当前位置: 仪器信息网 > 行业主题 > >

小牛血去蛋白提取物

仪器信息网小牛血去蛋白提取物专题为您提供2024年最新小牛血去蛋白提取物价格报价、厂家品牌的相关信息, 包括小牛血去蛋白提取物参数、型号等,不管是国产,还是进口品牌的小牛血去蛋白提取物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合小牛血去蛋白提取物相关的耗材配件、试剂标物,还有小牛血去蛋白提取物相关的最新资讯、资料,以及小牛血去蛋白提取物相关的解决方案。

小牛血去蛋白提取物相关的资讯

  • 天然提取物:现代化妆品的健康新趋势
    在当前消费者越来越注重产品成分天然健康的市场环境下,植物提取物因其独特的功效和相对较低的副作用风险,成为化妆品研发的重要方向。化妆品中的天然提取物以其绿色、自然和健康的特性,在现代化妆品行业中的应用日益广泛,据不完全统计,天然化妆品在整个化妆品中的比例已经达到40%。本文汇总了天然提取物在美白祛斑、防晒、抗衰老、保湿、乳化、防腐、透皮吸收促进、香料等8个方面的应用情况,供大家阅读参考。1、天然提取物-美白剂传统美白剂有稳定性不佳,刺激,功效显现缓慢等劣势。而天然来源的美白剂可结合多成分、多靶点与多功效的优势,同时还兼具温和、安全、持久的特点,已成为美白化妆品行业的一个趋势。常见的天然美白成分有金银花、茶多酚、石榴、花青素、珍珠等。化妆品常见天然美白提取物汇总2、天然提取物-抗衰剂以天然提取物为原料的抗衰老化妆品同样越来越多的被应用于化妆品中。根据衰老学说,天然提取物的抗衰机制主要有以下几点:①通过提取物中的抗氧化组分,减少皮肤的自由基损伤,来调节皮肤免疫和提高自我保护作用。②通过抑制MMP表达,或促进组织型抑制剂(TIMP)表达来维持真皮层的结构。此外,防晒组分可有效防止紫外线对皮肤的伤害。而由于天然物种中组分较为复杂,往往能够多靶点协同作用起到抗衰老的效果,因此备受市场欢迎。常见天然抗衰剂有番红花素、人参皂苷、姜黄提取物、丹参酮、牡丹花等。化妆品常见天然抗衰提取物汇总3、天然提取物-保湿剂天然提取物在保湿方面的机制一般为:1、天然多酚羟基与水以氢键形式结合,形成锁水膜。2、其中的神经酰胺成分可以修护皮肤屏障,从而提高锁水能力。3、抑制透明质酸酶活性,减少皮肤保湿剂-HA的降解。常见的天然保湿成分有白及成分、竹叶黄酮、甘草提取物、芦荟有机酸、百合提取物等。化妆品常见天然保湿提取物汇总4、天然提取物-防晒剂目前市面上的防晒产品多为物理紫外屏蔽剂、化学紫外吸收剂,这两种类型的防晒剂均会给皮肤造成不同程度的负担,同时对水体生态环境也是造成了不小的压力。天然来源的防晒剂则具有广谱防晒、副作用小等特点。我国目前已将芦荟、黄岑、甘草、桂皮、沙棘等用于防晒产品中。化妆品常见天然防晒剂汇总5、天然提取物-毛发用剂发用化妆品中添加一些中药提取物已经比较常见,主要是可以使头发柔软、促进头发生长等。如何首乌、五味子、黑芝麻、人参、侧柏叶等都具有不错的养发护发的功效。此外,有一部分的收涩药含有的有机酸和鞣质能与美发剂中的铁、铜结合,用于染发剂的制备。化妆品常见天然护发剂汇总6、天然提取物-防腐剂化妆品中常用的防腐剂有尼泊金酯类、咪唑烷基脲、苯甲酸及其衍生物、醇类及其衍生物类等。安全的天然防腐剂一直成为化妆品研究的热点。常用的天然防腐剂有芦荟、益母草、黄岑、月见草、金缕梅等。化妆品常见天然防腐剂汇总7、天然提取物-香精天然香料是指以自然界存在的动植物的芳香部位为原料提取加工而成的原态香材天然香料。动物香料常用的有香、龙涎香、灵猫香、海狸香和香鼠香等,一般作定香剂使用,价格比较昂贵。植物性香料由植物的花、果、叶、茎、根、皮或者树木的木质茎、叶、树根和树皮中提取的易挥发芳香组分的混合物。常见的天然香精有玫瑰、薰衣草、苦橙叶、迷迭香、茉莉等。化妆品常见天然香精汇总8、天然提取物-其他功能① 乳化乳化剂是化妆品的重要辅助原料,具有乳化作用的天然提取物一般含有皂苷、树胶、蛋白质、胆固卵磷脂、明胶等。② 头皮吸收促进剂如月桂氮卓酮之类的化学合成促进剂,毒性大,长时间会对皮肤造成伤害。对比之下,天然的促进剂如薄荷油、桉油、丁香油、蛇床子油、当归挥发油、川芎挥发油等则有促渗作用强,不良反应小等特点。9、品牌天然提取物及功效举例
  • 植物提取物的前景分析--“它”具有权威发言权
    p style=" text-align: center " img width=" 598" height=" 148" title=" 4444.jpg" style=" width: 539px height: 118px " src=" http://img1.17img.cn/17img/images/201704/insimg/cb2775ae-cfc0-49d9-aa29-dedf08ad738f.jpg" / /p p   产品定义 /p p   植物提取物是以植物为原料,按照对提取的最终产品的用途的需要,经过物理化学提取分离过程,定向获取和浓集植物中的某一种或多种有效成分,而不改变其有效成分结构而形成的产品。按照提取植物的成份不同,形成甙、酸、多酚、多糖、萜类、黄酮、生物碱等 按照性状不同,可分为植物油、浸膏、粉、晶状体等。[2] /p p   市场供求 /p p   植物提取物有许多不同品种[3] ,这些产品供需随年份及各种市场因素不断变化,供需不平衡的情况时有发生。 /p p   ① 产品供给影响  由于植物提取物行业原材料为农林产品,容易受天气、病虫害、播种面积等因素影响,不同年份的原材料收购价格及数量会出现波动,原材料价格波动使天然植物提取物产品的价格、产量会有一定程度的变动,发生市场供需失衡。 /p p   ② 市场需求影响 /p p   多数生产企业对海外市场需求认识有限,可能对市场需求缺乏科学和长期准确判断。当某一产品市场需求较好时,短期内会出现供不应求的市场失衡情况,但随着市场信息的传播,大量企业会一拥而上重复生产,导致产品供大于求。 /p p   生物碱 /p p   是一类复杂的含氮有机化合物,具有特殊的生理活性和医疗效果。如麻黄中含有治疗哮喘的麻黄碱、莨菪中含有解痉镇痛作用的莨菪碱等。 /p p   苷类又称配糖体 /p p   由糖和非糖物质结合而成。苷的共性在糖的部分,不同类型的苷元有不同的生理活性,具有多方面的功能。如洋地黄叶中含有强心作用的强心苷,人参中含有补气、生津、安神作用的人参皂苷等。 /p p   挥发油 /p p   又称精油,是具有香气和挥发性的油状液体,由多种化合物组成的混合物,具有生理活性,在医疗上有多方面的作用,如止咳、平喘、发汗、解表、祛痰、驱风、镇痛、抗菌等。药用植物中挥发油含量较为丰富的有侧柏、厚朴、辛夷、樟树、肉桂吴茱萸、白芷、川芎、当归、薄荷等。 /p p   单宁(鞣质) /p p   多元酚类的混合物。存在于多种植物中,特别是在杨柳科、壳斗科、蓼科、蔷薇科、豆科、桃金娘科和茜草科植物中含量较多。药用植物盐肤木上所生的虫瘿药材称五倍子,含有五倍子鞣质,具收敛、止泻、止汗作用。 /p p   其他成分 /p p   如糖类、氨基酸、蛋白质、酶、有机酸、油脂、蜡、树脂、色素、无机物等,各具有特殊的生理功能,其中很多是临床上的重要药物。 /p p   综合各国的立法范畴和概念及使用情况,植物提取物这个概念是可以被各国所接受与认可的,也是传播草药在各国通用的共性表达方式。中国植物提取物的出口额早在1999年就已超过中成药的出口额。在欧美国家,植物提取物及其制品(植物药或食品补充剂)有着广泛的市场前景,已发展成一个年销售额近80亿美元的新兴产业。 /p p   中国的植物提取物总体上是属于中间体的产品,目前的用途非常广泛,主要用于药品、保健食品、烟草、化妆品的原料或辅料等。用于提取的原料植物的种类也非常多,目前进入工业提取的植物品种在300种以上。 /p p   产品功效——遏制癌症 /p p   美国科学家说,他们通过对膀胱癌的研究,证实了绿茶提取物能有效遏制癌肿瘤发展,同时不损害健康细胞。由美籍华人科学家领导的这个研究小组认为,绿茶提取物可能成为一种有效的抗癌药物。 /p p   这一成果当天发表在《临床癌症研究》杂志上。主持这项研究的加利福尼亚大学洛杉矶分校副教授饶建宇说,他们的成果“增进了对绿茶提取物作用机理的理解”。如果人们对绿茶提取物遏制肿瘤的机理有所了解,就能确定哪种类型的癌症患者能从绿茶提取物中受益。 /p p   研究人员在论文中写道,癌肿瘤的发展与癌细胞的扩散运动密切相关,癌细胞要运动,就必须启动一个被称为“肌动蛋白重塑”的细胞进程。一旦这一进程被激活,癌细胞就能够侵入健康的组织,导致肿瘤扩散。而绿茶提取物能破坏“肌动蛋白重塑”进程,使得癌细胞粘附在一起,其运动受到阻碍,此外它还能使癌细胞加快老化。 /p p   饶建宇说,癌细胞具有“侵略性”,而绿茶提取物打破了它“侵略”的路径,能限制癌细胞,使其“局部化”,使癌症治疗和预后工作都变得相对简单。 /p p   此前,已经有一些研究成果揭示了绿茶提取物对包括膀胱癌在内的许多癌症具有效果,它能够引起癌细胞过早凋亡,并阻断肿瘤组织的血液供应。饶建宇对新华社记者说,他们研究小组的一些成员正在验证绿茶提取物对胃癌等其他癌症的效力。 /p p   他说,与以前类似的研究不同,他们使用的绿茶提取物,其成分和饮用的绿茶非常相似,这意味着常饮绿茶可能有某种抗癌效果,至少可以增强人体对癌症的防御能力。不过研究人员也认为,目前他们只实验了有限的几个膀胱癌细胞系,要揭示绿茶的抗癌机理还有待进一步的研究。 /p p   其他科学家当天评论说,这一研究成果进一步证实了绿茶在预防和治疗癌症方面所具有的潜力。尤其在膀胱癌治疗方面,新成果有助于发现膀胱癌的易感者,降低发病率。 /p p   产品功效——抗氧化性 /p p   自1900年Gomberg提出自由基(tripheylemthylradical)学说以来,人们对自由基的研究逐渐加深。传统合成的抗氧化剂虽然抗氧化能力比较强,但长期食用有潜在的毒性,有的甚至会产生致畸、致癌作用,因此愈来愈受到人们的排斥 而蜂花粉是蜜蜂从花朵上采集的花粉粒,含有黄酮类、维生素、激素、核酸、酶类和微量元素等,具有抗衰老作用,是良好的抗氧化食品。葛 根 、杜仲叶、 枸 杞 、 枳 椇 子 、 茯 苓 、 五 味 子 、 银 杏 、 竹叶、柠檬、柑橘和蜂胶的抗氧化作用均已得到实验证明。因此,从天然产物中筛选具有抗氧化和清除自由基活性的物质对食品和医药工业都有重要意义。 /p p /p
  • ISO:色谱法测定乳和乳制品中小牛皱胃酶和成牛皱胃酶
    ISO发布有关乳和乳制品中小牛皱胃酶和成牛皱胃酶色谱法测定国际标准草案询问阶段投票通告 2010年5月21日,ISO/TC34/SC5秘书处向其所属的各成员国发出通告,对国际标准草案DIS 15163《乳和乳制品——小牛皱胃酶和成牛皱胃酶——应用凝乳酶和牛胃蛋白酶的色谱法测定》进行询问阶段投票,截止日期为2010年10月21日。该国际标准草案为首次制定,具体内容包括范围、规范性引用文件、术语和定义、原理、试剂、设备、抽样、操作步骤、结果表述、精密度、测试报告、附录A和附录B以及参考书目录。
  • 助力烟草提取效率:快速溶剂萃取-重量法测定烟草中石油醚提取物
    前言研究表明,石油醚提取物的含量与烟草的香气量有关,烟草石油醚提取物随成熟度增加而增加。随着人们对烟叶香气质量的关注程度的增加,一般把石油醚提取物含量的高低作为评价烟叶内在品质优劣的重要指标之一。用石油醚浸提烟草样品,可将烟草中的芳香油、树脂、色素、醛、蜡、脂肪酸等物质提取出来,通过烘干、称取质量,即得到烟草中石油醚提取物的质量分数。对于烟草中石油醚提取物的测定,传统的索式提取法耗时耗力,很难满足大量样品的检测需求,现使用莱伯泰科全自动高效快速溶剂萃取仪(Flex-HPSE)提取烟草中的石油醚提取物,MultiVap-10定量平行浓缩仪浓缩后用天平精准称重,从而测定烟草中石油醚提取物的含量,方法快速、高效、稳定。1、仪器设备1.1 Flex-HPSE全自动高效快速溶剂萃取仪(莱伯泰科公司);1.2 MultiVap-10定量平行浓缩仪(莱伯泰科公司);1.3 恒温干燥箱;1.4 干燥器:变色硅胶为干燥剂;1.5 分析天平:感量为0.001g。2、试剂石油醚,分析纯,沸程:30℃~60℃,重蒸。3、分析步骤3.1 式样的制备按YC/T31-1996制备试样。3.2 水分含量的测定按YC/T31-1996测定试样的水分的含量。3.3 石油醚提取物的提取3.3.1 准确称量接收瓶的重量。3.3.2 称取约2g试样置于萃取池中,将萃取池放入烘箱(80℃±1℃)中干燥2小时。取出后,立刻放入干燥器,冷却30分钟。3.3.3 将萃取罐放入Flex-HPSE萃取仪中,按照如下条件萃取(萃取液收集到50mL浓缩杯中):萃取压力:10.34Mpa;萃取温度:80 ℃;加热平衡时间:5 min;静态萃取时间:5 min;冲洗体积:20 %;氮吹时间:60 s;循环:1 次;溶剂:石油醚(30-60°)。3.3.4 萃取结束后,将50mL浓缩杯取出,放入MultiVap-10中60℃浓缩至近干。3.3.5 把50mL浓缩杯置于烘箱(80℃±1℃)中干燥2小时。取出后,立刻放入干燥器,冷却30分钟,准确称重。4、结果的表述4.1 计算方法样品的石油醚提取物总量以干燥样品的百分比表述,计算公式如下:式中:PE: 石油醚提取物总量;M1: 提取前浓缩杯质量,单位g;M2: 提取后浓缩杯质量,单位g;M0: 样品质量,单位g;W: 含水率,%。5、实验结果 6、讨论在本次实验中,使用Flex-HPSE全自动高效快速溶剂萃取仪和MultiVap-10定量平行浓缩仪对烟草中的待测物进行提取、浓缩,整个实验过程用时短、节省人力,并且在后续浓缩步骤中,无需转移样品提取液,减少了目标物损失并减少了实验的系统误差和时间,具有快速、高效、自动化程度高等优势。
  • 五洲东方成功举办低丰度蛋白提取新技术研讨会
    2012年4月27日,伴着中国农业大学西校区中的天下真花独牡丹的争奇斗艳,北京五洲东方科技发展有限公司举办的低丰度蛋白提取新技术研讨会获得圆满成功。   积极签到   首先,五洲东方的产品专家孙福鼎先生以&ldquo A practical guide to Density Gradients and a look at their future&rdquo 为主题介绍了目前世界最先进的密度梯度制备和分离技术,特别是配合超速离心机使用的样品制备、分离收集系统引起了老师和同学们的极大兴趣并进行了热烈的讨论。 报告开始 沟通交流   接下来由五洲东方北方区销售总监白玮博士给众师生带来了蛋白标志物研发解决方案:低丰度蛋白的分离和富集。其着重介绍了具有突破性的生物学分析为基础的分离分组技术,报告内容深入简出,一些老师和同学根据自身实验情况与白博士进行了深入交流和沟通。 分离分组报告   五洲东方会更努力的为用户提供更全面更优质的服务!
  • 基因编辑小牛表现出抗病毒能力
    美国科学家首次培育出对牛病毒性腹泻病毒(BVDV)具有抗性的基因编辑小牛,小牛对病毒的易感性显著降低,并且没有表现出明显的副作用。研究发表在《美国国家科学院院刊Nexus》上。  BVDV是影响全球牛群健康的最重要病毒之一,自1940年代首次被发现以来,科学家们一直对其展开研究。这种病毒不会影响人类,但在牛群中具有高度传染性。  BVDV对怀孕的奶牛来说可能是灾难性的,因为它可以感染发育中的小牛,导致自然流产和低出生率。一些受感染的小牛存活到出生并终生感染,再将大量病毒传播给其他牛。尽管已有疫苗可用,但控制传播依然是一个难题。  在过去的20年里,科学家发现了导致奶牛感染的主要细胞受体(CD46)以及病毒与该受体结合的区域。研究人员在最新研究中修改了病毒结合位点以阻止感染。  参与该项目的美国农业部农业研究局肉类动物研究中心科学家表示,新研究的目标是使用基因编辑技术稍微改变CD46,这样它就不会与病毒结合,但仍会保留其所有正常的功能。  科学家们在细胞培养中看到有希望的结果后,使用CRISPR/Cas9系统编辑了牛皮肤细胞,在CD46受体中交换了6个氨基酸,培育出携带改变基因的胚胎。这些胚胎被移植到代孕奶牛体内,以测试这种方法是否也能减少活体动物的病毒感染。  第一头CD46基因编辑小牛“金格”已于2021年7月19日健康出生。小牛被观察了几个月,然后用病毒进行“攻击”以确定它是否会被感染。它与另一头感染BVDV的小牛一起生活了一个星期,这头小牛出生时就会传播病毒。金格的细胞对BVDV的易感性显著降低,且没有观察到不良健康影响。  BVDV并非罕见病毒,只要养牛业发达的国家它均有流行,病毒性腹泻甚至已成为美国牛场中的主要传染病。如今这项概念验证研究,证明了通过基因魔剪显著降低相关疾病负担完全可行。鉴于BVDV感染也会引发其他细菌性疾病,因此这一成果还能减少养牛业中抗菌素和抗生素的使用,为人们提供更安全健康的乳制品或肉制品。但下一步,科学家们还要继续密切观察小牛金格在生产和抚养后代方面的能力。
  • 赛默飞世尔在华投产加强型小牛血清
    2009年1月15日,赛默飞世尔科技在北京国航万丽酒店举行新闻发布会,宣布将在其合资企业兰州民海生物工程有限公司投入生产高新技术产品——加强型小牛血清。 出席嘉宾有: Ken Berger 赛默飞世尔科技生命科学部 全球总裁 Cory Stevenson 赛默飞世尔科技生物工程产品部 全球总裁 Shiraz Ladiwala 赛默飞世尔科技生命科学部 亚太区总裁 张伟 赛默飞世尔生物化学制品(北京)有限公司 总经理 马忠仁 中美合资兰州民海生物工程有限公司 总经理 仪器信息网做为特邀媒体出席了此次发布会。 新闻发布会现场 加强型小牛血清是赛默飞世尔科技的专有技术。该产品在补铁小牛血清的基础上添加促进细胞生长的纯天然特殊成分,促进细胞生长的能力远优于普通小牛血清和补铁小牛血清,在某些细胞系上的表现甚至胜过胎牛血清,尤其是对于CHO-K1及其它CHO衍生细胞。 研究人员正在使用赛默飞世尔加强型小牛血清进行细胞培养该技术产品在欧美市场上已经有近二十年历史,以高性价比赢得众多生物制药企业的信赖。1998年,美产加强型小牛血清进入中国市场,很快得到中国用户的青睐,尤其是大规模培养CHO细胞的疫苗生产企业。自美国发生疯牛病疫情后,赛默飞世尔科技开始向中国供应新西兰来源的加强型小牛血清,但是随着近几年中国市场需求的迅速扩大,公司决定在旗下合资公司兰州民海生物工程有限公司投资生产此项高尖端技术。该合资公司由赛默飞世尔科技和西北民族大学于2001年合资成立,是中国第一家生产细胞培养用动物血清的合资企业。 “我们相信在中国生产加强型小牛血清将大大推动中国血清生产行业的发展,将把中国的血清生产技术提高到世界先进的水平,”Ken Berger先生表示,“对于公司而言,更加稳定的货源和更加快捷的供应将使我们可以更好地服务广大国内的客户。另外,随着生产规模的扩大,相信我们还有望将中国的优质小牛血清出口到周边国家和地区,使中国的丰富资源得到充分的利用、创造更高的价值。” 赛默飞世尔科技生命科学部 全球总裁Ken Berger先生 关于Thermo Fisher Scientific(赛默飞世尔科技,原热电公司) Thermo Fisher Scientific(赛默飞世尔科技)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约30,000人,在全球范围内服务超过350,000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请浏览公司的网站:www.thermofisher.com或www.thermo.com.cn
  • 一种快速测定牛奶中乳清蛋白/酪蛋白比的方法
    21世纪,全球各个国家都处在一个经济、信息、科技多方面高速发展的时期。经济的发展提高了绝大多数人们的生活水平,信息科技的大爆炸拓展了人们的视野和见识,科技的进步为人类的持续发展和安全提供源动力。然而,事物通常都具有两面性,给我们带来便捷和效益的同时,也将衍生诸多问题。食品安全问题愈发严峻,便是当今经济、信息、科技发展的副产物。食品企业追求经济利益最大化时,往往利用一些不法的伪科学手段来降低企业生产成本,损害人们的身心健康安全。层出不穷的食品安全事件,尤其在乳制品行业年年都接连不断地爆发,如同挥之不去的梦魇,在这个信息大爆炸的时代,迅速传播,不断地刺痛着人们越来越越敏感脆弱的神经。 日前,香港商业调查机构CER公司公布报告称,某洋品牌配方奶粉远未达到国际标准甚至是中国所能接受的最低标准,被指最差洋奶粉。质量最差门主要是该品牌1段婴幼儿配方奶粉,乳清蛋白和酪蛋白比例不合格。说明称,乳清蛋白中含有高浓度、比例恰当的必需氨基酸,还含有为新生儿必需的半胱氨酸。乳清蛋白还含有包括免疫球蛋白和双歧因子等免疫因子。对于宝宝而言,乳清蛋白是一种优质蛋白,因为它容易被消化,蛋白质的生物利用度高,从而有效减轻肾脏负担。酪蛋白中含有丰富的必需氨基酸,还含有婴儿特别需求的蛋氨酸、苯丙氨酸及酪氨酸。酪蛋白中结合了重要的矿物元素,如钙、磷、铁、锌等。但是,酪蛋白是一种大型、坚硬、致密、极困难消化分解的凝乳。过量的酪蛋白会产生较高的肾溶质负荷,给宝宝肾脏带来较重的负担,对宝宝是不安全的。 乳清蛋白和酪蛋白各有好处,但合适的比例还是应该以母乳作为黄金标准。母乳中乳清蛋白和酪蛋白的比例为60 : 40(而普通牛奶中乳清蛋白和酪蛋白的比例为18 : 82)。而此次被检测出的该品牌奶粉,乳清蛋白和酪蛋白的比列为41 : 59。国际食品法典委员会(CAC)在&ldquo 婴儿配方食品及特殊医学用途婴儿配方食品&rdquo 标准中,没有对产品中乳清蛋白的比例提出要求,而推荐以必需和半必需氨基酸的含量是否接近母乳作为婴儿配方食品中蛋白质质量的判定依据。其他国家和地区(包括美国、欧盟和澳大利亚、新西兰等)均未规定乳清蛋白在蛋白质中所占比例。我国国家标准GB10765-2010《婴儿配方食品》中,要求&ldquo 乳基婴儿配方食品中乳清蛋白含量应&ge 60%&rdquo ,即以乳或乳蛋白制品为主要原料的婴儿配方食品中,乳清蛋白所占总蛋白质的比例应大于等于60%。该要求主要是参考了母乳中乳清蛋白和酪蛋白的比例,沿用了我国GB10766-1997《婴儿配方乳粉ⅡⅢ》中关于乳清蛋白比例的相关规定。 各种品牌的婴儿奶粉都在宣称"接近母乳",其中乳清蛋白和酪蛋白的比例是一个重要的指标,因为它能提供最接近母乳的氨基酸组合,更好地满足宝宝的成长需要。实际上,牛奶中酪蛋白含量的测定对于乳制品和奶酪制品生产商也都具有重大的经济意义。厂商通过测定酪蛋白含量,可以精确预测利用牛奶生产奶酪的产量。目前,市场上已经有一种快速测定乳清蛋白和酪蛋白比例的方法,是由美国CEM公司提出,在一些实验室应用推广。原理上是利用快速真蛋白测定仪,测得总蛋白含量后,沉淀及过滤酪蛋白,再测量乳清蛋白含量,能够快速精确得出酪蛋白含量,从而确定乳清蛋白和酪蛋白比例。整个过程仅需约15分钟,精确度和重复性相比其它凯氏定氮法和凝胶色谱法等更高,且没有污染性、腐蚀性试剂。这种高效而环保的方法值得推广,使用。 美国 CEM SPRINT 真蛋白质测试仪 更多详情,请联系培安公司: 电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288 Email: sales@pynnco.com 网站:www.pynnco.com
  • 干血斑分析技术进展与应用——基于干血斑的蛋白质分析技术
    干血斑(Dried Blood Spot, DBS)是一种微量血液采集、干燥和储存的生物采样技术。该技术由Robert Guthrie于1963年首次应用于新生儿苯丙酮尿症(PKU)筛查[1]。相比于临床检验中常用的液态血液基质,干血斑技术具有采血量少、操作简便、一般不需冷冻或冷藏、储存和运输成本低等优点,已应用于新生儿疾病筛查、流行病学样本分析、药物研发等领域。将干血斑应用于蛋白质研究,拓宽了蛋白质分析研究的生物样本采集形式,具有很好的临床研究和实际应用价值。本文重点讨论两种常见干血斑蛋白质分析技术及应用。1. 基于干血斑的蛋白分析技术1.1 酶联免疫吸附分析法原理:酶联免疫吸附分析法(ELISA)是指将可溶性的抗原或抗体结合到聚苯乙烯等固相载体上,利用抗原抗体特异性结合,进行免疫反应的定性和定量分析,具有灵敏、特异、及易于自动化操作等特点。根据免疫识别和信号输出方式的不同,ELISA可以分为双抗体夹心法、直接免疫竞争法和非直接免疫竞争法等。实验材料及分析仪器:研究人员可通过购买固相载体、抗体或抗原进行包被制备ELISA试剂盒或购买市售试剂盒。酶联免疫吸附测定试剂盒已成为实验中不可缺少的工具,目前国内外Elisa试剂盒生产厂家很多,如上海酶联生物、Abcam、BioVision等,科研人员可根据研究需求选择高质量的试剂盒品牌,以提升分析效率及结果有效性。干血斑处理:以干血斑HIV分析为例:用HIV阴性混合血液样本对阳性混合血液样本进行梯度稀释后,以固定体积点样至干血斑收集卡,室温下干燥。采用干血斑打孔设备获得一定直径的干血斑样片,用300 μL PBST(0.05% Tween20)室温静置洗脱,洗脱液经酶标仪测定样本吸光度值(OD值)。分析和结果处理:以标准曲线样品的浓度为横坐标,以测得的OD值为纵坐标,根据不同类型ELISA本身的特点拟合标准曲线(如竞争法和夹心法可以采用四参数拟合回归方程),选择R值大于0.99的拟合方式,并根据标准曲线计算样品浓度。分析仪器:酶标仪(MicroplateReader)即酶联免疫检测仪,是对酶联免疫检测(EIA)实验结果进行读取和分析的专业仪器。酶标仪可分为普通酶标仪和多功能酶标仪,普通酶标仪的主要功能一是充当分光光度计的角色,二是基于免疫反应的ELISA分析,价格相对较低;多功能酶标仪可实现吸光度、荧光强度、时间分辨荧光、荧光偏振和化学发光等多种检测模式拓展,满足生化分析、免疫检测、细胞研究、药物筛选和机制探索等众多领域检测需要。目前酶标仪市场常用的仪器品牌进口的有:伯腾、帝肯、美谷分子、珀金埃尔默和赛默飞等;国产的有:安图生物、奥盛和闪谱等。1.2 基于质谱技术的蛋白质分析技术基于质谱(Mass Spectrometry, MS)技术的蛋白质分析方法具有高通量、自动化程度高、分离能力强等特点,已逐渐成为蛋白质分析和鉴定的重要技术。原理:蛋白酶将样本中的蛋白质消化成肽段混合物,可采用鸟枪法(Shotgun)对蛋白组进行全谱分析,在最小限度分离蛋白质的同时实现复杂混合物中成千上万种蛋白质的鉴定和定量;或用液相色谱法(Liquid Chromatography, LC)对酶解肽段进行分离,经基质辅助激光电离(MALDI)或电喷雾电离(ESI)等软电离技术将其离子化,带电蛋白质离子通过质量分析器将具有特定质荷比的肽段离子分离,然后经检测器分析。质谱技术与干血斑技术的结合为蛋白质组学研究和蛋白生物标志物筛选提供了强有力手段。图1 基于质谱技术的蛋白质组学分析流程[2]样本处理:采用干血斑打孔设备获得一定直径的干血斑样片,转移至EP管中,加入少量水后用组织研磨器或匀浆机快速、彻底破碎干血斑样片,剧烈摇晃试管。后续处理与常规样本的蛋白提取相似:加入蛋白裂解液(如SDS、SDC、RIPA等),冰上裂解约半小时(辅以震荡),低温、高转速离心后取上清,得干血斑蛋白提取物。分析和结果处理:蛋白质组学数据分析和结果处理包括:①应用数据库搜库对蛋白进行鉴定并相对定量分析,借助如主成分分析、相关性分析、聚类分析等方法掌握数据的整体情况;②对蛋白的生物学功能进行注释,例如GO功能注释、KEGG注释等;③通过蛋白的生物学功能或参与的信号通路可以进一步筛选与研究目标相关的蛋白进行后续的分析。分析仪器:蛋白质组学分析主要使用高分辨液质联用系统进行。可进行蛋白质组学分析的液质联用系统目前以进口为主,常见仪器主要有布鲁克、赛默飞、沃特世和SCIEX的Q-TOF、Q-Orbitrap、Q-Trap质谱仪等。2. 干血斑蛋白分析应用实例分享2.1 采用ELISA法分析干血斑中HIV抗体1996年美国食品药品监督管理局(FDA)批准了以干血斑为载体的样本邮寄传递检测模式,并证明其可作为传统检测模式的良好补充,极大地推动了干血斑技术在传染性疾病分析中的应用。在我国,全国艾滋病检测技术规范(2020年修订版)第二章第4部分“常规HIV抗体或HIV抗体抗原联合检测方法”中指出:ELISA试验可使用血液(包含血清、血浆和干血斑)或尿液样本检测HIV抗体,也可联合检测HIV抗体抗原,说明干血斑在基于ELISA技术的HIV抗体检测中是可代替血浆、血清的生物样本基质,具有广阔的应用前景。近年来,相关专家多推荐受检者使用HIV自主采样包,根据说明采集干血斑样本,匿名寄至专业实验室,通过电话等方式获取结果。图2 RDA Spot公司的干血斑自主采样包(包含一次性采血针,消毒湿巾,样本采集卡,使用说明书及用于运输的特殊包装)图片来源:https://www.rdaspot.com/2.2 基于质谱技术的干血斑蛋白质组学分析研究人员建立了应用Thermo UltiMate 3000 RSLCnano纳升液相色谱联合Q Exactive HF-X质谱技术的干血斑蛋白质组学分析方法,并于2020年在Journal of Proteome Research中报道了该项工作[3]。由于全血中含有较多可溶性蛋白(如血红蛋白、白蛋白、纤维蛋白原等),研究人员为克服干扰、提高分析灵敏度,采用碳酸钠沉淀法(SCP)成功去除干血斑中可溶性蛋白并富集目标分析物疏水性蛋白。采用基于数据非依赖采集模式(DIA)的蛋白质组学分析方法,进行EMBL-EBI(针对人类蛋白GO功能分析的综合注释数据库)蛋白组学搜库分析,通过限定质谱扫描范围和延长离子累积时间等提高了分析方法的检测灵敏度。该研究最终在健康受试者干血斑样本中鉴定到1977种蛋白质,其中包含585种疾病相关蛋白。3. 小结与展望干血斑是一种先进的血液采集及保存技术,具有操作简单、对人体损伤小、便于运输和储存等优势,在临床快检中受到关注。干血斑技术与蛋白质研究的结合将有效推动蛋白质研究成果临床转化。随着分析技术的发展和相关研究的不断深入,前处理自动化仪器、高通量分析仪器和成熟的蛋白分析流程将成为干血斑蛋白质分析的有力工具,干血斑蛋白质分析定将在蛋白质分析中发挥重要作用,为高通量诊断、差异蛋白分析和疾病生物标志物挖掘等拓展新的技术平台。参考文献:[1] R. Guthrie, & Susi, A., A Simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants., Pediatrics, 32 (1963) 338–343.[2] B. Kuster, M. Schirle, P. Mallick, R. Aebersold, Scoring proteomes with proteotypic peptide probes, Nature Reviews Molecular Cell Biology, 6 (2005) 577-583.[3] D. Nakajima, Y. Kawashima, H. Shibata, T. Yasumi, M. Isa, K. Izawa, R. Nishikomori, T. Heike, O. Ohara, Simple and sensitive analysis for dried blood spot proteins by sodium carbonate precipitation for clinical proteomics, Journal of proteome research, 19 (2020) 2821-2827.
  • 青年才俊上演计算蛋白质组学头脑风暴——记CNCP 2016新技术
    记第四届中国计算蛋白质组学研讨会(CNCP-2016)新技术  仪器信息网讯 2016年8月10日-11日,第四届中国计算蛋白质组学研讨会(CNCP-2016)在中国科学院大连化学物理研究所盛大召开。(相关新闻:第四届中国计算蛋白质组学研讨会(CNCP-2016)在大连开幕)。本届研讨会邀请了26个大会报告,报告嘉宾是来自国内外的计算蛋白组学领域专家和奋战在第一线的青年科研工作者,嘉宾中的绝大多数是首次登上CNCP讲坛。报名参加本届会议的人员首次超过了200人。CNCP2016C参会代表合影张丽华研究员为研讨会致开幕辞  本届会议的开幕式只有简短的5分钟,没有领导讲话,没有任何仪式,充分体现了会议的简洁办会特色。开幕式由中国科学院大连化学物理研究所的张丽华研究员致欢迎词,她提到:“中国计算蛋白质组学研讨会在业界享有很高盛誉。每次会议的演讲嘉宾都是由会议发起者和主办方——中国科学院计算技术研究所贺思敏研究员、北京蛋白质组研究中心徐平研究员、北京生命科学研究所董梦秋研究员等资深学者以及往届会议报告人鼎力推荐的。本次研讨会的26个报告将由来自国内外相关领域的顶级专家和奋战在科研第一线的青年才俊精彩呈现。相信在这两天的会议中,大家不仅能够收获知识,也能收获友谊。”研讨现场  CNCP-2016会议邀请的26个报告多数都是最近一两年的研究成果,部分还没有发表,新技术频繁现身,特别是在交联质谱技术与蛋白质复合体,蛋白质相互作用、翻译后修饰技术、蛋白质鉴定数据处理、定量蛋白质组技术等领域报告较多,下面对这26个报告的内容逐一进行简介总结。  UCI(美国加利福尼亚大学尔湾分校)黄岚博士 报告题目《Developing Cross-Linking Mass Spectrometry (XL-MS) Strategies to Define Interaction and Structural Dynamics of Protein Complexes》  了解蛋白质复合物的相互作用和结构动力学对于揭示病理的分子学细节非常有帮助。交联质谱(XL-MS) 是目前研究大量多亚基蛋白复合物PPIs的重要技术,而精确的肽段鉴别是XL-MS分析一直以来面临的挑战。为了促进这方面的研究,黄岚博士研究组研发了DSSO 及一系列含亚砜(sulfoxide-containing)可分裂质谱交联剂以揭示蛋白质复合物表面相互作用机理。研究者通过这些(MS-cleavable reagents)质谱可分裂试剂在多级串联质谱上建立了实用的XL-MS工作流,快速、准确的鉴别交联肽段去研究体内和体外的PPIs。同时,研究者也研发了新的定量XL-MS途径,用以分析多种生理条件下蛋白质间的相互作用和蛋白质复合体的结构动态变化。据介绍,该课题组最近研发了新的羧基交联剂DHSO主要用来与酸性氨基酸反应,反应中需要DMTMM共同作用。 这样可以得到更广的蛋白相互作用信息。北京生命科学研究所 谭丹博士 报告题目《Trifunctional Cross-Linker for Mapping Protein-Protein Interaction Networks and Comparing Protein Conformational States》  该研究组最近有一项研究工作围绕一种含生物素标签的赖氨酸富集交剂Leiker,谭丹博士在报告中详细展示了课题组的相关研究,研究表明Leiker能够有效改进蛋白质化学交联质谱技术(CXMS)。研究组将以Leiker为交联剂的CXMS用于E.coli全细胞裂解液的分析,发现了3656种相互作用,是之前已有研究方法的10倍。Leiker CXMS比BS3得到的信息要立体很多,能得到更全面的蛋白质相互作用网络。研究者还将Leiker为基础的CXMS用于RNA结合位点鉴定与定量,该方法能够深入揭示蛋白质构象变化。在将Leiker CXMS用于大肠杆菌和秀丽线虫裂解液中的研究中,分别鉴定出3130和893个互补赖氨酸对,并各自发现了677和121种PPIs。Utrecht University (荷兰乌德勒支大学) 刘凡博士 报告题目《Charting the Cellular Interactome by Proteome-Wide Cross-Linking Mass Spectrometry》  据刘凡博士介绍,针对交联数据分析的n-square和交联肽段低效裂解这两大难题,该研究组建立了一种新XL-MS工作流-质谱可分裂交联剂法。该法是一种混合MS2-MS3裂解途径与专用的交联搜索数据库结合的方法。研究者将质谱裂解交联剂DSSO应用于测定每个交联肽段的前体质量,解决了n-square问题。交联裂解前体离子可通过质量差异确定数据的MS3采集方向,这些工作都可以在Oribitrap Fusion 和 Lumos Tribrid质谱上完成。这种采集途径提高了MS3实验的成功率,能够解决低效裂解问题和显著改善数据质量。与先前方法相比,报告中介绍的新方法包含以下三个优势。1)能够完成整体蛋白组数据库的交联鉴别 2)包括多种翻译后修饰的交联鉴别 3)在MS2和 MS3水平都有高质量范围。该研究组将此新XL-MS方法用于多种复杂样本,包括大肠杆菌裂解物、HeLa裂解物、排阻色谱分馏的HeLa细胞核提取物与细胞器。采用这种方法能够从每种样本得到成千上万个交联点。中国科学院计算技术研究所 刘超博士 报告题目《Development of the Cross-Linked Peptides Identificationin Large Scales》  由于检索空间过于庞大,蛋白组范围内交联肽段(双肽)的鉴定一直都是一项挑战。刘超博士和其团队考察了用于大范围交联肽段鉴定的普通搜索工具的应用效果,并开发了一种新的计算软件技术pLink 2.0。此技术比先前技术有三方面的改进:1)提高了双肽中单同位素鉴定的精度 2)由肽段索引升级为离子索引 3)引入机器学习(SVM在线训练)。该团队研究表明,通过使用离子索引pLink2.0检索人类数据库,在一小时以内可以完成5000张谱图的检索。干湿结合方法在人库检索1万张二级谱图仅用时不到2分钟。将pLink 2.0与美国西雅图研究人员研发的Kojak相比较,pLink2.0的分析速度约为Kojak的6倍,在精度方面也有一定优势。pLink2.0支持可碎裂交联,可减少可搜索空间和减少谱图数目。华中师范大学 万翠红博士 报告题目《Mapping Conserved Metazoan Protein Complexes with Biochemical Fractionationand LC/MS/MS》  对多蛋白复合物的了解对于生理进程探索非常重要。然而,对多蛋白复合物种类的分布特别是大规模网状图的发现比较困难。万翠红博士研究组通过高分辨生化分离与定量质谱直接分析了可溶性多蛋白复合物的组成,分析C.elegans、D.melanogaster、M.musculus、S.purpuratus和人类的可溶性细胞提取物。研究组采用以人类为中心的综合计算分析,鉴别出2153种蛋白,并新鉴定出7699种成对相互作用和981种共复合作用。这些相互作用能够反映后生动物生理过程相关的核心生理基础。重建的生理作用网有助于深入了解特殊的分子生物机理以及动物细胞的进化。国家蛋白质科学中心 郑勇博士 报告题目《Scaffold Protein-Mediated Dynamic Assembly of Protein Complexes in Normal and Cancer Cells》  很多细胞表面受体通过催化多组分蛋白复合物的形成开始信号传导过程。这个过程通过与受体结合的scaffold蛋白来传导。然而,目前这种scaffold的生物学基本原理仍不明晰。针对这个问题,郑勇博士研究组通过以IP-MRM为基础的方法,根据Shc1复合信号跟踪其空间和实时变化。研究人员进一步将这种方法与生化和基因技术结合,研究组发现Shc1以特殊的方式对EGF有即时的反应,包括明显的磷酸化和蛋白质相互作用。研究人员成功发现Shc1与一种抑制蛋白产生相互作用,是一种快速绑定蛋白基团能够激活促有丝分裂/存活通路,蛋白复合物围绕Shc1的装配变化在细胞间非常显著。对EGFR/Shc1复合物蛋白组分析能为以pTyr为基础的致肿瘤信号导致的乳腺癌提供诊断依据。暨南大学 张弓博士 报告题目《High-Throughput De Novo Proteome Identification Aided by Translatome Sequencing》  De novo肽段序列鉴定能够避免依赖数据库的检索法的缺点,但由于由于没有背景库,无法评估FDR,且极易受到干扰信号误导,因此长期以来无法应用于复杂样品的大规模鉴定。张弓教授介绍了研究团队研发的利用翻译组测序数据作为蛋白质de novo鉴定质量控制新方法,使肽段de novo鉴定能首次应用在蛋白质组复杂样品的实用化鉴定。研究人员在HCD质谱上应用此方法检测三种肝癌细胞(Hep3B, MHCC97H, MHCCLM3),单次实验鉴定出12000-13000种蛋白质,其灵敏度几乎达到了翻译组测序的水平 而用6种搜库软件鉴定到的真阳性蛋白并集也才7000-8000种。只能用新策略鉴定的4000余蛋白中随机挑选几十个进行MRM验证,几乎都能验证成功。这证明翻译组指导的de novo鉴定效能很高,能鉴定到大量搜索库法无法鉴定到的肽段和蛋白。De novo鉴定的大规模化可引致一系列新的蛋白质组应用。上海生命科学院 李辰博士 报告题目《De Novo Identification and Quantification of Single Amino-Acid Variants in Human Hepatocellular Carcinoma Tissues》  肿瘤蛋白质组-基因组学研究非常关注变异的发现。单核苷酸的多变性(SNPs) 数据库能够给单个氨基酸变体(SAVs)的检测提供依据。李辰博士在报告中介绍了一种在蛋白组水平发现SAVs的新方法。该法基于de novo算法,肽段的可能候选者可被鉴别并与理论蛋白数据库比较。在人类肝癌(HCC)组织中,研究者成功的应用此方法鉴别和定量已知和新的突变蛋白。在肝组织当中,在细胞核内的突变比较低,突变在内质网和线粒体的富集比例较高。这种新方法为病人提供了高通量的定制检测途径,可能为潜在临床生物标志物发现和机理研究提供帮助。中山大学 肖传乐博士 报告题目《Improving Peptide Identification for Tandem Mass Spectrometry by Incorporating Translatomics Informatio》  目前很多数据库检索方法是利用谱学数据而忽略能用于肽段鉴定的生物系统的其他信息。最近,转录物组RNA-seq的界面信息能提高肽段鉴别的灵敏度已经证实。与转录物组信息相比,翻译物组体现出与蛋白质的关系更为紧密,所以其可能对肽段鉴别更有效。在此报告中,肖传乐博士介绍了该研究组设计的高灵敏度肽段鉴定手段IPomics,其以翻译组学信息为主要蛋白鉴定参考。方法得到的推荐蛋白质优先性整合进了新的评分功能。与Mascot和pFind相比,IPomics方法蛋白质鉴定准确度更高,并能够增加整体肽段的鉴定率、谱学信息利用率,并已经利用LC-MS/MS数据集在人类和小鼠蛋白鉴定取得了显著效果。华大基因(BGI-Shenzhen) 闻博 报告题目《Protein Identification and Quantification based on Multiple Search Engines》  闻博在报告中介绍了团队有关以多搜索引擎为基础的蛋白鉴定和定量软件的研究进展。目前,串联质谱技术产生的质谱数据解析率往往不高,不同蛋白质鉴定软件由于谱图预处理、打分算法不同等原因导致对同一个数据的解析结果往往存在一定的互补性。虽然有一些开源的软件可以通过精巧的运算将多个鉴定引擎的鉴定结果整合起来取得与单引擎相比更好的鉴定效果,但由于操作往往较为复杂、下游软件比较缺乏等原因,故没有在蛋白鉴定与定量中推广开来。为了促进多引擎整合方法在蛋白鉴定和定量中的应用,该研究组研发了一种多引擎综合鉴定的开源软件IPeak和同重同位素(如iTRAQ、TMT)标记定量软件IQuant,并将IQuant升级到IQuant2。IQuant2采用精妙的算法和mzIdentML标准,整合多引擎搜索结果进行蛋白质定量。在分析水稻蛋白样品(用Q-Exactive分析)和人细胞系蛋白(用TripleTOF 5600分析)样本时,与单个引擎定量结果相比,IQuant2定量的蛋白能提高28.8%,检测的差异蛋白数量能提高多大40%。多引擎搜索不但能够提高蛋白鉴定效果,也能提高蛋白定量效果。中国科学院水生生物研究所 葛峰博士 报告题目《GAPP: a Proteogenomic Software for Genome Annotation and Global Profiling of Posttranslational Modifications in Prokaryotes》  葛峰博士在前期蓝细菌的蛋白基因组学研究工作的基础上,开发了一种用于原核生物的基因组注释和翻译后修饰全局发现的蛋白基因组分析软件GAPP。该软件最大的特点就是简单高效,具备初步生物信息学知识的研究者就能应用该软件进行原核生物的蛋白基因组数据的深度分析,利用该软件可以高效完成原核生物的全蛋白质组解析和翻译后修饰的全局发现的工作,该软件的开发和应用将有助于原核生物的基因组的精准鉴定,并有望成为原核生物基因组注释的一项标准流程。今后研究组还将根据用户的要求和体验继续对该软件进一步升级。复旦大学 周峰博士 报告题目《Genome-Wide Quantitative Proteomic and Transcriptomic Analysis Reveals Post-Transcriptional Regulation of Mitochondrial Biogenesis in Human Hematopoiesis》  蛋白质组学样品分析需要高分辨分离平台,周峰博士研究组搭建了一种长色谱柱三维蛋白组学定量分析平台(GWPQ), 整套系统完全在线和实现操作自动化。研究者将在此平台建立的蛋白质组学方法与Ribosome profiling相比较,水平相当,在分析模型样品时有80%的重叠。研究者还用此方法开展了人体造血相关细胞的研究,二代测序与应用该平台的蛋白质组方法重叠率达到92%。研究团队利用此方法比较了人体最重要的造血干细胞和红细胞发育中14502个基因蛋白表达变化和17127个基因mRNA表达变化。mTORC1信号极大的促进了红细胞进化中线粒体蛋白的翻译,线粒体和mTORC1的遗传和药理学干扰削弱了体内和体外的红细胞生成。该研究支持了线粒体理论机理,可能与线粒体疾病和老化相关的血液缺陷有关。研究者用模式生物小鼠实验验证了线粒体在血红细胞发育中起到关键作用,找到了全新控制血红细胞发育的通路。Johns Hopkins University(美国约翰霍普金斯大学) 张会博士 报告题目《Comprehensive Analyses of Glycoproteins》  已有不少实验证明,糖蛋白的变化与很多疾病相关。张会博士介绍了糖蛋白的生物合成、结构和功能以及分析糖蛋白的最新方法。糖蛋白的分析是蛋白质分析中最复杂的一种。研究者常把糖和蛋白分开分析,如已有的SPEG(固相提取糖基位点肽)法。该研究组建立了N-糖蛋白数据库,该库可用于检索已鉴定蛋白、通过精确质量数检索候选肽段、鉴定糖蛋白源等。该研究组最近还建立了分析N-linked糖链,糖基化位点,糖基化位点特异糖链,及O-linked糖链分析方法和软件,并探索了用糖基化酶推测多糖的方法。中国科学院大连化学物理研究所 于龙博士 报告题目《Isolation and Structural Analysisof N-Linked Glycansby Using Two-dimensional Chromatography, Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy》  糖蛋白糖链的纯化合物对糖链的结构分析、精准检测以及功能研究都具有十分重要的意义。然而,目前糖链纯化合物仍处于严重匮乏的状态。来自大连化物所的于龙博士介绍了该团队根据自身优势,采用纯化制备方法来获取N-糖链纯化合物并对其结构进行解析的相关研究进展。研究者首先介绍了糖链的结构特点并对其分离分析中存在的难点问题进行了阐述。针对这些难点问题,研究者结合课题组的材料优势,构建了以二维亲水作用色谱分离体系为核心的糖链纯化制备流程,该流程包括糖蛋白糖链的释放、富集、二维分离、质谱表征以及核磁结构分析等技术单元。在二维色谱分离体系中,第一维度主要根据糖链的羟基数量而实现不同聚合度糖链的分离,第二维度主要用于同分异构体的分离。由于串联质谱技术并不能得到糖链准确的结构信息,因此,研究者目前正在探索核磁共振技术进行准确结构的分析。以现有的糖链纯化合物为基础,研究者接下来将分别在功能、结构和定量三方面开展相关研究以拓展糖链样品库的应用。青岛大学 李磊博士 报告题目《Ultra-Deep Tyrosine Phosphoproteomics Enabled by a Phosphotyrosine Superbinder》  酪氨酸磷酸化网络应用在蛋白组学中不容忽视,如何找到pY尤为重要,但之前方法需要大量抗体才能富集pY。为解决业内这一问题,李磊博士研究组做了不少相关研究,团队研发的Superbinder(超亲体)易于制备,能够有效减轻实验室经济负担。研究者合成了pTyr1和pTyr2两个肽段,比较了SH2 superbinder法与其他几种方法的效果,又增加了Ti4+IMAX的去噪功能,证明其能有效富集pY。与抗体相比,src和grb2超亲体都能有效发现更多pTyr位点。研究者还应用superbinder富集方法进行了Tyr 磷酸化蛋白组学研究。如探索人细胞磷酸化蛋白不同功能分类和Tyrosine kinase (TK)的生物活性等。该项研究是与中科院大连化学物理研究所邹汉法团队、加拿大西安大略大学李顺成团队多方合作完成的。University of Minnesota (美国明尼苏达大学) 陈悦博士 报告题目《Discovery and Characterization of Short-chain Lysine Acylations with Mass Spectrometry and Quantitative Proteomics》  赖氨酸是细胞内蛋白质翻译后修饰的重要靶点。最近,除了赖氨酸乙酰化以外还有一些短链酰基化修饰逐渐被发现。在陈悦博士的早期研究工作中,他从细致的质谱分析中发现了组蛋白赖氨酸丙酰化和丁酰化,两种新的短链酰基化修饰。进一步的研究表明,这两类短链酰基化修饰都是广泛存在的,并可以被特定的酶所调控。最近最新的研究表明赖氨酸丁酰化在Bromo domain识别和精子发育过程中起到重要的调控作用。为了进一步探索质谱信息中隐藏的其他新的修饰,研究者设计了PTMap软件,用来分析非限定性搜索,得到了一些可靠的新蛋白质修饰鉴定,包括琥珀酰化,巴豆酰化,羟基丁酰化等。在定量研究方面,该团队比较关心蛋白质修饰丰度,因为普遍使用的相对定量的分析方法对解释蛋白质修饰的生物学意义有一定的局限性,但是质谱分析得到的离子峰强度并不能直接比较来计算蛋白质修饰的丰度。研究者针对此问题开发了稳定同位素标记为主的新的蛋白质修饰丰度定量方法,可以直接比较离子峰强度,通缩计算得到每个位点上赖氨酸位点丰度,准确性和重现性都很好。中国科学院昆明动物研究所 赖仞博士 报告题目《Mite Allergen Diversity Identification by Proteomics Coupling with Pharmacological Testing》  螨虫、马蜂、牛虻和蟑螂等带有很多种过敏原,一些过敏甚至会导致死亡。过敏的标准治疗方式就是利用过敏原进行脱敏治疗,现在很多机构希望把过敏原纯化出来进行过敏治疗,因此对过敏原发现和提取纯化都有更多要求。屋尘螨(HDM) 是最常见的室内过敏原。赖仞博士希望结合蛋白质组学、药理和病理学手段来进行过敏原的多样性研究。过敏原蛋白组学研究一般是将分离提取出的过敏原与病人血清进行IgE反应。赖仞研究组将蛋白组学技术和二维免疫印迹法结合,从粉尘螨提取物中鉴定出分属于12个组群的17种过敏原,由Edman降解、质谱分析和cDNA克隆等技术鉴定出其一级结构。通过酶联免疫吸附试验抑制测试、免疫印迹、粒细胞活化试验、皮肤点刺试验测定,该研究组发现了8种新的尘螨过敏原。中国医学科学院基础医学研究所 邵晨博士 报告题目《Opportunities and Challenges for Urinary Biomarker Discovery Using Proteomic Approaches》  邵晨博士对业内目前围绕尿蛋白质组生物标志物的发现研究进展进行了综述。据介绍,现在很多科研和医疗开始倾向于做尿液,因其具有易得性和稳定性,且含有丰富蛋白信息。邵晨博士研究组曾通过二维液相与串联质谱鉴定做了一些尿中蛋白质组的研究,尿液蛋白质组可以包括其他体液70%的蛋白质。研究组也通过3DLC-MS/MS鉴定出尿液中的6400多种蛋白,并发现与尿蛋白重合率最高的是脑组织中的高表达蛋白。尿蛋白能够反映很多远端的变化,如帕金森症和脑肿瘤等脑部疾病。在肾脏病中,肾小球损伤病人的肾小球会失去过滤功能而造成尿蛋白显著上升。目前很多研究发现尿蛋白中的生物标记物与一些疾病相关,主要集中在泌尿系统疾病的发现,如膀胱癌和急性肾损伤的标志物已获FDA批准,也有在消化系统疾病、肿瘤等疾病中的相关发现。其中,肺癌的研究比较成熟且已进入临床阶段。
  • 26家药企涉非法银杏叶提取物 行业监管难度大
    p   20日,食药总局通报了26家问题药品企业名单,并将在全国范围内组织开展银杏叶药品专项治理。 br/ /p p   据悉,食药总局在对低价销售银杏叶药品企业的飞行检查中发现,桂林兴达药业有限公司和万邦德(湖南)天然药物有限公司违规改变银杏叶提取生产工艺、非法生产提取物,并将这些产品销售给包括云南白药(000538.SZ)、仟源医药(300254.SZ)、方盛制药(603998.SH)三家上市公司在内的24家医药企业。 /p p   对此,仟源医药证券事务代表薛媛媛向21世纪经济报道记者表示,双方合作之前有考察过公司资质,并通过了备案审查,但是后期为什么出现这一产品质量问题,还需要进一步的调查。 /p p   “企业改变加工工艺,主要是为了节约成本,同时形成价格优势。”卓创资讯中药行业分析师张斌认为:“中药提取物目前也没有明确的行业标准。之前在中药提取物行业并没有强制进行GMP改造,加上委托代加工现象比较多,行业监管难以展开。” /p p   26家药企中招 /p p   根据通报,桂林兴达药业有限公司将银杏叶提取生产工艺由稀乙醇提取改为3%盐酸提取,同时从不具备资质的企业购进以盐酸工艺生产的银杏叶提取物,用于生产银杏叶片,并将外购的提取物销售给其他的药品生产企业,伪造原料购进台账和生产检验记录。 /p p   而万邦德(湖南)天然药物有限公司则是用购进的银杏叶提取物生产银杏叶片和银杏叶胶囊等制剂,伪造原料购进台账和生产检验记录。 /p p   “银杏片的主要药效成分是黄酮,黄酮是属于脂类,不是溶性物质,所以在提取过程中必须使用醇类物质。因为使用甲醇提取的成品毒性会比较大,所以主要使用稀乙醇。”张斌告诉记者,该企业使用盐酸来提取会不会导致酸性超标,是一个比较重要的检测方向,需要看企业的用量和使用方式。 /p p   据了解,银杏叶提取物的化学成分中含有银杏酸这一有害成分,可引起严重的过敏反应,还会引起基因突变、神经损伤等。鉴于此,2010年版《中国药典》对银杏叶制剂规定,银杏酸含量应在10ug/g以下。而市场上银杏叶提取物的质量参差不齐,主要表现在银杏酸含量的控制的不同,其价格亦相差悬殊。 /p p   “相比较稀乙醇,盐酸成本便宜很多,价格大概是稀乙醇的六分之一。但是盐酸是强酸,按照制作的过程中加入的比重,对最后成品的影响会不同,酸含量超标也是很有可能的。”医药行业分析师赵镇说道。 /p p   不过,云南白药对这一通报予以否认。21日午间,云南白药发布澄清公告称:“云南白药集团股份有限公司及其所属生产单位以前不生产含银杏叶提取物的任何制剂产品,也从未使用过通告中所提及的& quot 银杏叶提取物& quot 。” /p p   同日,方盛制药亦发布公告称,已成立了由质量部、生产技术部、采购部等相关部门组成的调查小组,对桂林兴达供应的银杏叶提取物展开全面的内部调查。“公司已终止与桂林兴达的所有业务往来,并将依法向其索赔。” /p p   监管难题 /p p   “中药行业所有的标准和行业规范,都是针对原料、饮片和中成药,在中药提取物和制剂领域并没有明确的法律法规和行业标准。提取物在中国药典里面有提到相关的限定和检测,以及生产检测工艺的要求,但也只是一个指导性的大纲。”张斌说道。 /p p   据国家食药监总局(CFDA)数据库资料显示:截止2015年1月,国内生产和进口的银杏叶提取物生产销售厂商已有113家,其中注射剂13家,口服制剂100家。据不完全统计,全国现在银杏加工产业链上的生产经营厂商有300多家,主要生产银杏叶提取物及下游产品,包括药品、保健品、化妆品、食品和饮料等系列产品。 /p p   “虽然生产加工的企业并不多,但是监管还是比较难。”张斌告诉记者,一方面,长期以来中药的加工环节凭借自身的经验,许多加工企业就钻监管的漏洞,按照自己的古方子或者自己比较擅长和习惯的加工流程来操作。另一方面,中药加工企业的整体规模都比较小,在市场竞争中,尤其是面对外资这些外来竞争者,主要还是选择降低成本来获得价格优势。 /p p   而北京鼎臣医药咨询负责人史立臣则认为:“银杏叶提取物行业算不上价格战,厂家转变加工工艺更多的是为了获得更高的利润,因为银杏叶应用领域很多,所以下游的需求也很大。” /p p   据了解,中国是全球第一大银杏叶提取物生产国。由于有效成分含量较多、应用较广,银杏叶提取物制剂早已载入2009年《国家医保药目录》的药物,并牢牢占据了脑血管疾病及抗痴呆中药提取类药物的市场平台。据不完全统计,截止至2013年,国内医院脑血管及抗痴呆药物市场达到225亿元,其中银杏叶制剂市场占据了20%,国内银杏叶制剂市场约为45亿元。 /p p   另据博思数据显示,目前全球银杏叶提取物生产主要集中在中国、德国和法国,2013年,上述三国年度产量占全球总产量的78.3%。 其中,中国银杏叶提取物产量为348.6吨,占同期全球产量的48.52% 德国产量为107.3吨,占比为14.93% 法国产量为106.8吨,占比为14.86%。 /p p   “之前在中药提取物并没有强制进行GMP改造,如果该生产车间是严格按照GMP标准生产的话,那么后期还可以查出问题主要出现在哪个环节。但是如果没有按照GMP改造的话,那很难去追查。”赵镇补充说道。值得一提的是,银杏叶提取物行业迎来整顿潮。国家食药监总局表示,将组织对市场销售的银杏叶制剂进行全面抽验,并对部分企业进行飞行检查,及时向社会公布检验和检查结果。 /p p br/ /p
  • 酵母粉、酵母提取物、酵母浸粉和酵母浸膏的区别您知道吗?
    在给许多客户介绍酵母浸粉时,很多人都会将其与酵母粉混为一谈,经常会问:“酵母浸粉不就是酵母粉吗?”“酵母浸膏和酵母浸粉哪个好呢?” 首先我们了解一下什么是酵母粉、酵母浸粉和酵母浸膏吧! 酵母粉含义:一般是指灭活的酵母,产品成分主要是失去活性的酵母菌体,营养成分包括仍然包裹在菌体内部的粗蛋白、胞壁多糖以及丰富的维生素、生长素、微量元素等。 酵母粉分类:分糖蜜酵母粉与啤酒渣酵母粉两大类,前者专门发酵生产并干燥制成,以糖蜜为主要原料,品质好且质量稳定;后者采用啤酒生产的废料-废啤酒酵母泥为原料,一般采取滚筒干燥制成,成本较低,但杂质较多,酵母细胞较老化,微生物不易吸收利用,品质不稳定。酵母粉主要在传统的抗生素等发酵行业应用较广泛。 酵母粉特点:微生物对酵母粉的营养物质利用率与利用速率较低,发酵完毕后不能利用的残留物(粗蛋白与菌体细胞壁)较多,难以处理。 酵母浸粉含义:又称酵母提取物,是采用新鲜酵母经酵母自溶、过滤、 浓缩、喷雾干燥而得到的一种浅黄色至类白色 干燥粉末。有酵母自然 香味,易溶于水,水溶 液呈淡黄色。酵母浸粉吸湿性,请放阴凉干燥处保存。酵母浸粉当中含有氨基酸类、肽类、水溶性维生素、及酵母多糖、酵母核酸组成的一种混合物,酵母浸粉当中含有丰富的B族维生素和各种氨基酸。核苷酸类、有机酸类、矿物质类及维生素类的水溶性物质。在当中它起的主要作用是补充氮源和提供细菌生长的各种维生素及氨基酸。 酵母浸粉分类:同样可以采取糖蜜发酵的糖蜜酵母和啤酒生产的废啤酒酵母泥为原料生产。 糖蜜酵母生产的酵母浸粉一般品质较高,这一方面是糖蜜酵母发酵经过专业的生产控制,原料品质就比较高,另外啤酒酵母粉为原料也有利于酵母积累更丰富的天然营养成分。另外一方面是以糖蜜酵母为原料的酵母浸粉生产规模可以做的很大,生产厂家可以充分采用先进的生产工艺设备与技术,从生产技术的角度保证酵母浸粉产品的高品质。 酵母浸粉特点:酵母浸粉的生物利用度高,微生物的利用速率快,特别有利于对发酵培养基比较挑剔的营养缺陷型、基因重组工程菌的吸收利用,有助于缩短发酵周期,提高微生物发酵效价;同时发酵残留非常少,有利于发酵废液的环保处理。 酵母浸粉主要用于微生物培养基制备的基础原材料以及生物制药发酵。 酵母浸膏以酵母为原料,采用自溶法或加酶水解法工艺,经分离、脱色精制浓缩而成的,含氨基酸、肽、多肽及酵母细胞水溶性成分的膏状产品。 废啤酒酵母泥生产的酵母浸粉品质一般要大大差于糖蜜酵母浸粉,这主要是因为废啤酒酵母泥本身是啤酒生产的副产物,不存在什么质量控制;另外一方面是废啤酒酵母泥不能长途运输,生产厂家一般只能依赖周边啤酒厂的有限供应,生产规模难以扩大,因此限制了厂家的投资规模,一般只能土法上马,难以把生产技术装备以及所能采取的技术手段提升到理想的状态,导致产品色泽较深、不溶性杂质较多,维生素、生长素等微量营养物质的含量也比较欠缺。 酵母粉和酵母浸粉是完全不一样的产品,更不能混为一谈。 酵母浸粉和酵母浸膏的区别在于酵母浸粉经过高温瞬时干燥所损失的营养成分比酵母浸膏长时间浓缩所损失的营养要少得多,所以酵母浸粉在实际使用中用量更经济,且使用方便,也更易于运输和保存。 酵母浸粉和酵母浸膏应用领域食:品饲料领域、动物营养领域、生物发酵领域、营养保健领域、发酵工业领域:可用于抗生素新药、多肽、核苷酸、B族维生素、生长因子、氨基酸、有机酸、酶制剂、生物防腐剂、原料药、VC及肌苷、生物材料、维生素、微量元素、基因工程等生物工程产业。为微生物发酵培养提供全面均衡的营养 、微生物培养基:假单胞杆菌、醋酸杆菌、葡萄糖酸杆菌、大肠杆菌、枯草杆菌、乳酸链球菌、葡萄球菌、酵母及支原体。
  • 输美植物提取物谨防“杀虫剂残留”
    据美国FDA官方网站统计,今年8月份,中国输往美国的植物提取物有6批次因“含有一种杀虫剂”和“含有一种不安全的农药”而遭拒绝入境,而该类产品2012年全年都未见类似通报。主要产品涉及红景天提取物、欧洲越橘提取物、银杏提取物等。     植物提取物是应用现代提取分离技术从植物原料(水果、药食两用植物、中草药等)中定向获取和浓缩的某一种或多种成分,而不改变其有效成分而形成的产品。按照提取植物的成分不同,形成甙、酸、多酚、多糖、萜类、黄酮、生物碱等。其用途非常广泛,不仅可作为制药行业的主要原料,还可应用于普通食品、保健品、膳食补充剂、化妆品、食品添加剂(色素、甜味剂等)、香精香料等行业。在美、日、韩和欧洲等发达国家和地区,以植物提取物为原料的保健品备受消费者青睐,市场需求逐年上升。     中国提取物出口美国量近两年来不断增长,美国FDA今年以来对植物提取物的关注度提高,对农残限量要求呈不断加严趋势。由于植物提取原料来源广泛,目前FDA对植物提取的质量和农药残留进行判定主要基于以下标准:一是对所有在美国药典(USP-NF)中已经列名的提取物,依据美国药典(USP36-NF31)标准进行判定。二是对于其他在药典中无列名的提取物,农残则按照NF28进行检测和判定(NF28相当于USP36,比USP36的限量指标稍微宽松)。美国基于技术性贸易壁垒的考量,不断加重农残限量检测砝码,一些农药检测限量值一般要求在0.01PPM以下,中国部分野生植物和中药材原料的提取物,都有可能被检测出微量残留而遭拒绝入境,今年国内一些大公司出口量比较大的产品而因此遭到美国FDA退货。   美国是宁波地区植物提取物出口的重要出口市场,为防止相关企业再遭美国通报,检验检疫部门提醒各出口企业一定要谨防输美产品杀虫剂和农药残留:一是要把好植物原料、中药材等采购关,对于种植的原料,要调查清楚种植户的用药情况或相关记录。二是要把好原料验收关,原料进厂时,企业应加强抽样自检,有代表性的抽样送往专业机构检测杀虫剂、农药残留等项目,同时,做好原料的批次验收和核销记录,确保植物提取物产品质量可追溯。三是要把好产品出厂检验关,加强成品检验,尤其是针对提取物有效成分高的产品,由于提取浓缩幅度大,溶剂残留和农药残留更容易超标,一定要加大检测把关力度,以避免不必要的退货损失。
  • 细胞培养,血清VS无血清!
    细胞在体外能够成功生长,培养基的选择及培养方法的优化十分关键。细胞在单纯的培养基中不能存活,各种类型的细胞培养中必须提供某些生长因子、黏附和伸展因子、微量元素等营养物质。传统培养基中一般会添加动物血清如牛血清等。胎牛血清应取自剖腹产的胎牛;新牛血清取自出生24小时之内的新生牛;小牛血清取自出生10-30天的小牛。其中胎牛血清是品质最高的,因为胎牛还未接触外界,血清中所含的抗体、补体等对细胞有害的成分最少。 血清培养的优势与局限采用天然来源的血清作为细胞培养添加物,优势在于提供丰富全面的细胞生长必需的营养,并且提供结合蛋白,能识别维生素、脂类、金属和其他激素等,调节其活性。结合蛋白还能与有毒金属和热原质结合,起到解毒作用。血清还是细胞贴壁、铺展在塑料培养基质上所需因子来源。但血清的使用也存在一定局限性。(1)血清可能含有细胞生长抑制因子和毒性因子,存在潜在毒性;(2)血清的获取成本高,价格较为昂贵;(3)血清由于成分不完全明确,给细胞培养的标准化带来困难,同时也给细胞表达目的产物纯化等下游操作带来困难。 无血清培养优势由于常规血清培养基存在上述问题,近年来无血清培养基越来越受到重视,其开发和应用渐成趋势。无血清培养基不含动物血清或其他生物提取液,仍可使细胞在体外较长时间生长、增殖或维持。无血清培养基可以针对特定的细胞类型配制专用的培养基,如爱必信生物研发推出的人间充质干细胞培养基,可以帮助精确地控制细胞的增殖和分化过程等。无血清培养基尤其应用于哺乳动物细胞的大规模工业培养。同时,它也是研究细胞生长、增殖、分化及基因表达调控的有力工具。无血清培养基具有以下优点:(1)其组成明确,可避免血清不同批次带来的质量变动,提高可重复性。(2)避免血清对细胞的毒性作用和血清源性污染风险。(3)避免血清不明组分对实验研究的影响。(4)有利于体外培养细胞的分化。(5)可提高细胞产物的表达水平并易于纯化。 所以,说了这么多,您是在进行细胞的常规有血清培养还是无血清培养呢?您更看好哪一方呢?爱必信生物提供优质、高性价比的血清产品,降低您的常规细胞培养成本! 货号 品名 规格 价格 abs972 胎牛血清(优级) 500ml 3465 abs973 胎牛血清(优级),辐照 500ml 3675 abs974 胎牛血清(标准级) 500ml 2541 abs975 胎牛血清(标准级),辐照 500ml 2751 abs993 无外泌体胎牛血清 50ml 2478 abs976 新生牛血清(超级) 500ml 2268 abs980 澳洲新生牛血清 500ml 1155 abs981 BHK细胞专用新生牛血清(特级) 500ml 1685 abs983 Vero细胞专用新生牛血清(特级) 500ml 1685 abs985 二倍体细胞专用新生牛血清(特级) 500ml 1685 abs987 CHO细胞专用新生牛血清(特级) 500ml 1685针对现今越来越旺盛的无血清培养需求,爱必信生物特研发推出无血清干细胞培养的全面解决方案:! 产品用途 货号 品名培养基 abs9401 Xeno-Free人间充质干细胞培养基(无酚红) abs9402 Xeno-Free人间充质干细胞培养基 abs9403 人多能干细胞条件培养基 abs9404 人多能干细胞完全培养基 abs9405 人多能干细胞分化培养基 abs9419 人脐带间充质干细胞无血清培养基(无酚红) abs9420 人脂肪干细胞无血清培养基(无酚红)基质胶 abs9410 即用型基质胶潜能分化 abs9406 人间充质干细胞成软骨分化试剂盒 abs9407 人间充质干细胞成脂分化试剂盒 abs9408 人间充质干细胞成骨分化试剂盒分化鉴定 abs9414 成脂检测染液 abs9415 成骨检测染液 abs9416 成软骨检测染液消化液 abs9409 人多能干细胞消化液 abs9411 Xeno-Free细胞消化液冻存液 abs9417 无血清细胞冻存液(科研级) abs9412 ES/iPS细胞冻存液 abs9413 无血清细胞冻存液(治疗级)添加物 abs9120 B27 NeuroMix (50x) abs44077956 Recombinant Human Transferrin重组人转铁蛋白更多细胞培养产品: 产品用途 货号 品名血清 abs972 胎牛血清(优级) abs973 胎牛血清(优级),辐照 abs974 胎牛血清(标准级) abs975 胎牛血清(标准级),辐照 abs976 新生牛血清(超级) abs980 澳洲新生牛血清 abs993 无外泌体胎牛血清抗生素 abs9245 青霉素-链霉素-庆大霉素混合溶液(100×三抗) abs9246 青霉素-链霉素-两性霉素B混合溶液(100×三抗) abs9244 青霉素-链霉素溶液(100×双抗) abs47014828 Hygromycin B(潮霉素B)消化液 abs47047375 胰蛋白酶-EDTA消化液(0.25%) 不含酚红 abs47014935 Accutase Cell Detachment Solution abs47014937 Trypsin (0.25%), Phenol Red abs47014938 Trypsin-EDTA (0.25%), Phenol RedDMSO abs9187 二甲基亚砜(DMSO)(细胞培养级)添加物 abs9156 BSA(细胞培养级) abs42019847 Insulin重组人胰岛素 abs9169 Insulin, from Bovine Pancreas abs9119 Bovine Pituitary Extract (BPE) abs80002 鸡胚提取物Absin特色产品线(全部现货):WB相关:ECL发光液、预染marker、预制胶;IHC相关:二抗试剂盒、组化笔;IP/CoIP试剂盒;激动剂/抑制剂;血清、BSA、蛋白酶K、CTB、TTX、CEE;凋亡试剂盒;呼吸爆发试剂盒;ELISA试剂盒;重组蛋白;抗体: 二抗、标签抗体、对照抗体;定制服务(抗体/多肽/蛋白/标记/检测)... 爱必信(上海)生物科技有限公司联系邮箱:info@absin.cn公众平台:爱必信生物
  • 应用指南 | CMS-TLC 用于天然产物肉豆蔻提取物的分析鉴定
    应用指南 | CMS-TLC 用于天然产物肉豆蔻提取物的分析鉴定 天然产物及其潜在的活性成分及其在传统医学中的应用在药学研究领域日益引起人们的兴趣。天然产物的活性成分是理想的化学起始结构,可以在药物开发过程中进行改进,因此,目前批准的药物中有很多是基于天然产物开发的。本文介绍了利用 Advion expression CMS 和 Advion Plate Express TLC 薄层色谱质谱接口对肉豆蔻醇提物进行分析的工作流程。实验仪器质谱:expression CMS 小型台式质谱仪TLC:薄层色谱质谱接口实验方法TLC 方法 采用TLC硅胶60 F254 分离化合物,展开剂为80/20 石油醚 (bp.60-80) /二恶烷。 提取:有机肉豆蔻香料坚果磨成粗粉,取 500mg 加入 10mL 甲醇中,超声处理15min。将浆液过滤后,20000g 离心 5min,上清液储存在棕色玻璃小瓶中,5°C 保存,待进一步分析使用。 衍生:新鲜配制固蓝RR盐,浓度为 200 mg/100 mL甲醇,使用前与 0.1N 氢氧化钠溶液 2:1 混合,在室温下干燥20分钟。TLC/FIA/CMS 分析 TLC 分析:采用Advion TLC薄层色谱质谱接口进行直接提取分析,流动相为甲醇+0.1%甲酸,流速为200 μL/min。 HPLC 分析:样品通过高效液相色谱分析系统进行分析,流速为 350 μL/min,时间 5 min,流动相为乙腈+0.1% 甲酸,梯度从 50% 到 90%。 MS分析: Advion expression CMS 采用极性切换和源内 CID 扫描,质量范围为 m/z 100 到 m/z 1000。结果分析 肉豆蔻具有精神活性,它是少数能干扰大麻素的化合物之一。与另一种天然产物大麻相比,肉豆蔻提取物在紫外下对大麻素标准品(如大麻酚 (CBN)、大麻二酚 (CBD) 和四氢大麻酚 (THC))的 Rf 区域仅显示出轻微的响应。用 TLC/FIA/MS 分析 TLC 板上的该区域显示没有 THC 的质量信号,并且当通过 UHPLC/CMS 分析时,也没有迹象表明肉豆蔻提取物中存在大麻素。此外,在 Rf 值为 0.4 时,没有形成经典的固蓝 RR 颜色反应;而肉豆蔻提取物在 Rf=0.2 时呈现紫色。在紫外照射下,相应的分析物有强烈的信号,可能不是大麻素,而是肉豆蔻的主要成分之一,如黄芩苷或肉豆蔻酸。图2 肉豆蔻提取物的 TLC 和 TLC/FIA/MS 分析结果图。与 Rf = 0.40 的三种大麻素标准品(CBN、CBD 和 THC)相比,紫外下 THC 区域有轻微的阳性反应;但是,(B) 图显示在用固蓝 RR (A) 衍生时,没发生标志性颜色反应。推导表明,Rf=0.21 的未知化合物对颜色反应有干扰。同时进行了相应位置的 MS 分析(2B 中的红色椭圆形)显示,负离子模式 MS 扫描 (C) 中 m/z 402.2 处的信号和丰富的源内 CID MS 信息 (D)。 进一步的 TLC/FIA/MS 分析表明,该分析物在负离子模式下质荷比为 m/z 402.2,排除了该化合物为三肉豆蔻精的可能性。然而,CID表明甘油三酯至少含有部分月桂酸。在 UHPLC/CMS 分析( 图3 )中也确认了相同的分析物,UHPLC 保留时间为 9.02 min, MS 数据包括正、负离子模式数据以及源 CID 数据。关于该分析物确切的化学结构的进一步研究还在进行中,但表明使用 expression CMS 从天然产物分析中获得的信息更丰富。图3 (A) 肉豆蔻提取物的 UV 谱图,(B) 负离子模式下的 MS TIC 谱图,(C) 正离子模式下的 TIC 谱图,(D) t=0.92 分钟的负离子模式质谱图,和 (E) 各自的正离子模式质谱图。结论 TLC/FIA/MS 工作流程为从植物材料中提取的天然产物和药用化合物的分析增加了有价值的信息和特定的数据。 Advion Plate Express 是一种创新的样品提取设备,用于从 TLC 薄层板上直接提取化合物,提供天然产物的快速分析。 Advion expression CMS 小型台式质谱仪,具有更快的扫描速度,在线极性切换和源内 CID ,可快速提供化合物基本信息。
  • 谁是蛋白质质谱与蛋白质组学领域世界第一牛人?
    俗话说:文无第一,如果非要整出个蛋白质质谱与蛋白质组学领域世界第一牛人,显然并不是一件容易的事,也注定是一件有争议的事。作为一个半路出家的准业内人,我就本着无知者无畏的革命精神,说一下我自己心目中的第一牛人:Ruedi Aebersold。   考虑到科学网的大多数网友对蛋白质组学并不了解,先简单科普一下,根据百度百科的定义:“蛋白质组学(Proteomics)一词,源于蛋白质(protein)与 基因组学(genomics)两个词的组合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。” 1995年(也有1994,1996年之说)Marc Wikins首次提出蛋白质组(Proteome)的概念1,1997年, Peter James(就职于有欧洲MIT之称的瑞士联邦工学院(ETH))又在此基础上率先提出蛋白质组学的概念2。基因组学和蛋白质组学的概念又进一步催生了N多的各种各样的组学(omics),两者的诞生的发展,也使系统生物学成为可能,本文的主人公Ruedi Aebersold与Leroy Hood一起于2000年在美国西雅图创办了系统生物学研究所(ISB),该所的建立不但标志着系统生物学作为一门独立的学科的诞生(此句话貌似不靠谱,参见文后14楼的评论),也带动了包括蛋白质组学在内的多种组学的发展,当然各种组学的发展也同时促进了系统生物学的发展。尽管日本也于2000年在东京建立了系统生物学研究所,但是同为第一个吃螃蟹的,东京的这个所,无论是学术水平还是世界影响都无法和西雅图的那个系统生物学领域的麦加相提并论。闲话少叙,我之所以认为Ruedi Aebersold是蛋白质质谱与蛋白质组学领域世界第一牛人,是基于如下原因:   Ruedi Aebersold对蛋白质组学的最大贡献可谓是同位素代码标记技术(ICAT),现在这一蛋白组定量技术自从1999年在Nature上发表以来,该技术已世界广泛应用,该论文迄今(截至2013年1月11日)已被引用了近3000次。Web of Science的检索结果显示,蛋白组学领域迄今已经至少有超过10万篇论文发表,按照被引用次数排名,该论文位居第三位。有意思的是,被引用次数排第四位的是Ruedi Aebersold和另外一位牛人Mathias Mann(下面会介绍)于2003年发表在Nature上的有关蛋白质质谱与蛋白质组学的综述论文,迄今也已被引用近2800次。而引用次数排第一和第二的两篇论文的通讯作者并算不上是蛋白质质谱与蛋白质组学领域的,蛋白质组学仅仅是他们使用的工具,他们的影响也在这个领域之外。蛋白质组学领域,最重要的专业协会应该算是HUPO (国际人类蛋白质组组织), 最重要的专业会议也当属HUPO世界大会,Ruedi Aebersold曾获HUPO含金量最高的成就奖,他本人也经常是HUPO世界大会的分会主席或大会特邀报告人。当然Aebersold还获得了包括美国质谱协会(ASMS)大奖在内的许多专业大奖。可能有人会列出另外的自己心中的第一牛人(如上述的Mathias Mann),但Ruedi Aebersold无疑至少是领域内公认的前几位的世界级牛人。另外,顺便说一下德国马普所的Mathias Mann(其在丹麦首都也有实验室),Mann和Aebersold可谓是蛋白质组学领域的双子星座,都是该领域的顶级牛人,Mann发表的论文有多篇都在蛋白质组学领域被引用次数前10位,不少被引用次数都上千次。上述的Mann和Aebersold两人能在Nature发表综述论文也说明了他们的江湖地位。Aebersold和Mann所发表的论文总被引次数分别超过了5万和3万次,这个数字在世界所有领域都是惊人的。另外,Mathias Mann在蛋白质组学最大的贡献可以说是发明了蛋白质组体内标记技术SILAC3,这种技术与Ruedi Aebersold发明的ICAT已及另外一种标记iTRAQ是公认的应用最为广泛的蛋白质组学定量标记技术。   今年年近花甲的Ruedi Aebersold是世界蛋白质组学的开拓者之一,现在在上述的ETH的工作,和最早提出蛋白质组学Peter James在同一个大学。作为土生土长的瑞士人,Ruedi Aebersold是在2004年底、2005年初才开始在ETH全职工作的,可谓是瑞士的大海龟。Ruedi Aebersold此前在西雅图的ISB和华盛顿大学工作,作为ISB的元老和共同创办人,Ruedi Aebersold现在还是ISB的兼职教授,发表论文时也还署ISB地址。Mann和Aebersold都是欧洲人,现在又都致力于将蛋白质质谱与蛋白质组学应用到临床,尽管蛋白质组学已有十多年发展历史,现在最大的一个瓶颈可以说在基本无法应用到临床,现有的技术,对于临床应用而言,时间和经济成本都太高(无法高通量、检测成本太贵)。这一块硬骨头显然不是一般人能够啃得动的,需要从临床样品制备、质谱技术到数据分析都要有突破甚至革命性的创新,我很期待,也相信Mann和Aebersold有能力最终使蛋白质组学(尤其是基于此的生物标志物鉴定技术)应用到临床。   我国在蛋白质质谱与蛋白质组学领域在世界上最出名的无疑非贺福初莫属,贺福初的名字在国内搞蛋白质组学应该都知道他的名字,他的头衔很多(如将军、院士),我就不一一列举了,新年伊始他又多了一个牛头衔:万人计划中的科技领军人才。贺的工作和学术水平,我不熟悉,不敢评头论足。他的文章被引用次数最高的是发表在Cancer Research一篇论文,迄今已有126次,但并非是蛋白质组学领域。在蛋白质组学领域,他的被引次数(含自引)最高的论文是2007年发表在蛋白质组学顶级期刊MCP的文章4,迄今已有105次引用。蛋白质质谱领域,我国在世界上最出名的学者估计要数复旦大学的杨芃原了,他的被引用次数最高的一篇论文,是2005年发表在化学顶级期刊德国应用化学的文章5,迄今已被引用70次,杨芃原为该论文的共同通讯作者。我国在蛋白质组学目前被引用次数最高的是南开大学王磊(澳大利亚海归、长江学者)2007年发表在美国科学院院刊(PNAS)的论文6,迄今被引次数已经超过500次。   蛋白质质谱仪主要生产商Thermo Fisher(即原来的Finnegan), 最近新出了本挂历,这本特别的挂历上列了13位在蛋白质质谱与蛋白质组学领域的牛人,上述的Ruedi Aebersold和Mathias Mann都在之列,其余11位简单介绍、列表如下。 姓 名 工作单位 主要贡献 Richard D. Smith 美国太平洋西北国家实验室 1990年首次用三重四级杆质谱Top-down(自上而下)分析完整蛋白 John Yates III 美国Scripps研究所 SEQUEST MS/MS数据库搜索程序 Joshua Coon 美国威斯康星大学麦迪逊分校 发明了电子转移解离技术(ETD) Neil Kelleher 美国西北大学 Top-down蛋白质组学 Kathryn Lilley 英国剑桥大学 蛋白质组学定量技术 Pierre Thibault 加拿大蒙特利尔大学 应用生物质谱和蛋白质组学到细胞生物学 Michael MacCoss 美国华盛顿大学(西雅图) 稳定同位素标记技术 Albert Heck 荷兰Utrecht大学 基于质谱的结构生物学 Catherine Costello 美国波士顿大学 HUPO前任主席,质谱技术发展及应用 Alexander Makarov 德国Thermo Fisher Scientific 生物质谱全球研发总监 领导研发Orbitrap质谱仪 Donald Hunt 美国弗吉尼亚大学 FT-MS and ETD   简单的说,上述13位世界级牛人都来自欧美,没有一位来自亚洲,也没有一位华人。我不知道以Ruedi Aebersold代表的上述牛人是如何炼成的,但可以肯定的是:他们不是欧美版的“百人”计划,也不是“千人”计划,更不是“万人”计划而“计划”出来的。网上的公开信息表明:Ruedi Aebersold除了在国际专业协会和期刊有学术兼职外,没有任何行政职务,就是一普通教授,但是这不妨碍他成为蛋白质质谱与蛋白质组学领域世界第一牛人。
  • 自然通讯成果|非变性纳米蛋白质组学捕获内源性心肌肌钙蛋白复合物的结构和动态性信息
    大家好,本周为大家分享一篇发表在Nat. Commun.上的文章:Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics ,文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  蛋白质大多都是通过组装成蛋白复合物来执行特定的生物功能,因而表征内源性蛋白复合物的结构和动力学将有助于生命过程的理解。蛋白复合物在其组装、翻译后修饰(Post-translational modifications,PTMs)和非共价结合等方面是高度动态的,在native状态下通常以低丰度存在,这给研究其结构和动态性的传统结构生物学技术(如X-ray和NMR)带来了巨大的挑战。非变性Top-down质谱(nTDMS)结合了非变性质谱和Top-down蛋白组学的优势,目前已发展成蛋白复合物结构表征的有力工具,可以保留蛋白质亚基-配体间的非共价作用和PTMs等重要信息。然而,由于内源性蛋白复合物自身的低丰度特性,导致对其的分离纯化和检测非常困难,所以nTDMS目前仅限用于过表达的重组或高丰度蛋白质的表征。在本研究中,作者开发了一种非变性纳米蛋白质组学(Native nanoproteomics)技术平台,通过使用表面功能化的超顺磁性纳米颗粒(Nanoparticles,NPs)直接富集组织中的蛋白复合物,然后再利用高分辨质谱表征其结构和动态性。这里选用心肌肌钙蛋白(Cardiac troponin,cTn)异源三聚体复合物(~77 kDa)作为研究对象。cTn三聚体复合物是调节横纹肌肌动蛋白收缩的Ca2+离子调节蛋白,由TnC、cTnI和cTnT这3个亚基组成。其中,TnC是Ca2+结合亚基,cTnI是抑制肌动蛋白-肌球蛋白相互作用的亚基,而cTnT细丝锚定亚基。TnC与Ca2+的结合,以及cTnI 亚基的磷酸化,会共同引起细丝上的分子级联事件,诱导心肌收缩所必需的肌动蛋白-肌球蛋白交叉桥的形成。传统结构生物学技术不能有效捕获cTn复合物高度动态的构象变化,并且先前研究用的cTn复合物是由原核细胞表达的,缺乏PTMs的信息。因此,作者开发了native纳米蛋白组学的方法,以实现对人内源性cTn复合物结构和动力学的全面表征。作者首先使用肽功能化的超顺磁性氧化铁NPs富集了人心脏的内源性cTn复合物,同时优化了非变性蛋白提取缓冲液(高离子强度LiCl溶液,生理pH)。富集到的cTn复合物中的3种亚基的含量比例为1:1:1,真实反应了肌节cTn异源三聚体复合物的组成。作者也发现含有750 mM L-Arg,750 mM咪唑和50 mM L-Glu(pH 7.5)的溶液对蛋白复合物的洗脱效果最好,并且不会破坏亚基间的相互作用。该富集方法具有很好的重现性,proteoforms信息得到很好保留,且可以直接用于化学计量分析。总的实验流程如图1所示,洗脱后的cTn复合物经体积排阻色谱(Sze-exclusion chromatography,SEC)除盐和交换至醋酸铵溶液中,随后对cTn复合物进行多种nTDMS分析:1)在线SEC监测复合物 2)超高分辨傅里叶变换离子回旋共振质谱(FTICR-MS)表征复合物的化学计量比和proteoforms 3)捕获离子淌度质谱(TIMS-MS)解析调控复合物构象变化中的非共价作用的结构动态性。  图1. 用于表征人心脏中内源性cTn复合物的native纳米蛋白组学平台。  为了全面表征内源性cTn复合物,作者使用FTICR-MS进行proteoforms测序和复合物表征。图2展示了native状态下检测丰度最高的cTn复合物的电荷态(19+),其中包含了4种独特的proteoforms,这些复合物主要带有单磷酸化的cTnT、单磷酸化和双磷酸化的cTnI,以及结合了3个Ca2+的TnC。这些结果表明人cTn复合物在肌节中以结构多样化的分子组成存在,具有高度异质的共价和非共价修饰,可产生一系列不同的完整复合物。  图2. FTICR-MS分析展示的cTn复合物状态。红色方框中是最高丰度电荷态(19+)的放大谱图,理论同位素分布(红色圆圈)可以与谱图很好叠加,说明结果具有高质量精度(质量偏差在2 ppm 以内)。  作者接着对cTn复合物进行complex-up分析,以研究复合物的化学计量比及其组成。图3a~3b分别显示的是完整cTn三聚体复合物,以及经CAD碎裂后的蛋白亚基谱图。但这里没有检测到cTnI单体,可能是因为cTnI和TnC在native状态下的亲和力很强,且cTnI单体带的电荷不多,导致其在高m/z区域出峰,所以不易被检测到.随后,作者又对解离出的亚基进行complex-down分析。图3c展示了检测到的cTnT的多种proteoforms:未磷酸化的 cTnT、单磷酸化的cTnT(p cTnT)和 C 端 Lys 截断的磷酸化cTnT(pcTnT [aa 1-286]),CAD碎裂谱图也发现cTnT的C端较N端更易暴露在外界溶剂中。图3e则是cTn(I-C)二聚体的谱图,共检测到6种具有不同数量Ca2+结合和磷酸化的proteoforms。二级谱图可将cTnI的两个磷酸化位点准确定位在Ser22和Ser23,同时发现cTnI序列两端都较内部区域更易暴露于溶剂中。但还无法通过nTDMS准确推断Ca2+结合和磷酸化是如何影响cTn复合物的稳定性。作者在此也没有优化FTICR-MS在非常高m/z范围的离子检测,所以也会遗漏带少量电荷的cTn复合物信息。  图3.nTDMS表征人心脏来源的cTn复合物。(a~b)完整cTn复合物和经CAD碎裂后的亚基谱图 (c~d)cTnT单体及其代表性的CAD碎裂谱图 (e~f)cTn(I-C)二聚体及其代表性的CAD碎裂谱图。  人TnC蛋白含有3个钙结合EF-hand基序(结构域 II~IV)。结构域 II与Ca2+结合的亲和力较低,是触发心肌收缩的调控域。结构域 III 和 IV则与Ca2+具有强的亲和力,在心肌舒张和收缩时均始终保持与Ca2+充分结合,但结构域 II只有在收缩时才被Ca2+占据。这里观察到了TnC分别与0、1、2和3个Ca2+结合的情况,通过CAD碎裂也进一步定位了TnC与Ca2+结合的具体氨基酸序列(图4)。研究发现结构域 II的骨架最容易发生碎裂,而结构域 III的骨架最难碎裂。目前结构域 II~IV的序列在UniprotKb中分别对应65DEDGSGTVDFDE76、105DKNADGYIDLDE116和141DKNNDGRIDY152。这里分别将与1、2和3个Ca2+结合的TnC隔离出来进行CAD碎裂(m/z分别为2312、2316和2321),可以更准确地将结构域 III、II和IV的序列分别定位到113DLD115、141DKNND145和73DFDE76(图4c),表明非变性纳米蛋白组学方法在定位非共价金属结合方面具有高分辨能力。  图4.nTDMS定位 TnC与Ca2+结合的结构域。(a)FTICR-MS隔离与不同数量Ca2+结合的TnC单体 (b~c)与两个Ca2+结合的TnC的CAD碎裂谱图,蓝色、红色和黄色方框分别对应结构域 II 、III和IV。  Ca2+与TnC的结合会对cTn复合物的功能和构象有着很大影响。cTn复合物的核心区维持着构象的稳定,但当Ca2+与TnC发生结合时,其柔性区会经历广泛的构象变化,复合物结构会从“closed”状态转变成“opened”状态,这会促进肌动蛋白和肌球蛋白间的相互作用,最终导致心肌收缩。然而,传统结构生物学技术很难捕获cTn复合物与Ca2+结合时的构象变化。因此,作者使用离子淌度质谱来分析cTn复合物的构象变化。TnC亚基和与Ca2+结合的cTn(I-C)二聚体的淌度分离谱图如图5所示。与0~3个Ca2+结合的TnC的碰撞截面(Collision Cross-Section,CCS)值分别为1853、1849、1829和1844 Å2(图5a~5b),TnC构象比IMPACT预测的更为紧凑,但cTn(I-C)二聚体的CCS值与预测的非常接近(图5c~5d)。作者推测TnC与两个Ca2+结合会形成更致密的构象,是因为在静息舒张时Ca2+与结构域 III 和 IV充分结合。当第三个 Ca2+与结构域II结合时,TnC转变为“opened”构象,使其N端与cTnI的C端相结合,进而引发心肌收缩(图5e)。cTn(I-C)二聚体与Ca2+结合时的构象变化也是如此(图5f)。  图5.TnC单体(a~b)和与Ca2+结合的cTn(I-C)二聚体(c~d)的离子淌度分离谱图 (e~f)TnC和cTn(I-C)二聚体与Ca2+结合时的构象变化。  最后,作者通过添加EGTA来剥离cTn复合物中的Ca2+,以进一步研究Ca2+在维持复合物结构稳定性上的作用。图6b~6c是没有EGTA孵育时的cTn复合物的TIMS-MS谱图。cTn复合物的CCS值与理论预测值非常符合。随着EGTA孵育浓度的增加(25、50和100mM),Ca2+逐渐被螯合,cTn复合物的结构也越来越舒展,体现在平均电荷态逐渐增加,以及逐渐在较低m/z范围内出峰,这表明cTn复合物构象的稳定性丢失与EGTA浓度的增加相关(图6d~6f)。虽然100mM EGTA孵育也不敢保证Ca2+的完全剥离,并且cTnI的存在又会增强TnC与Ca2+的结合,但TIMS-MS为我们研究cTn复合物与Ca2+结合时的构象变化提供了一种切实可行的分析手段。  图6.cTn复合物与EGTA孵育时的构象变化。(a)cTn复合物的构象随EGTA孵育浓度的增加发生改变 (b~c)cTn复合物的TIMS-MS谱图 (d~f)cTn复合物与不同浓度EGTA(25、50和100mM)孵育的谱图和CCS分析。  总的来说,本研究开发了一种可用于内源性蛋白复合物富集和结构表征的非变性纳米蛋白组学方法,以获取其组装、proteoforms异质性和动态非共价结合等方面的生物信息。本文采用的功能化NPs可被灵活设计成选择性结合特定的靶蛋白,在富集和洗脱过程中可以很好保持其近似生理条件下的存在状态。更为重要的是,功能化NPs与nTDMS的整合可以作为一种强有力的结构生物学工具,可以作为传统技术的补充,用于内源性蛋白复合物的表征。  撰稿:陈昌明 编辑:李惠琳文章引用:Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics  参考文献  Chapman EA,Roberts DS, Tiambeng TN, et al. Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics. Nat Commun. 2023 14(1):8400. Published 2023 Dec 18. doi:10.1038/s41467-023-43321-z
  • timsTOF Pro最新4D高通量超高灵敏度蛋白组学研究技术
    近日在第15届美国人类蛋白质组学年会上,布鲁克宣布了Evosep One低流速色谱与timsTOF Pro液质联用系统在高灵敏度、高通量血浆蛋白质组学方面取得的进展。布鲁克还重点介绍了PEAKS,Protein Metrics和MaxQuant 4D蛋白质组学软件的特色,这些软件支持使用大规模精确碰撞截面(CCS)值进行常规采集和信息提取。timsTOF Pro具有独特的PASEF功能,可以进行高通量和超高灵敏度采集离子淌度信息,从而实现精确碰撞截面的大规模计算。在PEAKS Studio软件采用了新型的4D算法,这使192例脓毒性休克患者血浆样本中可进行定量的蛋白数量显著提高,检测速度为100个样本/天。专家解读英国牛津大学纳菲尔德医学部蛋白质组学的项目负责人Roman Fischer博士说:“TIMS启用的4D特征匹配功能,可显著提高微量血浆样本11.5分钟LC-MS/MS的定量蛋白数目。采用短梯度分离100ng血浆肽段,192例患者共定量772个血浆蛋白,其中66%的鉴定蛋白覆盖了血浆蛋白总质量的10%。这表明该方法可以覆盖足够的深度来发现低丰度的生物标记物。timsTOFPro对蛋白鉴定的深度覆盖和快速检测,促进血浆生物标志物的发现,为分析数百到数千个样本的大样本群组提供了全新的可能性。”布鲁克道尔顿蛋白质组学副总裁Gary Kruppa博士评论说:“实现更高蛋白质组学深度的常见做法是样品预分馏。然而,这导致测量时间延长,通常采用多重标记或化学标记来补偿。尽管同位素标记法原则上看起来很有吸引力,但它们会受到定量比率失真的影响,这可能会使低丰度蛋白质的定量偏斜或受损。timsTOF Pro独有的非标定量方法结合了短LC梯度和4D匹配的高选择性,提供了一种引人注目的替代方案,可应用于高通量蛋白质组学中的数千个样品的快速检测。”美国HUPO 2019展示的主要新软件研发,包括为timsTOF Pro发布的PEAKS On-line,这是一款可在集群或多CPU计算机上并行化运行的服务器软件。与timsTOF Pro采集软件中新的去噪算法相结合,可将数据文件大小减少5倍至10倍,并且不会出现任何明显的肽段信息丢失,PEAKS Online的可扩展性能可促进最先进的高通量蛋白质组学实验的数据分析。Protein Metrics Inc(PMI)还为其Byonic数据库搜索算法添加了肽段CCS支持,该算法被制药和生物制药科学家广泛接受用于宿主细胞残留蛋白和其他的生物表征和发现工作流程。Protein Metrics Inc总裁兼首席执行官EricCarlson博士表示:“我们很高兴能够为客户提供timsTOF Pro和PASEF数据的软件分析。尤其是针对二硫键、糖和宿主细胞残留蛋白的分析等应用,将离子淌度和CCS数据作为第四维分离的能力,将为蛋白质样品提供更深入的见解,从而推动药物的发现和开发。”
  • 【瑞士步琦】通过SFC-UV/MS分离西红花主要提取物
    通过 SFC-UV/MS 分离西红花主要提取物 西红花,又称藏红花,是世界上最昂贵的香料之一,其花朵呈现一种精致的紫色色调,内部的丝状红色柱头非常珍贵。在秋天,红色柱头通过手工采摘并分离,生产一磅(0.45公斤)的西红花柱头需要7万朵花。这些红色柱头可以用作香料、染料并且具有药用价值。▲ 图1:西红花花朵与柱头西红花内有非常多的提取物,主要成分为西红花苷、苦番红花素、西红花酸等。其中许多化合物有公认的药理活性, 比如西红花苷在治疗心血管疾病方面具有一定的作用。西红花苷存在于西红花及栀子属植物中,比较常见的分离法是采用高压液相色谱法(HPLC),C-18色谱柱,流动相为水/乙腈或水/甲醇体系。初始梯度为高含水量,有机溶剂含量随时间而增加,以洗脱非极性化合物,分离过程中也会加入甲酸以改善峰型。[2-6]栀子类药材中西红花苷类成分的定性定量分析:▲ 图2:A.混合对照品;B.栀子;C.水栀子的 HPLC 分离图西红花苷Ⅰ 5. 西红花苷Ⅱ 8. 西红花苷Ⅳ 17. 西红花苷ⅢAcchrom XCharge C18 色谱柱(4.6 mm×250 mm,5μm);流动相为乙腈(A)和0.1%甲酸水溶液(B),梯度洗脱,洗脱程序为:0~15min,22% A;15~30min,22%~25% A;30~35min,25%~28% A;35~50min,28% A;50~72min,28%~45% A;72~85min,45%~55% A;流速1mLmin-1,柱温30℃,检测波长440 nm,进样体积10μL。本文介绍了一种利用BUCHI Sepiatec SFC-50分离西红花柱头主要提取物的方法。SFC-50内置紫外检测器并与MS(质谱检测器)相连,从而判断峰物质。▲ 图3:Sepiatec SFC-UV/MS系统1实验条件设备Sepiatec SFC-50(UV/MS)色谱柱Nucleodur NH2 5μm 250 x 4 mm流动相种类A=CO2 B=甲醇流动相条件平衡色谱柱5分钟0-1 min: 14 % B1-18 min: 14-18 % B18-40 min: 18-50 % B40-44 min: 50 % B 流速7 mL/min紫外检测器440 nm MASS 检测器ESI (+/-)背压150 bar柱温40 ℃样品1000mg 西红花柱头 10mL 热甲醇提取物进样量100 uL2结果与讨论▲ 图4:西红花提取物在紫外波长440nm下的分离图用甲醇对西红花柱头的主要成分进行了提取后,得到的多数为极性化合物。图4为紫外波长 440nm 下的分离图。在前18分钟,由于流动相为弱极性(86- 82% CO2),紫外检测器下无化合物被洗脱下来。当流动相的极性通过梯度增加时,几种极性化合物被依次洗脱。其中的主要提取物西红花酸易与几种糖(葡萄糖、龙胆二糖和三氯蔗糖)结合形成西红花苷。因为西红花酸与糖分子的共价键导致极性的强烈增加,并使西红花苷具有亲水性,所以在氨基柱上的分离出峰时间比较晚[7-9]。在质谱检测上,我们使用电喷雾离子源(ESI),这是一种常压下的温和电离方法,可以在正离子(ESI+)或负离子(ESI-)下进行。在正离子模式下,通常会形成钠加合物([M+Na]+)或质子加合物([M+H]+)。在负离子模式下,([M-H]-)离子通常是由于失去一个质子而形成的。根据样品及其性质的不同,也可以形成多种带电产物。▲ 图5:(a) UV-440 nm (b) mass 999-999.5 (ESI+) (c) mass 836.9-837.4 (ESI+) (d) mass 674.8-675.3 (ESI+) (e) mass 975.5- 976 (ESI-) (f) mass 813.4-813.9 (ESI-) (g) mass 651.4-651.9 (ESI-) (h) mass 341.2-341.7 (ESI-)▲ 图6:西红花苷Ⅰ(a) ESI+ and (b) ESI-, 西红花苷Ⅱ(c) ESI+ and (d) ESI-, 西红花苷Ⅲ (e) ESI+ and (f) ESI- 以及西红花酸单甲酯(g)ESI-的质谱图图5与图6展示了西红花甲醇提取物通过 Sepiatec SFC-50 结合 MS 检测器后的分离图谱,信号基于不同的 m/z(质子数/电荷数)。根据质谱结果我们可以推断出表1的结构式结果。No.化合物名称结构式m/z1西红花苷Ⅰ976.4C44H64O242西红花苷Ⅱ814.8C38H54O193西红花苷Ⅲ652.7C32H44O144西红花酸单甲酯342.4C21H26O4▲ 表1:根据图5推断的西红花主要提取物的结构式和摩尔m/z西红花苷Ⅰ是由西红花酸和两个龙胆二糖分子组成。在图5中,该化合物 ESI+ 模式下的检测 m/z 为 999-999.5,其加合物由钠(m/z 23 g/mol)和样品分子(m/z 976.4 g/mol)组成。在 ESI- 模式下也可以检测到西红花苷Ⅰm/z 为975.5-976。其对应的图6质谱图为(a)与(b)。西红花苷Ⅱ由西红花酸、葡萄糖和龙胆二糖分子组成。在 ESI+ 模式(图5(c))和 ESI- 模式(图5(f))下,分别为(m/z 836.9-837.4[M+Na]+)和(m/z 813.4-813.9[M- H]-)。其对应的图6质谱图为(c)与(d)。西红花苷Ⅲ在 ESI+ 模式(图5(d))和 ESI- 模式(图5(g))下,分别为(m/z 674.8-675.3[M+Na]+)和(m/z 651.4-651.9[M-H]-)。其对应的图6质谱图为(e)与(f)。西红花酸单甲酯只能在 ESI- 模式(图5(h))下鉴别,m/z为341.2-341.7[M-H]-。其对应的图6质谱图为(g)。在 ESI 过程中,样品分子会被碎片化,特别是在 ESI- 模式中。例如,西红花苷Ⅰ和西红花苷Ⅱ上的葡萄糖基团在ESI-模式下的脱离,导致其在图5(g) m/z 651.4-651.9[M-H]- 中也被鉴定出来。3结论Sepiatec SFC-50 可以有效分离西红花柱头内结构相似的提取物,为了鉴别里面的未知成分,采用 SFC-UV/MS 结合的形式,适用于多数天然产物应用。相比 HPLC 的流动相,超临界二氧化碳具有高扩散系数和低粘度的特点,并且得益于二氧化碳的弱酸性,无需加入甲酸也能获得不错的峰型。在选择性上,由于 SFC 属于正相色谱,在出峰顺序和时间上与传统的 RP-LC 完全不同,这使得 SFC 在分离一些化合物组分时具备出峰时间上的优势。比如本次分离中的西红花苷Ⅲ,在图2的 RP-LC 中,出峰顺序靠后,时间在 60 分钟之后;而在图5的 SFC 中,其出峰顺序靠前,时间在 28-29 分钟。这在分离一些极性偏弱的化合物时可以节省很多时间。4参考DOI: 10.13140/RG.2.2.19634.40649http://dx.doi.org/10.1016/j.foodchem.2015.06.090DOI: 10.1081/FRI-100100281DOI: 10.1016/j.foodchem.2005.11.020https://doi.org/10.1016/j.jpba.2020.113094叶潇,张东,冯伟红,梁曜华,刘晓谦,李春,王智民.栀子类药材中西红花苷类成分的定性定量分析[J/OL].中国中药杂志.https://doi.org/10.19540/j.cnki.cjcmm.20220214.301https://doi.org/10.1021/acs.jafc.5b03194https://doi.org/10.1073/pnas.140462911DOI: 10.1007/s00425-004-1299-1
  • 首张蛋白粉备案凭证发放 蛋白粉保健食品迎来“备案时代”
    近日,保健食品蛋白粉首张备案凭证、蛋白粉复配产品首张备案凭证相继发放。这是自2023年6月市场监管总局发布保健食品原料目录以来,以大豆分离蛋白、乳清蛋白为原料的产品获得的首批国产保健食品备案凭证。此次将植物蛋白和动物蛋白同时纳入保健食品原料目录,主要面向蛋白质缺乏免疫力低下人群,提升了保健食品人群使用的针对性,有效限制产品夸大宣传。此外,针对这两种蛋白类原料设定的技术要求,在严格遵守食品安全底线的同时,提高了其中的蛋白质含量指标,均达到了优质蛋白原料标准,确保为蛋白质缺乏的人群提供优质蛋白产品。2023年,市场监管总局密集出台多项保健食品相关新法规新政策,激发了产业创新发展活力。据了解,为推动保健食品原料目录制定工作,市场监管总局会同国家卫生健康委、国家中医药局发布的《保健食品原料目录 大豆分离蛋白》《保健食品原料目录 乳清蛋白》自2023年10月1日起施行。于是,也就出现了当前的以大豆分离蛋白、乳清蛋白为原料的产品获得首批国产保健食品备案凭证这一现象。若是具体到成分,乳清蛋白是从牛奶中分离出的氨基酸中浓缩而成的,氨基酸含量和比例高,备受运动营养界推崇,它也成了市场上抗阻训练补充剂的明星产品。这也使得“蛋白粉”至今都被默认为是乳清蛋白。和乳清蛋白是相比,大豆蛋白是植物蛋白和全草本提取物。两个原料目录的发布是市场监管总局对保健食品行业规范化的引领和支持,既为企业提供了更多的备案选择,也为行业创新发展注入了新的动力,突破了以往单一原料备案的模式,允许蛋白质与营养物质复配备案,为企业提供更广泛的研发空间,推动市场上的蛋白粉类保健食品品种变得更加丰富,消费者的选择也更为多元。市场监管总局表示,截至2023年11月底,我国具有国家标准的补充营养素类产品已基本纳入备案管理,有1500余家企业获得保健食品备案登录账号,备案企业已覆盖了国内31个省、自治区、直辖市和新疆生产建设兵团。获得了保健食品备案凭证的产品已达到17000余个,其中功能类产品3300余个,满足了消费者对维生素C、辅酶Q10类产品的需求,为消费者带来了更多质高价优的保健食品。
  • 胰蛋白酶,组织解离、细胞消化的小帮手
    胰蛋白酶(胰酶,Trypsin),CAS:9002-07-7,为蛋白酶的一种,EC3.4.4.4,是从牛、羊、猪的胰脏提取的一种丝氨酸蛋白水解酶。来源于胰腺的一种丝氨酸蛋白酶,由223个氨基酸残基组成的单链多肽,底物特异性是带正电荷的赖氨酸和精氨酸侧链。胰酶主要切割赖氨酸和精氨酸羧基端,当两者之一紧随为脯氨酸的情况除外。另外,当切割位点任一边紧邻酸性残基,胰酶水解速率也会减缓。在组织细胞的体外培养和原代细胞培养中的组织细胞分散(将组织块制备成单个细胞悬液)以及传代细胞培养中,贴壁生长细胞的消化分散均要使用组织细胞消化液。常用的消化液为胰蛋白酶,EDTA等,其功能主要是使细胞间的蛋白质(如细胞外基质)水解,使组织或贴壁细胞分散成单个细胞,制成细胞悬液用于进一步的实验。以下是absin胰酶部分产品,全部现货供应哦~胰蛋白酶(猪源)1:250 abs47014936本品是由猪胰提取而得的一种肽链内切酶,白色至淡黄色粉末。可用于制备单细胞悬浮液,胰蛋白酶在用于细胞培养时,可用PBS溶解成浓度为0.25%,也可以加入0.02%EDTA ,过滤除菌后使用。溶于水≥10mg/ml,不溶于乙醇、甘油、氯仿和乙醚。本品具有以下特点:1、对电点pI 10.5。Ca2+对酶活性有稳定作用。 2、重金属离子、有机磷化合物、DFP、天然胰蛋白酶抑制剂对其活性有强烈抑制。 3、可用于制备单细胞悬浮液或贴壁细胞的消化、分离。货号名称abs47014936猪源胰蛋白酶1:250胰蛋白酶-EDTA消化液(0.25%) abs47014938本产品含0.25%胰酶,溶于无钙镁平衡盐溶液中,经过滤除菌,可以直接用于培养细胞和组织的消化。货号名称abs47014938胰蛋白酶-EDTA消化液(0.25%)胰蛋白酶-EDTA消化液(0.25%) 不含酚红 abs47047375本品含 0.25%胰酶和 0.02%EDTA(0.53mM),溶于无钙镁平衡盐溶液中,经过滤除菌,可以直接用于培养细胞和组织的消化。本产品具有方便快速、稳定安全、细胞状态好等特点。货号名称abs47047375胰蛋白酶-EDTA消化液(0.25%) 不含酚红胰蛋白酶(牛胰) 1:2500 abs9154本品是由牛胰提取而得的一种肽链内切酶,白色或类白色粉末。溶于水,不溶于乙醇、甘油、氯仿和乙醚。其广泛应用于分子生物学,药理学等科研方面。是一种专一性催化水解赖氨酸、精氨酸羧基形成的肽键,可用于蛋白质化学研究。货号名称abs9154胰蛋白酶(牛胰) 1:2500更多absin胰蛋白酶相关产品 :货号名称abs47014938胰蛋白酶-EDTA溶液abs9154胰蛋白酶(牛胰腺)abs47047375胰蛋白酶-EDTA消化液(0.25%) 不含酚红abs44073474重组牛胰蛋白酶abs47014937Trypsin (0.25%), Phenol Redabs47014936猪源胰蛋白酶1:250abs47014940胰蛋白酶,蛋白测序级abs47014939胰蛋白酶,组织培养级Absin特色产品线(全部现货):WB相关:ECL发光液、预染marker、预制胶;IHC相关:二抗试剂盒、组化笔;IP/CoIP试剂盒;激动剂/抑制剂;血清、BSA、蛋白酶K、CTB、TTX、CEE;凋亡试剂盒;呼吸爆发试剂盒;ELISA试剂盒;重组蛋白;抗体: 二抗、标签抗体、对照抗体;定制服务(抗体/多肽/蛋白/标记/检测)...
  • 小柴胡颗粒中黄芩提取物检查项补充检验方法
    5月23日,根据《中华人民共和国药品管理法》及其实施条例的有关规定,《小柴胡颗粒中黄芩提取物检查项补充检验方法》经国家药品监督管理局批准,现予发布。小柴胡颗粒,中成药名。为和解剂,具有解表散热,疏肝和胃之功效。主要组成为柴胡、姜半夏、黄芩、党参、甘草、生姜、大枣。小柴胡颗粒中黄芩提取物采用HPLC进行测定,补充方法中将色谱条件、参照物/供试品溶液的制备、测定方法等都有详细的介绍。补充检验方法的起草单位:广东省药品检验所 复核单位:湖南省药品检验检测研究院。小柴胡颗粒中黄芩提取物检查项补充检验方法(BJY 202304)【检查】黄芩提取物 照高效液相色谱法(中国药典2020年版通则0512)测定。色谱条件与系统适用性试验 以十八烷基硅烷键合硅胶为填充剂(建议色谱柱的内径为4.6mm,粒径为2.7μm);以甲醇为流动相A,0.5%甲酸为流动相B,按下表中的规定进行梯度洗脱;流速为每分钟0.6ml;检测波长为270nm。理论板数按黄芩苷峰计算应不低于5000。时间(分钟)流动相A(%)流动相B(%)0~105→2595→7510~4025→5575→4540~5555→8045→20参照物溶液的制备 取黄芩对照药材0.1g,加水煎煮1.5小时,滤过,滤液浓缩至近干,加入50%乙醇溶液25ml,密塞,超声处理(功率350W,频率37kHz)45分钟,取出,放冷,摇匀,滤过,滤液用0.22μm微孔滤膜滤过,作为对照药材参照物溶液。另取黄芩苷对照品和汉黄芩苷对照品适量,加甲醇制成每1ml各含60µg的混合对照品溶液,摇匀,用0.22μm微孔滤膜滤过,作为对照品参照物溶液。供试品溶液的制备 取本品,混匀,研细,取约1g﹝规格(1)﹞、0.4g﹝规格(3)﹞、0.3g﹝规格(2)、规格(4)﹞或0.25g﹝规格(5)﹞(均相当于含黄芩生药量0.056g),精密称定,置具塞锥形瓶中,精密加入50%乙醇溶液25ml,密塞,称定重量,超声处理(功率350W,频率37kHz)45分钟,取出,放冷,再称定重量,用50%乙醇溶液补足减失的重量,摇匀,滤过,滤液用0.22μm微孔滤膜滤过,即得。测定法 分别吸取参照物溶液与供试品溶液各5μl,注入超高效液相色谱仪,测定,即得。结果判定 供试品色谱中应呈现与对照药材参照物中5个主要特征峰保留时间相对应的色谱峰,其中峰1与峰4应与对照品参照物峰保留时间一致,且峰4与峰1的峰面积比值应不低于0.10。对照特征图谱5个特征峰中 峰1:黄芩苷;峰4:汉黄芩苷;峰5:黄芩素注:规格(1)每袋装10g;(2)每袋装5g(无蔗糖);(3)每袋装4g(无蔗糖);(4)每袋装3g(无蔗糖);(5)每袋装2.5g(无蔗糖)。起草单位:广东省药品检验所 复核单位:湖南省药品检验检测研究院
  • 蛋白测序技术革新崭露头角!未来可期实现大规模、高通量
    p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/aab48e25-87ad-48f7-bf9a-b2ebac0fa992.jpg" title=" 蛋白.jpg" alt=" 蛋白.jpg" style=" text-align: center width: 522px height: 348px " width=" 522" height=" 348" / /p p style=" text-indent: 2em " 蛋白质是生物功能的主要载体。许多无法从基因层面解释的疾病,蛋白质可以给出我们想要的答案,为此,蛋白质组学应运而生。科学家们预测,随着人类基因组测序工作的完成,21世纪生命科学的研究重心或将从基因组学转移到蛋白质组学。蛋白质组学是后基因组时代生命科学研究的核心内容,想要深入了解蛋白质,进一步认识生命活动和疾病发生的分子机制,首先要有合适的蛋白质测序技术做支撑。为完善蛋白质测序技术科学家做出了许多尝试,如Edman降解,荧光染色、质谱测序等。然而已有的测序方法都存在各种技术不足与应用局限性,不利于蛋白质组学在整个生命科学和生物医学研究中的应用推广。 br/ /p p   近日, strong 瑞士苏黎世联邦理工学院分子生物学研究所的Ben C Collins博士和Ruedi Aebersold博士在Nature Biotechnology发表了蛋白组学平行测序的评论文章“Proteomics goes parallel” /strong ,小编将文章进行了翻译整理分享给大家。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/29198ff0-12dc-4a8b-9f43-a535e065d874.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-indent: 2em " 目前,蛋白质组测序技术尚不如基因组学和转录组学那么强大。核酸测序技术的表现之所以令人印象深刻,是因为它能利用荧光作为读数进行短寡核苷酸的大规模平行测序。在这个问题上, strong Swaminathan等证明了肽类也可以进行平行荧光测序 /strong 。他们的创新方法将经典的蛋白质测序技术与核酸光学测序系统进行了整合。虽然该方法仍需进一步优化,但这让我们看到了一种普遍可行、可靠和真正通用的蛋白组学测序技术的发展前景。 /p p   蛋白质对于生命系统来说是必不可少的,它们可以作为化学催化剂、结构成分以及生理过程的媒介,能够准确识别和量化蛋白质的研究技术可极大地促进人们对生物学的理解。如今,蛋白质组已经可以由转录组被预测或推断出来。有充分的研究证据表明,蛋白质与mRNA水平之间的联系是复杂的,通过一种组学来预测另一种是不精确、不可靠的。那么, strong 为什么在许多情况下,人们会优先选择通过mRNA预测蛋白,而不是直接进行蛋白质测序呢 /strong ?答案在于两种组学测序技术的发展和物质本身的可检测性。目前,生物学家可以通过已有的核心技术和商业公司获得基本完整的转录组信息及分析结果,而蛋白组分析仍只限于专业实验室研究使用,在通量、稳定性和重现性方面还不能达到转录组分析水平。 /p p   第一代DNA测序仪绘制了具有突破性意义的基因组图谱,其原理是对分离DNA片段进行连续测序。尽管该仪器采用了自动化技术,但整个测序过程也是缓慢而昂贵的。只有开发可平行测序数百万个核酸片段,能够高通量、高覆盖率、低成本生成完整基因组图谱的方法,才能进行广泛的基因组分析。这些具有商业价值的测序技术已经改变了生物医学研究,并成为实验生物学研究的中流砥柱。 /p p   虽然“自上而下”的蛋白质组学研究方法正在逐步发展,但传统的蛋白质定量和测序仍是采用“自下而上”的方法进行。正如基因测序原理一样,这些方法是通过检测酶促反应切割蛋白质产生的肽链,以分析蛋白组成。在20世纪50年代,Pehr Edman发明了一种通过循环化学反应测定肽链氨基酸序列的方法,被称为Edman降解。该方法通过异硫氰酸苯酯与可接近的氨基偶联,然后从肽链的N-末端释放氨基酸并生成新N端,不断重复这一过程,对释放的氨基酸进行鉴定就可以得到肽链的氨基酸序列。 strong Edman降解过程缓慢,需要大量的高纯度肽 /strong ,尽管如此,直到20世纪90年代早期,所有已知的蛋白质序列都是使用该方法确定的。 /p p   20世纪90年代,随着质谱(MS)技术逐渐成为蛋白质测序的首选方法,Edman降解在该领域退居二线。质谱是通过检测质荷比和肽段的断裂模式来推断蛋白质组成和定量。因具有先进、强大和多样化特点,MS已经被广泛应用。仿效基因组学技术的发展路径,MS已经从特定寡聚体的人工测序发展到高通量的肽链自动测序,并发展到通过独立数据分析进行多肽的平行测序,如SWATH-MS。虽然这些方法的通量、准确性和重现性都很出色,但想要与基因组分析一样,实现相似的大样本队列常规、完整的蛋白质组量化目标仍难以实现。 /p p   随着当前数据独立采集MS检测系统的不断发展,最终取得与基因组学研究技术相似性能的蛋白测序技术也有可能实现。此外,要深入了解蛋白质组的复杂性,也需要颠覆性的新技术。虽然蛋白质的纳米孔测序技术显示了很好的发展前景,但StimaaNet等研发的肽荧光测序方法有着明确的常规应用途径,可以看作是这类颠覆性技术最先进的一个例子。 strong 肽荧光测序方法堪称跨越时代的结合,它将几乎被遗忘的Edman降解,与为下一代DNA测序开发的大规模平行荧光成像技术进行了整合 /strong (图1)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/462c7540-6c36-4ddd-8cd7-7b62240980c2.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 图1. Swaminathan等人所描述的肽荧光测序 /span /p p style=" text-indent: 2em " 复合肽混合物,最有可能来源于酶或化学切割的蛋白质提取物,每种氨基酸残基都有不同的荧光标记(左)。在这种情况下,我们描述了一种双色方案,其中赖氨酸和半胱氨酸残基用不同的荧光标记。利用氨基硅烷的的酰胺键将标记肽的C末端固定在玻璃板。然后通过Edman降解和荧光成像(中)对肽进行N-末端氨基酸残基切割的迭代循环。在每个位置(即肽)的荧光强度被跟踪为Edman循环的函数。荧光强度下降模式为肽的部分序列提供了注释,得到的荧光信号可以与蛋白质序列数据库进行匹配和评分,推断样本中最有可能存在的一组蛋白质(右)。 /p p   肽荧光测序的第一步是在特定的氨基酸侧链上进行荧光标记,并将其C端固定在测序系统的流通槽中,以生成测序底物阵列。然后将固定化肽平行地进行Edman降解,在每一步降解后对固定化底物的集合进行成像。与经典的Edman降解不同,该方法在每个步骤对消除的苯硫代内酰脲-氨基酸结合物进行了鉴定,降解步骤仅用于测定由消除标记氨基酸引起的荧光强度下降。基于该原理开发的软件工具,可以将观察到的荧光信号与蛋白序列数据库结合起来,进而推导出每种固定化底物的序列,也就是肽链的序列。 /p p    strong 该研究已经证明肽荧光测序的可行性 /strong 。具体而言,作者(i)描述了在严格条件下,与Edman降解兼容的成像系统 (ii)测定了模型肽中荧光标记的赖氨酸或半胱氨酸残基的精确位置 (iii)描述了该系统中误差和低效的来源 (iv)研究了从更复杂蛋白质组鉴别蛋白质的潜力,并提供了一种从观察到的荧光信号推断肽序列的计算框架 (v)从含有多个丝氨酸残基的肽中定位特定的磷酸化丝氨酸残基。 /p p   Swaminathan等人开发的肽荧光测序方法是令人兴奋的,因为它开辟了一条通向肽的新研究路径, strong 并使高通量、高重现性和潜在低成本的蛋白质组测序成为可能 /strong 。 strong 该方法的一个显著优点是,它整合了其他研究方法的优势,如Edman降解、大规模DNA平行测序和基于MS的蛋白序列数据库检索计算框架 /strong 。这种策略或有助于加快相关研究方法从证明概念到常规适用的转化速度。此外,该方法产生的数据与基因组学和转录组学的大规模平行先导数据有相似之处。MS蛋白组学技术在技术和计算方面仍存在较大的门槛,应用较为缓慢,与基于MS的蛋白组学技术相比,该方法有助于加速更多的生物体使用肽荧光测序技术。 /p p   正如Swaminathan等人所指出的, strong 在新方法发挥其全部潜力之前,还必须克服一些技术和概念上的挑战 /strong 。这些问题主要源于Edman降解的性质和人类蛋白质组的复杂性,包括以下内容:(i)尽管在研究中每个降解步骤的产率为91-97%,但可检测的肽链长度也是有限的 (ii)由于测序产率与蛋白序列本身有关,具有挑战性的序列,如富含脯氨酸的蛋白序列,可能会影响荧光信号的清晰度 (iii)可被荧光标记的功能基团仅限于肽链中可产生化学反应的基团,主要是氨基、羧基和巯基,因此荧光信号代表的信息量也会受限制 (iv)经修饰的残基通常不能被识别,除非经过特异荧光标记,这种特殊标记仅对氨基酸进行小部分修饰 (v)人类细胞蛋白质组的动态范围较大(~107),每种蛋白质也会通过酶消化产生大量的肽(~102),每个细胞会表达大量的开放阅读框(~104),在不考虑蛋白质多样性的前提下,这已经构成了巨大的分析挑战。对于肽荧光测序来说,满足这些挑战需要提高底物复用(substrate multiplexing)的水平,但目前尚未实现。 /p p   虽然作者开发的系统目前仅限于分析相对简单的混合物样本,但发展前景很好,是一种值得尝试的蛋白质测序方法。 /p
  • 药点笔记 | 一次性生产组件标准化的可提取物研究方法
    p style=" text-align:center line-height:50px" strong span style=" font-family:宋体 color:#4F6B72" 药点笔记 /span /strong strong span style=" font-family:& #39 & amp color:#4F6B72" | /span /strong strong span style=" font-family:宋体 color:#4F6B72" 一次性生产组件标准化的可提取物研究方法 /span /strong strong /strong /p p style=" text-align:left" span style=" font-family:& #39 & amp color:#4F6B72" img src=" https://img1.17img.cn/17img/images/202008/uepic/81ab8e72-9dc6-48a3-85fc-5f0cd138a2d2.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080638696952.jpg" title=" image001.jpg" / br/ /span strong span style=" font-family:宋体 color:#4F6B72" 药点笔记 /span /strong strong span style=" font-family:& #39 & amp color:#4F6B72" | /span /strong strong span style=" font-family:宋体 color:#4F6B72" 一次性生产组件标准化的可提取物研究方法 /span /strong span style=" font-family:& #39 & amp color:#4F6B72" br/ & nbsp /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" i span style=" font-family:& #39 & amp color:#A0A0A0" “ /span /i i span style=" font-family:宋体 color:#A0A0A0" 如果一项决定没有强有力的科学依据, /span /i strong i span style=" font-family:宋体 color:black" 赛多利斯 /span /i /strong i span style=" font-family:宋体 color:#A0A0A0" 将通过科学研究来支持该依据 /span /i i span style=" font-family:& #39 & amp color:#A0A0A0" ” /span /i span style=" font-family:& #39 & amp color:#4F6B72" br/ br/ /span span style=" font-family:宋体 color:#A0A0A0" 作者 /span span style=" font-family:& #39 & amp color:#A0A0A0" |& nbsp Hovery Yin /span span style=" font-family:宋体 color:#A0A0A0" 、 /span span style=" font-family:& #39 & amp color:#A0A0A0" Elin Sun br/ /span span style=" font-family:宋体 color:#A0A0A0" 编辑 /span span style=" font-family:& #39 & amp color:#A0A0A0" | Johnson& nbsp Wang /span span style=" font-family:宋体 color:#A0A0A0" 、 /span span style=" font-family:& #39 & amp color:#A0A0A0" Hester Pan /span span style=" font-family:& #39 & amp color:#4F6B72" br/ br/ & nbsp /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:& #39 & amp color:#565656" 2020 /span span style=" font-family:宋体 color:#565656" 年 /span span style=" font-family:& #39 & amp color:#565656" 6 /span span style=" font-family:宋体 color:#565656" 月 /span span style=" font-family:& #39 & amp color:#565656" 2 /span span style=" font-family:宋体 color:#565656" 日,国家药监局药品评审中心发布了《化学药品注射剂生产所用的塑料组件系统相容性研究技术指南(征求意见稿)》,阐述一种基于科学和风险的研究思路来开展注射剂生产过程中使用的塑料组件系统的相容性研究。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 赛多利斯作为一家引领了可提取物科学 sup ( /sup /span sup span style=" font-family:& #39 & amp color:#565656" 2?10 /span /sup sup span style=" font-family: 宋体 color:#565656" ) /span /sup span style=" font-family:宋体 color:#565656" 并持续 /span span style=" font-family:& #39 & amp color:#565656" 20 /span span style=" font-family:宋体 color:#565656" 多年为我们的产品发布可提取物数据的供应商,在多年的研究中发展,完善并建立了能够充分满足各个药品监管机构标准的内部方法来对一次性组件进行可提取物分析,用可提取物数据和服务来支持生物制药客户实施一次性产品。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 为了定义我们的研究方法,我们需要询问和回答几个与研究目的、提取溶液、提取条件和分析方法有关的问题。其他考虑因素包括要提取的批次数量、报告限的定义和第三方组件。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" strong span style=" font-family:& #39 & amp color:black" “ /span /strong strong span style=" font-family:宋体 color:black" 如果一项决定没有强有力的科学依据,赛多利斯将通过科学研究来支持该依据。 /span /strong strong span style=" font-family:& #39 & amp color:black" ” /span /strong /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#4F6B72" 各种可提取物方法的所有差异都源于一项研究的既定目的以及由此产生的数据的后续使用。例如,考虑讨论哪些特定的提取液应用于可提取物研究: /span span style=" font-family:& #39 & amp color:#4F6B72" br/ span img src=" https://img1.17img.cn/17img/images/202008/uepic/35b728c6-4035-4bb1-aaf8-02c541e73e11.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080638943968.jpg" title=" image002.jpg" / /span br/ & nbsp /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" i span style=" font-family:宋体 color:#4F6B72" 如果某个版本的维恩图没有显示浸出物是可提取物的子集,则可提取物和浸出物的介绍将不完整。在图 /span /i i span style=" font-family:& #39 & amp color:#4F6B72" 1 /span /i i span style=" font-family:宋体 color:#4F6B72" 中,我们包含了一个针对工艺相关可提取物的中间类别。我们确定内部方法时,我们认为维恩图的最大部分应由供应商负责。 /span /i /p p style=" margin-top:auto margin-bottom: auto text-align:left" i span style=" font-family:宋体 color:#4F6B72" 我们需要定义表征研究组件的潜在可提取物的范围,并在材料选择、早期毒理学风险评估和变更控制方面提供帮助。这个意图驱动了我们整个方法的定义。 /span /i span style=" font-family:& #39 & amp color:#4F6B72" br/ br/ /span span style=" font-family:宋体 color:#565656 background:white" 如果目的是生成数据以模拟生物工艺条件,那么实际的溶液(例如缓冲液)可能是正确的提取液。然而,如果一项研究的目的是对组件进行化学表征,那么更具侵蚀性、提取能力更高的溶液可能更为合适。在确定新的可提取物方法的过程中,这个逻辑驱动了许多决策。 /span span style=" font-family:& #39 & amp color:#4F6B72" br/ br/ & nbsp /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" strong span style=" font-family:& #39 & amp color:#4F6B72" 1. /span /strong strong span style=" font-family:宋体 color:#4F6B72" 一次性组件的风险评估与分类 /span /strong /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 赛多利斯对可能留在工艺流体中并最终转移到活性药物成分( /span span style=" font-family:& #39 & amp color:#565656" API /span span style=" font-family:宋体 color:#565656" )的化合物的提取进行了风险评估。该评估是根据 /span span style=" font-family:& #39 & amp color:#565656" Merseburger /span span style=" font-family:宋体 color:#565656" 等人发表的行业和权威观点进行的 /span span style=" font-family:& #39 & amp color:#565656" (11, 12) /span span style=" font-family:宋体 color:#565656" 。确定了风险因素,如温度、表面积与体积的比值、接触时间、与靠近患者的因素等,因为它们影响生物制药工艺中一次性组件的可提取物浓度。同时考虑了可能稀释、浓缩或去除工艺流中浸出物的所有纯化步骤。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 提取溶剂的影响不属于本风险评估的一部分。可提取物研究的目的是寻求全面的信息。因此,赛多利斯对适当溶剂的选择进行了深入的研究 /span span style=" font-family:& #39 & amp color:#565656" (4) /span span style=" font-family:宋体 color:#565656" 。 /span span style=" font-family:& #39 & amp color:#565656" br/ span img src=" https://img1.17img.cn/17img/images/202008/uepic/992b3d42-f595-48d2-a3bc-94e30a51b72e.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080639044648.jpg" title=" image003.jpg" / /span /span span style=" font-family:& #39 & amp color:#4F6B72" br/ /span span style=" font-family:宋体 color:#565656 background:white" 为了确定每个因素的风险值(表 /span span style=" font-family:& #39 & amp color:#565656 background:white" 1 /span span style=" font-family:宋体 color:#565656 background:white" ),我们考虑在整个生物制程中使用一个一次性组件。通过将每个风险值乘以 /span span style=" font-family:& #39 & amp color:#565656 background: white" 1 /span span style=" font-family:宋体 color:#565656 background:white" 、 /span span style=" font-family:& #39 & amp color:#565656 background: white" 5 /span span style=" font-family:宋体 color:#565656 background:white" 或 /span span style=" font-family:& #39 & amp color:#565656 background: white" 10 /span span style=" font-family:宋体 color:#565656 background:white" 来计算每个一次性组件的风险分数。最后,将风险分为三类:低风险( /span span style=" font-family:& #39 & amp color:#565656 background: white" L /span span style=" font-family:宋体 color:#565656 background:white" )、中等风险( /span span style=" font-family:& #39 & amp color:#565656 background: white" M /span span style=" font-family:宋体 color:#565656 background:white" )和高风险( /span span style=" font-family:& #39 & amp color:#565656 background: white" H /span span style=" font-family:宋体 color:#565656 background:white" )(表 /span span style=" font-family:& #39 & amp color:#565656 background: white" 2 /span span style=" font-family:宋体 color:#565656 background:white" )。 /span span style=" font-family:& #39 & amp color:#565656 background: white" br/ span img src=" https://img1.17img.cn/17img/images/202008/uepic/1480ef4d-a675-4645-993f-0a7a0873b8c2.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080639067596.jpg" title=" image004.jpg" / /span /span /p p style=" margin-top:auto margin-bottom:auto" span style=" font-family: 宋体 color:#4F6B72" 对工艺应用中的一次性组件确定了不同的风险分类(表 /span span style=" font-family:& #39 & amp color:#4F6B72" 2 /span span style=" font-family:宋体 color:#4F6B72" )。为可提取物研究设置参数时考虑了这些风险等级。根据风险评估,确定了以下提取时间: /span /p p style=" margin-top:auto margin-bottom:auto" span style=" font-family:& #39 & amp color:#4F6B72" ●& nbsp /span span style=" font-family:宋体 color:#4F6B72" 对于低风险和中等风险的一次性组件,除菌级过滤器和无菌连接器使用一次较短的接触时间( /span span style=" font-family:& #39 & amp color:#4F6B72" 1 /span span style=" font-family:宋体 color:#4F6B72" 天、 /span span style=" font-family:& #39 & amp color:#4F6B72" 7 /span span style=" font-family:宋体 color:#4F6B72" 天或 /span span style=" font-family:& #39 & amp color:#4F6B72" 21 /span span style=" font-family:宋体 color:#4F6B72" 天)。 /span /p p style=" margin-top:auto margin-bottom:auto" span style=" font-family:& #39 & amp color:#4F6B72" ● /span span style=" font-family:宋体 color:#4F6B72" 对于高风险一次性组件,储存袋和管道有两个长期接触的时间点( /span span style=" font-family:& #39 & amp color:#4F6B72" 21 /span span style=" font-family:宋体 color:#4F6B72" 或 /span span style=" font-family:& #39 & amp color:#4F6B72" 70 /span span style=" font-family:宋体 color:#4F6B72" 天)。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" strong span style=" font-family:& #39 & amp color:black" 2. /span /strong strong span style=" font-family:宋体 color:black" 提取液 /span /strong /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 其目标是确定最少种类的提取溶液,产生全面的数量和质量的可提取物,能够在不溶解组件的基础聚合物,同时对给定一次性组件的预期用途的情况下。尽管赛多利斯已经为不同的目的进行了数千项研究,但没有单一项研究试图确定最少提取液种类,以确定在生物制药工艺使用条件下潜在可提取物的范围。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 对于可提取物研究, /span span style=" font-family:& #39 & amp color:#565656" Dorey /span span style=" font-family:宋体 color:#565656" 等人 /span span style=" font-family:& #39 & amp color:#565656" (6) /span span style=" font-family:宋体 color:#565656" 选择纯乙醇和纯水,在 /span span style=" font-family:& #39 & amp color:#565656" 40° C /span span style=" font-family:宋体 color:#565656" 下不溶解聚合物。纯乙醇显示出很强的提取能力,这是材料表征所必需的;而纯水对亲水性化合物显示出良好的提取能力,可应用于各种分析方法。 /span span style=" font-family:& #39 & amp color:#565656" 1 M /span span style=" font-family:宋体 color:#565656" 氢氧化钠和 /span span style=" font-family:& #39 & amp color:#565656" 1 M /span span style=" font-family:宋体 color:#565656" 盐酸可增加小分子靶向有机化学品的极性,提高其溶解度和其可检测性。 /span span style=" font-family:& #39 & amp color:#565656" br/ span img src=" https://img1.17img.cn/17img/images/202008/uepic/343daa16-82fb-44ca-8ddf-207416d35824.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080639163992.jpg" title=" image005.jpg" / /span br/ span img src=" https://img1.17img.cn/17img/images/202008/uepic/425e8943-3a68-4473-8d9a-3f38f4e2cf24.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080639176816.jpg" title=" image006.jpg" / img src=" https://img1.17img.cn/17img/images/202008/uepic/9f8e73e6-db29-4030-a0a9-55e8526ba109.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080639188252.jpg" title=" image007.jpg" / /span /span span style=" font-family:& #39 & amp color:#4F6B72" br/ /span span style=" font-family:宋体 color:#565656 background:white" 与原料生产过程中使用的酸性和碱性溶液(如缓冲液)相比,所选择的提取溶液被认为是最坏的情况,它们还能够覆盖浓酸性和碱性溶液的储存应用。选择了这组溶剂,就可以从生物制程应用中的各种一次性组件中提取所有潜在的可提取物。因为在实际应用中,灌装针头通常只接触中性 /span span style=" font-family:& #39 & amp color:#565656 background: white" pH /span span style=" font-family:宋体 color:#565656 background:white" 值的溶液,所以只用纯水和纯乙醇进行测试。 /span span style=" font-family:& #39 & amp color:#565656 background: white" br/ span img src=" https://img1.17img.cn/17img/images/202008/uepic/4b8fdb8d-85b5-41bf-8ede-ccd8c52c952f.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080639202440.jpg" title=" image008.jpg" / /span /span span style=" font-family:& #39 & amp color:#4F6B72" br/ /span strong span style=" font-family:& #39 & amp color:black" 3. /span /strong strong span style=" font-family:宋体 color:black" 提取条件 /span /strong /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 我们研究的目的要求明显超出实际使用条件及在实验室研究中仍然可行的提取条件。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" strong span style=" font-family:宋体 color:black" 表面积 /span /strong strong span style=" font-family:& #39 & amp color:black" / /span /strong strong span style=" font-family:宋体 color:black" 体积比( /span /strong strong span style=" font-family:& #39 & amp color:black" SA/V /span /strong strong span style=" font-family:宋体 color:black" ) /span /strong span style=" font-family: & #39 & amp color:#565656" : USP & lt 661& gt /span span style=" font-family:宋体 color:#565656" 要求每毫升提取液中待提取组件的 /span span style=" font-family:& #39 & amp color:#565656" SA/V /span span style=" font-family:宋体 color:#565656" 为 /span span style=" font-family:& #39 & amp color:#565656" 6 cm2/mL(13) /span span style=" font-family: 宋体 color:#565656" 。尽管这一比率的设定依据没有记录在案,但它确实明显夸大了实际应用中的预期 /span span style=" font-family:& #39 & amp color:#565656" SA/V /span span style=" font-family:宋体 color:#565656" ,并且已证明接近实验室环境中可行的最大 /span span style=" font-family:& #39 & amp color:#565656" SA/V /span span style=" font-family:宋体 color:#565656" 。对于过滤器,接受的 /span span style=" font-family:& #39 & amp color:#565656" SA/V /span span style=" font-family:宋体 color:#565656" 为 /span span style=" font-family:& #39 & amp color:#565656" 1cm /span sup span style=" font-family:& #39 & amp color:#4F6B72" 2 /span /sup span style=" font-family:& #39 & amp color:#565656" /mL, /span span style=" font-family:宋体 color:#565656" 这也被夸大了,但实际可行 /span span style=" font-family:& #39 & amp color:#565656" (14) /span span style=" font-family:宋体 color:#565656" 。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 因此,对于过滤器、切向流装置和膜吸附器,我们将 /span span style=" font-family:& #39 & amp color:#565656" SA/V /span span style=" font-family:宋体 color:#565656" 确定为 /span span style=" font-family:& #39 & amp color:#565656" 1 cm sup 2 /sup /mL /span span style=" font-family:宋体 color:#565656" ,对于所有其他组件, /span span style=" font-family:& #39 & amp color:#565656" SA/V /span span style=" font-family:宋体 color:#565656" 确定为 /span span style=" font-family:& #39 & amp color:#565656" 6 cm sup 2 /sup /mL /span span style=" font-family:宋体 color:#565656" 。我们要强调的是, /span span style=" font-family:& #39 & amp color:#565656" SA/V /span span style=" font-family:宋体 color:#565656" 比对可提取物浓度的影响取决于接触时间和给定化合物的物理性质 /span span style=" font-family:& #39 & amp color:#565656" (15) /span span style=" font-family:宋体 color:#565656" 。在不超过 /span span style=" font-family:& #39 & amp color:#565656" 7 /span span style=" font-family:宋体 color:#565656" 天的短期提取过程中,可提取化合物的释放受聚合物内扩散的控制(图 /span span style=" font-family:& #39 & amp color:#565656" 2 /span span style=" font-family:宋体 color:#565656" 和图 /span span style=" font-family:& #39 & amp color:#565656" 3 /span span style=" font-family:宋体 color:#565656" )。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 因此,对于短期提取,可提取物的浓度将由 /span span style=" font-family:& #39 & amp color:#565656" SA/V /span span style=" font-family:宋体 color:#565656" 的比率控制。对于长期接触提取,平衡浓度不再受扩散控制,而是受聚合物与溶剂的分配控制。在分配系数较大( /span span style=" font-family:& #39 & amp color:#565656" Kp/l /span span style=" font-family:宋体 color:#565656" )的化合物中,浓度与 /span span style=" font-family:& #39 & amp color:#565656" SA/V /span span style=" font-family:宋体 color:#565656" 比无关 /span span style=" font-family:& #39 & amp color:#565656" (15) /span span style=" font-family:宋体 color:#565656" 。 /span span style=" font-family:& #39 & amp color:#565656" br/ span img src=" https://img1.17img.cn/17img/images/202008/uepic/918f986c-3118-4653-aa71-ffec5eb16f81.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080639273280.jpg" title=" image009.jpg" / /span /span span style=" font-family:& #39 & amp color:#4F6B72" br/ & nbsp /span /p p style=" margin-top:auto margin-bottom:auto" strong span style=" font-family:宋体 color:black" 提取温度 /span /strong span style=" font-family:宋体 color:#565656" :提取温度应允许在不损害组件物理和化学完整性的情况下全面提取化合物。 /span /p p style=" margin-top:auto margin-bottom:auto" strong span style=" font-family:宋体 color:black" 第一个基本原理 /span /strong span style=" font-family:宋体 color:#565656" :选择的温度是加速提取的温度 /span span style=" font-family:& #39 & amp color:#565656" (17, 18) /span span style=" font-family:宋体 color:#565656" 。 /span /p p style=" margin-top:auto margin-bottom:auto" strong span style=" font-family:宋体 color:black" 第二个基本原理 /span /strong span style=" font-family:宋体 color:#565656" :最坏情况下的温度由组件的最高工作温度确定,而不影响其完整性 /span span style=" font-family:& #39 & amp color:#565656" (18) /span span style=" font-family:宋体 color:#565656" 。 /span /p p style=" margin-top:auto margin-bottom:auto" span style=" font-family: 宋体 color:#565656" 提取温度低(例如 /span span style=" font-family:& #39 & amp color:#565656" 23° C /span span style=" font-family:宋体 color:#565656" )导致可提取物浓度低(低至无法测量)。相比之下,随着提取温度的升高(例如 /span span style=" font-family:& #39 & amp color:#565656" 60° C /span span style=" font-family:宋体 color:#565656" )和提取时间的延长(大于 /span span style=" font-family:& #39 & amp color:#565656" 70 /span span style=" font-family:宋体 color:#565656" 天),大多数化合物的可提取物产量增加。在动力学研究中 /span span style=" font-family:& #39 & amp color:#565656" —— /span span style=" font-family:宋体 color:#565656" 本文未给出的结果是基于对高效液相色谱紫外检测峰强度和气相色谱质谱( /span span style=" font-family:& #39 & amp color:#565656" GC-MS /span span style=" font-family:宋体 color:#565656" )分析峰强度的定性评估 /span span style=" font-family:& #39 & amp color:#565656" —— /span span style=" font-family:宋体 color:#565656" 结果表明,在少数情况下,浓度在长时间( /span span style=" font-family:& #39 & amp color:#565656" 70 /span span style=" font-family:宋体 color:#565656" 天)内降低。具体而言,对储存袋(图 /span span style=" font-family:& #39 & amp color:#565656" 2 /span span style=" font-family:宋体 color:#565656" )和囊氏滤器(图 /span span style=" font-family:& #39 & amp color:#565656" 3 /span span style=" font-family:宋体 color:#565656" )的动力学研究表明,浓度明显依赖于温度和接触时间。 /span span style=" font-family:& #39 & amp color:#565656" GC-MS /span span style=" font-family:宋体 color:#565656" 数据(图 /span span style=" font-family:& #39 & amp color:#565656" 3 /span span style=" font-family:宋体 color:#565656" )表明,在 /span span style=" font-family:& #39 & amp color:#565656" 70 /span span style=" font-family:宋体 color:#565656" 天的提取时间后,所有测试温度( /span span style=" font-family:& #39 & amp color:#565656" 23° C /span span style=" font-family:宋体 color:#565656" 、 /span span style=" font-family:& #39 & amp color:#565656" 40° C /span span style=" font-family:宋体 color:#565656" 和 /span span style=" font-family:& #39 & amp color:#565656" 60° C /span span style=" font-family:宋体 color:#565656" )下,所有检测化合物的浓度之和到平衡。采用气相色谱 /span span style=" font-family:& #39 & amp color:#565656" - /span span style=" font-family:宋体 color:#565656" 质谱扫描法,检测和鉴定了广泛的化学物质。 /span /p p style=" margin-top:auto margin-bottom:auto" span style=" font-family: 宋体 color:#565656" 在 /span span style=" font-family:& #39 & amp color:#565656" 60° C /span span style=" font-family:宋体 color:#565656" 下提取是不可行的,因为在提取过滤囊式过滤器时会发生泄漏。对于所有提取时间点,在 /span span style=" font-family:& #39 & amp color:#565656" 20° C /span span style=" font-family:宋体 color:#565656" 到 /span span style=" font-family:& #39 & amp color:#565656" 40° C /span span style=" font-family:宋体 color:#565656" 之间可以看到提取效率的有效加速因子约为 /span span style=" font-family:& #39 & amp color:#565656" 2 /span span style=" font-family:宋体 color:#565656" (图 /span span style=" font-family:& #39 & amp color:#565656" 2 /span span style=" font-family:宋体 color:#565656" 和图 /span span style=" font-family:& #39 & amp color:#565656" 3 /span span style=" font-family:宋体 color:#565656" )。根据结果和我们的基本原理,提取温度设定为 /span span style=" font-family:& #39 & amp color:#565656" 40° C /span span style=" font-family:宋体 color:#565656" 。 /span /p p style=" margin-top:auto margin-bottom:auto" strong span style=" font-family:宋体 color:black" 提取时间 /span /strong span style=" font-family:宋体 color:#565656" :接触时间是相关的,以确保组件材料与提取溶剂之间的相互作用,从而产生高提取物浓度进行分析 /span span style=" font-family:& #39 & amp color:#565656" (16, 17) /span span style=" font-family:宋体 color:#565656" 。通过对储存袋膜材料进行动力学研究(图 /span span style=" font-family:& #39 & amp color:#565656" 2 /span span style=" font-family:宋体 color:#565656" 和图 /span span style=" font-family:& #39 & amp color:#565656" 3 /span span style=" font-family:宋体 color:#565656" ),我们观察到延长接触时间可提高可提取物水平。了解每个组件的预期用途和预期的过程中接触时间,我们可以确定夸大实际使用时间的提取时间。此外,对于滤膜,动力学研究表明,在 /span span style=" font-family:& #39 & amp color:#565656" 40° C /span span style=" font-family:宋体 color:#565656" 下提取 /span span style=" font-family:& #39 & amp color:#565656" 21 /span span style=" font-family:宋体 color:#565656" 天和 /span span style=" font-family:& #39 & amp color:#565656" / /span span style=" font-family:宋体 color:#565656" 或 /span span style=" font-family:& #39 & amp color:#565656" 70 /span span style=" font-family:宋体 color:#565656" 天可检测到大量可提取物(未显示详细数据)。大多数可提取物在 /span span style=" font-family:& #39 & amp color:#565656" 40° C /span span style=" font-family:宋体 color:#565656" 下大约 /span span style=" font-family:& #39 & amp color:#565656" 70 /span span style=" font-family:宋体 color:#565656" 天后达到平衡浓度。表 /span span style=" font-family:& #39 & amp color:#565656" 7 /span span style=" font-family:宋体 color:#565656" 显示了每种组件类别的提取时间。 /span /p p style=" margin-top:auto margin-bottom:auto" strong span style=" font-family:宋体 color:black" 试样制备 /span /strong span style=" font-family:& #39 & amp color:#565656" : /span span style=" font-family:宋体 color:#565656" 较高剂量的伽马辐射对可提取物含量的增加有已知的影响 /span span style=" font-family:& #39 & amp color:#565656" (19) /span span style=" font-family:宋体 color:#565656" 。根据 /span span style=" font-family:& #39 & amp color:#565656" ISO 11137 (20) /span span style=" font-family:宋体 color:#565656" ,我们采用了 /span span style=" font-family:& #39 & amp color:#565656" 25 kGy /span span style=" font-family:宋体 color:#565656" 的最小剂量对一次性系统进行灭菌,典型的最大辐照剂量为 /span span style=" font-family:& #39 & amp color:#565656" 45 kGy /span span style=" font-family:宋体 color:#565656" 。因此,我们需要一个目标剂量来预处理 /span span style=" font-family:& #39 & amp color:#565656" 50kGy /span span style=" font-family:宋体 color:#565656" 提取的组件,并且我们在一次性组件的 /span span style=" font-family:& #39 & amp color:#565656" γ /span span style=" font-family:宋体 color:#565656" 射线照射和提取开始后采用了最长 /span span style=" font-family:& #39 & amp color:#565656" 6 /span span style=" font-family:宋体 color:#565656" 周的时间间隔。 /span /p p style=" margin-top:auto margin-bottom:auto" strong span style=" font-family:宋体 color:black" 批数 /span /strong span style=" font-family:宋体 color:#565656" :下一个评估 /span span style=" font-family:& #39 & amp color:#565656" —— /span span style=" font-family:宋体 color:#565656" 设置研究用物品的数量 /span span style=" font-family:& #39 & amp color:#565656" —— /span span style=" font-family:宋体 color:#565656" 是评估不同过滤器和滤膜批(中间精密度)和一批内(重复性)可提取物结果的变异性。影响整个提取研究变异性的最重要参数是提取过程、样品制备和分析过程(包括分析方法)。如果所用分析方法的重复性优于提取研究中的批次间的重复性,则有可能在提取研究中检测到一次性组件之间的批次间变化。 /span span style=" font-family:& #39 & amp color:#565656" br/ span img src=" https://img1.17img.cn/17img/images/202008/uepic/68482f2c-274a-4671-adbc-c763c69af196.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080639304676.jpg" title=" image010.jpg" / /span /span span style=" font-family:& #39 & amp color:#4F6B72" br/ /span span style=" font-family:宋体 color:#565656 background:white" 在本研究中,使用高效液相色谱 /span span style=" font-family:& #39 & amp color:#565656 background:white" / /span span style=" font-family:宋体 color:#565656 background:white" 紫外光谱、气相色谱 /span span style=" font-family:& #39 & amp color:#565656 background:white" - /span span style=" font-family:宋体 color:#565656 background:white" 质谱和总有机碳( /span span style=" font-family:& #39 & amp color:#565656 background:white" TOC /span span style=" font-family:宋体 color:#565656 background:white" )分析来测定批次间的变化。这些分析技术的重复性和中间精密度实验数据低于 /span span style=" font-family:& #39 & amp color:#565656 background: white" 10% /span span style=" font-family:宋体 color:#565656 background:white" (表 /span span style=" font-family:& #39 & amp color:#565656 background: white" 3 /span span style=" font-family:宋体 color:#565656 background:white" )。然而,必须指出的是,对于某些用 /span span style=" font-family:& #39 & amp color:#565656 background: white" GC-MS /span span style=" font-family:宋体 color:#565656 background:white" 分析的化合物,其中间精密度可达 /span span style=" font-family:& #39 & amp color:#565656 background: white" 25% /span span style=" font-family:宋体 color:#565656 background:white" 。 /span span style=" font-family:& #39 & amp color:#565656 background: white" img src=" https://img1.17img.cn/17img/images/202008/uepic/103db15b-f0ee-4ce1-831f-8040289c09fe.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080639337020.jpg" title=" image011.jpg" / /span span style=" font-family:& #39 & amp color:#4F6B72" br/ & nbsp /span /p p style=" margin-top:auto margin-bottom:auto" span style=" font-family: 宋体 color:#565656" 例如, /span span style=" font-family:& #39 & amp color:#565656" Menzel /span span style=" font-family:宋体 color:#565656" 等人报道的三种常见可提取化合物的 /span span style=" font-family:& #39 & amp color:#565656" GC-MS /span span style=" font-family:宋体 color:#565656" 分析数据 /span span style=" font-family:& #39 & amp color:#565656" (5) /span span style=" font-family:宋体 color:#565656" 表明重复性和中间精密度在同一水平上(十二烷分别为 /span span style=" font-family:& #39 & amp color:#565656" 1.2% /span span style=" font-family:宋体 color:#565656" 和 /span span style=" font-family:& #39 & amp color:#565656" 5.6% /span span style=" font-family:宋体 color:#565656" ),低于 /span span style=" font-family:& #39 & amp color:#565656" 10% /span span style=" font-family:宋体 color:#565656" (表 /span span style=" font-family:& #39 & amp color:#565656" 4 /span span style=" font-family:宋体 color:#565656" )。即使在单一化合物之间,一个批次内的重复性(十二烷为 /span span style=" font-family:& #39 & amp color:#565656" 1.2% /span span style=" font-family:宋体 color:#565656" , /span span style=" font-family:& #39 & amp color:#565656" 2,4 /span span style=" font-family:宋体 color:#565656" 二 /span span style=" font-family:& #39 & amp color:#565656" - /span span style=" font-family:宋体 color:#565656" 叔丁基苯酚为 /span span style=" font-family:& #39 & amp color:#565656" 6.5% /span span style=" font-family:宋体 color:#565656" )也与中间精密度(十二烷为 /span span style=" font-family:& #39 & amp color:#565656" 5.6% /span span style=" font-family:宋体 color:#565656" , /span span style=" font-family:& #39 & amp color:#565656" 2,4- /span span style=" font-family:宋体 color:#565656" 二 /span span style=" font-family:& #39 & amp color:#565656" - /span span style=" font-family:宋体 color:#565656" 叔丁基苯酚为 /span span style=" font-family:& #39 & amp color:#565656" 7.7% /span span style=" font-family:宋体 color:#565656" )处于同一水平。分析系统的重复性相当于过滤器的批次间变化。因此,分析方法不显示任何批次间变化。基于这些数据,在进行可提取物研究时,不需要对多个批次进行相关测试。 /span span style=" font-family:& #39 & amp color:#565656" TOC /span span style=" font-family:宋体 color:#565656" 和高效液相色谱 /span span style=" font-family:& #39 & amp color:#565656" - /span span style=" font-family:宋体 color:#565656" 紫外检测结果也得出了同样的结论。重复性和中间精密度显示相同的水平。未检测到囊氏滤器的批次间变化。从这些数据中得出的结论是可提取物研究只需测试一批一次性组件。可将多个批次的提取物混合起来进行分析。 /span /p p style=" margin-top:auto margin-bottom:auto" span style=" font-family:& #39 & amp color:#4F6B72" & nbsp /span /p p style=" margin-top:auto margin-bottom:auto" strong span style=" font-family:宋体 color:black" 提取条件和提取物的处理 /span /strong span style=" font-family:宋体 color:#565656" :通过浸泡或灌装一次性组件(袋或管)来提取一次性组件。刚性一次性组件,如过滤器和外壳,通过摇动彻底湿润,以降低一次性组件和溶剂之间的界面阻力,并使表面易于接触溶剂。只要有可能达到所需的 /span span style=" font-family:& #39 & amp color:#565656" SA/V /span span style=" font-family:宋体 color:#565656" 比,一次性组件就可无须分割整个使用。不执行切碎等操作。按照预期用途对组件进行处理:对于使用前可能经过辐照和高压灭菌的组件,提供每个预处理步骤的数据。按照说明书冲洗用于保存一次性组件的液体(如切向流盒、膜吸附器)。使用已清洁的设备进行提取。空白样品、样品制备和测量细节见 /span span style=" font-family:& #39 & amp color:#565656" Menzel /span span style=" font-family:宋体 color:#565656" 等人的文章 /span span style=" font-family:& #39 & amp color:#565656" (5) /span span style=" font-family:宋体 color:#565656" 。关于根据实验室工作的基本原则处理提取物的其他建议可在文献中找到 /span span style=" font-family:& #39 & amp color:#565656" span (17, 18, 21) /span /span span style=" font-family:宋体 color:#565656" 。 /span span style=" font-family:& #39 & amp color:#565656" img src=" https://img1.17img.cn/17img/images/202008/uepic/93308a80-54f0-4669-87bf-d6d42f93dfd2.jpg" alt=" https://www.bio-equip.com/imgatl/2020/2020080639363796.jpg" title=" image012.jpg" / /span span style=" font-family:& #39 & amp color:#4F6B72" br/ /span strong span style=" font-family:& #39 & amp color:black" 4. /span /strong strong span style=" font-family:宋体 color:black" 分析方法 /span /strong /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 我们结合了最先进的分析技术,用于检测、鉴定和定量挥发性、半挥发性和非挥发性可提取物,包括元素。我们的分析方法如表 /span span style=" font-family:& #39 & amp color:#565656" 5 /span span style=" font-family:宋体 color:#565656" 所示。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" strong span style=" font-family:宋体 color:black" 报告限的定义 /span /strong span style=" font-family:宋体 color:#565656" :美国药典第 /span span style=" font-family:& #39 & amp color:#565656" & lt 1663& gt /span span style=" font-family:宋体 color:#565656" 章提到 /span span style=" font-family:& #39 & amp color:#565656" “ /span span style=" font-family:宋体 color:#565656" 表征是发现、鉴定和量化超过规定水平或阈值的提取物中存在的每个有机和无机化学实体。这些阈值可以基于患者安全考虑、材料考虑、分析技术能力等 /span span style=" font-family:& #39 & amp color:#565656" ”(16) /span span style=" font-family:宋体 color:#565656" 。许多文献描述了用不同分析方法测定可提取化合物的检出限( /span span style=" font-family:& #39 & amp color:#565656" LoD /span span style=" font-family:宋体 color:#565656" )和定量限( /span span style=" font-family:& #39 & amp color:#565656" LoQ /span span style=" font-family:宋体 color:#565656" )的适用方法 /span span style=" font-family:& #39 & amp color:#565656" (22, 23) /span span style=" font-family:宋体 color:#565656" 。 /span span style=" font-family:& #39 & amp color:#565656" Jenke /span span style=" font-family:宋体 color:#565656" 等人报道了一次性组件中约 /span span style=" font-family:& #39 & amp color:#565656" 500 /span span style=" font-family:宋体 color:#565656" 种不同的潜在可提取化合物 /span span style=" font-family:& #39 & amp color:#565656" (24) /span span style=" font-family:宋体 color:#565656" 。由于所列可提取化合物的极性和挥发性的化学多样性,不能期望 /span span style=" font-family:& #39 & amp color:#565656" LoD/LoQ /span span style=" font-family:宋体 color:#565656" 值在相同或甚至相似的水平上。美国药典第 /span span style=" font-family:& #39 & amp color:#565656" & lt 1663& gt /span span style=" font-family: 宋体 color:#565656" 章讨论了定性可提取物评估,并建议至少有一种浓度为 /span span style=" font-family:& #39 & amp color:#565656" 5µ g/mL /span span style=" font-family:宋体 color:#565656" 的可提取化合物来进行结构确证。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 在可提取物研究中,扫描方法允许检测浓度范围为十亿分之几( /span span style=" font-family:& #39 & amp color:#565656" ppb /span span style=" font-family:宋体 color:#565656" )到百万分之几( /span span style=" font-family:& #39 & amp color:#565656" ppm /span span style=" font-family:宋体 color:#565656" )的潜在可提取化合物。为了能够稳健地报告可提取物结果(包括定性和定量),定义每种分析方法的报告限( /span span style=" font-family:& #39 & amp color:#565656" RL /span span style=" font-family:宋体 color:#565656" )是一个实用步骤。这些限值是主观定义的,对于单一化合物可以高于定量限,并且可以克服实验室间定量限的差异。 /span span style=" font-family:& #39 & amp color:#565656" RL /span span style=" font-family:宋体 color:#565656" 可以从特定分析技术的单个化合物的 /span span style=" font-family:& #39 & amp color:#565656" LoQ /span span style=" font-family:宋体 color:#565656" 数据中得到。这一概念允许报告来自不同实验室的可重复的可提取物信息。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" span style=" font-family:宋体 color:#565656" 在研究中,从提取样品中检测到的所有峰,如果峰面积超过对照峰(空白)峰面积的 /span span style=" font-family:& #39 & amp color:#565656" 50% /span span style=" font-family:宋体 color:#565656" ,则视为可提取化合物。 /span span style=" font-family:& #39 & amp color:#565656" RL /span span style=" font-family:宋体 color:#565656" 不是固定的,代表分析设备的性能(表 /span span style=" font-family:& #39 & amp color:#565656" 6 /span span style=" font-family:宋体 color:#565656" )。进一步的改进和新的耐用的分析系统和技术可以导致较低的报告限。 /span /p p style=" margin-top:auto margin-bottom: auto text-align:left" strong span style=" font-family:宋体 color:black" 赛多利斯的一次性组件提取方案 /span /strong span style=" font-family:宋体 color:#565656" :表 /span span style=" font-family:& #39 & amp color:#565656" 7 /span span style=" font-family:宋体 color:#565656" 显示了应用于一次性组件的提取方案。赛多利斯在其标准、可配置和自定义一次性组装中使用了许多第三方组件,包括连接器和管道。为了向我们的客户提供我们的一次性系统的全面可提取物信息,我们实施了一个全面的计划,根据我们新的内部程序测试我们组件库的一个子集(包括此类第三方组件)。 /span span style=" font-family:& #39 & amp color:#4F6B72" br/ br/ /span span strong span style=" font-size: 12px font-family: 宋体 color: rgb(10, 44, 132) background: rgb(242, 242, 242) " 赛多利斯已经开发出一种可提取物研究的实用方法,以表征用于生物制药工艺的一次性组件的潜在可提取物。同时建立了一个测试程序,以评估提取过程中物理和化学参数的影响,并推导出不同一次性组件提取物研究设计的相关条件。通过采用标准化提取参数和最先进的分析方法对一次性组件进行的最差情况提取研究的结果,赛多利斯能够帮助您获得全面的定性和定量可提取物数据。 /span /strong /span /p br/ p span & nbsp /span /p p span style=" font-family:宋体" 查询原文 /span /p p span & nbsp /span /p p span Pahl I., Dorey S., Uettwiller I., Hoffmann Ch., Priebe P., Menzel R., & amp Hauk A. Development of a Standardized Extractables Approach for Single-Use Components -General Considerations and Practical Aspects. Bioprocess Int. 2018 16(10). /span /p p span & nbsp /span /p p span style=" font-family:宋体" 以上作者均来自赛多利斯 /span /p p span & nbsp /span /p p span & nbsp /span /p p span style=" font-family: 宋体 color: rgb(127, 127, 127) " 参考文献 /span /p p span style=" color: rgb(127, 127, 127) " 1.Reif OW, Sö lkner P, Rupp J. Analysis and Evaluation of Filter Cartridge Extractables for Validation in Pharmaceutical Downstream Processing. PDA J. Pharm. Sci. Technol. 50(6) 1996 399–410. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 2.Fichtner S, et al. Determination of “Extractables” on Polymer Materials by Means of HPLC-MS. PDA J. Pharm. Sci. Technol. 60, 2006 291–301. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 3.Pahl I, et al. Analysis and Evaluation of Single-Use Bag Extractables for Validation in Biopharmaceutical Applications. PDA J. Pharm. Sci. Technol. 68(5) 2014: 456–471 doi:10.5731/ pdajpst.2014.00996. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 4.Menzel R, et al. Comparative Extractables Study of Autoclavable Polyethersulfone Filter Cartridges for Sterile Filtration. PDA J. Pharm. Sci. Technol. 72(3) 2018: 298–316 doi:10.5731/pdajpst.2017.008367. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 5.Dorey S, et al. Theoretical and Practical Considerations When Selecting Solvents for Use in Extractables Studies of Polymeric Contact Materials in Single-Use Systems Applied in the Production of Biopharmaceuticals. Ind. Eng. Chem. Res. 57, 2018 7077–7089 doi:10.1021/acs.iecr.7b04940. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 6.Hauk A, et al. On the “Fate of Leachables” in Biopharmaceutical Up-Stream and Down-Stream Processes. Single-Use Technologies II: Bridging Polymer Science to Biotechnology Applications. ECI Conference Series: 7–10 May 2017, Tomar, Portugal. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 7.Gaston F, et al. FTIR Study of Ageing of γ-Irradiated Biopharmaceutical EVA Based Film. Polym. Degrad. Stab. 129, 2016 19–25 doi:10.1016/j.polymdegradstab.2016.03.040. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 8.Audran G, et al. Degradation of γ-Irradiated Polyethylene-Ethylene Vinyl Alcohol-Polyethylene Multilayer Films: An ESR Study. Polym. Degrad. Stab. 122, 2015 169– 179 doi:10.1016/j.polymdegradstab.2015.10.021. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 9.Gaston F, et al. Impact of γ-Irradiation, Ageing and Their Interactions on Multilayer Films Followed By AComDim. Anal. Chim. Acta 981, June 2017: 11–23 doi:10.1016/j.aca.2017.05.021. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 10.Gaston F, et al. One Year Monitoring By FTIR of γ-Irradiated Multilayer Film PE/EVOH/PE. Radiat. Phys. Chem. 125, 2016: 115–121 doi:10.1016/j. radphyschem.2016.03.010. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 11.Merseburger T, et al. A Risk Analysis for Production Processes with Disposable Bioreactors. Disposable Bioreactors 2. Eibl D, Eibl R, Eds. Springer: Berlin–Heidelberg, 2013: 273– 288 doi:10.1007/10_2013_244. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 12.Merseburger T, et al. Recommendation for a Risk Analysis for Production Processes with Disposable Bioreactors. DECHEMA, Gesellschaft fü r Chemische Technik und Biotechnologie eV: Frankfurt am Main, Germany, 2015. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 13.& lt 661& gt Plastic Packaging Systems and Their Materials of Construction. United States Pharmacopeia 40(1) 2017. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 14.& lt 665& gt DRAFT. Polymeric Components and Systems Used in the Manufacturing of Pharmaceutical and Biopharmaceutical Drug Products. US Pharmacopeial Convention, Inc.: Rockville, MD, 2017 /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 15.Plastic Packaging: Interactions with Food and Pharmaceuticals. Piringer OG, Barner AL, Eds. Wiley span style=" color: rgb(127, 127, 127) font-family: 宋体 " ‐ /span VCH: Weinheim, Germany, 2008. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 16. & lt 1663& gt Assessment of Extractables Associated with Pharmaceutical Packaging/Delivery Systems. United States Pharmacopeia 38, 2015: 7166–7180. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 17.Leachables and Extractables Handbook: Safety Evaluation, Qualification, and Best Practices Applied to Inhalation Drug Products. Ball DJ, et al., Eds. John Wiley & amp Sons, Inc.: Hoboken, NJ, 2012. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 18.Jenke D. Compatibility of Pharmaceutical Products and Contact Materials: Safety Considerations Associated with Extractables and Leachables. John Wiley & amp Sons, Inc.: Hoboken, NJ, 2009. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 19.Dorey S, et al. Reconciliation of pH, Conductivity, Total Organic Carbon with Carboxylic Acids Detected By Ion Chromatography in Solution After Contact with Multilayer Films After γ-Irradiation. Eur. J. Pharm. Sci. 117, 23 February 2018 216–226 doi:10.1016/j.ejps.2018.02.023. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 20.ISO 11137-1:2006. Sterilization of Health Care Products — Radiation — Part 1: Requirements for Development, Validation, and Routine Control of a Sterilization Process for Medical Devices. International Organization for Standardization: Geneva, Switzerland, 2016. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 21.Jenke D, et al. Extractables Characterization for Five Materials of Construction Representative of Packaging Systems Used for Parenteral and Ophthalmic Drug Products. PDA J. Pharm. Sci. Technol. 67(5) 2013 448–511 doi:10.5731/ pdajpst.2013.00933. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 22.Shrivastava A, Gupta V. Methods for the Determination of Limit of Detection and Limit of Quantitation of the Analytical Methods. Chronicles Young Sci. 2(1) 2011 21–25 doi:10.4103/2229-5186.79345. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 23.ICH Q2(R1). Validation of Analytical Procedures: Text and Methodology. US Fed. Reg. 62(96) 1997: 27463–27467 www.ich.org/fileadmin/Public_Web_Site/ICH_Products/ Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf. /span /p p span style=" color: rgb(127, 127, 127) " & nbsp /span /p p span style=" color: rgb(127, 127, 127) " 24.Jenke D, Carlson T. A Compilation of Safety Impact Information for Extractables Associated with Materials Used in Pharmaceutical Packaging, Delivery, Administration, and Manufacturing Systems. J. Pharm. Sci. Technol. 68(5) 2014: 407–55 doi:10.5731/pdajpst.2014.00995. /span /p p br/ /p
  • CFDA关于做好银杏叶提取物和银杏叶药品检验的通知
    p style=" TEXT-ALIGN: center" strong 食品药品监管总局关于做好银杏叶提取物和银杏叶药品检验的通知 /strong /p p   各省、自治区、直辖市食品药品监督管理局: /p p   2015年6月8日,总局发布了《关于开展银杏叶提取物和银杏叶药品检验的通告》(2015年第20号),请各省(区、市)食品药品监管部门认真组织落实。现将有关事项通知如下: /p p   一、督促企业开展自检工作。各省(区、市)食品药品监管部门要督促本行政区域内银杏叶提取物生产企业(含未取得药品生产许可证的企业)、银杏叶药品制剂生产企业按通告要求,对本企业自2014年1月1日后生产的所有批次银杏叶提取物、银杏叶片和银杏叶胶囊逐批进行检验(包括已召回批次和未召回批次),并向所在地省(区、市)食品药品监管部门报告检验结果。企业自检不晚于2015年6月15日完成,同时向社会公布检验结果(包括合格与不合格的)。其中,凡检验不合格的,企业应当立即停止生产、销售和使用,并召回已上市产品,召回信息向所在地省(区、市)食品药品监管部门报告,并向社会公布。对已按照国家食品药品监督管理总局通告2015年第15、第17号召回及正在召回的药品,凡检验不合格的,还要向所在地省(区、市)食品药品监管部门报告其原料购进企业、数量,用于生产产品的批次,并向社会公布。 /p p   对其他剂型的银杏叶药品以及可能存在的其他质量风险,也要一并督促企业自查自纠,发现问题及时采取措施。 /p p   二、督促企业报告银杏叶药品生产和销售流向。各省(区、市)食品药品监管部门要组织企业对2014年1月1日后生产的所有批次银杏叶药品生产情况和销售流向进行全面梳理,于2015年6月15日前报告所在地省(区、市)食品药品监管部门。对持有银杏叶药品批准文号,但自2014年1月1日以来没有生产,且市场上无产品的,也应当核实清楚,由企业负责人和负责检查的食品药品监管部门负责人签字背书。 /p p   三、对企业自检情况进行抽查复核。各省(区、市)食品药品监管部门要加强对企业自检工作的督促检查,保证自检工作快速有效开展。同时,组织食品药品检验检测机构对企业检验结果进行抽查复核。发现不合格产品的,要督促企业立即召回。 /p p   四、及时上报结果。各省(区、市)食品药品监管部门应当于2015年6月10日起,向国家食品药品监督管理总局逐日报告当地银杏叶提取物生产企业和制剂企业的自检结果及召回情况(附件1)。2015年6月18日前,汇总企业自检结果(附件2)、抽查复核结果(附件3)以及产品生产情况和主要销售流向(附件4),向食品药品监管总局报告。对检查和复核中发现的问题及采取的措施,应当一并报告。 /p p   五、开展专项监督抽验。目前,总局正在组织制订针对非法添加的补充检验方法,以及除片剂、胶囊剂以外其他剂型的补充检验方法,并将尽快颁布实施。总局将于2015年6月下旬组织部分省(区、市)食品药品监管部门对市场上销售的所有银杏叶药品进行专项监督抽验,以彻底净化银杏叶药品市场,保障广大公众用药安全。抽验结果将及时对社会公布。 /p p   附件: /p p & nbsp & nbsp 1. img style=" LINE-HEIGHT: 16px" src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" LINE-HEIGHT: 16px" href=" http://img1.17img.cn/17img/files/201508/ueattachment/a2c5aecf-9fec-4d04-be4f-af5596def74b.doc" 企业自检结果及召回情况日报表.doc /a /p p   2. img style=" LINE-HEIGHT: 16px" src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" LINE-HEIGHT: 16px" href=" http://img1.17img.cn/17img/files/201508/ueattachment/2eae747c-48ba-415c-acab-6006baf96f57.doc" 企业自检结果汇总表.doc /a /p p   3. img style=" LINE-HEIGHT: 16px" src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" LINE-HEIGHT: 16px" href=" http://img1.17img.cn/17img/files/201508/ueattachment/4f09b17d-0e83-4fef-ad8c-82e39bf9f643.doc" 抽查复核结果汇总表.doc /a /p p   4. img style=" LINE-HEIGHT: 16px" src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" LINE-HEIGHT: 16px" href=" http://img1.17img.cn/17img/files/201508/ueattachment/4b267524-e889-4429-aaa7-b3b834aa6be1.doc" 银杏叶药品生产销售情况统计表.doc /a /p p style=" TEXT-ALIGN: right"   食品药品监管总局 /p p style=" TEXT-ALIGN: right"   2015年6月8日 /p p br/ /p
  • 非法银杏叶提取物“烧至”保健食品 CFDA开展行业大排查
    p   “我们在对桂林和宁波两家企业的案件调查中发现,这些非法银杏叶提取物已流向了保健食品企业。因此,食药总局要求所有使用银杏叶提取物生产保健食品的企业立即开展自查。”食药总局食监三司司长王红6月9日对《经济参考报》记者表示,这也意味着今年保健食品大排查的开始。 br/ /p p   按照有关规定,银杏叶及其提取物可用作保健食品原料。截至2015年5月28日,共批准含银杏叶及其提取物的保健食品457个,其中含银杏叶产品175个,含银杏叶提取物产品282个。 /p p   食药总局监督检查时发现,桂林兴达药业有限公司、宁波立华制药有限公司两家银杏叶药品生产企业涉嫌生产经营用盐酸工艺生产的银杏叶提取物,5月20日和29日已经要求企业采取停产、召回已售出产品等措施。 /p p   “包括进口厂家和国产产品的所有产品都必须进行自查,自查内容包括是否从上述企业购进银杏叶提取物以及使用该原料生产成品及销售情况,是否在使用的银杏叶提取物原料中违法添加其他物质等。”王红说,企业自查和问题产品召回工作应于6月15日前完成并向所在地省级食品药品监管部门报告。 /p p br/ /p
  • 福斯应用 | 40秒快检牛奶中的A2β -酪蛋白
    牛奶中蛋白质主要有乳清蛋白和酪蛋白两大类。酪蛋白中又分β-酪蛋白、keppa-酪蛋白和alpha-酪蛋白,其中β-酪蛋白约占蛋白总量的30%,是氨基酸的重要来源,同时在体内传递重要的矿物质(如钙、磷等),促进其消化吸收。A2β-酪蛋白是现代奶牛β-酪蛋白的天然原型。最初,所有家养的牛生产的牛奶中只含有A2β-酪蛋白,后来因自然基因突变,出现了A1蛋白的变体。研究表明,A2β-酪蛋白与母乳中的β-酪蛋白更接近,更有利于促进婴幼儿的生长发育。福斯MilkoScan™ FT3快速检测牛奶中A2β-酪蛋白A2β-酪蛋白的常规测定方法比较繁琐、耗时长、单样成本高。现在,MilkoScan™ FT3乳品分析仪通过建立A2β-酪蛋白的定标模块,可以直接检测A2β-酪蛋白。快速了解MilkoScan™ FT3FTIR技术40秒快检,结果准确可靠应用A2β-酪蛋白定标模块无需样品制备,直接上机检测掺假筛查MilkoScan™ FT3检测巴氏杀菌奶中的A2β-酪蛋白,定标样品和验证样品分布如下:FT1检测巴氏杀菌奶中的A2β-酪蛋白,定标样品和验证样品分布如下:
  • 快来参与微话题,畅所欲言话蛋白
    8月15日至9月15日,赛默飞召集各路有过蛋白提取、纯化和鉴定等经验的蛋白&ldquo 砖家&rdquo ,参与在新浪微博上发起的#蛋白实验中的酸甜苦辣#微话题讨论。无论你是深谙蛋白纯化机密,曾在LC-MS/MS分析复杂蛋白质样品上耗时太长,还是熟知抗体纯化实验方法,都可以点击http://weibo.com/thermofishercn畅所欲言,一起吐槽实验,分享亲身经历和心得! 除了参与微话题讨论,分享故事赢奖品之外,你还可以在9月7-11日期间,莅临第八届中国蛋白质组学大会赛默飞的T06展位,了解我们的蛋白质组学研究解决方案和各类促销信息。在本次大会上,赛默飞还将举行新产品、新技术推广会和大会报告等活动,由应用专家们带来前沿技术和最新研究进展。 赛默飞为蛋白质组学研究提供包括创新的化学试剂、高效的分离产品、领先的色谱质谱技术、以及蛋白质组学数据处理软件产品的最先进和完整的解决方案,帮助科学家们大幅提高研究工作的效率,更有信心地面对蛋白质组学研究的挑战。&ldquo 赛默飞蛋白质组学解决方案&rdquo 专题页面详细地介绍了质谱技术应用、蛋白质组学研究试剂与抗体,以及仪器、设备与耗材等。 欲了解更多赛默飞蛋白组学应用,请访问:http://www.thermo.com.cn/proteomics。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • Olink新品发布|Explore HT 蛋白标志物平台开启蛋白组学新时代
    Olink 于 2023 年 7 月 12 日 宣布发布 Olink Explore HT 新产品,该变革型高通量蛋白组学解决方案以全方位的已验证特异性、可扩展性和简化流程。Olink Explore HT 代表了新一代蛋白组学的重大进步,科学家们仅需 2 μl 样品即可准确检测超过 5,300 种蛋白标志物,且重新设计后的整个流程更简化。与上一代 Explore 产品相比,新品不仅将特异蛋白标志物检测数量提高了 80%,同时将样品检测通量提高 4 倍,数据输出能力提高 8 倍,并以更简化的操作流程进一步提高了从样品到数据产出效率。更重要的是,这些创新也缩减了环境空间,所有组件降低了 6 倍,外部包装降低了 10 倍。  Olink CEO Jon Heimer说到:“Olink Explore HT 展示了我们秉承持续创新的承诺,为科学研究提供强有力的解决方案。在几年前,Olink Explore HT 的强大功能几乎是难以想象的。而现在,这是 Olink 迄今为止提供的最先进的高通量蛋白组学产品,其卓越性能将赋能 21 世纪医疗健康提供重要新发现。”  Olink Explore HT 旨在全方位解锁所有规模蛋白质组学的巨大价值,以推进多组学研究。并可广泛应用于疾病治疗领域,加深疾病发生、进展及结果进程中,在分子信号通路水平的全面理解。Olink Explore HT 还将推动药物研发新发现,从基于疾病致病蛋白鉴定的靶点发现,到对作用机制研究的实操见解,以及通过对临床试验中现有样品的重新审查来重新利用扩展治疗方法。  瑞典乌普萨拉大学的Ulf Gyllensten教授说到:“我们对 Olink Explore HT 新平台感到非常兴奋。凭借 Olink 变革型 PEA 多重标记检测技术,Olink Explore HT 使得我们能从微量临床样品中进行高通量、超多重和极其精准的蛋白分析。将 PEA 技术与 NGS 读数结合后,Olink Explore HT 将以其前所未有的能力,进一步揭示全人类蛋白组。作为早期用户,我们已经成功地使用该平台发现识别妇科癌症的诊断和预后蛋白生物标志物。使用 Olink Explore HT 具有的更大规模的蛋白标志物库进行蛋白组学分析,定会加速新型生物标志物的发现,并揭示重要的生物学新见解。更广泛地说,从基础科研到转化研究的整个药物开发过程中,该平台将开启一种强大的基于多组学的新方法。”  Olink Explore HT 代表了 Olink PEA 技术与 NGS 读数相结合的前沿创新。每一个经过充分验证的分析实验,都再次验证 Olink 用户所信任的特异性和灵敏度的卓越标准。
  • 【瑞士步琦】从猫爪草提取物当中有效分离紫外吸收与非紫外吸收成分
    从猫爪草提取物中分离紫外吸收与非紫外吸收成分Pure 应用”猫爪草是一种热带藤本植物,是科学研究的一种宝贵的药物资源。活性成分为生物碱,丹丁酸和其它可能有促进免疫系统功能潜力的植物素。其中,生物碱有降压药的效果,可降低胆固醇,除此之外,还具有消炎、抗氧化和抗癌等特性。1方法萃取条件萃取类型研磨重量2g萃取溶剂乙醚溶剂体积20ml超声波提取30minFlash 色谱条件FlashPure EcoFlex 12g Sclia流速25ml/minUV1 波长254nmUV2 波长280nm溶剂 A正己烷溶剂 B乙酸乙酯进样模式液体ELSD 载体空气柱平衡时间5min洗脱方法步骤1234时间(min)0.03.03.04.0%B3030100100▲ 图 1. 在装有 12g Sclia 填料的 FlashPure EcoFlex 柱上对猫爪草进行纯化。色谱图说明使用紫外检测器和蒸发光散射检测器检测峰的诸多优点。通过调整流动相的梯度对方法进行优化以期获得更好的分离效果,方法如下:洗脱方法步骤1234时间(min)0.03.09.01.0%B3030100100▲ 图 2. 优化后的方法使得整体分离度大大提高,在 ELSD 检测器的加持下,可以有效检测到无紫外吸收的目标产物。使用分析型 HPLC 将两组实验与初始粗提物进行分析对照,结果如下:▲ 图 3. 通过对照发现只用 UV 检测器对样品进行纯化,不能检测非发色团的产物,导致馏分纯度不高。使用 ELSD 检测器收集的馏分可分离出高回收率和高纯度的组分。2结论天然产物在新药物研发中发挥重要的作用。粗提物通常含有活性良好的先导化合物,因此分离和纯化时需要很多步骤且充满未知性。Pure 系统收集包括 UV 检测器和 ELSD 检测器在内的多个检测器的信号,克服了使用传统 Flash 色谱方法遇到的纯化瓶颈,大大提高目标产物的纯度和回收率。化学家可以在双检测器以及 Navigator 技术的帮助下,有效地从粗提取物中分离目标化合物和含量低的成分,节省时间和人力成本。3参考Cat's Claw Technical Literature, Raintree Nutrition, Carson City, Nevada.Medicinal natural products a biosynthetic approach, 3rd edition Dewick, P. John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制