洛西汀、安非他酮、羟安非他酮)药物浓度检测每测试抗精神病药(氯氮平及去甲氯氮平、氯丙嗪、利培酮+9–羟基利培酮、喹硫平、阿立哌唑、脱氢阿立哌唑、奥氮平、齐拉西酮、氨磺必利、丙戊酸、舒必利、氟哌啶醇、奋乃静、氟奋乃静)药物浓度检测每测试第9标段(8万)阿司匹林耐药基因检测LTC4S一代测序技术8万1家为临床服用阿司匹林是否存在抵抗提供帮助每测试PTGS1每测试GP1BA高血糖个体化用药基因检测外周血液基因组中的CYP2C9、OCT2、SLCO1B1、PPARy基因多态性性为临床鉴别患者对降糖药物敏感性提供帮助每测试SLCO1B1ApoE检测SLCO1B1检测*1b和*5两个位点;ApoE检测E2和E4两个位点每测试个体化用药指导AGTR1/ACE/ADRB1CY2D6/CYP2C9/CYP3A5/NPPA检测高血压合理用药;总共检测7个基因,10位点每测试CYP2C19氯吡格雷用药每测试CYP2C9VKORC1华法林初始剂量每测试MTHFR检测评判叶酸代谢能力,指导合理补充叶酸每测试ALDH2检测判断硝酸甘油用药无效风险,评估酒精代谢能力每测试细胞因子联合检测试剂细胞因子六联检(IL2\IL4\IL6\IL10\IFNγ\TNFα);流式细胞术(2类注册证)每测试细胞因子七联检(IL2\IL4\IL6\IL10\IL17A\IFNγ\TNFα) 每测试细胞因子八联检(IL2\IL4\IL6\IL10\IL12P70\IL17A\IFNγ、TNFα) 每测试PD1(程序性死亡蛋白1)每测试十二联检(IL1β\IL2\IL4\IL6\IL8\IL10\IL12P70\IL17A\IFNγ\TNFα\IFNα)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试串联质谱检测3多种氨基酸检测试剂盒串联质谱每测试抗生素药物浓度检测试剂盒(阿米卡星、亚胺培南西司他丁、头孢哌酮舒巴坦、哌拉西林他唑巴坦、美罗培南、替加环素、利奈唑胺、万古霉素、去甲万古霉素、替考拉宁、氟康唑、伏立康唑、醋酸卡泊芬净)每测试第10标段(5万)1白色念珠菌核酸检测荧光PCR法5万1家每测试2光滑假丝酵母菌核酸检测每测试3热带假丝酵母菌菌核酸检测每测试4金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌核酸检测每测试5沙门氏菌和志贺氏菌核酸检测每测试6单纯疱疹病毒1型(HSV1)核酸检测每测试7单纯疱疹病毒2型(HSV2)核酸检测每测试8人感染H7N9禽流感病毒RNA检测每测试9麻疹病毒和风疹病毒核酸检测每测试10人乳头瘤病毒核酸检测及基因分型(至少标段含20种)荧光PCR定量法(无需杂交)每测试第11标段(大明宫)(60万)肝炎系列+新冠抗体+胃蛋白酶原乙型肝炎病毒表面抗体测定试剂盒磁微粒化学发光法60万1家每测试乙型肝炎病毒表面抗原测定试剂盒每测试乙型肝炎病毒e抗原测定试剂盒每测试乙型肝炎病毒e抗体测定试剂盒每测试乙型肝炎病毒核心抗体测定试剂盒每测试乙型肝炎病毒前S1抗原测定试剂盒每测试戊型肝炎病毒IgM测定试剂盒每测试丙型肝炎病毒抗体测定试剂盒每测试胃蛋白酶原Ⅰ测定试剂盒每测试胃蛋白酶原Ⅱ测定试剂盒每测试新型冠状病毒(2019nCoV)抗体检测试剂盒(磁微粒化学发光法)每测试抗HCV质控品每毫升HBcAb质控品每毫升HBeAb质控品每毫升HBeAg质控品每毫升HBsAb质控品每毫升HBsAg质控品每毫升抗HAVIgM质控每毫升抗HEVIgM质控品每毫升白介素6测定试剂盒(CMIA)每测试降钙素原测定每测试超敏C反应蛋白测定每测试肌酸激酶同工酶测定每测试心肌肌钙蛋白I测定每测试心肌肌钙蛋白T测定每测试肌红蛋白测定每测试心型脂肪酸结合蛋白测定每测试N端脑钠肽前体测定每测试白介素6质控品IL6免费提供胃蛋白酶原I质控品PGI免费提供胃蛋白酶原II质控品PGII免费提供人类免疫缺陷病毒抗原抗体测定试剂盒每测试梅毒螺旋体抗体测定试剂盒每测试甲型肝炎病毒IgM抗体测定试剂盒每测试激发液免费提供预激发液免费提供清洗液免费提供整装反应杯免费提供整装吸头免费提供样本稀释液免费提供FDP+DD纤维蛋白/原降解复合物胶乳免疫比浊法/颗粒增强免疫比浊法每测试D二聚体检测每测试FDP、D二聚体控制品每毫升D二聚体校准品每毫升FDP校准品每毫升生化类超敏C反应蛋白免疫比浊法每测试尿微量白蛋白测定每测试糖化白蛋白每测试糖化血红蛋白高压液相色谱法每测试第12标段(6万)多种心脑血管药物基因核酸样本预处理试剂心血管个性化用药指导11基因检测+核酸质谱法6万1家每测试心血管个性化用药指导21基因检测每测试高血压个性化用药指导9基因检测每测试冠心病个性化用药指导4基因检测每测试氯吡格雷+阿司匹林个性化用药基因检测每测试抗栓个性化用药9基因检测每测试儿童安全用药基因检测(核心板)每测试叶酸及营养每测试精神类药物基因核酸样本预处理试剂抑郁症个性化用药指导10基因检测每测试精神分裂症个性化用药10基因检测每测试癫痫个性化用药12基因检测每测试焦虑个性化用药9基因检测每测试肿瘤基因检测核酸样本预处理试剂化疗用药每测试男性18项高发肿瘤风险基因筛查(含BRCA基因)每测试女性21项高发肿瘤风险基因筛查(含BRCA基因)每测试核酸样本预处理试剂遗传性耳聋基因检测(20位点)每测试第13标段(5万)肝癌检测高尔基体蛋白73磁微粒化学发光免疫分析法5万1家每测试甲胎蛋白异质体比率(AFPL3%)每测试异常凝血酶原每测试感染三项1.全程C反应蛋白(CRP)上转发光免疫分析每测试2.血清淀粉样蛋白(SAA)每测试3.降钙素原(PCT)每测试第14标段(8万)ApoE基因型载脂蛋白EApoE基因型检测基因芯片法8万1家每测试第15标段(4万)SDC2基因甲基化检测人类SDC2基因甲基化检测荧光PCR法4万1家每测试第16标段(3万)S9甲基化Septin9基因甲基化检测荧光探针法3万1家每测试第17标段(25万)一次性加样枪头一次性加样枪头200微升迪肯酶免一体机专用25万1家每个一次性加样枪头1000微升每个核酸检测耗材盒装灭菌无酶吸头10微升核酸检测专用每个盒装灭菌无酶吸头100微升每个盒装灭菌无酶吸头200微升每个盒装灭菌无酶吸头1000微升每个加长型滤芯枪头(200ul)每个加长型滤芯枪头(10ul)每个HPV细胞保存液HPV细胞保存液(标段含采样器和保存管)5mlHPV分型专用每管采样管及保存管鼻拭子采样管、咽拭子采样管RNA检测标本采集每个第18标段(2万)六项呼吸道病毒核酸联合检测六项呼吸道核酸联合检测(甲、乙型流感病毒,呼吸道合胞病毒,腺病毒,肺炎支原体,人鼻病毒)荧光PCR法2万1家1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试六项呼吸道病原菌核酸检测六项呼吸道病原菌核酸检测(肺炎链球菌、肺炎克雷伯杆菌、流感嗜血杆菌、铜绿假单胞菌、嗜肺军团菌、金黄色葡萄糖菌)荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试第19标段(1万)传染病三项血液筛查核酸检测HBV+HCV+HIV血液筛查核酸检测荧光PCR法1万1家每测试第20标段(3万)心脑血管疾病风险预测MTHFRC677T基因检测(3个位点)PCR金磁微粒层析法2万1家每测试ALDH2(Glu504Lys)基因检测每测试氧化型低密度脂蛋白金磁微粒免疫层析法每测试S100β蛋白检测每测试早产早破预测胰岛素样生长因子结合蛋白1(IGFBP1)——胶体金与酶免方法1万胎膜早破诊断每测试胎儿纤维连接蛋白(fFN)——早产风险预测每测试第21标段(3万)颗粒酶B及穿孔素联合检测GranzymeB抗体试剂流式细胞计数法2万1家每测试穿孔素(Perforin)抗体试剂每测试CD45检测试剂(APCCy7)每测试CD3检测试剂(PerCP)每测试CD8检测试剂(APC)每测试CD16检测试剂(CD16PECy7)每测试CD56检测试剂(CD16PECy7)每测试HLAB27基因分型HLAB27基因分型检测荧光PCR法1万每测试百日咳杆菌核酸检测百日咳杆菌核酸检测荧光PCR法每测试第22标段(3万)耳聋基因检测遗传性耳聋易感基因检测(至少20种基因位点)PCR反向点杂交2万1家每测试艰难梭菌抗原及毒素快检艰难梭菌谷氨酸脱氢酶抗原GDH及毒素A/B酶联免疫层析法1万每测试第23标段(2万)SDC2和TFPI2基因甲基化联合检测SDC2和TFPI2基因甲基化联合检测试剂盒荧光PCR法2万1家每测试第24标段(2万)呼吸道病毒6项呼吸道合胞病毒、呼吸道腺病毒、人偏肺病毒、副流感病毒Ⅰ型、副流感病毒Ⅱ型、副流感病毒Ⅲ型荧光PCR法1万最低检测限:1000copies/mL每测试诺如病毒核酸检测诺如病毒RNA检测(粪标本)荧光PCR法0.5万每测试肠道病毒核酸检测试剂可检测肠道病毒,如柯萨奇病毒A组2型、4型、5型、6型、7型、9型、10型、12型、16型;柯萨奇病毒B组1型、2型、3型、4型、5型;肠道病毒C组;肠道病毒71型和埃可病毒。荧光PCR法0.5万(咽拭子)每测试合计共24个标段,总计576万元各供应商可选择参投一个或多个标段,可兼投兼中,但必须对所投标段内全部标的进行投标报价,不得缺项、漏项。本项目(不接受)联合体投标。二、申请人的资格要求:1、基本资格条件:符合《政府采购法》第二十二条规定的供应商条件;1.1、提供在中华人民共和国境内注册的营业执照(或事业单位法人证书,或社会团体法人登记证书,或执业许可证)、组织机构代码证和税务登记证复印件【如已办理了多证合一,则仅需提供合证后的营业执照】,如供应商为自然人的需提供自然人身份证明。1.2、提供2021年度任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或具有财务审计资质的单位出具的2020年度财务会计报告或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证);2021年以后新成立企业提供成立之日至开标前任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证)。1.3、提供2021年以来至少一个月的纳税证明或完税证明(提供增值税、企业所得税至少一种),纳税证明或完税证明上应有代收机构或税务机关的公章或业务专用章。依法免税的供应商应提供相关文件证明。1.4、提供2021年以来至少一个月的社会保障资金缴存单据或社保机构开具的社会保险参保缴费情况证明。依法不需要缴纳社会保障资金的供应商应提供相关文件证明。1.5、提供履行合同所必需的设备和专业技术能力的书面声明。1.6、提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。2、落实政府采购政策需满足的资格要求:本项目非专门面向中小企业采购。3、特定资格条件:3.1、供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法人身份证,并与营业执照上信息一致;法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证。3.2、投标产品纳入医疗器械(或药品)管理的,须提供供应商有效的医疗器械(或药品)经营许可证或经营备案凭证。3.3、投标产品纳入医疗器械(或药品)管理的,须提供产品有效的医疗器械(或药品)注册证或备案凭证。3.4、若投标产品为进口,供应商须提供有效的完整授权链的产品授权书(授权期限不足2年的须附能够提供持续供货的声明材料,英文授权须提供中文翻译版;制造商直接参与投标的不提供此项)。若投标产品为国产且纳入医疗器械(或药品)管理的,供应商须提供投标产品制造商有效的营业执照和生产许可证。3.5、供应商未被列入“信用中国”网站(www.creditchina.gov.cn)以下情形之一:①记录失信被执行人;②重大税收违法案件当事人名单。同时,在中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中查询没有处于禁止参加政府采购活动的记录名单。本项目(不接受)联合体投标。三、获取招标文件1、时间:2022年08月01日至2022年08月05日,法定工作日每天上午09:0012:00,法定工作日每天下午14:0017:00(北京时间,法定节假日除外)地点:线上发售方式:(1)根据陕西省人民政府《关于加强新型冠状病毒感染的肺炎防控工作的通告》要求,本次招标文件采用线上发售,供应商在文件发售期以内将单位介绍信(介绍信中必须注明项目名称、项目编号、标段号)、经办人身份证、联系电话及电子邮箱等资料,加盖投标单位公章的彩色扫描件发送至邮箱714884417@qq.com,并及时关注邮箱回复消息。(2)招标文件售价人民币¥7200.00元(本招标项目各标段招标文件之和,每单个标段300元),售后不退。(标书费交纳信息:账户名称:陕西西北民航招标咨询有限公司;开户银行:建行西安高新科技支行;账号:61001925700052502533;转帐事由:项目名称简称、编号、标段号,如以个人名义转入,须备注单位名称。财务电话:029883479258013),采购代理机构在收到邮件并确认文件收费到账后,通过邮箱向供应商发售招标文件,请及时查收。四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年08月24日09时30分(北京时间)开标时间:2022年08月24日09时30分(北京时间)地点:西安市唐延路3号唐延国际中心AB区8楼开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜:(1)招标文件售价为每标段300元。(2)本项目接受进口产品投标。(3)采购项目需要落实的政府采购政策:1、《财政部国家发展改革委关于印发〈节能产品政府采购实施意见〉的通知》(财库〔2004〕185号);2、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发〔2007〕51号);3、《财政部环保总局关于环境标志产品政府采购实施的意见》(财库〔2006〕90号);4、《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);5、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);6、《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号);7、《关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19号);8、《政府采购促进中小企业发展管理办法》(财库〔2020〕46号);9、陕西省财政厅关于印发《陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23号)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安交通大学第二附属医院地址:西安市西五路157号联系方式:冯老师029876798612.采购代理机构信息名称:陕西西北民航招标咨询有限公司地址:西安市唐延路3号唐延国际中心AB区8楼联系方式:佘冰霞029883479878046/139912653493.项目联系方式项目联系人:佘冰霞电话:029883479878046/13991265349(2022.07.27)重新招标公告分子组及大明宫耗材项目.pdf×扫码打开掌上仪信通App查看联系方式$('.clickModel').click(function(){$('.modelDiv').show()})$('.closeModel').click(function(){$('.modelDiv').hide()})基本信息关键内容:基因测序仪,流式细胞仪,核酸蛋白分析,细胞计数器,核酸提取仪,液相色谱仪,PCR开标时间:2022-08-2409:30预算金额:576.00万元采购单位:西安交通大学第二附属医院采购联系人:点击查看采购联系方式:点击查看招标代理机构:陕西西北民航招标咨询有限公司代理联系人:点击查看代理联系方式:点击查看详细信息西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告陕西省-西安市状态:公告更新时间:2022-07-29招标文件:附件1西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告发布时间:2022072915:11:08西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告项目概况西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目招标项目的潜在投标人应在线上获取招标文件,并于2022年08月24日09时30分(北京时间)前递交投标文件。一、项目基本情况项目编号:XBMH2022152项目名称:西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目预算金额:576万元/年采购需求:西安交通大学第二附属医院采购分子组及大明宫院区医用试剂一批。本项目共分24个标段,各标标段具体采购的标的物及预算如下:标段号序号采购标的物名称检测方法采购预算(万元/年)中标家数参数要求招标最小单位第1标段(180万)1乙型肝炎病毒核酸定量检测PCR荧光探针法180万1家每测试2沙眼衣原体核酸检测每测试3淋球菌核酸测定每测试4解脲脲原体核酸检测每测试5单纯疱疹病毒II型核酸测定每测试7人巨细胞病毒核酸定量检测每测试8结核分枝杆菌核酸检测每测试9肺炎支原体核酸检测试剂盒每测试10EB病毒核酸检测每测试11幽门螺旋杆菌核酸检测每测试12肠道病毒71型核酸检测每测试13肠道病毒通用型核酸检测每测试14乙型肝炎病毒基因分型检测每测试15丙型肝炎病毒基因分型检测试剂盒每测试16人感染H7N9禽流感病毒RNA检测每测试17甲型H1N1流感病毒RNA检测每测试18季节性流感病毒H3亚型核酸检测每测试19季节性流感病毒H1亚型核酸检测每测试20Ⅰ群肠道沙门氏菌核酸检测每测试21发热伴血小板减少综合征布尼亚病毒核酸检测每测试22柯萨奇病毒A16型核酸检测每测试23柯萨奇病毒A6型核酸检测每测试24柯萨奇病毒A10型核酸检测每测试25呼吸道合胞病毒核酸检测试剂盒每测试26登革病毒核酸检测每测试27HIV1核酸测定试剂盒每测试28中东呼吸综合征冠状病毒核酸检测每测试29寨卡病毒核酸检测每测试30B族链球菌核酸检测每测试31人博卡病毒核酸检测每测试32腺病毒核酸检测每测试33人鼻病毒核酸检测每测试34乙型肝炎病毒前C区/BCP区突变检测PCR反向点杂交法每测试35乙型肝炎病毒YMDD基因突变检测每测试36人乳头瘤病毒核酸检测及基因分型(至少标段含20种)PCR反向点杂交法每测试372019nCoV核酸快速检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等耗材)荧光PCR法(快速扩增)1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限小于等于500copy/L5快速核酸释放技术6扩增时间小于50分钟每测试382019nCoV核酸检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限≤500copy/mL每测试39诺如病毒RNA荧光PCR法每测试40多瘤病毒(BKV、JCV)每测试41人偏肺病毒(HMPV)每测试42副流感病毒PIV每测试43甲型流感病毒每测试44乙型流感病毒每测试45呼吸道病毒核酸六重联检(甲、乙型流感病毒、腺病毒、呼吸道合胞病毒、副流感病毒1型、副流感病毒2型)每测试46白血病融合基因每测试47细小病毒(B19)胶体金法每测试第2标段(145万)1核酸提取或纯化试剂磁珠法145万1家每测试2丙型肝炎病毒核酸定量检测PCR荧光探针法每测试3丙型肝炎病毒基因分型检测每测试4HBVDNA/HCVRNA/HIVRNA(1+2)型三联检测每测试5乙型肝炎病毒核酸定量检测(高敏)检测下限≤10copies/mL每测试6乙型肝炎病毒基因分型检测每测试7丙型肝炎病毒核酸定量检测(高敏)检测下限≤25copies/mL每测试8丙型肝炎病毒核酸定量检测(超敏)检测下限≤15copies/mL每测试9EB病毒核酸定量检测检测下限≤400copies/mL每测试10人巨细胞病毒核酸定量检测检测下限≤400copies/mL每测试11沙眼衣原体核酸检测、解脲脲原体核酸检测、淋球菌核酸检测检测下限≤400copies/mL每测试12新型冠状病毒2019nCoV核酸检测,最低检测下限≤200copy/L(标段含采样管及保存液、提取试剂、扩增试剂、八连管)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4最低检测下限≤200copy/mL每测试13高危型人乳头状瘤病毒DNA检测(15种)荧光PCR法(无需杂交)每测试132019nCoV、甲型流感病毒、乙型流感病毒核酸三联检荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL14腺病毒核酸检测荧光PCR法每测试第3标段(30万)新冠核酸快检试剂2019nCoV核酸快速检测试剂(标段含采样管及保存液、保存管、提取试剂、扩增试剂、吸头、八连管等)快速核酸检测30万1家1磁珠法提取;2.全检测流程≤80分钟3检测模式:核酸提取、扩增检测均在同一封闭;4独立模块,随来随测,独立检测。5.目的基因不少于双靶标(ORFlab基因、N基因);6检测最低下限小于500copy/mL;7检测通量≥8;每测试第4标段(6万)(MTHFRC677T基因检测+高血压个体化治疗基因检测+HLAB27核酸检测等)MTHFRC677T基因检测(3个位点)PCR熔解曲线法6万1家每测试人类CYP2C19基因分型检测每测试CYP2D6*10、CYP2C9*3、ADRB1(1165GC)、AGTR1(116AC)、ACE(I/D)检测每测试人运动神经元存活基因1(SMN1)检测每测试测序反应通用试剂盒(高血压个体化治疗基因检测)聚合酶链杂交法每测试测序反应通用试剂盒(叶酸)每测试测序反应通用试剂盒(他汀类)每测试测序反应通用试剂盒(氯比格雷)每测试测序反应通用试剂盒(华法林)每测试测序反应通用试剂盒(硝酸甘油)每测试人类HLAB27核酸检测荧光PCR法每测试高血压个体化治疗基因检测试剂(5个位点)每测试人类HLAB*5801基因每测试B族链球菌核酸检测每测试结核分枝杆菌复合群核酸检测恒温扩增荧光法每测试MTHERC677基因检测PCR金磁微粒层析法每测试第5标段(20万)(免费按需提供检测的质控品、校准品、辅助试剂及一次性耗材)恒温扩增相关试剂(20万)结核TBRNA检测恒温扩增法20万1家每测试乙肝HBVRNA检测每测试泌尿生殖道病原体RNA检测(沙眼衣原体、解脲脲原体、淋病奈瑟菌、生殖支原体)每测试第6标段(5万)细菌耐药基因检测耐甲氧西林金黄色葡萄球菌耐药基因检测荧光PCR法5万1家每测试碳青霉烯耐药基因KPC检测每测试鲍曼不动杆菌耐碳青霉烯类抗生素基因(OXA23)检测每测试耐万古霉素肠球菌基因(vanA,vanB)检测每测试第7标段(20万)呼吸道病原菌核酸检测呼吸道病原菌核酸检测(标段括常见细菌、特殊病原体如嗜肺军团菌、结核分枝杆菌、肺炎支原体、肺炎衣原体、流感嗜血杆菌等)恒温扩增芯片法20万1家每测试第8标段(30万)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱30万1家每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试类固醇激素类类固醇激素18项(二氢睾酮、脱氢表雄酮硫酸酯、脱氢表雄酮、皮质醇(氢化可的松)、雌酮、17α羟孕酮、孕烯醇酮、皮质酮、11去氧皮质醇、脱氧皮质酮、雄烯二酮、17α羟孕烯醇酮、睾酮、醛固酮、雌二醇、雌三醇、可的松(皮质素)、孕酮)1.82.5ng串联质谱每测试原醛激素5项(醛固酮、血管紧张素I,皮质醇,脱氧皮质酮、可的松)每测试四种激素萃取液(醛固酮、皮质醇,脱氧皮质酮、可的松)每测试血儿茶酚胺代谢检测(肾上腺素、去甲肾上腺素、多巴胺、变肾上腺素、去甲变肾上腺素)每测试尿儿茶8项(DA,E,NE,MN,NMN,3MT,HVA,VMA)每测试高香草酸和香草扁桃酸萃取液每测试人体代谢物浓度胆汁酸谱15项(胆酸、牛磺胆酸、甘氨脱氧胆酸、石胆酸、甘氨胆酸、牛磺熊脱氧胆酸、脱氧胆酸、牛磺石胆酸、甘氨熊脱氧胆酸、熊脱氧胆酸、甘氨石胆酸、牛磺鹅脱氧胆酸、鹅脱氧胆酸、牛磺脱氧胆酸、甘氨鹅脱氧胆酸)串联质谱每测试药物浓度检测免疫抑制剂(他克莫司、环孢霉素A、西罗莫司)药物浓度检测串联质谱每测试抗癫痫药(卡马西平、卡马西平10,11环氧化物、奥卡西平、10羟基卡马西平、丙戊酸/苯巴比妥、苯妥英钠、拉莫三嗪、托吡酯、左乙拉西坦)药物浓度检测每测试抗菌药(万古霉素、伏立康唑、替考拉宁、利奈唑胺、美洛培南、替加环素、莫西沙星、氟康唑)药物浓度检测每测试抗肿瘤药(甲氨蝶呤、氟尿嘧啶、多西他赛、多柔比星)每测试镇静催眠药(阿普唑仑、氯硝西泮、咪达唑仑、劳拉西泮、奥沙西泮、唑吡坦、艾司唑仑、替马西泮、溴西泮)药物浓度检测每测试抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰、艾司西酞普兰、文拉法辛、O–去甲文拉法辛、曲唑酮、氟西汀+去甲氟西汀、氟伏沙明、度洛西汀、安非他酮、羟安非他酮)药物浓度检测每测试抗精神病药(氯氮平及去甲氯氮平、氯丙嗪、利培酮+9–羟基利培酮、喹硫平、阿立哌唑、脱氢阿立哌唑、奥氮平、齐拉西酮、氨磺必利、丙戊酸、舒必利、氟哌啶醇、奋乃静、氟奋乃静)药物浓度检测每测试第9标段(8万)阿司匹林耐药基因检测LTC4S一代测序技术8万1家为临床服用阿司匹林是否存在抵抗提供帮助每测试PTGS1每测试GP1BA高血糖个体化用药基因检测外周血液基因组中的CYP2C9、OCT2、SLCO1B1、PPARy基因多态性性为临床鉴别患者对降糖药物敏感性提供帮助每测试SLCO1B1ApoE检测SLCO1B1检测*1b和*5两个位点;ApoE检测E2和E4两个位点每测试个体化用药指导AGTR1/ACE/ADRB1CY2D6/CYP2C9/CYP3A5/NPPA检测高血压合理用药;总共检测7个基因,10位点每测试CYP2C19氯吡格雷用药每测试CYP2C9VKORC1华法林初始剂量每测试MTHFR检测评判叶酸代谢能力,指导合理补充叶酸每测试ALDH2检测判断硝酸甘油用药无效风险,评估酒精代谢能力每测试细胞因子联合检测试剂细胞因子六联检(IL2\IL4\IL6\IL10\IFNγ\TNFα);流式细胞术(2类注册证)每测试细胞因子七联检(IL2\IL4\IL6\IL10\IL17A\IFNγ\TNFα) 每测试细胞因子八联检(IL2\IL4\IL6\IL10\IL12P70\IL17A\IFNγ、TNFα) 每测试PD1(程序性死亡蛋白1)每测试十二联检(IL1β\IL2\IL4\IL6\IL8\IL10\IL12P70\IL17A\IFNγ\TNFα\IFNα)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试串联质谱检测3多种氨基酸检测试剂盒串联质谱每测试抗生素药物浓度检测试剂盒(阿米卡星、亚胺培南西司他丁、头孢哌酮舒巴坦、哌拉西林他唑巴坦、美罗培南、替加环素、利奈唑胺、万古霉素、去甲万古霉素、替考拉宁、氟康唑、伏立康唑、醋酸卡泊芬净)每测试第10标段(5万)1白色念珠菌核酸检测荧光PCR法5万1家每测试2光滑假丝酵母菌核酸检测每测试3热带假丝酵母菌菌核酸检测每测试4金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌核酸检测每测试5沙门氏菌和志贺氏菌核酸检测每测试6单纯疱疹病毒1型(HSV1)核酸检测每测试7单纯疱疹病毒2型(HSV2)核酸检测每测试8人感染H7N9禽流感病毒RNA检测每测试9麻疹病毒和风疹病毒核酸检测每测试10人乳头瘤病毒核酸检测及基因分型(至少标段含20种)荧光PCR定量法(无需杂交)每测试第11标段(大明宫)(60万)肝炎系列+新冠抗体+胃蛋白酶原乙型肝炎病毒表面抗体测定试剂盒磁微粒化学发光法60万1家每测试乙型肝炎病毒表面抗原测定试剂盒每测试乙型肝炎病毒e抗原测定试剂盒每测试乙型肝炎病毒e抗体测定试剂盒每测试乙型肝炎病毒核心抗体测定试剂盒每测试乙型肝炎病毒前S1抗原测定试剂盒每测试戊型肝炎病毒IgM测定试剂盒每测试丙型肝炎病毒抗体测定试剂盒每测试胃蛋白酶原Ⅰ测定试剂盒每测试胃蛋白酶原Ⅱ测定试剂盒每测试新型冠状病毒(2019nCoV)抗体检测试剂盒(磁微粒化学发光法)每测试抗HCV质控品每毫升HBcAb质控品每毫升HBeAb质控品每毫升HBeAg质控品每毫升HBsAb质控品每毫升HBsAg质控品每毫升抗HAVIgM质控每毫升抗HEVIgM质控品每毫升白介素6测定试剂盒(CMIA)每测试降钙素原测定每测试超敏C反应蛋白测定每测试肌酸激酶同工酶测定每测试心肌肌钙蛋白I测定每测试心肌肌钙蛋白T测定每测试肌红蛋白测定每测试心型脂肪酸结合蛋白测定每测试N端脑钠肽前体测定每测试白介素6质控品IL6免费提供胃蛋白酶原I质控品PGI免费提供胃蛋白酶原II质控品PGII免费提供人类免疫缺陷病毒抗原抗体测定试剂盒每测试梅毒螺旋体抗体测定试剂盒每测试甲型肝炎病毒IgM抗体测定试剂盒每测试激发液免费提供预激发液免费提供清洗液免费提供整装反应杯免费提供整装吸头免费提供样本稀释液免费提供FDP+DD纤维蛋白/原降解复合物胶乳免疫比浊法/颗粒增强免疫比浊法每测试D二聚体检测每测试FDP、D二聚体控制品每毫升D二聚体校准品每毫升FDP校准品每毫升生化类超敏C反应蛋白免疫比浊法每测试尿微量白蛋白测定每测试糖化白蛋白每测试糖化血红蛋白高压液相色谱法每测试第12标段(6万)多种心脑血管药物基因核酸样本预处理试剂心血管个性化用药指导11基因检测+核酸质谱法6万1家每测试心血管个性化用药指导21基因检测每测试高血压个性化用药指导9基因检测每测试冠心病个性化用药指导4基因检测每测试氯吡格雷+阿司匹林个性化用药基因检测每测试抗栓个性化用药9基因检测每测试儿童安全用药基因检测(核心板)每测试叶酸及营养每测试精神类药物基因核酸样本预处理试剂抑郁症个性化用药指导10基因检测每测试精神分裂症个性化用药10基因检测每测试癫痫个性化用药12基因检测每测试焦虑个性化用药9基因检测每测试肿瘤基因检测核酸样本预处理试剂化疗用药每测试男性18项高发肿瘤风险基因筛查(含BRCA基因)每测试女性21项高发肿瘤风险基因筛查(含BRCA基因)每测试核酸样本预处理试剂遗传性耳聋基因检测(20位点)每测试第13标段(5万)肝癌检测高尔基体蛋白73磁微粒化学发光免疫分析法5万1家每测试甲胎蛋白异质体比率(AFPL3%)每测试异常凝血酶原每测试感染三项1.全程C反应蛋白(CRP)上转发光免疫分析每测试2.血清淀粉样蛋白(SAA)每测试3.降钙素原(PCT)每测试第14标段(8万)ApoE基因型载脂蛋白EApoE基因型检测基因芯片法8万1家每测试第15标段(4万)SDC2基因甲基化检测人类SDC2基因甲基化检测荧光PCR法4万1家每测试第16标段(3万)S9甲基化Septin9基因甲基化检测荧光探针法3万1家每测试第17标段(25万)一次性加样枪头一次性加样枪头200微升迪肯酶免一体机专用25万1家每个一次性加样枪头1000微升每个核酸检测耗材盒装灭菌无酶吸头10微升核酸检测专用每个盒装灭菌无酶吸头100微升每个盒装灭菌无酶吸头200微升每个盒装灭菌无酶吸头1000微升每个加长型滤芯枪头(200ul)每个加长型滤芯枪头(10ul)每个HPV细胞保存液HPV细胞保存液(标段含采样器和保存管)5mlHPV分型专用每管采样管及保存管鼻拭子采样管、咽拭子采样管RNA检测标本采集每个第18标段(2万)六项呼吸道病毒核酸联合检测六项呼吸道核酸联合检测(甲、乙型流感病毒,呼吸道合胞病毒,腺病毒,肺炎支原体,人鼻病毒)荧光PCR法2万1家1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试六项呼吸道病原菌核酸检测六项呼吸道病原菌核酸检测(肺炎链球菌、肺炎克雷伯杆菌、流感嗜血杆菌、铜绿假单胞菌、嗜肺军团菌、金黄色葡萄糖菌)荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试第19标段(1万)传染病三项血液筛查核酸检测HBV+HCV+HIV血液筛查核酸检测荧光PCR法1万1家每测试第20标段(3万)心脑血管疾病风险预测MTHFRC677T基因检测(3个位点)PCR金磁微粒层析法2万1家每测试ALDH2(Glu504Lys)基因检测每测试氧化型低密度脂蛋白金磁微粒免疫层析法每测试S100β蛋白检测每测试早产早破预测胰岛素样生长因子结合蛋白1(IGFBP1)——胶体金与酶免方法1万胎膜早破诊断每测试胎儿纤维连接蛋白(fFN)——早产风险预测每测试第21标段(3万)颗粒酶B及穿孔素联合检测GranzymeB抗体试剂流式细胞计数法2万1家每测试穿孔素(Perforin)抗体试剂每测试CD45检测试剂(APCCy7)每测试CD3检测试剂(PerCP)每测试CD8检测试剂(APC)每测试CD16检测试剂(CD16PECy7)每测试CD56检测试剂(CD16PECy7)每测试HLAB27基因分型HLAB27基因分型检测荧光PCR法1万每测试百日咳杆菌核酸检测百日咳杆菌核酸检测荧光PCR法每测试第22标段(3万)耳聋基因检测遗传性耳聋易感基因检测(至少20种基因位点)PCR反向点杂交2万1家每测试艰难梭菌抗原及毒素快检艰难梭菌谷氨酸脱氢酶抗原GDH及毒素A/B酶联免疫层析法1万每测试第23标段(2万)SDC2和TFPI2基因甲基化联合检测SDC2和TFPI2基因甲基化联合检测试剂盒荧光PCR法2万1家每测试第24标段(2万)呼吸道病毒6项呼吸道合胞病毒、呼吸道腺病毒、人偏肺病毒、副流感病毒Ⅰ型、副流感病毒Ⅱ型、副流感病毒Ⅲ型荧光PCR法1万最低检测限:1000copies/mL每测试诺如病毒核酸检测诺如病毒RNA检测(粪标本)荧光PCR法0.5万每测试肠道病毒核酸检测试剂可检测肠道病毒,如柯萨奇病毒A组2型、4型、5型、6型、7型、9型、10型、12型、16型;柯萨奇病毒B组1型、2型、3型、4型、5型;肠道病毒C组;肠道病毒71型和埃可病毒。荧光PCR法0.5万(咽拭子)每测试合计共24个标段,总计576万元各供应商可选择参投一个或多个标段,可兼投兼中,但必须对所投标段内全部标的进行投标报价,不得缺项、漏项。本项目(不接受)联合体投标。二、申请人的资格要求:1、基本资格条件:符合《政府采购法》第二十二条规定的供应商条件;1.1、提供在中华人民共和国境内注册的营业执照(或事业单位法人证书,或社会团体法人登记证书,或执业许可证)、组织机构代码证和税务登记证复印件【如已办理了多证合一,则仅需提供合证后的营业执照】,如供应商为自然人的需提供自然人身份证明。1.2、提供2021年度任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或具有财务审计资质的单位出具的2020年度财务会计报告或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证);2021年以后新成立企业提供成立之日至开标前任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证)。1.3、提供2021年以来至少一个月的纳税证明或完税证明(提供增值税、企业所得税至少一种),纳税证明或完税证明上应有代收机构或税务机关的公章或业务专用章。依法免税的供应商应提供相关文件证明。1.4、提供2021年以来至少一个月的社会保障资金缴存单据或社保机构开具的社会保险参保缴费情况证明。依法不需要缴纳社会保障资金的供应商应提供相关文件证明。1.5、提供履行合同所必需的设备和专业技术能力的书面声明。1.6、提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。2、落实政府采购政策需满足的资格要求:本项目非专门面向中小企业采购。3、特定资格条件:3.1、供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法人身份证,并与营业执照上信息一致;法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证。3.2、投标产品纳入医疗器械(或药品)管理的,须提供供应商有效的医疗器械(或药品)经营许可证或经营备案凭证。3.3、投标产品纳入医疗器械(或药品)管理的,须提供产品有效的医疗器械(或药品)注册证或备案凭证。3.4、若投标产品为进口,供应商须提供有效的完整授权链的产品授权书(授权期限不足2年的须附能够提供持续供货的声明材料,英文授权须提供中文翻译版;制造商直接参与投标的不提供此项)。若投标产品为国产且纳入医疗器械(或药品)管理的,供应商须提供投标产品制造商有效的营业执照和生产许可证。3.5、供应商未被列入“信用中国”网站(www.creditchina.gov.cn)以下情形之一:①记录失信被执行人;②重大税收违法案件当事人名单。同时,在中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中查询没有处于禁止参加政府采购活动的记录名单。本项目(不接受)联合体投标。三、获取招标文件1、时间:2022年08月01日至2022年08月05日,法定工作日每天上午09:0012:00,法定工作日每天下午14:0017:00(北京时间,法定节假日除外)地点:线上发售方式:(1)根据陕西省人民政府《关于加强新型冠状病毒感染的肺炎防控工作的通告》要求,本次招标文件采用线上发售,供应商在文件发售期以内将单位介绍信(介绍信中必须注明项目名称、项目编号、标段号)、经办人身份证、联系电话及电子邮箱等资料,加盖投标单位公章的彩色扫描件发送至邮箱714884417@qq.com,并及时关注邮箱回复消息。(2)招标文件售价人民币¥7200.00元(本招标项目各标段招标文件之和,每单个标段300元),售后不退。(标书费交纳信息:账户名称:陕西西北民航招标咨询有限公司;开户银行:建行西安高新科技支行;账号:61001925700052502533;转帐事由:项目名称简称、编号、标段号,如以个人名义转入,须备注单位名称。财务电话:029883479258013),采购代理机构在收到邮件并确认文件收费到账后,通过邮箱向供应商发售招标文件,请及时查收。四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年08月24日09时30分(北京时间)开标时间:2022年08月24日09时30分(北京时间)地点:西安市唐延路3号唐延国际中心AB区8楼开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜:(1)招标文件售价为每标段300元。(2)本项目接受进口产品投标。(3)采购项目需要落实的政府采购政策:1、《财政部国家发展改革委关于印发〈节能产品政府采购实施意见〉的通知》(财库〔2004〕185号);2、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发〔2007〕51号);3、《财政部环保总局关于环境标志产品政府采购实施的意见》(财库〔2006〕90号);4、《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);5、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);6、《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号);7、《关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19号);8、《政府采购促进中小企业发展管理办法》(财库〔2020〕46号);9、陕西省财政厅关于印发《陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23号)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安交通大学第二附属医院地址:西安市西五路157号联系方式:冯老师029876798612.采购代理机构信息名称:陕西西北民航招标咨询有限公司地址:西安市唐延路3号唐延国际中心AB区8楼联系方式:佘冰霞029883479878046/139912653493.项目联系方式项目联系人:佘冰霞电话:029883479878046/13991265349(2022.07.27)重新招标公告分子组及大明宫耗材项目.pdf
  • 一种快速测定牛奶中乳清蛋白/酪蛋白比的方法
    21世纪,全球各个国家都处在一个经济、信息、科技多方面高速发展的时期。经济的发展提高了绝大多数人们的生活水平,信息科技的大爆炸拓展了人们的视野和见识,科技的进步为人类的持续发展和安全提供源动力。然而,事物通常都具有两面性,给我们带来便捷和效益的同时,也将衍生诸多问题。食品安全问题愈发严峻,便是当今经济、信息、科技发展的副产物。食品企业追求经济利益最大化时,往往利用一些不法的伪科学手段来降低企业生产成本,损害人们的身心健康安全。层出不穷的食品安全事件,尤其在乳制品行业年年都接连不断地爆发,如同挥之不去的梦魇,在这个信息大爆炸的时代,迅速传播,不断地刺痛着人们越来越越敏感脆弱的神经。 日前,香港商业调查机构CER公司公布报告称,某洋品牌配方奶粉远未达到国际标准甚至是中国所能接受的最低标准,被指最差洋奶粉。质量最差门主要是该品牌1段婴幼儿配方奶粉,乳清蛋白和酪蛋白比例不合格。说明称,乳清蛋白中含有高浓度、比例恰当的必需氨基酸,还含有为新生儿必需的半胱氨酸。乳清蛋白还含有包括免疫球蛋白和双歧因子等免疫因子。对于宝宝而言,乳清蛋白是一种优质蛋白,因为它容易被消化,蛋白质的生物利用度高,从而有效减轻肾脏负担。酪蛋白中含有丰富的必需氨基酸,还含有婴儿特别需求的蛋氨酸、苯丙氨酸及酪氨酸。酪蛋白中结合了重要的矿物元素,如钙、磷、铁、锌等。但是,酪蛋白是一种大型、坚硬、致密、极困难消化分解的凝乳。过量的酪蛋白会产生较高的肾溶质负荷,给宝宝肾脏带来较重的负担,对宝宝是不安全的。 乳清蛋白和酪蛋白各有好处,但合适的比例还是应该以母乳作为黄金标准。母乳中乳清蛋白和酪蛋白的比例为60 : 40(而普通牛奶中乳清蛋白和酪蛋白的比例为18 : 82)。而此次被检测出的该品牌奶粉,乳清蛋白和酪蛋白的比列为41 : 59。国际食品法典委员会(CAC)在&ldquo 婴儿配方食品及特殊医学用途婴儿配方食品&rdquo 标准中,没有对产品中乳清蛋白的比例提出要求,而推荐以必需和半必需氨基酸的含量是否接近母乳作为婴儿配方食品中蛋白质质量的判定依据。其他国家和地区(包括美国、欧盟和澳大利亚、新西兰等)均未规定乳清蛋白在蛋白质中所占比例。我国国家标准GB10765-2010《婴儿配方食品》中,要求&ldquo 乳基婴儿配方食品中乳清蛋白含量应&ge 60%&rdquo ,即以乳或乳蛋白制品为主要原料的婴儿配方食品中,乳清蛋白所占总蛋白质的比例应大于等于60%。该要求主要是参考了母乳中乳清蛋白和酪蛋白的比例,沿用了我国GB10766-1997《婴儿配方乳粉ⅡⅢ》中关于乳清蛋白比例的相关规定。 各种品牌的婴儿奶粉都在宣称"接近母乳",其中乳清蛋白和酪蛋白的比例是一个重要的指标,因为它能提供最接近母乳的氨基酸组合,更好地满足宝宝的成长需要。实际上,牛奶中酪蛋白含量的测定对于乳制品和奶酪制品生产商也都具有重大的经济意义。厂商通过测定酪蛋白含量,可以精确预测利用牛奶生产奶酪的产量。目前,市场上已经有一种快速测定乳清蛋白和酪蛋白比例的方法,是由美国CEM公司提出,在一些实验室应用推广。原理上是利用快速真蛋白测定仪,测得总蛋白含量后,沉淀及过滤酪蛋白,再测量乳清蛋白含量,能够快速精确得出酪蛋白含量,从而确定乳清蛋白和酪蛋白比例。整个过程仅需约15分钟,精确度和重复性相比其它凯氏定氮法和凝胶色谱法等更高,且没有污染性、腐蚀性试剂。这种高效而环保的方法值得推广,使用。 美国 CEM SPRINT 真蛋白质测试仪 更多详情,请联系培安公司: 电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288 Email: sales@pynnco.com 网站:www.pynnco.com
  • AI蛋白质组学公司珞米生命科技完成近千万美元融资
    近日AI蛋白质组学公司「珞米生命科技」(Nanomics)完成两轮共近千万美元融资,Pre-A轮由碧桂园创投领投、Taihill Venture跟投,天使轮领投方线性资本持续加码。本轮融资将用于进一步扩大团队、干湿实验室搭建和产品开发。Nanomics致力于自主研发「AI蛋白质组学」行业的高通量自动化技术平台,结合实验和计算,融合纳米工程、微流控、自动化、质谱、人工智能,赋能生物标记物发现、蛋白质-蛋白质相互作用、药物发现、纳米递送载体优化、液体活检等应用场景。其核心技术平台Kepler Pro覆盖蛋白质组学的整个干湿实验环节:通过高通量微流控平台(NanoFactory)建立纳米探针-蛋白质关系库, 利用智能自动化样本处理工作站(NanoRobot)实现高通量标准化采集数据,再经过AI驱动生信平台(NanoOmics)完成大数据分析,并指导湿实验开展和迭代。早在2001年,Nature、Science在公布人类基因组草图的同时,发表了对蛋白质组学的展望《And Now For The Proteome》,认为蛋白质组将成为21世纪最重要的生命科学方向和战略资源。相比于人体的2万个基因,蛋白质组数据量达到数百万,对个体健康状况体现更直接,临床价值更高,覆盖的人群也更广。回顾2021年可以说是蛋白质组学里程碑式的一年。基因组学全球领军企业Illumina宣布进军蛋白质组学领域、欧美蛋白质组学公司Seer、Olink、Nautilus、Quantum-Si等密集登陆纳斯达克、谷歌旗下DeepMind公布基于人工智能的AlphaFold2预测95%人类蛋白质结构、华尔街知名对冲基金在ARK 2022 Big Ideas呼吁关注蛋白质组学和多组学,预测未来5年市场容量将达到3,000亿美元。可以说,生命科学正在从基因组进入到蛋白质组时代。Nanomics创始人吴昊在芝加哥大学获得分子工程博士学位,师从美国三院院士,拥有多学科复合背景,在纳米医学工程、核酸递送载体、微流控、公司孵化、和医疗AI上有相关经验,曾在美国著名早期生命科技风险投资公司ARCH Venture Partners从事前沿生物科技公司孵化,也曾在芝加哥联合创立液体活检公司和医疗AI独角兽公司担任研发科学家等职位。联合创始人沈乐博士为芝加哥大学研究副教授,在分子病理学和多组学方向具有20年研究和转化经验。Nanomics在短时间内组建了一支交叉学科背景的团队,核心成员来自美国芝加哥大学、英国斯旺西大学、北京大学、中科院和医疗AI独角兽。公司位于杭州医药港的近1,000平米新实验室也已经投入运行,并且和清华大学、三甲医院等展开合作。在接受媒体采访的时候,吴昊博士表示,过去10年,高性能质谱的快速发展,单个蛋白质的检测成本已经从10,000美元降低到0.1美元。但蛋白质组数据量包含超过百万,拥有多种变体和翻译后修饰,不同蛋白质丰度差距超过10个数量级,且蛋白质不能像基因一样扩增。要真正开启蛋白质组学时代,除了质谱的进步,行业还缺乏一套能够像分析基因组一样大规模访问和分析整个蛋白组的工程化解决方案,以实现蛋白质组学的“NGS时刻”。这也是制约整个蛋白质组学实现临床转化的核心瓶颈。“突破口在于上游工具的打造,就像基因组的Illumina和10X Genomics”,吴昊博士认为。不同于做蛋白质组学下游应用的公司,Nanomics从高技术壁垒的蛋白质组学上游工具切入,其自主研发基于纳米工程和微流控的技术平台,可以系统性地设计、合成和筛选数万种具有独特物理结构的纳米探针,实现从单一样本中同时捕捉和检出丰度跨越10个数量级的上千种蛋白质。并且通过筛选不同纳米探针的组合,该技术平台有望高通量地搜寻和访问整个蛋白质组物理空间。Nanomics也在利用深度学习算法,发掘尚未知晓的纳米-蛋白组知识图谱,以优化、扩充和迭代纳米探针库和发现未知蛋白-疾病关系。结合自动化工作站和高性能质谱,Nanomics正在建立一个关于人类蛋白质组的大数据库,包括各类疾病相关的生物标志物、翻译后修饰、药物-靶点作用、和蛋白质-蛋白质相互作用。关于商业模式,Nanomics现阶段通过提供上游试剂耗材、自动化工作站和AI蛋白质组学软件产品,以帮助生命科学公司、高校和医院的研究人员在生物标记物和药物发现上作出更优决策。未来,公司将通过共建管线(而非自建)的方式,将蛋白质组学推向药物发现和精准医疗市场。国际上,多家蛋白组学公司已展开诊断和制药临床转化。瑞典血浆蛋白质组学公司Olink Proteomics 2021年收入9,500万美元,已经和辉瑞和Regeneron等药企开发新靶点和发现生物标记物;成立于2018年的AI+糖基化蛋白质组学公司 InterVenn已经开展首个卵巢癌诊断LDT服务,2021年8月完成2亿美元C轮融资 蛋白质组学药物筛选公司Vividion Therapeutics以20亿美元被拜耳收购。对于自身定位,吴昊博士表示,Nanomics并不是一家典型的Biotech公司,而是融合了实验和计算的高通量数据挖掘平台,打造赋能生命科学软硬件工具,成为加快诊断和制药的研发进程的引擎。本轮融资后,Nanomics将加速试剂耗材、高通量智能实验舱、和AI生信软件平台的研发生产,有望成为新一代高通量蛋白质组学、翻译后修饰、蛋白质-蛋白质相互作用、和纳米递送载体优化的破局者。
  • 2023年科学突破奖公布,奖励蛋白结构预测、睡眠机制以及量子信息领域
    “今天获奖的获奖者体现了基础科学的非凡力量,”尤里米尔纳说,“既揭示了宇宙的深刻真理,又改善了人类生活”。米尔纳是俄罗斯富商,是科学突破奖的创建者之一。“2023年科学突破奖”,主要奖励在蛋白结构预测、细胞组织机制以及量子信息领域做出开创性贡献的学者,他们将分享共计1575万美元的奖金。生命科学领域的三个突破性奖项被授予:克利福德布朗温(Clifford P. Brangwynne)和安东尼海曼(Anthony A. Hyman),以表彰他们发现了细胞组织的新机制;德米斯哈萨比斯(Demis Hassabis)和约翰乔普(John Jumper)开发AlphaFold,准确预测蛋白质的结构;以及伊曼纽尔米格诺特(Emmanuel Mignot)和柳泽正史(Masashi Yanagisawa )发现嗜睡症的原因。数学突破奖授予丹尼尔斯皮尔曼(Daniel A. Spielman),以表彰他在理论计算机科学和数学方面的多项发现。基础物理学突破奖由查尔斯贝内特(Charles H. Bennett),吉尔布拉萨德(Gilles Brassard),大卫多伊奇(David Deutsch)和彼得肖尔(Peter Shor),以表彰他们在量子信息方面的基础工作。早期职业科学家的重要贡献也得到了认可,6个物理和数学新视野奖,以及3个Maryam Mirzakhani新前沿奖,它发给了刚完成博士学位的女性数学家。“神经退行性疾病的突破、量子计算、人工智能解决蛋白质结构等等......”Google创始人谢尔盖布林表示,“这些都是令人难以置信的进步,值得庆祝”。“祝贺所有突破奖获得者,他们令人难以置信的发现将为科学发现铺平道路并刺激创新,”CZI联合创始人兼联合首席执行官Priscilla Chan和Mark Zuckerberg表示,“这些获奖者和早期职业科学家正在推动研究和科学的极限,我们很高兴能够表彰他们的成就”。如下分别介绍今年的诺奖者及获奖理由:2023年生命科学突破奖普林斯顿大学、霍华德休斯医学研究所克利福德布兰格温以及来自德国马克斯普朗克分子细胞生物学与遗传学研究所的安东尼海曼获奖理由:发现了由蛋白质和RNA相分离成无膜液滴介导的细胞组织基本机制。德米斯哈萨比斯(Demis Hassabis)和约翰乔普(John Jumper)获奖理由:开发了一种深度学习算法,该方法可快速准确地从其氨基酸序列中预测蛋白质的三维结构。伊曼纽尔米格诺特(Emmanuel Mignot)和柳泽正史(Masashi Yanagisawa )获奖理由:发现了嗜睡症是由一小群脑细胞的缺失引起的,这些脑细胞会释放促进觉醒物质,这为开发新的睡眠障碍治疗方法铺平了道路。022023年基础物理学突破奖2023年基础物理学突破奖获奖人为:IBM 托马斯沃森研究中心查尔斯贝内特、蒙特利尔大学吉尔布拉萨德、牛津大学大卫多伊奇以及麻省理工学院彼得肖尔。获奖理由:以表彰他们在量子信息方面的基础工作。032023年数学突破奖2023年数学突破奖获奖人为:耶鲁大学丹尼尔斯皮尔曼获奖理由:对理论计算机科学和数学的突破性贡献,包括对光谱图论、Kadison-Singer问题,数值线性代数的优化和编码理论。04科学突破奖简介科学突破奖(Breakthrough Prize) 创立于2012年,由俄罗斯亿万富翁尤里米尔纳夫妇、谷歌(google)联合创始人谢尔盖布林夫妇、阿里巴巴集团创建人马云和张瑛夫妇、脸书(Facebook)联合创始人马克扎克伯格夫妇、以及苹果公司董事长亚瑟莱文森等知名实业家共同设立,旨在表彰在生命科学、数学和基础物理学领域做出杰出贡献的人士。该奖项于2013年2月启动,下设“生命科学突破奖”、“基础物理学突破奖”和“数学突破奖”,并且面向年轻科学家设立“物理学新视野奖”、“数学新视野奖”和“青年挑战突破奖”,此外,2019年起开始设立“玛丽亚姆米尔扎哈尼新新前沿奖”(Maryam Mirzakhani New Frontiers Prize),颁发给在过去两年内获得博士学位并处于职业生涯早期的女数学家。科学突破奖的奖金十分丰厚,堪称科学界“第一巨奖”,并被誉为“科学界的奥斯卡”。其中,生命科学、基础物理学和数学突破奖三大奖项的获奖者,每人可获得300万美元奖金;新视野奖奖金为10万美元;“玛丽亚姆米尔扎哈尼新新前沿奖”的获奖者,可获得5万美元奖金。现在,科学突破奖由谢尔盖布林、马克扎克伯格夫妇、尤里米尔纳夫妇、基因技术公司23andMe联合创始人安妮沃西基、以及腾讯公司联合创始人马化腾赞助。科学突破奖近5年获奖情况2017年获奖情况:生命科学突破奖获得者:沙克生物学研究所、哈佛休夫医学研究所研究员乔安妮乔瑞(Joanne Chory);加州大学圣迭戈分校路德维希癌症研究所科研人员唐克利夫兰(Don W. Cleveland);日本京都大学科学研究院生物物理学教授森和俊(Kazutoshi Mori);牛津大学科研人员金内史密斯(Kim Nasmyth);加州大学旧金山分校彼得沃特(Peter Walter)。基础物理学突破奖获得者:由27名成员组成的WMAP实验团队,其中 5位获奖团队领导分别为:查尔斯贝内特(Charles L. Bennett), 美国约翰-霍普金斯大学物理&天文学系教授;美国天文学家和天体物理学家加里欣肖(Gary F. Hinshaw),来自不列颠哥伦比亚大学;美国物理学家和天体物理学家诺曼雅罗西克(Norman C. Jarosik ),来自普林斯顿大学;普林斯顿大学詹姆斯麦克唐纳物理学杰出大学教授莱曼佩吉(Lyman Alexander Page, Jr);美国理论天体物理学家,普林斯顿大学教授戴维斯佩格尔(David Nathaniel Spergel)。数学突破奖获得者:克里斯朵夫哈克(Christopher Hacon ),来自犹他大学;詹姆斯迈克凯南(James McKernan),来自加州大学圣迭戈分校。2018年获奖情况:生命科学突破奖获得者:哈佛大学科学家弗兰克本内特(Frank Bennett);美国科学家艾德里安科内纳尔(Adrian Krainer);麻省理工学院科学家安吉里卡阿蒙(Angelika Amon);哈佛大学华裔科学家庄小威(Xiaowei Zhuang);美国德州大学西南医学中心分子生物学教授陈志坚(Zhijian “James” Chen)。基础物理学突破奖获得者:宾夕法尼亚大学教授查尔斯凯恩(Charles Kane);宾夕法尼亚大学科学家尤金迈乐(Eugene Mele)。基础物理学特别突破奖:英国天文学家乔瑟琳贝尔(Jocelyn Bell Burnell )。数学突破奖获得者:法国国家科学研究中心和格勒诺布尔大学傅立叶研究所科学家文森特拉福格(Vincent Lafforgue)。 2019年获奖情况生命科学突破奖获得者:美国纽约洛克菲勒大学分子实验室、霍华德休斯医学研究所教授杰弗里M弗里德曼(Jeffrey M. Friedman);马克斯普朗克生物化学研究所研究人员F乌尔里希哈特尔(F. Ulrich Hartl);耶鲁医学院、霍华德休斯医学研究所科学家亚瑟L霍里奇(Arthur L. Horwich);加州旧金山大学生理学及分子生物学教授戴维朱利叶斯(David Julius);宾夕法尼亚大学研究人员弗吉尼娅曼仪李(Virginia Man-Yee Lee)。数学突破奖获得者:芝加哥大学的亚历克斯埃斯金(Alex Eskin)。 2020年获奖情况:生命科学突破奖获得者:华盛顿大学蛋白设计研究所和霍华德休斯医学院科研人员戴维贝克(David Baker);哈佛大学和霍华德休斯医学研究所科研人员凯瑟琳杜拉克(Catherine Dulac);香港中文大学医学院副院长卢煜明(Dennis Lo);美国国家卫生院理查德J尤尔(Richard J. Youle)。基础物理学突破奖获得者:华盛顿大学科研人员埃里克阿德尔贝格尔(Eric Adelberger)、詹斯冈拉克(Jens H.Gundlach)和布莱尼赫克尔(Blayne Heckel)。数学突破奖获得者:帝国理工学院科研人员马丁海尔(Martin Hairer)。 2021年获奖情况:生命科学突破奖获得者:斯克里普斯研究所科学家杰弗里W凯利(Jeffery W. Kelly);宾夕法尼亚大学科学家卡塔林考里科(Katalin Karikó)和德鲁韦斯曼(Drew Weissman);剑桥大学科学家尚卡尔巴拉苏布拉尼亚安(Shankar Balasubramanian)、戴维克勒纳曼(David Klenerman);生物技术公司AlphanososCEO帕斯卡尔迈耶(Pascal Mayer)。基础物理学突破奖获得者:日本东京大学科学家香取秀俊(Hidetoshi Katori);中国科学院外籍院士叶军(RIKEN Jun Ye)。数学突破奖获得者:日本京都大学数学家望月拓郎(Takuro Mochizuki)。华裔科学家获奖情况自科学突破奖2013年2月正式启动以来,获得过“生命科学突破奖”、“基础物理学突破奖”和“数学突破奖”三大奖项的华裔科学家共有8位,分别为:美国加州大学洛杉矶分校澳籍华裔数学家陶哲轩,2015年数学突破奖获得者,表彰其对调和分析、组合数学、偏微分方程和解析数论做出的诸多贡献。美国加州大学洛杉矶分校澳籍华裔数学家陶哲轩美国国家科学院院士、美国德克萨斯大学西南医学中心分子生物学教授陈志坚,2019年生命科学突破奖获得者,表彰其发现负责感应胞质溶胶内DNA的环鸟苷酸-腺苷酸合成酶(cGAS),了解DNA在细胞中如何激发先天免疫系统。美国国家科学院院士、美国德克萨斯大学西南医学中心分子生物学教授陈志坚中国科学院外籍院士、哈佛大学化学与化学生物、物理学双聘教授庄小威,2019年生命科学突破奖获得者,表彰其发明随机光学重建显微法(Stochastic optical reconstruction microscopy或STORM),超高分辨率显微镜之一。中国科学院外籍院士、哈佛大学化学与化学生物、物理学双聘教授庄小威中国科学院院士、实验高能物理学家王贻芳、加州大学伯克利分校教授、香港大学教授陆锦标及大亚湾核反应堆中微子实验团队,2016年基础物理学突破奖获得者,表彰他们发现和探究中微子振荡,揭开超越标准模型的物理学新领域。中国科学院院士、实验高能物理学家王贻芳加州大学伯克利分校教授、香港大学教授陆锦标美国宾夕法尼亚大学科学家李文渝,2020年生命科学突破奖获得者,表彰其发现TDP43积聚会引致额颞叶痴呆症和肌萎缩性脊髓侧索硬化症,以及α-突触核蛋白在不同细胞中拥有不同形态,且会导致帕金森症和多发性系统萎缩症。美国宾夕法尼亚大学科学家李文渝美国国家科学院院士、中国科学院外籍院士、物理学家叶军,2022年基础物理学奖获得者,表彰其发明超精密的原子钟光晶格钟。美国国家科学院院士、中国科学院外籍院士、物理学家叶军美国国家科学院外籍院士、香港中文大学医学院副院长、分子生物学临床应用专家卢煜明,2021年生命科学突破奖获得者,致力于研究人体内血浆的DNA和RNA,被誉为无创DNA产前检测的奠基人。美国国家科学院外籍院士、香港中文大学医学院副院长、分子生物学临床应用专家卢煜明参考资料1.维基百科. https://zh.wikipedia.org/wiki/Wikipedia2.Breakthrough Prize: About3. https://breakthroughprize.org/News4. 刚刚!2022科学突破奖公布,两位mRNA技术先驱与其他23名学者分享1575万美元奖金.深究科学
  • 蛋白质组学全球市场已达500亿美元
    01 摘要蛋白质组学目前的研究活动的成长与基因组学早期的发展轨迹相似。基因组学花费了大概十年的时间实现了产业化。尽管蛋白质组学技术起步的时间比基因组学更早,但蛋白质组学相对更大的复杂性导致其与基因组学相比需要更先进的技术。然而,今天,蛋白质组学的重要研究瓶颈正在被不断突破,让科学家们看到了其在研究、转化和临床意义上达到与基因组学相当的水平的前景。因此,随着时间的推移,蛋白质组学在研究和临床中应用的商业机会将与基因组学的可用市场总量(TAM)规模趋于一致,目前全球TAM已经达到500亿美元。并且我们有理由相信,由于蛋白质组学动态、变化的性质将使得其超过基因组学而转化为更加具有经常性、重复性的临床应用。质谱是最能促进蛋白质组学工业化的技术,但其工作流程的标准化,尤其是样品制备阶段的标准化,仍然存在着挑战。对于长期投资商来说,应该对在这个生态圈中拥有于众不同知识产权的供应商给与更大的关注。尽管以基于高元多工分析方法为代表的新兴检测方法与质谱方法相比仅处于早期发展阶段,但也具有巨大的潜力。02 背景与投资情况论述生命的基本构成部分是核酸和氨基酸。核酸是基因的基本构成成分。氨基酸是蛋白质的基本构成成分。事实上,我们体内每个细胞的成分都可以归类于蛋白质、基因、脂质或碳水化合物这四类大分子化合物。脂质和碳水化合物组成简单不易出错。因此,最重要的是对基因和蛋白质进行深入了解。我们对人类生物学的理解,从细胞功能到疾病的因果关系,再到药物治疗,都是我们对基因组学和蛋白质组学知识的衍生品。在20世纪,先进显微镜和生物化学技术的发明导致我们对基于结构的蛋白质和基因的理解有了很大的进步。在21世纪,基因组学经历了一场革命,使其从一个刚刚起步的研究领域经历了工业化的过程,成为了临床生物学重要方面。这不仅使得人类对生物学有了更深更新的了解,也提供了包括液体活检诊断,CAR-T细胞治疗,甚至是mRNA疫苗的一系列新的临床治疗及诊断方法。蛋白质组学在21世纪也取得了重要进展。这不仅是由于质谱和X射线晶体学等成像方面新技术的出现,也是由于免疫检定试剂方面的生物化学方法创新,使得我们可以分离特定的蛋白进行进一步的研究。与基因组学相比,蛋白质组学还未取得飞跃。这并不是由于它相对于基因学的有较小的前景和应用场景,这只与它的方法的复杂性有关。我们认为,下一个十年蛋白质组学将进入快车道,使生物学研究、医学治疗和诊断方面进入一个以蛋白质为中心的新时代。蛋白质组学的挑战。超过95%的获得FDA批准的药物都是以蛋白质为目标,但蛋白质组中的多数组分却尚未被人们所了解。我们相信,十年后,西方国家的蛋白质组学公司所创造的股权价值将与今天基于基因组学的公司所创造的约2500亿美元的市值相当或更多。创新的速度正在加快:在1869年由弗里德里希-米歇尔(Friedrich Miescher)发现核酸之后近85年才由沃森和克里克于1953年发现了DNA双螺旋。从沃森和克里克的发现到2001年第一个人类基因组序列的发表花费了近50年时间。从2001年人类基因组的第一份草图到2021年7月公布的第一份完整序列花费了20年时间。总而言之,从核酸发现到确定完整的人类基因组花费了近155年的时间。在接下来的155年里,创新的速度将呈指数型增长,而蛋白质组学将是其中最大的受益者。03 蛋白质组学的今天:挑战与机遇什么是蛋白质组学?它为什么重要?图一:蛋白质组学受益于多种技术跨越式进步蛋白质组学作为一个术语首次出现在1996年,它被定义为对一个细胞系的整个蛋白质图谱进行大规模表征。蛋白质组学的要点是完整性和深度:通过检测和解读该细胞中的所有蛋白质的作用以及相互作用来彻底了解细胞功能,而不是应用传统的通过抗体分离已知蛋白质的方法单独检测每个蛋白质。基于抗体的蛋白质检测将继续在后续的工作中得到应用,但蛋白质组学是针对所有蛋白质,它们的相互作用,及其多种形态的大规模、高通量、高灵敏度的分析。因为蛋白质修饰和相互作用出错是发生疾病的通常原因,蛋白质组学研究对理解造成疾病发生的原因非常重要,Source: Graves PR, Haystead TA., Molecular biologist’s Guide to Proteomics(2002)04 蛋白质组学和基因组学之间的关系是什么?当马克-威尔金斯(Mark Wilkins)在1996年首次使用蛋白质组学一词时,他明确表示他指的是“基因组的补充”。基因是细胞的说明书。通过RNA的表达,他们指示细胞要构建哪些蛋白质。蛋白质细胞构建之后,它们通过与其他蛋白质和环境的相互作用而被翻译和修饰。因此,1) 基因组学的大部分功能效用通过蛋白质组体现;2) 下游事件-包括蛋白质间的相互作用,新的蛋白质形态和动态修饰的产生,及其对细胞分裂的影响-是蛋白质组学而不是基因组学的主题。Source: Virag D, Dalmadi K B. Current Trends in the Analysis of Post-translational Modifications (2020)因此,基因组学和蛋白质组学是相互关联的,而不是分开的,但蛋白质组学在功能上更为重要及复杂。有25000个独立的基因,但有超过100万种蛋白形式。虽然一个人的基因组不会改变,但一个人的蛋白质组是动态的。身体里的变化是通过蛋白质的修饰来表达的。你出生时的基因组和今天一样。但你的蛋白质组每天都在变化。05 为什么蛋白质组学研究如此困难?1. 分子的复杂性和多样性Source: Creative-Proteomics.com蛋白质分子本身的分子结构更为复杂。DNA是由4种核苷酸组成的,而蛋白质是由20种不同的氨基酸组成的。翻译后修饰,如甲基化和羟基化,改变了蛋白质的形态和功能。每个蛋白质可以有9种不同的蛋白形式。取决于翻译后修饰和蛋白质间的相互作用。这意味着同一个蛋白质可以有9种不同的功能。DNA的分子结构相对简单,有4种核苷酸变体,这意味着基因测序方法(如合成测序)不能应用于蛋白质组。需要新的、更复杂的、定制的方法来捕获生物样本中数百万种不同的蛋白质形态。2. 动态范围问题Source: Montanaro Research Aebersold R., Targeted Proteomic Strategy for Clinical Biomarker Discovery (2009)Y轴表示血浆样品中特定蛋白质分子的浓度和丰度。虽然有些蛋白质的含量极高,但大多数蛋白质类型的浓度很小,甚至可以忽略不计。红圈中的蛋白质存在于蛋白质组的“黑暗角落”,在这种极低的丰度下,这些蛋白质非常难以测得。大多数蛋白质的丰度极低。在血浆细胞中发现的约12,000个独立的蛋白质中,前10个占总蛋白量的90%,而其他约11,990个仅占10%。3. 少数的暴政如下饼图显示了血浆样品中蛋白质的相对丰度。单一的一种蛋白质,即血浆白蛋白,占了57%的总丰度,使读取其余的1万种蛋白质更加困难。Source: Anderson NG., Molecular Cell Proteomics (2002)06 蛋白质组学市场机遇有多大?我们相信,蛋白质组学在分子生物学研究以及临床医学和诊断方面有与基因组学一样远大的前景。Source: Montanaro Research自2001年第一个人类基因组的组装以来,基因组学已经成为生物医学的一个工业化部分, 纯基因组学公司的总市值达到2400亿美元。Illumina是其中最大的公司。蛋白质组学TAM(可用市场总量)如今已经达到数百亿美元。Somalogic estimate the total TAM to be $50 bn (Source: Somalogic)虽然临床应用方面的TAM具有最大的长期潜力,但在未来5年内研究和发展方面的TAM是最容易解决的。Source: Souda P., Proteomics: The Next Frontier, SVB Leerink (2021)SVB Leerink的蛋白质组学专家Puneet Souda估计,目前仅美国的研发TAM 有140亿美元,这基于学术界和制药业共约 26,100 个实验室总经费的2.5%的保守估计。如果我们把西方国家的实验室数量看作是约50,000个,并更合理的假设占总经费的5%的资金分配给蛋白质组学研究,我们估计在全球发达经济体中的蛋白质组学研发TAM为500亿美元。
  • 谁是蛋白质质谱与蛋白质组学领域世界第一牛人?
    俗话说:文无第一,如果非要整出个蛋白质质谱与蛋白质组学领域世界第一牛人,显然并不是一件容易的事,也注定是一件有争议的事。作为一个半路出家的准业内人,我就本着无知者无畏的革命精神,说一下我自己心目中的第一牛人:Ruedi Aebersold。   考虑到科学网的大多数网友对蛋白质组学并不了解,先简单科普一下,根据百度百科的定义:“蛋白质组学(Proteomics)一词,源于蛋白质(protein)与 基因组学(genomics)两个词的组合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。” 1995年(也有1994,1996年之说)Marc Wikins首次提出蛋白质组(Proteome)的概念1,1997年, Peter James(就职于有欧洲MIT之称的瑞士联邦工学院(ETH))又在此基础上率先提出蛋白质组学的概念2。基因组学和蛋白质组学的概念又进一步催生了N多的各种各样的组学(omics),两者的诞生的发展,也使系统生物学成为可能,本文的主人公Ruedi Aebersold与Leroy Hood一起于2000年在美国西雅图创办了系统生物学研究所(ISB),该所的建立不但标志着系统生物学作为一门独立的学科的诞生(此句话貌似不靠谱,参见文后14楼的评论),也带动了包括蛋白质组学在内的多种组学的发展,当然各种组学的发展也同时促进了系统生物学的发展。尽管日本也于2000年在东京建立了系统生物学研究所,但是同为第一个吃螃蟹的,东京的这个所,无论是学术水平还是世界影响都无法和西雅图的那个系统生物学领域的麦加相提并论。闲话少叙,我之所以认为Ruedi Aebersold是蛋白质质谱与蛋白质组学领域世界第一牛人,是基于如下原因:   Ruedi Aebersold对蛋白质组学的最大贡献可谓是同位素代码标记技术(ICAT),现在这一蛋白组定量技术自从1999年在Nature上发表以来,该技术已世界广泛应用,该论文迄今(截至2013年1月11日)已被引用了近3000次。Web of Science的检索结果显示,蛋白组学领域迄今已经至少有超过10万篇论文发表,按照被引用次数排名,该论文位居第三位。有意思的是,被引用次数排第四位的是Ruedi Aebersold和另外一位牛人Mathias Mann(下面会介绍)于2003年发表在Nature上的有关蛋白质质谱与蛋白质组学的综述论文,迄今也已被引用近2800次。而引用次数排第一和第二的两篇论文的通讯作者并算不上是蛋白质质谱与蛋白质组学领域的,蛋白质组学仅仅是他们使用的工具,他们的影响也在这个领域之外。蛋白质组学领域,最重要的专业协会应该算是HUPO (国际人类蛋白质组组织), 最重要的专业会议也当属HUPO世界大会,Ruedi Aebersold曾获HUPO含金量最高的成就奖,他本人也经常是HUPO世界大会的分会主席或大会特邀报告人。当然Aebersold还获得了包括美国质谱协会(ASMS)大奖在内的许多专业大奖。可能有人会列出另外的自己心中的第一牛人(如上述的Mathias Mann),但Ruedi Aebersold无疑至少是领域内公认的前几位的世界级牛人。另外,顺便说一下德国马普所的Mathias Mann(其在丹麦首都也有实验室),Mann和Aebersold可谓是蛋白质组学领域的双子星座,都是该领域的顶级牛人,Mann发表的论文有多篇都在蛋白质组学领域被引用次数前10位,不少被引用次数都上千次。上述的Mann和Aebersold两人能在Nature发表综述论文也说明了他们的江湖地位。Aebersold和Mann所发表的论文总被引次数分别超过了5万和3万次,这个数字在世界所有领域都是惊人的。另外,Mathias Mann在蛋白质组学最大的贡献可以说是发明了蛋白质组体内标记技术SILAC3,这种技术与Ruedi Aebersold发明的ICAT已及另外一种标记iTRAQ是公认的应用最为广泛的蛋白质组学定量标记技术。   今年年近花甲的Ruedi Aebersold是世界蛋白质组学的开拓者之一,现在在上述的ETH的工作,和最早提出蛋白质组学Peter James在同一个大学。作为土生土长的瑞士人,Ruedi Aebersold是在2004年底、2005年初才开始在ETH全职工作的,可谓是瑞士的大海龟。Ruedi Aebersold此前在西雅图的ISB和华盛顿大学工作,作为ISB的元老和共同创办人,Ruedi Aebersold现在还是ISB的兼职教授,发表论文时也还署ISB地址。Mann和Aebersold都是欧洲人,现在又都致力于将蛋白质质谱与蛋白质组学应用到临床,尽管蛋白质组学已有十多年发展历史,现在最大的一个瓶颈可以说在基本无法应用到临床,现有的技术,对于临床应用而言,时间和经济成本都太高(无法高通量、检测成本太贵)。这一块硬骨头显然不是一般人能够啃得动的,需要从临床样品制备、质谱技术到数据分析都要有突破甚至革命性的创新,我很期待,也相信Mann和Aebersold有能力最终使蛋白质组学(尤其是基于此的生物标志物鉴定技术)应用到临床。   我国在蛋白质质谱与蛋白质组学领域在世界上最出名的无疑非贺福初莫属,贺福初的名字在国内搞蛋白质组学应该都知道他的名字,他的头衔很多(如将军、院士),我就不一一列举了,新年伊始他又多了一个牛头衔:万人计划中的科技领军人才。贺的工作和学术水平,我不熟悉,不敢评头论足。他的文章被引用次数最高的是发表在Cancer Research一篇论文,迄今已有126次,但并非是蛋白质组学领域。在蛋白质组学领域,他的被引次数(含自引)最高的论文是2007年发表在蛋白质组学顶级期刊MCP的文章4,迄今已有105次引用。蛋白质质谱领域,我国在世界上最出名的学者估计要数复旦大学的杨芃原了,他的被引用次数最高的一篇论文,是2005年发表在化学顶级期刊德国应用化学的文章5,迄今已被引用70次,杨芃原为该论文的共同通讯作者。我国在蛋白质组学目前被引用次数最高的是南开大学王磊(澳大利亚海归、长江学者)2007年发表在美国科学院院刊(PNAS)的论文6,迄今被引次数已经超过500次。   蛋白质质谱仪主要生产商Thermo Fisher(即原来的Finnegan), 最近新出了本挂历,这本特别的挂历上列了13位在蛋白质质谱与蛋白质组学领域的牛人,上述的Ruedi Aebersold和Mathias Mann都在之列,其余11位简单介绍、列表如下。 姓 名 工作单位 主要贡献 Richard D. Smith 美国太平洋西北国家实验室 1990年首次用三重四级杆质谱Top-down(自上而下)分析完整蛋白 John Yates III 美国Scripps研究所 SEQUEST MS/MS数据库搜索程序 Joshua Coon 美国威斯康星大学麦迪逊分校 发明了电子转移解离技术(ETD) Neil Kelleher 美国西北大学 Top-down蛋白质组学 Kathryn Lilley 英国剑桥大学 蛋白质组学定量技术 Pierre Thibault 加拿大蒙特利尔大学 应用生物质谱和蛋白质组学到细胞生物学 Michael MacCoss 美国华盛顿大学(西雅图) 稳定同位素标记技术 Albert Heck 荷兰Utrecht大学 基于质谱的结构生物学 Catherine Costello 美国波士顿大学 HUPO前任主席,质谱技术发展及应用 Alexander Makarov 德国Thermo Fisher Scientific 生物质谱全球研发总监 领导研发Orbitrap质谱仪 Donald Hunt 美国弗吉尼亚大学 FT-MS and ETD   简单的说,上述13位世界级牛人都来自欧美,没有一位来自亚洲,也没有一位华人。我不知道以Ruedi Aebersold代表的上述牛人是如何炼成的,但可以肯定的是:他们不是欧美版的“百人”计划,也不是“千人”计划,更不是“万人”计划而“计划”出来的。网上的公开信息表明:Ruedi Aebersold除了在国际专业协会和期刊有学术兼职外,没有任何行政职务,就是一普通教授,但是这不妨碍他成为蛋白质质谱与蛋白质组学领域世界第一牛人。
  • 格物致和完成近亿元A轮融资,用于蛋白组学技术平台研发
    近日,格物致和生物科技(北京)有限公司(以下简称“格物致和”)宣布完成近亿元A轮融资,由元禾原点与杏泽资本联合领投,取势资本担任独家财务顾问。本轮融资所募资金将主要用于公司在蛋白组学和空间组学方向系列自主创新技术平台的持续研发,并加速自主研发的新一代超敏单分子蛋白检测系统及相关神经退行性疾病标志物检测试剂盒的开发和注册申报。格物致和成立于2019年11月,围绕脑科学及肿瘤等领域,以科研和临床应用为导向,依托团队自主研发和资源整合的核心优势,已策略性地布局超敏蛋白检测、高通量转录组、空间蛋白组等技术平台的开发,并将围绕神经疾病的早筛早诊及伴随检测,陆续推出系列可广泛适用于临床检测的创新产品,以填补国内该领域的空白。公司聚集了一批在精准医学领域拥有丰富经验且具备全球化视野的管理和研发人才,具有强大的研发、运营和商业化落地能力。创始人许俊泉曾在博奥生物集团任职多年,历任博奥生物生命科学事业部总经理、首席运营官、首席财务官、博奥晶典首席执行官,和深圳微芯生物科技股份有限公司董事长。许俊泉拥有20余年科研和临床诊断从业经验,曾带领团队取得II、 III类IVD证书超过30项;本人荣获国内外授权专利50项(美国授权专利25项);发表高水平SCI学术论文10余篇。格物致和在研数字ELISA检测平台具有fg级别的检测灵敏度,整个平台系统包括数字ELISA微流控芯片、检测仪器和配套软件以及相关检测试剂盒。整个平台系统的研发涉及多个交叉学科,包括微流控技术、自动控制、显微成像、计算图形学、表面化学、抗体开发及蛋白标记检测等相关技术。格物致和在微流控芯片设计、加工以及检测仪器平台的开发方面具备深厚的理论知识和产业经验,核心成员曾成功研发并产业化数款微流控和微液滴芯片平台系统。格物致和进一步从清华大学授权转化了具有自主知识产权的高通量转录组检测技术,该技术是一种基于高通量测序和特征基因表达谱的全景式高通量分子功能筛选和研究方法,具有通量高、全自动操作、速度快等优点。未来格物致和将结合公司微流控设计、光学检测/系统集成、高通量转录组检测、蛋白超敏检测等全面的技术能力,推动下一代基于转录组和蛋白组检测的空间组学技术进入科研、诊断和新药研发领域,为科研及临床,尤其是神经科学领域,提供全球领先的技术和产品。对于本轮融资,格物致和创始人兼CEO许俊泉先生表示:非常荣幸能够获得本轮投资人的认可,充足的资金支持使得我们能够引进更多的人才,加大研发投入并加速产品的产业化步伐。未来20年,中国体外诊断行业将是创新驱动的市场。秉承原创驱动的核心竞争力,格物致和将持续推动完善底层技术和检测体系,加速蛋白组学和空间组学等多组学技术的研发和产业化,为脑科学研究提供更多创新性的技术和产品。元禾原点合伙人胡晓方博士表示: 生物体内,蛋白是功能的最终执行者,随着全球蛋白组学的快速发展,微量蛋白标志物的筛选工具已然成熟,我们认为超高灵敏度的蛋白检测将成为未来的重要发展方向。格物致和团队兼具海外创新技术视野和国内产业化开发落地能力,快速构建完备的超敏蛋白检测技术平台。我们期待与格物致和合作,帮助公司加速成长并将产品快速商业化。杏泽资本管理合伙人强静博士表示:杏泽资本致力于促进中国生命科学企业创新与成长,以推动社会产业进步与发展为己任,体外诊断是杏泽重点关注的技术领域,其中蛋白组学/空间组学是具有发展前景的一个方向。许俊泉先生和团队拥有极其丰富的生命科学领域专业知识背景和产业经验。我们很高兴此次能和格物致和携手合作,与元禾原点一起支持公司完成近亿元的A轮融资。杏泽资本将凭借其团队丰富的行业经验和全球资源网络,助力格物致和为人类健康带来更大价值。我们期待公司在未来将迎来更远大的发展,相信公司在创始团队的带领下,成为世界领先的蛋白组学和空间组学方向的自主创新技术平台型公司。
  • 利用丝素蛋白使缺损的软组织再生,Sofregen获投620万美元A轮
    据massdevice消息,9月15日,Sofregen Medical宣布已完成620万美元A轮融资。本轮来自Polaris Partners和其他创始投资者,使它的融资总额超过了1100万美元。这家总部位于美国马塞诸塞州梅德福的公司成立于2014年,致力于推进在美国塔夫茨大学(Tufts University)和匹兹堡大学( the University of Pittsburgh)为治疗软组织缺损开发的丝绸医疗技术。此前,Sofregen还从种子投资者筹集了160万美元,并同意在银行债务融资了350万美元,以支持Sofregen所谓的“自然愈合的纤维技术”。该公司的目标是利用丝素蛋白的生物材料特性,使缺损的软组织再生。塔夫茨大学和美国国防部再生医学研究所的研究人员发现,丝素蛋白可被重新设计成用于皮肤组织的支架。Sofregen希望利用工程支架治疗战斗创伤、去除疤痕、消除皱纹。“用丝纤维作为修复软组织的基础材料,是很有前途的。在各种各样的外科手术中,丝纤维已被证明很厉害、灵活、且具有生物相容性。有了这项技术,我们将为医生提供更好的解决方案,也将给患者更大的希望。”董事长Howard Weisman在发言中说道。“Sofregen的愿景是建立一个基于丝绸产品的平台,来解决世界上数以百万计的病人最敏感的医疗和审美需求。我们很高兴与Howard Weisman这样一位成熟的合作伙伴再次合作,他的团队有很好的定位,可以把这种优势科学应用到市场上。”Polaris partner公司的相关负责人Amir Nashat、也是Sofregen的董事会成员补充道。实际上,Sofregen并不是第一家从塔夫茨大学走出的丝绸医疗技术公司。Serica Technologies开发的SeriScaffold被用于以丝绸医疗技术修复和重塑受损结缔组织,后来被Allergan公司收购了。Serica Technologies就是从该学校的生物医学工程实验室分拆出去的。去年,FDA曾就Allergan公司对于用SeriScaffold治疗乳腺癌手术适应症的市场营销予以了警告。
  • 预计到2025年全球蛋白检测及定量市场将达到30亿美元
    p   近日,有机构发布最新研究报告显示,到2025年,全球蛋白检测及定量市场有望达到30亿美元。报告指出,未来几年,在低浓度下进行蛋白估算以监控其变化的分析方法将驱动市场增长。 br/ /p p   各国政府和组织通过增加基金投入来鼓励蛋白质组学领域的科学研究,因此,报告预测,未来几年,蛋白检测和定量市场将以显著的速度增长,如Human Proteome Organization, National Cancer Institute (NCI) 和 Genomic Health Inc.等组织提供资金以支持蛋白质组学领域相关的研发和产品开发。 /p p   在分子水平上研究以了解慢性疾病并开发出解决方案的需求不断增加,这些都成为刺激相关组织制定基金研发计划的因素。美国国家癌症研究所(NCI)的公共健康基因组学计划推动了公共卫生癌症研究中的精准医疗和基因组学一体化研究进程,以减少全球癌症研究的负担。 /p p   虽然科技的发展不断简化蛋白估算,但在某种特定条件下,技术手段和实验的高昂成本影响了这些实验和技术手段的应用,例如,研究人员认为用于功能蛋白研究的质谱非常贵并且分析速度也缓慢。在质谱目标分析实验中,每一个靶标都要求有定制化抗体,以用于分析肽的亲和免疫浓缩,这一过程被认为成本很高并且时间较长。 /p p   报告还指出,比色法在实验室分析中使用的试剂和溶液最多,是最主要的分析方法,免疫法和光谱法被预测为同比增长最快的两种方法,而判断市场的依据是FTIR和SMCxPRO等技术的发展。由于采用这些方法,临床诊断有望成为未来几年增长最快的领域。 /p p   就应用领域方面,作为用于药物发现过程中生物分子评估中的科学技术的在药物发现过程中的靶标分析和其他过程的使用最多,而且,报告认为,学术机构是这类科学实验和临床诊断实验室发展最快的组织。 br/ /p p   地域方面,由于大量的蛋白质组学项目的实施,北美地区占了最大的份额,而亚太地区的卫生健康基础设施的改变也带动了市场对此类产品的需求,因此,亚太地区有望成为最赚钱的地区。 /p p   此外,报告认为,配件和试剂由于使用广泛或与仪器配套使用,消耗品的市场也非常可观。 /p p    /p p br/ /p
  • 格物致和完成近亿元A轮融资,主要用于蛋白组学和空间组学平台研发
    近日,格物致和生物科技(北京)有限公司(以下简称“格物致和”)宣布完成近亿元A轮融资,由元禾原点与杏泽资本联合领投,取势资本担任独家财务顾问。本轮融资所募资金将主要用于公司在蛋白组学和空间组学方向系列自主创新技术平台的持续研发,并加速自主研发的新一代超敏单分子蛋白检测系统及相关神经退行性疾病标志物检测试剂盒的开发和注册申报。格物致和成立于2019年11月,围绕脑科学及肿瘤等领域,以科研和临床应用为导向,依托团队自主研发和资源整合的核心优势,已策略性地布局超敏蛋白检测、高通量转录组、空间蛋白组等技术平台的开发,并将围绕神经疾病的早筛早诊及伴随检测,陆续推出系列可广泛适用于临床检测的创新产品,以填补国内该领域的空白。公司聚集了一批在精准医学领域拥有丰富经验且具备全球化视野的管理和研发人才,具有强大的研发、运营和商业化落地能力。创始人许俊泉曾在博奥生物集团任职多年,历任博奥生物生命科学事业部总经理、首席运营官、首席财务官、博奥晶典首席执行官,和深圳微芯生物科技股份有限公司董事长。许俊泉拥有20余年科研和临床诊断从业经验,曾带领团队取得II、III类IVD证书超过30项;本人荣获国内外授权专利50项(美国授权专利25项);发表高水平SCI学术论文10余篇。格物致和在研数字ELISA检测平台具有fg级别的检测灵敏度,整个平台系统包括数字ELISA微流控芯片、检测仪器和配套软件以及相关检测试剂盒。整个平台系统的研发涉及多个交叉学科,包括微流控技术、自动控制、显微成像、计算图形学、表面化学、抗体开发及蛋白标记检测等相关技术。格物致和在微流控芯片设计、加工以及检测仪器平台的开发方面具备深厚的理论知识和产业经验,核心成员曾成功研发并产业化数款微流控和微液滴芯片平台系统。格物致和进一步从清华大学授权转化了具有自主知识产权的高通量转录组检测技术,该技术是一种基于高通量测序和特征基因表达谱的全景式高通量分子功能筛选和研究方法,具有通量高、全自动操作、速度快等优点。未来格物致和将结合公司微流控设计、光学检测/系统集成、高通量转录组检测、蛋白超敏检测等全面的技术能力,推动下一代基于转录组和蛋白组检测的空间组学技术进入科研、诊断和新药研发领域,为科研及临床,尤其是神经科学领域,提供全球领先的技术和产品。对于本轮融资,格物致和创始人兼CEO许俊泉先生表示:非常荣幸能够获得本轮投资人的认可,充足的资金支持使得我们能够引进更多的人才,加大研发投入并加速产品的产业化步伐。未来20年,中国体外诊断行业将是创新驱动的市场。秉承原创驱动的核心竞争力,格物致和将持续推动完善底层技术和检测体系,加速蛋白组学和空间组学等多组学技术的研发和产业化,为脑科学研究提供更多创新性的技术和产品。元禾原点合伙人胡晓方博士表示:生物体内,蛋白是功能的最终执行者,随着全球蛋白组学的快速发展,微量蛋白标志物的筛选工具已然成熟,我们认为超高灵敏度的蛋白检测将成为未来的重要发展方向。格物致和团队兼具海外创新技术视野和国内产业化开发落地能力,快速构建完备的超敏蛋白检测技术平台。我们期待与格物致和合作,帮助公司加速成长并将产品快速商业化。杏泽资本管理合伙人强静博士表示:杏泽资本致力于促进中国生命科学企业创新与成长,以推动社会产业进步与发展为己任,体外诊断是杏泽重点关注的技术领域,其中蛋白组学/空间组学是具有发展前景的一个方向。许俊泉先生和团队拥有极其丰富的生命科学领域专业知识背景和产业经验。我们很高兴此次能和格物致和携手合作,与元禾原点一起支持公司完成近亿元的A轮融资。杏泽资本将凭借其团队丰富的行业经验和全球资源网络,助力格物致和为人类健康带来更大价值。我们期待公司在未来将迎来更远大的发展,相信公司在创始团队的带领下,成为世界领先的蛋白组学和空间组学方向的自主创新技术平台型公司。
  • 全球首发!景杰生物全息空间蛋白质组学“透视”微观蛋白世界
    在世界经济论坛发布的《2023年十大新兴技术报告》中,空间组学被评选为未来最有潜力对世界产生积极影响的十大新兴技术之一。这标志着空间组学不仅在科研领域取得了显著成果,更有望为医学、农业等多个领域带来革命性的突破。在这一技术浪潮中,景杰生物以其卓越的科研实力和前瞻性的战略布局,成为空间蛋白质组学领域的佼佼者。自2021年6月首次推出空间蛋白质组以来,景杰生物不断对技术与体系进行全面优化,一次次刷新着空间蛋白质组学的研究边界。如今,景杰生物再次重磅推出“全息空间蛋白质组学”,为空间蛋白质组学研究提供了更为强大的工具。全息空间蛋白质组学依托于景杰生物创新的10X Proteomics平台,该技术能够支持组织微环境的全覆盖高深度蛋白质组空间检测。在实验中,景杰生物研发团队选择了癌症石蜡样本,运用全流程的先进仪器设施,如徕卡冷冻切片机、数字玻片扫描系统和蔡司激光捕获显微切割仪,进行一站式操作。经过烤片、脱蜡、复水、HE染色等一系列步骤后,成像技术精准定位目标区域,并进行无间隔地切割取样。酶解后使用Orbitrap Astral / timsTOF 最新款高性能质谱平台进行蛋白质组学检测,从而得到与组织微环境图像匹配的全覆盖空间蛋白质组学数据。通过对目标区域进行全覆盖检测,得到了带有空间位置信息的100份蛋白质组学数据,每份数据对应精细组织,无间隔地构成了“全息”的空间蛋白质组学数据集。这些数据集共检测到5500多个蛋白,平均每个样本可检测到4100多个蛋白,是目前最大最全面的全息空间蛋白质组学数据集之一。对于全息空间蛋白质组学得到的庞大数据集而言,如何有效地利用生信分析手段进行挖掘和展示是大家的重要关注点。为此,景杰生物生信和人工智能团队借鉴空间转录组的分析经验,针对全息空间蛋白质组学开发了一系列工具,帮助我们“看得见、挖得深、画得漂亮、画得清晰”。通过以上数据分析方案,可实现与空间转录组学类似的:全息空间样本点无监督聚类分析、类间差异分析/差异蛋白功能注释、单个差异蛋白空间可视化、基于清晰的组织病理特征注释和指定病理分组差异分析、基于反卷积等算法注释细胞类型得分/比例等等个性化分析。相信这样一套分析的组合拳,一方面可以将蛋白信息清晰还原到组织空间微环境中,另一方面也可以与临床病理信息精准结合,定会成为空间蛋白质组学研究的标杆,加速精准医学和基础研究。随着本次全息空间蛋白质组学发布,景杰生物已搭建成全球首个结合空间蛋白质组学、空间磷酸化修饰组学以及全息空间蛋白质组学的一站式空间组学平台。包含了既可以满足个性化选取不规则点位进行蛋白质组精准检测的空间蛋白质组学,又可以进行个性化选取不规则形状点位进行磷酸化修饰精准检测的空间磷酸化修饰组学,本次又实现对组织微环境进行高分辨率全覆盖式蛋白质组精准检测的全息空间蛋白质组学,满足蛋白质组研究的多项需求,为空间蛋白质组学研究提供更多选择。展望未来,全息空间蛋白质组学将在癌症研究、神经科学、免疫学等多个领域发挥重要作用。而景杰生物作为空间蛋白质组学的先驱和引领者,将不遗余力全面推进空间蛋白质组学的技术进步,为前沿研究保驾护航!
  • AI助力解析无序蛋白结构,新锐获4000万美元助力
    日前,Peptone公司宣布完成4000万美元的A轮融资。这项融资将用于支持Peptone以人工智能(AI)方式大规模解析那些悬而未解、复杂、极具挑战的内在无序蛋白(intrinsically disordered protein,IDP)结构。在人体内大约有一半的蛋白质,其序列中的一部分无法折叠成固定的结构,因此这部分结构无法通过已知的基因序列准确地预测出来。在这类蛋白质中,有许多在维持健康与疾病起源上扮演重要的角色。而缺少精确蛋白质结构信息的结果也导致了许多药物开发上的困难。自2018年创立以来,Peptone借助原子级的蛋白质分析技术,来准确地了解无序蛋白与蛋白质结构域在生理条件下的结构。这些信息能够有助于以更好的方式来预测靶向这类蛋白质的药物。Peptone的分析技术包含核磁共振(NMR)、氢氘交换质谱(HDX-MS)与机器学习(ML)、超级计算(supercomputing)等。其已经与诺华等大型药企合作建立开发管线,以改进那些靶向含部分无序结构的靶标蛋白质的药物。这项投资会使Peptone能够在瑞士建立顶尖的研究机构,协助将他们专有的原子级实验与超级计算科技进行结合。借此Peptone也将能够开启一系列针对炎症、癌症、糖尿病等疾病中独特靶标的开发管线。此项投资还会被运用在维护Peptone超级计算机运算的算法上。“无序蛋白存在于物理学转变成生物学的交界,”Peptone的共同创始人与首席执行官Kamil Tamiola博士说道,“借由使用严谨并由计算机所驱动的物理实验方式来分析蛋白质,我们能够超越传统药物发现方式,观察到那些像是AlphaFold所观察不到的蛋白质行为。这项投资会让我们能够更进一步地改善我们的平台,并支持我们对无序蛋白领域的研究。这些研究将会支持未来的药物开发。”
  • 快来参与微话题,畅所欲言话蛋白
    8月15日至9月15日,赛默飞召集各路有过蛋白提取、纯化和鉴定等经验的蛋白&ldquo 砖家&rdquo ,参与在新浪微博上发起的#蛋白实验中的酸甜苦辣#微话题讨论。无论你是深谙蛋白纯化机密,曾在LC-MS/MS分析复杂蛋白质样品上耗时太长,还是熟知抗体纯化实验方法,都可以点击http://weibo.com/thermofishercn畅所欲言,一起吐槽实验,分享亲身经历和心得! 除了参与微话题讨论,分享故事赢奖品之外,你还可以在9月7-11日期间,莅临第八届中国蛋白质组学大会赛默飞的T06展位,了解我们的蛋白质组学研究解决方案和各类促销信息。在本次大会上,赛默飞还将举行新产品、新技术推广会和大会报告等活动,由应用专家们带来前沿技术和最新研究进展。 赛默飞为蛋白质组学研究提供包括创新的化学试剂、高效的分离产品、领先的色谱质谱技术、以及蛋白质组学数据处理软件产品的最先进和完整的解决方案,帮助科学家们大幅提高研究工作的效率,更有信心地面对蛋白质组学研究的挑战。&ldquo 赛默飞蛋白质组学解决方案&rdquo 专题页面详细地介绍了质谱技术应用、蛋白质组学研究试剂与抗体,以及仪器、设备与耗材等。 欲了解更多赛默飞蛋白组学应用,请访问:http://www.thermo.com.cn/proteomics。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 福斯应用 | 40秒快检牛奶中的A2β -酪蛋白
    牛奶中蛋白质主要有乳清蛋白和酪蛋白两大类。酪蛋白中又分β-酪蛋白、keppa-酪蛋白和alpha-酪蛋白,其中β-酪蛋白约占蛋白总量的30%,是氨基酸的重要来源,同时在体内传递重要的矿物质(如钙、磷等),促进其消化吸收。A2β-酪蛋白是现代奶牛β-酪蛋白的天然原型。最初,所有家养的牛生产的牛奶中只含有A2β-酪蛋白,后来因自然基因突变,出现了A1蛋白的变体。研究表明,A2β-酪蛋白与母乳中的β-酪蛋白更接近,更有利于促进婴幼儿的生长发育。福斯MilkoScan™ FT3快速检测牛奶中A2β-酪蛋白A2β-酪蛋白的常规测定方法比较繁琐、耗时长、单样成本高。现在,MilkoScan™ FT3乳品分析仪通过建立A2β-酪蛋白的定标模块,可以直接检测A2β-酪蛋白。快速了解MilkoScan™ FT3FTIR技术40秒快检,结果准确可靠应用A2β-酪蛋白定标模块无需样品制备,直接上机检测掺假筛查MilkoScan™ FT3检测巴氏杀菌奶中的A2β-酪蛋白,定标样品和验证样品分布如下:FT1检测巴氏杀菌奶中的A2β-酪蛋白,定标样品和验证样品分布如下:
  • 技术进步为质谱血浆蛋白组学带来了巨大飞跃
    近日美国质谱学会年会(ASMS)上发布的最新数据表明,新的仪器和工作流程极大地提高了基于质谱的血浆蛋白组学实验的覆盖深度和通量。这些进步可使质谱成为各应用领域中更有用的工具,包括血浆蛋白生物标志物的开发以及迄今由Olink和SomaLogic等亲和性平台主导的大规模人群研究。  血浆是一种易于获取和常用的样本来源,尤其是在临床工作和人群研究中。然而,由于血浆含有大量丰度较高的蛋白质和较宽的动态范围,传统的质谱蛋白质组学分析能力不足。对于细胞裂解物的分析,质谱工作流程可测量8000到12000个蛋白质,但对血浆,类似的工作流程只能测量500到1000个蛋白质。虽然可通过去除丰度较高的蛋白质或进行粗分离来改善这一情况,但这也会牺牲通量。  去年,瑞士蛋白质组学公司Biognosys在Journal of Proteome Research杂志上发表了一项研究,他们使用赛默飞的Orbitrap Exploris 480质谱仪,通过两小时的液相色谱梯度测量了180个去除了高丰度蛋白的血浆样品中的2732个蛋白质,这是未进行血浆分离处理情况下最高深度的血浆蛋白质组分析。  最近,蛋白质组学公司Seer推出了一种新的血浆蛋白组学解决方案。该公司的Proteograph系统使用一组纳米颗粒来富集血浆蛋白质,然后可以使用质谱等技术对其进行鉴定和定量分析。与传统的血浆蛋白组学方法相比,Seer系统在覆盖深度和通量上都有所提升。在一份发表于四月BioRxiv预印本的研究中,威尔康奈尔医学院-卡塔尔团队使用该系统分析了345个血浆样本,测量了大约3000种蛋白质,在其液相色谱-质谱法的运行时间下每天可分析大约10个样本。  根据以上数据,Biognosys分析和Seer系统的覆盖深度都接近于Olink的Explore平台,后者可以在血浆中测量大约3000种蛋白质,但它们仍远远落后于SomaLogic的SomaScan平台,后者可以在血浆中测量大约7000种蛋白质。在每周约70个样本的处理量上,Biognosys和Seer系统的通量仍然落后于Olink和SomaLogic平台,后者每周分别可以处理多达1000个和340个样本。  ASMS年会上,Thermo Fisher Scientific展示了使用Seer最新发布的Proteograph XT试剂盒在其新的Orbitrap Astral仪器上测量大约6000种蛋白质的数据,每天处理大约30个血浆样本。这些数据标志着血浆蛋白组学工作流程的重大进展,并表明在大规模血浆研究方面,结合Seer Proteograph等血浆富集技术的质谱法与基于亲和性的平台现在可能成为竞争对手。  剑桥大学临床医学院MRC流行病学单位的生物信息学家Maik Pietzner表示:“坦白说,我们没有预见到这么大的飞跃。”他和他的同事在大规模蛋白质基因组学研究中使用了SomaLogic的SomaScan和Olink的Explore。他指出,根据ASMS展示的数据,“看起来现在似乎变得可行了”,因为他们的研究需要1000个或更大的样本队列。  华盛顿大学基因科学教授Michael MacCoss还表示,质谱技术具备的覆盖深度和通量使其成为大规模人群研究的有用工具。他说:“像英国生物库(UK Biobank)或弗雷明汉心脏研究(Framingham Heart Study)这样的大型队列……这些样本的价值是巨大的,研究人员希望能够以最少的资源获取最多的信息,很多实验都使用了Olink或SomaLogic。”  如果质谱技术能够可靠地提供ASMS演示中展示的覆盖深度和通量,它可能成为亲和性平台的有力补充和竞争对手。许多蛋白质存在多种形式,或称为蛋白质变体,其变异包括氨基酸变异、截断或翻译后修饰等,这些变化会影响它们的功能,在亲和性平台上往往不清楚或不确定测量的是蛋白质的哪种变体。质谱方法更适合分析这些不同的蛋白质变体。  Olink总裁Carl Raimond表示,他认为质谱和亲和性平台是“绝对互补的”,并补充说“看到蛋白质分析领域有创新是非常好的”。然而,他表示在Olink占据领先地位的大规模人群研究中质谱技术近期可能无法成为竞争对手,他同时也质疑ASMS展示的令人印象深刻的数据在广泛应用时是否能够经受考验。他说:“细节决定成败。提出要求很容易,但真正能够实现或提出关于这一要求背后的问题则是完全不同的事情。”Raimond补充说,虽然质谱技术不断改进,但亲和性平台也将不断进步。Olink正在将其Explore平台扩展到约5,000种蛋白质靶点,而SomaLogic计划在今年年底前将SomaScan平台扩展到覆盖约10,000种蛋白质。Pietzner同样表示,虽然在ASMS上发布的数据令人兴奋,但他和他的同事们期待看到更广泛的数据,包括总体的蛋白质覆盖范围,不同蛋白质和肽段在样本中检出的一致性和重复性。他说,“亲和性方法已经应用于规模大于50,000的人群队列中,并带来了惊人的发现。我们需要进行头对头的比较以评估这些新的质谱技术是否能够实现类似的扩展。”  MacCoss表示,使用质谱进行此类研究的公司或研究人员需要提供数据,证明他们能够在每个样本中一致且可重复地测量一组核心蛋白。他说:“当人们使用Olink时会有一个清单,上面列出了每次都会测到的蛋白质。我们仍然需要这样做。我们仍然需要说,这是每次实验都会返回定量值的蛋白质列表……以及测量中获得高质量分析数值的蛋白。”  Pietzner表示,他和他的同事目前正在努力扩展他们的蛋白质基因组学研究以包括质谱技术。强生和强生制药公司的神经科学数据科学主管,以及英国生物库药物蛋白质组学项目(PPP)主席Christopher Whelan表示,目前一个规模最大的蛋白质基因组学人群研究项目正在实施基于质谱的蛋白质组学。  Seer本月宣布推出Seer技术访问中心,该中心将组合其XT试剂盒与Orbitrap Astral质谱仪,为没有质谱仪的用户提供蛋白质组学服务。  尽管到目前为止很难全面评估Thermo Fisher的Orbitrap Astral和Seer的Proteograph XT的性能,但一些早期用户表示其产生的结果很出色。  Cedars-Sinai精准生物标志物实验室主任Jennifer Van Eyk一直在使用Orbitrap Astral进行血浆蛋白质分析,在这方面它比先前的仪器有更强的能力。Van Eyk表示,在每天运行60个样本时,新仪器可测得的蛋白质数量是相同工作流程下使用Thermo Fisher的Exploris 480仪器的2到2.5倍。  她说:“我们不仅可以检测到更多蛋白质,而且可以定量更多蛋白质,并且这些蛋白质是可重复的,也就是说,如果我们运行一个样本五次,我们确实会五次都观察到同样的蛋白。这是一个很大的飞跃。”这台仪器最出色的或许是其高通量,Van Eyk表示,她和她的同事们每天可以运行多达180个的未去除高丰度蛋白的血浆样本并获得良好的数据和深度的覆盖。她说,“在每天运行180个样本的情况下,突然间你可以开始讨论运行10,000个样本,然后它就成为一个人群研究了。”Van Eyk和她的同事目前正在试验Seer Proteograph系统,以“充分测试”其性能,并评估是否要将其作为血浆蛋白质组学工作流程的一部分。  威斯康星大学麦迪逊分校的生物分子化学和化学教授Joshua Coon指出,他的实验室能够使用50分钟的液相色谱梯度在未处理的血浆中测量大约1,500种蛋白质,并且已经在该仪器上开发出了一种一分钟的直接注射方法,能够在每个样本中测量约200种蛋白质。  Coon还是SeerProteograph平台的用户,尽管他尚未将其与Orbitrap Astral结合使用。他的实验室一直在使用Seer XT试剂盒分析阿尔茨海默病患者的血浆样本以及长期新冠肺炎(long COVID)个体的样本。他说,尽管他的团队尚未开始处理大批量样本,但在初步工作中,实验室每个样本一致地测量到约3,000种蛋白质,这是不使用Seer系统时的五倍左右。他认为,当研究人员将工作流程应用于Orbitrap Astral系统时,这些数字还会进一步提高。  除了覆盖深度外,Coon表示,Proteograph对简化质谱样品制备非常有用。他说:“我没有完全认识到到它的自动化程度,它非常方便。现在主要的用户是一个一年级和二年级的研究生……所以他们必须快速学习。他们在处理样本、获得消化产物和肽段方面取得了很大的成功。当你有新人或者长时间不做该工作的人时,进行大规模蛋白质组学研究的样品制备将耗费整个实验一半以上的精力,只需使用该平台然后熟练掌握。”  尽管Seer Proteograph平台提供的覆盖深度使质谱血浆蛋白质组学在某些应用中与Olink和SomaLogic等亲和力平台更具竞争力,但Seer本身在血浆富集领域面临新的竞争。  在ASMS会议上,蛋白质组学样品制备公司PreOmics推出了其ENRICH-ist富集血浆和血清蛋白质的试剂盒。该试剂盒使用非功能化顺磁性微珠来富集低丰度蛋白质,据该公司称,与未去除高丰度以及未富集的血浆相比,用该试剂盒处理血浆可将蛋白质检出率从50%提升至100%。PreOmics首席执行官Garwin Pichler表示,微珠与缓冲液的结合可在去除高丰度蛋白的同时富集低丰度蛋白以提高覆盖深度。Biognosys推出了一种新的基于微珠的血浆蛋白质组富集试剂盒,作为其TrueDiscovery服务平台的一部分。据该公司称,这种试剂盒可以高通量定量人类血浆中约4,000种蛋白质。  此外,在本月,华盛顿大学研究人员领导的团队在BioRxiv预印本上发表了一篇论文,描述了一种使用ReSyn Biosciences的磁性微粒富集血浆蛋白质的方法,其通过结合血浆中的膜结合囊泡并分析相关蛋白质来提高覆盖深度。华大的MacCoss是这篇预印本的通讯作者,该预印本的第一作者Christine Wu也是该富集方法的主要开发者。他们能够在Orbitrap Astral上使用30分钟的液相色谱梯度稳定地定量约4,800种血浆蛋白质,每天可处理约40个样本。在使用一小时的液相色谱梯度时,他们能够测量5,000到6,000种蛋白质。MacCoss他们迄今没有过度挑战该方法的能力,所以这些数字是相对保守的。MacCoss表示,由于Seer公司的技术成本较高,研究人员对于血浆蛋白质组学富集的替代方法很感兴趣。他说:“Seer在制造这些产品方面做得很好,但成本是一个高门槛。”  维也纳分子病理研究所的蛋白质组学负责人Karl Mechtler表示,他与Seer的讨论中,每个样品的报价大约是600美元。他说:“如果我有100个样品,对于一个蛋白质组学实验室来说,这是一笔巨款。”他指出,对于一个典型的蛋白质组学实验室,一个合适的价格范围应该在每个样品25到50美元左右。Wu表示,使用华大的富集方法进行实验的每个样品成本低于5美元。PreOmics将ENRICH-ist试剂盒作为完整蛋白质组学样品准备工作流程的一部分销售,每个样品总共80美元。  在回答成本问题时,Seer公司董事长兼首席执行官Omid Farokhzad表示,他认为价格是“价值交换的问题”。他说:“并非所有内容都是等价的。问题在于,从Seer所提供的与其替代方案所提供的内容来说,价值交换是什么?”在血浆蛋白质组学领域最新的发展中,这个问题的答案似乎是一个不断变化的目标。
  • 布鲁克:累计实现600台timsTOF质谱装机 蛋白组学是重要增长点
    近日,第四十一届J.P.摩根大会召开,会议上,多家科学仪器企业和诊断企业均分享了最新的业务情况,并对未来的行业发展重点进行了讨论。仪器信息网对部分科学仪器行业头部企业的业绩表现和战略重点进行了摘录,以飨读者。  布鲁克(BRUKER)  Bruker 首席执行官 Frank Laukien 表示,公司预计 2022年第四季度的有机收入将实现中高个位数增长,报告的收入将超过华尔街的普遍预期。分析师平均预计第四季度收入为 6.664 亿美元。 他补充说,公司预计 2023 年有机收入将实现3.6%的同比增长,收入约25亿美元。(数据未审计,仅供参考)  Laukien 强调,布鲁克的蛋白质组学业务是一个特别重要的增长动力,并预测“蛋白质组学将迎来一个非常重要的十年”。 他提到蛋白质组学在生物制药中的“作用越来越大”,并补充说生物制药研究现在占公司收入的 15% 到 16%,而过去几年里这一比例不到 10%。 过去一年,美国生物制药一直是布鲁克业务增长最快的部分,呈现两位数的高增长。 截至 2022 年底,布鲁克已安装了600 多台 timsTOF 质谱仪,这些仪器已成为蛋白质组学研究人员最喜欢的仪器。  Laukien 还强调了 Bruker 正在不断扩展其空间蛋白质组学产品组合,特别指出了其 Canopy Biosciences 子公司的 CellScape 空间单细胞蛋白质组学平台,以及去年与 AmberGen 合作推出的 MALDI HiPLEX-IHC 组织成像系统。 他介绍到,公司去年售出了 20 多套 HiPLEX-IHC 系统。  Laukien 还讨论了布鲁克对瑞士蛋白质组学公司 Biognosys 的投资,布鲁克最近收购了该公司 80% 以上的股份。 Bruker 正在为 Biognosys 提供资金以在美国开设一个实验室,这笔投资将帮助 Bruker 从研究人员和行业团体那里获得业务,他们可能不具备自己操作公司质谱仪的专业知识或人员。 Biognosys 目前的年收入约为 1500 万美元,布鲁克预计该公司未来几年将实现两位数的增长。  布鲁克2022年新产品新技术、市场动态大事记  2月,布鲁克推出首款基于timsTOF技术的MPP系统,丰富高通量药物筛选平台。其具有 MALDI 的极快速度和久经考验的稳健性,并且在 HTS 中首次利用了布鲁克创新的捕获离子迁移谱 (TIMS) 技术。TIMS 通过利用分子碰撞截面实现等压线甚至异构体的快速气相分离。这与常规的 50000 质量分辨率和 QTOF-MS 检测相结合,可在 HTS 速度下实现革命性水平的特异性测定。timsTOF MPP 具有双 MALDI / ESI 离子源和布鲁克专利的smartbeam 3D激光技术,可实现与 uHTS 兼容的速度和高通量,并提供独特的基于激光的后电离技术 (MALDI-2 )选项以扩大化合物检测空间。作为 timsTOF MPP 解决方案的一部分,新的 MALDI PharmaPulse 2023 软件支持用于高通量药物筛选的应用。其自动化接口可实现与来自不同供应商的通用调度软件包协同工作。此外,MPP 2023 可将数据和结果无缝传输到下游分析软件,例如 Genedata Screener。  4月,布鲁克宣布收购大气压DART(实时直接电离)技术的创新者IonSense公司,用于加快DART离子源技术的开发,以及加大在应用市场的应用开发投入,包括食品安全和法医学领域。  5月,继收购DART后,布鲁克又一大动作进军工业领域!布鲁克和TOFWERK AG宣布建立战略合作伙伴关系,以提供高速、超灵敏的应用和工业分析解决方案,同时布鲁克对TOFWERK注入了新资本。布鲁克最近收购的实时直接分析(DART)技术与TOF-MS技术融合产生的新型业务机会分析解决方案也在开发计划中。  6月,ASMS2022期间,布鲁克推出DART-EVOQ质谱组合产品,是一款结合了原位电离源(DART)的三重四极杆质谱仪。通过引入用于高通量定量的DART-EVOQ 三重四极杆质谱仪,将实验室内外的质谱分析能力扩展到点对点高效分析。DART-EVOQ 不需要色谱分离来进行食品/饮料、法医、工业、安全、环境和制药等领域的分析。  6月,布鲁克宣布了组织和肿瘤微环境(TME)空间多组学的重要创新。继布鲁克与 AmberGen 建立战略合作伙伴关系后,MALDI HiPLEX-IHC 质谱成像增强了关键性蛋白分析功能。布鲁克还宣布推出了用于 timsTOF fleX 系统的 smartbeam 3D MALDI 光源的 microGRID 模块。  6月,布鲁克公司推出新的 timsTOF HT 系统,进一步拓展了革命性的 4D-多组学 timsTOF 平台。timsTOF HT 采用新型第 4 代 TIMS(trapped ion mobility separation,捕集离子淌度分离)XR cell 和14 位 Digitizer,可实现更宽动态范围、更深的肽段覆盖率和更准确的定量分析。该系统在 4D 血浆、组织蛋白质组和表观蛋白质组学中表现出色。  2022年布鲁克在蛋白质组学、生物制药等领域进行了多项关键收购和商业投资,可以说是动作频频,基于此,2022年仪器信息网特别采访了布鲁克道尔顿中国区掌门人何磊,与他进行了深入的交谈。点击了解  不仅如此,2022年,布鲁克推出timsTOF HT(High Throughput)系统,直面蛋白成像的难题与挑战。可以说,布鲁克基于timsTOF持续进行着技术创新,并努力拓展蛋白质组学应用研究的边界。在此背景下,仪器信息网特别采访了布鲁克道尔顿中国区组学与制药应用经理刘先明,与他就timsTOF平台的里程碑产品技术、4D-蛋白质组学技术以及蛋白组学成像技术难点、未来发展趋势等话题进行了深入的交流。点击了解
  • 珀金埃尔默专业检测,“乳”此简单 | 奶牛乳房炎的检测
    珀金埃尔默专业检测,“乳”此简单 | 奶牛乳房炎的检测一背景奶牛乳房炎是困扰奶牛养殖业三大疾病(乳房炎、子宫炎、肢蹄病)之首。奶牛乳房炎是由于奶牛乳腺组织受到物理、化学、微生物刺激所发生的一种炎性反应。根据导致奶牛乳房炎病原微生物分离培养方面的资料显示,引起乳房炎的病原菌主要以金黄色葡萄球菌、链球菌、无乳链球菌、大肠杆菌为主,占到引起乳房炎病院的90%左右。奶牛乳房炎至今发病率仍相当高,广泛存在于世界各地,不仅降低奶牛产奶量和乳品质,给奶牛饲养业造成巨大经济损失,严重威胁奶牛业的发展,而且还影响到乳品食用者的健康。及时准确地对奶牛乳房炎做出早期诊断,不仅可以保证奶牛的健康,也降低了牛奶的生产成本,避免抗生素滥用所造成的的乳制品安全问题。如何对奶牛的乳房炎进行检测和诊断呢?二牛奶体细胞体细胞数简称为SCC,通常以每毫升牛奶千个细胞来计数。近年来很多国家将体细胞数( SCC ) 作为原料奶收购的标准之一 。影响牛奶体细胞数的因素很多。一般来说,传染性乳房炎是微生物引起体细胞数增加的主要原因。当乳房外伤或发生疾病产生炎症时,机体将大量的白细胞分泌进入乳房以清除感染。牛奶体细胞数不可能为零,但多数牛群可以将牛奶体细胞数控制在15万以下,这就表明牛群隐性乳房炎发病率很低,乳腺组织损伤小,产奶量高,牛奶质量好。 因此,可以通过检测乳汁中体细胞的多少来判断奶牛是否患有乳房炎,尤其对隐性乳房炎的检测非常实用有效。绝大多数专家、兽医认为,体细胞数在20万个/mL以内为正常。而且随着牛奶中体细胞数增加,牛奶中不受欢迎的脂肪酶及血纤维蛋白酶含量增加。脂肪酶分解脂肪,产生酸败气味,阻止酸奶乳酸菌繁殖,并且减少奶制品存储时间。血纤维蛋白酶减少牛奶中酪蛋白含量,并且减少干酪产量。即使在冷藏条件下,这些酶仍然发挥作用。体细胞数增加还会使牛奶中的营养成分如乳脂、蛋白质、乳糖明显下降。牛奶体细胞数的检测(1)基于流式细胞原理的牛奶体细胞快速测定仪(如PerkinElmer公司的CombiScope型体细胞分析仪):其工作原理是利用流式细胞计数(Flowcytometry)技术将被测定的细胞染色并置于悬浮液体之中,然后强迫细胞逐一通过一个非常窄小的缝隙管道。同时,向其发出特殊光束,使得每一个染色后的细胞在通过测定点时也发出回应光束脉冲信号,采用电子技术,再将其脉冲信号记录下来。利用电脑将所记录的脉冲信号处理,从而达到对牛奶中细胞自动计数。Combiscope型体细胞分析仪(2)CMT试验:将被检牛的4个乳区的乳,分别挤在诊断盘的4个小室内,倾斜诊断盘,倒出多余乳,使每个小室内保留乳汁2毫升,分别加入2毫升试剂于小室内,呈同心圆摇动诊断盘,最后判定结果。流式细胞技术(如PerkinElmer公司的CombiScope型体细胞分析仪)和CMT试验是目前临床上最常用的牛奶体细胞测定方法。流式细胞技术测定的一般是奶牛四个乳头的混合奶样,因而不能决定哪一个乳头感染;CMT试验操作简单,价格便宜,能够快速判断那个乳头感染。三奶牛乳房炎致病因子检测引起乳房炎的病原菌有很多种,当知道奶牛患乳房炎后,为了更好的治疗,需要及时准确地对奶牛乳房炎致病因子进行检测。传统的细菌生化实验操作复杂、耗时耗力。因此研发出一种操作简单、快速省力方法,成为奶牛养殖业的需求,符合当前发展形势。良润生物提供奶牛乳房炎鉴定平板和核酸检测试剂盒两种检测手段。1奶牛乳房炎鉴定平板原理在分离培养基中加入检测某些菌种的特异性酶底物,该底物为人工合成,由发色基团和微生物可代谢物质组成,通常为无色,但在特异性酶作用下游离出发色基团并显示一定颜色,直接观察菌落颜色即可对菌种做出鉴定。操作步骤• 样本采集• 平板划线• 培养判读优势奶牛乳房炎鉴定平板结果显示2核酸检测试剂盒原理实时荧光PCR技术,针对奶牛乳房炎病原菌的特性基因设计引物探针,实现核酸水平上的定性检测。操作步骤• 样本采集• 核酸提取• 上机检测优势产品列表了解更多应用资料和产品信息,扫描下方二维码,下载珀金埃尔默奶牛乳房炎的检测相关资料。
  • 成果:古老蛋白“一招夺命”肿瘤细胞
    一次肿瘤细胞的意外死亡,让一种明星分子浮出水面。日前,在科技成果评价机构组织的鉴定会上,一种独特的免疫蛋白分子引起了评审专家的兴趣。“肿瘤细胞死亡时的照片上,周边有起泡的现象非常有意思。”国家重点研发计划首席科学家、南京大学李朝军教授表示,这个情况和细胞焦亡挺像,值得更进一步的研究和应用。“这种分子是在七鳃鳗的免疫系统中找到的,它能够识别出人体肿瘤细胞,并从外面打孔,让肿瘤细胞死亡。”研发团队带头人、辽宁师范大学原副校长李庆伟教授介绍,目前正利用这种明星分子推动癌症早筛工作。本想向肿瘤细胞学习,却把它杀死了七鳃鳗在地球上已经生活了5.5亿年,被戏称为“僵尸鱼”,介于无脊椎动物和脊椎动物之间。“我们想把七鳃鳗细胞和肿瘤细胞放在一起培养,借助肿瘤细胞增殖因子,帮助七鳃鳗细胞繁衍。”李庆伟回忆,没想到的是,肿瘤细胞都死亡了。换了不同的肿瘤细胞结果仍一样。研究团队感觉七鳃鳗细胞一定分泌了一种独特的物质,对肿瘤细胞是致命的。为了找到这种物质,团队大量收集细胞培养上清,通过蛋白质组学技术最终锁定了LIP蛋白。围绕这一蛋白的系统研究在后来的十几年中逐渐推展开——破解蛋白结构、解码对应DNA序列、分析蛋白结构中的不同功能… … 谜题一一解锁,但人们最关心的是:古蛋白究竟是怎么杀死肿瘤细胞的?古老蛋白“一招夺命”肿瘤细胞光学显微镜下,一场杀戮由近及远次第展开。“我们给LIP‘镀上’荧光,标记了荧光基团的蛋白分子进入肿瘤细胞培养液,能从显微镜下看到荧光迅速聚集到了肿瘤表面,肿瘤细胞膜随后破裂。”辽宁师范大学生命科学学院教授逄越展示的照片复盘了整个过程:肿瘤细胞表面出现了大的孔洞,肿瘤细胞里的内容物全部外泄,一招夺命。更有趣的结果发生在研究团队“打扫战场”时。他们把肿瘤细胞表面的古蛋白做了收集检测发现,杀伐时蛋白不单兵作战,而是“组团”的聚合体。“我们提出了识别、定位、聚集、杀伤的机制。”逄越说,研究表明聚合体越多杀伤作用越大。整个机制的解析花了团队5年时间,终于弄清楚,蛋白上“凝集素”的结构域负责“指认”,“气单胞菌溶素”结构域能深深地插入肿瘤细胞膜搞破坏。明星分子“小试牛刀”机制清晰,研究走到了应用阶段。团队决定先让明星分子小试牛刀,在检测领域做验证。健康中国行动要求强化癌症早筛。膀胱癌检测一直痛苦得让患者望而却步,不愿早筛,实现“滴尿”筛查将让癌症发现大大提前。“我们将明星分子做成了检测试纸。尿液中脱落的膀胱表皮细胞如果有肿瘤的迹象,马上会被预警。”辽宁师范大学生命科学学院副教授韩英伦告诉科技日报记者,团队先从学校职工体检的尿检入手建立了指示分子含量的对照表,然后与大连市的几家医院合作进行临床研究,肿瘤患者的值会高过正常值2—3倍。相关研究数据显示,利用LIP特异性识别肿瘤细胞技术,尿液检测膀胱癌的LIP免疫荧光试纸灵敏性达到85%,特异性可达92%,简单、快速、微量、无创。“国际上这类检测试剂不多,美国FDA目前有三款试剂盒上市。”评审专家、大连医科大学附属第二医院院长刘志宇教授表示,作为我国自主研发的检测产品,尤其是从靶点开始的源头创新,目前的研究进展令人震撼。评审专家一致认为,该项目具有完全自主知识产权,达到国际领先水平。据介绍,相关研究多年来得到科技部国家重点基础研究发展计划、国家自然科学基金、辽宁省高等学校重大科技平台等项目支持。
  • 空间蛋白组学技术——肿瘤微环境研究利器
    过去,受制于传统的研究方法,科研工作者很难对肿瘤微环境这样的复杂整体系统进行深入的研究和分析。要么选择包含空间信息的低通量标记技术,例如免疫荧光标记,要么选择高通量的蛋白标记,例如流式细胞技术,但是没有办法获得空间信息。近年来,新型的空间蛋白组学技术,则能两者兼顾,获得数十上百种蛋白标记的单细胞水平的空间表达,从而能更好的帮助科研工作者揭示复杂系统在疾病发生发展中的作用,其中最为显著的是推进了科研工作者对于免疫系统及其在癌症中作用的理解。图一为冰冻切片的HER2+乳腺癌患者样本,扫描视野大约15 mm2,共标记了21种蛋白。如图所示,大多数肿瘤细胞(Pan-CK+)都同时表达HER2,表明该样本是一例上皮来源的恶性肿瘤组织。然而,在样本上同样发现了保有相对正常组织结构的正常上皮(Pan-CK+/HER2-)区域。图1:HER2+乳腺癌组织的免疫多标记染色图1A:Pan-CK+/HER2- 图1B:Pan-CK+/HER2+所有的21种蛋白标记(用不同颜色区分),可以对样本的不同区域进行细胞表型分析,图2为细胞密度相对较低的区域,便于区分各个标记蛋白。我们可以看到,单个肿瘤细胞会表达Pan-CK,EpCAM,HER2蛋白。图2:21-plex超多标记的组织切片成像通过单细胞分辨率的图像数据,再借由AI的全自动细胞分割,并定量分析各个蛋白的表达,从而进行细胞表型的分选(图3),同时也可以获得各类细胞的表达占比情况(图4)。图3:细胞表型分析散点图图4:各类细胞的表达占比在非小细胞肺癌的肿瘤免疫学研究中,科研工作者同样利用单细胞空间蛋白组学技术,通过26-plex的蛋白标记,量化了样本中三十多类细胞的表型及亚型。从而揭示了非小细胞肺癌中免疫细胞侵润的异质性,并进行了量化分析。图表1:26种生物标记物列表图5:肺癌样本的局部视野及细胞表型如图5所示,肿瘤基质和肿瘤细胞附近有明显的髓样细胞浸润,而T细胞主要在肿瘤区域外聚集。 进一步的细胞定量分析发现,被认为在许多癌症中发挥促肿瘤作用的髓样细胞,具有高表达量。随后的空间分析,对肿瘤微环境中的T细胞和髓样细胞群进行了定量研究(图6),揭示了该细胞及其相关细胞类型的分布密度。图6:T细胞及髓样细胞的空间分析空间蛋白组学的应用,保留了组织形态和结构,又能一次性进行多种生物标记,从而能在分析复杂系统的细胞表型的同时,获得各类细胞的空间信息,更为深入的研究免疫系统及其在疾病中的作用。如图7展示的全视野的石蜡阑尾组织样本的成像,用14种生物标记物标记了免疫细胞及上皮细胞。之后分别对淋巴结(图7A)和粘膜上皮(图7B)这两个特定结构进行细胞表型分析。图7:石蜡阑尾组织样本的全视野超多标记成像图7A:淋巴结局部视野 图7B:粘膜上皮局部视野针对粘膜上皮区域和富含免疫细胞的淋巴结结构,对细胞数量及类型做了定量和表型分析(图表2),全面的揭示了临床组织样本不同区域和结构的免疫微环境差异。图表2:组织特异性的细胞量化和表型分析除了石蜡和冰冻组织样本,超多标记技术还可以应用于多种特殊的液体样本,例如脑脊液,痰液(图8)/支气管肺泡灌洗液(BAL)或者是用于循环肿瘤细胞的检测。不同于传统的流式细胞技术的样本需要即时处理,并且实验也需要一次性完成的特点,新型的空间蛋白组学技术,能够保存长达2年的样本活性,期间可以进行反复的标记和成像。这一特性为稀有样本和复杂实验,提供了强大的助力。图8:对保存9天的人痰液细胞进行的六色免疫多标记成像过去,受制于传统的研究方法,科研工作者很难对肿瘤微环境这样的复杂整体系统进行深入的研究和分析。要么选择包含空间信息的低通量标记技术,例如免疫荧光标记,要么选择高通量的蛋白标记,例如流式细胞技术,但是没有办法获得空间信息。近年来,新型的空间蛋白组学技术,则能两者兼顾,获得数十上百种蛋白标记的单细胞水平的空间表达,从而能更好的帮助科研工作者揭示复杂系统在疾病发生发展中的作用,其中最为显著的是推进了科研工作者对于免疫系统及其在癌症中作用的理解。图一为冰冻切片的HER2+乳腺癌患者样本,扫描视野大约15 mm2,共标记了21种蛋白。如图所示,大多数肿瘤细胞(Pan-CK+)都同时表达HER2,表明该样本是一例上皮来源的恶性肿瘤组织。然而,在样本上同样发现了保有相对正常组织结构的正常上皮(Pan-CK+/HER2-)区域。图1:HER2+乳腺癌组织的免疫多标记染色图1A:Pan-CK+/HER2- 图1B:Pan-CK+/HER2+所有的21种蛋白标记(用不同颜色区分),可以对样本的不同区域进行细胞表型分析,图2为细胞密度相对较低的区域,便于区分各个标记蛋白。我们可以看到,单个肿瘤细胞会表达Pan-CK,EpCAM,HER2蛋白。图2:21-plex超多标记的组织切片成像通过单细胞分辨率的图像数据,再借由AI的全自动细胞分割,并定量分析各个蛋白的表达,从而进行细胞表型的分选(图3),同时也可以获得各类细胞的表达占比情况(图4)。图3:细胞表型分析散点图图4:各类细胞的表达占比在非小细胞肺癌的肿瘤免疫学研究中,科研工作者同样利用单细胞空间蛋白组学技术,通过26-plex的蛋白标记,量化了样本中三十多类细胞的表型及亚型。从而揭示了非小细胞肺癌中免疫细胞侵润的异质性,并进行了量化分析。图表1:26种生物标记物列表图5:肺癌样本的局部视野及细胞表型如图5所示,肿瘤基质和肿瘤细胞附近有明显的髓样细胞浸润,而T细胞主要在肿瘤区域外聚集。 进一步的细胞定量分析发现,被认为在许多癌症中发挥促肿瘤作用的髓样细胞,具有高表达量。随后的空间分析,对肿瘤微环境中的T细胞和髓样细胞群进行了定量研究(图6),揭示了该细胞及其相关细胞类型的分布密度。图6:T细胞及髓样细胞的空间分析空间蛋白组学的应用,保留了组织形态和结构,又能一次性进行多种生物标记,从而能在分析复杂系统的细胞表型的同时,获得各类细胞的空间信息,更为深入的研究免疫系统及其在疾病中的作用。如图7展示的全视野的石蜡阑尾组织样本的成像,用14种生物标记物标记了免疫细胞及上皮细胞。之后分别对淋巴结(图7A)和粘膜上皮(图7B)这两个特定结构进行细胞表型分析。图7:石蜡阑尾组织样本的全视野超多标记成像图7A:淋巴结局部视野 图7B:粘膜上皮局部视野针对粘膜上皮区域和富含免疫细胞的淋巴结结构,对细胞数量及类型做了定量和表型分析(图表2),全面的揭示了临床组织样本不同区域和结构的免疫微环境差异。图表2:组织特异性的细胞量化和表型分析除了石蜡和冰冻组织样本,超多标记技术还可以应用于多种特殊的液体样本,例如脑脊液,痰液(图8)/支气管肺泡灌洗液(BAL)或者是用于循环肿瘤细胞的检测。不同于传统的流式细胞技术的样本需要即时处理,并且实验也需要一次性完成的特点,新型的空间蛋白组学技术,能够保存长达2年的样本活性,期间可以进行反复的标记和成像。这一特性为稀有样本和复杂实验,提供了强大的助力。图8:对保存9天的人痰液细胞进行的六色免疫多标记成像
  • 质谱革命:推动蛋白组学市场快速增长的黄金技术
    蛋白组学是当今生命科学和精准医学的研究热点,目前仍处于早期快速发展阶段。其发展轨迹与早期的基因组学相似,随着时间的推移,蛋白组学在研究和临床中的应用潜力将逐渐释放,有望接近基因组学的市场规模。当前,全球蛋白组学市场规模已达500亿美元,且呈现快速增长趋势。随着资本市场的关注,不断有新公司进入并获得融资,推动了新技术的不断涌现。 蛋白组学技术的扩展与应用 蛋白质组学技术已从最初的蛋白质定性鉴定扩展至多个领域,包括蛋白质定量表达分析、翻译后修饰鉴定和定量、蛋白质互作分析、蛋白质复合物成分解析、空间蛋白质组分析以及单细胞蛋白质组分析。这些技术不仅应用于基础科学研究,更在药物开发、临床医学和转化医学等领域展现出巨大潜力。这一切得益于质谱技术、蛋白质分离技术、生物化学技术和计算机技术的快速发展。 质谱技术:蛋白组学发展的关键 质谱技术是推动蛋白质组学发展的关键技术,特别是在生物标志物发现方面具有黄金标准地位。在全球范围内,只有少数制造商发明了能够区分小至单肽分子的复杂质谱技术,包括布鲁克公司(Bruker)、赛默飞公司(Thermo Fisher Scientific)、安捷伦公司(Agilent)、沃特世公司(Waters)和 Sciex 公司。其中,赛默飞世尔公司在蛋白组学研究质谱市场中拥有超过90%的市场份额,主要归功于其创新的Orbitrap系列。布鲁克公司的TimsTOF系列则是蛋白组学领域增长最快的质谱之一,从赛默飞公司那里获得了市场份额,以约30%的速度增长。质谱技术的持续创新将对蛋白组学的发展产生深远影响。然而,质谱技术的标准化和应用流程的复杂性,尤其是样品制备阶段的缺乏标准化,成为其进一步推广的瓶颈。正是在这一背景下,像Evosep等公司在液相色谱标准化方面取得了突破,逐步占据了60%以上的市场份额。这种创新反映了市场对流程效率提升的迫切需求。与此同时,新兴技术如Seer、Olink和Somalogic通过纳米粒子分离技术和适配体蛋白质检测技术,正在改变传统的蛋白质组学检测方式,显著提高了检测精度和通量。 蛋白组学的产业链 蛋白组学市场已形成涵盖上游质谱仪器和蛋白质组学试剂供应商、中游蛋白组学技术服务公司以及下游蛋白组学终端客户的完整产业链条: 颠覆性技术与企业的崛起 近年来,Seer、Olink、Somalogic、Nautilus和Quantum-Si等企业凭借其颠覆性技术,改变了传统的蛋白组学检测方式,极大地提升了检测的通量、准确性、特异性和敏感性:&bull Seer:发明了一种在液相色谱分离之前对蛋白质进行标准化消化和分离的工作流程。其专有的纳米粒子技术将蛋白质分成4组,增强了低丰度蛋白质的检测。&bull Olink:通过DNA编码连接到蛋白质上,实现蛋白质定量可通过基因测序的基础设施进行。其PEA(临位延伸分析)检测技术在qPCR仪器或Illumina的下一代测序仪上工作,提供高通量和特异性。&bull Somalogic:利用适配体进行蛋白质检测,其SomaScan平台可以识别并检测大量的蛋白质。该公司拥有一个由7000个独特适配体组成的文库,能够在48小时内从单个样品中识别7000种不同的蛋白质。&bull Nautilus:其技术利用专有仪器、流动池和试剂,对样品中95%的蛋白质组进行量化。设计了一个"超密集单分子蛋白质纳米阵列",实现了单分子分辨率。 国内市场的快速发展 在蛋白组学行业,欧美企业布局早,经过多年发展成熟后逐渐得到资本市场认可。包括Seer、Olink、Nautilius、Quantum-Si以及Somalogic在内的多家生物科技公司从2020年开始陆续上市。Seer、Olink、Somalogic是欧美三家蛋白质组学的标杆企业,Seer是其中最年轻的公司,但是为下一代蛋白质组学带来了创新技术和路径。与之相比,国内企业起步较晚,但发展迅速。景杰生物、中科新生命等专注于蛋白组学,而诺禾致源、华大基因、美吉生物、欧易生物等企业也同时提供蛋白组学服务。国内市场规模从2016年的1.2亿元增长到2020年的5.8亿元,年复合增长率高达49.1%,预计2025年将达到22.6亿元。(摘自弗若斯特沙利文分析)与此同时,随着精准医学和转化医学的快速发展,越来越多新发现蛋白质生物标志物的检测工作,将为蛋白质组分析带来巨大的市场需求。我们发现抗体-药物偶联物(ADC)药物正在快速发展,其结合了单克隆抗体的靶向能力和细胞毒性药物的强效性,成为癌症治疗领域的突破性疗法。在ADC药物的研发过程中,蛋白组学起到了至关重要的作用。(点击查看→ADC药物如何精准制导癌症治疗、质谱如何推进ADC药物研发)蛋白组学技术可用于鉴定和验证ADC的靶标蛋白,帮助研究人员筛选出最具潜力的治疗靶点。此外,蛋白组学在分析抗体与抗原的结合位点、优化抗体结构以提高药物效力和降低副作用方面也具有重要价值。总而言之,蛋白组学还是处于发展的黄金时代,质谱技术的不断进步将推动着整个行业的快速前进。随着多组学整合、人工智能赋能、空间蛋白质组学兴起和临床应用加速落地等趋势的出现,蛋白组学将在生命科学、精准医学和药物研发等领域发挥越来越重要的作用。在全球蛋白质组学有着千亿美元市场的机遇下,就需要加强核心技术研发,尤其是在质谱、单细胞和空间蛋白质组学等领域实现突破。同时,积极推动多组学整合,结合基因组学、代谢组学等数据,构建全面的生物学信息网络,深化对复杂疾病的理解。此外,深化国际合作与交流,吸收全球先进技术和经验,增强自身的创新能力,参与全球市场竞争,提升国际影响力。通过这些努力,中国企业将有望在全球蛋白组学市场中分得一杯羹,为生命科学和精准医学的发展做出更大贡献。
  • 科研人员设计出一种应用于血液中凝血酶精准检测的高灵敏度传感器
    近期,中科院合肥研究院智能所吴正岩和张嘉团队设计出一种高灵敏度的适配体传感器,可以实现对血液中凝血酶浓度的精准检测。相关研究成果已被分析化学领域权威期刊Biosensors & Bioelectronics接收发表。 传感器的制备及检测机理图   凝血酶是一种蛋白水解酶,能催化纤维蛋白原转化为纤维蛋白,促进血液凝固,与白血病、血栓性疾病、血管壁炎症、阿尔茨海默症等多种疾病密切相关。在正常情况下,血液中不存在凝血酶,在凝血过程中凝血酶由凝血酶原转化生成。因此,精准地检测低浓度凝血酶对于相关疾病的诊断和治疗以及药物疗效的评价具有重要意义。   针对此类问题,课题组开发出高灵敏度的适配体传感器,利用具有优异电子传输通道的Ti3C2Tx MXene多级孔结构框架作为传感材料,同时选择具有高的电催化效应的金属纳米探针作为信号放大器,构建出应用于血液中凝血酶精准检测的高灵敏度适配体传感器。该传感器可以检测皮摩尔浓度的凝血酶,同时也展现出优异的抗干扰性和稳定性。   该研究工作得到安徽省高校协同创新计划项目、安徽省科技重大专项的资助与支持。
  • 如何使用反向移液技术更精准的移取蛋白溶液
    每支移液器的液程通常都用纯水和正向移液技术校准过。因此我们推荐使用正向移液技术移取水性溶液,如缓冲液,稀释酸或碱。当移取不同于水的液体时,由于具有不同的液体特性,其移液量可能偏离所选的量程。比如一些生物溶液的移液,可能会在移液器尖端或试管中产生气泡或泡沫,这将使移液量产生偏差。在这种情况下,我们推荐使用反向移液技术移取高粘度或者容易产生泡沫的液体。反向移液技术减少了喷溅,泡沫和气泡形成。这种方法尤其适用于移取小体积的液体。 下面先介绍一下正向移液和反向移液技术的操作。 1.将按钮压至第一停点。 2.将吸头浸入液面下1cm处,缓慢释放按钮使其滑回原位。将吸头从液体中移出,接触容器边缘除去多余的液体。 3.排液时,吸头紧贴容器壁先轻按按钮至第一停点,略作停顿后, 将按钮按至第二停点(这个操作会将吸头内的液体彻底排尽),将吸头从容器中沿容器壁移出。 4.松开按钮至准备位置。 1.将按钮压至第二停点。 2.将吸头浸入液面1cm处,缓慢释放按钮使其滑回原位。这将时液体充满吸头。将吸头从液体中取 出,接触容器边缘去掉多余液体。 3.放液到接收容器时平稳地轻按按钮至第一停点。保持在这个位置。一些液体会残留在吸头中不能被放出。 4.残留在吸头内的液体能够被吹回原溶剂中或者同吸头一起丢弃。 5.松开按钮到准备位置。 选择合适的移液器对于微量移液的精准性也很重要,Thermo Scientific F系列移液器的超强吹出设计则满足了微量移液对精准性的需求。低于50&mu l液程的Thermo F系列移液器均采用双活塞设计,与其它普通移液器相比,其空气吹出能力增大50%-60%,因此在小体积的液体吹出时会非常干净完全,大大提高了移液的精准性。 我们使用Thermo Scientific Finnpipette F2 1-10 &mu l移液器,配合Thermo Scientific Finntip Flex 10吸头,同时分别使用正向移液和反向移液,移取1%牛血清白蛋白(BSA,Sigma A7030)进行移液精准性测试。 图1 表明当使用反向移液技术时,移液量的变化比使用正向移液技术处于更狭窄的一个范围。 图2 表明使用两种移液方式的不精确度。不精确度是估量移液的重复性的。反向移液技术可以使不精确度相对于正向移液技术降低50%。 这是因为,BSA溶液含有易被疏水移液器吸头壁吸附的疏水成分。当使用正向移液技术时,每次移液后少量的液体易残留在吸头中。这种趋势会增加吹出液体体积之间的偏差,因为当重复移液时吸头中累积的残余液体可能增加下一次移液的移液量。而反向移液技术中有额外的液体被吸入吸头中,这些额外的液体作用似一个蓄水池它使连续移液的移液量均等。这个蓄水池也能阻止空气在吹出液体的最后从吸头口进入,这样可以降低液体起泡的可能性。这使反向移液技术在移取小液量液体时尤其有用。由此可见,选择Thermo Scientific F2移液器,同时配合反向移液技术,可较好的提高移取蛋白溶液的精确度和重复性。 这是个移液器的王国,每个人都能找到最适合自己的移液器。这是一个富于创新的品牌,传承40年移液器的深厚底蕴。&ldquo 先锋源于创新,全新精准体验&rdquo 是赛默飞世尔科技移液器的真实写照。Thermo Scientific Finnpipette的历史可追溯到1971年,凭借着以人为本的设计理念,坚持不断创新,缔造了许许多多世界&ldquo 第一&rdquo 的记录。我们推出了全球第一支连续可调微量移液器、第一支多道移液器、第一支可整支高压消毒的移液器、第一支彩色标记移液器。Finnpipette特别重视客户反馈,不断努力改善产品。我们始终追求提高性能、精准性和客户满意度。更多Thermo Scientific移液解决方案请查看:Thermo移液器。
  • 非变性质谱技术融合结构生物学和组成蛋白组学
    大家好,本周为大家分享一篇发表在Accounts of Chemical Research上的综述,Native Mass Spectrometry at the Convergence of Structural Biology and Compositional Proteomics [1],文章的通讯作者是美国西北大学的Neil L. Kelleher教授。生命活动由一系列生物大分子相互作用驱动,这些相互作用距今已进化了数十亿年。正如乙酰化和磷酸化等共价修饰可以改变蛋白质的功能一样,与金属、小分子和其他蛋白质的非共价相互作用也可以改变蛋白质的功能。然而,传统的蛋白质组学方法会分离非共价相互作用并使蛋白质变性,导致许多蛋白质水平的生物学信息尚未被发现或仅靠推断获取。就在过去的几年中,质谱(MS)技术不断发展,目前已具备维持内源性蛋白复合物完整组成并表征其特征的能力。采用非变性质谱(Native Top-Down MS, nTDMS)激活蛋白复合体,可以释放部分或全部亚基,通过与中性气体或固体表面碰撞,在进一步表征之前分离。亚单位质量、母离子质量和活化亚单位的碎片离子可以拼凑出复合物的精确分子组成,包括蛋白质修饰在内的相互作用也能被阐明,并与人类疾病状态下的功能障碍联系起来。在本综述中,作者详述了nTDMS技术目前的发展和未来在表征更大的生物复合体方面所面临的挑战。目前,nTDMS可以靶向内源性核小体复合物,而病毒颗粒、外泌体和高密度脂蛋白颗粒表征或将在未来几年内得到深度解析。为充分解决这类大小为兆到千兆道尔顿级别的复合物的表征,未来的工作将主要集中于非变性分离、单离子质谱(Single ion mass spectrometry)和新的数据类型。为了实现这一目标,Kelleher教授课题组近年来发展了一系列策略,概括为以下几个方面(1)靶向非变性质谱表征整个核小体(图1);(2)非靶向蛋白质组学深度解析内源性蛋白质复合物;(3)单分子质谱(Single molecule MS)。其中提到,阻止对非变性蛋白质进行整体表征最大的障碍之一可能是分子量分布于100 kDa到1 MDa的复合物的分辨率较差。而电荷检测MS通过直接测量离子电荷提供大型复合物的分子分布。此外有研究表明,通过对单分辨离子进行centroiding和rebinning,Orbitrap仪器的有效分辨率可以在电荷检测工作流程之上大大提高。在这种被称为“单离子质谱法(Individual Ion Mass Spectrometry, I2MS)”的技术中,可以同时检测数千个单离子,并允许在复杂混合物中分配约500种proteoforms的质量(前提是它们先前已被表征并且在数据库中可查找)。I2MS可用于分析病毒样颗粒和AAVs(图2)。图1. 核小体表征图2. 病毒颗粒检测未来随着技术的发展和创新,nTDMS都将扩展到研究极其稀缺和高度异质的生物复合物,了解蛋白质间的相互作用以及它们是如何出错的(例如错误折叠,在功能失调的化学计量和组成中形成复合物)。这些将不仅为疾病治疗的发展提供信息,还将深化我们在分子水平上对生命的理解。撰稿:张颖编辑:李惠琳原文:Native Mass Spectrometry at the Convergence of Structural Biology and Compositional Proteomics
  • 质谱技术在靶向蛋白组学及脂质结构分析研究进展
    p style=" text-align: justify "   美国威斯康星大学麦迪逊分校的李灵军教授在《美国质谱学会杂志》上发表了题为& quot Faces of Mass Spectrometry”的文章。 /p p style=" text-align: justify text-indent: 2em " strong 进展1: /strong /p p   本月,李教授的团队在分析化学杂志上发表了一篇文章“HOTMAQ: A Multiplexed Absolute Quantification Method for Targeted Proteomics”。 /p p style=" text-align: center " img title=" 1111111.webp.jpg" alt=" 1111111.webp.jpg" src=" https://img1.17img.cn/17img/images/201902/uepic/04527389-10d7-4d2c-9392-40078abb0c71.jpg" / /p p style=" text-align: justify "   靶向蛋白组学中的绝对定量研究由于复杂背景下的低特异性、有限的分析通量及广泛的动态范围等诸多因素而具有挑战性。为解决这些问题,其课题组开发了一个混合offset-triggered多路复用绝对量化(HOTMAQ)方法。此方法结合了具有成本效益的质量差异和等压标签,能够在MS1前体扫描中同步构建内部标准曲线,在MS2水平上实时识别多肽,并在同步前体选择(SPS)-MS3光谱中对目标蛋白进行质量偏移触发的精确定量。这种方法将目标定量蛋白质组学的分析通量提高了12倍。采用HOTMAQ策略对临床前阿尔茨海默病候选蛋白生物标志物进行高精度验证。HOTMAQ的高通量和定量性能,加上样品的灵活性,使其广泛应用于靶向肽组学、蛋白质组学和磷蛋白组学的研究中。 /p p style=" text-align: justify text-indent: 2em " strong 进展2: /strong /p p style=" text-align: justify "   清华大学欧阳证和瑕瑜教授与普渡大学学者共同在《自然通讯》上发表“Online photochemical derivatization enables comprehensive mass spectrometric analyses of unsaturated phospholipid isomers” 文章。 /p p style=" text-align: center " img width=" 600" height=" 304" title=" 22222222.webp.jpg" style=" width: 600px height: 304px " alt=" 22222222.webp.jpg" src=" https://img1.17img.cn/17img/images/201902/uepic/f219c925-a096-478e-a956-d221f5b56fbd.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: justify "   质谱技术是脂质结构分析的主要工具,但如何在不饱和脂质中有效定位碳碳双键(C=C)以区分C=C位异构体仍是一个难题。本文通过Paterno-Buchi反应与液相色谱-串联质谱联用在线C=C衍生化,开发了大型的脂质分析平台。这为脂质C=C位异构体提供了丰富的信息,揭示了牛肝脏中200多种不饱和甘油磷脂的C=C位,鉴定出55组C=C位异构体。通过对乳腺癌患者和2型糖尿病患者血浆样本的分析,其课题组发现C=C同分异构体的比例受个体丰度的影响较小,这说明同分异构体比例可能用于脂类生物标志物的发现。 /p p & nbsp /p
  • 布鲁克预计Q4营收6.2-6.25亿美元 2021突破性机遇在蛋白组学
    第39届摩根大通2021年数字医疗大会上,布鲁克总裁兼首席执行官Frank Laukien分析了布鲁克Q4的营收及发展情况。据其介绍,预计2020年Q4,布鲁克的营收将在6.2亿至6.25亿美元之间,大大高于当下华尔街普遍估计的5.87亿美元。虽然该公司此前预计Q4营收较上年同期下滑2% - 6%,但现阶段预计增长3% - 4%,主要得益于有机营收增长和汇率效应的推动。  Laukien表示,布鲁克预计2021年的营收和每股收益同比增长“相当强劲”,有机营收增长将达到“高个位数”。在评估公司的潜在市场时,Laukien强调蛋白质组学、空间单细胞生物学是“突破性的机遇”。  布鲁克在蛋白质组学方面的发展很大程度上是由其timsTOF质谱技术和捕获离子迁移谱(TIMS)技术推动的。他说,到目前为止,Bruker已经安装了250台timsTOF仪器,并表示,公司致力于在血浆蛋白质组学方面做出更大的努力。  鉴于布鲁克在血浆蛋白质组学方面的布局,蛋白质组学公司Seer周一表示已经与布鲁克签署了一项非排他性的商业协议。Laukien说:“我们认为Seer在蛋白质组学和蛋白质基因组学的愿景是准确的,我们期待与他们合作。” 此外,Laukien还介绍了该公司进入单细胞蛋白质组学领域的进展,其引用了马克斯普朗克生物化学研究所的研究人员最近发表的一篇论文,该论文使用了改良版的timsTOF Pro进行单细胞蛋白质组学研究。  Laukien指出,布鲁克在去年9月份收购了Canopy Biosciences,这使该公司在空间生物学和单细胞靶向多组学方面获得了新的能力。此外,布鲁克还进入了SARS-CoV-2分子检测领域,2020年从这项业务中创收约3000万美元。Laukien表示,布鲁克预计2021年病毒和SARS-CoV-2检测的增长将达到两位数。
  • 赛默飞世尔与医科院基础所联合成立临床蛋白组学合作实验室
    2010年12 月9日 ,中国北京&mdash &mdash 中国医学科学院基础医学研究所与全球科学服务领域的领导者赛默飞世尔科技临床蛋白组学合作实验室揭牌仪式在基础所新科研楼举行,合作实验室的成立标志着双方将在临床蛋白组学领域展开全面合作,通过赛默飞世尔科技分析设备及技术支持以期帮助医科院在临床蛋白组学方面的研究工作取得更大的进展。 医科学院基础所党委书记兼所长王恒女士,副所长朱大海先生、中心实验室主任郑直先生等多位领导和赛默飞世尔科技科学仪器事业部中国区商务运营总监裴立文先生、科学仪器事业部市场部经理王勇为博士、仪器事业部生命科学质谱北区销售经理熊先宝先生等参加了揭牌仪式。 朱大海副所长发表讲话 首先,朱大海先生发表了即兴讲话,希望通过与赛默飞世尔科技的合作将基础所临床蛋白组学方面的研究切实向前推进,希望依托赛默飞世尔科技的技术支持,将仪器的作用充分发挥出来为基础所的科研工作做出贡献,并对双方的合作表示期待。 裴立文先生随后发表讲话,简单介绍了公司的架构、历史、品牌及产品,并对基础所的科研水平表示赞赏,对于合作实验室的成立,赛默飞世尔科技会一如既往的提供高品质的产品及技术服务,富于经验的优秀应用团队和售后团队会竭诚保障基础所的研发工作顺利进行,希望通过双方在蛋白组学领域相互学习、分享经验与技术,达到共赢。 裴立文先生致辞 郑直先生为大家介绍了中心实验室的工作业务情况和以后的发展方向,也提出希望能够通过与赛默飞世尔科技的合作能够将中心实验室的作用充分发挥出来,并希望获得赛默飞世尔科技的多方面支持。 郑直主任做中心实验室简介 王勇为博士最后为大家介绍了赛默飞世尔科技的品牌和在蛋白组学领域的一流技术,以及从样品前处理到得到最终结果的全面解决方案,重点介绍了赛默飞世尔科技LTQ-Orbitrap质谱仪在综合定量蛋白组学领域所能发挥的重大作用,分享了成功的案例。 赛默飞世尔王勇为博士为大家做公司及产品介绍 最后,王恒所长与裴立文先生共同签署了蛋白组学合作实验室协议,并为合作实验室揭牌,合作实验室正式成立。 揭牌仪式 如想了解赛默飞世尔生命科学领域更多信息, 可拨打服务电话:800-810-5118,400-650-5118(手机),发邮件至sales.china@thermofisher.com ,或浏览我们的网站www.thermo.com.cn。 关于Thermo Fisher Scientific(赛默飞世尔科技) 赛默飞世尔科技 (Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约3万5千人,在全球范围内服务超过35万家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域所遇到的从常规测试到复杂研发的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健、科学研究、安全和教育领域的客户提供一系列实验室装备、化学药品及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科学研究的飞速发展不断改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。更多信息,请浏览公司网站:www.thermofisher.com (英文) 或www.thermo.com.cn (中文)。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制