当前位置: 仪器信息网 > 行业主题 > >

乙酰杠柳寡糖对照品

仪器信息网乙酰杠柳寡糖对照品专题为您提供2024年最新乙酰杠柳寡糖对照品价格报价、厂家品牌的相关信息, 包括乙酰杠柳寡糖对照品参数、型号等,不管是国产,还是进口品牌的乙酰杠柳寡糖对照品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙酰杠柳寡糖对照品相关的耗材配件、试剂标物,还有乙酰杠柳寡糖对照品相关的最新资讯、资料,以及乙酰杠柳寡糖对照品相关的解决方案。

乙酰杠柳寡糖对照品相关的资讯

  • 我国寡糖链检测试剂盒(荧光毛细管电泳法)获批上市
    据国家药监局网站消息,近日,国家药品监督管理局批准了江苏先思达生物科技有限公司“寡糖链检测试剂盒(荧光毛细管电泳法)”创新产品注册申请。该产品系我国自主研发,采用毛细管电泳法对人体血清样本中的9个寡糖链进行定性检测,用于临床上乙肝肝硬化患者原发性肝细胞癌的辅助诊断。该产品通过非侵入性检测方法辅助诊断,有助于原发性肝细胞癌防治。药品监督管理部门将加强该产品上市后监管,保护患者用械安全。
  • 沃特世在WCBP2013年会上推出业界首个应用于蛋白质、多肽及寡糖分析的综合平台
    沃特世在WCBP 2013年会上推出业界首个可应用于蛋白质、多肽及寡糖分析的LC/MS综合平台   全新表面带电杂化颗粒色谱柱以及寡糖制备GlycoWorks工具包的推出进一步完善了生物制药平台解决方案   美国华盛顿DC - 2013年1月28日   沃特世公司(NYSE:WAT)今日在WCBP 2013研讨会上再次强调其将加大对推进生物药物表征研究技术的投入。沃特世今日宣布了UNIFI® 生物制药平台解决方案,用于肽图分析的全新ACQUITY超高效液相色谱(UPLC® )CSH130 C18色谱柱和XSelect™ HPLC CSH130 C18色谱柱,以及用于寡糖标记和样品制备的配套GlycoWorks™ 工具包。   上述创新产品表明,沃特世一直致力于为生物创新药物研发公司、生物仿药物研发公司以及相关CRO公司提供具有针对性的解决方案。新推出的产品不但进一步优化了常规生物药物分析技术,而且使对糖蛋白的分析更加深入与便捷。在对糖蛋白的全面分析中,取得详细的蛋白质一级结构仅仅是第一步,还需进行更加全面的修饰寡糖分析。而随着在研发和生产过程中对蛋白糖基化知识越来越深入的认知,生物制药公司对糖基化蛋白药物的结构表征要求也在逐步提高,并且这也是日益严格的监管要求,并最终确保生物药物的安全有效。   沃特世UNIFI生物制药平台解决方案   新一代UNIFI作为以科学数据体系为框架的生物制药解决方案平台,以UPLC/MS数据为基础,可对完整蛋白质、肽图以及寡糖进行分项以及综合分析。而且,在沃特世所提供的拓展解决方案中,能够为网络实验室工作组内的多个四级杆飞行时间(Q-Tof) 质谱和光学检测仪器提供控制、记录及分析支持。配备了UNIFI的系统的生物制药公司能够在整个研发和质量控制机构中都能灵活地完成高分离度UPLC生物分离和高效质谱分析工作。   最新发布的寡糖分析工作流程进一步扩充了平台性能,使其可用于支持应用荧光检测的日常游离寡糖验证和糖谱分析。结合高效UPLC HILIC (亲水作用色谱) 、沃特世提供的校准标准品与试剂、以及NIBRT/沃特世GlycoBase 3+ UPLC 寡糖数据库,不但可使使用单位在寡糖验证、定量及糖谱分析方面信心十足,而且大大提高工作效率。   GlycoBase 3+ 数据库是由爱尔兰国家生物工艺研究培训所(NIBRT)Pauline Rudd教授的科研团队研发,是首个寡糖色谱保留数据库,以多聚葡萄糖校准数据为单位显示,涵盖了现代生物药物糖蛋白的各种寡糖结构。   UNIFI生物制药平台解决方案的特点: ACQUITY UPLC H-Class 和 H-Class Bio系统采用颇具特色的生物惰性材料和Auto-Blend Plus™ 四元溶剂管理技术,为高分离度生物分离的实现提供了可能性 沃特世为多肽、蛋白质和寡糖分离,分别提供适合的色谱柱,良好的质量控制又保证了实验结果的重现性 沃特世分析标准品及试剂覆盖了生物药物分析的众多方向,如SEC(体积排阻色谱技术)分析、游离寡糖的分析校准、完整蛋白质谱分析、肽图分析,以及游离寡糖制备实验流程的系统查验标准品 高灵敏度精准质量兼具定性和定量功能的台式高分辨质谱系统——Xevo® G2-S Q-Tof 质谱仪采用了沃特世独有的StepWave™ 技术,该技术是一种独特的离轴离子传输技术,可使质谱分析具备稳定性、重现性和高灵敏度 UNIFI科学信息系统,一个可以灵活控制仪器、处理先进数据并生成复杂报告的交互式工作流程驱动数据的先进平台,符合GxP实验室相关规范,使得例行的工作站或工作组实验室配置部署成为可能 GlycoBase 3+数据库,首个含有游离寡糖色谱保留数据的资料库,以多聚葡萄糖校准数据为单位显示,并涵盖大量生物药物的多种寡糖结构。   沃特世表面带电杂化颗粒技术色谱柱   沃特世全新CSH130颗粒技术色谱柱为UPLC和HPLC在肽图和蛋白组学上的应用提供独特非常好的灵敏度。ACQUITY UPLC® CSH130 C18及XSelect™ HPLC CSH130 C18色谱柱为多肽分析纯化、UPLC/LC/LC-MS分析数据带来了全新的标准,目前上市的产品有不同粒径及柱规格。   该色谱柱创新引入沃特世用于表面带电杂化颗粒的合成方法,使得填料颗粒表面均匀带有弱的正电荷。该填料技术使得色谱柱在与弱酸调节剂(如甲酸)共同使用时,表现出更好的分离度与灵敏度——其性能与采用对MS信号抑制性离子对添加剂(如三氟乙酸TFA)的标准LC-MS方法的分离性能相当,质谱信号更加出色。   沃特世UNIFI生物制药平台解决方案在寡糖分析、生物仿制药比较性研究、肽图分析上的应用优势在WCBP 2013的系列海报中进行了展示。   GlycoWorks系列消耗品   沃特世全新推出的GlycoWorks系列消耗品包含用于寡糖分析制备全过程各个步骤所需要的不同试剂和耗材以及配套的实验方法,从样品制备、荧光标记、SPE净化和相应的标准品,到具体操作方法和故障处理指南。   此产品线包含2种GlycoWorks产品,分别用于高通量需求和单次分析,均包含一套荧光标记组件。每套制备组件中包含:配有多种可供选择的糖苷酶,用于游离寡糖富集和净化的HILIC SPE产品,一套配合方法验证、开发和故障排除的标准品。GlycoWorks 2-AB标记组件包含用于游离寡糖标记过程的四种反应试剂。   沃特世支持游离寡糖分析的其它消耗品包括:经过专门质量检测的高分离度UPLC BEH寡糖分析色谱柱,经过2-AB标记的右旋葡聚糖水解物标准品,和一套经过2-AB标记的人IgG寡糖标准品。   关于沃特世公司(www.waters.com)   50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。   作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。   2012年沃特世公司拥有18.4亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。   ###   Waters、ACQUITY UPLC、UPLC、UltraPerformance LC、XSelect、Xevo、UNIFI、GlycoWorks、AutoBlend Plus、Stepwave、Q-Tof和CSH是沃特世公司商标。   沃特世联系方式   媒体联系   Brian J. Murphy,   公共关系   +1 508-482-2614   brian_j_murphy@waters.com   叶晓晨   电话:021-61562643   xiao_chen_ye@waters.com
  • 法国ELICITYL-OLIGOTECH寡糖标准品哪家有,中国区总代上海甄准生物
    热烈庆祝上海甄准生物科技有限公司与寡糖标准品ELICITYL-OLIGOTECH签订战略合作协议。甄准生物作为ELICITYL-OLIGOTECH中国总代理,为国内科研工作者提供优质的法国寡糖标准品。 法国寡糖标准品ELICITYL-OLIGOTECH坐落在法国克洛尔,专注于寡糖标准品,现货库存产品超400种.主要有以下几类产品:天然多糖和寡糖类提取物;低聚糖;糖胺聚糖;氨基糖苷类及衍生物;新糖蛋白…。,应用于生物医药,化妆品,保健品和农业等行业的科研领域。 热销产品: 蔗果二糖至十二糖;纤维二糖到八糖;麦芽二到十糖;Globo寡糖;岩藻寡糖… 上海甄准专注优质分析标准品,真心倾听您每一个标准,与您一起为国内科学事业发展献绵薄之力。药物分析: Extrasynthese, EP, TRC, USP, BP, JP, LGC, HPC…同位素分析: CIL, OMICRON, Medical Isotopes...糖类分析: ELICITYL-OLIGOTECH, GlycoSci, Iduron, Megazyme, Dextra…脂类分析: Larodan, NU-CHEK, AVANTI…标准溶液: Inorganic Venture, Reagecon, GFS…纳米材料: Phosphorex, Spherotech, NANOCS, ProChimia, MAGSPHERE…聚合物分析: PEGWorks, SP2, Laysan, Polymer Source, TDB…环境分析: DRE, Chemservice, Accustandard, CHIRON…其他: ZZSTANDARD, NIST, WAKO, IRMM, Lumiprobe, BACHEM... 订购进口标准品,请联系上海甄准生物科技有限公司
  • 中国标准化协会发布《褐藻酸寡糖含量的测定》征求意见稿
    由青岛和海生物科技有限公司等单位共同起草的中国标准化协会标准《褐藻酸寡糖含量的测定》已完成征求意见稿,现公开征求意见。诚挚邀请各相关单位和个人对上述标准提出宝贵的意见和建议。请于2024年3月23日之前将《征求意见表》反馈至以下联系方式。 联 系 人:胡柏松  姜宇鑫联系方式:010-68481356, hbs@china-cas.org;010-88416788, jyx@china-cas.org;地  址:北京市海淀区增光路33号中标协写字楼,100048;中国标准化协会2024年2月22日附件:1-1《褐藻酸寡糖含量的测定》(征求意见稿).pdf1-2《褐藻酸寡糖含量的测定》(征求意见稿)编制说明.pdf1-3《褐藻酸寡糖含量的测定》征求意见表.docx
  • 广西肥料协会发布《复合肥料 褐藻寡糖含量的测定 分光光度计法》团体标准
    各有关单位:依据《广西肥料协会团体标准管理办法(试行)》相关规定,由南宁汉和生物科技股份有限公司提出,南宁汉和生物科技股份有限公司、新胜利工业集团有限公司等单位编写,经过调研、立项、起草、广泛征求意见,专家组进行了评审论证,现批准发布《复合肥料 褐藻寡糖含量的测定 分光光度计法》(标准号:T/GXAF 0013-2023)为本协会团体标准,该标准于2023年6月13日发布,2023年7月1日实施,现予以公告。 广西肥料协会2023年6月13日 广西肥料协会关于发布《复合肥料 褐藻寡糖含量的测定 分光光度计法》团体标准的公告.pdfTGXAF 0013-2023《复合肥料 褐藻寡糖含量的测定 分光光度计法》(水印稿)-20230613.pdf
  • 国标蜂蜜中掺假淀粉糖浆的测定-离子色谱法
    国标GB/T21533-2008蜂蜜中掺假淀粉糖浆的测定-离子色谱法 国标GB/T21533-208检测蜂蜜中普遍掺假而加入的淀粉糖浆。该检测常见糖类的简单方法是配有氨丙基硅与高分子相或键合金属的阳离子交换树脂柱、折光检测器或低波长UV检测器的高效液相色谱,等浓度淋洗分析,但这种方法由于糖从糖醇和有机酸中分离不充分、缺乏 特异检测、灵敏度不足等问题的存在,不能满足某些应用的要求,改进糖的分析方法已受到关注,自从规定食品中总糖的含量必须在标签中注明后,糖类的分析显得尤为重要,DIONEX戴安公司提供了与该国标的一致的一种全新而且成熟的方法,方法为:在高pH条件下,使用配有脉冲安培检测器(HPAE-PAD)和高效阴离子交换柱的离子色谱使上述问题得到了解决。糖类、糖醇及寡糖、聚糖等可以在一次进样后得到高分辨的分离而无需衍生,并且可以定量到P摩尔 (10-12 mol)水平。该技术已广泛应用于常规检测和研究中,且该方法得到国际标准组织及其它官方机构的认同。醇类、二醇及醛类也可以使用该技术检测。糖醇、单糖、双糖、低聚糖和多糖的检测均使用脉冲安培检测器、金工作电极、以四电位波形检测。 戴安公司有关于蜂蜜检测的操作视频,欢迎索取010-64436740(汪小姐/汤先生) 蜂蜜中淀粉糖浆的测定--离子色谱法 1 该国标中规定了蜂蜜中果葡糖浆、麦芽糖浆、异麦芽糖浆、饴糖浆等淀粉糖浆的测定方法。本标准适用于蜂蜜中淀粉糖浆的测定。 本标准检出限:5%淀粉糖浆。 2 检测原理:蜂蜜中不含5糖(DP5)以上的寡糖,而各种淀粉糖浆中均含5糖(DP5)以上的寡糖,使用凝胶 体积排阻法去除样品中果糖、葡萄糖,将寡糖富集后直接经阴离子交换色谱-电化学检测器检测,将 5糖(DP5)以上寡糖的存在作为蜂蜜中淀粉糖浆的判定指标。 3 试剂和材料 3.1 聚丙烯酰胺凝胶微球,粒径45&mu m~90&mu m,分级分离的相对分子质量范围 100~1800,按使用 说明书进行水化和脱气。 注:可使用Bio-Gel® P-2 Gel 型聚丙烯酰胺凝胶或同等性能的凝胶材料。 3.2 凝胶层析柱:将聚丙烯酰胺凝胶(3.1)湿法装入1.5 cm× 15 cm 空柱管中,装入的凝胶高度为10cm,上端保持1cm 以上的水层,避免干涸。 3.3 层析柱架。 3.4 麦芽糖标准储备液:分别称取色谱纯麦芽糖、麦芽三糖、麦芽四糖、麦芽五糖、麦芽六糖、麦 芽七糖标准物质各10.0mg,用水分别溶解定容至10mL,配制成浓度为1mg/mL 的储备液,于棕色瓶中4℃下储存。 3.5 麦芽糖标准混合使用液:吸取一定量的糖标准储备液(3.4),按表1 用水配制麦芽糖标准混合使用液,在4℃下保存不超过30 天。该溶液用于样品色谱图中寡糖保留时间的定位。 3.6 50%氢氧化钠储备液:符合离子色谱使用纯度。 3.7 无水醋酸钠:符合离子色谱使用纯度。 3.8 0.45&mu m 样品滤膜:水性。 3.9 除非另有说明,所用试剂为分析纯,所用水符合GB/T 6682 规定的一级水。 4 仪器 4.1 离子色谱仪:配电化学检测器。 4.2 分析天平: 0.1mg 。 5 试样制备 5.1 称取混匀的蜂蜜2.0g 作为试样,用水溶解后定容至20mL,用0.45&mu m 水性滤膜过滤,滤液备 用。 5.2 将准备好的聚丙烯酰胺凝胶层析柱(3.2)中的水放尽,至下端无水珠滴下时,将样品滤液(5.1) 2.0 mL 沿柱壁慢慢加入层析柱中,恰好流至凝胶上方无液时,加入3.0mL 水冲洗柱壁,又至凝胶上 方无液时,再加入5.0mL 水冲洗凝胶柱。注意每次在层析柱上方加液(或水)的时机,应是前次加 液(或水)的层析柱体上端液体恰好流尽、下端恰好无液体滴出。弃去上述三次共10.0mL 流出液后, 于层析柱下方接一只2mL 具塞塑料离心管,从柱上方加入2mL 水,收集这2mL 流出液至离心管中, 盖紧离心管塞,摇匀后作为待测样品溶液,24 小时之内测定。层析柱中加入50mL 水冲洗,至全部流出后,该柱直接用于处理下一个样品。 5.3 将纯蜂蜜作为阴性对照品,蜂蜜中掺入5%市售果葡糖浆、蜂蜜中掺入5%市售麦芽糖浆的样品 作为阳性对照品,按照5.1 和5.2 进行操作。 6 测定 6.1 离子色谱条件 6.1.1 色谱柱:CarboPac&trade PA200 3 mm× 250 mm (带CarboPac&trade PA200 3 mm× 50 mm 保护柱) 或相当性能的分离柱,柱温30℃; 6.1.2 流动相:A:100%水;B:200mmol/L 氢氧化钠,200mmol/L 醋酸钠。梯度洗脱条件见表2。 6.1.3 检测器:电化学检测器;Au 工作电极;Ag/AgCl 参比电极。检测池温度30℃。糖检测波形 参见表3。 6.1.4 进样量:20&mu L 6.2 样品测定 依次将麦芽糖标准混合使用液(3.5)、纯蜂蜜阴性对照品(5.3)、含5%果葡糖浆的蜂蜜(5.3)和含5%麦芽糖浆的蜂蜜等阳性对照品(5.3)的寡糖收集液注入离子色谱仪中,观察离子色谱图, 当谱图与附录中参考谱图基本吻合时,方可进行实测样品的测试。 7 结果判定 分析比较纯蜂蜜阴性对照样品和含5%糖浆的蜂蜜阳性对照样品的寡糖谱图,找到两者之间有明 显差异的&ldquo 指纹区&rdquo ,并以此作为纯蜜中掺入淀粉糖浆的判定指标。任一掺入果葡糖浆的蜂蜜样品, 在麦芽五糖~麦芽六糖之间和麦芽六糖~麦芽七糖之间有两个典型的&ldquo 指纹峰&rdquo P1和P2,根据这两个峰的出现可判断蜂蜜中掺入果葡糖浆。任一掺入麦芽糖浆的蜂蜜样品,在麦芽五糖~麦芽六糖之 间、麦芽六糖~麦芽七糖之间以及麦芽七糖之后,有三个典型的&ldquo 指纹峰簇&rdquo P1、P2和P3,根据这三个峰簇的出现可判断蜂蜜中掺入麦芽糖浆(包括高麦芽糖浆、异麦芽糖浆和饴糖糖浆)。除了描述出的基本特点外,不同工艺条件下生产的糖浆还可见到其他出峰位置有其他峰形特征的微量寡糖峰,但不影响&ldquo 指纹区&rdquo 的基本特征和判定。附录A中的图A1为麦芽糖标准混合使用液的定位谱图;图A2为纯洋槐蜜、枣花蜜、椴树蜜、荆条蜜、油菜蜜的寡糖谱图;图A3为不同蜜种掺入5%的不同果葡糖浆时的寡糖谱图、图A4为不同蜜 种掺入5%的不同麦芽糖浆时的寡糖谱图。 附录A (资料性附录) 蜂蜜中淀粉糖浆测定的相关色谱图 DIONEX戴安中国市场部
  • 蜂蜜中糖类营养物质测定与掺假蜂蜜鉴别
    蜂蜜是一种常见的健康食品,口味香甜,营养丰富。蜂蜜主要成分是糖类,包括单糖、二糖、低聚糖和多糖等,此外还含有人体需要的大部分矿物质和各种维生素、有机酸、氨基酸、生长素等营养物质,所以其药用价值也非常广泛,可作为中成药辅料,也对神经衰弱等慢性疾病有良好的辅助疗效。由于蜂蜜广泛的营养价值,在市场上广受欢迎,但假冒伪劣产品随之而来,且名目繁多,对食品安全构成重大威胁。有关蜂蜜掺假检测方法较多,这里分两类进行简单汇总:现有标准和法规方法、近年来新技术新方法。蜂蜜掺假相关综述文章也比较多[1-3],感兴趣的读者可查阅相关文章。一、现有标准和法规方法国标GB14963-2011食品安全国家标准蜂蜜中定义,蜂蜜是“蜜蜂采集植物的花蜜、分泌物或蜜露,与自身分泌物混合后,经充分酿造而成的天然甜物质”,其中明确规定果糖和葡萄糖含量至少要达到60%,蔗糖含量不得超过10%。市场上蜂蜜掺假形式主要包括添加葡萄糖、果糖、蔗糖、C3 植物糖浆(甜菜糖浆、大米糖浆)、C4植物糖浆(玉米糖浆、甘蔗糖浆)、高果糖浆和果葡糖浆等等。针对添加C4植物糖浆掺假,依据国标GB/T 18932.1-2002 蜂蜜中碳-4植物糖含量测定方法-稳定碳同位素比率法可鉴定,但其不能鉴别添加C3植物糖浆的蜂蜜。国标GB/T 21533-2008 中,以淀粉糖浆中含有的五糖以上的低聚糖为标志物, 将低聚糖富集后采用阴离子交换色谱-脉冲安培检测器(HPAEC -PAD) 检测,可以实现对蜂蜜中淀粉糖浆掺假的检测。2020版药典也是按照五糖以上的低聚糖为标志物,检测方法为薄层色谱法。国标GB/T 18932.2-2002 蜂蜜中高果糖淀粉糖浆测定方法-薄层色谱法对蜂蜜中寡糖多糖进行定性测定,也可鉴别蜂蜜中是否含有淀粉糖浆。二、近年来新技术新方法现代分析技术的发展为蜂蜜的鉴别提供了越来越多的新方法,屈亮亮等[4]采用基质辅助激光解吸电离质谱(MALDI-MS)分析了蜂蜜及其掺假样品中的糖类以及小分子代谢物。在正离子模式下,通过比较蜂蜜样品和掺假样品的MALDI-MS谱图在多糖聚合度以及糖类分布趋势上的差异,可对掺假样品进行快速鉴别。在负离子模式下通过寡糖异构体组成上的差异,可对掺假样品进行高通量鉴别。刘彩云等[5]采用高效液相色谱-电化学联用技术对中蜂蜂蜜中所含的 12 种酚类化合物进行了鉴别和含量测定,构建了陕西不同地区中蜂蜂蜜的酚类色谱指纹图谱。并对共有峰进行匹配,提取特征峰信息,可对掺假蜂蜜进行鉴别。杨远帆等[6]通过测定蜂蜜和果葡糖浆中脯氨酸含量后发现,蜂蜜中氨基酸的量随果葡糖的掺入量的增加呈线性减小趋势,由此建立了一种基于测定脯氨酸含量鉴别蜂蜜掺假的有效方法。杨心浩等[7]通过研究,建立了采用红外光谱测定蜂王浆品质并基于 NIR 光谱结合水光谱组学建立了检测麦卢卡蜂蜜掺假糖浆的新方法。核磁共振技术结合化学计量学分析方法也成功运用于蜂蜜和其它食品的分析检测中。Bertelli 等[8]比较了一维(1D)和二维(2D)高分辨核磁共振(nuclear magnetic resonance,NMR) 对掺杂糖浆的蜂蜜的检测效果, 发现1D 核磁谱有较高的预测正确率(95.2%)。不同的蜂蜜来源组成不同产生的气味不同, 从而在电子鼻气体传感器中产生的指纹图谱也不同。裴高璞等[9]发现电子鼻对掺假蜂蜜比较敏感,LDA模式识别算法可以将纯蜂蜜样品与掺假蜂蜜样品很好的区分开,识别正确率可达94.7%。江瑶等[10]基于代谢组学技术,采用超高液相色谱串联四级杆轨道离子阱高分辨质谱(UHPLC-Q Exactive Obitrap LC-MS)对样本原始数据进行采集,获取的数据通过多元统计分析实现对比较样品组的区分,找到的可能的标志性代谢物进行二级质谱分析寻找碎片离子,初步完成标志性代谢物的定性工作。对真蜂蜜与已知劣质蜂蜜进行区分。由于蜂蜜成分的复杂性,单一的鉴别方法也可能无法达到鉴定目的,这时可以考虑将多种方法联合使用, 多组分多指标对蜂蜜进行检测。 根据2020版药典蜂蜜含量测定项[11]下方法采用聚合物氨基柱分析4种常见糖,使用电雾式检测器(CAD)替代示差检测器进行测定取得了较好的效果。CAD作为一款通用型检测器,被2020版药典所收载,其具有良好的动态范围、一致的响应和出众的灵敏度,适用于大部分非挥发性和半挥发性有机物的检测,该检测器用于糖的检测,较示差检测器灵敏度更高,而且适用于梯度洗脱条件。图1是CAD测定某蜂蜜样品中4种常见糖的谱图。图1 蜂蜜中4种糖含量测定1:果糖 2:葡萄糖 3:蔗糖 4:麦芽糖近年来常用的蜂蜜掺假手段中,利用果葡糖浆掺假[12,13]形式最为普遍。果葡糖浆是由植物淀粉水解制得,如玉米或红薯淀粉,加工简单,成本低廉。蜂蜜中不含五糖(DP = 5)以上的寡糖,但在果葡糖浆中却广泛存在。2020版药典据此在蜂蜜检查项下采用薄层色谱法对寡糖进行鉴别[11],该方法灵敏度差、误差较大,存在很大的局限性。 赛默飞采用液相色谱法,聚合物氨基柱分离、电雾式检测器(CAD)检测,可以测定不同聚合度的寡糖,并依据五糖(DP = 5)以上寡糖的存在作为蜂蜜中果葡糖浆的判定指标,方法灵敏度高,并且具有很好的普及性。混合对照品与样品测定谱图见图2和图3。图2 寡糖混合对照品1:麦芽糖和异麦芽糖 2:麦芽三糖 3:麦芽四糖 4:麦芽五糖 5:麦芽六糖 6:麦芽七糖图3 果葡糖浆和蜂蜜样品叠加(1-果葡糖浆,2-蜂蜜样品)1:麦芽五糖 2:麦芽六糖图3可以看出该样品中未检出聚合度5以上(DP 5)的寡糖。为了考察方法准确度,我们在空白蜂蜜样品中添加麦芽五糖、麦芽六糖和麦芽七糖进行了加标回收率实验,添加浓度水平分别为为0.10、0.25和0.50mg/g,加标回收率在95.2%-100.7%之间,证明方法准确度较高。另外本方法灵敏度较高,添加1%果葡糖浆即可明显检出。HPLC-CAD方法可以方便地测定蜂蜜中糖类营养物质含量,对掺假蜂蜜中的果葡糖浆具有高灵敏度的检出,方法操作简便,保障了蜂蜜的品质,为百姓餐桌食品安全保驾护航。参考文献:1. 岳锦萍, 徐雨欣, 范佳慧, 邢 璇, 任 虹. 食品安全质量检测学报, 2018, 9(19): 5138-5145.2. 郑优,王欣,毛锐. 食品与发酵科技, 2018,54(6):76-82.3. 杜宗绪.保鲜与加工, 2015, 15(5): 67-71.4. 屈亮亮. 基于MALDI的高通量蜂蜜糖浆掺假检测及植物源鉴别分析[D]. 南昌:南昌大学.5. 刘彩云. 中蜂蜂蜜酚类色谱指纹图谱构建及加工对蜂蜜中酚类物质影响[D]. 西安:西北大学.6. 杨远帆,倪辉,吴黎明.茚三酮法测定蜂蜜及果葡糖 浆中的氨基酸含量[ J].中国食品学报, 2013, 13 (2) : 171 -176.7. 杨心浩,基于红外光谱分析蜂王浆品质及鉴别麦卢卡蜂蜜掺假的方法研究[D].广州:暨南大学.8. BERTELLI D, LOLLI M, PAPOTTI G, et al. Detection of honey adulteration by sugar syrups using one-dimensional and two-dimensional high-resolution nuclear magnetic resonance [J]. Journal of Agricultural and Food Chemistry, 2010, 58(15): 8495-8501.9. 裴高璞, 史波林, 赵镭, 等.典型掺假蜂蜜的电子鼻信息变化特征及判别能力[J].农业工程学报, 2015, 31(1): 325-331.10. 江瑶, 基于代谢组学技术寻找蜂蜜标志性代谢物并探究其应用[D].济南: 山东师范大学. 11. 国家药典委员会 . 中华人民共和国药典 [ M ] . 一部. 北京: 中国医药科技出版社, 2020: 374-375. 12.任雪梅, 胡梅, 周传静, 王文特, 吴裕健. 山东农业科学, 2013, 45(2): 117-119.13.黄文诚, 蜜蜂杂志, 2010, 4: 18-19.赛默飞世尔科技(中国)有限公司刘兴国供稿附:食品安全事关人民群众的身体健康和生命安全,关系中华民族的未来。俭以养德、诚信为本是中华民族的传统美德,保障食品安全更需要尚俭崇信、德法并举。进入全面小康社会,人民群众对食品安全营养健康的需求不断提升,必须坚持“四个最严”,严格源头治理,严格过程监管,严厉打击食品安全违法犯罪。全国食品安全宣传周(China Food Safety Publicity Week),是国务院食品安全委员会办公室于2011年确定在每年六月举办的,通过搭建多种交流平台,以多种形式、多个角度、多条途径,面向贴近社会公众,有针对性地开展风险交流、普及科普知识活动。2021年全国食品安全宣传周活动已于6月8日正式启动,而本次活动的主题为“尚俭崇信 守护阳光下的盘中餐”。作为保障食品安全的不可或缺一环,科学仪器在“保护舌尖安全”的过程中发挥了非常重要的作用!为此仪器信息网在食品安全宣传周期间特推出专题“关注食品安全——仪器人在行动”,一起领略下仪器人守护食品安全的风采!
  • 逐步完善糖分子指纹图谱的全方位绘制,有望实现纳米孔糖测序
    糖是一类具有重要生物学功能的大分子,具有高度复杂的化学结构。目前,糖的结构解析依赖于传统的色谱法、质谱法和核磁法等结构表征手段。虽然这些方法相对成熟,但存在检测步骤复杂、无法实时动态检测等局限性,无法满足糖基础和应用科研需求。与另一类生物大分子核酸已实现高通量测序相比,糖的结构解析技术滞后。生物纳米孔作为高度敏感的传感器,应用于核酸分子以及多肽测序,而在糖测序方向是否可行尚未被证实。  近期,中国科学院上海药物研究所研究员高召兵/副研究员夏冰清(纳米孔方向)、研究员文留青(糖化学方向)与研究员程曦(计算生物学方向)等,设计并构建了一种工程改造的生物纳米孔,识别和捕捉到糖分子官能团乙酰氨基和羧基的特征电信号,描绘了含有这两种官能团不同聚合度糖的电信号指纹图谱,并运用于混合体系中不同糖分子的结构鉴定。该工作为以生物纳米孔为基础的糖测序技术打开一扇门。相关研究成果以Mapping the Acetylamino and Carboxyl Groups on Glycans by Engineered α-Hemolysin Nanopores为题,在线发表在《美国化学会志》(JACS)上,并被选为封面文章。  科研团队将纳米孔α-溶血素(α-HL)的敏感位点113位的甲硫氨酸(M)作了基因工程改造,通过对极性、体积、电荷等氨基酸筛选,获得敏感性、特异性最佳的工程纳米孔M113R。该研究利用该纳米孔清晰地表征了单糖分子中乙酰氨基和羧基两种糖官能团的电流信号,并建立了两种糖官能团结构与电信号对应的指纹图谱。该团队利用分子动力学模拟和基因突变进一步剖析了糖分子进入该纳米孔中的动态过程,明确了纳米孔M113R识别两种官能团的分子机制。基于此,该研究利用两种官能团的特征电信号绘制了含有乙酰氨基和羧基寡糖的指纹图谱。该工作采用指纹图谱在糖混合体系中识别了含有两种基团的单糖、二糖和三糖。这一技术采用工程改造的纳米孔,无需对糖进行额外化学修饰或桥接。这一概念验证研究为高效建立糖分子指纹图谱库奠定了重要基础。  糖类化学信息的高效表征是糖结构解析中的关键挑战。与其他根据化学位移或峰强度信息的技术不同,该研究依据特征电信号分析糖分子结构信息,获得糖分子中特定官能团的特征信号,将分子结构信息与传感事件产生的特征电信号直接联系。研究发现,特征电信号能表征单糖分子的特殊结构,并可同时精确解读寡糖链的聚合度的大小,从多个维度反映糖分子结构的多方面特征。该工作获得的糖电信号指纹图谱是基于纳米孔糖结构鉴定分析的重要一步。同时,该研究提出了基于纳米孔糖测序的可能路线。随着对糖分子更多官能团和其他特定结构的鉴定,该团队逐步完善糖分子指纹图谱的全方位绘制,建立了基于电信号的糖指纹图谱库,有望实现不同于现有技术路线的高效糖结构表征——纳米孔糖测序。
  • 聚焦学术前沿,2021年全国糖科学与糖工程学术会议暨产业论坛圆满闭幕!
    仪器信息网讯 7月11日,2021年全国糖科学与糖工程学术会议暨产业论坛在重庆圆满闭幕。大会为期两天,吸引了全国近千名代表参会,仪器信息网作为大会独家直播合作媒体进行了全程报道。11日,大会进入第二天日程,上午3个分会场同时进行,分别为糖链/糖蛋白生物合成与表达体系分会、蛋白质糖基化修饰分会、多糖/寡糖结构功能与应用技术分会,共邀请40位专家、学者阐述糖科学前沿最新研究成果,分享糖工程技术的最新进展。糖链/糖蛋白生物合成与表达体系分会现场蛋白质糖基化修饰分会现场多糖/寡糖结构功能与应用技术分会现场11日下午,中国科学院院士饶子和、中国科学院微生物研究所研究员金城担任大会主持。中国科学院院士、中国生物工程学会理事长高福作了题为:《蛋白糖基化在病毒感染与免疫识别中的作用》大会开场报告。大会报告现场中国科学院院士饶子和视频主持中国科学院微生物研究所研究员金城主持中国科学院院士、中国生物工程学会理事长高福报告题目:《蛋白糖基化在病毒感染与免疫识别中的作用》高福院士在报告中指出,人类的生命活动离不开糖,并讲述了糖生物学的重要性,蛋白翻译后修饰(PTM)、糖基化修饰对肿瘤免疫治疗的影响、SARS病毒S蛋白的N糖、O糖研究现状,重点介绍了和病毒感染相关的高度糖基化免疫球蛋白PD-1,从不同表达系统PD-1蛋白的稳定性差异等方面研究,总结出保守的N糖结构导致其特异性降低、PD-1抗体药研发要尽量避开糖基化修饰位点。高福院士在会上对本次会议给予高度的肯定,同时强调了糖科学与糖工程在生命科学研究中的关键作用以及在大健康产业应用中的广阔前景和迫切需求,呼吁更多的专家学者和产业界人士关注糖科学研究与糖工程产业。此外,中国科学院上海有机化学研究所研究员俞飚、东北师范大学教授周义发等特邀嘉宾分别作了精彩的大会报告。中国科学院上海有机化学研究所研究员俞飚报告题目:《Chemical synthesis of glycans up to a 128-mer relevant to the O-antigen of Bacteroides vulgatus》细菌表面的脂多糖,是革兰氏阴性菌细胞壁的重要成分,其多糖大都具有显著的诱导炎症的效应,是细菌内毒素的主要成分。俞飚研究员在二糖水平上解决了其中难以构建的β-D-甘露糖苷键的大量合成,把正交保护的二糖砌块制备成给体和受体,通过较易控制的α-鼠李糖糖苷化反应得到四糖,通过迭代组装得到了全保护的8糖、16糖、32糖、64糖和128糖,并详细介绍了线性最长的128聚糖化学合成方法、表征方法和对免疫的影响。东北师范大学教授周义发报告题目:《天然活性多糖的构效关系研究策略》天然活性多糖构效关系的核心问题和研究策略在糖类研究中十分重要。周义发教授从建立组合法分离纯化多糖/寡糖的技术体系、综合分析方法、糖降解酶库等方面介绍了多糖构效关系的研究策略。以人参多糖为例,建立了系统纯化人参多糖的方法,得到了人参多糖的各种级分,将国内外人参多糖的研究工作关联起来。随后,张树政糖科学获奖者南方科技大学教授王鹏、西北大学教授关锋、浙江大学教授易文、中国科学院上海药物研究所研究员黄蔚作大会报告。南方科技大学教授王鹏报告题目:《为糖生物学提供工具》王鹏教授介绍了核心化学合成/酶促扩增(CSEE) 方法。从5个简单的单糖出发, 通过化学合成的方法得到8种末端含GlcNAc的N-Glycan核心结构, 然后 使用糖基转移酶通过遵循多种不同的生物合成途径来延长核心,以产生具有高度 多样性的含5-15单糖的寡糖化合物, 使用CSEE方法最终生产了含73个糖的N-糖文库(Chemical Science, 2015, 6, 5652) 。此外,王鹏教授还分享了在寡糖和糖肽合成的自动化 、合成糖组学、糖基化抗肿瘤药物等方面的研究成果。西北大学教授关锋报告题目:《基于组学的肿瘤糖生物学研究》在异常糖基化修饰与肿瘤特征的关系中,肿瘤细胞有自给自足生长信号、抗生长信号的不敏感、抵抗细胞死亡、潜力无限的复制能力、持续的血管生成、组织浸润和转移、避免免疫摧毁、促进肿瘤的炎症、细胞能量异常、基因组不稳定和突变等十大特征。关锋教授讲解了基于MALDI-TOF技术解析细胞/组织模型中糖链的表达差异,建立化学衍生结合质谱鉴别不同键型唾液酸链接的方法、乳腺癌中FUT8的分子调控机制、癌细胞平分糖链变化等。浙江大学教授易文报告题目:《乙酰葡萄糖胺修饰(O-GlcNAc)的研究》O-GlcNAc修饰在生物体内极其重要,具有单糖、可逆修饰、对环境敏感、修饰丰度低等特点。修饰协调胚胎发育、免疫应答及细胞分化。而修饰异常则会导致肿瘤病变、发育缺陷、代谢失衡。易文教授从如何捕捉O-GlcNAc修饰、如何确定O-GlcNAc修饰的蛋白、O-GlcNAc如何调控蛋白的功能等三个关键问题,介绍团队对O-GlcNAc的研究。中国科学院上海药物研究所研究员黄蔚报告题目:《蛋白糖基化调控方法及其在糖类药物研究中的应用》蛋白质糖基化可以提高药物治疗效果和降低毒副作用,但蛋白结构复杂多样,通过表达体系调控N-糖基化具有一定挑战性。黄蔚研究员建立和发展了细胞表面受体糖链编辑方法与技术,利用各类Endo糖苷酶及其突变体的底物选择性,分别对细胞表面糖链进行亚型选择性“删除”和“插入”操作,实现对膜蛋白糖基化的结构编辑。此外,黄蔚研究员还分享了在抗体药物糖基化的调控策略、基于糖基化的药物受体分子模型、GPCR等药物受体糖基化的研究。报告结束后,中国生物工程学会糖生物工程专业委员会主任委员、大会主席杜昱光主持产业论坛。本次论坛聚焦大健康背景下糖工程产业的机遇与挑战、糖科学研究转化中存在的问题以及未来糖工程产业的发展方向等。中国生物物理学会糖生物学分会会长王鹏、中科院微生物生理与代谢工程重点实验室主任陶勇、华熙生物科技股份有限公司首席科学家郭学平、东北师范大学生命科学学院院长周义发、北京同仁堂股份有限公司科学研究院部长范国强、国家糖工程技术研究中心副主任肖敏、澳门国际中草药糖科学研究学会会长赵宁、先正达集团(中国)生物农药产品线经理宋荣,共同上台参与论坛的讨论。中国生物工程学会糖生物工程专业委员会主任委员、大会主席杜昱光主持糖工程产业论坛现场论坛围绕糖科学研究如何与大健康产业的需求紧密结合、中医药多糖的发展趋势、在大健康背景下,企业未来的发展方向和糖工程的关系、糖工程技术转化的要点痛点与难点、糖工程产业未来3-5年的风口和高潜力发展地区、中国需要糖工程产业,年轻人创业如何选择,如何开始等问题展开热烈的讨论。为奖励做出优秀科研工作的研究生和博士后,大会特设“优秀墙报奖”颁奖环节。经过评审委员会的严格评选,共选出十名优秀墙报奖获奖者,分别是丁亚琦(中国科学院上海药物所)、程汉超(南方科技大学)、邓陶(上海交通大学)、闫振鑫(山东大学)、张念竹(大连医科大学)、项梦海(江南大学)、吴金澎(西北大学)、宋淑淑(复旦大学)、李瑞莲(中国科学院过程工程研究所)、刘思思(江南大学)。(排名不分先后)优秀墙报奖获奖者合影部分参展商后记糖工程技术是我国高新技术及新产业革命支柱之一,这次会议的召开推动了糖科学科研与产业的交流,加速了糖工程产业化的进程。为期两天的大会中,国内外糖化学、糖生物学及糖工程等领域知名的专家、学者和业界人士等在本次学术会议暨产业论坛上围绕“糖科学与糖工程产业”,共同研讨糖链结构功能、制备技术、检测分析方法,以及糖类药物、营养食品、生物医用材料研究开发等相关领域的最新研究进展和成果,并就我国糖生物工程产业的现状及产业结构升级展开了多视角、跨学科的交流。内容丰富的学术报告和讨论热烈的产业论坛都让参会代表受益匪浅,让我们见识到糖科学领域的高水平发展和糖工程产业的蓬勃生机,相信通过糖科学与糖工程领域的众研究学者与产业同仁的共同努力,糖科学与糖工程的未来会绽放出更璀璨的光芒,让我们共同期待下一届将在珠海横琴举办的会议!
  • 上海中医药大学通过仪器信息网订购远慕对乙酰氨基酚标准品
    上海远慕是国内elisa试剂盒优质供应商,本司代理销售不同elisa试剂盒品牌的进口/国产elisa试剂盒,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询! 上海中医药大学通过仪器信息网订购远慕对乙酰氨基酚标准品 对乙酰氨基酚标准品,一般在2-8℃之间冷藏保存(原则上最好保存在15℃以下的阴凉处),但相对于产品运输时,并不是所有产品的运输温度与储存温度一致,冷冻保存的温度在0℃以下。有些产品在运输时有暂时升温的可能性,个别产品特殊要求,我们将冷藏运输。 规格:可定制多种纯度、多种级别、多种包装的产品,详情联系我单位客服; 用途:含量测定 保存:常温,避光 级别:色谱纯、分析纯、化学纯。 贮存:密封阴凉保存。 供货期:最新批次现货供应,周期短,检验结果准确。 应用领域:使用前仔细阅读本说明书,仅供科研使用,不得用于医学诊断。 我们给这位客户介绍了该产品并报完价格发去产品说明书,客户和我们沟通的非常顺畅,了解我们的产品后,客户对我们非常有信心,当即就下了订单,下面是和客户的沟通记录: 远慕生物,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询与订购!
  • 原来液质还可以这样玩—— 用这个方法分析糖,从此“甜蜜负担”只有「甜蜜」
    原来液质还可以这样玩—— 用这个方法分析糖,从此“甜蜜负担”只有「甜蜜」 原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼郭藤 史碧云 高立红原来液质还可以这样玩—— 用这个方法分析糖,从此“甜蜜负担”只有「甜蜜」 低聚糖春节刚刚过去,忙碌了一年的你,放假在家面对各种美食糖果是否自控力显得不够了?在工作和生活中我们时常会看到“寡糖”或者“低聚糖”这个词,加了低聚糖的饮品、食品,牛奶本身也含有非常多种低聚糖,营养师给出的饮食指南中常常提到用富含功能性低聚糖的食物代替蔗糖的建议,许多保健品中也宣称添加了低聚糖,生病去医院也会经常输葡萄糖,那么,今天我们就了解一下低聚糖吧。寡糖(Oligosaccharide),又称低聚糖,为2-10个单糖分子通过糖苷键聚合而成的碳水化合物。低聚糖集营养、保健、食疗于一体,广泛应用于食品、保健品、饮料、医药、饲料添加剂等领域,因此糖类化合物的分离分析是糖学研究的热点之一,同时具有很大的挑战性,主要是由于糖类化合物结构的“微观不均一性”,存在大量的位置异构体和差向异构体,使其分离极其困难。由于寡糖分子的极性非常大,在很多类型的色谱柱上,保留表现都不是很理想,色谱峰形差强人意,尤其寡糖有非常多同分异构体存,难以实现较好分离。今天我们就给大家介绍一套非常适合寡糖的分析方法和流程: 基于目标物的化学特征可知,离子色谱对糖类物质很好的保留和分离效果,国内外相关文献报道已有很多,一些糖测定标准方法也是使用离子色谱法,结合质谱具有高灵敏度、高通量和高选择性等优势,将离子色谱与质谱联用,二者强强联合,可以解决寡糖等强极性化合物分析诸多难题,目前尚属于较新的应用技术,本实验建立了基于ICS 5000+-TSQ Altis分析不同聚合度寡糖样本的方法和流程,并且取得了非常好的结果,该方案可一次进样同时检测1~10不同聚合度的寡糖,线性范围跨越5个数量级,回归曲线的可决系数(R2)达到0.9999,并且有you秀的重复性,相关传统方法具有不可比拟的优势,是一种更可靠、前沿的分析方法。图1. ICS-5000+离子色谱-TSQ Altis三重四极杆质谱仪联用示意图下面,我们就以某样品为例展示寡糖的检测结果,该样品为不同聚合度寡糖混合物,M1/G1~M10/G10代表聚合度为1~10:图2.聚合度1~10寡糖样本离子流图(点击查看大图) 表1. M1/G1~M10/G10寡糖重复进样5次的RSD图3. 代表性化合物(M1/G1)的标准曲线及回归方程(点击查看大图)总结看完之后是不是对ICMS在寡糖研究中的表现十分惊叹呢?赶快扫码获得应用笔记,使用起来吧!糖类是一类结构复杂的生物分子,它不仅是生物体储存和释放能量的关键物质,更在生理和病理过程中扮演重要的角色,对于更多其它单糖或者低聚糖以及它们在生物样本中的检测,飞飞也可以帮你实现,精彩下期继续哦~扫二维码获得应用笔记
  • 蜂蜜打假有利器——Copure蜂蜜检测专用柱
    蜂蜜打假有利器——Copure蜂蜜检测专用柱 蜂蜜的主要成分为果糖、葡萄糖和水。目前市场出现的假蜂蜜中常常添加大量糖浆,含有较多寡糖成分。通过检测蜂蜜样品中的是否出现寡糖,能快速、可靠地鉴别常规掺假蜂蜜。一、实验目的本实验以固相萃取法对市售蜂蜜进行样品前处理,联合薄层色谱,检测蜂蜜中的寡糖成分,以此鉴定蜂蜜是否掺假。该方法可准确鉴别常规掺假蜂蜜,简单可靠,并能减少有机溶剂的使用量。二、实验目标物寡糖。三、参考标准《中华人民共和国药典2015版一部蜂蜜》。四、实验材料Biocomma? CopureTM蜂蜜检测专用柱。蜂蜜样品4份,分别购自深圳不同超市。五、实验方法1.样品处理取样品 2 g,置烧杯中,加入10 mL水彻底溶解。2、SPE柱净化(1)活化:25 mL水,过柱速度1秒/滴。(2)上样和洗脱:当液面到达柱面上2 mm,在真空泵的吸引下,使溶液通过柱子,待液面下降到柱面以上2 mm时 ,用7%乙醇25 mL淋洗,弃去淋洗液。再用50%乙醇10 mL洗脱,收集洗脱液。(3)重新溶解:置65 ℃水浴中减压浓缩至干,残渣加30 %乙醇1 mL使之溶解,作为供试品溶液。3、薄层色谱条件薄层板:硅胶G 薄层板展开剂:正丙醇-水-三乙胺(60 : 30 : 0.7)点样量:3 uL显色剂:苯胺-二苯胺-磷酸的混合溶液(取二苯胺l g,苯胺1 mL,磷酸5 mL,加丙醇至50mL,混匀)显色方法:喷以显色剂,105 ℃加热至斑点显色清晰,在日光下检视。供试品色谱中,在与对照品相应位置的下方,应不得显斑点。六、实验结果对4种不同来源的蜂蜜进行检测,结果表明,4号种蜂蜜Rf低于麦芽五糖迁移位置,表明该蜂蜜中含有掺假糖浆,为假蜂蜜。 注:1、2、3号为真蜂蜜,Rf大于0.35,4号为假蜂蜜,Rf小于0.35。综合表明,该方法及材料能够准确鉴别真假蜂蜜。
  • 生物大分子标记新突破:可基因编码的代谢糖质标记技术
    生物体中几乎所有的细胞都具有相同的基因组,而不同的细胞类型和功能则由不同的基因表达、表观遗传修饰和翻译后修饰等所决定。解析特定器官或组织中特定细胞的生物大分子图谱对探究发育、细胞间通讯以及疾病的发生发展等都具有重要意义。因此,开发细胞选择性的生物大分子标记方法,近年来受到了科学家们的广泛关注。通过基因编码的方法,人们在活体动物中实现了蛋白质的组织特异性和细胞选择性标记和分析。然而,糖质(glycan)作为另外一种主要的生物大分子,尚无法通过基因编码的方式,实现活体中的细胞选择性标记。糖质以寡糖、多糖、糖蛋白、糖脂等形式直接参与细胞的分化增殖、免疫调节、信号转导、细胞迁移等重要的生命活动,对其进行在体标记和分析一直是领域内的一个难点。其中,基于生物正交化学的代谢糖质标记(metabolic glycan labeling)技术已经成为了最主要的工具之一。经过20多年的发展,目前已有数十种非天然糖分子可用以在活细胞和活体中标记糖质。然而,非天然糖在活体中并不具备器官或细胞特异性,无法实现精准的细胞选择性标记,阐释特定细胞群体中糖质所发挥的生物学功能。北京大学化学与分子工程学院、北大-清华生命科学联合中心陈兴教授课题组一直致力于解决这个问题,此前开发了基于靶向性脂质体的非天然糖代谢标记技术,实现了肿瘤组织和脑部的糖质标记。同时,他们意识到,基因编码技术可以在活体中实现更加精准的细胞选择性。为了实现这一目标,继续推进代谢糖质标记技术的应用,2022年5月5日,该课题组在 Nature Chemical Biology 上发表了题为“Cell-type-specific labeling and profiling of glycans in living mice”的论文,报道了一种可基因编码的代谢糖质标记技术(GeMGL)。该技术将“凸凹互补(bump and hole)”的化学遗传学策略与代谢糖质标记方法相结合,利用非天然糖1,3-Pr2GlcNAl(Bump)及其匹配的焦磷酸酶突变体AGX2F383G(Hole)的正交组合,在活体动物上实现了细胞选择性糖质标记和分析。他们从一个具有低标记效率的非天然糖—乙酰胺基葡萄糖的叠氮类似物GlcNAz出发,确认了其代谢通路中的焦磷酸酶AGX是限速酶,将其过表达可以增强代谢强度。他们随即想到,增大非天然基团并对AGX酶进行突变,可能可以开发出凹凸对。于是,他们采用了炔基修饰的乙酰胺基葡萄糖GlcNAl和焦磷酸酶突变体AGX2F383G,通过体外和细胞实验证明了GlcNAl的代谢完全依赖焦磷酸酶突变体AGX2F383G。接着,在多细胞共培养体系和小鼠移植瘤模型中,证明了GeMGL策略的可行性。基于此,他们将该策略拓展到了转基因小鼠中。他们首先利用心肌细胞特异的启动子α-MHC实现了AGX2F383G在小鼠心肌细胞中的特异性表达,然后腹腔注射非天然糖1,3-Pr2GlcNAl,实现了非天然糖分子在小鼠心肌细胞中的特异性代谢。从各组织标记结果来看,GeMGL策略展现出严格的心肌细胞选择性。结合定量蛋白质组学方法,在小鼠心肌细胞中鉴定到582个O-GlcNAc修饰蛋白。分析发现,心肌细胞中许多糖酵解、TCA循环和氧化磷酸化途径相关蛋白都具有O-GlcNAc糖基化修饰,表明O-GlcNAc糖基化修饰可能在心肌细胞的线粒体能量代谢过程中发挥重要功能。在转基因小鼠中进行的细胞类型特异性代谢糖质标记该工作提供了一种可基因编码的细胞特异性糖质标记技术GeMGL,为在活体层面研究糖质在特定细胞类型中的生物学功能提供了一种便利、有效的工具。该技术有望被推广到更为复杂的神经系统中,并在相关疾病模型中探究糖基化与神经发育、神经退行性疾病等的关系。陈兴 北京大学化学学院教授,生命科学联合中心高级研究员,合成与功能生物分子中心研究员。长期致力于糖化学和糖生物学研究,糖质标记和分析是其研究重点之一。综合运用化学方法、生物手段和纳米技术,研究糖基化的生物学功能及其在代谢疾病及其心血管并发症中的作用。原文连接:https://www.nature.com/articles/s41589-022-01016-4
  • 创新药物研发新热点之糖类药物研究——访北京大学药学院李中军教授
    糖,是组成生物体的基本物质之一,与蛋白质、核酸并称为三大生物大分子。然而,由于糖结构的高度复杂性和多样性,糖类物质的研究进展相对缓慢,从基础研究到功能解析,甚至包括糖类药物的开发和应用方面,都远远滞后于蛋白质和核酸。近年来随着糖科学的发展,尤其是寡糖合成手段的进步和各类探针分子的应用,使得糖类的功能逐步得到解析,糖化学与糖类药物的开发也逐渐成为生命科学与制药领域的研究热点之一。日前,笔者有幸采访到了日本东京理化的一位重要客户——北京大学天然药物及仿生药物国家重点实验室,北京大学药学院李中军教授,并与李教授聊起了糖化学及糖类药物的相关研究,以及李教授课题组在教学研究中经常用到的一些仪器设备等,陪同采访的还有东京理化中国贸易公司,埃朗科技售后服务部技术总监张京明先生。北京大学天然药物及仿生药物国家重点实验室,北京大学药学院李中军教授糖化学相关研究的意义与挑战李中军教授可以说是一位地地道道的“北医人”,从1982年开始就读于北京医科大学(后并入北京大学)药学院化学专业,本、硕、博都是在北医完成,后留校任教从事教学和科研工作,长期以来从事糖化学、糖化学生物学及相关创新药物的研究。对于糖在生物医药中的重要作用,李教授引用了两个重要的例子,一个是人类ABO血型真正的区别其实就是血红蛋白外面糖链结构的差别;另一个是肿瘤细胞的糖链结构会发生异常改变,是进行早期肿瘤诊断的生物标记物,同时也是抗肿瘤药物疗效及预后的重要指标。而要进行糖的功能研究,首先要解决糖的来源问题,就是寡糖的获得性。制备纯度高、结构清楚的寡糖可以说是影响糖类学科发展的瓶颈,近年来受到越来越多的关注。寡糖的制备方式主要有三种,一种是从天然产物中分离,另一种是酶促法,还有一种就是化学合成法。由于天然产物中的多糖分布不均匀且结构复杂,因此分离难度非常大。而酶促法虽然可行性高,但酶来源受限,价格昂贵。所以寡糖制备大多数采用的是化学合成法。传统的寡糖合成步骤特别长、成本非常高,譬如法国制药巨头赛诺菲获得专利的一个抗凝血肝素类药物——磺达肝素,可有效用于临床手术中防治血栓形成或栓塞性疾病,光合成步骤就有60步,每公斤合成成本高达600万元以上,这种步骤繁琐且高成本的制备方式严重制约了糖类药物的发展。李中军教授团队长期关注寡糖合成新方法及快速组装新策略的研究。譬如,人体内的凝血包括外源性和内源性,外源性凝血可阻止伤口不断出血,而内源性凝血则容易引起血栓等,肝素类药物虽然具有出色的抗凝血活性,每年全球销售额高达数十亿美元,但由于其口服无活性,且同时作用于内、外源性凝血,存在潜在出血风险,因此被局限于医院等专业医疗机构用于临床手术方面。近年来科学家从天然海参中提取到肝素的结构类似物——岩藻糖基化硫酸软骨素(FuCS),研究表明FuCS九糖片段具有市售低分子量肝素相当的抗凝血活性,且由于其独特的化学结构,使其具有口服抗凝活性,且药理活性机制表明其可选择性激活内源性凝血通路,因此在出血倾向方面比肝素具有更高的安全性,通过优化改造之后有望发展成为新一代肝素抗凝药物。李中军教授研究团队通过采用降解加修饰的半合成策略,开发了一种可以简便合成FuCS九糖的化学合成工艺。这一工艺的实现可以提高FuCS的可获得性,降低目标药物的获取难度,合成步骤和成本大大减少,实现了高效、简洁的寡糖合成,为后期药物筛选与中式放大提供了最优合成路线,应用前景非常好,目前已实现技术转让。除此之外,李中军教授研究团队还致力于各种生物活性寡糖的合成及活性评价,基于糖类的天然产物合成及不对称合成研究以及创新药物研究等。糖化学研究的主力——小型仪器近年来,糖类药物的研究越来越热,由于我国具有丰富的生物资源,糖类药物来源广泛,因此在糖类药物研究方面也取得了一系列的重要进展,相关研究团队的数量也在逐渐增多。正如李中军教授所说,20年前国内做糖的没有一个组织,而现在各类相关学会下面已经有4个糖药物专委会,由此可见糖药物在国内的发展速度。而由于糖链结构的复杂性,目前获得糖链的主要方法还是提取或化学合成,没用通用性的合成方法,难以像核酸和蛋白质那样进行高效、准确的自动化化学合成,也不能像核酸PCR扩增或蛋白质表达那样大量制备。虽然从2000年左右开始陆续有科学家发明糖的合成仪,但基本上都是一些模型机或验证设备,还没有通用的商品化糖合成仪。在糖类药物合成的实验室研究中,目前用到的基本上都是一些小型的仪器设备,主要包含搅拌器、旋转蒸发仪、冻干机、真空泵等,而李教授实验室中有大半的这些仪器设备来自于东京理化。据李教授介绍,他与东京理化仪器的渊源要追溯到上世纪90年代中期,那时候他还在北医做学生,就开始使用东京理化的旋转蒸发仪了,而东京理化那时也还没有正式进入到中国,是通过代理商进行合作的。左:埃朗科技售后服务部技术总监张京明 右:北京大学药学院李中军教授寄语东京理化对于东京理化的产品,李教授认为最重要的一点就是性价比高,譬如,同样性能的旋转蒸发仪,东京理化产品的价格要比欧洲同类产品便宜不少,而且后期的售后服务和维修成本也相当值得称道。李教授提到,有些国外的大品牌,将仪器售后委托给代理公司,由于代理公司的频繁变动和工作人员的更换,培训工作难以到位,有时候售后价格昂贵不说,售后人员的专业性还大打折扣。譬如,隔膜泵有时候真空上不去,明明不一定是膜片的问题,可能只是单向阀需要调整一下,但售后人员一来就要换膜片,且每次报出来的价格都不一样,四百、五百、六百都有可能。因此长期使用下来,用户对于这些品牌的后期印象非常差。而在这一点上,东京理化由于在国内设立了多个分支机构(包括生产工厂),在售后方面有稳定的人员保障,能够提供相对较好的用户培训和售后服务。此外,东京理化的产品也非常耐用,据介绍,北医最久的一台东京理化的旋转蒸发仪,目前已经使用了20余年,虽然中间也换过配件,但现在仍然还在实验中为老师和学生们服务。在谈到对于当下产品的改进建议上,李教授认为,像旋转蒸发仪、冻干机等这类仪器,从技术水平上来说,并不是什么高精尖的仪器设备,在功能开发方面其实已经做得非常好了,目前更需要做的其实是用户培训。因为很多时候你会发现,其实用户对于仪器已有功能的了解还是很不够的。譬如像冻干机的使用,当样品冻干到一定程度时,冻干速度会越来越慢,而为了保持冻干速率,其实厂商在每个托盘底上都加了一个加热装置,通过适当加热可以提高升华速度,而这个功能很多学生并不知道。因此很多时候学生从外面看产品好像已经干了,结果拿出样品才发现底部还是有一些冰块。当然,这个问题目前已经通过歧管瓶的方式解决了。但这个例子充分说明了用户对于仪器功能的不了解。后记在采访即将结束的时候,李教授向笔者表示,在提高仪器耐用性方面,特别是对于那些实验常用的仪器设备,仪器使用者和仪器制造商,双方都有提升的空间。对于使用者而言,尤其是年轻的科研人员,要掌握正确的仪器设备使用方法。而对于厂商而言,则要不断提高一些易损件(例如:隔膜泵的膜片、旋蒸仪的密封件等)的耐用性。同时,在仪器功能的开发方面,则应尽可能向简便、实用方向发展。
  • 超亿元B轮融资!先思达生物加速糖组转化医学布局
    糖组转化医学头部企业先思达生物宣布完成了超亿元B轮融资,这是迄今为止国内糖组转化医学领域最大的一笔融资。近日,糖组转化医学头部企业先思达生物宣布完成了超亿元B轮融资,据悉,这是迄今为止国内糖组转化医学领域最大的一笔融资。本轮融资由中金资本旗下中金启德基金领投,老股东上海复星继续追投,雷石投资、行至资本、南京市创新投资集团、南京江北科投集团、同人资本等机构跟投。先思达生物是一家基于海归科学家在欧洲数十年的基础科研积累,以应用糖组学为核心,集体外诊断试剂及仪器的研发、生产、销售为一体的完全“First-in-class”创新的生物医药企业。公司专注于肿瘤检测和诊断以及先端健康指数两大领域,拥有自主研发建立的糖组检测分析技术平台,产品管线涉及肿瘤、神经退行性疾病及健康状态评估等。先思达生物基于糖组检测分析技术平台开发的首个IVD产品“寡糖链检测试剂盒”,已获批进入NMPA创新医疗器械绿色通道。该款产品针对我国约7000万慢性HBV感染者而设计,用于肝癌辅助诊断,有望改变我国肝癌早期诊断率低的现状。本轮融资将进一步加速先思达生物在全球糖组转化医学领域的布局,保障临床试验的顺利开展、推动平台技术的升级优化、加快产品管线的拓展、推进设备试剂国产化、资源及市场的全球化及建立三方医学检验实验室。对于本轮融资的顺利完成,先思达生物创始人、董事长陈萃英博士表示:作为揭示生命奥秘的“第三条生命链”,糖链(Glycan)广泛参与各种基本生命过程并发挥着不可或缺的作用。人体中超过50%的蛋白质存在糖基化(Glycosylation)修饰,在疾病状态下,这些蛋白质的糖基化修饰往往发生剧烈的动态变化。研究表明,蛋白质的糖基化异常与肿瘤的发生发展、转移和免疫逃逸等过程高度相关。糖链作为新型恶性肿瘤的体液标志物可用于肿瘤筛查和早期诊断,开发临床诊断试剂盒具有重大理论价值和现实意义。先思达生物拥有检出率高、操作简便的专利技术,我们相信,本轮融资将助力公司向肝癌以外的其它高发癌症检测以及健康风险评估领域实现快速拓展。公司将一如既往地加大研发投入,以多种形式与国内外最先进的科研机构开展合作,在未来的2-3年内形成覆盖全国以及部分国外地区的检测平台联盟,成为患者信赖、造福千家万户的生物科技公司。本轮领投方中金资本董事总经理黄序博士表示:很多疾病在被确诊后通常已处于中晚期不可逆状态。作为糖组学检测技术的缔造者之一,陈萃英博士带领先思达团队开发的基于该技术的肿瘤辅助诊断和早筛早诊产品为在早期阶段精准诊断肿瘤增添了一个重要的手段,研发进展处于国际领先水平。辅以早期临床干预将极大提高肿瘤等恶性疾病的治疗效果。中金启德创新生物医药基金持续关注、发现和帮助像先思达这样以强创新科技解决未满足临床需求的企业,助力其开发出更多更好的临床产品不断改善人民生活,增进人民福祉。本轮追投方上海复星代表、复星诊断董事长、先思达公司董事包勤贵先生表示:继基因组学、蛋白质组学之后,糖组学也日益受到科学界&产业界的关注。糖基化作为蛋白质翻译后修饰的主要形式之一,糖链具有丰富的生物学功能,是探索生命奥秘及利用转化医学助力于人类健康的重要通道。复星坚定的看好糖组学这一赛道对肿瘤等疾病早筛早诊的创新推动,复星诊断亦与先思达团队在商业化进程中携手多年。通过本次股权投资,相信公司能继续夯实在底层技术的累积、加大产品开发上的投入,同时在商业化体系及公司运营能力等重要的维度能同步并举,更快的形成多产品管线从研究开发到商业端的闭环能力,更好的服务于广大患者及客户。本轮跟投方行至资本合伙人赵家曦表示:恶性肿瘤是威胁人类健康的头号敌人,早诊早治是提升癌症患者生存率的关键,近年来我国关于肿瘤早筛的相关政策支持力度持续提升。肿瘤早筛产品具有受众广、高复购的特性,市场空间广阔。当前关于肿瘤早筛技术路径的竞赛,才刚刚开始。糖组学是继基因组学和蛋白组学之后的新兴研究领域,先思达以糖组学为技术基础,已研发形成拥有自主知识产权的糖组检测分析技术平台,产品管线涉及肿瘤、神经退行性疾病等,在中国乃至全球的糖组学转化医学领域具有领先性。先思达的产品在性能、成本、效率等方面做到了很好的平衡,我们看好其产品的市场前景和临床价值。本轮跟投方南京市创新投资集团投资三部总经理闫鹏安先生表示:糖组学是继基因组学和蛋白质组学后的又一新兴研究领域,先思达的糖组学研发进度在国际上处于前沿水平,其基于糖组检测分析技术平台开发的首个IVD产品有望成为世界上第一款糖组学体外诊断试剂产品。南京市创新投资集团重点关注具有前瞻性视野和突破性技术创新的科技型中小企业,我们相信在陈博士的带领下,先思达团队有能力在糖组学领域进行持续有益的探索,并推动产品在临床试验和商业化上取得成功!本轮跟投方南京江北科投集团副总经理朱旨昂先生表示:生命体中的糖链及相关分子与健康和疾病密切相关,糖组作为下一代疾病诊疗的新兴靶点,相关研究为各类疾病的诊治提供了新思路。先思达拥有自主知识产权的糖组检测技术,公司开发的用于疾病早期诊断的系列产品具有“无创、方便、微量、快速”等优势。作为致力于支持具有自主创新研发能力的科技企业的国有投资平台,科投集团一直关注并看好新兴领域创新技术。先思达作为科投集团科创载体最早一批孵化的优秀企业之一,我们将以“科技金融+科技平台”双轮驱动,助推公司糖组医学快速转化,共同为健康中国建设“添砖加瓦”。* 图片来源:Salomé S. Pinho and Celso A. Reis,Glycosylation in cancer: mechanisms and clinical implications,Nature Reviews Cancer(2015)。
  • 广东省化妆品学会发布《化妆品中肌肽、类蛇毒肽、棕榈酰三肽-5、乙酰基八肽-3、乙酰基六肽-8的测定高效液相色谱-串联质谱法》团体标准征求意见稿
    各相关单位:由广东省化妆品学会牵头,多家企业共同起草的《化妆品中肌肽、类蛇毒肽、棕榈酰三肽-5、乙酰基八肽-3、乙酰基六肽-8的测定高效液相色谱-串联质谱法》团体标准,已编写完成征求意见稿。为充分听取各方意见,现公开征求社会意见。请各单位将修改意见于2024年2月23日前发送学会邮箱。注:如本标准涉及相关专利问题,请指出并提供支持性文件及有关数据。联系人:杨佩珊通讯地址:广州市番禺区小谷围街道外环西路100号实验1号楼402,广东省化妆品学会联系电话:13503059375邮箱地址:msc@cgdca.org附件:1.广东省化妆品学会团体标准征求意见收集表-《化妆品中肌肽、类蛇毒肽、棕榈酰三肽-5、乙酰基八肽-3、乙酰基六肽-8的测定高效液相色谱-串联质谱法》2.广东省化妆品学会团体标准征求意见稿-《化妆品中肌肽、类蛇毒肽、棕榈酰三肽-5、乙酰基八肽-3、乙酰基六肽-8的测定高效液相色谱-串联质谱法》征求意见收集表-化妆品中肌肽、类蛇毒肽、棕榈酰三肽-5、乙酰基八肽-3、乙酰基六肽-8的测定高效液相色谱-串联质谱法.docx征求意见稿《化妆品中肌肽、类蛇毒肽、棕榈酰三肽-5、乙酰基八肽-3、乙酰基六肽-8的测定高效液相色谱-串联质谱法》.pdf
  • 现代中药对照品与标品资源库落户中山
    全国规模最大的现代中药及天然产物活性物质对照品与标准品资源库,将落户中山健康科技产业基地。   全国标准样品技术委员会天然产物标样专业工作组常务副组长张天佑在接受记者采访时说,我国个别中药药品近年来相继出现的问题,正是标准缺失所致。从现代中药及天然产物活性物质中提取有效成分制作对照品与标准品,使之成为溯源性的根据、分析检测仪器的校准标准物质和质量控制的标准,可为中药新药研发、生产提供标准,“这是中药走向国际市场,突破国际技术壁垒的途径。”   国家药监局原副局长任德权称,选择在中山建立这个资源库,不仅因为中山国家健康科技产业基地已经具备承载这个项目的成熟条件,而且由于中山毗邻港澳,可联合粤、港、澳的资源共同打造一个国家级的标准平台,为中国争取在国际标准化中的话语权。   “这样,中药出口就拿到了‘国际通行证’。”中山国家健康科技产业基地公司总经理梁兆华形象地比喻。   该项目由中山健康科技产业基地、全国标准样品技术委员会、中山大学药学院和广东新龙和药业有限公司合作,项目运营后,3至5年内可以建成拥有几千种对照品与标准品的资源库。该项目有望在今年“328”招商经贸洽谈会上签约。
  • 农业部就《食品中195种农药最大残留限量》征求意见
    农农(农药)[2011]第20号   根据《食品安全法》及相关规定,我司组织拟订了《食品中2,4-滴等195种农药最大残留限量》和《豁免残留限量农药名单》等2项食品安全国家标准征求意见稿。现公开征求意见,请于2011年8月15日前将意见反馈我部农药检定所。   联 系 人:单炜力   电  话:010-59194253   传  真:010-59194107   电子邮箱:nyclbz@agri.gov.cn   农业部种植业管理司 附录:《食品中2,4-滴等195种农药最大残留限量》 附表: 豁免制订食品中最大残留限量标准的农药名单 序号 农药(中文) 农药(英文) 1 矿物油 petroleum oil 2 石硫合剂 lime sulfur 3 硫磺 sulfur 4 硅藻土 silicon dioxide 5 苏云金杆菌 bacillus thuringiensis(Bt) 6 荧光假单胞杆菌 pseudomonas fluorescens 7 枯草芽孢杆菌 brevibacterium8 蜡质芽孢杆菌 bacillus cereus 9 地衣芽孢杆菌 bacillus licheniformis 10 短稳杆菌 empedobacter brevis 11 多粘类芽孢杆菌 paenibacillus polymyza 12 放射土壤杆菌 agrobacterium radibacter 13 木霉菌 trichodermasp 14 白僵菌 beauveria 15 淡紫拟青霉菌 paecilomyces lilacinus 16 厚孢轮枝菌 verticillium chlamydosporium 17 耳霉菌 conidioblous thromboides 18 绿僵菌 metarhizium anisopliae var acridum 19 寡雄腐霉菌 pythium oligadrum 20 菜青虫颗粒体病毒 pierisrapae granulosis virus(PrGV) 21 茶尺蠖核型多角体病毒 ectropis oblqua hypulina nuclear polyhedrosis virus(EONPV) 22 松毛虫质型多角体病毒 dendrolimus punctatus cytoplasmic polyhedrosis virus(DpCPV) 23 甜菜夜蛾核型多角体病毒 spodoptera litura nuclear polyhedrosis virus(SpltNPV) 24 粘虫颗粒体病毒 pseudaletia unipuncta granulosis virus(PuGV) 25 小菜蛾颗粒体病毒 plutella xylostella granulosis virus (PxGV) 26 斜纹夜蛾核型多角体病毒 spodoptera litura nucleopolyhedrovirus (SINPV) 27 棉铃虫核型多角体病毒 helicoverpa armigera nuclear polyhedrosis virus(HaNPV) 28 苜蓿银纹夜蛾核型多角体病毒 autographa californica nuclear polyhedrosis virus(AcNPV) 29 三十烷醇 triacontanol 30 赤霉酸 gibberellic acid 31 地中海实蝇引诱剂 trimedlure 32 聚半乳糖醛酸酶 polygalacturonase 33 烯腺嘌呤 enadenine 34 苄氨基嘌呤 6-benzylamino-purine 35 羟烯腺嘌呤 oxyenadenine 36 超敏蛋白 Harpin protein 37 S-诱抗素 S-Abscisic Acid 38 香菇多糖 fungous proteoglycan 39 几丁聚糖 chltosan 40 葡聚烯糖 pujuxitang 41 氨基寡糖素 oligosaccharins
  • 生物药岛津说-单抗药物糖型分析和质控,您学会了吗?
    治疗性单克隆抗体结构相对小分子更加复杂。不仅仅是序列影响蛋白活性,同时蛋白的翻译化修饰也会影响。常见的修饰包括脱酰胺、二硫键、末端赖氨酸丢失和糖基化修饰,糖基化修饰是相对复杂的特殊翻译后修饰,包括N糖修饰和O糖修饰,N糖基化修饰主要发生在蛋白质一级结构中的特征性序列NXT(其中X是除脯氨酸外的任意氨基酸),修饰存在一定规律,O糖修饰可以与任何含有羟基基团的氨基酸连接,丝氨酸(S)和苏氨酸(T)是最常见的修饰位点,因此更加复杂。糖型结构会显著影响治疗效果,是单抗药物质量监测的重要关键质量属性。 抗体生物类似药在面临生产和临床过程中,需要保证质量的一致性,糖基化分析是重要的关键分析流程。糖修饰异质性会间接影响药效,因此需要在多批次生产过程中,保证工艺和质量的稳定性。N糖根据不同的连接方式使得N-糖基化的五糖核心结构分为高甘露糖型、杂合型和复杂型3 种类型,FDA,EMA 等生物类似药指导原则都鼓励研发单位采用最新的分析技术手段,对生物类似药和原研药的糖基化修饰位点、程度以及寡糖的组成进行深入比较分析,例如可以利用岛津液相以及质谱等设备可进行由浅入深的糖型修饰分析,进而对产品生产过程中严格监测。岛津在糖基化分析方面有三大护法守护。下面一一道来。 岛津抗体糖型分析质控解决方案 第一护法-高分辨质谱LCMS-9030 LCMS-9030四极杆飞行时间质谱仪使高速度、高灵敏度的四极杆质谱与TOF技术的紧密结合。融合岛津先进工程技艺的DNA,打造出速度与出色性能兼备的全新一代高分辨质谱仪,以优异表现轻松胜任定性和定量分析挑战。对完整蛋白以及亚基水平的糖型进行初步分析。 第二护法-MALDI-MSMALDImini-1 MALDImini-1数字离子阱(DIT)体积极小,功能强大,可实现质谱多级的检测。针对糖肽分析、抗体化学修饰位点、未知生物分子结构分析,蛋白质、多肽、翻译后修饰肽等都有专向解决方法。 第三护法-高效液相色谱系统Nexera Bio 从完整蛋白或者亚基水平分析,利用质谱可快速的分析带有糖基化修饰蛋白分子量。可以分析简单的糖型结构,速度比较快,重现性较好,但是精细的糖型结构也不能很好的监测清楚,所以可以搭配糖肽水平和游离寡糖水平一同研究。 首先,第一步从完整蛋白水平,利用岛津LCMS-9030四极杆飞行时间质谱仪从完整分子量水平分析抗体的糖修饰情况如下表所示,鉴定并分析相关糖型的分布。 不同糖型抗体形式分子量测定结果与理论对比 第二步可以从糖肽水平分析,通常抗体通过使用蛋白酶酶切后,产生分子量大约为0. 5 ~ 5 kDa 的小肽,采用色谱或电泳分离后再进行MALDI-MS 或ESI-MS 分析。利用质谱分析糖肽序列、寡糖组成,岛津MALDI-TOF和MALDI-数字离子阱质谱可以分析相关糖肽组成分析。 例如针对血清糖蛋白,使用MALDI-离子阱质谱分析得到的衍生N-聚糖谱图,如下图所示:血清糖蛋白N-聚糖质谱解析谱图 第三步可以从游离寡糖层面分析,药典相关要求,针对游离寡糖的分析通常有三种方法: (第一法)亲水相互作用色谱法、(第二法)毛细管电泳法、(第三法)高效阴离子色谱法,通过N-糖苷酶F对单抗N糖进行酶切后,使用2-氨基苯甲酰胺( 2-AB) 或2-氨基苯甲酸( 2-AA) 对寡糖进行标记即可进行糖型分析。针对唾液酸分析,岛津超高效液相色谱结合荧光检测器建立了抗体中唾液酸Neu5Ac 和Neu5Gc 含量测定,结果如下图所示: 唾液酸液相分析定量标准曲线 单抗糖基化是作为重要的翻译化修饰,宿主细胞培养工艺过程会影响不同的修饰构成,岛津不仅可以提供糖基化质量分析质控方案,同时针对培养工艺优化以及工艺残留物监测,提供特色的培养监测在线和离线分析解决方案,为了更好地把握产品质量,力图让产品质量更加稳定和安全。虽然生物类似药与原研药批次糖基化修饰结构差异依然存在,但在生物类似药相似性评价和适应症外推的征途上还有许多路要走,岛津依旧陪伴左右。
  • 2021年全国糖科学与糖工程学术会议暨产业论坛会议通知(第二轮)
    2021年全国糖科学与糖工程学术会议暨产业论坛会议通知(第二轮)为促进我国糖生物工程领域的合作交流,加快国内糖科学和糖工程的发展,由中国生物工程学会糖生物工程专业委员会、中国生物物理学会糖生物学分会和重庆医科大学联合主办,重庆医科大学药学院、中国科学院过程工程研究所生化工程国家重点实验室、南方科技大学和上海科技大学承办的“2021年全国糖科学与糖工程学术会议暨产业论坛”定于2021年7月9-12日在重庆市举行。本次会议将邀请国内外糖化学、糖生物学及糖工程等领域知名的专家、学者和业界人士等,围绕“糖科学与糖工程产业”,共同研讨糖链结构功能、制备技术、检测分析方法,以及糖类药物、营养食品、生物医用材料研究开发等相关领域的最新研究进展和成果,并就我国糖生物工程产业的现状及产业结构升级展开多视角、跨学科的交流。热忱欢迎国内外糖科学和糖工程领域的各位专家、学者、业界人士、研究生等踊跃投稿、到会交流!现将有关事项通知如下:一、会议时间和地点时间:2021年7月9-12日(7月9日报到;10-11日会议;12日离会)。地点:重庆市渝州宾馆(重庆市渝中区渝州路168号)。二、会议组织主办单位: 中国生物工程学会糖生物工程专业委员会 中国生物物理学会糖生物学分会 重庆医科大学承办单位: 中国科学院过程工程研究所生化工程国家重点实验室 重庆医科大学药学院、南方科技大学、上海科技大学大会主席: 王鹏 杜昱光 执行主席: 于超 三、特邀嘉宾报告人高福院士、张玉奎院士、饶子和院士、朱蓓薇院士、邵峰院士四、分会场主题与召集人信息分会场一:糖链合成与分析新方法新技术主题内容:糖链合成新方法,糖组、糖芯片、糖链标记示踪新技术等召集人:叶新山(北京大学)、陆豪杰(复旦大学)分会场二:糖链/糖蛋白生物合成与表达体系主题内容:模式生物的糖链合成与功能,糖酶等召集人:肖敏(山东大学)、陶勇(中国科学院微生物研究所)分会场三:糖链与病原感染 主题内容:糖链在病原感染与机体免疫中的功能,糖疫苗、糖药物及诊断试剂等召集人:章晓联(武汉大学)、彭文杰(上海交通大学) 分会场四:蛋白质糖基化修饰 主题内容:糖基化对蛋白质及细胞功能调控等召集人:张延(上海交通大学)、高晓冬(江南大学)分会场五:糖链与疾病主题内容:疾病过程中糖链功能,糖链、糖复合物在疾病诊断、治疗中的作用等召集人:张嘉宁(大连理工大学)、关锋(西北大学)分会场六:多糖/寡糖结构功能与应用技术 主题内容:动植物、微生物来源多糖/寡糖的结构与功能,植物/微生物凝集素等召集人:周义发(东北师范大学)、尹恒(中国科学院大连化学物理研究所)分会场七:肠道微生物糖组与营养健康主题内容:糖链与人/动物营养健康,糖链与肠道微生物等召集人:丁侃(中国科学院上海药物研究所)、余冰(四川农业大学)五、会议日程DAY 1(7月9日)全天参会代表报到14:00-18:00专委会工作会议DAY 2(7月10日)08:00-09:45开幕式、张树政奖颁奖仪式、大会特邀报告09:45-10:00茶歇10:00-12:00大会特邀报告12:00-13:30午餐、休息13:30-15:30分会场报告15:30-15:45茶歇15:45-17:45分会场报告19:00-21:00晚宴DAY 3(7月11日)08:00-09:45分会场报告09:45-10:00茶歇10:00-12:15分会场报告12:15-13:30午餐、休息13:30-15:30大会特邀报告15:30-15:45茶歇15:45-17:15大会特邀报告17:15-17:45糖工程产业论坛17:45-18:05闭幕式、优秀论文颁奖仪式六、会议征文及墙报要求  1、会议摘要征文要求  会议摘要全部通过http://csbt.scimall.org.cn/meeting/TGC/ 网站投稿,截止日期为2021 年5 月10 日。会议摘要将全部收录于会议论文集;会议报告从投稿申请中选取。会议摘要使用Word文档,限A4 纸1 页以内:题目:宋体及Times New Roman字体,小四号,1.5倍行距,居中。作者:宋体及Times New Roman字体,五号,1.5倍行距,居中。单位和邮箱地址:宋体及Times New Roman字体,小五号,1.5倍行距,居中。正文宋体及Times New Roman字体,五号,1.5倍行距,限A4纸1页以内。2. 墙报交流:大会将设墙报区。墙报推荐按照0.9米*1.2米(竖型)设计,由参会代表自行制作。会议现场注册时交给会务人员。七、会议奖项1. 张树政糖科学奖:设立“杰出成就奖”和“优秀青年奖”两个奖项,其中杰出成就奖1名,优秀青年奖3名(其中糖生物工程1名、糖化学1名及糖生物学1名),具体参见“2021年张树政糖科学奖评选的通知”。2. 青年优秀论文/墙报奖:为奖励优秀青年学生学者,本次会议将设立青年优秀论文/墙报奖约10-15名,获奖者由会议组委会组织评定并授予奖状及奖金。八、会议注册、缴费及住宿预定: 1. 报名参会:通过http://csbt.scimall.org.cn/meeting/TGC/ 网站注册,注册费用可通过银行转账缴费或现场缴费完成,学生凭有效学生证注册;与会人员交通差旅费和食宿费自理。会议注册提前缴费(2021年5月31日前)(RMB) 后期缴费及现场缴费(2021年5月31日后)(RMB)正式代表 16002000学生代表 10001400企业代表 24002800缴费程序:扫描以下二维码,进入“缴会务费”,填写代表信息后微信缴费。“缴费记录”里可查询缴费信息。 2. 会议住宿(1) 重庆渝州宾馆(地址:重庆市渝中区渝州路168号)房 型景园/悦大床房景园/悦双床房会议价480元480元(2) 重庆万友康年大酒店(地址:重庆市渝中区长江二路77号)房 型标准大床房标准双床房会议价368元368元(3) 重庆冠君大酒店(地址:重庆市渝中区大坪正街160号万科锦程3栋)房 型豪华大床房豪华双床房会议价190元190元九、会议赞助及糖工程相关企业产品展示会议诚邀糖工程相关企业厂商赞助本次会议,大会提供协办、分会场冠名、青年优秀论文/墙报奖冠名、会议资料单品赞助、会刊广告、标准展位等形式的展示方式。详情请咨询:焦思明 18611058165十、会务联系方式王倬 tswgc@ipe.ac.cn 010-82545039 中国科学院过程工程研究所张兵 zhangbing@shanghaitech.edu.cn 15921318107 上海科技大学马丽梅 malimei@cqmu.edu.cn 15608225605 重庆医科大学中国生物工程学会糖生物工程专业委员会中国生物物理学会糖生物学分会重庆医科大学2020年4月
  • 全自动农药残留检测仪需要做空白对照吗
    全自动农药残留检测仪需要做空白对照吗,全自动农药残留检测仪需要做空白对照。空白对照是指不给予任何处理的对照,这在动物实验以及实验室方法研究中常采用,以评定测量方法的准确度以及观察实验是否处于正常状态等。全自动农药残留检测仪在检测食品中农药残留量时,为确保检测结果的准确性和可靠性,通常需要进行空白对照。具体来说,空白对照在全自动农药残留检测仪中的作用可能包括:评估仪器性能:通过空白对照,可以评估仪器在无任何农药残留的情况下,其测量值是否稳定,是否符合预期,从而判断仪器是否处于正常的工作状态。校正误差:在检测过程中,可能会存在各种误差,如仪器误差、试剂误差、操作误差等。通过空白对照,可以及时发现并校正这些误差,提高检测结果的准确性。设定阈值:空白对照的结果可以作为设定阳性阈值的参考。阳性阈值是指判断食品中农药残留是否超标的临界值。通过空白对照,可以确定在无任何农药残留的情况下,仪器的测量值范围,从而设定合理的阳性阈值。此外,一些全自动农药残留检测仪具有空白对照自动检测功能,可以自动进行空白对照操作,并将结果保存于系统中,方便后续分析和查询。这种设计可以进一步提高检测效率和准确性。综上所述,全自动农药残留检测仪需要做空白对照,以确保检测结果的准确性和可靠性。
  • 中药配方颗粒新应用文集发布
    为了规范中药配方颗粒的生产,保证临床疗效,国家药典委及各省药监局一直在陆续发布中药配方颗粒国家级、省级药品标准。首批160个中药配方颗粒品种的国家标准于2021.11.1正式开始实施。截至2023年2月初,国家药典委分4个批次发布了合计248个中药配方颗粒国家标准。2023年3月14日,药典委公示2023年第一批共24个品种。此外,随着省标备案逐步推进,多家企业在省标备案进度上超过400种,能够满足几百种临床常用需求。赛默飞应用中心积极响应客户需求,根据国家药典委19年11月公示的160个品种公示稿开展试验工作,专研近80种代表性中药配方颗粒的国家标准,于2020年11月发布赛默飞液相色谱及色谱柱技术在中药配方颗粒的完整解决方案。详见中药研究|以桑为例,近80种配方颗粒解决方案,开放下载! 随着大量新国标与省标的陆续公示和发布,用户困扰的难点品种也随之增加,赛默飞应用中心也通过各种途径积极了解到用户的真实需求和痛点,发现大部分难点品种集中在UHPLC方案的复现工作以及一些极性化合物的分析,包括无紫外吸收的寡糖类成分、动物药配方颗粒中强极性组分核苷类化合物等。围绕客户需求,赛默飞应用中心继续开展相关实验工作,新增27 个UHPLC品种,5个HPLC品种,特此整理成第二版应用文集,供广大中药配方颗粒行业用户在工作中参考使用,为实验室人员节省大量时间和精力。文集快揽 文集特色介绍01标准复现困难品种——大黄大黄配方颗粒基质复杂,特征峰多达14个,易出现特征峰丢失、分离度差等问题。本方案使用Accucore aQ色谱柱,参照第一批国家标准大黄(药用大黄)配方颗粒进行,为了提升分离度,进行了柱温和流动相梯度转换,柱温从标准的25℃调整到20℃,流动相根据色谱柱规格进行了方法转换,同时增加了初始梯度平衡时间,色谱参数调整符合中国药典0512通则,最终结果满足标准要求。对照品色谱图(点击查看大图)大黄配方颗粒色谱图(点击查看大图)02Hilic色谱柱搭配CAD检测器——巴戟天在巴戟天特征图谱寡糖类测定中,本方案参照第一批国家标准巴戟天配方颗粒进行,检测器选择CAD检测器,灵敏度和响应更高。同时通过筛选合适的色谱柱,选择同标准一致的键合相色谱柱Accucore amide hilic,,进行了流动相梯度优化,最终结果满足标准要求。对照品色谱图(点击查看大图)巴戟天配方颗粒色谱图(点击查看大图) 03动物药中极性成分测定——炒僵蚕炒僵蚕配方颗粒中的特征峰尿苷、腺苷、鸟苷等为核苷类强极性组分,选用亲水型C18色谱柱会存在峰形拖尾、基质干扰等问题。本方案针对动物源性配方颗粒中的核苷类化合物开发了全新的测试方法,选择Acclaim C30色谱柱,炒僵蚕配方颗粒中的标志性成分尿苷、腺嘌呤、鸟苷、腺苷等峰形良好、柱效优异,与样品基质中的干扰峰均能有效分离,实现准确定性和定量,方法的稳定性和重现性均得到验证,可供参考。对照品溶液色谱图(点击查看大图)炒僵蚕配方颗粒色谱图(点击查看大图)扫码即得新版应用文集即享多篇UHPLC/HPLC应用!中药配方颗粒国标特征图谱色谱柱选择表!中药配方颗粒应用资料汇总(涵盖色谱柱/CAD使用维护,相关视频等)! 不要错过!!!中药配方颗粒色谱柱促销啦中药配方颗粒方法开发色谱柱推荐059149 Acclaim 120 C18 5um 分析柱 扫码查看购买
  • 【新品推荐】ATS高压匀浆机在细菌多糖结合疫苗的作用
    2019年8月13日,由北京民海生物科技有限公司生产的23价肺炎球菌多糖疫苗顺利通过国家药品监督管理局审查,成功获得生物制品批签发证明上市使用。该产品将通过各省疫苗招标采购平台,陆续发往各地预防接种单位使用。目前国内市场上的肺炎球菌疫苗主要有两大类:13价肺炎球菌多糖结合疫苗和23价肺炎球菌多糖疫苗。其中,13价肺炎球菌多糖结合疫苗主要针对2岁以下儿童;23价肺炎球菌多糖疫苗则覆盖2岁以上易感人群,尤其是婴幼儿、老年人、慢性病人等重点人群。肺炎球菌多糖结合疫苗是什么?细菌多糖结合疫苗(以蛋白为载体的细菌多糖类)是指采用化学方法将多糖共价结合在蛋白载体上所制备成的多糖-蛋白结合疫苗,用于提高细菌疫苗多糖抗原的免疫原性。制备结合疫苗的糖成分可以是分子量为500kd的左右的大分子多糖,可以是分子量为10-20kd的寡糖或0-SP,多糖的分子量越均一,免疫的表达效果越好。而我们的ATS高压均质机就是用来把多糖的分子量做均一的功能。是它是它,就是它!ATS高压匀浆机特点1.符合GMP设计,通过欧盟CE认证 2.物料残留量为0,特别适合原辅料昂贵的药剂类客户使用 3.超高压设计,压力可达:1800bar/27000psi 4.特殊的进料阀设计,无需排气,直接进料 5.变频器控制系统,可根据要求调节流量 6.内置冷却器,不消耗物料,控制均质温度 7.可配置高耐磨超细高密度陶瓷-金刚石阀 8.所有接触物料管道均为316L材质 9.可根据不同应用选用不同均质阀组 ,可选配冷却盘管,二级均质模块等 想了解更多关于ATS均质机可以咨询北京德泉兴业商贸有限公司ATS 安拓思纳米技术(苏州)有限公司近20年来一直致力于自主研发及引进国外先进技术;核心产品为超高压均质乳化粉碎机,及脂质体制挤出器系统。产品服务于国内外广大科研单位及制药企业;深受国内外客户的好评,已经成为广大用户的重要选择!
  • 戴安公司公布有关产品应用文献目录欢迎索取
    戴安公司除向中国市场推广高技术产品外,更加重视新技术的推广,戴安的每项产品都有大量的技术文献做支持,现利用网上仪器展向广大仪器界公布戴安部分产品的技术文献目录,如您对某文献感兴趣,请按目录前的号码向我们索要。联系方式:beijing@dionex.com.cn 或 shanghai@dionex.com.cn 戴安(DIONEX)公司应用技术资料目录 用离子色谱检测阴离子 AN2 空气采样膜上的NO3-、SO42-的测定 AN21 葡萄酒中的有机酸 AN25 非酒精类碳酸饮料中无机阴离子和有机酸的测定 AN36 离子色谱法测定尿液中的草酸盐 AN37 奶制品中I-的测定 AN45 脂肪酸的分析 AN51 测定氢氧化钠溶液中阴离子的方法 AN54 利用离子排斥色谱和脉冲积分安培检测器测定食品和饮料中的SO3- AN56 测定火电厂的高纯、氨化、硼酸化循环水中的痕量阴离子 AN65 肌醇磷酸盐的检测 AN70 胆碱和乙酰胆碱 AN71 用离子色谱结合抑制型电导检测的方法测定多聚磷酸盐 AN78 高浓度氢氟酸中痕量阴离子的测定 AN81 直接进样---离子色谱法测定饮用水中的卤氧化物和Br- AN85 有机溶剂中痕量阴离子的检测 AN93 使用自动中和A预处理/离子色谱法测定浓碱中的痕量阴离子 AN101 离子色谱法测定臭氧消毒水中的痕量BrO3- AN104 离子色谱法在个人保护品检测中的应用 AN112 高效阴离子交换色谱法测定肉制品中的NO3-、NO2- AN113 大体积/直接进样离子色谱法测定高纯水中的痕量阴离子 AN115 蛋白中三氟乙酸(TFA)的测定 AN116 药物中阴离子的测定 AN119 半导体腐蚀槽中离子化的含氟表面活性剂的测定 AN121 离子色谱法分析饮用水和地表水中低浓度的ClO4- AN123 发酵肉汤中无机阴离子和有机酸的测定 AN133 离子色谱法测定饮用水中的无机阴离子 AN134 用离子色谱法测定饮用水和地表水中低浓度的次氯酸 AN135 离子色谱法测定废水中的无机阴离子 AN136饮用水消毒副产物中的无机卤素含氧酸,阴离子和溴化物的离子色谱法测定,溴酸盐的柱后衍生离子色谱法测定 AN137 离子色谱法测定高浓度硝酸盐基体中的痕量阴离子 AN138 炼油厂废水和其他废水中硫代硫酸盐的测定 AN140 离子色谱法快速分析饮用水中的阴离子 AU102 电厂高纯水和硼酸化水中的痕量阴离子 AU103 电厂高纯水中痕量阴离子的测定 AU107 强碱溶液中氢化物的直接测定 AU122 海水中I-的测定 AU132 化学抑制离子色谱法测定饮用水中的NO3-、NO2- AU139 钢槽中离子化表面活性剂(FC-95)的测定 AU140 尿液中I-的测定 AU142 用EG40通过加大进样体积提高高纯水中痕量阴离子的测定 AU143酸性铜电镀槽中氯化物的测定 TN44 高浓度磷酸中痕量阴离子的测定 TN45 高浓度氢氟酸中痕量阴离子的测定 TN46 高浓度乙醇酸中痕量阴离子的测定 TN47 抑制电导检测器测定阴离子时使用碳酸盐做淋洗液可以获得低的基线噪音 用离子色谱检测阳离子、过渡金属 AN72 离子色谱/氩等离子体电感耦合光谱(ICAP)测定水溶性的有机溶液中痕量金属离子 AN73 离子色谱/氩等离子体电感耦合光谱(ICAP)测定试剂纯的酸、碱、盐中的痕量过渡金属离子 AN75 螯合离子色谱法测定试剂纯的酸、碱、盐中的痕量过渡金属离子 AN76 离子色谱/氩等离子体电感耦合光谱(ICAP)消除样品基体中的铁和铝 AN77 螯合离子色谱法测定过渡金属时基体干扰因素铁和铝的消除 AN80 离子色谱法测定饮用水、地表水和工业废水中可溶性的六价铬 AN86 含吗啉电厂水中痕量阳离子的测定 AN94 使用自动中和A预处理/离子色谱法测定浓酸中的痕量离阳子 AN108 血清和全血中的过渡金属的测定 AN109 柱后衍生----阳离子交换法测定镇草宁 AN120 海水中的测定Ca2+、Mg2+ AN124 牛奶和婴儿奶粉中胆碱的测定 AN131 高纯水和SC2(D-CLEAN)槽中PPT级过渡金属的测定 AU106 测定海水中痕量Ca2+、Mg2+ AU121R 炸药中的单价阳离子 AU137 工业过程水中痕量锂的测定 AU138 阳离子交换色谱法测定工业用水中乙醇胺 TN10 离子色谱法测定过渡金属 TN26 水、废水及固体废物提取液中Cr(VI)的测定 TN27 螯合离子色谱法测定消解的岩石样品中的镧系金属 用离子色谱检测核酸 AN100 DNAPac-100柱高度分离和纯化低聚核苷酸 用离子色谱检测蛋白质、缩氨酸 AN88 使用DX-500 HPLC 的中压凝胶渗透色谱 AN99 使用反向高效液相色谱测定缩氨酸 AN102 用DX-500 测定微孔缩氨酸 AN125 阳离子交换色谱法监控蛋白质脱酰氨基的过程 AN126 阳离子交换色谱法测定血红蛋白的变化 AN127 阳离子交换法对单细胞系抗体不均匀性的分析:C-终点赖氨酸变化的分离 AN128 阳离子交换色谱法监测单细胞系抗体的稳定性 AN129 色氨酸和甲硫氨酸氧化态和非氧化态的分离 TN50 AAA直接氨基酸分析仪直接测定蛋白质中氨基酸的含量 用离子色谱检测糖 AN66 洗涤剂中的新霉素 AN67 多糖的分析: 麦芽糖糊精、葡萄糖、菊糖和其他低聚糖 AN87 高效阴离子交换色谱---脉冲安培检测器测定糖果和果汁中的糖醇 AN92 高效阴离子交换色谱---脉冲安培检测器测定糖浆中的糖 AN105 薄层阴离子交换离子色谱分析人血清中的糖 AN117 药物中糖、乙醇和乙二醇的测定 AN141 用四重位波----A波检测可改善N-乙酰神经氨酸和N-羟乙酰神经氨酸峰面积响应值 AU125 血浆中的单糖分析 TN20 高效阴离子交换色谱---脉冲安培检测器分析碳水化合物 TN21 Dionex 脉冲安培检测器测定糖时脉冲安培检测器的优化设置 TN36 用HPAE-PAD对连接的低聚糖的外切糖苷酸的消化作用的分析 TN40 用HPAE-PAD分析糖蛋白中的单糖 TN41 高效阴离子色谱法分析唾液糖 TN42 高效阴离子色谱法分析寡糖 用快速溶剂萃取仪ASE 作样品前处理 TN206 加速溶剂萃取(ASE)过程中热降问题的研究 TN207 对使用DIONEX ASE200过程中样品夹带和交叉污染的研究 TN208 加速溶剂萃取(ASE)方法的优化 AN313 用加速溶剂萃取(ASE)技术提取环境样品的多环芳烃(PAHs) AN316 用加速溶剂萃取(ASE)技术提取环境样品中的多氯联苯(PCBs) AN317 用加速溶剂萃取(ASE)技术提取碱、中性物质和酸(BNA) AN318 用加速溶剂萃取(ASE)技术提取含氯杀虫剂 AN319 用加速溶剂萃取(ASE)技术提取有机磷农药 AN320 用加速溶剂萃取(ASE)技术提取有机氯农药 AN321 用加速溶剂萃取(ASE)测定各种食品中游离脂肪 AN322 用加速溶剂萃取(ASE)技术有选择的提取鱼肉中的多氯联苯(PCBs) AN323 用加速溶剂萃取(ASE)技术提取环境样品中的多氯二苯二噁英和多氯二苯呋喃 AN324 用加速溶剂萃取(ASE)技术提取土壤中的烃类污染物(BTEX,Diesel 和TPH) AN325 用加速溶剂萃取(ASE)技术提取含油种子中的油 AN326 用加速溶剂萃取(ASE)技术对动物饲料进行提取 AN327 用加速溶剂萃取(ASE)技术提取膏药中的硝酸甘油 AN328 用加速溶剂萃取(ASE)技术提取土壤中的炸药 AN329 用加速溶剂萃取(ASE)技术测定婴儿奶粉中的总脂肪 AN330 用加速溶剂萃取(ASE)技术测定粒状和液体清洁剂中的有机成分 AN331 用加速溶剂萃取(ASE)技术提取聚合材料中的添加剂 AN332 用加速溶剂萃取(ASE)技术提取食物中农药和除草剂的残留 AN333 用加速溶剂萃取(ASE)技术提取聚氨基甲酸酯泡沫吸附盒上的PCBs AN334 用加速溶剂萃取(ASE)技术测定快速测定肉中的脂肪 AN335 用加速溶剂萃取(ASE)技术提取天然产物中的活性成分 AN336 用加速溶剂萃取(ASE)技术提取多(乙烯基氯)聚合物中的增塑剂 AN337 用加速溶剂萃取(ASE)技术一次提取鱼组织中的油脂和PCBs AN338 用加速溶剂萃取(ASE)技术提取土壤中石油总烃污染物(柴油和废油) AN339 用加速溶剂萃取(ASE)技术测定沉积物中的有机化合物 AN340 用加速溶剂萃取(ASE)技术测定干的奶制品中的脂肪 AN341 用加速溶剂萃取(ASE)技术从大体积样品中提取碱、中性物质和酸(BNA) AN342 用加速溶剂萃取(ASE)技术对大体积的鱼肉样品进行PCBs的测定 AN343 用加速溶剂萃取(ASE)技术测定大体积食品样品中的杀虫剂 AN344 用加速溶剂萃取(ASE)技术提取巧克力中的脂肪 AN345 用加速溶剂萃取(ASE)技术提取乳制品(奶酪、黄油和鲜奶)中的脂肪 LC Packings毛细管/毫微级液相技术 AN01LCP 用毛细管液相/质谱/质谱对药物代谢产物的快速确定 AN02LCP 用超高流速的毛细管液相/质谱/质谱对血浆中的药物进行直接分析 AN03LCP 其他应用 AN46 离子色谱:一种分析啤酒的通用技术 AN83尺寸排斥色谱法中使用分离脉冲积分安培(PDA)检测器测定多糖 AN95 反向高效液相色谱测定多环芳烃 AN96 反向高效液相色谱测定N-甲基氨基甲酸酯 AN97 反向高效液相色谱测定羰基化合物 AN106离子色谱在制药行业中的应用 AN107生理液中的离子 AN132积分脉冲安培法(IPAD)测定含硫抗体 AN139液相色谱法测定酸性铜电镀槽中的添加剂和副产物 AU111电镀铜使用的LeaRonal酸中微量PCM和PC的检测 AU119酚 AU133镀镍的硫酸电镀槽中邻磺酰苯甲酰亚胺的测定 TN8 离子色谱中浓缩柱的使用 TN9 电导检测、电导率定律和电离平衡 TN12 抑制电导检测——离子对色谱测定方法的发展 TN16 第一代Dionex色谱柱淋洗液的配制 TN43 采用平滑算法减少基线噪音
  • 还原食品真实的模样——新年送点“礼”
    2018年10期的《食品安全质量检测学报》中刊登的,“馥郁香型白酒等级鉴别的研究”,文中提到了,建立超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法和主成分分析法对馥郁香型白酒等级鉴别的方法。该方法简单、快速,为馥郁香型白酒质量分级提供了一种新的途径。 赛默飞食品组学的工作流程可助力于食品掺假分析、食品溯源分析、食品类别分析,帮你去伪存真,还原食品最真实的模样。 食品掺假分析掺假蜂蜜中果葡糖浆分析 蜂蜜作为一种天然保健食品,在药用方向它既是一味中药也可用作药用辅料。但一直以来蜂蜜品牌繁多,掺假手段层出不穷,近几年常用的蜂蜜掺假方式中,利用果葡糖浆掺假形式最为普遍。 按照2015 版药典中增加了寡糖项(薄层色谱法),以下赛默飞针对不同品牌的蜂蜜样品加入果葡糖浆测定谱图:A品牌蜂蜜(点击查看大图) B品牌蜂蜜(点击查看大图) 结论本方法将药典中寡糖测定的薄层色谱法提升为高效液相色谱,灵敏度更高,测定结果,更准确。实验采用通用型检测器Corona Veo RS 进行测定,使用其阀切换功能将高浓度的单糖切换到废液,只测定聚合度大于等于5 的寡糖,避免了高浓度的糖污染检测器。对于不带阀的常规Corona Veo 检测器可以外置一个阀来实现该功能。CAD 操作简单,灵敏度高,稳定性好,适用于单糖和寡糖的检测。 食品溯源分析威士忌酒进行化学轮廓描绘和示差分析 威士忌酒是一种常见的烈性酒。由于威士忌酒零售价格普遍较高,市面上充斥着大量伪劣商品。最普遍的一种方式是讲威士忌酒的主要已知化学成分加入某种低价烈酒中,以“人造产品”冒充威士忌;另一种造假就是以次充好,夸大威士忌陈酿的年数。气相色谱-质谱联用仪(GC-MS)被广泛用于的威士忌酒表征分析,能非常有效地帮助实现酒中挥发性和半挥发性化学成分的鉴定。同时,利用 Thermo Scientific™ Q Exactive™ GC 混合四极杆-Orbitrap™ 质谱仪出色的分析表现来对不同产地、年份、和类型的威士忌酒进行轮廓描绘分析。下图总结了达成这些目标所需的工作流程。(点击查看大图) 食品类别分析在白酒香型鉴别中的应用 白酒在中国有着悠久的生产历史, 是我国优秀而宝贵的民族遗产,与白兰地、威士忌、伏特加、朗姆酒、金酒并列为世界 6 大蒸馏酒。我国固态发酵白酒质量的影响因素很多, 每个生产批次所产酒的酒质是不一致的。为了统一达到本品所固有的各种微量成分和它们之间适宜的比例, 就必须进行勾兑。 经过勾兑后的成品白酒, 具有其固定的化学成分组成以及这些成分之间的固定量比关系, 从而形成各自不同的香型和风味。目前对白酒香气成分的分析多采用 GC 或 GC/MS 的方法。而对于香型的鉴定,主要依靠品酒师的感官鉴别。该方法简单快捷,但对人员要求较高,且较为主观。也有采用电子舌技术对不同香型的白酒进行区分,但电子舌技术尚有待进一步发展且通用性较差。本实验采用超高效液相色谱(UHPLC)和基于 Orbitrap 高分辨质谱技术的 Q Exactive 台式质谱仪,结合组学分析软件 SIEVE 和统计学软件 SIMCA 对不同香型的白酒进行了组学研究,利用多元统计分析建立了一种快速、准确、客观地鉴别白酒香型的新方法,并对找到的标志物进行了鉴定。基于组学分析方法的全流程解决方案(点击查看大图) 扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • 捐赠紫外杀菌灯 | 贺利氏特种光源在行动, 驰援黄冈抗疫一线
    最近的新型冠状病毒疫情来势汹汹,黄冈市毗邻武汉,当地医院和抗疫一线紧缺高级别的防护和抗疫用品。贺利氏特种光源作为全球紫外技术和产品的领军企业,为抗击疫情贡献力量义不容辞。 “我们积极调动了生产、采购、物流、销售等各部门同事,积极筹备和落实了近1000套紫外杀菌灯,捐助给湖北黄冈地区急需杀菌物资的抗疫一线,为控制疫情贡献我们的力量。” 贺利氏特种光源总经理叶辉说到。 2月11日,贺利氏特种光源紧急联系了顺丰速运,安排专车将我们捐赠的紫外杀菌灯从上海运向湖北,送往黄冈疫情防控指挥部。预计将在13日送达,并及时发放给急需的辖区医院,为医护人员打赢“战疫”助一臂之力。 近日,国家卫健委与国家中医药管理局公布《新型冠状病毒感染的肺炎诊疗方案(试行第四版)》。新版诊疗方案中写到,病毒对紫外线和热敏感。对此,贺利氏技术专家进一步介绍:大部分细菌和病毒接受的累积紫外剂量达到20mJ时,其灭活率可以高达99%以上。253.7nm的紫外线能有效破坏微生物的遗传物质(DNA或RNA),使细菌和病毒等无法完成遗传物质的复制和转录,从而杀灭细菌病原体,杜绝传染源。 在过去的一周,贺利氏特种光源积极参与”明课堂”网络抗击疫情的系列线上讲座,总经理叶辉和销售总监赵轶分别受邀介绍了紫外杀菌的技术、应用和趋势,也介绍了紫外杀菌技术使用的注意事项,以专业的知识向广大听众普及紫外杀菌技术和知识,帮助抗击疫情。
  • 浙江拟所有学校食堂建快检室 食品快检市场走近食堂
    切块、取样、试剂检测、对照颜色、登记结果??一个月下来,宁波市实验幼儿园闲庭园区的保健医生郭红已经熟练掌握了新技能——食品快检。  作为宁波海曙“先快检再下锅”项目的试点学校,从上个月开始,学校食堂所有食材在下锅之前,都需要经过现场检测这道“防火墙”,而郭红也增加了一个新身份,食品安全快检员。  目前,这一做法已经在宁波海曙25家中小学及幼儿园试运行,今后,将覆盖到所有学校。这一做法,在浙江省内还属首创。  十多项食品安全项目  快检室都可筛查  学校食堂旁边一间五六平米的小房间里,快检箱、冰箱、检测仪器、试管试剂等设备一样不少,墙上挂着快检流程图和快检结果记录表,这就是郭红每天要工作的快检实验室。  每天早上7点左右,在送货员把当天学校食堂午餐的食材送来以后,郭红需要对每一个品类进行抽样检测,确保当天下锅的食材安全可靠。  实验室虽小,功能却很强大。从蔬菜、肉类、水产品到水果、调味品、饮料,学校餐桌上会出现的食材,基本都可以进行检测。检测项目包括了农药残留、甲醛、亚硝酸盐、二氧化硫、双氧水、重金属等十几个项目。  “每天,学校食堂会用到10几种食材,其中最多的是蔬菜,农药残留是我们进行蔬菜检测的重点。”郭红以胡萝卜和青菜集中主要食材为例子,对检测流程进行了演示。  对食材进行切块取样后,将样品放入处理杯中,加水振摇,提取上层的样品待检液滴到速测卡的酶片上,在农残速测仪中加热预反应10分钟后,使酶片与红色底物片重合产生化学反应,3分钟后,就可以通过酶片的颜色,判断是否存在农残超标。  “一个月检测下来,还没有发现过有检测不合格的样品。” 海曙区市场监督管理局餐饮服务监管科负责人徐立表示,目前,海曙区以宝韵幼儿园、清林闲庭幼儿园、莲桥第幼儿园为代表的25家学校幼儿园食堂已完成快检室的建设,其他学校(幼儿园)食堂也在陆续推进快检室建设。  下一步,还计划在大中型餐饮单位、企事业单位食堂、集中供餐单位逐步推行该项举措。  “快检中一旦发现存在超标问题,学校马上会对问题原料进行截留,同时上传信息,我们会安排人员进行复检,如果确定存在问题,将对食品供应商进行溯源检查。”徐立表示。  在快检室设立初期,市场监管局还将组织执法人员不定期地对试点单位进行检查,对照台账查阅相关快检记录,确保快检室能发挥作用。  一棵青菜上学生餐桌  至少经三重检测  餐饮安全无小事,围绕“菜篮子”安全,宁波正在编制一道道渐趋绵密的防线。加上设立在学校食堂灶头的这道最后防线,一棵青菜要上学生餐桌,至少要进行三重检测。  首先,蔬菜批发市场这第一道防线上,每批进入市场的蔬菜都要进行农残等抽样检测,确保进入宁波市场的这道安全“大门”严丝合缝。  遍布各个社区的菜市场是安全的第二道防线,目前,宁波100多家菜市场已经配备了专门的快检室。  以海曙区为例,全区11家菜场,就有10家配备了快检室。这些快检室对菜市场流通的食材进行日常监测,并对检测结果进行公示。  为了方便老百姓了解菜篮子安全,去年开始,宁波100家菜市场快检室免费向公众开放,市民买菜期间,就可以对菜篮子里的食材进行免费检测。  “市场流通环节和学校食堂的快检,主要解决原材料的安全问题,我们的阳光厨房工程则保障了加工安全问题,对学生用餐安全进行全流程保障。”徐立说。  在宁波市实验幼儿园闲庭园区,一楼大厅的一个显示屏就实时监控着厨房的动态,厨师操作规范和卫生状况都可以做到一目了然,这样厨房监控系统,在宁波的大多数学校都可以看到。  据统计,目前宁波全市共建成2461家阳光厨房,其中校园阳光厨房1337家。
  • 糖尿病药物治疗史里程碑成果:林圣彩团队破解二甲双胍靶点
    二甲双胍作为一种天然化合物的衍生物自1957 年上市后,历经 60 多年的发展,至今仍作为一 线药物在临床被广泛使用,而且近年来发现二甲双胍有越来越多的益处,有“神药”之称。然而业内人士谈到其具体的作用靶点时总是争论不休,以至于学术圈都觉得“神药”之所以神就是因为没有明确靶点,久而久之没有明确靶点成了“广泛共识”。今日,来自厦门大学的林圣彩教授团队经历7年的科研攻关,用“钓鱼”的方法破解了破解二甲双胍直接作用靶点之谜,围绕二甲双胍发表的论文已经有近3万篇,林圣彩团队的这项工作称得上是里程碑式的工作,相关研究以Low-dose metformin targets the lysosome–AMPK pathway through PEN2为题发表在Nature杂志上,鉴于该工作的重要意义,来自复旦大学附属中山医院李小英教授和原新加坡分子细胞生物学研究所所长 CHRIS Y H TAN对这项工作进行了精彩点评,以飨读者!如果要我们列举几种自己所熟悉的药物,那么二甲双胍一定能占据一席之地。它不仅仅是治疗二型糖尿病的一线药物:便宜、降糖效果好且副作用小,更因为近年来不断发现的各种神奇功效:降低糖尿病人的体重、缓解脂肪肝,甚至于有潜在的抵抗由于糖尿病所引起的多种癌症的效果等,而被称为“明星”药物。特别地,对于健康人群,二甲双胍也很可能有抵抗衰老、延长寿命的作用。因此,它经常和卡路里限制一起,被列为人类未来通向健康长寿之路的重要手段之一。在国外,有数个大规模的探索二甲双胍对人类寿命影响的长期临床实验已经展开,目的就是要找到这一“健康密码”的最终证据,造福于我们的子孙后代。然而,尽管二甲双胍有着如此耀眼的作用,它的分子靶点却一直没有弄清,这极大地限制了我们对二甲双胍的理解和应用——我们不知道二甲双胍的这些神奇效果是从何而来,由哪些分子所介导,当然也就没办法“举一反三”,去借助这些原理,设计相应策略来更好地行使这些功能。换句话说,我们还没有真正理解二甲双胍这一健康密码的本质。更何况,二甲双胍的作用是有局限性的,例如它只能作用于肝脏、肠道等少数几个组织,对于脂肪组织则无可奈何。因此,如果我们想使用二甲双胍,在减少脂肪的同时保留健硕的肌肉,而不是(因为吃得少)一起减少,那就是要尤其慎重的。如果能设计出专一性靶向脂肪组织里的二甲双胍靶点的药物,突破这一瓶颈,一定能为眼下日益严重的营养过剩等各种代谢性疾病的治疗带来福祉。厦门大学林圣彩院士团队正是在二甲双胍的分子靶点研究方面取得了突破。他们团队长期致力于代谢稳态和代谢疾病发生机制的研究,而从2014年起,他们就对二甲双胍产生了兴趣。那时人们已经发现,二甲双胍能够通过激活一个名为AMPK的蛋白行使上述的诸多功效,然而对于它如何激活AMPK,靶点又是什么,则完全没有弄明白:和二甲双胍相比,其它合成的AMPK激活剂并不具有二甲双胍的所有功效,而二甲双胍(超过临床剂量的除外)对于AMPK在体内的天然激活剂——AMP的水平提升也没有任何作用。种种迹象表明,二甲双胍对AMPK的激活可能是“另辟蹊径”的。经过探索,他们团队在2016年于Cell Metabolism上报道了二甲双胍可能通过他们先前发现的,机体感应饥饿和葡萄糖水平下降时所用的一条名为“溶酶体途径”的通路,激活AMPK的初步结论,为二甲双胍的功效行使指明了一个粗略的方向(关于这条中国人自己发现的新通路,详见林圣彩团队参与撰写的重要综述:『珍藏版』“Must-Read”综述丨阴阳相济的中庸之道——AMPK和mTORC1营养感知与细胞生长调节)。在上述基础上,他们又经过了五年多的探索,最终找到了二甲双胍的分子靶点——PEN2(γ-secretase的亚基),并搞清了它导向溶酶体途径,激活AMPK的具体方式,相关工作以Low-dose metformin targets the lysosome–AMPK pathway through PEN2为题于2022年2月24日发表在Nature杂志上。在这一工作中,林圣彩团队首先通过和厦门大学邓贤明团队合作,后者通过一系列摸索,突破了多个化学合成上的难题,合成了二甲双胍的化学探针。简单地说,这个探针的工作原理就像我们钓鱼一样,前端的“鱼钩”是二甲双胍这个分子,后端的“钓竿”则是一个名为生物素的标签:当前端的二甲双胍分子碰到了它所结合的蛋白,也就是靶点以后,我们就可以通过后端的标签,把二甲双胍连同它的靶点一起“钓”上来,再通过质谱等手段分析,就能知道二甲双胍结合的这个靶点是什么。通过这种方法,他们从细胞中“钓”出了2000多种可能和二甲双胍结合的蛋白。由于二甲双胍可以独立地通过溶酶体途径激活AMPK,他们于是从中筛选出了317种存在于溶酶体上的蛋白进行进一步验证。鉴于这些蛋白又很可能有不少是被“拔出萝卜带出泥”的,他们于是逐一验证了二甲双胍和这些蛋白的相互作用,又从中筛选到了113种,真正直接结合了二甲双胍的蛋白。之后,他们又逐一在细胞中敲低这些蛋白,最终找到了一个名为PEN2的蛋白,能够介导二甲双胍对AMPK的激活。后续的实验进一步表明,PEN2就是二甲双胍启动溶酶体途径激活AMPK的前提,而敲除了PEN2,二甲双胍不但不能激活AMPK,它对于降低脂肪肝、缓解高血糖、延长寿命等诸多效果就都不存在了。这些结果充分说明,二甲双胍确实通过PEN2激活AMPK,并起到各种功效,也就是说,PEN2就是二甲双胍的靶点。林圣彩团队的这一发现无疑加深了我们对二甲双胍这一“健康密码”的理解,不但首次从分子角度勾画出了二甲双胍行使功能的路线图,还为二甲双胍替代药品的筛选提供了潜在的靶点,从而在治疗糖尿病和其他代谢性疾病方面产生更好的疗效。有意思的是,尽管具体的分子靶点有些许不同,但二甲双胍和饥饿(葡萄糖水平下降)走的是同一条路线,即上述的溶酶体途径,可见大自然的大道至简。联想到卡路里限制可以看做是一种大尺度下的饥饿,而它和二甲双胍的功效又大有相似之处,这又让我们不得不喟叹长寿之路的万化归一,而我们祖先所推崇的辟谷养生是多么有前瞻性!当然,这一切的机制的解析的背后,离不开林圣彩团队长期以来的辛勤工作。据林圣彩老师透露,实际上在目前,解析类似于二甲双胍这样的小分子和蛋白质的相互作用,仍是一个很前沿,或者说是很不成熟的领域。以他们此次发现二甲双胍的靶点的经历来看,事实上二甲双胍在水溶液中就像溶于其中的无数盐离子一样,而它所能结合的同样是水溶性的蛋白分子,就如同水中的各种盐离子一样,也是数不胜数。即使对于PEN2这个靶点本身,他们都发现了多个能结合二甲双胍的位点,这可能也是为什么他们课题组最后从2000多个潜在靶点中只找到了一个真正的靶点的原因。对于这种极高的“假阳性”,目前并没有任何手段加以避免,只能说是小分子和蛋白质结合的本质就是如此。因此,唯一的方法只能是不厌其烦地逐一筛选,而这需要的是热爱和执着,以及对小分子“见微知著”的坚定信念。据悉,本文的第一作者马腾是厦门大学2014级博士,从博士入学时起就参与了这一系列工作,为该靶点的最终鉴定付出了长达七年的辛勤努力。而本文的另外两位共同第一作者田潇和张保锭,也都长期高强度地投入在本课题的研究工作上,和本文其他作者一起,为该靶点的鉴定做出了重大贡献。特别值得一提的是,本文的共同通讯作者之一、林圣彩教授培养的得意弟子张宸崧博士(如今也是厦门大学生命科学学院教授)长期围绕AMPK做出的一系列创新性工作,包括2017年作为第一作者发表在Nature上颠覆性工作(颠覆性发现:林圣彩组Nature破解葡萄糖感受的新机制)。我们在此期待着林圣彩团队未来能有更多的成果,也许在那时,我们“游于空虚之境,顺乎自然之理”的长寿之路,就将不再遥远。近年来,林圣彩教授以细胞代谢稳态调控为研究核心,针对细胞对营养物质与能量的感知机制以及代谢紊乱相关疾病的发生发展的分子机制进行研究,取得了一系列原创性成果,特别是发现和鉴定了细胞感应葡萄糖缺乏的溶酶体途径和所在的“葡萄糖感受器”,及其激活AMPK的方式,并打破了传统的“AMPK的激活仅依赖于AMP浓度的变化”的认知(Cell Metabolism, 2013, 2014 Nature, 2017 Cell Research, 2019)。基于本团队发现的溶酶体AMPK通路,他们揭示了二甲双胍激活AMPK是通过该通路(Cell Metabolism, 2016),以及AMPK依赖于不同应激的状态的时空调控(Cell Research, 2019),揭示了钙离子通道TRPV介导了缩醛酶感知葡萄糖到AMPK激活的过程,让葡萄糖感知的通路全线贯通(Cell Metabolism, 2019),围绕AMPK分别与Grahame Hardie和Michael Hall发表两篇重要综述(Cell Metabolism,2018,2020)。专家点评李小英 教授 (复旦大学附属中山医院内分泌代谢科主任)揭开二甲双胍的神秘面纱 随着生活方式和饮食结构的改变,糖尿病呈现全球流行趋势。2015 年全球糖尿病患者达到 4.15 亿,预计 2040 年糖尿病患者将会上升至 6.42 亿。在糖尿病治疗药物的广阔天空中,二甲双胍无疑是一颗耀眼的明星。过去65年,二甲双胍一直作为糖尿病患者治疗的主要手段,长期占据糖尿病治疗一线药物的地位。它引导我们不断深入探索,以期真正揭开这一经典降糖药物的作用靶点和分子机制。近日,厦门大学林圣彩院士团队及其合作者发表在Nature杂志上的研究,发现了治疗剂量的二甲双胍的直接作用靶点及其分子机制,取得了历史性突破。为糖尿病的治疗,乃至抗肿瘤、抗衰老的药物研发和应用提供了崭新的思路,有望成为糖尿病药物治疗史上的一座闪亮的里程碑。二甲双胍于上世纪20年代从植物山羊豆中分离得到,50年代法国医生Jean Sterne开始研究二甲双胍的降糖作用,直到1957成功用于糖尿病患者的治疗。二甲双胍的同类药物苯乙双胍、丁双胍等均因其乳酸酸中毒发生风险和心脏病事件死亡率增高而于70年代退出市场。70年代以来,以UKPDS为代表的大型糖尿病心血管结局研究证明二甲双胍具有显著的降糖效果、良好的安全性、对肥胖的2型糖尿病患者具有心血管保护作用,长期以来一直是2型糖尿病治疗的一线用药,也是应用最为广泛的口服抗糖尿病药物。随着二甲双胍在临床上的广泛使用,人们发现二甲双胍还具有抗肿瘤、延缓衰老、缓解神经退行性疾病症状等作用。因此,解析二甲双胍的作用机制一直是科学家们的梦想。二甲双胍是一种极亲水的小分子药物,在生理情况下通常以带正电荷的质子化形式存在。其主要通过肠道上皮细胞肠腔侧的血浆单胺转运体(PMAT)吸收,而肝脏对二甲双胍的摄取主要是通过肝细胞基底侧的有机阳离子转运体1(OCT1)。二甲双胍的生物利用度约为50%-60%,1-2g/天(或20 mg/kg)二甲双胍摄入达到血药浓度约为10 µM -40 µM。既往在研究二甲双胍作用机制的不同报道中使用的二甲双胍浓度差异很大,常常远高于二甲双胍治疗剂量的血药浓度,并且二甲双胍的作用还受到给药途径的影响。这些问题都导致二甲双胍的作用机制研究产生不一致的结论。本世纪初,El-Mir和Owen分别发现二甲双胍可以特异性的作用于线粒体呼吸链复合体Ⅰ,抑制电子跨膜流动和膜电位形成,从而降低线粒体氧耗,并抑制三磷酸腺苷(ATP)的生成,使AMP/ATP比值升高。值得注意的是,Owen等人在实验中使用了极高浓度(10 mM)的二甲双胍处理,其结果可能无法反应真实的生理效应。Zhou等人提出:二甲双胍通过单磷酸腺苷激活的蛋白激酶(AMPK)依赖的机制抑制肝脏糖异生——该作用对于二甲双胍缓解糖尿病人的高血糖表型可能十分重要,这在深入探讨二甲双胍作用机制的漫漫长路上无疑是一个里程碑式的发现。随后,Shaw等人的研究进一步证实LKB1/AMPK信号通路的激活是二甲双胍抑制糖异生的重要分子机制。 此外,AMPK 介导的二甲双胍降低肝糖输出的可能机制还包括:1)二甲双胍通过AMPK信号通路上调小异二聚体伴侣(SHP),SHP进而与转录因子CREB直接作用,阻止CREB对CRTC2的招募,从而下调糖异生基因的表达;2)二甲双胍通过AMPK信号通路,上调肝脏去乙酰化酶SIRT1基因的表达,SIRT1使CRTC2去乙酰化,促进其泛素化降解,进而下调糖异生基因的表达。除了在糖尿病中发挥作用以外,AMPK还被认为在二甲双胍所介导的延长寿命、延缓衰老等功能上发挥了作用。近年来的研究也进一步发现了许多二甲双胍不依赖于AMPK行使作用的机制,例如Foretz等人发现,在小鼠肝脏特异性敲除AMPK的α催化亚基,并未对小鼠的血糖或二甲双胍的降糖作用产生影响。而肝脏LKB1特异性敲除的小鼠,虽然在基础状态下存在肝糖输出增加和血糖升高的表现,但并不影响其对二甲双胍的反应性。进一步地,Madiraju等人的研究揭示了二甲双胍在线粒体的另一个作用靶点——线粒体甘油磷酸脱氢酶(mGPD)。二甲双胍通过抑制mGPD的活性,阻断α-磷酸甘油穿梭的过程,使NADH在胞浆内聚积,增加胞浆的还原状态而降低线粒体内的还原状态,最终使以乳酸和甘油为底物的糖异生过程受到抑制。此外,Duca等人最近的研究又为我们认识二甲双胍的作用机制提供了崭新的视角。他们发现,二甲双胍发挥降糖作用的第一靶点可能在肠道。经肠道给药后的短时间内,二甲双胍迅速激活肠道AMPK及其下游信号通路,进而通过分布于肠道的迷走神经传入纤维将局部信号传递至中枢,再通过迷走神经传出纤维支配肝脏,最终抑制肝脏的葡萄糖输出。林圣彩团队发现,低剂量的二甲双胍不会引起线粒体呼吸链复合体I的抑制以及AMP/ATP比值的升高,相对地,它可与PEN2分子直接结合。结合二甲双胍的PEN2进一步与溶酶体膜ATP6AP1结合形成复合物。作为v-ATPase的亚单位,ATP6AP1与PEN2复合物则抑制v-ATPase活性,从而激活溶酶体上的AMPK(图1),这种小范围内的AMPK激活,类似于热卡限制情况下的AMPK激活,避免了整个细胞AMPK激活带来的副作用,包括心肌损伤等。林圣彩团队还分别在小鼠肝脏和肠道,以及线虫敲除PEN2,观察到二甲双胍减少肝脏脂质沉积的作用减弱,二双胍的降糖作用受到影响,以及二甲双胍延长寿命的作用消失。该研究表明,深入认识基于细胞内亚细胞器的区域化精准信号通路调控,对提高药物靶点的安全性和有效性都至关重要。图1 二甲双胍激活AMPK机制专家点评Chris YHTan (新加坡分子细胞生物学研究所前所长,)健康活到120岁将不是梦想!【译文】人类对长生不老孜孜不倦地追求始于文明之初。著名的秦始皇49岁英年早逝,太医配制的延年益寿仙丹含有水银,对长生不老的向往让秦始皇死于水银中毒。寿命延长的追求持续到了现代。1975年,国会批准NIH建立国立衰老研究院(National Institute of Ageing)。一开始科学家们对于如何开展关于衰老的研究没有一丝头绪。我在发现了干扰素和抗氧化酶SOD-1的作用机制后,从耶鲁来到NIA,这些基因也和神经疾病及长寿相关。衰老过程伴随位于染色体两侧的DNA序列--端粒的改变,端粒酶可以阻止端粒变短。寻找激活端粒酶的分子给予了科学家长生不老成药的希望。但是,端粒酶的激活分子也存在危险,可以使衰老的细胞变成永生的癌细胞。研究停滞不前。科学家发现在果蝇中增加SOD-1的基因剂量可使寿命成倍增加,这一发现掀起了另一波探索的热潮。然而SOD-1使寿命延长的机制迟迟未能阐明,基于SOD-1开发长寿药也毫无进展。现在,机缘和实力的加持,来自于厦门大学的林圣彩团队发现了长寿的秘密。二甲双胍是治疗糖尿病的一线药物,近年来又发现了抗衰老和抗癌等神奇功效。林圣彩团队发现了二甲双胍通过低葡萄糖感知通路激活AMPK调节寿命的机制,我将此命名为“林通路”。他们发表在本期Nature的文章研究成果找到了二甲双胍的作用靶点进一步证实这一理论。林通路的发现开启了我们对葡萄糖代谢新的认知认识。在过去的一个世纪,科学研究揭示了葡萄糖代谢产能的中心角色。没有葡萄糖,生命难以延续。从1921年Banting和Best因发现胰岛素而获奖开始,多个诺贝尔生理医学奖授予了葡萄糖代谢的研究。现在多数人会认为葡萄糖研究的热潮已经过去。林团队在模式生物的研究揭示了葡萄糖在寿命延长中重要调控机制,重新发掘葡萄糖代谢的中心地位。他们发现了葡萄糖感受器,在饥饿状态、低葡萄糖水平情况下,果糖(1,6)二磷酸水平降低,其醛缩酶被征召至细胞器溶酶体表面,和v-ATPase形成复合物,激活AMPK,抑制mTORC的活性,抑制细胞生物合成。林通路葡萄糖感受器的发现将AMPK调控的分解代谢和mTOR调控的合成代谢联系起来,组成了细胞阴阳两面。林团队的研究使我们从全新角度思考葡萄糖的功能:葡萄糖不仅仅是能量分子,它也是重要的信使分子。目前,林团队握有崭新的一整个系列先导分子的专利,将可能使我们保持健康活得更长。林团队开启了以前难以想象的药物研发新篇章,首次实现通过无毒药物将癌症变为可控疾病的可能。这些先导分子可预防癌症,可治疗肥胖和脂肪肝。在不远的将来,也可能在我们身上,健康活到120岁将不是梦想!
  • 专家视角丨药物研发过程中的化学对照品探讨
    精准药物分析的工作,离不开稳定的分析系统和可靠的标准物质(标准品/对照品等)。标准物质具有复现、保存和传递量值的基本作用,对实现测量结果的溯源性,保证测量结果在时间与空间上的连续性与可比性,进而确保测量结果的准确可靠、有效与国际互认具有关键作用。 岛津为制药行业客户提供稳定可靠的标准品/对照品制备解决方案:制备液相系统(Prep LC)、质谱引导的制备液相系统(MS-trigger Prep LC),超快速制备纯化液相色谱系统(UFPLC)、制备超临界流体色谱(Prep SFC)。 超快速制备纯化液相色谱系统(UFPLC)可在线完成从分离、浓缩、纯化到回收的制备全过程。 2020年,中国药科大学药物分析系吴春勇博士于新药仿药CMC实操讨论群进行了精彩而全面的主题分享,并发表在“新药仿药CMC实操讨论”公众号,经过“新药仿药CMC实操讨论”的授权,在此分享吴春勇博士的《化学药物研发过程中的对照物探讨》。 概述案例 对于吴春勇博士的《化学药物研发过程中的对照物探讨》,新药仿药CMC实操讨论群也进行了较为热烈的探讨。PPT正文后续延申的讨论内容如下(基本按照时间先后顺序列出)。 沈晓斌博士(前FDA资深审评员,FDA报批咨询顾问):very nice.吴博士论述的非常全面、非常细。我们就说比如说在FDA做review的时候呢,我们个人不会接触那么全面,各种各样的方式,这个标准品的这个去就是抽点它的含量呀,就是拿到他的COA,通常不会把各种方法都是看过一遍的。 就是它这个PPT呢,把所有的东西都给想细细的捋了一遍,个人觉得就是这是一个对知识体系的全面的补充,有些东西,因为你以前没有接触过,你不会考虑那么细,当在FDA的时候你看到的是公司怎么做,然后你来评估他是否合理,是否可以接受,或者跟FDA的现有要求,来评估。 想要就说一点,FDA本身他不去说去该怎么去定量,这个标准品他只是负责审评,就是评审你(的资料),外界可以自己去建议你想要的方式,但是你要有足够多的科学依据,然后他(FDA)来评估是否可以接受,就是完全靠自己来论述清楚。 另外就是说国内看起来,这个我以前对国内这个没有太多的,而且也没有特别去关注,因为我这个工作最早才从FDA报批方面的东西,吴教授这个主题一讲,觉得国内在有些方面其实要求是似乎是比USP、FDA的要求更细更多一些,有一种感觉就是弯道超车已经超了,在有些方面实际上是做的更好。只不过,过去这些年,西方就是设定了这种既定的质量标准,那其他国家,就因为你要照着西方去做仿药嘛,你就必须根据他的规则来走,更多的是这方面的区别。 孙亚洲老师(长沙晶易首席科学家):意见1:研发人员买的非法定对照品,外标法测定杂质含量时,很多人直接采用了COA的赋值,也直接采用相应的测定结果订入了标准,有些不妥。包括批检验,最初的朔源需要是法定对照或者经过标定的对照品。 意见2:在吴博士的ppt中,对于非法定来源的如百灵威,sigma等买到的杂质对照品,拿到后是否需要再行进行研究工作或者分析一下是否存在风险,似乎没有提出来。这个问题建议大家是否深入思考一下。 群主补充:只有经过标化赋值且可溯源(过程,方法,验证)的,风险才是最低的。 群主补充:尽管杂质测定中,如5%的误差是可以接受的(这属于科学性的范畴);但不等同于对照品/标准品可以草率拿来,草率采用他人的赋值,这完全是两个范畴。也许某份杂质对照品中含水量10%,无机成分包括前处理过程带来的硅胶等30%,若草率定量,杂质的真实含量会被低估如40%。 沈晓斌博士:同意以上的观点。 群友1:通过药品杂质的公司购买的对照品,我们就碰到了,欧美的一家知名公司提供的对照品结构出现偏差,我们通过多次比对都无法拿到和代谢产物吻合的结果,多次交涉和讨论之后才发现该公司的产品是另外一个同分异构体。 吴春勇博士(中国药科大学药物分析系副教授):看来概率虽然小,这个问题还是客观存在的。 沈晓斌博士:提供化合物的公司没有责任和义务。使用者必须做该做的来证明给监管机构标准品的使用是合理的。 刘国柱博士(长沙晨辰医药创始人、技术总监):我请教吴博士一个问题,目前国内杂质对照品市场非常混乱,大部分购买的杂质对照品都是经几手倒卖才到厂家手里,对照品塑源存在问题,谱图与赋值真实性也存在问题,请问对此引入的风险有何看法? 群友2:在购买对照品的时候,在COA的同时能否得到该合成方法的信息,这个在技术层面上是有难度的。没有哪个合成公司愿意提供产品合成路线给对方的。 群友3:好多杂质对照品本身不稳定,需要在-20℃保存,有可能在运输过程中就发生了变化,拿到的第一时间应该进行确认,遇到好几次这种情况。 吴春勇博士:在现有的条件下,购买的商业化对照品全部自己赋值,实践上还是存在相当的困难,成本上也没法控制。所以我个人观点:1)尽量选择知名公司;2)自己对风险进行评估,尤其是校正因子与各国药典不同,或者结构上与待测药物的生色团类似,分子量相当,校正因子却有显著不同。 【插话:知名公司依旧有风险或风险大】 是的,分享的那个案例,购买公司是业界相当知名的! 群友4:购买杂质时能同时获得合成信息的可能性非常小,最多提供四大谱(还不带解谱的),那就需要公司内部有比较强大的解谱能力,有碰到过解谱结果和供应商提供的不一致的情况,所以购买“商业化”的杂质对照风险是很大,市场良莠不齐,缺乏有效的管控。 群友5:我们碰到问题的那家公司就是业界知名对照品公司,也有出失误的概率。 刘国柱博士:另请教吴博士及大家一个问题,目前国内许多企业对于杂质对照品的结构确证,很多时候都只做了质谱与NMR氢谱与碳谱,不做二维;而事实上不做二维NMR谱,NMR信号是无法归属的,从而不足以确定杂质结构,有可能确证的结构是错的;请问这个问题大家如何看待? 吴春勇博士:我个人只要做结构确认,一定做二维。 刘国柱博士:那我和您观点一致,强烈呼吁大家做结构确证一定要做二维。 购买的杂质对照品一般只提供质谱与NMR氢谱与碳谱,不做二维与结构解析;在此习惯引导下,国内许多企业自已做杂质结构确证也只做个质谱与NMR氢谱与碳谱,个人观点这是存在风险的做法。 代孔恩(安士研发总监):法规有明确规定必须这么表征,很多标准品量很小,做全应该不容易。【插话:情况多,复杂,没法一刀切】 黄常康博士(南京百泽医药创始人):有些杂质是定向合成的,或者是有文献数据的。我觉得根据实际情况来判断需不需要。不用二维定不了结构的,该做就做,有些简单的杂质,其实氢谱已经足够了,质谱只是多一个证据。 自己做的话,还需要加上做结构确证的杂质的钱,很多时候会差很多。 群友6:对照品的检测分析,既要有普遍性的,也要特殊性的,这个普遍性与特殊性的界点怎么界定,很难有一个文件化的说法。 以上讨论内容来源: 新药仿药CMC实操讨论公众号
  • 糖苷酶抑制剂标准品哪里找?上海甄准生物
    糖苷酶抑制剂标准品哪里找?------上海甄准生物 糖苷酶抑制剂是一类含氮的拟糖类结构能抑制糖苷键形成的化合物。从结构上可分为两组:第一组氮原子在环上有野尻霉素(nojirimycin)、半乳糖苷酶抑素(galactostatin)、寡糖酶抑素(oligostatin)等。第二组氮原子在环外,如阿卡糖(acarbose),validoxylamine A、B,有效霉素A、B(海藻糖苷酶抑制剂)等,从抑制酶范围上看,它包括了部分&alpha -葡萄糖苷酶抑制剂、半乳糖酶抑制剂、唾液酸抑制剂、淀粉酶抑制剂。 上海甄准生物提供糖苷酶抑制剂标准品,为您检测分析提供强有力支持! 产品信息: 货号 品名 CAS No. B691000 N-Butyldeoxynojirimycin Hydrochloride 210110-90-0 C10H22ClNO4 10/100mg a-葡糖苷酶1和 HIV cytopathicity抑制剂 E915000 N-Ethyldeoxynojirimycin Hydrochloride 210241-65-9 C8H18ClNO4 10/100mg HIV cytopathicity抑制剂 C181150 N-5-Carboxypentyl-deoxymannojirimycin 104154-10-1 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化Man9 甘露糖苷酶 A187545 2,3-O-Acetyloxy-2&rsquo ,3&rsquo ,4&rsquo ,6,6&rsquo -penta-O-benzyl-4-O-D-glucopyranosyl N-Benzyloxycarbonylmoranoline (&alpha /&beta mixture)   C56H63NO13 10/100mg 4-O-&alpha -D-Glucopyranosylmoranoline 制备中间体 B690500 N-(n-Butyl)deoxygalactonojirimycin 141206-42-0 C10H21NO45/50mg a-D-半乳糖苷酶抑制剂 B690750 N-Butyldeoxymannojirimycin, Hydrochloride 355012-88-3 C10H22ClNO4 5/50mg a-D-甘露糖苷酶抑制剂 D236000 Deoxyfuconojirimycin, Hydrochloride 210174-73-5 C6H14ClNO3 10/100mg alpha-L-岩藻糖苷酶抑制剂 M166000 D-Manno-&gamma -lactam 62362-63-4 C6H11NO5 5/50mgalpha-甘露糖苷酶 ß - 葡糖苷酶抑制剂和 M165150 D-Mannojirimycin Bisulfite   C6H13NO7S 1/10mg alpha-甘露糖苷酶抑制剂 D455000 6,7-Dihydroxyswainsonine 144367-16-8 C8H15NO5 1/10mg a-甘露糖苷酶抑制剂 C665000 Conduritol B 25348-64-5 C6H10O4 25/250mg b-葡糖苷酶抑制剂 C666000 Conduritol B Epoxide 6090-95-5 C6H10O5 25/250mg b-葡糖苷酶抑制剂 A155250 2-Acetamido-2-deoxy-D-gluconhydroximo-1,5-lactone 1,3,4,6-tetraacetate 132152-77-3 C16H22N2O10 25/250mg glucosamidase抑制剂 D240000 Deoxymannojirimycin Hydrochloride 73465-43-7 C6H14ClNO4 10/100mg mammalian Golgi alpha- mannosidase 1 抑制剂 M297000 N-Methyldeoxynojirimycin69567-10-8 C7H15NO4 10/100mg N-连接糖蛋白高斯过程干扰剂 A158400 2-Acetamido-1,2-dideoxynojirimycin 105265-96-1 C8H16N2O4 1/10mg N-乙酰葡糖胺糖苷酶抑制剂 A157250 O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenylcarbamate 132489-69-1 C15H19N3O7 5/10/100mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 A157252 (Z)-O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenyl-d5-carbamate 1331383-16-4 C15H14D5N3O7 1/10mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 M334515 4-Methylumbelliferyl &alpha -D-Glucopyranoside 4&rsquo -O-C6-N-Hydroxysuccinimide Ester   C26H31NO12 25mg T2DM糖苷酶抑制剂 G450000 4-O-&alpha -D-Glucopyranosylmoranoline 80312-32-9 C12H23NO9 1/10mg &alpha -葡萄糖苷酶抑制剂 D231750 1-Deoxy-L-altronojirimycin Hydrochloride 355138-93-1 C6H14ClNO4 5/50mg &alpha -糖苷酶抑制剂 H942000 N-(2-Hydroxyethyl)-1-deoxy-L-altronojirimycin Hydrochloride Salt   C8H18ClNO5 0.5/5mg &alpha -糖苷酶抑制剂 H942015 N-(2-Hydroxyethyl)-1-deoxygalactonojirimycin Hydrochloride   C8H18ClNO5 1/10mg &alpha -糖苷酶抑制剂 H942030 N-(2-Hydroxyethyl)-1-deoxy-L-idonojirimycin Hydrochloride   C8H18ClNO55/50mg &alpha -糖苷酶抑制剂 T795200 3&rsquo ,4&rsquo ,7-Trihydroxyisoflavone 485-63-2 C15H10O5 200mg/2g &beta -半乳糖苷酶抑制剂 A158380 O-(2-Acetamido-2-deoxy-3,4,6-tri-o-acetyl-D-glucopyranosylidene)amino N-(4-nitrophenyl)carbamate 351421-19-7 C21H24N4O12 10/100mg 氨基葡萄糖苷酶抑制剂 M166505 Mannostatin A, 3,4-Carbamate 1,2-Cyclohexyl Ketal   C13H19NO4S 2.5/25mg 保护的Mannostatin A B682500 Bromoconduritol (Mixture of Isomers) 42014-74-4 C6H9O3Br 200mg 哺乳类 alpha-葡萄糖苷酶 2 抑制剂 K450000 Kifunensine 109944-15-2 C8H12N2O6 1/10mg 芳基甘露糖苷酶抑制剂 D239750 1-Deoxy-L-idonojirimycin Hydrochloride 210223-32-8 C6H14ClNO4 10/100mg 酵母葡糖a-苷酶类抑制剂S885000 Swainsonine 72741-87-8 C8H15NO3 1/10mg 可逆,活性部位直接抑制甘露糖苷酶抑制剂;Golgi a-甘露糖苷酶 II抑制剂 T295810 [1S-(1&alpha ,2&alpha ,8&beta ,8a&beta )]-2,3,8,8a-Tetrahydro-1,2,8-trihydroxy-5(1H)-indolizinone 149952-74-9 C8H11NO4 10/100mg 苦马豆素和衍生物合成中间体 N635000 Nojirimycin-1-Sulfonic Acid 114417-84-4 C6H13NO7S 10/100mg 葡糖苷酶类抑制剂 V094000(+)-Valienamine Hydrochloride 38231-86-6 C7H14ClNO4 1/10mg 葡糖苷酶抑制剂 D440000 2,5-Dideoxy-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 葡糖苷酶抑制剂 D494550 N-Dodecyldeoxynojirimycin 79206-22-7 C18H37NO4 10/100mg 葡糖苷酶整理剂 D479955 2,4-Dinitrophenyl 2-Deoxy-2-fluoro-&beta -D-glucopyranoside 111495-86-4 C12H13FN2O9 5/50mg 葡糖基氟化物,可以作为特定的机制为基础的糖苷酶抑制剂,未来可应用于合成和降解的低聚糖和多糖 A653270 2,5-Anhydro D-Mannose Oxime, Technical grade 127676-61-3 C6H11NO5 10/100mg 潜在的葡苷糖酶抑制剂C-(D-吡葡亚硝脲)乙胺和C-(D-glycofuranosyl)甲胺 D236500 1-Deoxygalactonojirimycin Hydrochloride 75172-81-5 C6H14ClNO4 10/100mg 强效的和有选择性的d半乳糖苷酶抑制剂 D236502 Deoxygalactonojirimycin-15N Hydrochloride   C6H14Cl15NO4 5/25mg 强效的和有选择性的d半乳糖苷酶抑制剂 B445000 (2S,5S)-Bishydroxymethyl-(3R,4R)-bishydroxypyrrolidine 105015-44-9 C6H13NO4 10/100mg 强有力的和特定的糖苷酶抑制剂 M166500 Mannostatin A, Hydrochloride 134235-13-5 C6H14ClNO3S 1/10mg 强有力的糖苷酶抑制剂,甘露糖苷酶抑制剂 A858000 N-(4-Azidosalicyl)-6-amido-6-deoxy-glucopyranose 86979-66-0 C13H16N4O7 1/10mg 人类红细胞单糖运输标签抑制剂 C185000 Castanospermine 79831-76-8 C8H15NO4 10/100mg 溶酶体 a-或者beta-葡糖苷酶. 葡糖苷酶1抑制剂和 beta-甘露糖苷酶抑制剂 D439980 1,4-Dideoxy-1,4-imino-D-mannitol, Hydrochloride 114976-76-0 C6H14ClNO4 5/50mg 糖蛋白甘露糖苷酶抑制剂 A608080 N-(12-Aminododecyl)deoxynojirimycin 885484-41-3 C12H26N2O4 5/50mg 糖苷酶亚氨基糖醇制备用试剂 I866350 1,2-O-Isopropylidene-alpha-D-xylo-pentodialdo-1,4-furanose 53167-11-6 C8H12O5 100mg/1g 糖苷酶抑制剂制备试剂 A648300 2,5-Anhydro-2,5-imino-D-glucitol 132295-44-4 C6H13NO4 10/100mg 糖水解酶类抑制剂 A648350 2,5-Anhydro-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 糖水解酶类抑制剂 M257000 3-Mercaptopicolinic Acid Hydrochloride 320386-54-7 C6H6ClNO2S 500mg/5g 糖质新生抑制剂 B286255 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin 138381-83-6 C21H23NO6 5/50mg 脱氧野尻霉素衍生物 B286260 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin Diacetate 153373-52-5 C25H27NO8 2.5/25mg 脱氧野尻霉素衍生物 D245000 Deoxynojirimycin 19130-96-2 C6H13NO4 10/100mg 脱氧野尻霉素抑制哺乳类葡糖苷酶1 A172200 N-Acetyl-2,3-dehydro-2-deoxyneuraminic Acid Sodium Salt 209977-53-7 C11H16NNaO8 10/100mg 细菌、动物和病毒抑制剂 C181200 N-5-Carboxypentyl-1-deoxynojirimycin 79206-51-2 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C181205 N-5-Carboxypentyl-1-deoxygalactonojirimycin 1240479-07-5 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C645000 Conduritol A 牛奶菜醇A 526-87-4 C6H10O4 1/10mg   C667000 Conduritol D牛奶菜醇D 4782-75-6 C6H10O4 10mg   I868875 1,2-Isopropylidene Swainsonine 85624-09-5 C11H19NO31/10mg   更多产品,更多优惠!请联系我们! 上海甄准生物科技有限公司 免费热线:400-002-3832
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制