当前位置: 仪器信息网 > 行业主题 > >

全氟辛酸分析标准品

仪器信息网全氟辛酸分析标准品专题为您提供2024年最新全氟辛酸分析标准品价格报价、厂家品牌的相关信息, 包括全氟辛酸分析标准品参数、型号等,不管是国产,还是进口品牌的全氟辛酸分析标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全氟辛酸分析标准品相关的耗材配件、试剂标物,还有全氟辛酸分析标准品相关的最新资讯、资料,以及全氟辛酸分析标准品相关的解决方案。

全氟辛酸分析标准品相关的论坛

  • 全氟辛酸的测定

    全氟辛酸的含量如何测定?全氟辛酸中有还原性物质吗,若有如何测定?全氟辛酸放置时间久了,颜色会变深吗?

  • 全氟辛酸(PFOA)色谱图有问题,求助各位大神

    全氟辛酸(PFOA)色谱图有问题,求助各位大神

    最近用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]法做全氟辛酸的检测,在测标线时,发现随着浓度越高,峰面积不变,甚至变低,特来请教大家。标准溶液是用甲醇稀释的,浓度为0.01ppb,0.1ppb,1ppb,10ppb。有人测过全氟辛酸吗,可以帮我指出我的问题吗?谢谢大家了,十万火急。[img=,269,181]https://ng1.17img.cn/bbsfiles/images/2019/05/201905100914169734_142_3906267_3.png!w690x466.jpg[/img][img=,269,256]https://ng1.17img.cn/bbsfiles/images/2019/05/201905100914302811_2637_3906267_3.png!w653x622.jpg[/img][img=,269,343]https://ng1.17img.cn/bbsfiles/images/2019/05/201905100914392359_1275_3906267_3.png!w595x760.jpg[/img]

  • 用辛酸甲酯做气相色谱的内标物,绘制标准曲线,各个分析物的相对校正因子的问题

    [color=#444444]我用辛酸甲酯methyloctanoate (C9H18O2) 做[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的内标物,绘制不同分析物的标准曲线,各个分析物的相对校正因子差别很大。实验室人告诉我,如果分析物和内标结构差不多,那么校正因子越接近1。这是对的,不过有的化合物化学式差不多,结构却相差很多,这样校正因子差别也很大,我要如何判断我做出来的标准曲线和相对校正因子是对的呢?[/color][color=#444444]比如,我用辛酸甲酯做内标,测了两个化合物,苯乙酸(C8H8O2,含苯环和羧酸)和香兰素(C8H8O3,含苯环,羰基,甲氧基和羟基)。其中苯乙酸相对辛酸甲酯差别不是很大,而香兰素差别就大了。所以他们的标准曲线分别是y=0.7311x-0.0525 R2=0.99998,y-1.1526x-0.1764 R2=0.9982。不知道它们的校正因子对不对?有大神帮忙分析一下吗?[/color]

  • 高效液相色谱质谱法测定涂料中的全氟辛酸和全氟辛基磺酸化合物的含量

    高效液相色谱质谱法测定涂料中的全氟辛酸和全氟辛基磺酸化合物的含量

    [align=center]高效液相色谱质谱法测定涂料中的全氟辛酸和[color=#333333]全氟辛基磺酸化合物的含量[/color][/align]1.摘要: PFOA全氟辛酸(Perfluorooctanoic Acid 缩写为PFOA),国内最常见的含氟聚合物是应用之一是聚四氟乙烯涂层,亦称作“不粘炊具”。为提供光滑非粘的特性,不粘涂层已广泛地应用于以健康的目的不含脂肪和低脂肪的煎炒烹调中。此不粘涂层是有机树脂通过在水中或者有机溶剂中均匀分布形成厚度不超过60 μm 的表面层。此涂层同样被应用于金属基材,如铝、铝化钢和镀锌钢,用作仓库、发电站、纪念碑建筑和其他商业建筑的外部表面。当PFOA 分解后会在环境或人体中释放出来。[color=#333333]2003 年起,美国环境保护局(USEPA)定期更新和提供科学知识引导人们更好地理解PFOA。USEPA 提出PFOA 及其主盐的暴露会导致人体健康的发展和其他方面产生不利影响。PFOA 会残留于人体短至四年长达半生的时间。因此根据“美国有毒物质控制法(US TSCA)”, 此类成分被禁止并将其列入化学品目录清单中。事实上,毒性水平是每天每千克人体重量不能超过3 毫克。[/color][color=#333333]PFOS是全氟辛基磺酸化合物( Perfluorooctane Sulfonate)的英文缩写,即C8F17SO2Y,Y=OH、金属盐、卤化物、氨基化合物和包括聚合物在内的其他衍生物;PFOA是全氟辛酸类化合物( Perfluorooctanoic Acid) 的英文缩写,即C7F15COOH 及其衍生物。欧盟关于PFOS的禁令对我国纺织、服装、皮革等传统优势产业造成较大的影响。而随后的PFOA及直链全氟辛基(C8)衍生物的禁令,会给我国氟化工及含氟材料加工、纺织、皮革、油墨、消防、以及汽车、半导体等产业等带来巨大影响。PFOA 和PFOS具有于其他持久性污染物不同的特性。首先是它们的Kow不能被测定,其次它们是富集在血液里,另外它们不是芳香族的化合物,没有苯环。这类物质有极性的官能团,可以较好的溶于水。但同时它们还具有一个长长的全氟烷基的碳链,碳链上的氢原子都被氟原子所取代。由于氟原子的吸电子作用,其碳链的氟原子对(水)环境是呈负电(partial charge)。所以在水中PFOA和PFOS的呈现的是一个大负电的结构,这不仅来源于其极性官能团水中的离解,还来自于其(partial)负电的全氟烷基碳链。[color=#333333]PFOS是目前已知最难降解的有机污染物之一,具有很高的生物蓄积性和多种毒性,不仅会造成人体呼吸系统问题,还可能导致新生婴儿死亡,其导致的全球性污染正日渐受到人们关注。2002年12月,经合组织(OECD)召开的第34次化学品委员会联合会议上将PFOS定义为持久存在于环境、具有生物储蓄性并对人类有害的物质。基于PFOA和PFOS对环境和人类的有害性,有必要对产品中的PFOA和PFOS进行定量分析,已确定是否含有或者残留量是否满足限值要求。本文通过用水超声提取,离心分离,经固相萃取柱纯化,洗脱液定容后用液相色谱-质谱分析仪,外标法测定涂料样品中的PFOA和PFOS的含量。[/color][/color]关键词:全氟辛酸,[color=#333333]全氟辛基磺酸化合物,高效液相色谱-串联质谱[/color]2.实验部分:2.1 试剂 、设备及耗材超纯水、乙酸铵(分析纯)、色谱纯乙腈、固相萃取柱、离心机、超声波、液相色谱-质谱仪(岛津[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]8040)[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907020940116449_8470_1657564_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907020940131412_3907_1657564_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907020940136072_8926_1657564_3.jpg!w690x920.jpg[/img]2.2. 测试过程称取1g涂料试样,加100mL水超声提取20分钟,离心后取1m L上清液到HLB固相萃取柱净化,最后用乙腈定容到10mL,[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]分析。2.3 仪器条件按照标准上的参考仪器条件,结合实验室实际情况,确定仪器条件如下:[img=,542,388]https://ng1.17img.cn/bbsfiles/images/2019/07/201907011732360949_5078_1657564_3.png!w542x388.jpg[/img] [table][tr][td]色谱柱[/td][td]C18柱,100mm×2mm×2.2μm[/td][/tr][tr][td]进样量[/td][td]1μL[/td][/tr][tr][td]流速[/td][td]0.2mL/min[/td][/tr][tr][td]流动相[/td][td]A:0.01mol/L乙酸铵溶液B:乙腈A:B=45:55[/td][/tr][tr][td]柱温箱[/td][td]30°C[/td][/tr][tr][td]采集时间[/td][td]5min[/td][/tr][tr][td]监测方式[/td][td]MRM[/td][/tr][tr][td]离子化方式[/td][td]负离子扫描[/td][/tr][tr][td]监测离子及条件[/td][td] [table=510][tr][td] [align=center]前体离子[/align] [align=center]M/Z[/align] [/td][td] [align=center]产物离子M/Z[/align] [/td][td] [align=center]驻留时间ms[/align] [/td][td] [align=center]Q1 Pre[/align] [align=center]偏差(V)[/align] [/td][td] [align=center]CE[/align] [align=center](V)[/align] [/td][td] [align=center]Q3Pre[/align] [align=center]偏差(V)[/align] [/td][/tr][tr][td=1,3] [align=center]PFOA[/align] [/td][td] [align=center]413.00[/align] [/td][td] [align=center]369.00[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]13[/align] [/td][td] [align=center]10[/align] [/td][td] [align=center]25[/align] [/td][/tr][tr][td] [align=center]413.00[/align] [/td][td] [align=center]168.95[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]13[/align] [/td][td] [align=center]17[/align] [/td][td] [align=center]30[/align] [/td][/tr][tr][td] [align=center]413.00[/align] [/td][td] [align=center]219.00[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]13[/align] [/td][td] [align=center]15[/align] [/td][td] [align=center]22[/align] [/td][/tr][tr][td=1,3] [align=center]PFOS[/align] [/td][td] [align=center]499.00[/align] [/td][td] [align=center]80.05[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]13[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]30[/align] [/td][/tr][tr][td] [align=center]499.00[/align] [/td][td] [align=center]99.05[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]13[/align] [/td][td] [align=center]42[/align] [/td][td] [align=center]18[/align] [/td][/tr][tr][td] [align=center]499.00[/align] [/td][td] [align=center]230.00[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]13[/align] [/td][td] [align=center]39[/align] [/td][td] [align=center]22[/align] [/td][/tr][/table] [/td][/tr][/table]此仪器条件下,标准溶液(10μg/L)总离子流色谱图如下:由图上可知,此仪器条件下各组分分离良好,基线稳定,适合分析。2.4 线性范围按标准要求,使用购买的PFOA和PFOS标准物质配制成100mg/l混合储备液,再通过逐级稀释用乙腈配制成2,5,10, 20, 50及100μg/l的标准曲线工作溶液,在[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]上进行分析,得到数据如下: [table=576][tr][td] [align=center] [/align] [/td][td=6,1] [align=center]各浓度峰面积[/align] [/td][td] [align=center] [/align] [/td][/tr][tr][td] [align=right] 浓度μg/L[/align] 目标物[/td][td] [align=center]2[/align] [/td][td] [align=center]5[/align] [/td][td] [align=center]10[/align] [/td][td] [align=center]20[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]100[/align] [/td][td] [align=center]相关系数(R)[/align] [/td][/tr][tr][td]PFOA[/td][td] [align=center]33570[/align] [/td][td] [align=center]85660[/align] [/td][td] [align=center]155159[/align] [/td][td] [align=center]288979[/align] [/td][td] [align=center]611110[/align] [/td][td]1161960[/td][td] [align=center]0.9991 [/align] [/td][/tr][tr][td]PFOS[/td][td] [align=center]3991[/align] [/td][td] [align=center]9726[/align] [/td][td] [align=center]20884[/align] [/td][td] [align=center]38606[/align] [/td][td] [align=center]88718[/align] [/td][td] [align=center]172447[/align] [/td][td] [align=center]0.9997 [/align] [/td][/tr][/table]从上表可以看出,曲线线性良好,相关系数R>0.995,满足标准要求。2.5 精密度取10μg/L的混合标准溶液,在[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]上进行7次测试,计算精密度。 [table=576][tr][td] [align=right]浓度mg/L[/align] 目标物[/td][td] [align=center]1[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]4[/align] [/td][td] [align=center]5[/align] [/td][td] [align=center]6[/align] [/td][td] [align=center]7[/align] [/td][td] [align=center]RSD[/align] [/td][/tr][tr][td]PFOA[/td][td] [align=center]11.20 [/align] [/td][td] [align=center]11.47 [/align] [/td][td] [align=center]10.59 [/align] [/td][td] [align=center]10.68 [/align] [/td][td] [align=center]11.47 [/align] [/td][td] [align=center]11.24 [/align] [/td][td] [align=center]11.04 [/align] [/td][td] [align=center]3.2%[/align] [/td][/tr][tr][td]PFOS[/td][td] [align=center]10.54 [/align] [/td][td] [align=center]10.85 [/align] [/td][td] [align=center]10.30 [/align] [/td][td] [align=center]10.85 [/align] [/td][td] [align=center]10.81 [/align] [/td][td] [align=center]11.41 [/align] [/td][td] [align=center]11.03 [/align] [/td][td] [align=center]3.2%[/align] [/td][/tr][/table]7次测试相对标准偏差RSD均小于5%,精密度良好。2.6 样品加标回收率选取涂料“环氧底漆”样品,添加0.5mL的10mg/L的PFOA/PFOS混合标准溶液,样品中理论加标浓度为5μg/L,按样品测试过程进行操作,重复7次,考察样品加标回收率。 [table=621][tr][td]油漆加标[/td][td=8,1] [align=center]测得浓度μg/L[/align] [/td][/tr][tr][td] [/td][td] [align=center]样品[/align] [/td][td] [align=center]加标-1[/align] [/td][td] [align=center]加标-2[/align] [/td][td] [align=center]加标-3[/align] [/td][td] [align=center]加标-4[/align] [/td][td] [align=center]加标-5[/align] [/td][td] [align=center]加标-6[/align] [/td][td] [align=center]加标-7[/align] [/td][/tr][tr][td]PFOA[/td][td] [align=center]ND[/align] [/td][td] [align=center]4.34 [/align] [/td][td] [align=center]4.37 [/align] [/td][td] [align=center]4.42 [/align] [/td][td] [align=center]4.37 [/align] [/td][td] [align=center]4.29 [/align] [/td][td] [align=center]4.35 [/align] [/td][td] [align=center]4.66 [/align] [/td][/tr][tr][td]PFOS[/td][td] [align=center]ND[/align] [/td][td] [align=center]4.57 [/align] [/td][td] [align=center]4.37 [/align] [/td][td] [align=center]4.70 [/align] [/td][td] [align=center]4.62 [/align] [/td][td] [align=center]4.47 [/align] [/td][td] [align=center]4.26 [/align] [/td][td] [align=center]4.47 [/align] [/td][/tr][/table] [table=555][tr][td]油漆加标[/td][td=7,1] [align=center]加标回收率[/align] [/td][/tr][tr][td] [/td][td] [align=center]加标-1[/align] [/td][td] [align=center]加标-2[/align] [/td][td] [align=center]加标-3[/align] [/td][td] [align=center]加标-4[/align] [/td][td] [align=center]加标-5[/align] [/td][td] [align=center]加标-6[/align] [/td][td] [align=center]加标-7[/align] [/td][/tr][tr][td]PFOA[/td][td] [align=center]86.8%[/align] [/td][td] [align=center]87.4%[/align] [/td][td] [align=center]88.4%[/align] [/td][td] [align=center]87.4%[/align] [/td][td] [align=center]85.8%[/align] [/td][td] [align=center]87.0%[/align] [/td][td] [align=center]93.2%[/align] [/td][/tr][tr][td]PFOS[/td][td] [align=center]91.4%[/align] [/td][td] [align=center]87.4%[/align] [/td][td] [align=center]94.0%[/align] [/td][td] [align=center]92.4%[/align] [/td][td] [align=center]89.4%[/align] [/td][td] [align=center]85.2%[/align] [/td][td] [align=center]89.4%[/align] [/td][/tr][/table]进行7次测试,回收率都在85%~94%之间,满足测试要求。2.7 方法检出限(MDL)和定量检出限(LOQ)选取环氧底漆样品添加0.5mL的10mg/L的PFOA/PFOS混合标准溶液,样品中理论加标浓度为5μg/L,按样品测试过程进行操作,重复7次,通过标准偏差来计算检出限。 [table=658][tr][td] [align=center] [/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]4[/align] [/td][td] [align=center]5[/align] [/td][td] [align=center]6[/align] [/td][td] [align=center]7[/align] [/td][td] [align=center]SD[/align] [/td][td] [align=center]MDL (μg/L)[/align] [/td][td] [align=center]LOQ (μg/L)[/align] [/td][td] [align=center]LOQ (mg/kg)[/align] [/td][/tr][tr][td]PFOA[/td][td] [align=center]4.34 [/align] [/td][td] [align=center]4.37 [/align] [/td][td] [align=center]4.42 [/align] [/td][td] [align=center]4.37 [/align] [/td][td] [align=center]4.29 [/align] [/td][td] [align=center]4.35 [/align] [/td][td] [align=center]4.66 [/align] [/td][td] [align=center]0.12 [/align] [/td][td] [align=center]0.36 [/align] [/td][td] [align=center]1.21 [/align] [/td][td] [align=center]1.2 [/align] [/td][/tr][tr][td]PFOS[/td][td] [align=center]4.57 [/align] [/td][td] [align=center]4.37 [/align] [/td][td] [align=center]4.70 [/align] [/td][td] [align=center]4.62 [/align] [/td][td] [align=center]4.47 [/align] [/td][td] [align=center]4.26 [/align] [/td][td] [align=center]4.47 [/align] [/td][td] [align=center]0.15 [/align] [/td][td] [align=center]0.45 [/align] [/td][td] [align=center]1.50 [/align] [/td][td] [align=center]1.5 [/align] [/td][/tr][/table]以7次加标测试值相对偏差的3倍作为方法检出限,10倍作为定量检出限,按称样量1g,最终定容体积100mL,再净化稀释10倍,计算得到的定量检出限为1.2和1.5mg/kg,能达到检测方法0.0002%的检出下限的要求。实际测试中可将报告检出限统一定为2mg/kg。2.8 结论通过试验验证,方法线性相关系数好,达0.999以上、精密度高<3.5%、回收率在85%~94%,检出限低达2mg/kg,结果均满足测试要求,方法简单实用,实验室可以据此开展涂料中PFOA和PFOS含量的测定工作。3.参考文献:【1】 GB/T28606-2012 涂料中全氟辛酸及其盐的测定高效液相色谱-串联质谱法【2】 GB/T24169-2009 氟化工产品和消费品中全氟辛烷磺酰基化合物(PFOS)的测定高效液相色谱-串联质谱法【3】 GB/T27417-2017 合格评定化学分析方法确认和验证指南【4】 CNAS-CL01-A002:2018检测和校准实验室能力认可准则在化学检测领域的应用说明

  • 【求助】辛酸现有标准

    急求辛酸行业标准或者其他国内、国外标准,不胜感激!![img]http://simg.instrument.com.cn/bbs/images/brow/em09511.gif[/img]

  • 异辛酸锆标准

    向各位老师请教,异辛酸锆中锆含量的化学分析方法。谢谢!

  • 全氟辛酸(PFOA)色谱图有问题,求助各位大神

    全氟辛酸(PFOA)色谱图有问题,求助各位大神

    我刚接触这方面知识,我想利用液相色谱串联质谱仪测试PFOA的浓度,在制定标线时,发现浓度越高,峰面积不变,甚至变低,这是什么原因呢?有人测过全氟辛酸吗?或者大神指出我的问题。我的标样是用甲醇稀释至0.01ppb,0.1ppb,1ppb,10ppb[img=,265,178]https://ng1.17img.cn/bbsfiles/images/2019/05/201905092157479702_2966_3906267_3.png!w690x466.jpg[/img]设置参数[img=,265,252]https://ng1.17img.cn/bbsfiles/images/2019/05/201905092158218310_805_3906267_3.png!w653x622.jpg[/img][img=,265,338]https://ng1.17img.cn/bbsfiles/images/2019/05/201905092200121140_2910_3906267_3.png!w595x760.jpg[/img]

  • 【我们不一YOUNG】含氟富氮多孔有机聚合物的合成及其对水中全氟辛酸的去除

    [align=center][size=18px]含氟富氮多孔有机聚合物的合成及其对水中全氟辛酸的去除[/size][/align][size=18px][font=&]摘要[/font][font=&]全氟辛酸(PFOA)在自然环境中难以降解,会通过富集渗透污染水体和土壤,从而对自然环境和人体健康造成影响。开发成本低、效率高、环保的吸附剂实现环境水体中PFOA的高效吸附去除是解决PFOA污染的有效途径之一。[/font][font=&]本研究采用无溶剂一锅法设计、制备了一种含氟富氮多孔有机聚合物(POP-3F),通过引入氟原子增加了材料的疏水性,增加了主客体分子间的疏水作用、氟-氟相互作用,提升了材料对PFOA的吸附效果。使用扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、X-射线衍射仪(XRD)、固体核磁(ssNMR)、X射线光电子能谱仪(XPS)、热分析系统(TGA)等对POP-3F进行了表征。[/font][font=&]结合[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法([url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS),研究了POP-3F在不同pH、盐浓度和腐植酸条件下对PFOA的吸附性能。在pH值为2时,POP-3F对PFOA的去除率最高达到98.6%,可用于去除酸性工业废水中的PFOA。[/font][font=&]并且POP-3F对于PFOA的去除率几乎不受NaCl和腐植酸浓度的影响,在加入NaCl后,POP-3F表面会形成双电层,可以削弱POP-3F与PFOA之间的静电相互作用,去除率仅下降了1%。腐植酸与PFOA存在竞争吸附,在高浓度腐植酸条件下,POP-3F对PFOA的去除率仅下降了0.73%。在最佳pH条件下考察了吸附等温线和吸附动力学,通过数学模型拟合了实验结果,探究了吸附机理。[/font][font=&]结果显示,POP-3F的理论容量为191 mg/g,高于活性炭和其他多数吸附剂,表现出较高的吸附容量。此外,POP-3F对PFOA的吸附去除几乎不受基质种类的影响,在模拟自然水中吸附效果略有降低(仅降低0.1%),经过5次吸附-解吸循环后,对PFOA的去除率仅微幅下降(降低0.67%),表明其具有循环使用和可再生性,在实际PFOA污染废水处理中具有广阔的应用前景。[/font][font=&]1、材料制备[/font][font=&]将1,4-双(2,4-二氨基-1,3,5-三嗪)-苯(BDTB,1185.2 mg, 4 mmol)、对三氟甲基苯甲醛(3F-TMA,1393 mg, 8 mmol)和二甲基亚砜(DMSO,60 mL)置于100 mL双颈圆底烧瓶中混匀。[/font][font=&]在氮气气氛下180 ℃加热反应24 h,将产物用10 mL DMSO和甲醇在10000 r/min条件下各离心洗涤3次,用甲醇索氏提取24 h后在120 ℃下真空干燥,得到的POP-3F为凝胶状固体,研磨后为白色粉末,收率为40.22%。POP-3F的合成路线见下图。[/font][font=&] POP-3F的合成示意图[/font][font=&]2、[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS方法[/font][font=&]Atlantis T3色谱柱(100 mm×2.1 mm, 3 μm,美国Waters公司) 流动相5 mmol/L乙酸铵(A)和甲醇(B) 柱温40 ℃ 流速0.2 mL/min,进样量2 μL。[/font][font=&]梯度洗脱程序:[/font][font=&]0~14 min, 80%A~10%A 14~16 min, 10%A 16~16.01 min, 10%A~80%A 16.01~20 min, 80%A。[/font][font=&]电喷雾电离(ESI),负离子模式 多反应监测模式(MRM) 离子源温度:500 ℃ 离子源电压:-4500 V 气帘气压力:2.41×105 Pa 雾化气压力:2.76×105 Pa 辅助器压力:2.76×105 Pa。其他质谱参数见原文表1。[/font][font=&]3、PFOA标准曲线绘制[/font][font=&]PFOA的定量采用外标法,首先用去离子水配制质量浓度为100 mg/L的PFOA储备液,再用去离子水稀释为100、50、10、5、1、0.1 μg/L的标准工作液。用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析上述标准工作液,以PFOA的质量浓度为横坐标(x, mg/L),峰面积为纵坐标(y),绘制标准曲线。[/font][font=&]在最优条件下,PFOA在0.1~100 μg/L范围内线性关系良好,回归方程为y=2.04×106x-1.13×106,相关系数(r2)为0.999。方法的检出限(LOD, S/N=3)为0.004 μg/L,定量限(LOQ, S/N=10)为0.013 μg/L。[/font][font=&]4、吸附实验[/font][font=&]取50 mL 1 mg/L的PFOA溶液,将溶液pH调节至2,再加入10 mg POP-3F,超声1 min使POP-3F固体分散开。然后在25 ℃下以200 r/min恒温振荡吸附24 h,吸附后经过滤将POP-3F与上清液分开,得到的上清液经聚醚砜针式过滤器(0.22 μm×13 mm)过滤后进行[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析。吸附实验所需器具均由聚丙烯(PP)材质制成,整个过程避免接触聚四氟乙烯和玻璃材质的物品。[/font][font=&]5、脱附实验[/font][font=&]根据参考文献,选择甲醇为洗脱剂进行脱附实验,稀释储备液配制质量浓度为1 mg/L的PFOA溶液(pH=2),再加入10 mg的POP-3F超声1 min。在25 ℃下以200 r/min恒温振荡6 h后通过0.2 μm的针式过滤器(聚醚砜膜)过滤,将所得固体分散在50 mL甲醇中,超声30 min,过滤后在24 h内进行[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析。[/font][font=&]6、材料的吸附性能[/font][font=&]吸附动力学[/font][font=&]采用上述方法进行吸附实验,在振荡间隔时间为5、10、20、30、60、120、240、360、720、1440 min时分别用注射器取300 μL的溶液,用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS测定。t时间下的吸附量(qt, mg/g)和去除率(R)的计算公式如下:[/font][font=&]式中:[/font][font=&]C0和Ct分别表示吸附前和t时间时溶液中PFOA的质量浓度(mg/L) V表示溶液的总体积(L) m表示吸附剂的质量(g)。[/font][font=&]吸附等温线[/font][font=&]取50 mL一定浓度(1、3、5、7、9、12、15、20 mg/L)的PFOA溶液,采用上述方法进行吸附实验,并根据下式计算平衡吸附量qe(mg/g)。[/font][font=&]式中:[/font][font=&]Ce表示吸附平衡时溶液中PFOA的含量(mg/L)。[/font][font=&]结论[/font][font=&]本文通过无溶剂一锅法成功合成了一种含氟富氮多孔有机聚合物POP-3F,在POP-3F中引入三氟甲基可有效提高材料与PFOA之间的静电相互作用和氟-氟相互作用,进而提高POP-3F对PFOA的吸附亲和力。利用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS进行吸附实验,发现在酸、盐和腐植酸存在的情况下,POP-3F对PFOA仍有很好的去除效果,且具有良好的可循环使用性能。本文提出的POP-3F材料合成过程简单,具有作为经济、环保、高效的PFOA吸附剂的潜力。[/font][font=&]1.郑州大学化学学院, 河南 郑州 450001[/font][font=&]2.郑州大学风味科学研究中心, 中原食品实验室, 河南 郑州 450001[/font][font=&]文章信息[/font][font=&]色谱, 2024, 42(6): 572-580[/font][font=&]DOI: 10.3724/SP.J.1123.2024.04006[/font][/size]

  • 【原创大赛】8天3次方法学验证,死磕样品中异辛酸溶残检测

    【原创大赛】8天3次方法学验证,死磕样品中异辛酸溶残检测

    第一次发原创,记录一次有(cao)趣(dan)的溶残方法开发和验证过程 样品是一个申报的新药,结构就不公开了,这里说下样品一些性质。 性质1:分子量896,结构中含一个15元环; 性质2:多个酸碱中心,样品在最后一步工艺中用异辛酸钠成盐,最终成钠盐; 性质3:样品在纯的水、已经、乙醇溶解性差,甲醇中略溶,易溶与乙腈-水(1:1); 性质4:由于带酸碱性,在不同pH下呈现不同的共轭形态,当在酸性下(pH<7)样品溶液变黄色,并析出黄色沉淀; 性质5:在一次强降解实验中发现性质4中的沉淀可溶于甲醇。 好了,基本背景交代完毕,下面就是实验部分,因为工艺最后一步用了异辛酸钠,要对终产物里残留的异辛酸钠或者异辛酸进行监控,异辛酸的结构和性质是这样的。[align=center][img=,558,320]http://ng1.17img.cn/bbsfiles/images/2017/09/201709292301_01_2016359_3.png[/img][/align][align=center][/align][align=left] 而异辛酸钠就是成了钠盐,性状由油状液体变成固体(易吸水),溶解度跟酸也差不多。[/align][align=left] 一开始看到溶剂沸点228℃时,GC是有点拒绝的,一个溶残飚到两百多度,你考虑过其他溶残的感受么,于是就没有太多考虑[url=https://insevent.instrument.com.cn/t/Mp]气相[/url],而且结构里拖着一条长链(事后发现这是条拉我下坑的链!),虽然是个酸(盐),但保留应该不弱,于是毫不犹豫的设计实验方案了。[/align][align=left] 流动相哗哗哗的倒着,容量瓶发出叮叮叮的碰撞声,就像对天平打印机发起挑战,12月27日开始了第一次验证实验。称量、溶解、稀释、定容,一切都顺利的进行着,直到配制加标溶液,出现如下一幕,往供试品溶液加入异辛酸对照溶液时产生黄色沉淀。[/align][align=center][img=,389,297]http://ng1.17img.cn/bbsfiles/images/2017/09/201709292305_01_2016359_3.png[/img][/align][align=left] 面对突如其来的情况,我承认当时我就懵B了,更别说马上找出沉淀的原因和解决方法,试过把溶液过滤掉,但也是然并卵,放置一会又会浑浊,这样的溶液拿去进样,进样针稳稳的堵,最后只好停止配样。经过一个晚上思考,终于记起了样品的性质4(参见上文),然后就想着不产生沉淀的方法,既然遇酸就沉淀,那我就用异辛酸钠做对照吧。[/align][align=left] 流动相哗哗哗的又倒着,容量瓶又发出叮叮叮的碰撞声,12月28日开始了第二次验证实验。与第一次开始时一样,一切都顺利的进行着,当要配制加标溶液时,抖着小手往样品加入对照溶液,心率直接上120,相信薛定谔第一次遇到猫也差不多这心情,最终得到了澄清的供试品加标溶液。然后就顺理成章的把溶液配完,放进样品盘,序列运行,回家睡觉。[/align][align=left] 第二天上班,像往常一样打开结果看,嗯,进展还顺利,灵敏度溶液S/N有28,6针对照RSD是2.3%,空白没干扰,然鹅当我打开加标时,结果是这样的……[/align][align=center][img=,558,184]http://ng1.17img.cn/bbsfiles/images/2017/09/201709292307_01_2016359_3.png[/img][/align][align=left] 如上图,在异辛酸钠出峰处,加标溶液的峰明显小于对照溶液,而且在前面8min左右出一个胖胖的峰,而且加标溶液中红框的两个峰面积加起来与对照溶液异辛酸钠峰面积很接近。我再一次懵B了。[/align][align=center][img=,296,207]http://ng1.17img.cn/bbsfiles/images/2017/09/201709292308_01_2016359_3.png[/img][/align][align=left] 接连两次失利让我渐渐有一种液相不适合测这个的感觉,加上仪器不断高浓度进样(供试品浓度30mg/ml),造成针座出现严重残留。[/align][align=center][img=空白出现明显残留,558,191]http://ng1.17img.cn/bbsfiles/images/2017/09/201709292309_01_2016359_3.png[/img][/align][align=left] 由于个人原因,必须要在1月4日之前搞定这个实验。经过元旦一天的休息后,于是我开始尝试用[url=https://insevent.instrument.com.cn/t/Mp]气相[/url],首先选一根合适的柱子,结果如下。[/align][align=center][img=,558,216]http://ng1.17img.cn/bbsfiles/images/2017/09/201709292310_01_2016359_3.png[/img][/align][align=left] DB-1(30m×0.32mm,1.5μm)和DB-624(30m×0.32mm,1.8μm)色谱柱上异辛酸色谱峰峰形前沿;在DB-WAX(30m×0.32mm,0.5μm)色谱柱上异辛酸峰形拖尾;而在DB-FFAP(30m×0.32mm,1.0μm)色谱柱上异辛酸峰形较好,就你了FFAP。[/align][align=left] 虽然时间上很紧急,但这次我并没有急着设计实验方案和配样,先把各种溶液试水一下。既然用[url=https://insevent.instrument.com.cn/t/Mp]气相[/url],那对照溶液还是得用异辛酸配制,so还是回到最开始的怎么解决沉淀的问题。在一次偶然的冥想中,突然记起样品性质5,于是立马动起手来,往稀释剂中混入一点甲醇,沉淀如愿消失了![/align][align=center][img=,558,280]http://ng1.17img.cn/bbsfiles/images/2017/09/201709292312_01_2016359_3.png[/img][/align][align=left] 正当我认为问题解决了的时候,新的问题又双叒叕出现了![/align][align=center][img=,558,219]http://ng1.17img.cn/bbsfiles/images/2017/09/201709292313_01_2016359_3.png[/img][/align][align=center][/align][align=center][img=,558,218]http://ng1.17img.cn/bbsfiles/images/2017/09/201709292313_02_2016359_3.png[/img][/align][align=left] 加标溶液和对照溶液这对磨死我的小妖精,前者总是比后者小一截;而且多次进对照后空白很容易出现残留干扰;连续6针对照溶液异辛酸的峰面积一针比一针大,第6针是第1针的2.5倍。[/align][align=left] 6针翻2.5倍,比股票涨停还要猛啊有木有,简直惊呆了作为实验狗的我,毕竟干了7年我的工资都没涨这么快过……[/align][align=left] 对于连番爆出的问题,我表示已经麻木了,心里毫无波澜,甚至还有点上瘾。[/align][align=center][img=,370,362]http://ng1.17img.cn/bbsfiles/images/2017/09/201709292314_01_2016359_3.png[/img][/align][align=left] 对于残留的问题,原因也不难分析,针对[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]直接进样,残留基本上都是在衬管引起的,由于衬管表面玻璃材质以及玻璃棉灭活不完全,或者玻璃棉丝断裂产生内部横截面,不能保证整根衬管内部都100%惰性,很容易对一些性质较活泼的化合物引起吸附,而异辛酸有羧基,带酸性,正对衬管的胃口,这也是[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]做酸碱性较强的化合物时,峰形往往不完美的原因之一。[/align][align=left] 原因分析了,问题解决也不难了,我决定用一个比较粗暴的方法,就是在不影响供试品的前提下,向溶液中加入一种酸性更强的酸(比如盐酸),原理就是与异辛酸竞争陈管内的吸附点,把异辛酸顶出来,从而减少对其的吸附。后来也在百度和中国药典里看到类似的2-乙基己酸(即异辛酸)的溶残方法,所以有时候遇到问题,先在网上查一下,或者翻翻药典也是很有用的,当然这是后话了。[/align][align=left] 然后就是开始尝试往配制的溶液中加入酸溶液了,所得结果如下[/align][align=center][img=,558,199]http://ng1.17img.cn/bbsfiles/images/2017/09/201709292316_01_2016359_3.png[/img][/align][align=center][/align][align=center][img=,573,210]http://ng1.17img.cn/bbsfiles/images/2017/09/201709292316_02_2016359_3.png[/img][/align][align=left] 吸附和加标溶液的问题都消失了,终……终于可以开始设计方案做验证了。流动相哗哗…啊不对,[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]不用倒流动相,1月3日开始了第3次验证实验,这一次顺利完成了!最终方法如下:[/align][align=center][img=,558,295]http://ng1.17img.cn/bbsfiles/images/2017/09/201709292317_01_2016359_3.png[/img][/align][align=left] 这是最终溶液配制方案:[/align][align=center][img=,558,411]http://ng1.17img.cn/bbsfiles/images/2017/09/201709292318_01_2016359_3.png[/img][/align][align=left] 最终的验证结果(更具体的峰面积和称样数据就不列出了)[/align][align=left] 1.系统适用性[/align][align=left] 空白溶液对异辛酸的测定无背景干扰;灵敏度溶液中异辛酸的信噪比为47.0(≥10);对照溶液连续6针的异辛酸峰面积的RSD为2.52%(≤10.0%)。系统适用性符合检测要求。[/align][align=left] 2.专属性[/align][align=left] 空白溶液与供试品溶液及100%供试品加标溶液比较,空白溶液在对照溶液和供试品溶液的异辛酸峰保留时间处无干扰;供试品溶液及供试品加标溶液与对照溶液中异辛酸溶剂峰的保留时间一致;与供试品溶液相比,供试品加标溶液色谱图中异辛酸保留时间处峰面积明显增强。方法专属性良好。[/align][align=left] 3.精密度[/align][align=left] (1)分析重复性 由分析人员甲配制的6份分析重复性试验溶液中,异辛酸含量的RSD值为2.43%(≤10.0%)。[/align][align=left] (2)中间精密度[/align][align=left] 由分析人员乙配制的6份分析重复性试验溶液中,异辛酸含量的RSD值为2.06%、(≤10.0%);分析人员甲与乙分别配制的12份分析重复性试验溶液中,异辛酸含量的RSD为2.15%(≤10.0%)。方法精密度良好。[/align][align=left] 4. 定量限和检测限[/align][align=left] 异辛酸定量限溶液浓度水平为250ppm(≤500ppm);该浓度水平异辛酸溶剂峰的信噪比大于10,连续3次进样峰面积的RSD值小于10.0%。方法定量限满足检测要求。[/align][align=left] 异辛酸检测限浓度水平为100ppm;该浓度水平异辛酸溶剂峰的信噪比大于3。[/align][align=left] 5. 线性及范围[/align][align=left] 异辛酸从定量限至限度水平的200%呈线性关系,线性相关系数r分别为0.9998(≥0.990),Y轴截距与100%限度浓度峰面积比值的绝对值分别为1.8%(≤10.0%)。线性及范围符合异辛酸定量检测的要求。[/align][align=left] 6. 准确度[/align][align=left] 50%,100%和150%三个加标浓度水平共9份回收率试验溶液中,异辛酸的回收率单值均在80.0%~120.0%范围内,回收率单值的RSD不超过10.0%;平均回收率为98.1%。方法准确度良好。[/align][align=left] 7. 耐用性[/align][align=left] 在变化的各色谱条件下,灵敏度溶液的信噪比均大于10,对照溶液3次测定异辛酸峰峰面积RSD均小于10.0%。[/align][align=left] 实验结果表明初始柱温在168℃~172℃内变化,流速在1.8ml/min~2.2ml/min范围内变化,同一规格型号的不同色谱柱,方法耐受性良好。[/align][align=left] 好了,实验和文章到此都终于结束,对于上文,我总结一下实验过程的几点感想:[/align][align=left] (1)对于研发人员来说,样品性质都是未知的,要善于发现和联想,说不定几个月前出现的一个小现象就是解决紧急问题的关键;[/align][align=left] (2)由于时间相当紧迫,实验中很多细节未进行进一步研究和优化;[/align][align=left] (3)第1次验证中,假如在稀释液中也混入甲醇,沉淀问题就能解决,只是当时完全没想起样品的性质5;[/align][align=left] (4)第2次验证中,发现加标溶液中异辛酸前面出一个胖胖的峰,其实可以接出来送MS,进而分析原因;[/align][align=left] (5)最终的方法中,甲醇的比例,加入盐酸的比例以及盐酸溶液的浓度都未摸索过(时间紧迫);[/align][align=left] (6)最终的方法中,异辛酸峰形还是有点拖尾,如果把色谱柱DB-FFAP(30m×0.32mm,1.0μm)换成0.5μm膜厚,也许能得到峰形更好,耗时更短的方法(时间紧迫,拿起一根觉得可以就用);[/align][align=left] (7)对于新药研发分析人员,查阅文献的能力固然重要,但偶尔翻翻药典的正文,也许会有新的发现,如果我在之前看到药典的方法,也许就能少一半工作量,以及码少一半字;[/align][align=left] (8)第一次发原创,重在参与,写的好的,能给大家提供点思路或者什么的固然是好,写的不好的,也烦请尽管提出来;[/align][align=left] (9)最后的最后,吐槽一下仪器论坛这个话题发表编辑界面,虽然这里主要是发科技文章,但和微信公众平台的编辑界面比较,真是难看兼不好用[img]http://simg.instrument.com.cn/bbs/images/default/em09501.gif[/img][/align]

  • 全氟辛烷磺酰基化合物的国标方法测定(LC/MS)

    全氟辛烷磺酰基化合物的国标方法测定(LC/MS)

    2016年5月17日至19日,第十一届持久性有机污染物国际学术研讨会在西安召开。会上,全氟化合物(PFASs)受到了与会专家的诸多关注,成为报告者讨论最多的化合物。 全氟化合物是碳氢化合物(及其衍生物)中的氢原子全部被氟原子取代后所形成的一类化合物,具有持久稳定性、生物累积性等特点。2009年5月,斯德哥尔摩公约第四次缔约方大会决定将全氟辛烷磺酸及其盐类(PFOS)与全氟辛烷磺酰氟(PFOSF)列入公约附件B(限制类),并于2013年8月在我国得到全国人大常委会批准。2015年,斯德哥尔摩缔约方大会通过了全氟辛酸(PFOA)及其盐类和相关化合物的附件D审查(POPs特性筛选),认为PFOA符合附件D筛选标准,决定在其附件E审查时应纳入可降解为PFOA的盐类和相关化合物。 为适应新的履约需求,在我国近期更新的中国履行《斯德哥尔摩公约》国家实施计划中,也将PFOS纳入了计划中,并将动用2400万美金来实现其在重点行业的淘汰和替代。这也许就是全氟化合物受到大家广泛关注的原因。(新闻详情请移步:http://www.instrument.com.cn/news/20160520/191615.shtml) 那么接下来,小编将为大家带来一篇按照国标方法对全氟辛烷磺酰基化合物的液相分析报告,希望能对大家有所帮助。全氟辛烷磺酰基化合物的国标方法测定全氟辛烷磺酰基化合物(PFOS)由于其同时具备疏油、疏水等特性,被广泛应用于生产纺织品、皮革制品、家具和地毯等表面防污处理剂,以及与人们生活接触密切的纸制食品包装材料和不粘锅等近千种产品。http://ng1.17img.cn/bbsfiles/images/2016/05/201605251408_594746_2222981_3.jpg最近研究表明,全氟辛烷磺酰基化合物持久性极强,在自然环境中极难降解,并能够在生物体内高度积累,蓄积水平甚至高于已知的有机氯农药和二噁英等持久性有机污染物的数百倍至数千倍,成为继多氯联苯、有机氯农药和二噁英之后,一种新的持久性的环境污染物。且此物质具有毒性,大量的调查研究发现,PFOS具有遗传毒性、雄性生殖毒性、神经毒性、发育毒性和内分泌干扰作用等多种毒性,被认为是一类具有全身多器脏毒性的环境污染物。本实验按照《食品包装材料中全氟辛烷磺酰基化合物(PFOS)的测定 高效液相色谱-串联质谱法》(GB/T 23243-2009)中的测定方法,使用资生堂 CAPCELL PAK C18 MGIII S5:2.0mm i.d ×150mm色谱柱,对全氟辛烷磺酰基化合物标准品进行了LC-MS测定。http://ng1.17img.cn/bbsfiles/images/2016/05/201605241037_594521_2222981_3.jpg图1MGIII色谱柱GB方法对全氟辛烷磺酰基化合物标准品分析结果http://ng1.17img.cn/bbsfiles/images/2016/05/201605241051_594527_2222981_3.jpg如图1所示,CAPCELL PAK C18 MGIII S5; 2.0mm i.d ×150mm色谱柱在此流动相条件下,对全氟辛烷磺酰基化合物得到了较好的保留,保留时间2.00min,较参考保留时间(1.67min)略长,峰形较好。同时在使用资生堂NASCA自动进样器+NANOSPACE液相系统时,进样0.1 µg /mL浓度(100ppb)标准品后,进样空白溶剂,色谱柱及系统均无残留,如图2所示。http://ng1.17img.cn/bbsfiles/images/2016/05/201605241037_594522_2222981_3.jpg图2 溶剂空白进样结果在此基础上,绘制标准曲线,全氟辛烷磺酰基化合物在0.002 μg/mL - 0.05μg/mL浓度范围内线性良好,如图3所示。http://ng1.17img.cn/bbsfiles/images/2016/05/201605241037_594523_2222981_3.jpg图3 MGIII色谱柱分析全氟辛烷磺酰基化合物标准品浓度-峰面积标准曲线图

  • 药典辛酸钠测定法

    药典辛酸钠测定法

    各位大神,请教一下药典通则里面的辛酸钠测定,要求[color=#333333]色谱条件与系统适用性试验为 用酸改性聚乙二醇(20M)毛细管柱,柱温160℃,火焰离子化检测器,检测器温度230℃,气化室温度230℃,载气(氮气)流速为每分钟35ml。辛酸峰与庚酸峰的分离度应大于1.5,辛酸峰的拖尾因子应为0.95~1.20,辛酸对照品溶液连续进样5次,所得辛酸峰与庚酸峰面积之比的相对标准偏差(RSD)应不大于5%。[/color][color=#333333]我这边色谱柱用的是J&W DB-FFAP(30×0.32×0.50)[color=#333333]柱温160℃,火焰离子化检测器,检测器温度230℃,气化室温度230℃,流速3.5ml/min,分流比10:1,出的峰分离度只有0.7~0.8左右,达不到要求的0.95,应该怎么处理?[/color][/color][color=#333333][color=#333333]ps:因为配制的时候浓度比药典规定的小4倍,所以进样量为4μl。[/color][/color][color=#333333][color=#333333][img=,690,387]https://ng1.17img.cn/bbsfiles/images/2019/08/201908261137379899_2144_2576605_3.jpg!w690x387.jpg[/img][/color][/color]

  • 硫辛酸的氧化产物

    硫辛酸的氧化产物是什么啊?硫辛酸在空气或者氧气稳定吗?若不稳定,会生成什么产物呢?

  • 异辛酸的GC检测

    异辛酸可以用GC检测吗?如果有,怎么测?什么配置?检测条件是什么?感谢!

  • 【求助】【悬赏】【求助】氟钛酸钾 氟硼酸钾分析标准

    [font='Times New Roman']急需以下三个标准[/font][font='Times New Roman']GB/T 22661.1-2008 氟硼酸钾化学分析方法 第1部分:试样的制备和贮存[/font]GB/T 22661.3-2008 氟硼酸钾化学分析方法 第3部分:氟硼酸钾含量的测定 氢氧化钠容量法[font='Times New Roman']GB/T 22662.3-2008 氟钛酸钾化学分析方法 第3部分:氟钛酸钾含量的测定 硫酸高铁铵容量法[/font][font='Times New Roman'][/font]

  • 【原创大赛】让我倍感“辛酸”的项目——铁

    【原创大赛】让我倍感“辛酸”的项目——铁

    之所以说这个项目倍感辛酸,是因为在显色过程中加的乙酸铵缓冲溶液真的很酸,酸的刺鼻。每次做这铁就像掉进醋缸一样……http://simg.instrument.com.cn/bbs/images/default/em09509.gif而且这个项目还不能上原吸,直接用火焰法喷出来会省事点,但是火焰法的检出限太高,直接0.3mg/L,0.3mg/L是生活饮用水的国标限值好吧?!我们的水样里边一般都在检出限上下晃悠,偶尔会有地下水在0.3mg/L左右,所以省事儿的方法根本不适用,苦命的我还得用化学法做。还好我做铁的准确度还行,质控、加标、曲线相关系数啥的还比较让我满意,在我接手做的这段时间里,我觉得做铁最关键的是要控制好显色温度,所以我一般在加完所有试剂后都放在电热套上,利用余热增加显色温度,冬天的时候就放在实验室的暖气上加温,效果还不错呢~~以下为操作规程:1.方法标准:《生活饮用水标准检验方法》GB/T5750.6中 2.2 二氮杂菲分光光度法本法最低检测质量为2.5μg(以Fe计),若取50mL水样,则最低检测质量浓度为0.05mg/L。钴、铜超过5mg/L,镍超过2mg/L,锌超过铁的10倍有干扰。铋、镉、汞、钼和银可与二氮杂菲试剂产生浑浊。2.试剂及仪器2.1盐酸溶液(1+1)。2.2 乙酸铵缓冲溶液:称取250g乙酸铵(NH4C2H3O2),溶于150mL纯水中,加入700mL冰乙酸,混匀。2.3 盐酸羟胺溶液(100g/L):称取10g盐酸羟胺(NH2OH?HCL),溶于纯水中并稀释至100mL。2.4 二氮杂菲溶液(1.0g/L):称取0.1g二氮杂菲(C12H8N2·H2O又名1,10一二氮杂菲,邻二氮菲或邻菲绕啉,有水合物及盐酸盐两种,均可用。)溶解于加有2滴盐酸ρ20=1.19g/mL)的纯水中,并稀至100mL。此溶液1mL可测定100ug以下的低铁。2.5 铁标准溶液:购于国家标物中心。 注:用火焰法做需要在标准中加入1%硝酸,但是用化学法做时是不能够加入酸,否则做不出曲线来,只用纯水配储备液和使用液就可以!!2.6 可见分光光度计。2.7 50mL比色管。(要用硝酸泡)2.8 100mL锥形瓶。3.分析步骤3.1 吸取50.0 mL混匀的水样(含铁量超过50ug时,可取适量水样加纯水稀释至50 mL)于150 mL 锥形瓶中。3.2 另取100 mL锥形瓶6个,分别加入铁标准使用溶液后,各加纯水至50 mL,加入量如下:标准点123456体积(mL)00.250.501.001.502.00浓度(mg/L)00.0500.1000.2000.3000.400标准系列显色过程如下(所有试剂已加完):http://ng1.17img.cn/bbsfiles/images/2013/08/201308181657_458423_2397801_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/08/201308181657_458424_2397801_3.jpg3.3 向水样及标准系列锥形瓶中各加4 mL盐酸溶液和1 mL盐酸羟胺溶液,小火煮沸至约剩30 mL,冷却至室温后移入50 mL比色管。给大家见识一下我的秘密武器,在煮沸过程中为了防止暴沸,一般会加入沸石,我们实验室里买的是玻璃球,但是特别滑,煮完了往比色管倒的时候经常会跑进比色管里,所以我砸了一个坩埚,处理过之后,用纯水洗净,用来做沸石,从不会在移液的时候跑出来,效果很好的呢~~http://simg.instrument.com.cn/bbs/images/default/em09502.gifhttp://ng1.17img.cn/bbsfiles/images/2013/08/201308181713_458426_2397801_3.jpg http://ng1.17img.cn/bbsfiles/images/2013/08/201308181713_458425_2397801_3.jpg 需要解释下这个煮沸过程的一些知识:水样先经加酸煮费溶解铁的难溶化合物,同时消除氰化物,亚硝酸盐,多磷酸盐的干扰。加入盐酸羟胺将高铁还原为低铁,还可消除氧化剂的干扰。水样过滤后,不加盐酸羟胺,可测定溶解性低铁含量。水样过滤后,加盐酸溶液和盐酸羟胺,测定结果为溶解性总铁含量。水样先经加酸煮费,使难溶性铁 的化合物溶解,经盐酸羟胺处理后,测定结果为总铁含量。3.4 向水样及标准系列比色管各加2.0mL二氮杂菲,混匀后再加10.0mL乙酸铵缓冲溶液,各加纯水至50mL,混匀,放置10-15分钟(视情况可延长,比如低温情况下)。3.5 于510nm波长,用2cm比色皿,以纯水为参比,测定吸光度。以下是标准曲线和部分水样的检测结果:http://ng1.17img.cn/bbsfiles/images/2013/08/201308301745_461016_2397801_3.jpg4.检测结果 铁的生活饮用水国家

  • 【原创大赛】黄酒中γ-氨基丁酸含量测定的辛酸历程

    【原创大赛】黄酒中γ-氨基丁酸含量测定的辛酸历程

    黄酒中γ-氨基丁酸含量测定的辛酸历程 近日实验室收到一批黄酒样品,该批黄酒是用发芽糙米为原料酿造而成,客户要求测定黄酒中的γ-氨基丁酸含量。由于之前实验室以丹磺酰氯为衍生试剂,建立了高效液相色谱法测定发芽糙米中γ-氨基丁酸含量的实验方法,并对实验方法的线性、精密度以及回收率进行了确认,均可以满足发芽糙米中γ-氨基丁酸含量测定要求,因此拿到黄酒样品后直接按照发芽糙米的前处理方法和色谱方法进行分析。链接如下:http://bbs.instrument.com.cn/shtml/20141226/5591256/。然而事与愿违,在测定的液相色谱图中压根就没有见到γ-氨基丁酸的色谱峰,反而在11.5min左右有个小的色谱峰,其峰高与发芽糙米中γ-氨基丁酸峰高有点相似,初步怀疑是保留时间发生了漂移,与发芽糙米样品色谱图对比后发现,在发芽糙米样品色谱图中该保留时间处也出现了一个相似的小峰,因此将该色谱峰是γ-氨基丁酸的可能性排除。http://ng1.17img.cn/bbsfiles/images/2014/12/201412311333_530568_1669358_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/12/201412311334_530570_1669358_3.jpg 原本该实验到此结束,准备将实验结果反馈给客户:黄酒中γ-氨基丁酸的检测结果为“未检出”。为了保证数据的准确性和可靠性,在黄酒样品中进行加标实验,结果在加标的色谱图中也未在相应的保留时间出峰,而且11.5min左右的色谱峰也没有增大,因此决定先将“未检出”的结果搁置,并对实验方法进行分析。 经过对样品前处理过程和色谱方法的分析,觉得可能造成加标样品中γ-氨基丁酸未检出的原因可能有:(1)保留时间漂移。由于流动相需要调节pH值,同时样品前处理过程中也涉及到酸、碱溶液的使用,怀疑是流动相或者样品pH的改变导致保留时间的漂移,从而未在原有的保留时间出现应有的色谱峰。然而重新配制流动相和前处理样品,加标样品测定结果依然是“未检出”,对比加标和不加标样品的色谱图,两者几乎一样,也没有峰面积或峰高变化明显的色谱峰;(2)衍生试剂失效。丹磺酰氯对光和湿敏感,不稳定,放置时间久了会生产二氯亚砜并继续分解成其他物质,影响其在有机溶剂中的溶解度,也会影响结果。可是为了排除衍生试剂的问题,重新打开一瓶刚购置不久的丹磺酰氯试剂,并重新试验,结果仍然不理想;(3)衍生条件控制不当。之前用相似的方法测定牛磺酸含量以及测定发芽糙米中γ-氨基丁酸含量时曾出现过衍生过程条件控制不当造成衍生不完全或者不能衍生的情况,可是与黄酒样品同一批处理的γ-氨基丁酸标准溶液和发芽糙米样品均能衍生成功,并正常出峰,为何唯独黄酒样品不出峰呢?在百思不得其解之际,看到同事在滴定黄酒中总酸,忽然间若有所悟:黄酒中的γ-氨基丁酸需要在碱性条件下才能与丹磺酰氯发生衍生反应,而黄酒是酸性介质,pH值一般在3~5之间,同时黄酒为酿造产物,对酸碱性具有一定的缓冲能力。http://ng1.17img.cn/bbsfiles/images/2014/12/201412311336_530572_1669358_3.jpg 通过比较发现:黄酒为酸性样品,缓冲能力较强,按照发芽糙米样品前处理方法直接加入0.5mL 碳酸钠(pH9.8)可能不能达到合适的衍生反应条件,最终导致黄酒样品中γ-氨基丁酸“未检出”。 找到问题后调整实验方案,先将黄酒样品调整至中性,然后再按照发芽糙米样品方法进行前处理。调整实验方案后,黄酒样品中γ-氨基丁酸测定的色谱图如下图。从色谱图中可以发现,经过实验方案的调整黄酒样品中检出了γ-氨基丁酸的存在。http://ng1.17img.cn/bbsfiles/images/2014/12/201412311337_530573_166

  • CATO独家 | 头孢呋辛杂质标准品

    CATO独家 | 头孢呋辛杂质标准品

    头孢呋辛是一种广泛使用的抗生素,主要用于治疗由敏感细菌引起的各种感染。在生产、储存和使用头孢呋辛的过程中,可能会产生一些杂质。这些杂质的存在可能会影响头孢呋辛的纯度和疗效,因此了解和控制这些杂质对于确保药物的安全性和有效性至关重要。头孢呋辛的杂质有多种,其中一些具有特定的CAS号、化学式和分子量。例如,头孢呋辛杂质33(Cefuroxime Impurity 33)的CAS号为929531-94-2,分子式为C16H16N4O9S,分子量为440.38。此外,还有其他一些头孢呋辛杂质,如头孢呋辛杂质A、B、C、D、E、F、G、H等。 CATO标准品提供的头孢呋辛全套的杂质,这些杂质对于药物的纯度和稳定性研究至关重要,也是药物研发过程中不可或缺的一部分。[img=,602,511]https://ng1.17img.cn/bbsfiles/images/2024/02/202402192104451830_7644_6381607_3.png!w602x511.jpg[/img] 广州佳途科技股份有限公司深知药物研发与质量控制的重要性,CATO标准品厂家,提供头孢呋辛全套的杂质,为客户提供更加精准、可靠的分析标准品,助力药物研发事业的快速发展,以满足客户在药物研发和质量控制方面的需求。[list][*]原创检测区[/list]◇头孢呋辛杂质头孢呋辛是一种广泛使用的抗生素,主要用于治疗由敏感细菌引起的各种感染。在生产、储存和使用头孢呋辛的过程中,可能会产生一些杂质。这些杂质的存在可能会影响头孢呋辛的纯度和疗效,因此了解和控制这些杂质对于确保药物的安全性和有效性至关重要。头孢呋辛的杂质有多种,其中一些具有特定的CAS号、化学式和分子量。例如,头孢呋辛杂质33(Cefuroxime Impurity 33)的CAS号为929531-94-2,分子式为C16H16N4O9S,分子量为440.38。此外,还有其他一些头孢呋辛杂质,如头孢呋辛杂质A、B、C、D、E、F、G、H等。CATO标准品提供的头孢呋辛全套的杂质,这些杂质对于药物的纯度和稳定性研究至关重要,也是药物研发过程中不可或缺的一部分。广州佳途科技股份有限公司深知药物研发与质量控制的重要性,CATO标准品厂家,提供头孢呋辛全套的杂质,为客户提供更加精准、可靠的分析标准品,助力药物研发事业的快速发展,以满足客户在药物研发和质量控制方面的需求。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制