当前位置: 仪器信息网 > 行业主题 > >

二乙二醇分析标准品

仪器信息网二乙二醇分析标准品专题为您提供2024年最新二乙二醇分析标准品价格报价、厂家品牌的相关信息, 包括二乙二醇分析标准品参数、型号等,不管是国产,还是进口品牌的二乙二醇分析标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二乙二醇分析标准品相关的耗材配件、试剂标物,还有二乙二醇分析标准品相关的最新资讯、资料,以及二乙二醇分析标准品相关的解决方案。

二乙二醇分析标准品相关的资讯

  • PEN聚萘二甲酸乙二醇酯的粘度测量
    聚萘二甲酸乙二醇酯简称PEN,是聚酯家族中重要成员之一,是由2,6-萘二甲酸二甲酯(NDC)或2,6-萘二甲酸(NDA)与乙二醇(EG)缩聚而成,是一种新兴的优良聚合物。目前主要应用于磁带的基带、柔性印刷电路板、电容器膜、F级绝缘膜等方面,也开始逐渐延伸至碳酸饮料瓶、酸性饮料瓶等包装领域和工业电缆料、过滤器介质用单丝等工业用纤维领域。PEN化学结构与PET相似,其各项特性也与PET类似,但在分子链中PEN由刚性更大的萘环代替了PET中的苯环。使PEN比PET具有更高的物理机械性能、气体阻隔性能、化学稳定性及耐热、耐紫外线、耐辐射等性能。国标GB/T 1632.5-2008中对聚萘二甲酸乙二醇酯特性黏度的测量方法给出了详细的说明:对于无定型的PEN采用苯酚四氯乙烷作为溶剂,结晶PEN采用苯酚三氯苯酚作为溶剂,再通过相关辅助设备测试PEN溶液的黏度。在PEN的黏度测试流程中,传统的手动测试方式是使用乌氏粘度管在温控精准度较高的恒温水浴槽中进行黏度测试,采用传统的手动测试方法会存在:测试精度低,测试流程繁琐等诸多弊端。随着生产企业以及研发机构等对于实验数据高标准、高精度、高效率的要求,自动化的乌氏粘度仪已逐步取代传统手动测试方法。以杭州卓祥科技有限公司的IV3000系列全自动乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例:实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV3000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV3000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表和外推分析等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV3000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥过程的自动化,告别粘度管是耗材的时代。
  • 我国工业排放气制乙二醇技术获突破
    开创乙二醇生产新原料路径 降低投资30%   记者从西南化工研究设计院获悉,该院开发的“回收和利用工业排放气制乙二醇技术”,日前通过由四川省科技厅组织的专家鉴定。新技术不仅开创了乙二醇生产的新原料路径,降低投资30%,还有效解决工业排放气的污染问题,已具备成熟工业化条件。   西南化工院自1986年在国内率先开展合成气制乙二醇技术研究,并承担“十一五”国家科技支撑计划重点项目“非石油路线制备大宗化学品关键技术开发”。经过25年不懈努力,科研人员先后完成该技术的关键催化剂及配套工艺集成开发,开发了具有工业应用价值的两个核心催化剂,实现转化率100%、选择性90%条件下,6000小时以上长周期考核 通过减去复杂的“煤气化”设备和工艺,每吨产品节省甲醇消耗0.16吨、蒸汽消耗2.5吨 形成加氢反应器、聚酯级乙二醇产品精制等五大关键工艺技术,目前已获4项国家发明专利。   专家介绍,与传统石油路线、煤制路线制备乙二醇相比,采用黄磷尾气或电石炉尾气等工业排放气生产乙二醇的新技术,成本仅为4000元/吨,分别节省3500元和1000元。而从环保效益分析,按国内每年产100万吨黄磷计算,每年可减排3750吨磷化物、7500吨硫化物、200吨砷化物和1250吨氟化物。   乙二醇作为用于溶剂、防冻剂以及合成涤纶的主要原料,今年年底在我国产能将达到每年450万吨,消费量则为每年800万吨。若近400万吨产能缺口采用工业排放气为原料替代生产,每年可节约外汇30多亿美元,同时减少200多万吨乙烯消耗。
  • 粘度测定仪用毛细管法测定PET(聚对苯二甲酸乙二醇酯)树脂稀溶液的特性黏度
    PET又名聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate)是由对苯二甲酸二甲酯与乙二醇酯交换或以对苯二甲酸与乙二醇酯化先合成对苯二甲酸双羟乙酯,然后再进行缩聚反应制得,为乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽,是生活中常见的一种树脂。PET分为纤维级聚酯切片和非纤维级聚酯切片。①纤维级聚酯用于制造涤纶短纤维和涤纶长丝,是供给涤纶纤维企业加工纤维及相关产品的原料。涤纶作为化纤中产量最大的品种。②非纤维级聚酯还有瓶类、薄膜等用途,广泛应用于包装业、电子电器、医疗卫生、建筑、汽车等领域,其中包装是聚酯最大的非纤应用市场,同时也是PET增长最快的领域。众所周知,聚酯生产过程中,产品粘度是影响产品质量的一项重要指标,特别是热灌级聚酯产品生产过程中,由于该品种粘度指标范围窄,一旦受原料、生产过程控制等因素影响,未及时判断出原因进行调整,基础切片粘度无论是下降还是升高,若未及时将该部分切片进行有效隔离,直接进入到后续系统,将对后续固相增粘造成极大影响,致使调整困难,导致产品质量降等。聚酯生产过程中影响聚酯产品质量的因素很多,从纺丝的角度出发,主要有色相、端羧基、二甘醇含量及黏度等,其中以黏度对可纺性的影响最为显著。目前,绝大多数聚合装置都与直接纺长丝或短纤维的装置街接,并且越来越多的纺丝装置采用高速纺和细旦的品种,这就对熔体的质量特别是熔体的特性黏度稳定提出了更高的要求。 乌氏毛细管法是PET(聚对苯二甲酸乙二醇酯)材料质量控制中常用的分析方法之一,由乌氏毛细管法测量得出的特性粘度也是PET(聚对苯二甲酸乙二醇酯)材料的核心指标之一。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:苯酚、四氯乙烷、三氯甲烷、丙酮或无水乙醇。1、溶剂的配置选择:根据PET材料分类所选溶剂配比不同,纤维级聚酯切片可选择苯酚/1,1.2,2-四氯乙烷(质量比3:2)亦可选苯酚/1,1.2,2-四氯乙烷(质量比1:1),瓶级聚酯切片选择苯酚/1,1.2,2-四氯乙烷(质量比3:2); 2、溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入苯酚/1,1.2,2-四氯乙烷,软件中启动测试任务待结束。3、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。4、PET树脂稀溶液样品的制备:在万分之一天平上精准称量精确到0.0001g,通过ZPQ-50自动配液器将溶液浓度精准配制到0.005g/ml,再将样品瓶放置到MSB-15多位溶样器中(纤维级90~100℃,瓶级110℃~120℃),待半小时内溶解完毕后取出冷却到室温待用。5、样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。6、粘度管的清洗:再次启动卓祥自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。苯酚/1.1.2.2—四氯乙烷(质量比50:50)作溶剂的试验,按公式(1)、(2)、(3)计算相对黏度(ηr)、增比黏度(ηsp)和特性黏度([η]):式中:ηr——相对黏度;t1——溶液流经时间,单位为秒(s);to——溶剂流经时间,单位为秒(s);ηsp——增比黏度;[η]——特性黏度;c——溶液浓度,单位为克每百毫升(g/100mL)苯酚/1.1.2.2一四氯乙烷(质量比60:40)作溶剂的试验,其结果按公式(4)计算:本文章为原创作品,无原作者授权同意,不得随便转载拷贝,侵权必究!
  • 工信部公示一批石化、冶金等行业仪器分析方法标准
    仪器信息网讯 2015年4月30日,工业和信息化部科技司对246项纺织、化工、冶金、建材、石化等行业的行业标准进行公示。公示截止日期为2015年5月30日。其中有关仪器分析检测的方法标准如下表所示。 标准编号 标准名称 标准主要内容 代替标准 石化行业 SH/T 1157.2-2015 生橡胶 丙烯腈-丁二烯橡胶(NBR)中结合丙烯腈含量的测定 第2部分:凯氏定氮法 本标准规定了采用凯氏定氮法测定丙烯腈-丁二烯橡胶(NBR)中结合丙烯腈含量的两种方法:方法A和方法B。 本标准适用于测定NBR生橡胶,其他NBR也可参照使用。 SH/T 1157-1997 SH/T 1141-2015 工业用裂解碳四的烃类组成测定 气相色谱法 本标准规定了用气相色谱法测定工业用裂解碳四的烃类组成。 本标准适用于工业用裂解碳四馏分中浓度不低于0.01%(质量分数)的烃类组成测定。本标准还适用于其它来源碳四烃类的定量分析。 SH/T 1141-1992 SH/T 1493-2015 碳四烯烃中微量羰基化合物含量的测定 分光光度法 本标准规定了用分光光度法测定碳四烯烃中微量羰基化合物的含量。 本标准适用于1-丁烯和1,3-丁二烯中微量羰基化合物含量的测定,最小检测浓度为0.5 mg/kg(以丁酮计)。不适用于异丁烯的测定。 SH/T 1493-1992 SH/T 1782-2015 工业用异戊二烯纯度和烃类杂质含量的测定 气相色谱法 本标准规定了用气相色谱法测定工业用异戊二烯纯度和烃类杂质含量。 本标准适用于工业用异戊二烯纯度和烃类杂质含量的测定,其杂质最低检测浓度为0.005%(质量分数)。   SH/T 1784-2015 工业用异戊二烯中微量抽提剂的测定 气相色谱法 本标准规定了用气相色谱法测定工业用异戊二烯(聚合级)中的微量抽提剂二甲基甲酰胺和乙腈。 本标准适用于测定工业用异戊二烯(聚合级)中含量不低于0.5 mg/kg的二甲基甲酰胺或不低于1.0 mg/kg的乙腈。   SH/T 1786-2015 工业用异戊烯纯度和烃类杂质含量的测定 气相色谱法 本标准规定了用气相色谱法测定工业用异戊烯试样纯度和烃类杂质含量。 本标准适用于异戊烯试样中的烃类组分含量的测定,其最低检测浓度为0.005%(质量分数)。  SH/T 1787-2015 工业用异戊烯中含氧化合物的测定 气相色谱法 本标准规定了用气相色谱法测定工业用异戊烯中含氧化合物的含量。 本标准适用于甲醇、二甲醚、甲基叔戊基醚、叔戊醇等含氧化合物杂质浓度不低于0.001%(质量分数)的异戊烯样品的测定。   SH/T 1790-2015 工业用裂解碳五中烃类组分的测定 气相色谱法 本标准规定了用气相色谱法测定工业用裂解碳五中各烃类组分的含量。 本标准适用于裂解碳五组分含量的测定,其最小检测浓度为 0.01 %(质量分数)。   SH/T 1793-2015 工业用裂解碳九组成的测定 气相色谱法 本标准规定了气相色谱法测定工业用裂解碳九中碳八芳烃、苯乙烯、甲基苯乙烯、双环戊二烯、茚、萘等组分含量。 本标准适用于工业用裂解碳九中含量不低于 0.01 %(质量分数)组分的测定。   SH/T 1796-2015 工业用三乙二醇纯度及杂质的测定 气相色谱法 本标准规定了用气相色谱法测定工业用三乙二醇的纯度和杂质含量。 本标准适用于三乙二醇含量不低于80.0%(质量分数),乙二醇、二乙二醇杂质含量不低于0.01%(质量分数)、四乙二醇杂质含量不低于0.02%(质量分数)样品的测定。   SH/T 1798-2015 工业用1-己烯纯度及烃类杂质的测定 气相色谱法 本标准规定了用气相色谱法测定工业用1-己烯纯度和烃类杂质的方法。 本标准适用于纯度不低于97.0%(质量分数)以及正己烷、3-己烯、2-己烯、2-甲基-1-戊烯等烃类杂质含量不低于0.005%(质量分数)的工业用1-己烯的测定。   冶金行业 YB/T 4493-2015 焦化油类产品馏程的测定 自动馏滴法 本标准规定了自动馏滴法测定焦化轻油类馏程的原理、试样的采取、仪器、试验步骤、结果计算、精密度、试验报告等。 本标准适用于焦化轻油类(焦化苯类、酚类、吡啶类、喹啉类等)、粘油类(焦化洗油、蒽油、木材防腐油、炭黑用焦化原料油等)产品馏程的测定。   YB/T 4495-2015 焦炉煤气 氰化氢含量的测定 硝酸银滴定法 本标准规定了测定焦炉煤气中氰化氢含量的试剂、仪器设备、取样、分析步骤和结果计算。 本标准适用于高温炼焦所得的焦炉煤气中氰化氢含量的测定,测定范围:0.1 g/m3~2.0 g/m3。   YB/T 4496-2015 焦炉煤气 硫化氢含量的测定 气相色谱法 本标准规定了焦炉煤气中硫化氢含量的气相色谱测定的原理、仪器和材料、采样、分析步骤、结果计算、精密度和安全注意事项。 本标准适用于焦炉煤气中硫化氢含量的测定。   YB/T 4503-2015 钢筋机械连接件 残余变形量试验方法 本标准规定了钢筋机械连接件残余变形量试验的术语及定义、符号及说明、试验原理、试件、试验设备、试验程序及试验报告。 本标准适用于室温下钢筋机械连接件承受规定静载荷后残余变形量的测量。   YB/T 5325-2015 黄血盐钠含量的测定方法 本标准规定了黄血盐钠含量的测定方法的原理、试剂、仪器、试样的采取和制备、试验步骤、结果计算和精密度。 本标准适用于从炼焦煤气回收中所制得的黄血盐钠含量的测定。 YB/T 5325-2006 建材行业 JC/T 2336-2015 碳纤维中硅、钾、钠、钙、镁和铁含量的测定 本标准规定了碳纤维中硅、钾、钠、钙、镁和铁含量测定方法。硅的测定用氟硅酸钾容量法和硅钼蓝分光光度法。钾、钠、钙、镁和铁的测定用原子吸收分光光度法和电感耦合等离子体发射光谱法。   JC/T 2342-2015 氮化硅材料相含量分析方法 本标准规定了X射线多晶衍射法测定氮化硅材料相含量的术语和定义、仪器、测试步骤及定量分析方法 本标准适用于氮化硅中&alpha 相和&beta 相的定量分析。   纺织行业 FZ/T 50032-2015 聚丙烯腈基碳纤维原丝残留溶剂试验方法 本标准规定了聚丙烯腈基碳纤维原丝残留溶剂测试方法-气相色谱法(方法A)、比色法(方法B)和汞盐滴定法(方法C)。 方法A和方法B适用于以二甲基亚砜(DMSO)、二甲基乙酰胺(DMAC)为溶剂的聚丙烯腈基碳纤维原丝残留溶剂的测定,仲裁时使用方法A。 方法C适用于以硫氰酸钠(NaSCN)为溶剂的聚丙烯腈基碳纤维原丝残留溶剂的测定。   附件:246项行业标准名称及主要内容
  • 使用表面增强拉曼光谱检测瓶装水中的聚对苯二甲酸乙二醇酯纳米塑料
    近日,挪威科技大学与南开大学合作在Environmental Science & Technology上发表了题为“Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy”的研究论文。研究合成了一种新型的表面拉曼增强光谱(SERS)衬底,该衬底可增强纳米颗粒的拉曼光谱信号,通过对不同粒径的聚苯乙烯(PS)纳米颗粒测试发现,粒径越小拉曼光谱信号增强因子越高。使用该SERS衬底,对经100 纳米滤膜过滤后瓶装水进行了检测,通过与标准谱图比对,发现瓶装水中的纳米塑料为聚对苯二甲酸乙二醇酯,浓度高达108 个/毫升。全文速览微纳塑料作为新型污染物,引起了全球范围的广泛关注。而作为微纳塑料研究的基石,检测分析方法一直是该领域的重点和难点,尤其是粒径更小的纳米塑料。本研究合成了一种新型三角孔隙阵列SERS衬底,该衬底可增强纳米塑料的拉曼信号。通过对不同粒径(50,200,500,1000 nm)的PS纳米塑料测试,发现粒径越小,拉曼光谱信号的增强因子越高。对于50 nm的PS纳米塑料检测限为0.001%,约为1.5×1011 个/毫升。使用该衬底,检测了市售的瓶装水,瓶装水经100 nm滤膜过滤后,滴加在衬底上,可直接检测到拉曼光谱信号,经过与标准谱图的比对,发现为聚对苯二甲酸乙二醇酯,该塑料主要为瓶身材质,浓度约为108 个/毫升。该研究提供了一种快速且灵敏的纳米塑料检测方法。引言微纳塑料由于其独特物化性质,分析检测一直是微纳塑料研究领域的重点和难点。拉曼增强由于其可对小分子有机化合物以及纳米颗粒的拉曼光谱信号进行增强,近年来也逐渐应用于纳米塑料的检测。但目前关于SERS测试纳米塑料多集中于实验室内的加标样品,对于实际样品的检测的研究仍然很少。本研究通过合成一种新型的三角孔隙阵列衬底,测试了其对PS纳米塑料的增强效果,并检测分析了市售瓶装水中纳米塑料的赋存。图文导读阵列合成Figure 1. A schematic illustration of fabrication process for the triangular cavity arrays (TCAs). First, close-packed polystyrene (PS) nanospheres are self-assembled on a silicon substrate (i). A thin silver (Ag) film is deposited over the nanospheres (ii), which are then tape stripped away, leaving Ag nanotriangle arrays (iii). A gold (Au) film is then deposited over the entire substrate (iv). An adhesive epoxy is applied on the top of Au and then peeled off, transferring two metals Ag and Au sitting in a complementary arrangement side-by-side on epoxy (v). Simply removing of the Ag parts using chemically etching, revealed gold triangular cavity arrays as shown in (vi).图1展示了该拉曼衬底的合成示意图,首先将一层500 nm的PS纳米微球平铺在硅胶板上,然后在表面添加一层Ag,去除掉纳米微球后,形成了Ag纳米三角阵列,再添加一层150 nm的Au薄膜,之后添加一层粘合剂环氧树脂,在紫外线照射下固化后剥离掉带着两层金属的环氧树脂,再去除孔隙中的Ag后,形成最终的三角阵列衬底。阵列表征Figure 2. Scanning electron micrographs (SEMs) of the corresponding processing steps in Figure 1 to fabricate gold TCAs substrate: (a) Close-packed PS nanospheres that corresponds to step i in Figure 1 (b) Ag triangle arrays after removing of PS nanospheres that corresponds to step iii in Figure 1 (c) Top-view of morphology after depositing Au layer that corresponds to step iv in Figure 1 (d) Au TCAs arrays after removing of Ag parts that corresponds to step vi in Figure 1. Scale bar in a-d: 250 nm. (e) Patterned gold TCAs over large area, scale bar in e: 1 µm.图2为经过图1合成的衬底的扫描电镜图,分别表示了衬底在不同合成阶段的扫描电镜图。从图中可清楚的表明于实际合成的衬底与图1中的示意图完全吻合。PS纳米颗粒测试Figure 3. (a) Raman spectra of PS nanoplastics with different sizes on Au TCAs substrates at concentration of 1%. (b) Enhancement factor (EF) as a function of PS size. (c) Raman spectra of 50 nm PS nanoplastics with concentrations varying from 1% to 0.001% on TCAs substrates and on plain glass substrate at the concentration of 1% (control line). (d-g) Raman mapping images of 50 nm PS nanoplastics on Au TCAs substrates with different concentrations from 1% to 0.001%. Scale bar in d-g: 200 nm.图3展示了不同粒径的PS纳米微球的增强测试,在50、200、500和1000 nm四个粒径中,50 nm的PS微球增强因子最高,随着粒径增加,增强因子变低。此外,还对50 nm的PS微球的不同浓度做了分析测试,发现在0.001%仍可检测到清晰的信号,特征峰1003 cm-1的信噪比为88。瓶装水前处理Figure 4. (a) Schematic of sample preparation from commercially bottled drinking water. (b-d) SEM images of an extracted sample that drop-casted on a silicon wafer after drying under ambient conditions. Scale bar: (b) 300 µm (c) 5 µm (d) 200 nm.图4为瓶装水的处理过程和SEM结果。在采购瓶装水后,取100 mL过100 nm的滤膜,对过滤后的水样进行SEM检测,从图中可看出,在扫描电镜下,存在大量的颗粒物,经过不同倍数的放大,粒径小的可低至几十纳米。同时,采用去离子水做了过程空白对照,在扫描电镜下,无颗粒物检出,排除了实验过程中外部的污染。瓶装水检测Figure 5. (a)Schematic of sample preparation from bottled drinking water. (b) Raman mapping image of sample extracted from bottled drinking water on TCAs substrate. Scale bar: 500 nm. (c) Raman spectra of sample extracted from bottled drinking water on TCAs substrate (red line) and plain glass substrate (brown line), and PET film (purple line). (d) Finite track length adjustment (FTLA) concentration/size image for NTA of sample extracted from bottled drinking water on TCAs substrate: indicating mean size of nanoplastics is ca. 130.8 ± 58.0 nm.图5为瓶装水的拉曼检测结果,将过滤后的瓶装水直接滴加在衬底上,经过拉曼检测后,可鉴别出1620和1760 cm-1两个峰,与PET纳米塑料标准品和PET膜进行对比,可知瓶装水中的颗粒物为PET,在检测空白和过程空白中均无信号。此外,水样还进行了NTA测试,平均粒径约为88.2 nm(三个平行样品的平均值),浓度为1.66×108 个/毫升。小结通过合成新的SERS衬底,可实现对纳米塑料的拉曼信号的增强,纳米塑料的粒径越小增强因子越高,且该衬底的灵敏度高,可对过滤后的水样直接检测,同时还可重复使用。瓶装水的检测结果表明塑料瓶身是水样中纳米塑料的主要来源。
  • 全自动乌氏粘度计-用毛细管法测定PEN(聚萘二甲酸乙二醇酯)树脂稀溶液的黏数
    聚萘二甲酸乙二醇酯的简称。聚萘二甲酸乙二醇酯(PEN)是聚酯家族中重要成员之一,是由2,6-萘二甲酸二甲酯(NDC)或2,6-萘二甲酸(NDA)与乙二醇(EG)缩聚而成,是一种新兴的优良聚合物。其化学结构与PET相似,不同之处在于分子链中PEN由刚性更大的萘环代替了PET中的苯环。萘环结构使PEN比PET具有更高的物理机械性能、气体阻隔性能、化学稳定性及耐热、耐紫外线、耐辐射等性能。近年来,PEN薄膜主要应用于磁带的基带、柔性印刷电路板、电容器膜、F级绝缘膜等方面,而PEN薄膜新的用途仍然在不断开发中。如数据磁带,数据磁盘的种类有DDS(数字、数据、储存),8MM数据磁带,1/4英寸磁带,DDS的需求量较大。根据DDS的记忆容量公别为Ⅰ、Ⅱ、Ⅲ型。Ⅱ、Ⅲ型为聚芳酰胺膜,Ⅰ型为PEN与PET共用型。记忆容量为2G,90MM的PEN薄膜代替。从记忆容量来考虑,Ⅰ型几乎全部被PEN占领。随着手机及小型携带机械的发展,对薄膜电容器的需求也不断增大。目前,虽然这方面市场规模虽小,但将是一个很有发展前途的领域。众所周知,聚酯生产过程中,产品粘度是影响产品质量的一项重要指标,乌氏毛细管法是PEN树脂质量控制中常用的分析方法之一,由乌氏毛细管法测量得出的黏数也是PEN树脂的核心指标之一。按国标规定的中描述的步骤测定聚合物的黏数,测试温度为25℃。实验方法如下:实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:苯酚、四氯乙烷、三氯甲烷、丙酮或无水乙醇。1、溶剂的配置选择:苯酚/1,1.2,2-四氯乙烷溶剂,在25℃下2、溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入苯酚/1,1.2,2-四氯乙烷,软件中启动测试任务待结束。3、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。4、PEN树脂稀溶液样品的制备:在万分之一天平上称量到0.0001g,通过自动配液器将溶液浓度配制到0.005g/ml,再将样品瓶放置到多位溶样器中,待溶解完毕后取出冷却到室温待用。5、样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。6、粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。
  • 电力设备蒸汽冷凝水中乙二醇泄漏的早期探测
    背景矿物燃料与核电力设施使用换热器,使工艺蒸汽冷凝回到液体形态。热交换器的工作原理是,通过从一种介质(蒸汽)中转移热量至另一种介质(空气、水、或乙二醇)中。很多新近的封闭式冷却水系统、电力设施使用乙二醇(C2H6O2)作为热传递液体,因为乙二醇有很高的热传递效率。虽然乙二醇是超级好的热传递流体,但如果它从冷却器中泄漏并进入冷凝蒸汽中时,会造成严重问题。在升高的温度与压力下,水中乙二醇会降解为有机酸,会酸化冷凝液,导致系统内快速的腐蚀。有机酸的增长也会严重破坏离子交换树脂床与矿物质脱除塔。发现早期针孔大的热交换器泄漏,对于保持维护电力设施与工艺设备的完整性,非常重要。虽然很多工厂使用痕量水平的胺来中和,来控制回路的pH,但这些胺常规地都是按照控制来自二氧化碳溶解产生的碳酸,来给药的。乙二醇泄漏造成的有机酸的大量流入,很容易压垮这种pH控制,并造成冷凝液明显的酸化。问题电厂通常检测pH与阳离子电导率来监测蒸汽回路水的纯度。然而,那些参数并不总是足够。充分早地探测乙二醇的早期泄漏以预防显著的下游问题十分重要。因为pH与阳离子电导率的偏离,仅仅在乙二醇分解之后才产生,这些检测对于探测泄漏来说,经常已经太晚了。水中乙二醇在热的高压蒸汽回路中降解。如果热交换器中发生泄漏,这种泄漏的现象在乙二醇降解之前,可能无法通过pH与电导率探测到。在这一点上,工艺设备(例如:矿物质脱除塔、树脂床、冷凝液抛光器、锅炉、涡轮机等)可能已经暴露在酸性的冷凝液或蒸汽中。乙二醇是一种含碳38.7%的有机分子,因此能够使用在线、连续的总有机碳(TOC)分析来探测到。Sievers® M系列在线TOC分析仪能够在乙二醇在冷凝液蒸汽中降解之前,更早地检测到乙二醇的泄漏。解决方案在Sievers分析仪进行的实验室研究中,Sievers M系列TOC分析仪表现出对乙二醇的回收率在97.3%-99.1% ,对于碳含量在0.5-25 ppm 碳 (1.3-64.7ppm 乙二醇)。Sievers M系列TOC分析仪的回收率总结如下表:在图2中,分析仪显示出对检测乙二醇有高的线性响应。基于定量回收率(≥97.3%),与高度的线性(R2=1.0000),Sievers M系列TOC分析仪很适用于检测冷凝液蒸汽中宽广范围的乙二醇浓度。几个著名的组织(EPRI、VGB、与 Eskom)建议100-300 ppb作为蒸汽循环补给水的合适的背景TOC水平。水或蒸汽循环中的这个TOC背景很好地位于Sievers M系列TOC分析仪的检测水平0.03 ppb之上,同时这个TOC背景也足够低,可以轻松检测背景TOC浓度之上的乙二醇泄漏造成的TOC偏移。由于乙二醇泄漏造成的事故的成本,从设备维修与更换、以及停产期间损失的能量产出等方面,可能是成百上千美元。由于乙二醇有毒并有危险,额外的缓和被污染的冷凝水也非常关键。使用Sievers M系列在线TOC分析仪,冷凝蒸汽每2分钟被分析一次,提供给设备操作者高解析度的数据,使用这些数据,可以快速识别并解决使用乙二醇溶液的热交换器的泄漏。◆ ◆ ◆联系我们,了解更多!参考文献1.Berry, D. and Browning, A. Guidelines for SelectingandMaintaining Glycol Based Heat Transfer Fluids.2011. Chem-Aqua, Inc.2.EPRI Lead in Boiler Chemistry R&D. PersonalCommunication. January 28, 2015.3.Ethylene vs. Propylene Glycol. www.dow.com.Accessed January4.22,2015.http://www.dow.com/heattrans/support/selection/ethylene-vs-propylene.htm.5.Heijboer, R., van Deelen-Bremer, M.H., Butter, L.M.,Zeijseink, A.G.L. The Behavior of Organics in aMakeup Water Plant. PowerPlant Chemistry. 8(2006):197-2026.Faroon, O., Tylenda, C., Harper, C.C., Yu, Dianyi,Cadore, A., Bosch, S., Wohlers, D., Plewak, D.,Carlson-Lynch, H. Toxicological Profile for EthyleneGlycol. 2010. US Agency for Toxic Substances andDisease Registry (ASTDR).7.Maughan, E.V., Staudt, U. TOC: The ContaminantSeldom Looked for in Feedwater Makeup and OtherSources of Organic Contamination in the Power Plant.PowerPlant Chemistry. 8(2006): 224-233.8.Rossiter, W.J. Jr., Godette, M., Brown, P.W., Galuk,K.G. An Investigation of the Degradation of AqueousEthylene Glycol and Propylene Glycol Solutions usingIon Chromatography. Solar Energy Materials. 11(1985): 455-467.9.Vidojkovic, S., Onjia, A., Matovic, B., Grahovac, N.,Maksimovic, V., Nastasovic, A. Extensive FeedwaterQuality Control and Monitoring Concept forPreventing Chemistry-related failures of Boiler Tubesin a Subcritical Thermal Power Plant. Applied ThermalEngineering. 59(2013): 683-694.
  • 世界首创万吨级“煤制乙二醇”成套技术通过鉴定
    世界首创万吨级“煤制乙二醇”工业化示范获得成功   5月7日,中国科学院“世界首创万吨级煤制乙二醇工业化示范”新闻发布会在北京人民大会堂隆重举行。全国人大常委会副委员长、中国科学院院长路甬祥出席会议。科学技术部、工业和信息化部、国土资源部、自然科学基金委、中国石油化工协会等相关部门领导,福建省人民政府领导、江苏省人民政府领导、内蒙古自治区领导以及技术成果鉴定专家组组长何鸣元院士等共同出席了发布会。会上获悉:中国科学院福建物质结构研究所依托20多年的技术积累与江苏丹化集团、上海金煤化工新技术有限公司联手合作,成功开发了“万吨级CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇”(简称“煤制乙二醇”)成套技术。该成套技术已通过中国科学院组织的成果鉴定。   “世界首创万吨级煤制乙二醇工业化示范”新闻发布会举行      全国人大常委会副委员长、中国科学院院长路甬祥讲话   鉴定委员会专家一致认为,此项成果标志着我国领先于世界实现了全套“煤制乙二醇”技术路线和工业化应用,是一项拥有完全自主知识产权的世界首创技术。该技术的推广应用将有效缓解我国乙二醇产品供需矛盾,对国家的能源和化工产业产生重要积极影响,具有重要的科学意义、突出的技术创新性和显著的社会经济效益。   乙二醇是重要的化工原料和战略物资,用于制造聚酯(可进一步生产涤纶、饮料瓶、薄膜)、炸药、乙二醛,并可作防冻剂、增塑剂、水力流体和溶剂等。“煤制乙二醇”即以煤代替石油乙烯生产乙二醇。专家指出,此类技术路线符合我国缺油、少气、煤炭资源相对丰富的资源特点。中国科学院福建物质结构研究所通过长期基础研究、应用研究和产业化获得的该项成果,拥有多项技术专利和自主知识产权 该成套技术符合循环经济 “减量化、再利用、资源化”三原则,其显著特点还在于全部采用工业级的CO、NO、H2、O2和醇类为原料,对形成规模化产业极为有利。鉴定委员会专家在现场考察后认为,万吨级工业试验装置运行稳定,具备了进一步建设大规模工业化生产装置的条件。据专家测算,用石油乙烯路线每生产一吨乙二醇约耗2.5吨石油。目前全世界用石油乙烯生产的2000多万吨乙二醇,若都以煤为原料进行生产,那么,节省下来的石油相当于新开发一个年产5000万吨石油的大庆油田。   煤制乙二醇技术是国家“八五”、“九五”重点科技攻关项目。中科院福建物构所自1982年起经过多年前期研究,获得了一系列具有完全自主知识产权的小试技术和模试技术 江苏丹化集团技术团队拥有化工新技术产业化的长期积淀,曾在国内首创“碳化法制碳酸氢铵”、“羰基化合成醋酐”和“变压吸附分离CO”等多项化工新工艺。2005年起,由上海盛宇企业投资有限公司投资约1.8亿元,与中科院福建物构所、丹化集团、上海金煤化工新技术有限公司等强强联手启动了“CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇”的产业化试验,经过3年多的艰苦努力,在国家发改委、科技部、中科院、福建省、上海市和江苏省政府的大力支持下,相继在丹化集团建成年产300吨中试和1万吨工业化试验两套装置,在多项关键技术领域取得突破,2007年12月万吨装置顺利开车打通全流程,经过一年多的实际运行检验,并经专家组鉴定,证明全球首套“万吨级煤制乙二醇”技术已完全取得成功。   经中国科学院和国家财政部批准,中科院福建物构所和上海金煤化工新技术有限公司已将全部煤制乙二醇技术入股通辽金煤化工有限公司,该企业正在内蒙古通辽市建设全球首套年产20万吨煤制乙二醇示范装置,该项目是我国煤化工五大重点示范工程之一,预计今年年底前即可建成投产,未来五年内将建成120万吨生产规模,有望成为国内最大的乙二醇生产企业,实现部分替代进口。   关于该项目的合作模式,全国人大常委会副委员长、中国科学院院长路甬祥认为:在学习实践科学发展观、建设创新型国家进程中,中国科学院实施创新工程,构建了知识创新、技术创新和工程产业化的“金三角”并发挥三者互动的科技创新体系,在推动科技创新、科技成果转移转化与产业化、创建高新技术企业等方面谋划了独具特色的创新机制。在应对国际金融危机的新形势下,它将为企业通过科技成果转移转化,提升自主创新能力提供一些宝贵的经验,为实现我国国民经济的平稳快速发展,探索出一条合作共赢的创新之路。
  • 江苏省颗粒学会批准立项《氧化石墨烯粉体失重率测定 热重分析法》等11项团体标准
    各会员单位及相关企业、各有关单位:为认真贯彻落实《中华人民共和国标准化法》、《团体标准管理规定》等有关文件的精神,根据《江苏省颗粒学会标准制定程序》的相关规定,江苏省颗粒学会于2024年5月23日至6月7日组织专家分别对江苏省特种设备安全监督检验研究院、生态环境部南京环境科学研究所等单位牵头申报的团体标准进行了立项评审。经专家评审会评定,《氧化石墨烯粉体失重率测定 热重分析法》等11项团体标准(见附件)满足立项条件,现批准立项。请各申报单位严格按照江苏省颗粒学会团体标准工作要求,抓紧组织建标工作的实施,严把标准质量关,切实提高标准制定的质量和水平,增强标准的适用性和有效性。按时完成标准制定任务。为使立项标准的制定更加科学合理,欢迎有参与该团体标准编制工作意向的个人或单位与学会标准化工作委员会联系。联系人:王欢联系电话:025-85509178,13770321259邮箱:jskl_org@163.com附件:江苏省颗粒学会2024年度立项团体标准序号标准名称申请(牵头)单位计划完成时间1氧化石墨烯粉体失重率测定 热重分析法江苏省特种设备安全监督检验研究院2025年3月2石墨烯粉体中金属元素含量的测定 电感耦合等离子体原子发射光谱法江苏省特种设备安全监督检验研究院2025年3月3钢铁腐蚀产物 水溶性阴离子的测定 离子色谱法江苏省特种设备安全监督检验研究院2025年3月4冷喷烯锌涂料中石墨烯材料的定性检测无锡华东锌盾科技有限公司2024年10月5起重机械钢结构冷喷锌防护涂装技术指南无锡华东锌盾科技有限公司2024年10月6再生N-甲基哌啶生态环境部南京环境科学研究所2024年8月7再生二乙二醇甲醚生态环境部南京环境科学研究所2024年8月8大气颗粒物中铅含量测定 双硫腙比色法南京理工大学2025年3月9移动式γ射线探伤放射源远程监测监控技术规范南京理工大学2025年3月10水质 碘化物的测定 高效液相色谱法淮阴工学院2024年12月11再生石墨电极江苏嘉明碳素新材料有限公司2025年3月
  • 国标委发布89项分析测试方法国家标准
    国家质量监督检验检疫总局、国家标准化管理委员会批准《工业硝酸 浓硝酸》等179项国家标准,其中相关分析方法标准89项。 国家标准编号 国  家  标  准  名  称 代替标准号 实施日期 GB/T 2383-2014 粉状染料 筛分细度的测定 GB/T 2383-2003 2014-12-01 GB/T 2386-2014 染料及染料中间体 水分的测定 GB/T 2386-2006 2014-12-01 GB/T 2391-2014 反应染料 固色率的测定 GB/T 2391-2006 2014-12-01 GB/T 2392-2014 染料 热稳定性的测定 GB/T 2392-2006 2014-12-01 GB/T 2399-2014 阳离子染料 染色色光和强度的测定 GB/T 2399-2003 2014-12-01 GB/T 2403-2014 阳离子染料 染腈纶时染浴pH适应范围的测定 GB/T 2403-2006 2014-12-01GB/T 2792-2014 胶粘带剥离强度的试验方法 GB/T 2792-1998 2014-12-01 GB/T 3517-2014 天然生胶 塑性保持率(PRI)的测定 GB/T 3517-2002 2014-12-01 GB/T 4851-2014 胶粘带持粘性的试验方法 GB/T 4851-1998 2014-12-01 GB/T 5211.15-2014 颜料和体质颜料通用试验方法 第15部分:吸油量的测定 GB/T 5211.15-1988 2014-12-01 GB/T 5275.1-2014 气体分析 动态体积法制备校准用混合气体 第1部分:校准方法 2014-12-01 GB/T 5275.2-2014 气体分析 动态体积法制备校准用混合气体 第2部分:容积泵 2014-12-01 GB/T 5275.4-2014 气体分析 动态体积法制备校准用混合气体 第4部分:连续注射法 2014-12-01 GB/T 5275.5-2014 气体分析 动态体积法制备校准用混合气体 第5部分:毛细管校准器 2014-12-01 GB/T 5275.6-2014 气体分析 动态体积法制备校准用混合气体 第6部分:临界锐孔 2014-12-01 GB/T 5275.7-2014 气体分析 动态体积法制备校准用混合气体 第7部分:热式质量流量控制器 2014-12-01 GB/T 5275.8-2014 气体分析 动态体积法制备校准用混合气体 第8部分:扩散法 2014-12-01 GB/T 5275.9-2014 气体分析 动态体积法制备校准用混合气体 第9部分:饱和法 2014-12-01 GB/T 5275.11-2014 气体分析 动态体积法制备校准用混合气体 第11部分:电化学发生法 2014-12-01 GB/T 6435-2014 饲料中水分的测定 GB/T 6435-2006 2015-01-09 GB/T 7125-2014 胶粘带厚度的试验方法 GB/T 7125-1999 2014-12-01 GB/T 7791-2014 防污漆降阻性能试验方法 GB/T 7791-1987 2014-12-01 GB/T 8657-2014 苯乙烯-丁二烯生橡胶 皂和有机酸含量的测定 GB/T 8657-2000 2014-12-01 GB/T 9339-2014 反应染料 染料与纤维素纤维结合键 耐酸耐碱性的测定 GB/T 9339-2006 2014-12-01 GB/T 10663-2014 分散染料 移染性的测定 高温染色法 GB/T 10663-2003 2014-12-01 GB/T 11141-2014 工业用轻质烯烃中微量硫的测定 GB/T 11141-1989 2014-12-01 GB/T 12701-2014 工业用乙烯、丙烯中微量含氧化合物的测定 气相色谱法 GB/T 12701-1990 2014-12-01 GB/T 13289-2014 工业用乙烯液态和气态采样法 GB/T 13289-1991 2014-12-01 GB/T 13290-2014 工业用丙烯和丁二烯液态采样法 GB/T 13290-1991 2014-12-01 GB/T 14420-2014 锅炉用水和冷却水分析方法 化学耗氧量的测定 重铬酸钾快速法 GB/T 14420-1993 2014-12-01 GB/T 15893.1-2014 工业循环冷却水中浊度的测定 散射光法 GB/T 15893.1-1995 2014-12-01 GB/T 16422.2-2014 塑料 实验室光源暴露试验方法 第2部分:氙弧灯 GB/T 16422.2-1999 2014-12-01 GB/T 16422.3-2014 塑料 实验室光源暴露试验方法 第3部分:荧光紫外灯 GB/T 16422.3-1997 2014-12-01 GB/T 16422.4-2014 塑料 实验室光源暴露试验方法 第4部分:开放式碳弧灯 GB/T 16422.4-1996 2014-12-01 GB/T 18175-2014 水处理剂缓蚀性能的测定 旋转挂片法 GB/T 18175-2000 2014-12-01 GB/T 18397-2014 预混合饲料中泛酸的测定 高效液相色谱法 GB/T 18397-2001 2015-01-10 GB/T 19281-2014 碳酸钙分析方法 GB/T 19281-2003 2014-12-01 GB/T 24148.7-2014 塑料不饱和聚酯树脂(UP-R) 第7部分: 室温条件下凝胶时间的测定 2014-12-01 GB/T 24148.8-2014 塑料 不饱和聚酯树脂(UP-R)第8部分:铂-钴比色法测定颜色 GB/T 7193.7-1992 2014-12-01 GB/T 24148.9-2014 塑料 不饱和聚酯树脂(UP-R) 第9部分:总体积收缩率测定 2014-12-01 GB/T 29493.9-2014 纺织染整助剂中有害物质的测定 第9部分: 丙烯酰胺的测定 2014-12-01 GB/T 30773-2014 气相色谱法测定 酚醛树脂中游离苯酚含量 2014-12-01 GB/T 30774-2014 密封胶粘连性的测定 2014-12-01 GB/T 30776-2014 胶粘带拉伸强度与断裂伸长率的试验方法 2014-12-01 GB/T 30787-2014 数字印刷材料用成膜树脂 平均分子量及其分布的测定 凝胶渗透色谱法 2014-12-01 GB/T 30790.6-2014 色漆和清漆 防护涂料体系对钢结构的防腐蚀保护 第6部分:实验室性能测试方法 2014-12-01 GB/T 30791-2014 色漆和清漆 T弯试验 2014-12-01 GB/T 30792-2014 罐内水性涂料抗微生物侵染的试验方法 2014-12-01 GB/T 30793-2014 X-射线衍射法测定二氧化钛颜料中锐钛型与金红石型比率 2014-12-01 GB/T 30794-2014 热熔型氟树脂涂层(干膜)中聚偏二氟乙烯(PVDF)含量测定 熔融温度下降法 2014-12-01 GB/T 30795-2014 食品用洗涤剂试验方法 甲醇的测定 2014-10-10 GB/T 30796-2014 食品用洗涤剂试验方法 甲醛的测定 2014-11-01 GB/T 30797-2014 食品用洗涤剂试验方法 总砷的测定 2014-11-01 GB/T 30798-2014 食品用洗涤剂试验方法 荧光增白剂的测定 2014-11-01 GB/T 30799-2014 食品用洗涤剂试验方法 重金属的测定 2014-11-01 GB/T 30902-2014 无机化工产品 杂质元素的测定 电感耦合等离子体发射光谱法(ICP-OES) 2014-12-01 GB/T 30903-2014 无机化工产品 杂质元素的测定 电感耦合等离子体质谱法(ICP-MS) 2014-12-01 GB/T 30904-2014 无机化工产品 晶型结构分析 X射线衍射法 2014-12-01 GB/T 30905-2014 无机化工产品 元素含量的测定 X射线荧光光谱法 2014-12-01 GB/T 30906-2014 三聚磷酸钠中三聚磷酸钠含量的测定 离子色谱法 2014-12-01 GB/T 30907-2014 胶鞋 运动鞋减震性能试验方法 2014-12-01 GB/T 30908-2014 摄影 加工废液 硼的测定 2014-12-01 GB/T 30909-2014 胶鞋 丙烯腈迁移量的测定 2014-12-01 GB/T 30910-2014 胶鞋 2-巯基苯并噻唑、二硫化二苯并噻唑迁移量的测定 2014-12-01 GB/T 30911-2014 汽车齿轮齿条式动力转向器唇形密封圈性能试验方法 2014-12-01 GB/T 30913-2014 工业射线胶片系统分类标准试验方法 2014-12-01 GB/T 30914-2014 苯乙烯-异戊二烯-丁二烯橡胶(SIBR)微观结构的测定 2014-12-01 GB/T 30917-2014 天然胶乳橡胶避孕套中可迁移亚硝胺的测定 2014-12-01 GB/T 30919-2014 苯乙烯-丁二烯生橡胶 N-亚硝基胺化合物的测定 气相色谱-热能分析法 2014-12-01 GB/T 30925-2014 塑料 乙烯-乙酸乙烯酯共聚物(EVAC)热塑性塑料 乙酸乙烯酯含量的测定 2014-12-01 GB/T 30926-2014 化妆品中7种维生素C衍生物的测定 高效液相色谱-串联质谱法 2014-11-01 GB/T 30927-2014 化妆品中罗丹明B等4种禁用着色剂的测定 高效液相色谱法 2014-11-01 GB/T 30929-2014 化妆品中禁用物质2,4,6-三氯苯酚、五氯苯酚和硫氯酚的测定 高效液相色谱法 2014-11-01 GB/T 30930-2014 化妆品中联苯胺等9种禁用芳香胺的测定 高效液相色谱-串联质谱法 2014-11-01 GB/T 30931-2014 化妆品中苯扎氯铵含量的测定 高效液相色谱法 2014-11-01 GB/T 30932-2014 化妆品中禁用物质二噁烷残留量的测定 顶空气相色谱-质谱法 2014-11-01 GB/T 30933-2014 化妆品中防晒剂二乙氨基羟苯甲酰基苯甲酸己酯的测定 高效液相色谱法 2014-11-01 GB/T 30934-2014 化妆品中脱氢醋酸及其盐类的测定 高效液相色谱法 2014-11-01 GB/T 30935-2014 化妆品中8-甲氧基补骨脂素等8种禁用呋喃香豆素的测定 高效液相色谱法 2014-11-01 GB/T 30936-2014 化妆品中氯磺丙脲、甲苯磺丁脲和氨磺丁脲3种禁用磺脲类物质的测定方法 2014-11-01 GB/T 30937-2014 化妆品中禁用物质甲硝唑的测定 高效液相色谱-串联质谱法 2014-11-01 GB/T 30938-2014 化妆品中食品橙8号的测定 高效液相色谱法 2014-11-01 GB/T 30939-2014 化妆品中污染物双酚A的测定 高效液相色谱-串联质谱法 2014-11-01 GB/T 30940-2014 化妆品中禁用物质维甲酸、异维甲酸的测定 高效液相色谱法 2014-11-01 GB/T 30942-2014 化妆品中禁用物质乙二醇甲醚、乙二醇乙醚及二乙二醇甲醚的测定 气相色谱法 2014-11-01 GB/T 30945-2014 饲料中泰乐菌素的测定 高效液相色谱法 2015-01-08 GB/T 30955-2014 饲料中黄曲霉毒素B1、B2、G1、G2的测定 免疫亲和柱净化-高效液相色谱法 2015-01-10 GB/T 30956-2014 饲料中脱氧雪腐镰刀菌烯醇的测定 免疫亲和柱净化-高效液相色谱法 2015-01-10 GB/T 30957-2014 饲料中赭曲霉毒素A的测定 免疫亲和柱净化-高效液相色谱法 2015-01-10
  • 315项行业标准正在公示中,涉及ICP-AES、GC等多类仪器方法
    根据行业标准制修订计划,相关标准化技术组织完成了315项行业标准的制修订工作,28项行业标准外文版的编制工作以及5项行业标准样品的研制工作,在以上标准、标准外文版及标准样品发布之前,目前正处于公示阶段,以听取社会各界意见,公示时间截止至2022年5月14日。小编整理了上述标准中与科学仪器相关的标准,主要涉及石化、冶金、有色金属、轻工和稀土行业,包含色谱、质谱、光谱方法等。行业标准共有20项与仪器相关,其中使用电感耦合等离子体发射光谱法的共有5项,使用气相色谱法的3项,还有高效液相色谱法、辉光放电质谱法、(波长色散型)X射线荧光光谱法、核磁共振波谱法等。行业标准名称及主要内容等一览序号标准编号标准名称标准主要内容代替标准1 SH/T 1833-2022合成生橡胶色差的测定 色差仪法 本文件规定了用色差仪测定合成生橡胶色差的方法。 本文件适用于浅色的丁二烯橡胶、丁苯橡胶、丁腈橡胶、乙丙橡胶、异戊橡胶及丁基橡胶等块状合 成生橡胶。 2 SH/T 1835-2022低碳α-烯烃中金属含量的测定 电感耦合等离子体发射光谱法 本文件规定了用电感耦合等离子体发射光谱法(ICP-OES)测定低碳α-烯烃中金属含量的方法。 本文件适用于C6~C10低碳α-烯烃中铁、铝和铬金属含量的测定,其最低测定浓度分别为0.2 mg/kg、0.5 mg/kg和0.2 mg/kg。 3 SH/T 1054-2022工业用二乙二醇纯度和杂质的测定 气相色谱法 本文件规定了工业用二乙二醇的纯度及杂质测定的气相色谱法。 本文件适用于纯度不低于99.0%(质量分数)的工业用二乙二醇样品。其中乙二醇、三乙二醇、1,3-二氧戊环-2-甲醇、1,4-二氧六环-2-醇和1,4-丁二醇等杂质的检测限为0.0020%(质量分数)。SH/T 1054-19914 SH/T 1496-2022工业用叔丁醇酸度的测定 滴定法 本文件规定了工业用叔丁醇酸度测定的手动滴定法和电位滴定法。 本文件适用于异丁烯水合法及异丁烷共氧化法工艺制得的酸度不低于2 mg/kg的工业用叔丁醇的测定。SH/T 1496-19925 SH/T 1497-2022工业用叔丁醇纯度及杂质的测定 气相色谱法 本文件规定了用气相色谱法测定工业用叔丁醇纯度及杂质含量。 本文件适用于异丁烯水合法和异丁烷共氧化法工艺生产的工业用叔丁醇的测定。当采用热导检测器(TCD)测定TBA-85时,其杂质的最低测定含量为0.01%(质量分数),当采用氢火焰离子化检测器(FID)测定TBA-85、TBA-95、TBA-99时,其杂质的最低测定含量为0.001%(质量分数)。SH/T 1497-20026 SH/T 1498.6-2022尼龙66盐 第6部分:硝酸盐含量的测定 高效液相色谱法 本文件规定了测定尼龙66盐中硝酸盐含量的高效液相色谱法。 本文件适用于尼龙66盐中硝酸盐含量的测定,最低测定含量为0.15 mg/kg。SH/T 1498.6-19977 YB/T 4983-2022磷铁 磷、硅、锰、钛含量的测定 电感耦合等离子体原子发射光谱法 本文件规定了采用电感耦合等离子体原子发射光谱法测定磷、硅、锰和钛的含量。 本文件适用于磷铁中磷、硅、锰和钛含量的测定。8 YB/T 4989-2022焦炉煤气 煤焦油含量的测定 分光光度法 本文件规定了焦炉煤气中煤焦油含量测定的试剂和材料、仪器和设备、测试步骤、试验结果、允许差和试验报告。 本文件适用于焦炉煤气中煤焦油含量测定。9 YB/T 4990-2022焦化轻油酚含量的测定 气相色谱法 本文件规定了焦化轻油中酚含量测定的试剂材料、仪器设备、试验步骤、数据处理、允许差等。 本文件适用于煤焦油蒸馏所制得的焦化轻油中酚含量的测定。10 YS/T 1525-2022镍铂合金化学分析方法 氧和氮含量测定 脉冲-红外吸收法和热导检测法 本文件规定了镍铂合金中氧含量和氮含量的测定方法。 本文件适用于镍铂合中氧含金量和氮含量的测定。测定范围:0.0010%~0.020%。11 YS/T 1530-2022高纯锡化学分析方法 杂质元素含量的测定 辉光放电质谱法 本文件规定了高纯锡中杂质元素含量的测定方法。 本文件适用于高纯锡中杂质元素含量的测定。各元素测定范围:0.001 μg/g~5 μg/g。12 YS/T 482-2022铜及铜合金分析方法 火花放电原子发射光谱法 本文件规定了铜及铜合金中合金元素及杂质元素的火花放电原子发射光谱法。 本文件适用于铜及铜合金中铅、铁、铋、锑、砷、锡、镍、锌、磷、硫、锰、硅、铬、铝、银、锆、镁、硒、碲、钴、镉、硼、钛、铍含量的测定。YS/T 482-200513 YS/T 483-2022铜及铜合金分析方法 X射线荧光光谱法 (波长色散型) 本文件规定了铜及铜合金中合金元素及主要杂质元素的X射线荧光光谱分析方法。 本文件适用于铜及铜合金中铜、镍、锌、铝、铁、锡、铅、锰、硅、铬、砷、磷、镁、银、钴、铋、锑、硫、硒、碲、镉含量的测定。YS/T 483-200514 YS/T 1075.9-2022钒铝、钼铝中间合金化学分析方法 第9部分:氯含量的测定 氯化银分光光度法 本文件规定了钒铝、钼铝中间合金中氯含量的测定方法。 本文件适用于钒铝、钼铝中间合金中氯含量的测定。测定范围:0.010%~0.10%。15 YS/T 1075.10-2022钒铝、钼铝中间合金化学分析方法 第10部分:钠含量的测定 火焰原子吸收光谱法 本文件规定了钒铝、钼铝中间合金中钠含量的测定方法。 本文件适用于钒铝、钼铝中间合金中钠含量的测定。测定范围:0.001%~0.020%。16 YS/T 1075.13-2022钒铝、钼铝中间合金化学分析方法 第13部分:铁、硅、钼、铬含量的测定 电感耦合等离子体原子发射光谱法 本文件规定了钒铝中间合金中铁、硅、钼、铬含量及钼铝中间合金中铁、硅含量的测定方法。 本文件适用于钒铝中间合金中铁、硅、钼、铬含量及钼铝中间合金中铁、硅含量的测定。测定范围:0.004%~0.50%。17 YS/T 1539-2022铝基氮化硼粉末中氮化硼含量的测定 电感耦合等离子体原子发射光谱法 本文件规定了铝基氮化硼粉末中氮化硼含量的测定方法。 本文件适用于不含有机粘接剂的铝基氮化硼粉末中氮化硼含量的测定,测定范围:10.00%~23.00%。18 YS/T 1531-2022铑炭化学分析方法 铑含量的测定 电感耦合等离子体原子发射光谱法 本文件规定了铑炭中铑含量的测定方法。 本文件适用于铑炭中铑含量的测定。测定范围:0.100%~8.00%。19 QB/T 5759-2022番茄酱罐头中番茄红素含量测定 高效液相色谱法 本文件规定了采用高效液相色谱法测定番茄酱罐头中番茄红素含量的方法。 本文件适用于采用高效液相色谱法进行番茄酱罐头中番茄红素含量的测定。20 QB/T 5761-2022食品中水苏糖的测定 核磁共振波谱法 本文件规定了食品中水苏糖的测定方法——核磁共振波谱法。 本文件适用于采用核磁共振波谱法测定食品中的水苏糖,包括水苏糖原料、饮料及压片糖果。行业标准外文版序号标准编号标准名称(中文)标准名称(外文)标准主要内容项目类型翻译语种1XB/T 617.3-2014钕铁硼合金化学分析方法 第3部分:硼、铝、铜、钴、镁、硅、钙、钒、铬、锰、镍、锌和镓量的测定 电感耦合等离子体原子发射光谱法Chemical analysis methods for neodymium iron boron alloy -Part 3: Determination of boron, aluminum, copper, cobalt, magnesium, silicon, calcium,vanadium,chromium, manganese, nickel, zinc and gallium contents-Inductively coupled plasma atomic emission spectrometry本部分规定了钕铁硼合金中硼、铝、铜、钴、镁、硅、钙、钒、铬、锰、镍、锌和镓量的测定方法。翻译已有标准英语2XB/T 617.4-2014钕铁硼合金化学分析方法 第4部分:铁量的测定 重铬酸钾滴定法Chemical analysis methods of neodymium iron boron alloy-Part 4: Determination of iron content - The potassium dichromate titrimetry本部分规定了钕铁硼合金中铁含量的测定方法。翻译已有标准英语行业标准样品目录序号标准号标准名称有效期研 制 单 位1 YSS106-2022铝合金3004化学标准样品15年东北轻合金有限责任公司2 YSS107-2022铝合金3004铸态光谱单点标准样品15年东北轻合金有限责任公司3 YSS108-2022铝合金3A11化学标准样品15年东北轻合金有限责任公司4 YSS109-2022铝合金3A11铸态光谱单点标准样品15年东北轻合金有限责任公司5 YSS110-2022铝合金6063铸态光谱单点标准样品15年抚顺铝业有限公司
  • 福建质检院制定化妆品中三种禁用物质的检测国标
    日前获悉,由福建省质检院制定的《化妆品中禁用物质乙二醇甲醚、乙二醇乙醚及二乙二醇甲醚的测定气相色谱法》国家标准已正式公布并实施。   该标准建立了化妆品中三种乙二醇醚类禁用物质的测定方法,填补了国内乙二醇醚类物质检测标准的空白,研究成果达到国际先进水平。福建省质检院食品所相关人士介绍,乙二醇醚类物质属《化妆品卫生规范》中规定的禁用物质,被广泛用于溶液、喷气燃料防冰剂、刹车液、化学中间体,过量吸入会抑制中枢神经系统,高浓度可能造成头痛、恶心等。
  • 欧盟化妆品指令限用五种物质
    近日,欧盟新发布化妆品指令,对化妆品中的五种物质作出明确的禁用或有条件使用规定。   根据法规要求,将在化妆品中禁止维生素K1的使用;允许二甘醇微量使用,但不得超过0.1%;规定甲苯在指甲产品中的最高允许浓度为25%,但产品须附有警告标签,说明须存放于儿童接触不到的地方并且只供成人使用;规定二乙二醇单丁醚的最高浓度上限为9%;用作染发料溶剂的乙二醇单丁醚须符合氧化染发产品为4%和非氧化染发产品为2%的浓度上限。   欧盟化妆品指令的产品影响范围广,涉及乳霜、乳液、化妆水、凝胶及润肤剂、肥皂、防臭剂、香水、头发或指甲护理产品、美白和抗皱护肤品,以及口腔护理等,不符合规定的化妆品不得在欧盟任一成员国销售。   检验检疫部门提醒,化妆品的人身安全性特征要求生产企业在检验标准、标签检验、来料加工、后续监管检疫等具体业务都应慎重关注安全细节。一方面对化妆品的生产、加工、储存过程中的产品质量要进行自检,对原辅料、添加剂、半成品和成品中有毒有害物质的控制和溯源进行监督。另一方面,要加强原料选择和成品检测,尽量减少限用物质的使用,寻找替代物质,开展自主创新。   检验检疫机构将重点加强禁限用物质的检测,强化风险分析和控制,会同政府有关部门加强协作,力促化妆品出口新格局。
  • 总局发布《食用调和油》等185项推荐性国家标准,于2022年开始实行
    相关标准如下:序号国家标准编号国 家 标 准 名 称代替标准号实施日期1GB/T 40851-2021食用调和油2022-06-012GB/T 40891-2021化妆品中新铃兰醛的测定 气相色谱-质谱法2022-06-013GB/T 40894-2021化妆品中禁用物质甲巯咪唑的测定 高效液相色谱法2022-06-014GB/T 40895-2021化妆品中禁用物质丁卡因及其盐类的测定 离子色谱法2022-06-015GB/T 40896-2021化妆品中二乙二醇单乙醚的测定 气相色谱-质谱法2022-06-016GB/T 40897-2021化妆品中碱金属硫化物和碱土金属硫化物的测定 亚甲基蓝分光光度法2022-06-017GB/T 40898-2021化妆品中禁用物质贝美格及其盐类的测定 高效液相色谱法2022-06-018GB/T 40899-2021化妆品中禁用物质溴米索伐、卡溴脲和卡立普多的测定 高效液相色谱法2022-06-019GB/T 40900-2021化妆品中荧光增白剂367和荧光增白剂393的测定 液相色谱-串联质谱法2022-06-0110GB/T 40901-2021化妆品中11种禁用唑类抗真菌药物的测定 液相色谱-串联质谱法2022-06-0111GB/T 40911.2-2021塑料制品 聚甲基丙烯酸甲酯板材 类型、尺寸和特性 第2部分:挤出板材2022-06-0112GB/T 40911.3-2021塑料制品 聚甲基丙烯酸甲酯板材 类型、尺寸和特性 第3部分:连续浇铸板材2022-06-0113GB/T 40913-2021玻璃瓶罐热端涂层厚度的测定方法2022-06-0114GB/T 40933-2021塑料制品 薄膜和薄片 热塑性塑料薄膜试验指南2022-06-0115GB/T 40934-2021滚塑成型 粉末流动性的试验方法2022-06-0116GB/T 40935-2021青贮牧草膜2022-06-0117GB/T 40941-2021马鹿茸分等质量2022-06-0118GB/T 40942-2021畜禽饲料安全评价 肉鸡饲养试验技术规程2022-06-0119GB/T 40943-2021梅花鹿茸分等质量2022-06-0120GB/T 40944-2021饲料粒度测定 几何平均粒度法2022-06-0121GB/T 40945-2021畜禽肉质量分级规程2022-06-0122GB/T 40946-2021海洋牧场建设技术指南2022-06-0123GB/T 40950-2021化妆品中烷基(C12~C22)三甲基铵盐的测定 高效液相色谱串联质谱法2022-06-0124GB/T 40955-2021化妆品中八甲基环四硅氧烷(D4)和十甲基环五硅氧烷(D5)的测定 气相色谱法2022-06-0125GB/T 40956-2021食品冷链物流交接规范2022-06-0126GB/T 40957-2021企业竞争力评价规范2022-06-0127GB/T 40958-2021企业生产力评价规范2022-06-0128GB/T 40960-2021苹果冷链流通技术规程2022-06-0129GB/T 40962-2021干鲍鱼2022-06-0130GB/T 40963-2021冻虾仁2022-06-0131GB/T 40964-2021桃冷链流通技术操作规程2022-06-0132GB/T 40969-2021纸和纸板 颜色的测定(D50/2°漫反射法)2022-06-0133GB/T 40970-2021化妆品中氨含量的测定 滴定法2022-06-0134GB/T 40978-2021电饭锅2022-06-0135GB/T 40979-2021智能家用电器个人信息保护要求和测评方法2022-06-0136GB/T 40980-2021生化制品中还原糖的测定 柱前衍生高效液相色谱法39GB/T 40993-2021消费品召回 效果评价2022-03-0140GB/T 40994-2021GB/T 1037-19882022-06-0148GB/T 4214.10-2021家用和类似用途电器噪声测试方法 确定和检验噪声明示值的程序2021-11-262022-06-01
  • 7项新规严控涂料质量,蓝天白云指日可待!
    导读 2020年3月4日,国家市场监督管理总局、国家标准化管理委员会联合发布《中华人民共和国国家标准公布(2020年第2号)》,批准公布了7项国家强制性标准:GB 18581-2020《木器涂料中有毒物质限量》、GB 18582-2020《建筑用墙面涂料中有害物质限量》、GB 24409-2020《车辆涂料中有害物质限量》、GB 30981-2020《工业防护涂料中有害物质限量》、GB 33372-2020《胶粘剂挥发性有机物限量》、GB 38507-2020《油墨中可挥发性有机物(VOCs)含量的限值》、GB 38508-2020《清洗剂挥发性有机物含量限值》。这些标准的发布,以制定产品质量标准的角度综合考虑环境保护,开辟了大气污染源头防控的路径,进一步明确了《大气污染防控治法》及《打赢蓝天保卫战三年行动计划》关于低挥发性有机物含量的胶粘剂、涂料、油墨、清洗剂的定义,这7项标准中除GB 38507-2020于2021年4月1日实施外,其余6个标准均将于2020年12月1日正式实施。 7项新发布国家标准中,VOCs的指标比之前的法规更为严格,重金属的指标整体变化不大,个别指标提高,同时增加了一些SVOCs的项目和指标,如多环芳烃、邻苯二甲酸酯、乙二醇醚及醚酯类化合物等。这一系列的措施反映了国家严抓涂料的质量的坚定决心。“为了人类和地球的健康”,岛津也在行动,在国家标准正式实施前推出了《涂料中有毒有害物质检测解决方案》,供涂料相关检测工作者参考,一起来看看我们的方案吧! 挥发性有机物分析 涂料在生产及使用过程中会释放出各种各样的挥发性有机物(VOCs)。目前岛津用于涂料中VOCs分析的仪器主要有GC和GCMS,外围附件有顶空进样器和热脱附仪。 GC-2010 ProNexis GC-2030 典型案例1:GC法测定车辆涂料中苯、甲苯、乙苯和二甲苯含量1、叔丁基甲醚(内标) 2、苯 3、甲苯 4、乙苯 5、间/对-二甲苯 6、邻-二甲苯 典型案例2:顶空-GCMS法测定水性涂料中23种挥发性有机物含量1、1,1-二氯乙烯 2、二氯甲烷 3、反-1,2-二氯乙烯 4、氯丁二烯 5、顺-1,2-二氯乙烯 6、三氯甲烷7、四氯化碳 8、苯 9、1,2-二氯乙烷 10、三氯乙烯 11、环氧氯丙烷 12、甲苯 13、四氯乙烯14、氯苯 15、乙苯 16、邻二甲苯 17、对二甲苯 18、苯乙烯 19、三溴甲烷 20、异丙苯21、1,4-二氯苯 22、1,2-二氯苯 23、六氯丁二烯 典型案例3:热脱附-GCMS法测定涂料中挥发性有机物含量1、异丁醇 2、苯 3、三乙胺 4、正丁醇 5、甲苯 6、1,2-丙二醇 7、乙苯 8、间/对-二甲苯9、邻二甲苯 10、1,3-丙二醇 11、乙二醇单丁醚 12、二乙二醇 13、二乙二醇乙醚醋酸酯14、二乙二醇单丁醚 15、2,2,4-三甲基-1,3-戊二醇 16、二乙二醇丁醚醋酸酯 半挥发性有机物分析 涂料中在生产及使用过程中也会释放出各种各样的半挥发性有机物(SVOCs)。 SVOCs GCMS-QP2020 NXGCMS-QP2020 NX 典型案例:GCMS法检测涂料中16种多环芳烃含量 1、萘 2、苊烯 3、苊 4、芴 5、菲 6、蒽 7、荧蒽 8、芘 9、苯并[a]蒽 10、屈 11、苯并[b]荧蒽12、苯并[k]荧蒽 13、苯并[a]芘 14、茚并[1,2,3-cd]芘 15、二苯并[a,h]蒽 16、苯并[g,h,i]苝 重金属分析 涂料中重金属的来源主要是其采用的颜料,颜料起着色与遮盖作用。目前岛津用于涂料中重金属分析的仪器主要有AA-6880/7000、ICPE-9820、ICPMS-2030等。 ICPE-9820ICPMS-2030 典型案例:ICP-AES法测定涂料中17种重金属元素含量 小结 2020年是我国打赢蓝天保卫战三年行动计划的收官之年,严格控制VOCs,把好涂料质量关,岛津已经为您做好了准备,您准备好了吗?让我们为了未来持续的蓝天白云一起努力!想了解更多涂料中有毒有害物质的检测,请关注岛津《涂料中有毒有害物质检测解决方案》。 识别二维码下载解决方案
  • 标准委公布2015年拟立项国标 多项分析测试标准入围
    2月5日,国家标准委员发布《关于对2015年第一批拟立项国家标准项目征求意见的通知》,通知中对2015年拟立项的277项标准征求意见。在这277项标准中,涉及仪器及分析测试行业的相关标准约为20%左右。   请登录国家标准委网站的计划公示网页,查询项目信息和反馈意见建议。征求意见截止时间为2015年2月27日。   相关链接: http://ballot.sacinfo.org.cn:8080/stdpub/   仪器信息网摘录了部分与仪器及分析测试行业的标准: 序号 标准名称 状态 1 移动实验室 地下水快速检测通用技术规范 制定 2 表面化学分析 辉光放电原子发射光谱定量深度剖析的通用规程 制定 3 金属材料 延性试验 多孔状和蜂窝状金属高速压缩试验方法 制定 4 电工钢带(片)表面绝缘电阻、涂层附着性测试方法 修订 5 金属材料 矩形拉伸试样减薄率的测定 制定 6 不锈钢 锰、镍、铬含量的测定 手持式能量色散X-射线荧光光谱法(常规法) 制定7 呼出气体酒精含量检测仪 修订 8 变性燃料乙醇和燃料乙醇中总无机氯的测定方法(离子色谱法) 制定 9 直接法氧化锌白度(颜色)检验方法 修订 10 铜钢复合金属化学分析方法 第1部分:铜含量的测定 碘量法 制定 11 金属管材收缩应变比试验方法 制定 12 锆及锆合金加工产品超声波检测方法 制定 13 玻璃纤维中铅、汞、镉、砷及六价铬的限量指标与测定方法 制定 14 锆及锆合金&beta 相转变温度测定方法 制定 15 锆及锆合金管材涡流探伤方法 制定16 金属材料中碳、硫、氧、氮和氢分析方法通则 修订 17 玻璃纤维涂覆制品 耐压痕折叠性能的测定 制定 18 玻璃纤维涂覆制品拉-拉疲劳性能的测定 制定 19 锆及锆合金化学分析方法 第1部分:锡量的测定 碘酸钾滴定法和苯基荧光酮-聚乙二醇辛基醚分光光度法 修订 20 锆及锆合金化学分析方法 第15部分:硼量的测定 姜黄素分光光度法 修订 21 锆及锆合金化学分析方法 第16部分:氯量的测定 氯化银浊度法和离子选择性电极法 修订 22 锆及锆合金化学分析方法 第17部分:镉量的测定 极谱法 修订 23 锆及锆合金化学分析方法 第19部分:钛量的测定 二安替比林甲烷分光光度法和电感耦合等离子体原子发射光谱法 修订 24 表面污染物俄歇电子能谱分析方法指南制定 25 硬质合金化学分析方法 电位滴定法测定钴量 修订 26 硬质合金化学分析方法 钛量的测定 过氧化氢分光光度法 修订 27 烧结金属材料和硬质合金电阻率的测定 修订 28 硬质合金制品检验规则与试验方法 修订 29 硬质合金热扩散率的测定方法 修订 30 纳米粉末粒度分布的测定-X射线小角度散射法 修订 31 硬质合金超声探伤方法 制定 32 硬质合金涂层金相检测方法 制定 33 烧结金属多孔材料 气体过滤性能试验方法 制定 34 铱粉化学分析方法 银、金、钯、铑、钌、铅、铂、镍、铜、铁、锡、锌、镁、锰、铝、硅的测定 电感耦合等离子体发射光谱法 制定 35 区熔锗锭化学分析方法 第2部分 铝、铁、铜、镍、铅、钙、镁、钴、铟、锌含量的测定 电感耦合等离子体质谱法 制定 36 液体材料微波频段使用开口同轴探头的电磁参数测量方法 制定 37 绝缘微细颗粒中金属的测定 俄歇电子能谱法 制定 38 表面化学分析 X射线光电子能谱仪 能量标尺的校准 修订 39 表面化学分析 验证工作参考物质中离子植入产生的保留面剂量的建议规程 制定 40 碳-碳复合材料压缩性能试验方法 制定 41 超高温氧化环境下纤维复合材料拉伸强度试验方法 制定 42 增强塑料巴柯尔硬度试验方法 修订 43 碳纤维复丝拉伸性能试验方法 修订 44 建筑木塑复合材料防霉性能测试方法 制定 45 低温热源双循环余热回收利用装置性能测试方法 制定 46 红外光学玻璃测试方法红外透过率 制定 47 矿物棉及其制品试验方法 修订 48 摩托车轮胎动平衡试验方法 制定 49 聚合物基复合材料疲劳性能测试方法 第3部分:拉-拉疲劳性能测试方法 制定 50 汽车轮胎静态接地压力分布试验方法 修订 51 高效空气过滤器性能试验方法 效率和阻力 修订52 辐射防护仪器 用于放射性物质光子探测的高灵敏手持式仪器 制定 53 辐射防护仪器 用于放射性物质中子探测的高灵敏手持式仪器 制定 54 使用小型X射线管的便携式荧光分析仪 制定
  • 6月份有188项仪器及检测相关标准将实施 ——质谱检测类仪器领衔
    6月份有188项仪器及检测相关标准将实施——质谱检测类仪器领衔我们通过国家标准信息平台查询到,在2022年6月份将有188项仪器及检测行业的国家标准与行业标准将实施。农林牧渔食品类标准占1/4;化工塑料与医疗卫生紧随其后,分别有19%和15%。除此之外轻工、电子电器、环境等也有新标准将实施。6月份将要实施标准类别图我们简单整理了涉及分析检测仪器的相关标准,在这些标准中使用到质谱仪器检测的标准有29条,液质联用和气质联用仪器几乎平分秋色;使用光谱仪器、色谱仪器、PCR检测的标准也分别都有9条。标准中使用到的仪器类别其他的标准如下:需要相关标准的,点击链接即可下载收藏↓农林牧渔食品标准(47个)GB/T 40998-2021 变性淀粉中羟丙基含量的测定 分光光度法 GB/T 40956-2021 食品冷链物流交接规范 GB/T 40963-2021 冻虾仁 GB/T 40962-2021 干鲍鱼 GB/T 40964-2021 桃冷链流通技术操作规程 GB/T 40960-2021 苹果冷链流通技术规程 GB/T 40944-2021 饲料粒度测定 几何平均粒度法 GB/T 13082-2021 饲料中镉的测定 GB/T 40945-2021 畜禽肉质量分级规程 GB/T 40942-2021 畜禽饲料安全评价 肉鸡饲养试验技术规程 GB/T 40943-2021 梅花鹿茸分等质量 GB/T 40941-2021 马鹿茸分等质量 GB/T 40851-2021 食用调和油 GB/T 20980-2021 饼干质量通则 GB/T 10781.8-2021 白酒质量要求 第8部分:浓酱兼香型白酒 GB/T 20981-2021 面包质量通则 GB/T 17204-2021 饮料酒术语和分类 GB/T 15109-2021 白酒工业术语 SN/T 5406-2021 进口食用植物油中转基因成分检测方法 SN/T 5364.8-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第8部分:克罗诺杆菌属(阪崎肠杆菌) SN/T 5364.7-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第7部分:产志贺毒素大肠埃希氏菌 SN/T 5364.6-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第6部分:单核细胞增生李斯特氏菌 SN/T 5364.5-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第5部分:金黄色葡萄球菌 SN/T5364.4-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第4部分:创伤弧菌 SN/T 5364.3-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第3部分:溶藻弧菌 SN/T 5364.2-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第2部分:霍乱弧菌 SN/T 5364.1-2021 出口食品中致病菌检测方法 微滴式数字PCR法 第1部分:副溶血性弧菌 SN/T 5362-2021 出口食品中氟啶虫胺腈残留量的测定 SN/T 5361-2021 出口食品中阪崎克罗诺杆菌检测方法 fusA基因测序法 SN/T 5360-2021 出口动物源食品中万古霉素和去甲万古霉素残留量的测定 液相色谱-质谱/质谱法 SN/T 5359-2021 出口动物源食品中阿奇霉素残留量的测定 液相色谱-质谱/质谱法 SN/T 5358-2021 出口茶叶中氯噻啉残留量的测定 液相色谱-质谱/质谱法 SN/T 5357-2021 出口保健食品中多类非法添加物的测定 液相色谱-质谱/质谱法 SN/T 5323-2021 食品接触材料 高分子材料 塑料中对羟基苯甲酸酯类物质迁移量的测定 液相色谱串联质谱法 SN/T 5320-2021 食品接触材料 高分子材料 食品模拟物中偏苯三甲酸、间苯二甲酸、对苯二甲酸及邻苯二甲酸的测定 高效液相色谱法 SN/T 5309-2021 食品接触材料 高分子材料 食品模拟物中壬基酚和辛基酚的测定 液相色谱-串联质谱法 SN/T 5308-2021 食品级润滑油中苯、甲苯、氯苯、对二甲苯和邻二甲苯的测定 顶空气相色谱-质谱联用法 SN/T 5407-2021 进境水果预检规程 SN/T 5208-2021 短体线虫(非中国种)检疫鉴定方法 SN/T 4675.32-2021 出口葡萄酒中氮稳定同位素比值测定方法 SN/T 4233-2021 进境牛羊指定隔离检疫场建设规范 SN/T 2523-2021 进境水生动物指定隔离检疫场建设规范 SN/T 2231-2021 出口食品中呋虫胺及其代谢物残留量的测定 液相色谱-质谱/质谱法 SN/T 2210-2021 出口食品中六价铬的测定 SN/T 2203-2021 食品接触材料 木制品类 食品模拟物中多环芳烃的测定 SN/T 0494-2021 出口粮谷中克瘟散检验方法 SN/T 2032-2021 进境种猪指定隔离检疫场建设规范 冶金标准(8个)SN/T 5402-2021 进出口合金钢初级产品检验规程 SN/T 5401-2021 进出口不锈钢初级产品检验规程 SN/T 5400-2021 进出口铁及非合金钢初级产品检验规程 SN/T 5399-2021 进出口生铁检验规程 SN/T 5351-2021 铝和铝合金中氢的测定 惰性气体熔融-红外吸收法 SN/T 5347.2-2021 铬矿石中铅、锌、磷、钛和镍含量的测定 电感耦合等离子体发射光谱法 SN/T 5347.1-2021 铬矿石中碳和硫含量的测定 高频红外吸收法 GB/T 40883-2021 微合金钢锻件 通用技术条件 环境标准(10个)HJ 653-2021 环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法 HJ 1210—2021土壤和沉积物 13 种苯胺类和 2 种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法 HJ 1214-2021水质 可吸附有机卤素(AOX)的测定 微库仑法 HJ 1215-2021水质 浮游植物的测定 滤膜-显微镜计数法 HJ 1216-2021水质 浮游植物的测定 0.1 ml计数框-显微镜计数法 HJ 1219-2021环境空气和废气 吡啶的测定 气相色谱法 HJ 1220-2021环境空气 6种挥发性羧酸类化合物的测定 气相色谱-质谱法 HJ 1221-2021环境空气 降尘的测定 重量法 HJ 1222-2021固体废物 水分和干物质含量的测定 重量法 HJ 1240-2021固定污染源废气 气态污染物(SO2、NO、NO2、CO、CO2)的测定 便携式傅 立叶变换红外光谱法 医疗卫生生物标准(28个)WS/T 798—2022 消毒剂消毒效果定性试验标准 应用稀释法 WS/T 797-2022 现场消毒评价标准 WS/T 796—2022 围手术期患者血液管理指南 WS/T 795—2022 儿科输血指南 WS/T 794-2022 输血相容性检测标准 WS/T 793-2022 妇幼保健机构医用设备配备标准 GB/T 22576.4-2021 医学实验室 质量和能力的要求 第4部分:临床化学检验领域的要求 GB/T 22576.7-2021 医学实验室 质量和能力的要求 第7部分:输血医学领域的要求 GB/T 22576.6-2021 医学实验室 质量和能力的要求 第6部分:临床微生物学检验领域的要求 GB/T 22576.5-2021 医学实验室 质量和能力的要求 第5部分:临床免疫学检验领域的要求 GB/T 22576.3-2021 医学实验室 质量和能力的要求 第3部分:尿液检验领域的要求 GB/T 22576.2-2021 医学实验室 质量和能力的要求 第2部分:临床血液学检验领域的要求 GB/T 39367.1-2020 体外诊断检验系统 病原微生物检测和鉴定用核酸定性体外检验程序 第1部分:通用要求、术语和定义 GB 8369.2-2020 一次性使用输血器 第2部分:压力输血设备用 GB/T 41008-2021 生物降解饮用吸管 GB/T 41010-2021 生物降解塑料与制品降解性能及标识要求 GB/T 40980-2021 生化制品中还原糖的测定 柱前衍生高效液相色谱法 GB/T 40974-2021 核酸样本质量评价方法 GB/T 28842-2021 药品冷链物流运作规范 GB/T 40939-2021 低温医用冷库通用技术要求 GB/Z 12414-2021 药用玻璃管 YY/T 1733-2020 医疗器械辐射灭菌 辐照装置剂量分布测试指南 YY/T 1713-2020 胶体金免疫层析法检测试剂盒 YY 0341.2—2020 无源外科植入物 骨接合与脊柱植入物 第2部分:脊柱植入物特殊要求 YY 0341.1—2020 无源外科植入物 骨接合与脊柱植入物 第1部分:骨接合植入物特殊要求 YY 1727-2020 口腔黏膜渗出液人类免疫缺陷病毒抗体检测试剂盒(胶体金免疫层析法 )YY/T 1711-2020 放射治疗用门控接口 YY 0899—2020 医用微波设备附件的通用要求 化工橡胶塑料标准(36个)GB/T 40934-2021 滚塑成型 粉末流动性的试验方法 GB/T 41000-2021 聚碳酸酯(PC)饮水罐质量通则 GB/T 41001-2021 密胺塑料餐饮具 GB/T 40640.3-2021 化学品管理信息化 第3部分:电子标签应用 GB/T 40970-2021 化妆品中氨含量的测定 滴定法 GB/T 40955-2021 化妆品中八甲基环四硅氧烷(D4)和十甲基环五硅氧烷(D5)的测定 气相色谱法 GB/T 40950-2021 化妆品中烷基(C12~C22)三甲基铵盐的测定 高效液相色谱串联质谱法 GB/T 40891-2021 化妆品中新铃兰醛的测定 气相色谱-质谱法 GB/T 40899-2021 化妆品中禁用物质溴米索伐、卡溴脲和卡立普多的测定 高效液相色谱法 GB/T 40901-2021 化妆品中11种禁用唑类抗真菌药物的测定 液相色谱-串联质谱法 GB/T 40900-2021 化妆品中荧光增白剂367和荧光增白剂393的测定 液相色谱-串联质谱法 GB/T 40896-2021 化妆品中二乙二醇单乙醚的测定 气相色谱-质谱法 GB/T 40897-2021 化妆品中碱金属硫化物和碱土金属硫化物的测定 亚甲基蓝分光光度法GB/T 40898-2021 化妆品中禁用物质贝美格及其盐类的测定 高效液相色谱法 GB/T 40894-2021 化妆品中禁用物质甲巯咪唑的测定 高效液相色谱法 GB/T 40895-2021 化妆品中禁用物质丁卡因及其盐类的测定 离子色谱法 GB/T 40935-2021 青贮牧草膜 GB/T 40937-2021 塑料管道系统 塑料复合管材和管件长期强度的测定方法 GB/T 40933-2021 塑料制品 薄膜和薄片 热塑性塑料薄膜试验指南 GB/T 40919-2021 管道系统用聚乙烯材料 与慢速裂纹增长相关的应变硬化模量的测定 GB/T 40921-2021 发泡聚丙烯(PP-E)珠粒 GB/T 40918-2021 聚苯乙烯户外仿木板材通用技术要求 GB/T 40911.2-2021 塑料制品 聚甲基丙烯酸甲酯板材 类型、尺寸和特性 第2部分:挤出板材 GB/T 40916-2021液化气储运用高强度聚氨酯泡沫塑料 GB/T 40911.3-2021 塑料制品 聚甲基丙烯酸甲酯板材 类型、尺寸和特性 第3部分:连续浇铸板材 GB/T 1037-2021 塑料薄膜与薄片水蒸气透过性能测定 杯式增重与减重法 GB/T 14455.1-2021 精油 命名原则 SN/T 5403-2021 进口烟花检验规程 SN/T 5350.2-2021 硫磺 砷含量的测定 原子荧光光谱法 SN/T 5350.1-2021 硫磺 酸度的测定 自动电位滴定法 SN/T 5349-2021 硅胶耐热材料中硅氧烷类化合物的测定 气相色谱-质谱/质谱法 SN/T 5348-2021 工业壬醇含量的测定 气相色谱法 SN/T 5346-2021 粉末涂料 挥发性有机化合物(VOC)的测定 SN/T 5345-2021 PET塑料中间苯二甲基异氰酸酯含量的测定 气相色谱-质谱法 SN/T 5322-2021 再生皮革的鉴别方法 SN/T 5310-2021 涂料中4-叔戊基苯酚和对特辛基苯酚含量的测定 气相色谱法 石油地质矿产标准(5个)GB 41022-2021 煤矿瓦斯抽采基本指标 GB/T 40961-2021 岩石三轴试验仪校验方法 SN/T 5311-2021 原油及燃油中硫化氢的测定 快速液相萃取法 SN/T 4763.2-2021 煤中汞含量的测定 氧弹燃烧-原子荧光光谱法 SN/T 3125-2021 液态烃燃料燃烧热的测定 弹式量热计法 玻璃陶瓷建材标准(5个)SN/T 5356-2021 卫生洁具表面耐磨性能试验方法SN/T 5355-2021 陶瓷地砖防滑性能测试方法 动摩擦系数法SN/T 5354.2-2021 地面材料防滑性能测试方法 第2部分:倾斜平台法SN/T 5354.1-2021 地面材料防滑性能测试方法 第1部分:摆锤法SN/T 5315-2021 光催化自洁陶瓷性能测试方法 荧光探针法 轻工标准(19个)GB/T 40969-2021 纸和纸板 颜色的测定(D50/2°漫反射法) SN/T 5352-2021 纸制耐热材料中全氟和多氟化合物的测定 GB/T 40968-2021乐器产品中多环芳烃的测试方法
  • 国标委下发2016第二批国标制修订计划 又一批检测标准将出台
    9月20日,国家标准化管理委员会下达2016年第二批国家标准制修订计划(见附件)。本批计划共计224项,其中制定183项,修订41项 推荐性标准223项,指导性技术文件1项。  在这224项标准中,有数十条涉及仪器检测,包括质谱、高效液相色谱-质谱联用法、高效液相色谱法、电感耦合等离子体原子发射光谱、X射线衍射、扫描电镜等检测方法,仪器信息网摘取部分供参考。 计划编号 项目名称 标准性质 制修订 主管部门 归口单位 20161229-T-608纺织品 消臭性能的测定 第3部分:气相色谱法推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161231-T-608纺织品 1,2-二氯乙烷、氯乙醇和氯乙酸的测定推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161232-T-608纺织品 苯并三唑类物质的测定推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161233-T-608纺织品 定量化学分析 氨纶与某些其他纤维的混合物推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161234-T-608纺织品 过滤性能 最易穿透粒径的测定推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161237-T-608纺织品 消臭性能的测定 第1部分:通则推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161238-T-608纺织品 抗真菌性能的测定 第2部分:平皿计数法推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161240-T-608纺织品 抗真菌性能的测定 第1部分:荧光法推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161323-T-606肥料中植物生长调节剂的测定 高效液相色谱法推荐制定中国石油和化学工业联合会全国肥料和土壤调理剂标准化技术委员会20160920-T-609超薄玻璃硬度和断裂韧性试验方法-显微维氏硬度压痕法推荐制定中国建筑材料联合会全国工业玻璃和特种玻璃标准化技术委员会20161327-T-606光学功能薄膜 聚对苯二甲酸乙二醇酯(PET)薄膜 萃取值测定方法推荐制定中国石油和化学工业联合会全国光学功能薄膜材料标准化技术委员会20161295-T-469粒度分析 液体重力沉降法 第4部分:天平法推荐制定国家标准化管理委员会全国颗粒表征与分检及筛网标准化技术委员会20161283-T-469喷气燃料中芳烃总量的测定 气相色谱法推荐制定国家标准化管理委员会全国石油产品和润滑剂标准化技术委员会20161284-T-469汽车手动变速箱同步器用润滑剂摩擦磨损性能测定 SRV试验机法推荐制定国家标准化管理委员会全国石油产品和润滑剂标准化技术委员会20161285-T-469石油和液体石油产品 储罐中液位和温度自动测量法 第2部分:油船舱中的液位测量推荐制定国家标准化管理委员会全国石油产品和润滑剂标准化技术委员会20161303-T-607玩具产品 聚碳酸酯和聚砜材料中双酚A迁移量的测定 高效液相色谱-质谱联用法推荐制定中国轻工业联合会全国玩具标准化技术委员会20161310-T-606硫化橡胶 样品和试样的制备 化学试验推荐修订中国石油和化学工业联合会全国橡胶与橡胶制品标准化技术委员会20161314-T-606炭黑 第26部分:炭黑原料油中碳含量的测定推荐制定中国石油和化学工业联合会全国橡胶与橡胶制品标准化技术委员会20161315-T-606橡胶配合剂 沉淀水合二氧化硅 电感耦合等离子体原子发射光谱仪测定重金属含量推荐制定中国石油和化学工业联合会全国橡胶与橡胶制品标准化技术委员会20161316-T-606炭黑 第25部分:碳含量的测定推荐制定中国石油和化学工业联合会全国橡胶与橡胶制品标准化技术委员会20161346-T-306同位素组成质谱分析方法通则推荐制定科学技术部全国仪器分析测试标准化技术委员会20161347-T-306水中锶同位素丰度比的测定推荐制定科学技术部全国仪器分析测试标准化技术委员会20161348-T-306晶体材料X射线衍射仪旋转定向测定方法推荐制定科学技术部全国仪器分析测试标准化技术委员会20161361-T-334琥珀鉴定分类推荐制定国土资源部全国珠宝玉石标准化技术委员会20161363-T-334珠宝玉石 鉴定推荐修订国土资源部全国珠宝玉石标准化技术委员会20161226-T-608化学纤维 微观形貌及直径的测定 扫描电镜法推荐制定中国纺织工业联合会中国纺织工业联合会20161227-T-608化学纤维 热分解温度试验方法推荐制定中国纺织工业联合会中国纺织工业联合会20161228-T-608化学纤维 二氧化钛含量试验方法推荐制定中国纺织工业联合会中国纺织工业联合会
  • 上海市食品接触材料协会发布《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准征求意见稿
    各有关单位及专家:由上海市食品接触材料协会归口,上海市质量监督检验技术研究院等相关单位共同起草的《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准已完成征求意见稿(附件1-14)的编制,现面向社会公开征求意见。诚请有关单位及行业专家积极提出宝贵意见和建议,并填写《意见反馈表》(附件15),于2023年8月10日之前将书面意见以邮件或寄送方式反馈至上海市食品接触材料协会。联 系 人: 陈宁宁 黄 蔚联系电话: 021-64372216 邮 箱:safcmxh@163.com邮寄地址:上海市徐汇区永嘉路627号301室上海市食品接触材料协会2023年7月10日附件下载附件1《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》团体标准征求意见稿.pdf附件2《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》团体标准编制说明.pdf附件3《食品接触材料 着色剂中芳香族伯胺的测定》团体标准征求意见稿.pdf附件4《食品接触材料 着色剂中芳香族伯胺的测定》团体标准编制说明.pdf附件5《食品接触材料 着色剂中多氯联苯含量的测定》团体标准征求意见稿.pdf附件6《食品接触材料 着色剂中多氯联苯含量的测定》团体标准征编制说明.pdf附件8《食品接触材料 着色剂中盐酸可溶物(锑、砷、钡、镉、铬、铅、汞和硒)的测定》团体标准编制说明.pdf附件9《食品接触材料 着色剂中盐酸可溶物(六价铬)的测定》团体标准征求意见稿.pdf附件7《食品接触材料 着色剂中盐酸可溶物(锑、砷、钡、镉、铬、铅、汞和硒)的测定》团体标准征求意见稿.pdf附件12《食品接触材料及制品 高锰酸钾消耗量的测定 自动滴定仪法》团体标准编制说明.pdf附件10《食品接触材料 着色剂中盐酸可溶物(六价铬)的测定》团体标准编制说明.pdf附件11《食品接触材料及制品 高锰酸钾消耗量的测定 自动滴定仪法》团体标准征求意见稿.pdf附件14《食品接触材料及制品 1,4-二氯苯迁移量的测定》团体标准征编制说明.pdf附件13《食品接触材料及制品 1,4-二氯苯迁移量的测定》团体标准征求意见稿.pdf关于征求《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准意见的通知1.pdf
  • 分析仪器通用技术、色谱柱等381项标准将在5月份实施
    分析仪器通用技术、液相色谱柱等381项标准将在5月份实施我们通过国家标准信息平台查询到,在2022年5月份将要实施的科学仪器及检测相关的国家标准暴增,共有381项标准将要实施。其中有111项电子电器类标准将要实施位居榜首,机械类标准次之有72项,农林牧渔食品类与化工橡胶塑料类标准旗鼓相当分别有47项和46项标准。5月份将要实施标准类别图除此之外我们还发现有5项仪器仪表类标准,分别如下:GB/T 12519-2021 分析仪器通用技术条件本文件规定了分析仪器的术语和定义、仪器分类与命名、要求、试验方法、检验规则及标志、包装、运输和贮存。本文件适用于各种类型分析仪器。本文件也适用于与仪器配用或形成独立产品的样品处理、制备、信号处理传输和辅助分析的装置等。GB/T 30433-2021 液相色谱仪测试用标准色谱柱本文件规定了液相色谱仪测试用标准色谱柱的术语和定义.标准柱参数、要求、试验方法,检验规则,标志﹑包装、运输和贮存。本文件适用于液相色谱仪测试用标准色谱柱(以下简称“标准柱”)。GB/T 40023-2021 无损检测仪器 超声衍射声时检测仪 技术要求本标准规定了超声衍射声时检测仪的技术要求、检验规则、标志、包装、运输和贮存等内容。本标准适用于超声衍射声时检测仪。GB/T 40658-2021 溴化钾光学元件本文件规定了溴化钾光学元件(以下简称溴化钾)的技术要求、试验方法、检验规则及包装、标志、运输及贮存等要求。本文件适用于溴化钾光学元件的制造与验收。GB 19815-2021 离心机 安全要求(该标准划归为机械)本标准规定了各种具有金属转鼓的工业用离心机(以下简称离心机)在设计、制造、安装和使用中的安全要求,以及使用信息和安全性能的检验、判定方法。本标准适用于一切工业用途的离心机(包括工业脱水机)。其他的标准如下:需要相关标准的,点击链接即可下载收藏↓农林牧渔食品标准(47个)GB/T 40850-2021 饲料中肠杆菌科的检验方法 GB/T 40848-2021 饲料原料 压片玉米 GB/T 40747-2021 饲料瘤胃可发酵有机物(FOM)测定方法 GB/T 21543-2021 饲料添加剂 调味剂 通用要求 GB/T 40830-2021 猪饲料真可消化氨基酸测定技术规程(简单T型瘘管法) GB/T 40837-2021 畜禽饲料安全评价 蛋鸡饲养试验技术规程 GB/T 40835-2021 畜禽饲料安全评价 反刍动物饲料瘤胃降解率测定 牛饲养试验技术规程 GB/T 23884-2021 动物源性饲料中生物胺的测定 高效液相色谱法 GB/T 23801-2021 中间馏分油中脂肪酸甲酯含量的测定 红外光谱法 GB/T 40834-2021 夏玉米苗情长势监测规范 GB/T 40833-2021 甘蔗皮渣中对香豆酸检测方法 高效液相色谱法 GB/T 40832-2021 芒果叶中芒果苷的测定 高效液相色谱法 GB/T 40772-2021 方便面 GB/T 40752-2021 沃柑产业扶贫项目运营管理规范 GB/T 40751-2021 花曲柳窄吉丁检疫鉴定方法 GB/T 40750-2021 农用沼液 GB/T 40749-2021 海水重力式网箱设计技术规范 GB/T 40748-2021 百香果质量分级 GB/T 40746-2021 淡水有核珍珠 GB/T 40745-2021 冷冻水产品包冰规范 GB/T 40744-2021 马铃薯茎叶及其加工制品中茄尼醇的含量测定 高效液相色谱-质谱法 GB/T 40743-2021 猕猴桃质量等级 GB/T 40644-2021 杜仲叶提取物中京尼平苷酸的检测 高效液相色谱法 GB/T 40642-2021 桑叶提取物中1-脱氧野尻霉素的检测 高效液相色谱法 GB/T 40643-2021 山楂叶提取物中金丝桃苷的检测 高效液相色谱法 GB/T 40641-2021 松针聚戊烯醇含量的测定 高效液相色谱法 GB/T 40636-2021 挂面 GB/T 40635-2021 银耳干品包装、标志、运输和贮存 GB/T 40632-2021 竹叶中多糖的检测方法 GB/T 40631-2021 阿月浑子(开心果)坚果质量等级 GB/T 40627-2021 油菜茎基溃疡病菌活性检测方法 GB/T 40626-2021 杨树细菌性溃疡病菌检疫鉴定方法 GB/T 40624-2021 黄瓜绢野螟检疫鉴定方法 GB/T 40622-2021 牡丹籽油 GB/T 29379-2021 马铃薯脱毒种薯贮藏、运输技术规程 GB/T 23347-2021 橄榄油、油橄榄果渣油 GB/T 20452-2021 仁用杏杏仁质量等级 GB/T 20412-2021 钙镁磷肥 GB/T 20398-2021 核桃坚果质量等级 GB/T 19164-2021 饲料原料 鱼粉 GB/T 15628.1-2021 中国动物分类代码 第1部分:脊椎动物 GB/T 1536-2021 菜籽油 GB/T 14467-2021 中国植物分类与代码GB/T 11761-2021 芝麻 GB/T 10457-2021 食品用塑料自粘保鲜膜质量通则 GB/T 10395.21-2021 农林机械 安全 第21部分:旋转式摊晒机和搂草机 GB/T 10395.20-2021 农林机械 安全 第20部分:捡拾打捆机 冶金标准(21个)GB/T 40854-2021 镧铈金属 GB/T 40798-2021 离子型稀土原矿化学分析方法 稀土总量的测定 电感耦合等离子体质谱法 GB/T 40796-2021 金属和合金的腐蚀 腐蚀数据分析应用统计学指南 GB/T 40795.2-2021 镧铈金属及其化合物化学分析方法 第2部分:稀土量的测定 GB/T 40795.1-2021 镧铈金属及其化合物化学分析方法 第1部分:铈量的测定 硫酸亚铁铵滴定法 GB/T 40794-2021 稀土永磁材料高温磁通不可逆损失检测方法 GB/T 40793-2021 烧结钕铁硼表面涂层 GB/T 40792-2021 烧结钕铁硼永磁体失重试验方法 GB/T 40791-2021 钢管无损检测 焊接钢管焊缝缺欠的射线检测 GB/T 40790-2021 烧结铈及富铈永磁材料 GB/T 40566-2021 流化床法颗粒硅 氢含量的测定 脉冲加热惰性气体熔融红外吸收法 GB/T 40561-2021 光伏硅材料 氧含量的测定 脉冲加热惰性气体熔融红外吸收法 GB/T 28504.3-2021 掺稀土光纤 第3部分:双包层铒镱共掺光纤特性 GB/T 28504.2-2021 掺稀土光纤 第2部分:双包层掺铥光纤特性 GB/T 18996-2021 银合金首饰 银含量的测定 氯化钠或氯化钾容量法(电位滴定法) GB/T 17832-2021 银合金首饰 银含量的测定 溴化钾容量法(电位滴定法) GB/T 18115.4-2021 稀土金属及其氧化物中稀土杂质化学分析方法 第4部分:钕中镧、铈、镨、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和钇量的测定 GB/T 14949.6-2021 锰矿石 铜、铅和锌含量的测定 火焰原子吸收光谱法 GB/T 12690.7-2021 稀土金属及其氧化物中非稀土杂质化学分析方法 第7部分:硅量的测定GB/T 12690.4-2021 稀土金属及其氧化物中非稀土杂质化学分析方法 第4部分:氧、氮量的测定 脉冲-红外吸收法和脉冲-热导法GB/T 11888-2021 首饰 指环尺寸 定义、测量和命名 环境标准(2个)GB/Z 40824-2021 环境管理 生命周期评价在电子电气产品领域应用指南 GB/T 40662-2021 废铅蓄电池再生处理技术规范医疗卫生生物标准(4个)GB/T 40660-2021 信息安全技术 生物特征识别信息保护基本要求 GB/T 40423-2021 健康信息学 健康体检基本内容与格式规范 GB/T 40419-2021 健康信息学 基因组序列变异置标语言(GSVML) GB/T 25915.12-2021 洁净室及相关受控环境 第12部分:监测空气中纳米粒子浓度的技术要求 化工橡胶塑料标准(46个)GB/T 9766.6-2021 轮胎气门嘴试验方法 第6部分: 气门芯试验方法 GB/T 9578-2021 工业参比炭黑4# GB/T 8290-2021 胶乳 取样 GB/T 40872-2021 塑料 聚乙烯泡沫试验方法 GB/T 40871-2021 塑料薄膜热覆合钢板及钢带 GB/T 40870-2021 气体分析 混合气体组成数据的换算 GB/T 40845-2021 化妆品中壬二酸的检测气相色谱法 GB/T 40844-2021 化妆品中人工合成麝香的测定 气相色谱-质谱法 GB/T 40639-2021 化妆品中禁用物质三氯乙酸的测定 GB/T 40797-2021 硫化橡胶或热塑性橡胶 耐磨性能的测定 垂直驱动磨盘法 GB/T 40789-2021 气体分析 一氧化碳含量、二氧化碳含量和氧气含量在线自动测量系统 性能特征的确定 GB/T 40726-2021 橡胶或塑料涂覆织物 汽车内饰材料雾化性能的测定 GB/T 40725-2021 浸胶帘线与橡胶粘合剥离性能试验方法 GB/T 40723-2021 橡胶 总硫、总氮含量的测定 自动分析仪法 GB/T 40722.2-2021 苯乙烯-丁二烯橡胶(SBR) 溶液聚合SBR微观结构的测定 第2部分:红外光谱ATR 法 GB/T 40721-2021 橡胶 摩擦性能的测定 GB/T 40720-2021 硫化橡胶 绝缘电阻的测定 GB/T 40719-2021 硫化橡胶或热塑性橡胶 体积和/或表面电阻率的测定 GB/T 40718-2021 绿色产品评价 轮胎 GB/T 40717-2021 阻燃轮胎 GB/T 40716-2021 汽车轮胎气密性试验方法 GB/T 40640.5-2021 化学品管理信息化 第5部分:化学品数据中心 GB/T 40640.4-2021 化学品管理信息化 第4部分:化学品定位系统通用规范 GB/T 40640.2-2021 化学品管理信息化 第2部分:信息安全 GB/T 40640.1-2021 化学品管理信息化 第1部分:数据交换 GB/T 40006.9-2021 塑料 再生塑料 第9部分:聚对苯二甲酸乙二醇酯(PET)材料 GB/T 40006.8-2021 塑料 再生塑料 第8部分:聚酰胺(PA)材料GB/T 40006.7-2021 塑料 再生塑料 第7部分:聚碳酸酯(PC)材料 GB/T 40006.6-2021 塑料 再生塑料 第6部分:聚苯乙烯(PS)和抗冲击聚苯乙烯(PS-I)材料 GB/T 40006.5-2021 塑料 再生塑料 第5部分:丙烯腈-丁二烯-苯乙烯(ABS)材料 GB/T 3778-2021 橡胶用炭黑 GB/T 30314-2021 橡胶或塑料涂覆织物 耐磨性的测定 泰伯法 GB/T 29614-2021 硫化橡胶 多环芳烃含量的测定 GB/T 26277-2021 轮胎电阻测量方法 GB/T 23938-2021 高纯二氧化碳 GB/T 22930.2-2021 皮革和毛皮 金属含量的化学测定 第2部分:金属总量 GB/T 22930.1-2021 皮革和毛皮 金属含量的化学测定 第1部分:可萃取金属 GB/T 22271.1-2021 塑料 聚甲醛(POM)模塑和挤出材料 第1部分:命名系统和分类基础 GB/T 21537-2021 锥型橡胶护舷 GB/T 21287-2021 电子特气 三氟化氮 GB/T 17874-2021 电子特气 三氯化硼 GB/T 18426-2021 橡胶或塑料涂覆织物 低温弯曲试验 GB/T 18012-2021 胶乳 pH值的测定 GB/T 1687.4-2021 硫化橡胶 在屈挠试验中温升和耐疲劳性能的测定 第4部分:恒应力屈挠试验 GB/T 1232.3-2021 未硫化橡胶 用圆盘剪切黏度计进行测定 第3部分:无填料的充油乳液聚合型苯乙烯-丁二烯橡胶Delta门尼值的测定GB 18382-2021 肥料标识 内容和要求 石油地质矿产标准(16个)GB/T 6683.1-2021 石油及相关产品 测量方法与结果精密度 第1部分:试验方法精密度数据的确定 GB/T 4985-2021 石油蜡针入度测定法 GB/T 4652-2021 地下矿用装岩机和装载机 试验方法 GB/T 40874-2021 原油和石油产品 散装货物输转 管线充满指南 GB/T 40873-2021 大洋富钴结壳资源勘查规程 GB/T 40736-2021 矿用移动式货运索道 安全规范 GB/T 40704-2021 天然气 加臭剂四氢噻吩含量的测定 在线取样气相色谱法 GB/T 40702-2021 油气管道地质灾害防护技术规范 GB/T 40697-2021 第三方煤炭检测管理规范 GB/T 386-2021 柴油十六烷值测定法 GB/T 261-2021 闪点的测定 宾斯基-马丁闭口杯法 GB/T 23799-2021 车用甲醇汽油(M85) GB/T 17144-2021 石油产品 残炭的测定 微量法 GB/T 11060.10-2021 天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化 合物 GB 40881-2021 煤矿低浓度瓦斯管道输送安全保障系统设计规范 GB 40880-2021 煤矿瓦斯等级鉴定规范 玻璃陶瓷建材标准(11个)GB/Z 2640-2021 模制注射剂瓶 GB/T 5990-2021 耐火材料 导热系数、比热容和热扩散系数试验方法(热线法) GB/T 40724-2021 碳纤维及其复合材料术语 GB/T 40715-2021 装配式混凝土幕墙板技术条件 GB/T 40714-2021 浮法玻璃生产成套装备通用技术要求 GB/T 40713-2021 建筑陶瓷生产成套装备通用技术要求 GB/T 40619-2021 基于雷电定位系统的雷电临近预警技术规范 GB/T 19322.1-2021 小艇 机动游艇空气噪声 第1部分:通过测量程序 GB/T 16399-2021 黏土化学分析方法 GB/T 16277-2021 道路施工与养护机械设备 沥青混凝土摊铺机 GB/T 17808-2021 道路施工与养护机械设备 沥青混合料搅拌设备 轻工标准(29个)GB/T 40971-2021 家具产品及其材料中禁限用物质测定方法 多环芳烃 GB/T 40938-2021 皮革 物理和机械试验 水渗透压测定 GB/T 40936-2021 皮革 物理和机械试验 服装革防水性能的测定GB/T 40927-2021 皮革 物理和机械试验 漆皮耐热性能的测定 GB/T 40920-2021 皮革 色牢度试验 往复式摩擦色牢度
  • 气相色谱仪使用气体的纯度分析
    操作气相色谱仪如何选用不同气体纯度的气源做载气和辅助气体,虽然是一个老的技术问题,但是对于刚刚接触气相色谱仪的用户,目前很难找到有关这方面的综合资料,所以他们总是到处询问究竟选择什么样的气体纯度zui好的这类问题。根据每一家用户具体使用的那一类仪器,选择什么样纯度的气体,确实是一个比较复杂的问题。原则上讲,选择气体纯度时,主要取决于①分析对象;②色谱柱中填充物;③检测器。我们建议在满足分析要求的前提下,尽可能选用纯度较高的气体。这样不但会提高仪器的高灵敏度,而且会延长色谱柱,整台仪器的寿命。实践证明,作为中仪器,长期使用较低纯度的气体气源,一旦要求分析低浓度的样品时,要想恢复仪器的高灵敏度有时十分困难。对于低档仪器,作常量或半微量分析,选用高纯度的气体,不但增加了运行成本,有时还增加了气路的复杂性,更容易出现漏气或其他的问题而影响仪器的正常操作。另外,为了某些特殊的分析目的要求特意在载气中加入某些“不纯物”,如:分析极性化合物添加适量的水蒸气,操作火焰光度检测器时,为了提高分析硫化物的灵敏度,而添加微量硫。操作氦离子化检测器要氖的含量必须在5~25ppm,否则会在分析氢,氮和氩气时产生负峰或“W”形峰等。本文就不在此做详细讨论了。 气体纯度低的不良影响 根据分析对象,色谱柱的类型,操作仪器的挡次和具体检测器,若使用不合要求的低纯度气体,不良影响有以下几种可能: 1)样品失真或消失:如H2O气使氯硅样品水解; 2)毛细管色谱柱失效:H2O,CO2使分子筛柱失去活性,H2O气使聚脂类固定液分解,O2使PEG断链。 3)有时某些气体杂质和固定液相互作用而产生假峰; 4)对柱保留特性的影响:如:H2O对聚乙二醇等亲水性固定液的保留指数会有所增加,载气中氧含量过高时,无论是极性或是非极性固定液柱的保留特性,都会产生变化,使用时间越长影响越大 5)检测器: TCD:信噪比减小,无法调零,线性变窄,文献中的校正因子不能使用,氧含量过大,使元件在高温时加速老化,减少寿命。 FID:特别是在Dt≤1Ⅹ10ˉ⒒/秒下操做时,CH4等有机杂质,会使基流激增,噪声加大不能进行微量分析。 ECD:载气中的氧和水对检测器的正常工作影响zui大,在不同的供电工作方式中,脉冲供电比直流电压供电影响大,固定基流脉冲调制式供电比脉冲供电影响大。这就是为什么目前诸多在操作固定基流脉冲调制式ECD时,在载气纯度低时必须把载气纯度选择开关从“标准氮”拨到“一般氮”位置的原因。大家会发现在此情况下操作,不但灵敏度变低,而且线性亦变窄了。实践证明:在操作ECD时,载气中的水含量低于0.02ppm,氧低于1ppm时可达到较理想的性能。值得指出的是,我们多次发现由于仪器的调节气路系统被污染而造成的对载气的二次污染至使ECD基频大幅度增加使信燥比减小。FPD和NPD等常用检测器,由于他们属于选择性检测器,操做时要根据分析要求,特别注意被测敏感物质中杂质的去除。 6)在做程序升温操作时,载气中的某些杂质,在低温时保留在色谱柱中,当拄温升高时不但引起基线漂移还可能在谱图上出现比较宽的"假峰"。 7)仪器影响 a. 各类过滤器加速失效 b. 调节阀(稳压阀,稳流阀,针形阀)被污染,气阻堵塞,调节精度降低或失灵; c.气路系统被污染,若要恢复仪器在高灵敏度情况下操做,有时要吹洗很长时间(可能一周以上)污染严重时有时再也无法恢复。 d.检测器的寿命,实践表明,对ECD和TCD的寿命影响zui明显,应引起用户特别注意。------ 责任编辑:瑞利祥合--色谱仪采购顾问版权所有(瑞利祥合)转载请注明出处
  • 用Sievers M9总有机碳TOC分析仪进行USP 661.1塑料包装结构材料筛选
    简介药品生产商需要用包装系统将他们生产的药品包装后投放到市场上。包装系统通常含有塑料和塑料组件,塑料组件包括静脉输液袋、泡罩包装袋、塑料瓶、预填充注射器等等。包装系统使用的塑料不仅含有聚合物,还含有抗氧化剂、稳定剂、润滑剂、增塑剂、着色剂等多种添加剂。当药品直接接触到塑料包装系统及其组件时,药品和塑料之间就会互相影响。为了确保药品的完整性、有效性、以及对患者的安全性,美国药典(USP)颁布了有关应用于药品的塑料包装系统及其组件的监管要求。USP 总章颁布于2016年5月,对各种塑料材料和完整包装系统的稳定性进行了表征1。总章于2017年5月1日经过修订2,更改了以下两点。第一,允许为期三年的实施期,总章的最终生效日期为2020年5月1日2。第二,取缔了之前批准的市场上“特许的老式”包装系统。无论是现在还是将来,市场上所有的制药商都在监管范围之中。USP USP 阐述了塑料包装系统及其结构材料。USP 分为以下两章:USP 结构材料3和USP 药用塑料包装系统4。本文着重介绍USP ,说明规则所要求的材料和方法。USP 规定了一系列测试来表征和筛选塑料材料,以保证其适用性。描述的特征包括材料的特性、生物反应性、一般物理化学性质、可提取物和可浸出物的成分测试3。在物理化学测试中,总有机碳(TOC,Total Organic Carbon)分析是必不可少的药典测试之一。对所用的TOC仪器和方法的要求如下3:...用于进行TOC分析的方法必须有0.2 mg/L(ppm)的检测限,以及0.2至20 mg/L的线性动态范围...此外,USP 还规定了TOC测试的材料筛选接受标准3(见表1)。表1列出了USP 规定的各组塑料材料的提取和测试方法。该方法代表了最坏情况下的可控研究,以判断可提取物变成潜在可浸出物的程度。USP 测试方法第1组:聚乙烯、环烯烃、聚丙烯3:将25 g的测试材料倒入带毛玻璃瓶颈的硼硅酸盐玻璃烧瓶中。加入500 mL纯净水(PW),在回流条件下保持煮沸5小时。让溶液冷却,然后用烧结玻璃过滤器过滤提取液。将滤液收集在500 mL容量瓶中,用纯净水稀释至刻度。应在4小时内使用稀释液。第2组:聚对苯二甲酸乙二醇酯(PET)和聚对苯二甲酸乙二醇酯G(PETG)3:将10 g的测试材料倒入带毛玻璃瓶颈的硼硅酸盐玻璃烧瓶中。加入200 mL纯净水,加热到50°C,保持温度5小时。让溶液冷却,将溶液倒入200 mL容量瓶中,用纯净水稀释至刻度。应在4小时内使用稀释液。第3组:增塑聚氯乙烯(PVC)3:将25 g的测试材料倒入硼硅酸盐玻璃烧瓶中。加入500 mL纯净水,用铝箔或硼硅酸盐烧杯盖住瓶口,在高压锅中加热到121±2°C,保持温度20分钟。让溶液冷却,使固体沉淀。将溶液倒入500 mL容量瓶中,用纯净水稀释至刻度。结果对USP 中规定的各塑料类别标样的测试,证明了Sievers® M9 TOC分析仪适用于USP 结构材料筛选。在测试中采用了USP 规定的测试方法,并且准备和分析了各组的空白。表2和图1显示了所测试塑料的扣除空白后的TOC结果。讨论USP 中规定的TOC分析仪和方法标准必须具有0.2 mg/L(ppm)的检测限和0.2至20 mg/L(ppm)的线性动态范围3。Sievers M9 TOC分析仪的检测限为0.03 μg/mL(ppb),线性范围为0.03 μg/mL(ppb)至50 mg/L(ppm)。Sievers M9符合甚至超过USP 的要求,完全适用于USP 要求的塑料中TOC的药典筛选。USP 筛选结果表明,即便是控制的标准塑料,也含有多种可浸出物和可提取物,测量出的具体含量取决于塑料种类。结果表明了通过稳固可靠的材料筛选和测试来正确选择包装材料的重要性。结论Sievers M9 TOC分析仪适用于USP 规定的塑料包装结构材料测试。此外,Sievers还通过特有的标样和文档来提供额外的USP 应用支持。Sievers提供以下认证的参照材料(获ISO 17034和ISO/IEC 17025认证),以支持Sievers M9分析仪在USP 规则达标中的应用1:- 准确度/精确度标准品,8 ppm(STD 77013)- 准确度/精确度标准品组,5 ppm(STD 99011)- USP 线性标准品组(STD 99012)Sievers还按照用户要求提供线性任务和电子表格以供参考。上述标样和Sievers的调查性事件分析报告(FAR,Failure Analysis Report)一起,提供了事件的可追溯性,加快了对“检验结果偏差(Out of Specification)”的调查。本文用数据证明,Sievers M9 TOC分析仪可以用来测量USP 规定的塑料中的各种浓度的TOC。有了可追溯性标样和事件分析报告,Sievers能够为USP 合规性提供全面的应用支持。参考文献1.USP Compliance for TOC Analysis, 300 00347, 2017. Retrieved Dec. 20, 2017, from https://geinstruments.com/downmedia?f_id=39418.2. Plastic Packaging Systems and Their Materials of Construction, 2017. Retrieved Dec. 20, 2017, from http://www.uspnf.com/sites/default/files/usp_pdf/EN/USPNF/revisio ns/661_rb_notice.pdf.3. Plastic Materials of Construction Revision Bulletin, Postponement, 2017. Retrieved Dec. 20, 2017, from http://www.uspnf.com/sites/default/files/usp_pdf/EN/USPNF/revisio ns/661.1_rb_notice.pdf.4. Plastic Packaging Systems for Pharmaceutical Use, 2017. Retrieved Dec. 20, 2017, from http://www.uspnf.com/sites/default/files/usp_pdf/EN/USPNF/revisio ns/661.2_rb_notice.pdf.◆ ◆ ◆联系我们,了解更多!
  • Sievers M系列TOC分析仪可实现快速泄漏检测
    时间就是金钱!生产工艺总是快速变化,迅速诊断工艺中发生的污染事故,对工厂及时采取正确的纠正措施来保护设备、减少停机时间、节省维修费用来说至关重要。在检测有机物(如糖类或石化产物)泄漏时,仪器响应时间的长短决定了工厂能否迅速排除污染物的干扰,是否应将被污染的水送回生产循环或排放出去。在所有工业TOC分析仪中,配置了Turbo运行模式的Sievers® M系列TOC分析仪是响应时间最快的仪器之一,充分满足用户对快速检测的要求。M系列分析仪具有世界一流的测量精确性和稳定性,为无缝工艺监测提供理想的解决方案。“挑战”工厂在生产中用大量的水来进行清洁、制造、加热、冷却,甚至作为生产原料。在水的各种应用中,都必须满足特定的水质适用标准。工厂为了确保工艺水的适用质量,需要监测和测量因泄漏或污染而导致的水质变化。以下是一些水质检测实例:检测冷凝液中的冷却剂(如乙二醇)泄漏。在生产下一批产品之前,确定水容器中是否有清洁剂或上一批产品的残留物。确定排放水的浓度是否超标。在检测泄漏或污染时,仪器的快速响应时间对化工、石化、食品加工等行业的生产工艺来说极为重要。快速检测能够避免产品损失、产品污染、工艺中断。通常来说,充分了解和准确建立基准水平,比全面测量泄漏和污染的程度更加重要。如果没有准确的基准水平,就很难发现何时发生泄漏。检测泄漏的目的是,一旦发现泄漏,首先将其堵住,然后查出泄漏源头,最后解决导致泄漏的问题。在泄漏对设备、生产、环境造成损害之前,工厂必须快速检测出泄漏,并分流处理被污染的水。“解决方案”通过总有机碳TOC分析进行碳监测,非常有利于检测泄漏和污染事故。操作人员能够根据水中的总有机化合物浓度,迅速判断出是否发生有机物泄漏。TOC分析的最低测量浓度可到“微克/升”或更低的痕量水平。有机物监测的工业应用如今制药和半导体行业广泛采用TOC监测技术,来监测水的纯度、注射用水水质、设备清洁和工艺过程控制。TOC监测对电力行业也至关重要,因为发电厂的蒸汽系统需要使用不含腐蚀性化合物(或能降解成腐蚀物的化合物)的超纯给水。在化工和食品加工行业的生产过程中,如果工艺流体泄漏到产品中,或产品泄漏到工艺流体中,TOC监测仪器都能及时提供详细信息。如果没有TOC监测,泄漏事故可能会导致工厂停产或产品召回。Sievers M9便携式TOC分析仪用Sievers TOC和电导率分析仪来快速识别污染越能快速发现污染事故并分流处理被污染的水,就越能降低停机、停工、意外维修、产品损失的风险。Sievers M系列TOC分析仪的Turbo运行模式每4秒提供一次监测数据,为用户提供快速检测污染事故的关键信息,从而将污染事故的后果降至最低。 Sievers M系列分析仪有实验室型、便携式、在线型3种配置,可以测量总碳(TC)和无机碳(IC),然后用减法得出TOC浓度。IC包括样品中的背景二氧化碳、碳酸盐、碳酸氢盐。M系列分析仪采用“紫外线过硫酸盐氧化和膜电导检测法(UV Persulfate Oxidation And Membrane Conductometric Detection)”来测量TOC。M系列分析仪除了测量TC、TOC 、IC之外,还能测量电导率,为用户提供识别泄漏和查找泄漏原因的进一步信息。在计算分析仪的响应时间时,必须考虑两方面的因素,即样品如何被传送到分析仪,以及分析仪如何对污染事件作出响应。前者所涉及的具体考虑因素包括:相对于分析仪的样品流位置、从取样点到分析仪的样品流量、泄漏的位置、从泄漏点到分析仪的样品传输管的直径等。后者是指分析仪所具备的功能,例如测量模式或仪器设置。Sievers分析仪的快速响应时间M9便携式TOC分析仪配置了Turbo运行模式,通过“集成在线取样器(iOS,Integrated Online Sampler)”来在线监测超纯水(TOC浓度小于10 ppb),其工作流程如图 1所示。在注入样品时,先停止超纯水流动。用注射器将60毫升的10 ppm TOC溶液直接注入iOS的上游,然后恢复水的流动。从开始注入样品时计算时间。计时结果如表1和图2所示。图1:实验流程。圆圈代表阀门。当超纯水流动时,注射器阀关闭。当注入样品时,超纯水阀关闭。注水完毕时超纯水阀立即重新打开。表1:在Turbo模式下运行Sievers M9分析仪的响应时间测试结果图2:两次注入样品的响应时间曲线。能控制的变量包括注水位置、注入体积、浓度。不受控制的变量为工艺系统中的超纯水流量。T0是第一次测量的响应时间,其中TOC浓度从所建立的基线开始增加1 ppb以上。T5是达到注射加标浓度5%的响应时间。在理想情况下,操作人员有足够时间来采取措施,分流处理被污染的水以终止进一步污染。M系列分析仪的普通运行模式是2分钟测量,不在本文的讨论之中。“
  • 英国食品标准局发布食品添加剂新规则草案
    2011年1月17日,英国食品标准局发布英格兰地区食品添加剂新规则草案,该草案将贯彻欧盟两个食品添加剂的指令。这些指令对四种新食品添加剂和一种最近批准在欧盟使用的甜味剂的纯度设置了标准。这些新食品添加剂是:E392 迷迭香提取物、E427肉桂胶、E961纽甜素、E1203聚乙烯醇和E1521聚乙二醇。   新纯度标准的设置旨在确保每种添加剂都符合自身特定生产和应用的组成规格。这种对现有规格标准进行的小范围修订,可以使其符合国际通行的安全标准和技术上的新发展。   所执行的两个欧盟指令是:   2010/67/EU号指令——修订关于食品添加剂(除色素和甜味剂外)的纯度标准2008/84/EC号指令   2010/37/EU号指令——修订关于甜味剂的纯度标准2008/60/EC号指令   新规则将于2011年3月31日开始强制执行,新规则的执行不会给生产商强加额外的生产成本。类似规则也很快将在苏格兰、威尔士和北爱尔兰地区发布。
  • 食品包装行业首个联盟标准PET瓶坯发布
    从广州市质监局获悉,12月15日,广州市食品包装材料行业首个联盟标准《食品包装用聚对苯二甲酸乙二醇酯(PET)瓶坯》通过广州市质监局审批并发布,将于2010年1月1日正式实施。PET瓶坯标准对PET瓶坯的生产提出了严格、具体和可操作要求,有利于保证PET瓶坯产品质量、保障食品安全。PET瓶坯标准填补了该产品无国家、行业标准的空白。
  • 珀金埃尔默洗手液分析仪可在30秒内完成甲醇检测
    致力于为创建更健康的世界而持续创新的全球技术领导企业,珀金埃尔默日前宣布其洗手液分析仪可用于检测含酒精的洗手液产品中是否存在甲醇,并在30秒内给出产品合格与否的检测结果。美国食品药品监督管理局(FDA)最近发布的警告和实施的产品召回,表明含有毒性的甲醇若经皮肤被人体吸收可能对消费者有害,若不慎摄入,还会危及生命。这款仪器于2020年4月上市,还可检测洗手液中乙醇和异丙醇等目标醇类物质的浓度水平,有助于按照世卫组织(WHO)、美国药典(USP)或美国食品药品监督管理局(FDA)的指南确保产品功效。这款设计紧凑的便携式分析仪是在珀金埃尔默的Spectrum Two™ 傅里叶变换红外(FT-IR)光谱仪解决方案基础上研发的。利用这项基础技术,可快速检出浓度低至0.03%(或300ppm)的甲醇,检测灵敏度高于FDA规定的检出限。珀金埃尔默应用市场事业部副总裁兼总经理Suneet Chadha谈到:“目前,新冠疫情仍在全球蔓延,流感爆发季又即将来临。在这种环境下,含酒精的洗手液产品必须能让消费者充分信任其安全性与功效。珀金埃尔默洗手液检测仪能助力这些高需求量产品的生产企业和供应商快速获得可靠的检测结果,从而保护消费者,避免消费者使用假冒产品,杜绝产品召回事件。”洗手液分析仪是珀金埃尔默助力抗击新冠疫情综合解决方案的一部分。从病毒检测到发现药品和疫苗乃至在整个保护性产品检测过程中,都能发现珀金埃尔默的创新成果,包括各种试剂、仪器、信息科学服务、自动化和工作流程解决方案及服务。珀金埃尔默还致力于向世界各地捐赠仪器和试剂,以帮助重点疫区开展疾病的筛查和诊断。欲了解更多信息,敬请访问: www.perkinelmer.com.cn。关于珀金埃尔默珀金埃尔默助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。我们始终致力于为创建更健康的世界而持续创新,我们为诊断、生命科学、食品及应用市场推出独特的解决方案,我们与客户建立战略合作关系,凭借深厚的市场知识和技术专长,助力客户更早地获得更准确的洞察。在全球,我们拥有13,000名专业技术人员,服务于全球190多个国家和地区,时刻专注于帮助客户创造更健康的家庭,改善生活质量,并维持全球人民的健康和长寿命。2019年,珀金埃尔默年营收达到约29亿美元,客户遍及190个国家,并为标准普尔500指数中的一员。了解更多信息,请通过纽交所上市代号1-877-PKI-NYSE或访问www.perkinelmer.com.cn。
  • 喜报!Perten RVA系列快速粘度分析仪助力淀粉粘度新标准实施
    近日,备受瞩目的GB/T 22427.7-2023《淀粉黏度测定》标准正式实施,标志着淀粉行业在粘度快速测试领域迈出了重要一步。此次标准的发布,不仅为淀粉粘度的快速准确测定提供了科学、规范的方法,更凸显了快速粘度仪(RVA)法在提升检测效率和准确性方面的关键作用。在这场技术革新中,Perten RVA系列快速粘度分析仪以其卓越的性能和稳定的表现,发挥了重要的作用。淀粉,这一广泛存在于自然界的多糖类物质,在食品、医药、化工等诸多领域均扮演着不可或缺的角色。粘度作为淀粉的关键物理性质,直接反映了其在特定条件下的流动性和内摩擦力,是评估淀粉品质的重要指标。通过精确测定不同来源、不同品种淀粉的粘度,我们可以深入了解其纯度、结晶度、颗粒大小及结构特性,从而指导淀粉的选择和应用,提升产品质量和生产效率。Perten作为RVA技术的研发者和生产者,近40年来一直致力于为淀粉粘度测定技术的发展贡献力量。在GB/T 22427.7-2023《淀粉黏度测定》标准的制定过程中,Perten积极参与了数据验证工作,通过大量的实验验证和数据分析,确保了RVA法在标准中的准确性和适用性。这一成果的取得,不仅彰显了Perten在粘度分析领域的专业实力,也为行业的标准化和规范化发展做出了重要贡献。值得一提的是,新标准特别增加了快速粘度仪(RVA)法,进一步提高了淀粉粘度测定的效率。Perten RVA系列快速粘度分析仪凭借其独特的设计和先进的技术,能够在短时间内快速、准确地测定淀粉的粘度和糊化特性,为行业内的粘度控制与交流提供了有力支持。同时,该系列分析仪还具有高度的稳定性和可靠性,确保了测试结果的准确性和可重复性。随着GB/T 22427.7-2023《淀粉黏度测定》标准的正式实施和Perten RVA系列快速粘度分析仪的广泛应用,相信淀粉行业的粘度测定将迎来更加精准、高效的发展。这不仅有助于行业内淀粉粘度的准确控制,还将为食品、医药等行业的生产提供更加坚实的基础。 RVA系列快速粘度分析仪 RVA系列快速粘度分析仪是一款具有控温程序的旋转型粘度测定仪,仪器带有程序控温和可变的剪切力,以最佳条件检测淀粉、谷物、面粉和食品的粘度特性。RVA具有快速、精准、灵活和自动化的特点,特别适合产品的研发、 质量加工控制以及产品质量保证检验。仪器采用国际标准方法/国标或用户自定义的检测方法,检测样品量只需要 2-3g。仪器特点●检测速度快:搅拌值测定只需3分钟,淀粉糊化特性只需13 分钟 ●使用简单:自动分析糊化温度、峰值粘度、回生值、崩解 值、保持粘度、搅拌值 ●样品用量少:只需2-3g●坚实耐用:适用于实验室以及工厂的操作环境 ●可追溯性:采用标准化的校准方法,满足ISO9000质量体系要求●精准性:准确的搅拌速度和快速的加热冷却速度,确保结果重复性的稳定 ●符合ER/ES:满足电子注册与电子签名标准,生成可追溯的检测结果应用适合于生产、研发、质量控制、原材料检测和加工监控等 ●淀粉:标准的13分钟检测天然及变性淀粉的淀粉糊化特性 ●面粉加工和烘焙:检测淀粉质量、面筋质量、酶活性、气候损伤谷物 ●块茎类:检测小麦、玉米、稻米、高粱、马铃薯、木薯、甘薯等样品的淀粉质量 ●酿造:麦芽制造、大麦储藏、干麦芽、酿造辅料 ●膨化食品和饲料:快餐、早餐谷类、动物和水产饲料 ●蛋白质品质:小麦面筋、脱脂奶粉、乳清蛋白浓缩物和大豆蛋白 胶体:水解胶体和制剂的凝胶化与增厚过程 ●乳制品:奶酪、乳制品甜点和酸乳酪的质量控制
  • 沃特世快速分析对苯二甲酸(PTA)中有机杂质的解决方案
    对苯二甲酸(PTA)是一种重要的有机化工原料,以对二甲苯(PX)为原料加工而成,主要用于生产聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丙二醇酯(PTT)和聚对苯二甲酸丁二醇酯(PBT),被广泛用于聚酯切片,化纤、涤纶和汽车等行业。杂质,尤其是对羧基苯甲醛(4-CBA) 和对甲基苯甲酸(p&ndash TOL) 的含量将大大降低聚合反应的速度,影响聚合物的颜色。因此,4-CBA和pTol是PTA生产企业必须检测的重要指标。 目前,PTA产品分析均采用离子交换、毛细管电泳或者HPLC的方法。其中毛细管电泳和离子交换能够实现各组分较好的分离,但是方法重现性差,色谱柱耐受性不好,使用寿命短。而HPLC由于分离度不能满足要求,4-CBA和PTA主产物不能完全分离,检测灵敏度不高。 应用Waters ACQUITY UPLC H-Class/TUV系统,结合BEH C18 色谱柱优良的分离性能,可实现PTA样品中各组分,尤其是PTA与4-CBA、pTol的完全快速分离。对PTA中的杂质有效进行分离鉴定,提高产品纯度和生产效率。 图1 ACQUITY UPLC H-Class 分析PTA样品的分离效果图(240nm) 图2 ACQUITY UPLC H-Class 分析PTA样品放大图(254nm) 图3 ACQUITY UPLC H-Class 分析PTA样品放大图(240nm) 了解更多沃特世解决方案: http://www.waters.com 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 标准品和高纯试剂的区别
    标准品,国内和国际上有很多叫法,不同体系的称呼也不同,这里只是遵循国际上常规的称呼,即用RM即Reference Materials作为标准品的统称。在ISO体系中有参考物质(RM)和认证参考物质(CRM)两种计量的标准物质。根据ISO Guide 30规定, 参考物质/标准物质是含有一种或多种特定属性值并且足够均匀和稳定的物质,专用于测量过程,评价测量方法或给材料赋值的材料或物质。认证参考物质的特点是通过可计量的有效程序指定一个或多个属性,并连同一证书,提供指定属性的值,相关的不确定度,以及计量的可追溯性的声明。认证参考物质和参考物质的相同点和不同点主要见下表:标准品是按照ISO 17034:2016《标准物质/标准样品生产者能力认可准则》来指导生产,那么什么是ISO 17034?• ISO 17034是标准物质/标准样品生产者能力认可的国际标准。• 从原材料选择、生产、质量控制、运输和储存到售后实行质量监管。• 生产:原材料选择和纯化,生产计划和控制;• 描述:检测方法、不确定度、溯源性;• 批次稳定性评估;• ISO Guide 34 从2016年11月已经正式更名ISO 17034。试剂规格基本上按纯度(杂质含量的多少)划分,共有高纯、光谱纯、基准、分光纯、优级纯、分析和化学纯等7种。国家和主管部门颁布质量指标的主要优级纯、分级纯和化学纯3种。1.优级纯(GR:Guaranteed reagent),又称一级品或保证试剂,99.8%,这种试剂纯度zui高,杂质含量zui低,适合于重要jing密的分析工作和科学研究工作,使用绿色瓶签。2.分析纯(AR),又称二级试剂,纯度很高,99.7%,略次于优级纯,适合于重要分析及一般研究工作,使用红色瓶签。3.化学纯(CP),又称三级试剂,≥99.5%,纯度与分析纯相差较大,适用于工矿、学校一般分析工作。使用蓝色(深蓝色)瓶签。4.实验试剂(LR:Laboratory reagent),又称四级试剂。纯度远高于优级纯的试剂叫做高纯试剂(≥99.99%)。高纯试剂是在通用试剂基础上发展起来的,它是为了专门的使用目的而用特殊方法生产的纯度zui高的试剂。它的杂质含量要比优级试剂低2个、3个、4个或更多个数量级。因此,高纯试剂特别适用于一些痕量分析,而通常的优级纯试剂就达不到这种jing密分析的要求。除对少数产品制定国家标准外(如高纯硼酸、高纯冰乙酸、高纯氢氟酸等),大部分高纯试剂的质量标准还很不统一,在名称上有高纯、特纯(ExtraPure)、超纯、光谱纯等不同叫法。[1]高纯试剂通常应用于色谱使用的色谱纯试剂、光谱使用的光谱纯试剂,此外,电路、液晶等领域都有各自行业标准的高纯试剂。但是高纯试剂通常不使用在分析纯试剂使用的领域,如配制标准溶液、滴定剂等,高纯的单质例外。也就是说高纯试剂不是一个计量学概念的物质,而标准品是在计量学范畴内的。高纯试剂遵循的生产标准是ISO9001。不同行业使用的高纯试剂有各自的标注方式,通用的标注是用9的数目来表示。例如,纯度为99.999%,含五个九则表示为5N;纯度为99.995%,含四个九一个五,表示为4.5N。高纯试剂不需要确定不确定度,溯源性,主要是对试剂的纯度和杂质的控制,没有计量学的要求,所以标准品的生产在jing准方面,要求会更高。月旭提供的A2S在生产有机标准品方面已经通过ISO9001, ISO Guide 34 (现ISO17034)资质认证,目前可以提供高品质纯品型标准品、单标溶液、混标溶液,并且可以为客户提供混标个性化定制服务,如GB2763、GB23200系列多农残查混标定制,欢迎大家咨询选购!
  • 新版纯水标准GB/T 33087-2016《仪器分析用高纯水规格及试验方法》的解读
    p   新型高灵敏度质谱检测仪器的需求: br/ /p p   随着实验室仪器设备升级,高效液相色谱(HPLC)和超高效液相色谱(UHPLC)、液相色谱质谱连用(LC-MS)、离子色谱(IC)、电感耦合等离子体发射光谱(ICP-AES)以及电感耦合等离子体质谱(ICP-MS)等精密分析仪器已广泛应用于各行业分析检测实验室中。 /p p   ◆在国家相关政策与资金的大力支持下,分析检测与检验行业得到了快速的发展。一大批先进的精密分析仪器迅速装配到各行业各级分析实验室中,逐渐成为分析检测领域的主力军。 /p p   ◆然而只依赖精密仪器并不能解决问题,还需完善与仪器相配套的标准方法、试剂、技术人员和操作规范等重要因素,才能真正提高各类实验室的分析检测技术能力。 /p p   ◆因此,全面完善方法和试剂的标准是一项非常重要的工作。 /p p   先进分析仪器的应用对实验用高纯水的质量提出了更高的要求,针对精密分析仪器实验用水的规定和技术指标尚无标准可依。 /p p   水作为实验室中最常用的工具,却往往容易被忽视其重要性。 /p p   ◆蒸馏水、去离子水等在几十年前已普遍适用于各类实验室,如今仪器分析用一级水、二级水和三级水已成为实验室常见的分级用水方式。然而由于人们过于频繁地使用水,往往容易忽视其重要性。 /p p   ◆关注度不足以及实验用水意识的淡薄,导致在国内出现非常奇特的现象:许多实验室使用瓶装饮用水(如娃哈哈、屈臣氏和乐百氏等饮用水)作为实验用水,应用于高效液相色谱和质谱等仪器分析实验中。 /p p   ◆瓶装饮用水并不是化学试剂,无可靠性和溯源性,使用此类水将存在潜在的严重影响和极大的风险。产生此类状况的一个重要原因是实验用水标准的滞后和匮乏。 /p p   现有标准已不能满足先进仪器分析实验的需求以及现代实验室质量控制和管理的趋势,需要新制定符合实际情况,与国外先进标准相符的仪器分析用高纯水标准。 /p p   因此新版纯水标准GB/T 33087-2016《仪器分析用高纯水规格及试验方法》在2017年5月正式发布 /p p   ◆本标准项目立足于国内实验室发展的实际情况和趋势,深入分析和参考国内外先进标准规范,制订满足精密仪器分析用高纯水标准。 /p p   ◆本标准所指高纯水主要是在仪器分析过程中所用的空白水。 /p p   ◆为发展迅速的实验室分析技术提供可靠有效的用水标准依据。 /p p   ◆为实验室高纯水质量控制与管理提供技术支持和指导。 /p p   而目前2008年发布的实验室用水国家标准GB/T6682是国内目前应用最为广泛的标准,该标准修改采用ISO3696《分析实验室用水规格和试验方法》。新版纯水标准GB/T 6682-2008《分析实验室用水规格和试验方法》GB/T 33087-2016《仪器分析用高纯水规格及试验方法》则是GB/T6682《分析实验室用水规格和试验方法》的延续和发展。 /p p    strong 1.两个标准对于水的定义不同 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 18%" p style=" text-align:center " strong 标准编号 /strong /p /td td width=" 13%" p style=" text-align:center " strong 级别 /strong /p /td td width=" 68%" p style=" text-align:center " strong 适用范围 /strong /p /td /tr tr td width=" 18%" rowspan=" 3" p strong GB/T6682-2008 /strong /p /td td width=" 13%" p 一级水 /p /td td width=" 68%" p 用于有严格要求的分析试验,包括对颗粒有要求的试验。如高效液相色谱分析用水。 br/ & nbsp & nbsp & nbsp 可用二级水经过石英设备蒸馏或离子交换混合床处理后,再经0.2μm微孔滤膜来制取。 /p /td /tr tr td width=" 13%" p 二级水 /p /td td width=" 68%" p 无机痕量分析等试验,如原子吸收光谱分析用水。 br/ & nbsp & nbsp & nbsp 可用多次蒸馏或离子交换等方法制取 /p /td /tr tr td width=" 13%" p 三级水 /p /td td width=" 68%" p 用于一般化学分析试验 br/ & nbsp & nbsp & nbsp 可用蒸馏或离子交换等方法制取。 /p /td /tr tr td width=" 18%" rowspan=" 4" p strong GB/T 33087-2016 /strong /p /td td width=" 13%" p 高纯水 /p /td td width=" 68%" p 将无机电离杂质、有机物、颗粒、可溶气体等污染物均去除最低程度的水 /p /td /tr tr td width=" 13%" p 仪器分析用高纯水 /p /td td width=" 68%" p 仪器分析中,为降低空白信号所用的高纯水。 /p /td /tr tr td width=" 13%" p 在线监测 /p /td td width=" 68%" p 在联机的生产过程或实验中,按照预先制定的方案持续或重复观察、测量、评估被测量以获得数据。 /p /td /tr tr td width=" 13%" p 背景等效浓度 /p /td td width=" 68%" p 与背景信号强度相当的等效浓度值,用于表征噪声的本底强度。 /p /td /tr /tbody /table p    strong 2.对于水的污染物参数要求不同 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 100%" colspan=" 4" p style=" text-align:center " strong GB/T 6682-2008 /strong /p /td /tr tr td width=" 42%" p strong 名称 /strong /p /td td width=" 21%" p 一级 /p /td td width=" 19%" p 二级 /p /td td width=" 16%" p 三级 /p /td /tr tr td width=" 42%" p strong pH /strong strong 值范围(25 /strong strong ℃) /strong /p /td td width=" 21%" p / /p /td td width=" 19%" p / /p /td td width=" 16%" p 5.0~7.5 /p /td /tr tr td width=" 42%" p strong 电导率(25 /strong strong ℃)/ /strong strong (mS/m /strong strong ) /strong /p /td td width=" 21%" p ≤0.01 /p /td td width=" 19%" p ≤0.10 /p /td td width=" 16%" p ≤0.50 /p /td /tr tr td width=" 42%" p strong 可氧化物质含量(以O /strong strong 计)/ /strong strong (mg/L /strong strong ) /strong /p /td td width=" 21%" p / /p /td td width=" 19%" p ≤0.08 /p /td td width=" 16%" p ≤0.4 /p /td /tr tr td width=" 42%" p strong 吸光度(254nm /strong strong ,1cm /strong strong 光程) /strong /p /td td width=" 21%" p ≤0.001 /p /td td width=" 19%" p ≤0.01 /p /td td width=" 16%" p / /p /td /tr tr td width=" 42%" p strong 蒸发残渣(105 /strong strong ℃± 2 /strong strong ℃)含量/ /strong strong (mg/L /strong strong ) /strong /p /td td width=" 21%" p / /p /td td width=" 19%" p ≤1.0 /p /td td width=" 16%" p ≤2.0 /p /td /tr tr td width=" 42%" p strong 可溶性硅(SIO2 /strong strong 计)/ /strong strong (mg/L /strong strong ) /strong /p /td td width=" 21%" p ≤0.01 /p /td td width=" 19%" p ≤0.02 /p /td td width=" 16%" p / /p /td /tr /tbody /table p br/ /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 100%" colspan=" 2" p style=" text-align:center " strong GB/T 33087-2016 /strong /p /td /tr tr td width=" 43%" p strong 名称 /strong /p /td td width=" 56%" p 规格 /p /td /tr tr td width=" 43%" p strong 电阻率(25 /strong strong ℃)/(M /strong strong Ω˙cm /strong strong ) /strong /p /td td width=" 56%" p ≥18 /p /td /tr tr td width=" 43%" p strong 总有机碳(TOC /strong strong )/μg/L /strong /p /td td width=" 56%" p ≤50 /p /td /tr tr td width=" 43%" p strong 钠离子/μg/L /strong /p /td td width=" 56%" p ≤1 /p /td /tr tr td width=" 43%" p strong 氯离子/μg/L /strong /p /td td width=" 56%" p ≤1 /p /td /tr tr td width=" 43%" p strong 硅/μg/L /strong /p /td td width=" 56%" p ≤10 /p /td /tr tr td width=" 43%" p strong 细菌总数/CFU/mL /strong /p /td td width=" 56%" p 合格 /p /td /tr /tbody /table p   strong  3.取样与储存要求不同 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 16%" valign=" top" p style=" text-align:center " strong 标准号 /strong /p /td td width=" 26%" valign=" top" p style=" text-align:center " strong 容器要求 /strong /p /td td width=" 24%" valign=" top" p style=" text-align:center " strong 取样 /strong /p /td td width=" 32%" valign=" top" p style=" text-align:center " strong 储存 /strong /p /td /tr tr td width=" 16%" valign=" top" p strong GB/T 6682-2008 /strong /p /td td width=" 26%" valign=" top" p 各级用水均使用 strong 密闭的、专用聚乙烯 /strong 容器。三级水也可使用密闭、专用的玻璃容器。 br/ & nbsp & nbsp & nbsp 新容器在使用前需要用盐酸溶液(质量分数为20%)浸泡2d~3d,再用待测水反复冲洗,并注满待测水浸泡6h以上。 /p /td td width=" 24%" valign=" top" p 至少应取3L代表性水样。取样前用待测水反复清洗容器,取样时要避免沾污。水样应注满容器。 strong /strong /p /td td width=" 32%" valign=" top" p 各级用水在贮存期间,其沾污的主要来源是容器可溶成分的溶解、空气中二氧化碳和其他杂质。因此, strong 一级水可不贮存 /strong ,使用前制备。 strong 二级水、三级水 /strong 可适量制备,分别贮存在 strong 预先经同级水清洗过 /strong 的相应容器中。 br/ & nbsp & nbsp & nbsp 各级用水在运输过程中应避免沾污。 /p /td /tr tr td width=" 16%" valign=" top" p strong GB/T 33087-2016 /strong /p /td td width=" 26%" valign=" top" p 用于测定钠离子、氯离子及硅时,器具材质应为 strong 含氟塑料或低溶出的聚乙烯塑料 /strong 。用于总有机碳测定时,应使用带有 strong 磨口塞得低溶出玻璃器具 /strong ,用于细菌总数测定时应使用预先灭菌处理的具塞玻璃器具。 /p /td td width=" 24%" valign=" top" p 取样环境应符合GB/T30301-2013中第7章的规定。( strong 测定洁净室和洁净台的悬浮粒子数,0.5 /strong strong μm /strong strong 粒径的粒子数宜在3.5 /strong strong × 105 /strong strong 个/m3 /strong strong 以下。 /strong ) br/ & nbsp & nbsp & nbsp 取样应使用干净、密闭、专用的器具,取样前应运行水系统10min-30min,并用水样反复清洗器具,水样应注满容器,取样完成后应及时密闭容器并放入洁净的塑料密封袋保存。 /p /td td width=" 32%" valign=" top" p 制取样品后,应 strong 尽量缩短存放 /strong 时间。如需储存,应 strong 冷藏避光 /strong ,使用前平衡至室温。 strong /strong /p /td /tr /tbody /table p strong   4.检验方法不同 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/insimg/3e85d5b0-17d8-4d78-b6b6-2d1aea07d50c.jpg" style=" float:none " title=" 未标题-1.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/insimg/9d56bc5e-6be5-4a75-b054-f9912bc50627.jpg" style=" float:none " title=" 1.jpg" / /p p   GB/T 33087-2016由默克Milli-Q& reg 纯水、中国计量院、上海计量院共同起草,Milli-Q作为实验室纯水领域的领导品牌,致力于让专业用户能用上更为优质的纯水。 /p p   总体而言,GB/T 33087-2016《仪器分析用高纯水规格及试验方法》这个标准无论是对于电阻率、TOC、微生物,还是对于部分重点的离子(钠、氯、硅),都有明确的指标,因此对水中污染物的衡量较为客观。更加有利于大家面对高分辨率、低检出限的分析仪器时,选择合适级别的纯水。 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制