当前位置: 仪器信息网 > 行业主题 > >

苄氧羰基谷氨酸标准品

仪器信息网苄氧羰基谷氨酸标准品专题为您提供2024年最新苄氧羰基谷氨酸标准品价格报价、厂家品牌的相关信息, 包括苄氧羰基谷氨酸标准品参数、型号等,不管是国产,还是进口品牌的苄氧羰基谷氨酸标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合苄氧羰基谷氨酸标准品相关的耗材配件、试剂标物,还有苄氧羰基谷氨酸标准品相关的最新资讯、资料,以及苄氧羰基谷氨酸标准品相关的解决方案。

苄氧羰基谷氨酸标准品相关的资讯

  • 味精里掺杂盐和硫酸镁 谷氨酸钠严重不达标
    味精颗粒   杂味的味精   小王是个挺较真的人。最近他和朋友到一家饭馆吃饭,觉得菜比往常咸了很多。服务员解释说可能是味精放多了。服务员的这番解释让小王感到非常奇怪,菜炒咸了,跟味精有什么关系呢?较真的小王回到家就上网查了起来。   小王:在网上了解会往里边掺加一些盐、糖或者是淀粉其它一些东西。   小王在网上查询后了解到,味精,学名“谷氨酸钠”,成品为白色柱状晶体,可以增加食物的鲜度,不应该有咸味。同时,小王还发现,有很多网友爆料说,味精里其实并不全是“谷氨酸钠”。真得是这样吗?为了了解更多,小王又到市场走了一圈,发现了一些他以前不知道的事。   小王:我到市场以后,通过跟商户交谈,商户就跟我说这味精里边,它的谷氨酸钠的含量都不够,里边它本身就是,往里边掺很多东西。   “炒菜不用放盐了”   小王打听到,这些大包装的袋装味精虽然都标注了谷氨酸钠大于等于99%,但是里面却并非都是纯粹的谷氨酸钠,那都加了什么呢?按照小王提供的信息,记者走访了青岛市的两个批发市场。   在青岛市抚顺路蔬菜副食品批发市场里有数十个批发调味料的摊位,每家都有几种牌子的味精在卖。记者在市场里看到,这里销售的味精有三种,无盐味精、加盐味精和增鲜味精,三种味精当中的谷氨酸钠含量也各不相同。摊主告诉记者,这种2.5公斤装的“无盐味精”,谷氨酸钠含量能达到99%以上,销量最好。   记者:这种一般你一个月能走多少?(好了能走200袋,不好能走150袋。)   商户:这一个月我光在这个地方就十几吨吧。   商户告诉记者,这种2.5公斤装的味精,普通家庭并不常用,主要供应酒店、饭馆等一些餐饮机构。   商户:这个货就可以呀,一般酒店用都用这种。   商户:基本都是川菜馆。   商户:饭店都吃。   商户:反正就是周边这几个饭店,还有学校,那些大学,大学那一要就一大包。   记者在市场上发现,虽然都是2.5公斤装的无盐味精,可是价格却不同,从十八九元到二十八九元不等,一袋味精的价格竟然能相差近十元钱,这是为什么呢?   商户:你去检验去吧,里边全是盐,你不用看,都是一个厂家的,你不信拿着上工商吧,你这两袋都拿着,你去检验去吧,我给你出钱不要紧。   味精里加盐?这不是无盐味精吗?怎么会加盐呢?怕记者不信,商铺老板还认真地指给记者看,袋子里一粒粒的细碎的小颗粒,老板说那就是盐了。   商户:看见没有?这都是盐,你看盐的晶体,炒菜不用放盐了呗,这个绝对不用放盐。   果然,这种售价为22元标称为谷氨酸钠含量99%以上的无盐味精里除了针状的结晶外,还有一些圆形的小颗粒,跟味精的的形状完全不同,尝起来咸咸的。   这位经营者说,加盐是为了降低生产成本,盐掺得越多,自然厂家赚得也就越多。   商户:这个五斤味精里边掺上半斤盐,(半斤盐差多少钱?)它那五元多钱一斤一下子成了多少?一下减了三四元,你掺上一斤呢,好味精的话五斤掺上一斤盐没问题的,绝对没问题。   包装是一回事实际含量是另一回事   记者走访发现,其实,往无盐味精里掺盐在市场上已经是个公开的秘密了。在青岛市城阳蔬菜调味品交易批发市场,一些经营者告诉记者,因为味精里掺了大量的盐,所以,一些饭馆里的厨师炒菜根本不再放盐,只放味精就行了。而且,很多杂牌味精都是买了别家的纯谷氨酸钠味精自己再勾兑包装后出售的。   商户:等于就是说这些味精,全是买它家的味精作原料,然后勾兑的,再做成的味精,就它家是原料。   商户:(一般都加啥呀?)加盐加糖和淀粉,(那不能看出来吗?)你要是亮度不好的话,发黑的话里边就加了,盐它根本就不像味精那么亮,加上盐它没那么亮。   虽然在外包装上标注的,都是谷氨酸钠含量达99%以上的无盐味精,但商户们心里很清楚,包装上标的是一回事,里面实际含量又是另一回事。关键还要看价格。   商户:我说要是便宜的你就算呗,肯定是加盐加的就多,越便宜加盐越多,没听懂啊?盐便宜,盐才一元来钱一斤。   商户:6.5元一斤,盐才几角钱一斤,这不就钱出来了。   记者在市场上还了解到,由于近一段时间市场加强了管理,工商部门要求产品都要由厂家提供检验合格证书才能销售,所以许多味精厂把过去的产品包装换掉了,本来是标称99%的谷氨酸钠味精,现在都标成了80%。   发苦的味精   其实味精掺假,不仅仅局限在加盐上,还有其它的东西!因为味精颗粒有大小之分,而盐和淀粉的颗粒比较细,所以厂家一般会掺到小颗粒的味精里。那么大颗粒的味精里又会掺些什么东西呢?   记者购买了一些元味苑牌的无盐味精,它标称谷氨酸钠达到99%以上。但记者打开包装后发现,里有一些形状与味精相似的结晶体,个头要比味精的颗粒大些,尝起来有一点苦涩的味道。随后,记者在青岛建航牌的无盐味精中也发现了这种味道发苦的大个晶体。   小王:有的味精颗粒比较小,里边会掺加一些盐、糖,这都能看出来,还有一些颗粒比较大的,长粒的跟味精很相似的一种味精,但是颜色上不一样,用嘴一尝呢,它略微有种发苦的味道,跟味精的味道是不一样的,所以我就怀疑我说这种是什么东西。   这个形状跟味精相似,味道却大不一样的晶体到底是什么呢?除了盐、糖以外,味精里还加了其它的东西吗?   这袋名为元味苑的味精,是由青岛知味居味精有限公司生产的,记者按照包装上的厂址找了过去。但到了村口打听了很久,也没人听说过有家味精厂,几经周折,记者终于在一个深深的胡同当中,发现了一栋有厂房的大院,但院门口却没有挂任何的名牌和标志。村民们告诉记者,这里就是知味居味精厂。   村民:它家一直就是味精厂。   这个神秘的知味居味精厂位置并不显眼,也不挂任何厂牌,工作人员也很是神秘,不知道它们生产的东西到底加了什么。   添加物不止是盐、淀粉、石膏   记者又来到了一家生产“六合香”味精的厂家,这里的销售人员给记者讲述了一些业内的秘密。   销售人员:因为假的比较多,以次充好的比较多,非常乱,(味精能假到哪去?)加东西嘛,主要是盐,也有加其它的东西,包括最厉害的是在市场上出现的,加乱七八糟不能吃的东西,包括食品添加剂里边的东西。   这位销售员对味精里添加的不能吃的东西欲言又止,接着,他又给我们拿出了一盒他们自己从市场上搜集来的其它厂的掺假味精,并告诉我们,这些产品不论标称谷氨酸钠含量是99%,还是80%,基本上都没有达标。   销售员:(谷氨酸钠百分之八十这个能达到多少?)达到七十四点几吧,百分之七十五吧。   销售员说,别看只比标准低几个点,利润就是这样省出来的。   销售员:它的含量低五个点,每低一个点的味精,它加上盐之后,就得省八十元钱一吨,一个点,你说它差这五个点,它说八十的,给你的是七十五的,那五个点就等于说是四百元钱,这个它还是合算的,一样的钱它多赚四百元钱。   这位销售人员告诉我们,除非他们这些专业人士,不然一般人是看不出来味精里到底有没有掺假。   销售人员:这个里边道道很多,小商贩它越小,猫腻越多,往里边加了很多东西,(都加什么呀?)不好说,有一些业内的一些东西呀,不太想透露,就是对这个行业不好。   在记者的一再追问下,销售员打开了电脑,给记者查起了网页。我们看到了盐、淀粉、石膏等这些添加物。   销售人员:还有厉害的。   除了盐、淀粉、石膏外,还有更厉害的添加物,到底是什么呢?销售人员给记者打开了一个名为味精状硫酸镁的图片。   销售人员:这个就是味精状硫酸镁,一模一样啊,所以说你刚才看那个晶体或怎么样,你根本看不出来是吧,(你发现过有人加了吗?)我发现过。   据这位销售员说,某些小企业,会往味精中添加一种名为味精状硫酸镁的东西。那么,记者和小王在味精中发现的这些针状晶体就是味精状硫酸镁吗?   打破砂锅问到底,小王把自己买到的这种元味苑味精,拿到了当地的通标标准技术服务有限公司进行了检测。国家标准中,没有关于“硫酸镁“的检验方法。因此,检测单位对硫酸根和镁分别进行了检测,结果是,样品中谷氨酸钠的含量只有69.2%,与标称的99%相差30%,每100克味精中,镁的含量达到了2.3毫克。   五、六百元的硫酸镁不可能是食品级的   这些镁是怎么进入味精的呢,记者在网上搜索了一些生产味精状硫酸镁的厂家,它们大都宣称这是味精专用添加剂,记者给其中一些厂打了电话。   记者:味精状的,(你要要,最便宜495一吨),有没有味精厂用过你这个东西?(有,有用过的,他们回去还得掺别的东西。)   记者:你那有硫酸镁吗?(有,550元每吨),供没供过味精厂?(味精厂,多,差不多味精厂都用这个,有的味精厂大点的,一个月差不多七八十吨。)   记者共打了近十个厂家的电话,其中有五六家说自己给味精厂提供过硫酸镁,但一位生产食品级硫酸镁的厂家销售员却说,五、六百元的硫酸镁不可能是食品级的,是不能食用的。   销售员:我觉得500元不可能是食品级的,一到食品级它就不一样了,就比较差的食品级,也得一两千元了,应该就差在,它的卫生各个方面不达标,就是重金属,还有各个细菌,大肠杆菌之类的,还有重金属类的都会超标。   味精的国家标准中要求,谷氨酸钠味精中,谷氨酸钠的含量要达到99%,那么,记者发现的那两种有杂质的味精是否能达到这个标准呢?它里面到底添加了什么呢?   记者在批发市场上购买了两个品牌的无盐味精,分别是青岛市知味居有限公司生产的元味苑牌味精,和青岛建航味精有限公司生产的建航牌味精。两袋味精都标称自己的谷氨酸钠含量为99%,记者把这两袋味精送到了北京市理化分析测试中心进行了检测。   结果显示,元味苑牌味精的谷氨酸钠含量只有70.9%,与99%的要求相差近30%,味精中硫酸盐的含量超出了国家标准,大于0.05%,而且,镁的含量达到了每公斤102毫克。   建航牌味精的谷氨酸钠含量只有63.8%与标准要求相差35%左右,同样,它的硫酸盐含量也大于0.05%,镁含量甚至达到了每公斤143毫克。
  • 采用电位滴定法快速、准确地测定方便面酱包中的谷氨酸钠含量
    谷氨酸钠作为调味品在人类的饮食生活中是不可或缺的,通常对原料的检测,采用高氯酸非水溶液滴定法,即以a-萘酚苯基甲醇作为指示剂,滴定溶液至绿色为其终点。 此外,也有采用高氯酸指示剂滴定法测定鸡精中谷氨酸钠含量,但对于指示剂的选择使用有严格要求,并且不同的样品有可能会影响指示剂的终点判定。如果采用禾工CT-1Plus全自动电位滴定仪和PH值非水相电极对方便面酱包中的谷氨酸钠含量进行测试,就可以有效地排出了对指示剂的选择使用要求及用指示剂法进行滴定时基本产生的终点判定干扰。 CT-1PLUS多功能全自动滴定仪可以根据滴定过程中电极电位的变化来自动确定终点,对于电位变化不明显的反应,也可自动根据摄像头采集的颜色变化来自动判断滴定终点,大大简化和降低的认为的操作和判断误差,提高的测试的准确性。 利用电位滴定法能快速、准确地测定方便面酱包或其它调料包中的谷氨酸钠含量,对科研开发及方便面生产厂家在线监测具有较强的实际应用价值。
  • 重磅!35项食品安全国家标准立项计划公示!
    各有关单位:为贯彻落实食品安全“最严谨的标准”要求,根据《中华人民共和国食品安全法》及其实施条例规定,我委制定了《2024年度食品安全国家标准立项计划》,现印发给你们,请认真组织落实,同时提出以下要求:一、标准研制应当以保障人民健康为宗旨,以食品安全风险评估结果为依据,充分考虑我国经济发展水平和客观实际需要,参考相关国际标准和风险评估结果,深入调查研究,确保标准指标设置科学合理。二、项目牵头单位负责组建标准起草协作组,提供项目所需人员、经费、科研等方面的资源和保障条件,确保项目承担单位分工协作、密切配合、优势互补,并充分调动发挥监管部门、行业组织、企业、科研院校和专业机构等相关单位和领域专家的作用。三、项目承担单位登录食品安全国家标准管理信息系统(https://sppt.cfsa.net.cn),填报并打印2024年食品安全国家标准制定、修订项目委托协议书或购买服务合同,由项目承担单位相关负责人签字并加盖单位公章,于2024年8月10日前报送食品安全国家标准审评委员会秘书处办公室。四、项目承担单位应当制定工作计划、项目路线图和进度表,保证标准研制质量和工作进度,对所制定标准文本负全责,确保标准在起草、送审、修改、校对、印刷、解读等各环节准确无误。项目完成后,应当按规定向秘书处办公室提交经费决算报告,经费决算报告须由财务负责人和单位相关负责人签字并加盖公章。对未如期完成项目的将采取追回经费、取消再次申请资格等方式。国家卫生健康委办公厅2024年7月16日2024年度食品安全国家标准立项计划序号项目名称制定/修订承担单位食品产品标准 5项1食用油脂制品修订上海市疾病预防控制中心、上海市质量监督检验技术研究院、江南大学、国家食品安全风险评估中心、中国焙烤食品糖制品工业协会2预制菜制定国家食品安全风险评估中心、中国物流与采购联合会食材供应链分会、中国商业联合会、成都市食品检验研究院、全国畜禽屠宰质量标准创新中心、中轻食品工业管理中心、中国食品科学技术学会3复合调味料修订成都市食品检验研究院、重庆市食品药品检验检测研究院、广州质量监督检测研究院、国家食品安全风险评估中心、中国肉类食品综合研究中心4冲调谷物制品修订中国食品科学技术学会、国家食品安全风险评估中心、江南大学、北京工商大学、中国焙烤食品糖制品工业协会5湿米制品制定广东省公共卫生研究院、海南省疾病预防控制中心、云南省卫生健康综合监督中心、国家食品安全风险评估中心、上海市质量监督检验技术研究院食品添加剂质量规格标准 14项6食品添加剂 酸处理淀粉修订上海市质量监督检验技术研究院、国家食品安全风险评估中心、上海市食品添加剂和配料行业协会、四川省食品检验研究院、浙江省食品添加剂与配料行业协会7食品添加剂 氧化淀粉修订上海市质量监督检验技术研究院、国家食品安全风险评估中心、上海市食品添加剂和配料行业协会、四川省食品检验研究院、浙江省食品添加剂与配料行业协会8食品添加剂 淀粉磷酸酯钠(又名淀粉磷酸酯,磷酸酯淀粉,单淀粉磷酸酯)修订江南大学、中国食品添加剂和配料协会、江西省检验检测认证总院食品检验检测研究院、上海市食品添加剂和配料行业协会、皖南医学院9食品添加剂 磷酸酯双淀粉修订江南大学、中国食品添加剂和配料协会、江西省检验检测认证总院食品检验检测研究院、上海市食品添加剂和配料行业协会、皖南医学院10食品添加剂 磷酸化二淀粉磷酸酯修订江西省检验检测认证总院食品检验检测研究院、中国生物发酵产业协会、湖南省产商品质量检验研究院、山东省食品药品检验研究院、大连工业大学11食品添加剂 乙酰化二淀粉磷酸酯修订江西省检验检测认证总院食品检验检测研究院、中国生物发酵产业协会、湖南省产商品质量检验研究院、山东省食品药品检验研究院、大连工业大学12食品添加剂 醋酸酯淀粉修订中国食品添加剂和配料协会、发酵行业生产力促进中心、中国生物发酵产业协会、沈阳市食品药品检验所、华中农业大学13食品添加剂 乙酰化双淀粉已二酸酯修订中国食品添加剂和配料协会、发酵行业生产力促进中心、中国生物发酵产业协会、沈阳市食品药品检验所、华中农业大学14食品添加剂 羟丙基二淀粉磷酸酯修订四川省疾病预防控制中心、四川省食品检验研究院、沈阳市食品药品检验所、深圳市计量质量检测研究院、大连工业大学15食品添加剂 羟丙基淀粉修订四川省疾病预防控制中心、四川省食品检验研究院、沈阳市食品药品检验所、深圳市计量质量检测研究院16食品添加剂 氧化羟丙基淀粉修订国家食品安全风险评估中心、上海市质量监督检验技术研究院、江南大学、发酵行业生产力促进中心、广州质量监督检测研究院17食品添加剂 羧甲基淀粉钠修订国家食品安全风险评估中心、上海市质量监督检验技术研究院、江南大学、发酵行业生产力促进中心、广州质量监督检测研究院18食品添加剂 结冷胶修订国家食品安全风险评估中心、中国食品添加剂和配料协会19食品添加剂 镍修订中海油天津化工研究设计院有限公司食品中放射性物质标准 1项20食品中放射性核素碳-14的测定制定中国疾病预防控制中心辐射防护与核安全医学所、北京市疾病预防控制中心、浙江省疾病预防控制中心、福建省职业病与化学中毒预防控制中心、国家食品安全风险评估中心理化检验方法与规程标准 5项21食品粘度的测定制定山东省食品药品检验研究院、国家食品安全风险评估中心、深圳市计量质量检测研究院22食品接触材料及制品 1,2-环己二羧酸二(异壬基)酯和1,4-苯二羧酸双(2-乙基己基)酯迁移量的测定制定南京海关危险货物与包装检测中心、北京市疾病预防控制中心、南京农业大学、宁波检验检疫科学技术研究院、国家食品安全风险评估中心23食品接触材料及制品 1,4-二氯苯迁移量的测定制定广州海关技术中心、国家食品安全风险评估中心、广东省食品检验所(广东省酒类检测中心)、上海市质量监督检验技术研究院、宁波检验检疫科学技术研究院24食品接触材料及制品 苯酚与甲醛和缩水甘油醚及其羟基和氯化衍生物的测定制定北京市产品质量监督检验研究院、广州海关技术中心、湖南省产商品质量检验研究院、上海市食品接触材料协会、国家食品安全风险评估中心25食品中甘油三酯、甘油二酯和单甘酯的测定制定北京市疾病预防控制中心、青岛海关技术中心、四川省食品检验研究院、华南理工大学微生物检验方法与规程标准 2项26食品微生物学检验 金黄色葡萄球菌检验修订四川省疾病预防控制中心、国家食品安全风险评估中心、四川省食品检验研究院、北京市疾病预防控制中心、北京市食品检验研究院(北京市食品安全监控和风险评估中心)27食品微生物学检验 副溶血性弧菌检验修订深圳海关食品检验检疫技术中心、广州海关技术中心、厦门海关技术中心、浙江省疾病预防控制中心、国家食品安全风险评估中心毒理学评价方法与规程标准 1项28食品安全性毒理学评价程序修订国家食品安全风险评估中心、农业农村部农药检定所、中国兽医药品监察所、中国农业大学生产经营规范标准 2项29湿米面制品中米酵菌酸污染控制规范制定广东省疾病预防控制中心、广东省公共卫生研究院、国家食品安全风险评估中心、广州质量监督检测研究院30食品添加剂生产通用卫生规范修订国家食品安全风险评估中心、发酵行业生产力促进中心、中国食品添加剂和配料协会、中国生物发酵产业协会、上海市食品化妆品质量安全管理协会营养与特殊膳食食品标准 5项31食品营养强化剂 麦角钙化醇(维生素D2)修订江南大学、国家食品安全风险评估中心、发酵行业生产力促进中心、广州海关技术中心32食品营养强化剂 L-赖氨酸-L-谷氨酸制定东北农业大学、中国生物发酵产业协会、国家食品安全风险评估中心、山东省食品药品检验研究院、中国营养保健食品协会33食品营养强化剂 L-谷氨酸钙制定江西省检验检测认证总院食品检验检测研究院、国家食品安全风险评估中心、山东省食品药品检验研究院、江西农业大学、中国生物发酵产业协会34食品营养强化剂 L-谷氨酸钾制定国家食品安全风险评估中心、山东省食品药品检验研究院、发酵行业生产力促进中心、东北农业大学35食品营养强化剂 L-天冬氨酸镁 制定中国生物发酵产业协会、国家食品安全风险评估中心、山东省食品药品检验研究院、东北农业大学、沈阳市食品药品检验所
  • 地沟油检测法遇尴尬 食用标准检测全合格
    从地沟回流餐桌,谁来守住地沟油链条的最后一道防线?   地沟油的检测一直是一道“世界性的难题”。由于地沟油成分复杂,众多科研单位经过艰苦研究,依然难以寻找到可靠有效的检测方法。   去年12月,卫生部食品安全风险评估中心第二次向全国征集地沟油检测方法。近日卫生部透露,已初步圈定了7种检测方法,正对这7种检测方法的真实性和可靠性进行评估、考核,但目前仍未公布。   地沟油检测方法仍未揭开神秘面纱。为什么地沟油检测这么难?真的能找到可靠有效的检测方法?检测方法真的能守住地沟油回流餐桌的最后一道防线吗?   本期科技能见度为您解开地沟油检测之谜。   身披隐形衣   地沟油来源复杂,混入成分不一,且经水洗、蒸馏、脱色等加工处理,或与食用植物油掺兑,很难通过感官分析和一些理化指标进行区分,常规性检测指标基本无效   2011年,公安部破获一起横跨多省的特大地沟油制售食用油案,警方在浙江宁海查获了大量地沟油,但送检的10个样品中,居然只有两个样品被检出不合格。   2011年底,重庆警方侦破西南首例制售地沟油大案。然而,该案中已经被警方确认为是用餐厨垃圾炼成的地沟油,按照我国食用油检测的主要检测指标进行检测,却几乎全部合格。   这就是我国的地沟油检测方法目前正遭遇的尴尬。   由于地沟油来源复杂,混入的成分不一致,且经水洗、蒸馏、脱色等加工处理后,或与食用植物油掺兑后,已很难通过感官分析和一些理化指标进行区分。   根据国家食用植物油卫生标准的分析方法(GB/T5009.37-2003),这些检测主要是对地沟油的感官、水分含量、酸价、过氧化值、羰基价、碘值等进行测定。   2011年5月《职业与健康》的一篇论文里,江苏省泰州市疾病预防控制中心工程师刘波指出,地沟油经碱炼、脱水、脱色和脱臭精炼工艺,可以使酸价、水分、感官等指标符合国家食用油卫生标准。而对于过氧化值的指标,因为过氧化物易遇热分解,油脂加热后过氧化值比加热前反而更低,因此常规性检测指标只能判定油脂优劣,无法判定是否为地沟油。   国家食品安全风险评估中心专家王竹天也指出,现在的地沟油精炼的程度已经很高,想象中存在某些污染的地沟油已经跟现在高度精炼出的地沟油完全不是一回事。   他在接受媒体采访时表示,“比如说一些污染物,它完全能通过精炼去掉,所以根本不可能再测出来,也就是为什么按照我们现在的一些检测方法,比如卫生指标、质量指标,以及可能污染物指标统统都检不出来。”   中国疾病预防控制中心营养与食品安全所化学污染监控室主任吴永宁甚至表示,一旦政府公布了检测指标,对手很可能迅速地把这一指标从地沟油里悄无声息地抹掉,从而导致检测无效。   武汉大学化学与分子科学学院教授刘志洪在接受南方日报记者采访时表示,地沟油最大的问题是致癌的黄曲霉素。“虽然目前的技术能够检测出黄曲霉素,但并不是每一种地沟油里黄曲霉素都超标。”   这也是目前每一个检测方案所遭遇的困境。   2011年9月18日,卫生部发布消息,全力组织科研攻关研究鉴别地沟油检验方法。但征集到的7家技术机构研制的5种地沟油检测方法均以失败告终,原因是“专家论证发现这些方法特异性不强”。   这其中就包括了之前被寄予厚望的北京食品安全监控中心做出的“北京方案”。入选这个方案的地沟油特异性指标包括“多环芳烃、胆固醇、电导率、特定基因”四大类。其中,致癌物多环芳烃被认为是目前地沟油中已被证实的最大危害成分。   这是北京食品安全监控中心的检测人员花了将近3个月时间,综合运用色谱分析、光谱分析、理化分析及基因鉴定技术等现代分析测试手段,先后对80余个技术指标进行了全方位的筛选才确定的。   但经卫生部组织的专家组论证后,仍然未获通过。在实际测试中,专家们发现,以检测多环芳烃为侧重点的“北京方案”,居然对某些地沟油样本束手无策,原因是“经过人为特殊处理后,并不是所有地沟油都含有多环芳烃”。   面对科研人员的全力围剿,狡猾的地沟油却如同披了一件隐身衣。   难觅特异性   现有350多种检测方法,可以称为“所有的方法都有效,但所有的方法都不适合用于所有的地沟油”,都难以达到“既不错怪好油,又不放过坏油”的理想效果   在新一轮的方法征集里,国家食品风险评估中心提出了地沟油检测方法的3条筛选原则:首先正常植物油样品不应被误判 其次地沟油样品的正确检出率高 再次,能够将勾兑的地沟油样品从高到低依梯度顺序检出。   针对地沟油的检测方法,其实国内早就有了不少的研究,通过实验,提出了很多地沟油的特异性指标。   “北京方案”里“胆固醇、电导率”等两项指标,其实也早就被众多研究者所讨论过,被认为是鉴别地沟油的重要有效依据。   地沟油与食盐,味精、地下金属管道、废旧铁桶等接触,金属离子严重超标,尤其是钠、铁离子超标显著。此外,餐饮业废油脂在酸败过程中也会产生一些小分子极性物质,与各种金属离子一起影响油脂的导电性。   有研究结果显示,合格食用植物油电导率较低,而地沟油电导率较大,是菜籽毛油的3倍,是大豆色拉油的11 倍,猪油的28倍。研究者据此认为,可以通过导电性来对地沟油与食用油进行检测。   地沟油成分复杂,在回收使用过程中不可避免地混有动物油脂。动物脂肪中普遍含有大量胆固醇,而在植物油中一般不含胆固醇。有研究显示,大豆油、菜籽油中胆固醇的含量均为0.031 mg/g,而纯地沟油中胆固醇含量为0.429mg/g。   但这些指标其实都可能对地沟油“网开一面”。科学松鼠会成员、食品工程博士“云无心”指出,如果一批地沟油只是炸过薯条或者油条的,那么它也完全可能不含电解质,电导率也很低。   对于胆固醇的测定,同样如此:成分主要是植物油的地沟油也完全可以过关。再加上与合格食用油进行勾兑,可以进一步稀释地沟油内胆固醇的含量。   研究者们还寻找了其他的突破口。氯化钠、谷氨酸钠是食品烹调时最常用调味成分,可随食物残渣残留于煎炸废油、潲水油等废弃油脂内,使普通油与废弃油中氯化钠和谷氨酸钠含量有显著差异。在《现代科学仪器》2010年的一篇论文中,研究者在地沟油中检出平均钠离子含量远远高于合格食用油。   还有研究者研究得出,合格食用油不含人工合成的化学物质十二烷基苯磺酸钠,而地沟油是从餐饮业餐具洗涤系统中收集,且与地下生活污水接触,含有大量洗涤剂烷基苯磺酸钠。   有研究者测定地沟油中挥发性成分,发现样品油中含有16种挥发性有害成分,其中15种为脂肪烃,1种为己醛。而己醛是油脂氧化变质二级产物,可以当作判别地沟油一个重要依据。   有的研究者通过薄层色谱法研究发现,潲水油和煎炸老油的薄层色谱有明显的拖尾斑,而食用植物油则没有。经柱色谱分离并进行红外分析拖尾斑成分,发现潲水油、煎炸老油的拖尾成分是合格食用油所不含的醛、酮类化合物。   还有研究指出,脂肪酸组成的测定每种食用油都有其特征脂肪酸图谱,脂肪酸相对含量一定。地沟油是一个混合油体系,含有多种动植物油脂。对掺伪地沟油的食用油体系来说,此种食用油的脂肪酸相对组成被打乱,通过与其正常的脂肪酸图谱对比,可判断是否掺伪。   但刘志洪分析认为,这些方法都或多或少存在一些问题,难以达到“既不错怪好油,又不放过坏油”的理想效果。什么成分都有的地沟油让人摸不着头脑。大连市产品质量监督检验所研究员潘炜坦言,现有的350多种检测方法,可以称为“所有的方法都有效,但所有的方法都不适合用于所有的地沟油”。   科学争议:地沟油检测真的无解?   目前,卫生部还未公布所选定的7种检测方法,但包括刘志洪、杜斌和李里特在内的多位专家均对此持谨慎态度。   “地沟油是分析检测上特别复杂的样本。”分析化学专业教授刘志洪感叹,目前确实没有一个成熟的方法来检测地沟油。华南农业大学食品学院副教授杜斌接受南方日报记者采访时也断言,“检测地沟油目前基本没什么好方法。”   科学松鼠会成员、食品工程博士“云无心”解释,检测必须是针对一种确定的物质。按照目前的分析技术,只要能够列举出来的成分,基本上就可以检测出来。但是,能够检测一个指标,跟用它来进行判定,完全是两回事。   “云无心”表示,要可靠地检测一种东西,就需要这种东西有相对明确一致的组成与性质。地沟油并非如此。作为一种废料,其组成千差万别。此外,把地沟油掺杂到正常油中,更可以控制任何一个指标的数值,使之符合“检测标准”。   在接受南方日报记者采访时,中国农业大学食品科学与营养工程学院教授、国家食品与营养咨询委副主任李里特表示,地沟油的定义不清晰是导致检测“地沟油”难的原因之一。   “‘地沟油’一词所涵盖的内容太多了。从下水道里收集来的油被称为地沟油,厨房里面用过的油也被称为地沟油,动物内脏炼制的油还被称为地沟油。”   他指出,这样定义不清晰的后果就是检测变得难上加难,因为检测很难包罗万象。刘志洪也持有同样的观点,他认为地沟油难以检测,是由于“来源太复杂”了。   刘志洪表示,卫生部初步确定的7种方法肯定也是对里面存在的多种指标进行检测,比如黄曲霉素,多环芳烃、重金属,胆固醇等指标。“这些东西如果单独拿出来看,每一种都有检测方法,但把它合在一起装在不同的地沟油里,有的含这些指标,有的又不含,有的有这个超标,有的是那个超标。”   对地沟油检测方法已经潜心研究两年的上海市粮食科学研究所所长曹文明甚至表示,地沟油所共有且特有的特征指标可能并不存在。也就是说,至少短期内无法找到一种定性地沟油的方法。   “用一个单独的方法想把它鉴别出来,我觉得可能性不大。”刘志洪明确表示,如果想要检出地沟油,必须先把地沟油的成分搞清楚,再针对这些成分提出检测方法,而且一定要综合多种指标多种检测方法联用组合。  “监管部门不要执着于地沟油的检测。”李里特教授在接受南方日报采访时强调,从技术上进行地沟油检测不但不可行,而且也并非是杜绝地沟油的有效方法。   刘志洪则明确表示,地沟油根本就不是靠科学家来解决的问题,“地沟油问题并不是科技上的问题。食品安全本身也不是科学上的问题。”   刘志洪说,地沟油其实有很多其他的用途,可以做成燃料等其他产品,关键在于建立一套将其变废为宝的制度。
  • 可比性研究|使用HR-MAM方法对原研药与其生物类似药进行可比性研究
    可比性研究|使用HR-MAM方法对原研药与其生物类似药进行可比性研究关注我们,更多干货和惊喜好礼可比性研究生物类似药通常指与参考分子(原研药)高度类似的治疗性生物产品1。世界各地的监管机构,如美国食品药品监督管理局(United States Food and Drug Administration, USFDA), 欧洲药品管理局(European Medicines Agency, EMA)和中国市场监督管理总局(National Medical Products Administration, NMPA)均发布了指导规则,要求证实生物类似药与原研药之间在药品安全性/功效性等方面的相似度1。 随着高分辨质谱(HRAM MS)逐步成为创新药和生物类似药表征必不可少的分析工具,在氨基酸序列确认和化学/翻译后修饰等鉴定中,均起到不可或缺的作用2。2015年,Rogers 等2在公开发表的文献中提及可将基于肽图分析的Multi-Attribute Method (MAM) 工作流程用于多重PQA的监控与定量,与此同时还可进行新组分检测(new peak detection)2,进而提供更多产品质量相关信息,并提高生产率。由此,MAM在质量控制(QC)实验室中替代传统分析手段的潜力,引起越来越多生物制药行业和监管机构越来越多的关注2 3。2019年,US FDA的Rogstad等在发表的文献中提及可以考虑使用MAM替代一些常规的QC分析方法4。图1 赛默飞HR-MAM工作流程(点击查看大图)本期我们介绍赛默飞HR-MAM (图 1)工作流程的zui新进展:对未经处理/不同强制降解条件下的生物类似药与利妥昔原研药进行可比性研究,对多个选定PQA进行有效的鉴定、相对定量和监控,以减少分析实验所花费的时间,并提高生产率。 多PQA选定助力原研药与生物类似药结构相似性确证: PQA通常在药物安全性与有效性方面起到重要作用,基于肽图分析表征可以选择适合的PQA,如:糖基化(glycosylation),脱酰胺化(deamidation),琥珀酰亚胺化(succinimide formation),异构化(isomerization),氧化(oxidation),重链C-末端赖氨酸截断(C-terminal lysine truncation),N-末端焦谷氨酸环化(N-terminal pyroglutamate)。 所有被选中的PQA可在BioPharma Finder软件中创建为一个包含该PQA肽段保留时间/质荷比/价态/所有电荷态等信息的工作簿,随后此工作簿被导入至变色龙软件中,用于后续的MAM数据分析。使用HR-MAM工作流程,即使是含量约0.1%的组分,也可通过高分辨质谱平台提供的数据获得高重现性的定性与定量结果。在本文的研究中,选定了下列PQA来证实HR-MAM工作流程用于目标肽段定量的能力,进而评估利妥昔原研药与生物类似药之间的结构相似性:重链 N55 脱酰胺化和琥珀酰亚胺化 重链 N388和N393 脱酰胺化 重链 N388和N394 琥珀酰亚胺化 重链 M256 氧化 重链 D284 异构化 重链N-糖基化 重链C-末端赖氨酸截断和轻/重链N-末端焦谷氨酸环化。 PQA相对定量兼具稳健性与重现性,MAM展现独特潜力: 由于C-末端赖氨酸截断与N-末端焦谷氨酸环化等末端修饰会影响单克隆抗体产品的电荷异质性5,所以在结构可比性研究中需要对其进行评估。以本文中涉及的PQA为例,利妥昔原研药和两个不同批次的生物类似药,其重链C-末端赖氨酸截断与轻/重链N-末端焦谷氨酸环化的比率均在可比范围内(图2)。值得注意的是,所有定量结果三针技术重复的变异系数(coefficients of variation, CVs)均小于2%,显示了优异的重现性。图2. 利妥昔原研药/生物类似药在未经强制降解/强制降解条件下常见末端修饰相对定量结果。图中每个条柱均代表三针技术重复的平均值,误差线代表三针技术重复的标准偏差(下同)。(点击查看大图) N-糖基化可能会影响单克隆抗体产品的免疫原性、药效、抗体依赖的细胞介导细胞毒性(antibody-dependent cell-mediated cytotoxicity, ADCC)、补体依赖的细胞毒性(complement-dependent cytotoxicity, CDC)、血清清除率和药代动力学5。在生物类似药的开发和生产过程中,为了确保产品的安全性和有效性,N-糖基化必须被密切监控并严格控制。对于生物类似药开发厂商而言,生物类似药的糖基化异质性分布必须与其原研药具有可比性,以避免扩大临床试验的规模。 在本方案涉及的实验所用的原研药和生物类似药样品中,总共鉴定到15种不同糖型,这些糖型的相对含量在不同样品之间并没有明显区别(图3)。与传统N-糖链定量方法相比,未发生糖基化修饰的肽段相对含量也可在HR-MAM工作流程中同时被监控,这是传统方法无法做到的,展现了其独到价值。对所有糖型的相对定量结果同样显示了优异的重现性和灵敏度。例如,对于相对含量约0.3%的糖型A2S1G0F ,其技术重复之间的CVzui新应用方案,码上下载想要深入了解详细实验结果、参数设置、MAM优势,立即下载zui新Application Note相关阅读• 客户案例|辉瑞在多个实验室同时部署MAM• HR Multi-Attribute Method Workflow 化繁为简,有规可循|为生物制药表征和质量控制保驾护航 参考文献:[1] US Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Scientific Considerations in Demonstrating Biosimilarity to a Reference Product. Guidance for Industry. April 2015. [2] Liu, H., et al. A high-resolution accurate mass multi-attribute method for critical quality attribute monitoring and new peak detection. APPLICATION NOTE 72916. [3] Rogstad, S., et al. Multi-Attribute Method for Quality Control of Therapeutic Proteins. Anal. Chem. 2019, 91, 14170−14177.[4] US Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Scientific Considerations in Demonstrating Biosimilarity to a Reference Product. Guidance for Industry. April 2015. [5] Beck, A., et.al. Characterization of Therapeutic Antibodies and Related Products. Anal. Chem. 2013, 85,715−736. 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 果醋饮料目前无国家标准 小心勾兑品
    选果醋饮料小心勾兑品   不久前,国内一些食品专家通过媒体提醒消费者,由于果醋饮料目前没有国家标准,市场上出现了不少由醋酸、果味香精等勾兑的产品。这些产品没有任何营养和保健价值,消费者选择时一定要多加小心。   食醋是一种东西方共有的古老调味品。在中国、日本、韩国等亚洲国家,食醋主要是以粮食作物为原料酿制,习惯上被称作谷物醋。而在欧洲,食醋的酿制主要以葡萄、苹果等水果为原料,所以西方的食醋多指水果醋。近年来,随着国内果蔬加工业的发展,果醋酿造作为一个新兴产业发展十分迅速。   果醋饮料≠稀释果醋   随着人们营养和保健意识的提高及饮料行业的迅猛发展,果醋及果醋饮料也越来越被广大消费者所接受。在日常生活中,普通消费者很容易将果醋与果醋饮料的概念混淆。果醋是以葡萄、苹果等水果为原料,在微生物的作用下经酒精发酵和醋酸发酵制成的一种酸性调味料,欧洲标准规定其醋酸含量必须大于5%。而果醋饮料则是以水果为主要原料经微生物发酵后,再添加蜂蜜、果汁或其他食品添加剂调配而成的一种含醋酸的饮料,其醋酸含量一般远远小于5%。果醋饮料是兼有水果风味与食醋营养保健功能的一种新型饮品。适合生产果醋饮料的水果包括葡萄、苹果、梨、柑橘、水蜜桃、猕猴桃、山楂、沙棘、野生酸枣、桑葚、番木瓜、柿子、杏等。目前国内以苹果醋饮料居多。   果醋饮料的生产工艺比较复杂。其基本过程是水果经预破碎压榨、澄清后,调节糖度,接入活化好的酵母进行酒精发酵。当酒精含量达到一定浓度时接入醋酸菌进行醋酸发酵。醋酸发酵结束后的液体经澄清等处理后,按一定比例添加蜂蜜、浓缩果汁、糖和其他食品添加剂,调配制成口感适宜的果醋饮料。   果醋饮料有保健功能   果醋饮料中含多种有机酸、糖、矿物质、维生素、氨基酸等成分,有一定的营养价值和保健作用。果醋饮料中的有机酸除醋酸外,一般还有葡萄糖酸、乳酸、琥珀酸、酒石酸、苹果酸、富马酸、蚁酸、酮戊二酸和焦谷氨酸等。有机酸能有效维持体内的酸碱平衡,它还有调节体内代谢,消除疲劳,健胃消食,增进食欲,生津止渴等作用。果醋饮料中还富含钾、锌等多种矿物元素,这些矿物元素在调节机体酸碱平衡、钾钠平衡,以及保护心血管方面具有一定的作用。果醋饮料中还含有维生素C、维生素E、尼克酸等维生素。此外,果醋饮料中也含有多酚类化合物和黄酮等抗氧化物质,它们对清除体内自由基,抗衰老和预防心血系统疾病有一定的功效。   选果醋要看发酵过程   目前我国果醋饮料的生产仍没有统一的行业标准,市售果醋的质量良莠不齐,价格高低不等。少数商家利用普通粮食醋甚至冰乙酸为原料勾兑生产果醋饮料,这种产品口味差,质量没有保证。所以广大消费者在选购果醋饮料时,要注意产品标签上是否表明产品生产过程包括发酵过程。此外,尽管在相关研究中有苹果醋饮料具有预防龋齿,山楂醋饮料具有降血糖等功效的报道,但由于果醋饮料中蜂蜜及糖的添加量没有严格的限量标准,所以市售果醋饮料在预防龋齿和降血糖等方面的功效仍值得推敲。   广大消费者在选购果醋饮料时,一定要根据个人体质,合理选购。特别是糖尿病患者一定要注意果醋饮料中糖的含量。此外,果醋饮料中醋酸能在体内与钙质合成醋酸钙,增强钙质的吸收,但是摄入过多的醋酸也可能导致人体钙质流失。因此,果醋饮料虽好,但也不要过度饮用。
  • 工业和信息化部办公厅关于印发2023年《贝类罐头》等第一批行业标准制修订和外文版项目计划的通知
    各有关单位:根据工业和信息化标准制修订工作总体安排,工业和信息化部编制完成了2023年第一批行业标准制修订和外文版项目计划。现印发给你们,请认真组织落实。具体要求如下:一、标准起草单位要注意做好标准制定与技术创新、试验验证、知识产权处置、产业化推进、应用推广的统筹协调。二、有关行业协会(联合会)、标准化技术组织、标准化专业机构等主管单位要尽早安排,将文件及时转发至主要起草单位,并做好标准组织起草、征求意见和技术审查等工作,把好技术审查关。三、部机关相关司局、相关地方行业主管部门要做好行业标准制修订、外文版研制过程的管理工作,确保标准的质量和水平。四、计划执行过程中,如需对标准项目进行调整,按有关规定办理。工业和信息化部办公厅2023年4月17日(联系电话:010-68205240)附件下载相关标准如下:序号计划编号项目名称标准类别制修订代替标准项目周期(月)1.2023-0202T-HG工业用乙酸钴产品修订HG/T 2032-1999182.2023-0203T-HG工业用乙酸锰产品修订HG/T 2034-1999183.2023-0205T-HG纤维素材质深层过滤滤芯产品制定244.2023-0206T-HG邻苯二胺产品修订HG/T 3310-2017185.2023-0207T-HG塑料 阻燃聚苯醚专用料产品修订HG/T 2232-1991186.2023-0211T-HG抗菌和抗病毒涂料产品修订HG/T 3950-2007187.2023-0214T-HG抗氧剂 2-甲基-4,6-二[(辛基硫基)甲基]苯酚(1520)产品制定188.2023-0215T-HG硫化剂 N,N'-间苯撑双马来酰亚胺(MPBM)产品制定189.2023-0216T-HG塑料屏蔽料用导电炭黑产品制定2410.2023-0242T-YS铝及铝合金彩色涂层板、带材产品修订YS/T 431-20091811.2023-0243T-YS铝塑复合管用铝及铝合金带、箔材产品修订YS/T 434-20091812.2023-0246T-YS熔融态铝及铝合金产品修订YS/T 1004-20141813.2023-0250T-YS选矿药剂 仲辛基黄药产品修订YS/T 355-19941814.2023-0281T-QB母婴用品质量追溯体系规范管理制定2415.2023-0282T-QB轻工业企业数字化供应链管理通则管理制定2416.2023-0283T-QB轻工智慧园区评价通则管理制定2417.2023-0284T-QB日用化学用品质量追溯体系规范管理制定2418.2023-0285T-QB食用植物油产品质量追溯体系规范管理制定2419.2023-0292T-QB厨房家具产品修订QB/T 2531-20101820.2023-0294T-QB储水式电热水器内胆产品修订QB/T 4101-20101821.2023-0296T-QB家用和类似用途净饮机产品修订QB/T 4991-20161822.2023-0297T-QB家用和类似用途前置过滤器产品修订QB/T 4695-20141823.2023-0298T-QB家用和类似用途嵌入式制冷器具产品修订QB/T 4683-20141824.2023-0299T-QB家用和类似用途软水机产品修订QB/T 4698-20141825.2023-0301T-QB使用环保天然制冷剂生产家用和类似用途房间空调器的特殊要求产品修订QB/T 4975-20161826.2023-0302T-QB使用可燃性制冷剂房间空调器运输的特殊要求产品修订QB/T 4976-20161827.2023-0307T-QB异麦芽酮糖醇产品修订QB/T 4486-20131828.2023-0308T-QB贝类罐头产品修订QB/T 1374-20151829.2023-0309T-QB混合水果罐头产品修订QB/T 1117-20141830.2023-0310T-QB炊饭机产品修订QB/T 4027-20101831.2023-0312T-QB食品包装纸产品修订QB/T 1014-20101832.2023-0313T-QB金属管切割器产品修订QB/T 2350-19971833.2023-0316T-QB工业氯化镁产品修订QB/T 2605-20031834.2023-0317T-QB食盐用水质量控制技术规范管理制定2435.2023-0318T-QB植脂末产品修订QB/T 4791-20151836.2023-0320T-QB黑糖产品修订QB/T 4567-20131837.2023-0321T-QB黄方糖产品修订QB/T 4566-20131838.2023-0322T-QB黄砂糖产品修订QB/T 4095-20101839.2023-0323T-QB金砂糖产品修订QB/T 4563-20131840.2023-0324T-QB精幼砂糖产品修订QB/T 4564-20131841.2023-0325T-QB块糖产品修订QB/T 4562-20131842.2023-0326T-QB全糖粉产品修订QB/T 4565-20131843.2023-0327T-QB糖霜产品修订QB/T 4092-20101844.2023-0328T-QB制糖综合利用加工助剂 固定化酵母产品修订QB/T 4568-20131845.2023-0329T-QB非接触食物搪瓷制品 通用要求产品修订QB/T 1855-19931846.2023-0333T-BB包装容器 聚对苯二甲酸乙二醇酯(PET)瓶坯产品修订BB/T 0060-20121847.2023-0334T-BB纸管产品修订BB/T 0032-20061848.2023-0363T-HG工业溴化钙产品制定2449.2023-0364T-HG工业溴化锌产品制定2450.2023-0365T-HG工业用钴锰复合水溶液产品制定2451.2023-0366T-HG分子筛对挥发性有机物(VOCs)动态吸附容量测定方法方法制定2452.2023-0371T-HG化工研发中试安全风险管控指南管理制定2453.2023-0372T-HG硫化促进剂 二异丙基黄原四硫醚(DIPT)产品制定1854.2023-0373T-HG紫外线吸收剂 2-(2'-羟基-5'-叔辛基苯基)苯并三氮唑(UV-329)产品制定1855.2023-0374T-HG胶乳伸缩管产品制定1856.2023-0375T-HG橡胶胶丝 试验方法方法修订HG/T 2487-20111857.2023-0376T-HG橡胶配合剂 沉淀水合二氧化硅 干燥样品灼烧减量的测定方法修订HG/T 3066-20081858.2023-0377T-HG橡胶配合剂 沉淀水合二氧化硅 水悬浮液pH 值的测定方法修订HG/T 3067-20081859.2023-0449T-QB家用和类似用途馒头机产品制定2460.2023-0453T-QB家用和类似用途自动炒菜机产品制定2461.2023-0455T-QB商用电动洗碗机产品制定2462.2023-0462T-QB瓦楞纸箱生产线产品制定2463.2023-0474T-QB食盐中 pH 值的测定方法制定2464.2023-0475T-QB制盐工业通用检测方法 色度的测定方法制定2465.2023-0476T-QB制盐工业通用检测方法 锶的测定方法制定2466.2023-0477T-QB制盐工业通用检测方法 碳酸盐、碳酸氢盐、氢氧化物的测定方法制定2467.2023-0478T-QB制盐工业通用检测方法 微量溴的测定方法制定2468.2023-0479T-QB制盐工业通用检测方法 硒的测定方法制定2469.2023-0480T-QB单一溶剂型凹版通用塑料复合油墨产品制定2470.2023-0481T-QB油墨剥离力的测定方法方法制定2471.2023-0482T-QB蔗渣浆产品制定2472.2023-0484T-QB焙烤食品用糖浆产品制定2473.2023-0485T-QB焙烤食品预拌(混)粉产品制定2474.2023-0486T-QB焙烤用植物蛋白上色液产品制定2475.2023-0487T-QB蛋黄酥产品制定2476.2023-0488T-QB绿豆糕产品制定2477.2023-0489T-QB杏仁饼产品制定2478.2023-0490T-QB杂粮谷物糕团产品制定2479.2023-0491T-QB氨基酸、氨基酸盐及其类似物 第13部分:β-丙氨酸产品制定2480.2023-0492T-QB氨基酸、氨基酸盐及其类似物 第14部分:L-谷氨酸产品制定2481.2023-0493T-QB氨基酸、氨基酸盐及其类似物 第15部分:L-盐酸鸟氨酸产品制定2482.2023-0494T-QB氨基酸、氨基酸盐及其类似物 第16部分:L-瓜氨酸产品制定2483.2023-0495T-QB包埋型 益生菌产品制定2484.2023-0496T-QB蛋黄球蛋白粉产品制定2485.2023-0497T-QB冻干食品通则基础制定2486.2023-0498T-QB发酵法丁二酸产品制定2487.2023-0499T-QB发酵液中麦角硫因的测定方法制定2488.2023-0500T-QB非变性 II 型胶原蛋白产品制定2489.2023-0501T-QB胍基丁胺产品制定2490.2023-0502T-QB核苷(酸)及其衍生物 第1部分:尿嘧啶核苷产品制定2491.2023-0503T-QB褐藻胶裂解酶制剂产品制定2492.2023-0504T-QB麦芽糖淀粉酶制剂产品制定2493.2023-0505T-QB膜过滤乳(膜分离乳)产品制定2494.2023-0506T-QB葡萄糖氧化酶制剂产品制定2495.2023-0507T-QB漆酶制剂产品制定2496.2023-0508T-QB食品中 2'-岩藻糖基乳糖的测定 离子色谱法方法制定2497.2023-0509T-QB食品中茶多糖分子量及其分布的测定 凝胶色谱法方法制定2498.2023-0510T-QB食品中茶褐素的测定-分光光度法方法制定2499.2023-0511T-QB食品中壳寡糖的测定 离子色谱法方法制定24100.2023-0512T-QB食品中乳铁蛋白的测定 酶联免疫吸附法方法制定24101.2023-0513T-QB食品中透明质酸钠的测定高效液相色谱法方法制定24102.2023-0514T-QB食品中维生素 B12 的测定预包被微孔板式微生物法方法制定24103.2023-0515T-QB熟制与生干山龙眼果(夏威夷果、澳洲坚果)和仁产品制定24104.2023-0516T-QB速溶支链氨基酸粉产品制定24105.2023-0517T-QB脱油蛋黄粉产品制定24106.2023-0518T-QB预制菜 第1部分:预制凉菜产品制定24107.2023-0519T-QB预制菜 第2部分:食用高汤产品制定24108.2023-0520T-QB预制菜 第3部分:佛跳墙产品制定24109.2023-0521T-QB植物基食品通则基础制定24110.2023-0522T-QB自热火锅产品制定24111.2023-0523T-QB自热米饭产品制定24112.2023-0524T-QBα-乳白蛋白产品制定24113.2023-0525T-QB风味面团产品制定24114.2023-0526T-QB聚葡萄糖产品制定24115.2023-0527T-QB醪糟产品制定24116.2023-0528T-QB乳清蛋白肽(水解乳清蛋白)产品制定24117.2023-0529T-QB乳酸菌发酵葡萄糖制品产品制定24118.2023-0530T-QB食品中低聚糖的测定 第1部分:母乳低聚糖含量的测定方法制定24119.2023-0531T-QB食用发酵微藻 第1部分:蛋白核小球藻产品制定24120.2023-0532T-QB食用菌剂体外模拟消化道的活菌率检验方法方法制定24121.2023-0533T-QB微生态制剂术语和分类基础制定24122.2023-0534T-QB玉米发酵核苷酸酱产品制定24123.2023-0535T-QB番茄调味类罐头产品制定24124.2023-0536T-QB鱼胶罐头产品制定24125.2023-0537T-QB坚果与籽类食品设备 术语基础制定24126.2023-0538T-QB坚果与籽类食品设备 型号编制方法基础制定24127.2023-0539T-QB可微波食品接触用复合膜、袋产品制定24128.2023-0540T-QB食品包装用聚烯烃阻隔复合膜、袋产品制定24129.2023-0541T-QB食品包装用流延聚苯乙烯多层复合片产品制定24130.2023-0542T-QB鱼松产品制定24131.2023-0543T-AH高分子复合板桩产品制定24132.2023-0552T-BB包装制品中淀粉粘合剂含量的测定(酶化-重量法和酶化-比色法)方法制定24133.2023-0553T-BB热收缩标签产品制定24
  • 从原料到包装:2024年1-8月化妆品执行标准盘点
    化妆品行业正面临消费者对安全、有效性和质量的日益关注,这带来了挑战也蕴藏着机遇。化妆品标准是保障产品质量和消费者安全的关键,涵盖原料、检测方法、功效测定、包装和口腔清洁等多个方面。本文将对2024年1-8月发布的化妆品执行标准进行盘点。化妆品标准化是保障产品质量和消费者安全的根本手段。中国现行的化妆品技术标准包括《化妆品安全技术规范》(以下简称“《技术规范》”)、国家标准、行业标准、地方标准、团体标准和其他标准。通过对2024年发布的标准盘点(见文末附录)发现,化妆品通则及检测方法类占据主导地位。化妆品检测方法是确保产品安全性和有效性的关键环节。标准化的检测方法不仅能够提供可靠的数据支持,并确保不同实验室之间数据的可比性。目前,化妆品检测方法标准涵盖了微生物检测、重金属含量检测、防腐剂效能测试等多个方面。随着检测技术的进步,新的检测方法如高效液相色谱(HPLC)、质谱(MS)等高灵敏度、高选择性的技术逐渐应用于化妆品检测中。在整理中有9条明确指出了高效液相色谱串联质谱法、高效液相色谱法用于对化妆品中功效组分虾青素、牙膏中丙烯酰胺的测定、化妆品中限用组分等的检测分析中。其次,对于化妆品原料的的安全性是保证化妆品产品质量的基础。全球各国和地区对化妆品原料的监管各有不同。在欧盟,《化妆品法规》明确规定了允许使用的化妆品原料清单,并对某些成分设定了使用限制。例如,某些防腐剂、染发剂和紫外线吸收剂在使用量上有严格的限制。中国的《化妆品监督管理条例》同样对化妆品原料有严格规定,尤其对新原料的安全性要求进行了详细描述。今年发布的标准中一共有23条标准对化妆品原料进行了要求,包括有表面活性剂、天然提取物等等,以确保源头的安全性。日常我们所说的具有抗皱、美白、保湿、祛斑等作为宣传的产品,其都需要依据化妆品功效测定标准进行功效检测。目前,欧盟、中国、美国等地区都有相关的化妆品功效测定指导原则。常见的测定方法包括有体外实验、人体试验、皮肤生理指标测试等等。今年发布的标准中多条对口服美容产品、特殊食品和化妆品的功效进行了标准化制定,以确保产品在使用过程中不会对消费者健康产生不良影响。口腔清洁护理用品如牙膏、漱口水等,作为化妆品的一个特殊类别,近年来在标准的发布上也相对来说较多,上半年在牙膏类标准就新增了12条。其标准制定既要考虑口腔健康安全,又要兼顾产品的清洁和护理效果。经了解在许多国家,口腔清洁产品的成分如氟化物、抗菌剂等有明确的使用限制,确保长期使用对人体健康无害。随着消费者对口腔健康的重视,未来口腔清洁产品的标准将更加细化和严格,特别是在功能性成分和产品安全性方面。除上述之外,对于化妆品包装的标准涉及包装材料的安全性、包装的密封性、防污染能力等方面。在欧盟,包装材料必须符合《欧盟食品接触材料法规》的要求,确保包装材料不释放有害物质。中国的《化妆品监督管理条例》也对化妆品包装提出了明确的要求,上半年共发布两条标准,分别为《T/BDCA 0001-2024 北京市国产普通化妆品包装和标签设计指南》和《T/GDCA 039-2024 化妆品包装相容性评估方法》,进一步规范了化妆品包装。化妆品标准化是保障产品质量和消费者安全的根本手段。无论是化妆品原料、检测方法、包装,还是口腔清洁产品的标准,都需要在保障安全和效果的基础上,更多地考虑可持续性和环境友好性。通过持续完善和更新标准,化妆品行业将能更好地满足消费者需求,推动整个行业的健康发展。附录:(以下“2024年1-8月发布的化妆品相关标准”的整理为编辑个人梳理,如有遗漏,欢迎大家留言补充。联系邮箱:wugq@instrument.com.cn)2024年1-8月发布的化妆品相关标准国家标准标准代号标准名称标准代号 标准名称GB/T 43718-2024免洗洗手液GB/T 44365-2024牙膏中6-甲基香豆素、二氢香豆素、7-甲基香豆素、7-甲氧基香豆素、7-乙氧基-4-甲基香豆素的测定 高效液相色谱法GB/T 43777-2024化妆品中功效组分虾青素的测定 高效液相色谱法GB/T 44366-2024化妆品中限用组分月桂醇聚醚-9的测定 液相色谱-串联质谱法GB/T 43855-2024衣物洗涤质量要求 GB/T 44367-2024化妆品中限用组分二氨基嘧啶氧化物的测定 高效液相色谱法GB/T 43954-2024重瓣红玫瑰精油GB/T 44428-2024化妆品中大麻二酚和四氢大麻酚的测定 液相色谱-串联质谱法 GB/T 44364-2024牙膏中丙烯酰胺的测定 高效液相色谱串联质谱法行业标准标准代号 标准名称标准代号标准名称QB/T 5994-2024除味喷雾剂QB/T 8056-2024氨基酸表面活性剂 谷氨酸型QB/T 5995-2024菊酯防蛀剂QB/T 8055-2024氨基酸表面活性剂 甘氨酸型QB/T 5997-2024干湿两用纸巾QB/T 8057-2024氨基酸表面活性剂 肌氨酸型QB/T 2548-2024空气清新气雾剂QB/T 8058-2024非离子表面活性剂 椰油酰胺MEAQB/T 2761-2024室内空气净化产品净化效果测定方法地方标准 标准代号标准名称标准代号标准名称DB31/T 1472-2024普通化妆品备案资料要求团体标准标准代号标准名称标准代号标准名称T/GDICST 003-2023化妆品舒缓功效评价 脂多糖诱导巨噬细胞炎症因子IL-6测定方法T/GDCA 040-2024化妆品原料 重组可溶性胶原蛋白T/GDICST 002-2023粉类防晒化妆品SPF值体外测试方法T/UNP 69-2024化妆品用原料 山茶籽油T/CAFFCI 73-2024化妆品用原料 铁皮石斛茎提取物 T/GDC 9-2024洗脸扑T/CAFFCI 72-2024化妆品用原料 乙酰基二肽-1鲸蜡酯T/GDC 8-2024化妆棉 T/CAFFCI 71-2024化妆品用原料 六肽-11T/GDC 7-2024化妆分装瓶T/CASME 1248-2024化妆品用原料 纤连蛋白T/QGCML 4196-2024化妆品用金属瓶盖T/GDICST 001-2023化妆品稳定性测试指南T/CIET 465-2024复合酸祛痘类化妆品质量要求T/SGLYCYX 001-2024化妆品用原料 茶油T/GDCA 041-2024防晒化妆品清水可洗测试评价方法T/ZHCA 032-2024驻留类化妆品温和性评价 重建表皮模型组织活力法T/ZJDAIR 009-2024化妆品用原料 酸橙(常山胡柚)果皮提取物T/ZHCA 031-2024淋洗类化妆品温和性评价 重建表皮模型组织活力法T/QGCML 4193-2024有效祛除牙斑牙垢的增白牙膏T/ZHCA 030-2024化妆品舒缓功效测试 重建表皮模型白介素-8生成抑制法T/GDCA 044-2024化妆品用原料 羟丙基四氢吡喃三醇 (β,S构型)T/ZHCA 029-2024 化妆品舒缓功效测试 角质形成细胞白介素-8生成抑制法T/COCIA 31-2024数字化牙刷T/CIET 360-2024美白祛斑功效护肤品通用要求T/CGDF 00041-2024植物性化妆品标准T/CIET 361-2024适合中国人肤质的美白护肤品开发指南T/CHCIA 030-2024活氧泡洗粉T/QGCML 2951-2024海藻酸钠面膜T/CHCIA 027-2024鼠李糖脂表面活性剂含量的测定 蒽酮-硫酸法T/QGCML 3028-2024无胶环保口红管T/SHRH 60-2024精准养肤化妆品研发指南T/GDCA 035-2024极简配方化妆品通则T/SHRH 061-2024底妆持妆效果评价指南T/CIET 355-2024家用射频美容仪T/SHRH 062-2024纯净彩妆通用要求指南T/GDCA 011-2024化妆品 纯净美妆通则T/TIC 031-2024洁颜粉T/CITS 0006-2024实验室质量控制规范 化妆品理化检测T/WHHLW 138-2024化妆品用超氧化物歧化酶 T/CITS 0005-2024实验室质量控制规范 化妆品功效评价T/CIET 544-2024化妆品行业绿色工厂评价规范T/CASME 1326-2024化妆品 保湿功效的测定 鱼胚法T/CIET 543-2024护肤品产品碳足迹评价导则T/GDCA 038-2024化妆品舒缓功效人体评价方法T/CITS 0117-2024化妆品中β-烟酰胺单核苷酸(NMN)含量测定高效液相色谱法T/QGCML 3906-2024全面均匀搅拌洗发水生产用匀质乳化机T/CHCIA 032-2024除菌型洗涤剂 通用技术要求T/QGCML 3905-2024混合均匀洗液加工装置T/WHHLW 143-2024婴幼儿用维E保湿霜T/PPZL 022-2024化妆品用羊尾油原料T/JSSKSLXH 02-2024可溶性微晶护理膜T/LNBHXH 004-2024化妆品舒缓功效评价 体外人皮肤模型测试方法T/JSSKSLXH 03-2024手持式可溶性微晶美容仪T/FCA 01-2024 化妆品生产企业原料管理规范T/JSQA 184-2024化妆品用寡聚透明质酸钠T/GDCQMA 005-2024化妆品舒缓功效测试—体外皮肤角质形成细胞炎症因子测试法T/CASME 1563-2024美妆产品原料 文冠果油T/BDCA 0001-2024北京市国产普通化妆品包装和标签设计指南T/GDCQMA 006-2024化妆品生产工艺验证指南T/CIET 415-2024口服美容产品抗皱功效测试方法T/UNP 144-2024化妆品安全技术要求T/CIET 414-2024质量分级及“领跑者”评价要求 眼霜T/UNP 145-2024绿色低碳产品评价规范 化妆品T/CIET 411-2024口服美容产品保湿功效测试方法T/UNP 146-2024化妆品舒缓功效评价技术规范T/CIET 410-2024口服美容产品改善皮肤老化功效评价方法T/UNP 147-2024化妆品修复功效评价技术规范T/CIET 406-2024口服美容产品祛斑美白功效测试方法 T/GDCA 045-2024儿童天然化妆品指南T/CIET 409-2024适老营养食品通用要求T/GDCA 046-2024化妆品用原料 牡丹枝/花/叶提取物 T/FJCA 003-2024特殊食品和化妆品 减脂功效测试 秀丽隐杆线虫法T/GDCA 047-2024化妆品用原料 松口蘑提取物T/QLMZ 12-2024化妆品用原料 羟丙基四氢吡喃三醇T/GDCA 048-2024头皮修护功效人体评价方法T/QLMZ 13-2024化妆品用山东特色植物资源原料目录T/GDCA 049-2024浓缩型护肤产品评价指南T/QLMZ 14-2024化妆品用原料 聚谷氨酸钠T/HZGY 003-2024化妆品CMF设计与评价规范T/QLMZ 15-2024化妆品用原料 四氢甲基嘧啶羧酸T/COCIA 41-2024口腔用品(牙膏、漱口水、口喷等)纸质 包装盒产品评价方法T/SHRH 058-2024化妆品稳定性试验指南T/COCIA 39-2024口腔清洁护理用品 牙膏中黄连生物碱含量的测定方法 高效液相色谱法T/SHRH 057-2024化妆品修护功效评估方法T/COCIA 38-2024绿色生产质量管理规范 牙膏用复合管T/STHZP 0031-2024 沐浴油T/COCIA 37-2024口腔清洁护理用品 牙膏用龙血竭T/STHZP 0033-2024眉毛定型液T/COCIA 36-2024 口腔清洁护理用品 牙膏功效评价 清除牙菌斑功效实验室评价方法T/STHZP 0032-2024儿童沐浴慕斯T/COCIA 35-2024口腔清洁护理用品 牙膏用右旋糖酐酶T/CHCIA 029-2024化妆品风险物质调查和特定检出值安全评估指南T/CI 447-2024热塑性聚氨酯(TPU)薄膜日用品卫生安全等级评价T/BYXT 025.3-2024稀土抗菌日用品 第3部分:洗涤剂T/COCIA 32-2024口腔清洁护理用品 牙膏用凝血酸T/SHRH 059-2024护肤精华油T/COCIA 20-2024口腔清洁护理用品 牙擦T/GDCA 039-2024化妆品包装相容性评估方法T/ACCEM 024-2024透皮吸收类化妆品通用要求T/GDAQI 141-2024化妆品中椰油酰甘氨酸钾的测定 高效液相色谱法 其他标准标准代号标准名称标准代号标准名称BJH 202402化妆品中双氟拉松丙酸酯的测定BJH 202401化妆品中非那雄胺等10种组分的测定
  • 广东省农业标准化协会发布《大蒜及其制品中蒜氨酸含量测定》团体标准征求意见稿
    各有关单位及专家:由华南农业大学等单位提出的《大蒜及其制品中蒜氨酸含量测定》团体标准已完成征求意见稿,为保证团体标准的科学性、实用性及可操作性,现公开征求意见。请有关单位及专家认真审阅标准文本,对标准的征求意见稿(见附件1)进行审查和把关,提出宝贵意见建议,并将意见反馈表(见附件2)于2023年10月17日前以邮件或传真的形式反馈至协会秘书处,逾期未回复按无意见处理。感谢您对协会工作的大力支持!附件1:《大蒜及其制品中蒜氨酸含量测定》征求意见稿附件2:团体标准征求意见反馈表(联系人:钱波;电话/传真:020-85161829;邮箱:gdnybzh@163.com) 广东省农业标准化协会2023年9月18日附件1:大蒜及其制品中蒜氨酸含量测定-征求意见稿.pdf附件2: 团体标准征求意见反馈表.doc
  • 2024年3月6日!78项食品安全国家标准正式实施(附下载链接)
    2023年9月25日,国家卫生健康委员会与市场监管总局联合发布了第6号公告,发布了85项新的食品安全国家标准和3项。《茶叶》等3项食品产品标准、《婴幼儿配方食品良好生产规范》等5项生产经营规范标准、《食品接触用塑料材料及制品》等6项食品相关产品标准、《化学分析方法验证通则》等46项理化检验方法标准和1项修改单、《微生物检验方法验证通则》等3项微生物检验方法标准、《动物性水产品及其制品中颚口线虫的检验》等6项寄生虫检验方法标准,以及《食品添加剂β-胡萝卜素》等16项食品添加剂、食品营养强化剂质量规格标准和2项修改单。其中78项新标准将于2024年3月6日开始生效。剩余7项食品接触材料新标准将于2024年9月6日正式实施。小编已将7项食品接触材料新标准进行整理解读:多项食品接触材料新标准将于2024年9月正式实施! 以下是3月6日正式实施的78项食品国家标准及其涉及到的检测方法。标准名称(可点击下载)备注理化检验方法标准(35项)GB 5009.8- 2023 食品安全国家标准   食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定增加离子色谱为第二法GB   5009.9- 2023 食品安全国家标准   食品中淀粉的测定GB   5009.12- 2023 食品安全国家标准   食品中铅的测定第一法:石墨炉原子吸收光谱;第二法:电感耦合等离子体质谱法 ICP-MS为新增方法GB   5009.15- 2023     食品安全国家标准   食品中镉的测定GB   5009.16- 2023     食品安全国家标准   食品中锡的测定GB   5009.123- 2023   食品安全国家标准   食品中铬的测定GB   5009. 297 - 2023   食品安全国家标准 食品中钼的测定GB   5009.36- 2023     食品安全国家标准   食品中氰化物的测定增加了GC-MS、离子色谱、流动注射/连续流动-分光光度法GB   5009.43- 2023     食品安全国家标准   味精中谷氨酸钠的测定GB   5009.88- 2023     食品安全国家标准   食品中膳食纤维的测定新增HPLC方法GB   5009.89- 2023     食品安全国家标准   食品中烟酸和烟酰胺的测定GB   5009.97- 2023     食品安全国家标准   食品 中环己基氨基磺酸 盐的测定GB   5009.26- 2023     食品安全国家标准   食品中 N- 亚硝胺类化合物的测定新增水蒸气蒸馏-gc-ms/ms、QuEChERS-gc-ms/ms、水蒸气蒸馏-Lc-ms/ms、GB   5009.129- 2023   食品安全国家标准   食品中乙氧基 喹 的测定新增HPLC方法GB   5009.140- 2023   食品安全国家标准   食品中乙酰磺胺酸钾的测定GB   5009.154- 2023   食品安全国家标准   食品中维生素B 6 的测定新增LC-MS、LC-MS/MS方法GB   5009.189- 2023   食品安全国家标准   食品中米 酵菌酸 的测定新增LC-MS/MS方法GB   5009.210- 2023   食品安全国家标准   食品中泛酸的测定新增LC-MS方法GB   5009.225- 2023   食品安全国家标准   酒和食用酒精中乙醇浓度的测定GB   5009.227- 2023   食品安全国家标准   食品中过氧化值的测定GB   5009.240- 2023   食品安全国家标准   食品 中伏马菌素 的测定GB   5009.259- 2023   食品安全国家标准   食品中生物素的测定新增LC-MS方法GB   5009.270- 2023   食品安全国家标准   食品中肌醇的测定GB   5009. 295 - 2023   食品安全国家标准   化学分析方法验证通则GB 5009.294-2023 食品安全国家标准 食品中色氨酸的测定GB   5009. 293 - 2023   食品安全国家标准   食品中单辛酸甘油酯的测定第一法:GC;第二法:GC-MSGB   5009. 292 - 2023   食品安全国家标准   食品中β-阿朴-8 ’ -胡萝卜素醛的测定HPLC方法GB   5009. 289 - 2023   食品安全国家标准   食品 中低聚半乳糖 的测定HPLC方法GB   5009. 291 - 2023   食品安全国家标准   食品中氯酸盐和高氯酸盐的测定LC-MS方法GB   5009. 290 - 2023   食品安全国家标准   食品中维生素K 2 的测定GB   5009.35- 2023     食品安全国家标准   食品中合成着色剂的测定GB   5009. 288 - 2023   食品安全国家标准   食品中 胭脂虫红的 测定GB   5009. 296 - 2023   食品安全国家标准   食品中维生素D的测定新增二维液相色谱法GB   31614 .1- 2023     食品安全国家标准   食品中唾液酸的测定GB   5009. 298 - 2023   食品安全国家标准   食品中三氯蔗糖(蔗糖素)的测定新增LC-MS方法食品接触材料(10项)GB   31604.7- 2023     食品安全国家标准   食品接触材料及制品脱色试验  GB   31604.46- 2023   食品安全国家标准   食品接触材料及制品游离 酚 的测定和迁移量的测定GB   31604.47- 2023   食品安全国家标准   食品接触材料及制品纸、纸板及纸制品中荧光性物质的测定  GB   31604. 58 - 2023   食品安全国家标准   食品接触材料及制品   9 种抗氧化剂迁移量的测定检测方法:液相/液质方法GB   31604. 29 - 2023   食品安全国家标准   食品接触材料及制品丙烯酸和甲基丙烯酸及其酯类迁移量的测定增加了检测方法,针对分析目标物种类较多、性质差异较大等问题,新增“液相色谱法”。GB   31604. 49 - 2023   食品安全国家标准   食品接触材料及制品多元素的测定和多元素迁移量的测定新增电感耦合等离子体发射光谱方法GB   31604. 57 - 2023   食品安全国家标准   食品接触材料及制品二苯甲酮类物质迁移量的测定检测方法:液相/液质方法GB   31604. 56 - 2023   食品安全国家标准   食品接触材料及制品月桂内酰胺迁移量的测定检测方法:液相/液质方法GB   31604. 54 - 2023   食品安全国家标准   食品接触材料及制品双酚F和双酚S迁移量的测定检测方法:液相/液质方法GB   31604. 55 - 2023   食品安全国家标准   食品接触材料及制品   异噻唑 啉 酮类化合物迁移量的测定检测方法:液相/液质方法水产品(6项)GB   31610 .1- 2023     食品安全国家标准   动物性水产品及其制品中 颚口线虫 的检验方法一:肺囊检查法(显微镜镜检);方法二:胃蛋白酶消化法(显微镜镜检);方法三:PCR方法;GB   31610 .2- 2023     食品安全国家标准   动物性水产品及其制品 中异尖线虫 的检验GB   31610 .3- 2023     食品安全国家标准   动物性水产品及其制品中 广州管圆线虫 的检验GB   31610 .4- 2023     食品安全国家标准   动物性水产品及其制品中华支 睾 吸虫的检验GB   31610 .5- 2023     食品安全国家标准   动物性水产品中及其制品中并 殖 吸虫的检验GB   31610 .6- 2023     食品安全国家标准   动物性水产品及其制品中 曼氏迭宫绦虫 裂头蚴的检验产品标准(3项)GB   31608 - 2023 食品安全国家标准 茶叶GB   31639 - 2023 食品安全国家标准   食品加工用菌种制剂GB   31611 - 2023 食品安全国家标准   食品加工用植物蛋白肽食品添加剂(10项)GB   1886.231- 2023   食品安全国家标准   食品添加剂   乳酸链球菌素GB   1886. 373 - 2023   食品安全国家标准   食品添加剂甲醇钠GB   1886. 372 - 2023   食品安全国家标准   食品添加剂L-蛋氨酰基甘氨酸盐酸盐GB   1886. 371 - 2023   食品安全国家标准   食品添加剂ε-聚赖氨酸盐酸盐GB   1886. 370 - 2023   食品安全国家标准   食品添加剂辛烯基琥珀酸淀粉钠GB   1886. 369 - 2023   食品安全国家标准   食品添加剂   蓝锭果红GB   1886. 368 - 2023   食品安全国家标准   食品添加剂   (2S,5R)-N-[4-(2-氨基-2- 氧代乙 基)苯基]-5-甲基-2-(丙基-2-)环己烷甲酰胺GB   1886. 367 - 2023   食品安全国家标准   食品添加剂   6-甲基辛醛GB   1886. 366 - 2023   食品安全国家标准   食品添加剂   β-胡萝卜素GB   1886. 365 - 2023   食品安全国家标准   食品添加剂   5-甲基-2-呋喃甲硫醇食品营养强化剂(6个)GB   1903. 61 - 2023     食品安全国家标准   食品营养强化剂碳酸铜GB   1903. 64 - 2023     食品安全国家标准   食品营养强化剂氯化锰GB   1903. 63 - 2023     食品安全国家标准   食品营养强化剂甘油磷酸钙GB   1903. 62 - 2023     食品安全国家标准   食品营养强化剂还原铁GB   1903. 59 - 2023     食品安全国家标准   食品营养强化剂氯化铬GB   1903. 60 - 2023     食品安全国家标准   食品营养强化剂L-肉碱酒石酸盐方法通则(3个)GB   4789.26- 2023     食品安全国家标准   食品微生物学检验商业无菌检验GB   4789.35- 2023     食品安全国家标准   食品微生物学检验乳酸菌检验GB   4789. 45 - 2023     食品安全国家标准   微生物检验方法验证通则生产规范(5个)GB   12693- 2023 食品安全国家标准   乳制品良好生产规范GB   19303- 2023 食品安全国家标准   熟肉制品生产卫生规范GB   22923- 2023 食品安全国家标准   特殊医学用途配方食品良好生产规范GB   23790- 2023 食品安全国家标准 婴幼儿配方食品良好生产规范GB   31612 - 2023 食品安全国家标准   食品加工用菌种制剂生产卫生规范
  • 卫计委发布243项食品安全国家标准
    p style=" text-align: center " strong 关于发布《食品安全国家标准 食品添加剂 磷酸氢钙》(GB 1886.3-2016)等243项食品安全国家标准和2项标准修改单的公告 /strong /p p style=" text-align: center " 2016年 第11号 /p p   根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品安全国家标准食品添加剂 磷酸氢钙》(GB 1886.3-2016)等243项食品安全国家标准和2项标准修改单。其编号和名称如下: /p p   GB 1886.3-2016 食品安全国家标准 食品添加剂 磷酸氢钙 /p p   GB 1886.6-2016 食品安全国家标准 食品添加剂 硫酸钙 /p p   GB 1886.9-2016 食品安全国家标准 食品添加剂 盐酸 /p p   GB 1886.11-2016 食品安全国家标准 食品添加剂 亚硝酸钠 /p p   GB 1886.20-2016 食品安全国家标准 食品添加剂 氢氧化钠 /p p   GB 1886.21-2016 食品安全国家标准 食品添加剂 乳酸钙 /p p   GB 1886.22-2016 食品安全国家标准 食品添加剂 柠檬油 /p p   GB 1886.25-2016 食品安全国家标准 食品添加剂 柠檬酸钠 /p p   GB 1886.26-2016 食品安全国家标准 食品添加剂 石蜡 /p p   GB 1886.28-2016 食品安全国家标准 食品添加剂 D-异抗坏血酸钠 /p p   GB 1886.44-2016 食品安全国家标准 食品添加剂 抗坏血酸钠 /p p   GB 1886.45-2016 食品安全国家标准 食品添加剂 氯化钙 /p p   GB 1886.47-2016 食品安全国家标准 食品添加剂 天门冬酰苯丙氨酸甲酯(又名阿斯巴甜) /p p   GB 1886.49-2016 食品安全国家标准 食品添加剂 D-异抗坏血酸 /p p   GB 1886.57-2016 食品安全国家标准 食品添加剂 单辛酸甘油酯 /p p   GB 1886.69-2016 食品安全国家标准 食品添加剂 天门冬酰苯丙氨酸甲酯乙酰磺胺酸 /p p   GB 1886.72-2016 食品安全国家标准 食品添加剂 聚氧乙烯聚氧丙烯胺醚 /p p   GB 1886.75-2016 食品安全国家标准 食品添加剂 L-半胱氨酸盐酸盐 /p p   GB 1886.77-2016 食品安全国家标准 食品添加剂 罗汉果甜苷 /p p   GB 1886.78-2016 食品安全国家标准 食品添加剂 番茄红素(合成) /p p   GB 1886.83-2016 食品安全国家标准 食品添加剂 铵磷脂 /p p   GB 1886.85-2016 食品安全国家标准 食品添加剂 冰乙酸(低压羰基化法) /p p   GB 1886.91-2016 食品安全国家标准 食品添加剂 硬脂酸镁 /p p   GB 1886.92-2016 食品安全国家标准 食品添加剂 硬脂酰乳酸钠 /p p   GB 1886.94-2016 食品安全国家标准 食品添加剂 亚硝酸钾 /p p   GB 1886.96-2016 食品安全国家标准 食品添加剂 松香季戊四醇酯 /p p   GB 1886.98-2016 食品安全国家标准 食品添加剂 乳糖醇(又名4-β-D吡喃半乳糖-D-山梨醇) /p p   GB 1886.101-2016 食品安全国家标准 食品添加剂 硬脂酸(又名十八烷酸) /p p   GB 1886.102-2016 食品安全国家标准 食品添加剂 硬脂酸钙 /p p   GB 1886.105-2016 食品安全国家标准 食品添加剂 辣椒橙 /p p   GB 1886.127-2016 食品安全国家标准 食品添加剂 山楂核烟熏香味料I号、II号 /p p   GB 1886.141-2016 食品安全国家标准 食品添加剂 d-核糖 /p p   GB 1886.169-2016 食品安全国家标准 食品添加剂 卡拉胶 /p p   GB 1886.170-2016 食品安全国家标准 食品添加剂 5′-鸟苷酸二钠 /p p   GB 1886.171-2016 食品安全国家标准 食品添加剂 5′-呈味核苷酸二钠(又名呈味核苷酸二钠) /p p   GB 1886.172-2016 食品安全国家标准 食品添加剂 迷迭香提取物 /p p   GB 1886.173-2016 食品安全国家标准 食品添加剂 乳酸 /p p   GB 1886.174-2016 食品安全国家标准 食品添加剂 食品工业用酶制剂 /p p   GB 1886.175-2016 食品安全国家标准 食品添加剂 亚麻籽胶(又名富兰克胶) /p p   GB 1886.176-2016 食品安全国家标准 食品添加剂 异构化乳糖液 /p p   GB 1886.177-2016 食品安全国家标准 食品添加剂 D-甘露糖醇 /p p   GB 1886.178-2016 食品安全国家标准 食品添加剂 聚甘油脂肪酸酯 /p p   GB 1886.179-2016 食品安全国家标准 食品添加剂 硬脂酰乳酸钙 /p p   GB 1886.180-2016 食品安全国家标准 食品添加剂 β-环状糊精 /p p   GB 1886.181-2016 食品安全国家标准 食品添加剂 红曲红 /p p   GB 1886.182-2016 食品安全国家标准 食品添加剂 异麦芽酮糖 /p p   GB 1886.183-2016 食品安全国家标准 食品添加剂 苯甲酸 /p p   GB 1886.184-2016 食品安全国家标准 食品添加剂 苯甲酸钠 /p p   GB 1886.185-2016 食品安全国家标准 食品添加剂 琥珀酸单甘油酯 /p p   GB 1886.186-2016 食品安全国家标准 食品添加剂 山梨酸 /p p   GB 1886.187-2016 食品安全国家标准 食品添加剂 山梨糖醇和山梨糖醇液 /p p   GB 1886.188-2016 食品安全国家标准 食品添加剂 田菁胶 /p p   GB 1886.189-2016 食品安全国家标准 食品添加剂 3-环己基丙酸烯丙酯 /p p   GB 1886.190-2016 食品安全国家标准 食品添加剂 乙酸乙酯 /p p   GB 1886.191-2016 食品安全国家标准 食品添加剂 柠檬醛 /p p   GB 1886.192-2016 食品安全国家标准 食品添加剂 苯乙醇 /p p   GB 1886.193-2016 食品安全国家标准 食品添加剂 丙酸乙酯 /p p   GB 1886.194-2016 食品安全国家标准 食品添加剂 丁酸乙酯 /p p   GB 1886.195-2016 食品安全国家标准 食品添加剂 丁酸异戊酯 /p p   GB 1886.196-2016 食品安全国家标准 食品添加剂 己酸乙酯 /p p   GB 1886.197-2016 食品安全国家标准 食品添加剂 乳酸乙酯 /p p   GB 1886.198-2016 食品安全国家标准 食品添加剂 α-松油醇 /p p   GB 1886.199-2016 食品安全国家标准 食品添加剂 天然薄荷脑 /p p   GB 1886.200-2016 食品安全国家标准 食品添加剂 香叶油(又名玫瑰香叶油) /p p   GB 1886.201-2016 食品安全国家标准 食品添加剂 乙酸苄酯 /p p   GB 1886.202-2016 食品安全国家标准 食品添加剂 乙酸异戊酯 /p p   GB 1886.203-2016 食品安全国家标准 食品添加剂 异戊酸异戊酯 /p p   GB 1886.204-2016 食品安全国家标准 食品添加剂 亚洲薄荷素油 /p p   GB 1886.205-2016 食品安全国家标准 食品添加剂 d-香芹酮 /p p   GB 1886.206-2016 食品安全国家标准 食品添加剂 l-香芹酮 /p p   GB 1886.207-2016 食品安全国家标准 食品添加剂 中国肉桂油 /p p   GB 1886.208-2016 食品安全国家标准 食品添加剂 乙基麦芽酚 /p p   GB 1886.209-2016 食品安全国家标准 食品添加剂 正丁醇 /p p   GB 1886.210-2016 食品安全国家标准 食品添加剂 丙酸 /p p   GB 1886.211-2016 食品安全国家标准 食品添加剂 茶多酚(又名维多酚) /p p   GB 1886.212-2016 食品安全国家标准 食品添加剂 酪蛋白酸钠(又名酪朊酸钠) /p p   GB 1886.213-2016 食品安全国家标准 食品添加剂 二氧化硫 /p p   GB 1886.214-2016 食品安全国家标准 食品添加剂 碳酸钙(包括轻质和重质碳酸钙) /p p   GB 1886.215-2016 食品安全国家标准 食品添加剂 白油(又名液体石蜡) /p p   GB 1886.216-2016 食品安全国家标准 食品添加剂 氧化镁(包括重质和轻质) /p p   GB 1886.217-2016 食品安全国家标准 食品添加剂 亮蓝 /p p   GB 1886.218-2016 食品安全国家标准 食品添加剂 亮蓝铝色淀 /p p   GB 1886.219-2016 食品安全国家标准 食品添加剂 苋菜红铝色淀 /p p   GB 1886.220-2016 食品安全国家标准 食品添加剂 胭脂红 /p p   GB 1886.221-2016 食品安全国家标准 食品添加剂 胭脂红铝色淀 /p p   GB 1886.222-2016 食品安全国家标准 食品添加剂 诱惑红 /p p   GB 1886.223-2016 食品安全国家标准 食品添加剂 诱惑红铝色淀 /p p   GB 1886.224-2016 食品安全国家标准 食品添加剂 日落黄铝色淀 /p p   GB 1886.225-2016 食品安全国家标准 食品添加剂 乙氧基喹 /p p   GB 1886.226-2016 食品安全国家标准 食品添加剂 海藻酸丙二醇酯 /p p   GB 1886.227-2016 食品安全国家标准 食品添加剂 吗啉脂肪酸盐果蜡 /p p   GB 1886.228-2016 食品安全国家标准 食品添加剂 二氧化碳 /p p   GB 1886.229-2016 食品安全国家标准 食品添加剂 硫酸铝钾(又名钾明矾) /p p   GB 1886.230-2016 食品安全国家标准 食品添加剂 抗坏血酸棕榈酸酯 /p p   GB 1886.231-2016 食品安全国家标准 食品添加剂 乳酸链球菌素 /p p   GB 1886.232-2016 食品安全国家标准 食品添加剂 羧甲基纤维素钠 /p p   GB 1886.233-2016 食品安全国家标准 食品添加剂 维生素E /p p   GB 1886.234-2016 食品安全国家标准 食品添加剂 木糖醇 /p p   GB 1886.235-2016 食品安全国家标准 食品添加剂 柠檬酸 /p p   GB 1886.236-2016 食品安全国家标准 食品添加剂 丙二醇脂肪酸酯 /p p   GB 1886.237-2016 食品安全国家标准 食品添加剂 植酸(又名肌醇六磷酸) /p p   GB 1886.238-2016 食品安全国家标准 食品添加剂 改性大豆磷脂 /p p   GB 1886.239-2016 食品安全国家标准 食品添加剂 琼脂 /p p   GB 1886.240-2016 食品安全国家标准 食品添加剂 甘草酸一钾 /p p   GB 1886.241-2016 食品安全国家标准 食品添加剂 甘草酸三钾 /p p   GB 1886.242-2016 食品安全国家标准 食品添加剂 甘草酸铵 /p p   GB 1886.243-2016 食品安全国家标准 食品添加剂 海藻酸钠(又名褐藻酸钠) /p p   GB 1886.244-2016 食品安全国家标准 食品添加剂 紫甘薯色素 /p p   GB 1886.245-2016 食品安全国家标准 食品添加剂 复配膨松剂 /p p   GB 1886.246-2016 食品安全国家标准 食品添加剂 滑石粉 /p p   GB 1886.247-2016 食品安全国家标准 食品添加剂 碳酸氢钾 /p p   GB 1886.248-2016 食品安全国家标准 食品添加剂 稳定态二氧化氯 /p p   GB 1886.249-2016 食品安全国家标准 食品添加剂 4-己基间苯二酚 /p p   GB 1886.250-2016 食品安全国家标准 食品添加剂 植酸钠 /p p   GB 1886.251-2016 食品安全国家标准 食品添加剂 氧化铁黑 /p p   GB 1886.252-2016 食品安全国家标准 食品添加剂 氧化铁红 /p p   GB 1886.253-2016 食品安全国家标准 食品添加剂 羟基硬脂精(又名氧化硬脂精) /p p   GB 1886.254-2016 食品安全国家标准 食品添加剂 刺梧桐胶 /p p   GB 1886.255-2016 食品安全国家标准 食品添加剂 活性炭 /p p   GB 1886.256-2016 食品安全国家标准 食品添加剂 甲基纤维素 /p p   GB 1886.257-2016 食品安全国家标准 食品添加剂 溶菌酶 /p p   GB 1886.258-2016 食品安全国家标准 食品添加剂 正己烷 /p p   GB 1886.259-2016 食品安全国家标准 食品添加剂 蔗糖聚丙烯醚 /p p   GB 1886.260-2016 食品安全国家标准 食品添加剂 橙皮素 /p p   GB 1886.261-2016 食品安全国家标准 食品添加剂 根皮素 /p p   GB 1886.262-2016 食品安全国家标准 食品添加剂 柚苷(柚皮甙提取物) /p p   GB 1886.263-2016 食品安全国家标准 食品添加剂 玫瑰净油 /p p   GB 1886.264-2016 食品安全国家标准 食品添加剂 小花茉莉净油 /p p   GB 1886.265-2016 食品安全国家标准 食品添加剂 桂花净油 /p p   GB 1886.266-2016 食品安全国家标准 食品添加剂 红茶酊 /p p   GB 1886.267-2016 食品安全国家标准 食品添加剂 绿茶酊 /p p   GB 1886.268-2016 食品安全国家标准 食品添加剂 罗汉果酊 /p p   GB 1886.269-2016 食品安全国家标准 食品添加剂 黄芥末提取物 /p p   GB 1886.270-2016 食品安全国家标准 食品添加剂 茶树油(又名互叶白千层油) /p p   GB 1886.271-2016 食品安全国家标准 食品添加剂 香茅油 /p p   GB 1886.272-2016 食品安全国家标准 食品添加剂 大蒜油 /p p   GB 1886.273-2016 食品安全国家标准 食品添加剂 丁香花蕾油 /p p   GB 1886.274-2016 食品安全国家标准 食品添加剂 杭白菊花油 /p p   GB 1886.275-2016 食品安全国家标准 食品添加剂 白兰花油 /p p   GB 1886.276-2016 食品安全国家标准 食品添加剂 白兰叶油 /p p   GB 1886.277-2016 食品安全国家标准 食品添加剂 树兰花油 /p p   GB 1886.278-2016 食品安全国家标准 食品添加剂 椒样薄荷油 /p p   GB 1886.279-2016 食品安全国家标准 食品添加剂 洋茉莉醛(又名胡椒醛) /p p   GB 1886.280-2016 食品安全国家标准 食品添加剂 2-甲基戊酸乙酯 /p p   GB 1886.281-2016 食品安全国家标准 食品添加剂 香茅醛 /p p   GB 1886.282-2016 食品安全国家标准 食品添加剂 麦芽酚 /p p   GB 1886.283-2016 食品安全国家标准 食品添加剂 乙基香兰素 /p p   GB 1886.284-2016 食品安全国家标准 食品添加剂 覆盆子酮(又名悬钩子酮) /p p   GB 1886.285-2016 食品安全国家标准 食品添加剂 丙酸苄酯 /p p   GB 1886.286-2016 食品安全国家标准 食品添加剂 丁酸丁酯 /p p   GB 1886.287-2016 食品安全国家标准 食品添加剂 异戊酸乙酯 /p p   GB 1886.288-2016 食品安全国家标准 食品添加剂 苯甲酸乙酯 /p p   GB 1886.289-2016 食品安全国家标准 食品添加剂 苯甲酸苄酯 /p p   GB 1886.290-2016 食品安全国家标准 食品添加剂 2-甲基吡嗪 /p p   GB 1886.291-2016 食品安全国家标准 食品添加剂 2,3-二甲基吡嗪 /p p   GB 1886.292-2016 食品安全国家标准 食品添加剂2,3,5-三甲基吡嗪 /p p   GB 1886.293-2016 食品安全国家标准 食品添加剂 5-羟乙基-4-甲基噻唑 /p p   GB 1886.294-2016 食品安全国家标准 食品添加剂 2-乙酰基噻唑 /p p   GB 1886.295-2016 食品安全国家标准 食品添加剂2,3,5,6-四甲基吡嗪 /p p   GB 1886.296-2016 食品安全国家标准 食品添加剂 柠檬酸铁铵 /p p   GB 1903.5-2016 食品安全国家标准 食品营养强化剂5& #39 -胞苷酸二钠 /p p   GB 4789.8-2016 食品安全国家标准 食品微生物学检验 小肠结肠炎耶尔森氏菌检验 /p p   GB 4789.41-2016食品安全国家标准 食品微生物学检验 肠杆菌科检验 /p p   GB 5009.2-2016 食品安全国家标准 食品相对密度的测定 /p p   GB 5009.3-2016 食品安全国家标准 食品中水分的测定 /p p   GB 5009.4-2016 食品安全国家标准 食品中灰分的测定 /p p   GB 5009.7-2016 食品安全国家标准 食品中还原糖的测定 /p p   GB 5009.31-2016 食品安全国家标准 食品中对羟基苯甲酸酯类的测定 /p p   GB 5009.34-2016 食品安全国家标准 食品中二氧化硫的测定 /p p   GB 5009.35-2016 食品安全国家标准 食品中合成着色剂的测定 /p p   GB 5009.42-2016 食品安全国家标准 食盐指标的测定 /p p   GB 5009.43-2016 食品安全国家标准 味精中麸氨酸钠(谷氨酸钠)的测定 /p p   GB 5009.44-2016 食品安全国家标准 食品中氯化物的测定 /p p   GB 5009.84-2016 食品安全国家标准 食品中维生素B1的测定 /p p   GB 5009.86-2016 食品安全国家标准 食品中抗坏血酸的测定 /p p   GB 5009.97-2016 食品安全国家标准 食品中环己基氨基磺酸钠的测定 /p p   GB 5009.120-2016 食品安全国家标准 食品中丙酸钠、丙酸钙的测定 /p p   GB 5009.121-2016 食品安全国家标准 食品中脱氢乙酸的测定 /p p   GB 5009.141-2016 食品安全国家标准 食品中诱惑红的测定 /p p   GB 5009.153-2016 食品安全国家标准 食品中植酸的测定 /p p   GB 5009.157-2016 食品安全国家标准 食品中有机酸的测定 /p p   GB 5009.169-2016 食品安全国家标准 食品中牛磺酸的测定 /p p   GB 5009.179-2016 食品安全国家标准 食品中三甲胺的测定 /p p   GB 5009.181-2016 食品安全国家标准 食品中丙二醛的测定 /p p   GB 5009.202-2016 食品安全国家标准 食用油中极性组分(PC)的测定 /p p   GB 5009.210-2016 食品安全国家标准 食品中泛酸的测定 /p p   GB 5009.215-2016 食品安全国家标准 食品中有机锡的测定 /p p   GB 5009.224-2016 食品安全国家标准 大豆制品中胰蛋白酶抑制剂活性的测定 /p p   GB 5009.225-2016 食品安全国家标准 酒中乙醇浓度的测定 /p p   GB 5009.226-2016 食品安全国家标准 食品中过氧化氢残留量的测定 /p p   GB 5009.227-2016 食品安全国家标准 食品中过氧化值的测定 /p p   GB 5009.228-2016 食品安全国家标准 食品中挥发性盐基氮的测定 /p p   GB 5009.229-2016 食品安全国家标准 食品中酸价的测定 /p p   GB 5009.230-2016 食品安全国家标准 食品中羰基价的测定 /p p   GB 5009.231-2016 食品安全国家标准 水产品中挥发酚残留量的测定 /p p   GB 5009.232-2016 食品安全国家标准 水果、蔬菜及其制品中甲酸的测定 /p p   GB 5009.233-2016 食品安全国家标准 食醋中游离矿酸的测定 /p p   GB 5009.234-2016 食品安全国家标准 食品中铵盐的测定 /p p   GB 5009.235-2016 食品安全国家标准 食品中氨基酸态氮的测定 /p p   GB 5009.236-2016 食品安全国家标准 动植物油脂水分及挥发物的测定 /p p   GB 5009.237-2016 食品安全国家标准 食品pH值的测定 /p p   GB 5009.238-2016 食品安全国家标准 食品水分活度的测定 /p p   GB 5009.239-2016 食品安全国家标准 食品酸度的测定 /p p   GB 5009.240-2016 食品安全国家标准 食品中伏马毒素的测定 /p p   GB 5009.243-2016 食品安全国家标准 高温烹调食品中杂环胺类物质的测定 /p p   GB 5009.244-2016 食品安全国家标准 食品中二氧化氯的测定 /p p   GB 5009.245-2016 食品安全国家标准 食品中聚葡萄糖的测定 /p p   GB 5009.246-2016 食品安全国家标准 食品中二氧化钛的测定 /p p   GB 5009.247-2016 食品安全国家标准 食品中纽甜的测定 /p p   GB 5009.248-2016 食品安全国家标准 食品中叶黄素的测定 /p p   GB 5009.249-2016 食品安全国家标准 铁强化酱油中乙二胺四乙酸铁钠的测定 /p p   GB 5009.250-2016 食品安全国家标准 食品中乙基麦芽酚的测定 /p p   GB 5009.251-2016 食品安全国家标准 食品中1,2-丙二醇的测定 /p p   GB 5009.252-2016 食品安全国家标准 食品中乙酰丙酸的测定 /p p   GB 5009.253-2016 食品安全国家标准 动物源性食品中全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定 /p p   GB 5009.254-2016 食品安全国家标准 动植物油脂中聚二甲基硅氧烷的测定 /p p   GB 5009.255-2016 食品安全国家标准 食品中果聚糖的测定 /p p   GB 5009.256-2016 食品安全国家标准 食品中多种磷酸盐的测定 /p p   GB 5009.257-2016 食品安全国家标准 食品中反式脂肪酸的测定 /p p   GB 5009.258-2016 食品安全国家标准 食品中棉子糖的测定 /p p   GB 5009.259-2016 食品安全国家标准 食品中生物素的测定 /p p   GB 5009.260-2016 食品安全国家标准 食品中叶绿素铜钠的测定 /p p   GB 5413.38-2016 食品安全国家标准 生乳冰点的测定 /p p   GB 5413.40-2016 食品安全国家标准 婴幼儿食品和乳品中核苷酸的测定 /p p   GB 14883.1-2016 食品安全国家标准 食品中放射性物质检验 总则 /p p   GB 14883.2-2016 食品安全国家标准 食品中放射性物质氢-3的测定 /p p   GB 14883.3-2016 食品安全国家标准 食品中放射性物质锶-89和锶-90的测定 /p p   GB 14883.4-2016 食品安全国家标准 食品中放射性物质钷-147的测定 /p p   GB 14883.5-2016 食品安全国家标准 食品中放射性物质钋-210的测定 /p p   GB 14883.6-2016 食品安全国家标准 食品中放射性物质镭-226和镭-228的测定 /p p   GB 14883.7-2016 食品安全国家标准 食品中放射性物质天然钍和铀的测定 /p p   GB 14883.8-2016 食品安全国家标准 食品中放射性物质钚-239、钚-240的测定 /p p   GB 14883.9-2016 食品安全国家标准 食品中放射性物质碘-131的测定 /p p   GB 14883.10-2016 食品安全国家标准 食品中放射性物质铯-137的测定 /p p   GB 31604.2-2016 食品安全国家标准 食品接触材料及制品 高锰酸钾消耗量的测定 /p p   GB 31604.3-2016 食品安全国家标准 食品接触材料及制品 树脂干燥失重的测定 /p p   GB 31604.4-2016 食品安全国家标准 食品接触材料及制品 树脂中挥发物的测定 /p p   GB 31604.5-2016 食品安全国家标准 食品接触材料及制品 树脂中提取物的测定 /p p   GB 31604.6-2016 食品安全国家标准 食品接触材料及制品 树脂中灼烧残渣的测定 /p p   GB 31604.7-2016 食品安全国家标准 食品接触材料及制品 脱色试验 /p p   GB 31604.8-2016 食品安全国家标准 食品接触材料及制品 总迁移量的测定 /p p   GB 31604.9-2016 食品安全国家标准 食品接触材料及制品 食品模拟物中重金属的测定 /p p   GB 31604.10-2016 食品安全国家标准 食品接触材料及制品 2,2-二(4-羟基苯基)丙烷(双酚A)迁移量的测定 /p p   GB 29202-2012 食品安全国家标准 食品添加剂 氮气 第1号修改单 /p p   GB 30616-2014 食品安全国家标准 食品用香精 第1号修改单 /p p   特此公告。 /p p style=" text-align: right "   国家卫生计生委 食品药品监管总局 /p p style=" text-align: right "   2016年8月31日 /p p   附件:《食品安全国家标准 食品添加剂 磷酸氢钙》(GB 1886.3-2016)等243项食品安全国家标准和2项标准修改单.rar /p p br/ /p
  • 卫生部:食品添加剂生产使用标准将提高
    日前,卫生部食品安全与卫生监督局局长苏志向媒体宣布,《预包装食品营养标签通则》将于2013年1月1日正式施行。这标志着我国将全面推行食品营养标签管理制度。   食品添加剂“喧宾夺主”引关注   8月13日,卫生部通报了《食品安全国家标准“十二五”规划》的相关情况,指出“十二五”末期,食品安全国家标准体系将基本建立。   值得注意的是,卫生部此番把提高食品添加剂生产使用标准纳入日程。   “2011年,中国食品添加剂全行业主要产品总产量762万吨,同比增长8.1% 销售额767亿元,较去年增长6.4%。”按照中国食品添加剂和配料协会副理事长薛毅提供本报的数据计算,我国人均每天至少食用1.6g食品添加剂。   食品添加剂“喧宾夺主”   “今麦郎”红烧牛肉面所使用添加剂数量竟达原料的四倍。   近日,本报记者走访北京地区多家超市发现,该品牌方便面面饼的重量约110g,主要配料为小麦粉、精炼棕榈油、淀粉。而使用的食品添加剂包含了瓜尔胶(增稠剂)、碳酸钾(酸度调节剂)、谷氨酸钠(增味剂)、核黄素(着色剂)等14种,为原配料数量的四至五倍。   一个重量不到20g的“达利园”法式软面包,含有的添加剂数量已达21种。   添加剂“喧宾夺主”,这在我国的食品市场并不鲜见。对此?熏“今麦郎”方便面品保部工作人员回应本报称,食品添加剂的使用数量是根据产品需要设定的,并且符合国家标准。   据GB2760-2011食品安全国家标准食品添加剂使用标准规定,成人每天摄入体内的食品添加剂不得超过10种,含量需小于0.05毫克。“在达到预期效果的情况下,需尽可能降低添加剂在食品加工中的使用量 ”   “原则上,食品添加剂的使用种类和数量在国标规定的范围内,是不会对人体造成伤害的。”北京市食品安全专家委员会委员、食品添加剂分会常务理事曹雁平告诉本报记者,食品添加剂可以起到延长保质期、保证食品味道的作用,这就导致了食品制造商对添加剂的大量需求。   面对本报记者的采访,复旦大学附属华东医院营养科主任孙建琴指出,化学添加剂大都属于抗营养物质,可使诸多营养元素被中和或分解。尽管某种添加剂在单一食品中属安全剂量范围,但是如果消费者同时食用多种添加剂含量较高的食物,摄入的化学添加剂在体内累积而超过安全剂量,就会慢性中毒。“超市中多年不变质的食品被WHO(世界卫生组织)定义为垃圾食品。”   “食品制造程度越高,使用添加剂的种类也会越多。”她建议消费者尽可能选择天然食品。对于那些加工度高的食品,要控制食用的量和频率,避免在同一个时间段累加食入。   食品添加剂标识待规范   另据本报记者了解,目前我国市场上的食品添加剂标识十分混乱。在“今麦郎”红烧牛肉面的包装说明中,大蒜和姜被列到了“添加剂”一栏。   有消费者呼吁规范食品添加剂标识,并公布每款食品中添加剂的使用剂量。   日前,卫生部食品安全与卫生监督局局长苏志向媒体宣布,《预包装食品营养标签通则》将于2013年1月1日正式施行。这标志着我国将全面推行食品营养标签管理制度。   “国家规定食品在出售时必须公示其营养标签,但添加剂这方面还没有做出强制性的法规要求。但是,国家明确规定了某些种类的添加剂具有特定的使用范围,儿童、孕妇、老人等特殊群体应慎用或禁用。”孙建琴建议,使用这些食品添加剂的生产厂商应在食品包装上对消费者做出提醒和说明。   至于商家是否应标明每款食品中添加剂的使用剂量,她认为这没有必要,“因为即使标示出剂量,大部分消费者也无法对其安全性做出准确判断。”   寻找可替代的食品添加剂   今年4月,卫生部曾对“撤销38种食品添加剂”公开征求意见。拟撤销名单中,有17种添加剂属着色剂。卫生部表示,拟撤销的2,4-二氯苯氧乙酸等38种食品添加剂已不具备技术必要性。全程参与这项工作的国家食品安全风险评估中心研究员王竹天同时强调,这些食品添加剂并不涉及安全问题。   “我国食品添加剂的管理流程是企业申请——行政审批——投入使用,少有退出的。这也导致食品添加剂的名单越来越长,数量越来越大。”上海市食品安全办公室副主任顾振华对媒体表示,“这是我国第一次大规模清理食品添加剂。此次清理传递出一个信息,食品添加剂的管理应该是动态的,可进可出的。”   中国保健协会食物营养与安全专业委员会会长孙树侠对本报表示,政府相关部门需重新审视添加剂的用法。   “建议加大科研力度,寻求更科学的食品添加剂使用方法。”她认为,有些添加剂完全可以少用甚至不用,转而以工艺或物理方法替代。“例如,现在很多熟食的肉都呈现鲜红色,这是因为国家规定可以使用色素。但如果把色素换成红曲(一种以籼米为原料的纯天然着色剂),效果可能会更好。因为红曲不仅是天然的着色剂,同时又是有益于心血管的保健品。”
  • 学界普遍认为地沟油检测尚无有效检测指标
    卫生部初步确定7种检测方法,学界普遍认为尚无有效检测指标   从地沟回流餐桌,谁来守住地沟油链条的最后一道防线?   地沟油的检测一直是一道“世界性的难题”。由于地沟油成分复杂,众多科研单位经过艰苦研究,依然难以寻找到可靠有效的检测方法。   去年12月,卫生部食品安全风险评估中心第二次向全国征集地沟油检测方法。近日卫生部透露,已初步圈定了7种检测方法,正对这7种检测方法的真实性和可靠性进行评估、考核,但目前仍未公布。   地沟油检测方法仍未揭开神秘面纱。为什么地沟油检测这么难?真的能找到可靠有效的检测方法?检测方法真的能守住地沟油回流餐桌的最后一道防线吗?   本期科技能见度为您解开地沟油检测之谜。   ◎身披隐形衣   地沟油来源复杂,混入成分不一,且经水洗、蒸馏、脱色等加工处理,或与食用植物油掺兑,很难通过感官分析和一些理化指标进行区分,常规性检测指标基本无效   2011年,公安部破获一起横跨多省的特大地沟油制售食用油案,警方在浙江宁海查获了大量地沟油,但送检的10个样品中,居然只有两个样品被检出不合格。   2011年底,重庆警方侦破西南首例制售地沟油大案。然而,该案中已经被警方确认为是用餐厨垃圾炼成的地沟油,按照我国食用油检测的主要检测指标进行检测,却几乎全部合格。   这就是我国的地沟油检测方法目前正遭遇的尴尬。   由于地沟油来源复杂,混入的成分不一致,且经水洗、蒸馏、脱色等加工处理后,或与食用植物油掺兑后,已很难通过感官分析和一些理化指标进行区分。   根据国家食用植物油卫生标准的分析方法(GB/T5009.37-2003),这些检测主要是对地沟油的感官、水分含量、酸价、过氧化值、羰基价、碘值等进行测定。   2011年5月《职业与健康》的一篇论文里,江苏省泰州市疾病预防控制中心工程师刘波指出,地沟油经碱炼、脱水、脱色和脱臭精炼工艺,可以使酸价、水分、感官等指标符合国家食用油卫生标准。而对于过氧化值的指标,因为过氧化物易遇热分解,油脂加热后过氧化值比加热前反而更低,因此常规性检测指标只能判定油脂优劣,无法判定是否为地沟油。   国家食品安全风险评估中心专家王竹天也指出,现在的地沟油精炼的程度已经很高,想象中存在某些污染的地沟油已经跟现在高度精炼出的地沟油完全不是一回事。   他在接受媒体采访时表示,“比如说一些污染物,它完全能通过精炼去掉,所以根本不可能再测出来,也就是为什么按照我们现在的一些检测方法,比如卫生指标、质量指标,以及可能污染物指标统统都检不出来。”   中国疾病预防控制中心营养与食品安全所化学污染监控室主任吴永宁甚至表示,一旦政府公布了检测指标,对手很可能迅速地把这一指标从地沟油里悄无声息地抹掉,从而导致检测无效。   武汉大学化学与分子科学学院教授刘志洪在接受南方日报记者采访时表示,地沟油最大的问题是致癌的黄曲霉素。“虽然目前的技术能够检测出黄曲霉素,但并不是每一种地沟油里黄曲霉素都超标。”   这也是目前每一个检测方案所遭遇的困境。   2011年9月18日,卫生部发布消息,全力组织科研攻关研究鉴别地沟油检验方法。但征集到的7家技术机构研制的5种地沟油检测方法均以失败告终,原因是“专家论证发现这些方法特异性不强”。   这其中就包括了之前被寄予厚望的北京食品安全监控中心做出的“北京方案”。入选这个方案的地沟油特异性指标包括“多环芳烃、胆固醇、电导率、特定基因”四大类。其中,致癌物多环芳烃被认为是目前地沟油中已被证实的最大危害成分。   这是北京食品安全监控中心的检测人员花了将近3个月时间,综合运用色谱分析、光谱分析、理化分析及基因鉴定技术等现代分析测试手段,先后对80余个技术指标进行了全方位的筛选才确定的。   但经卫生部组织的专家组论证后,仍然未获通过。在实际测试中,专家们发现,以检测多环芳烃为侧重点的“北京方案”,居然对某些地沟油样本束手无策,原因是“经过人为特殊处理后,并不是所有地沟油都含有多环芳烃”。   面对科研人员的全力围剿,狡猾的地沟油却如同披了一件隐身衣。   ◎难觅特异性   现有350多种检测方法,可以称为“所有的方法都有效,但所有的方法都不适合用于所有的地沟油”,都难以达到“既不错怪好油,又不放过坏油”的理想效果   在新一轮的方法征集里,国家食品风险评估中心提出了地沟油检测方法的3条筛选原则:首先正常植物油样品不应被误判 其次地沟油样品的正确检出率高 再次,能够将勾兑的地沟油样品从高到低依梯度顺序检出。   针对地沟油的检测方法,其实国内早就有了不少的研究,通过实验,提出了很多地沟油的特异性指标。   “北京方案”里“胆固醇、电导率”等两项指标,其实也早就被众多研究者所讨论过,被认为是鉴别地沟油的重要有效依据。   地沟油与食盐,味精、地下金属管道、废旧铁桶等接触,金属离子严重超标,尤其是钠、铁离子超标显著。此外,餐饮业废油脂在酸败过程中也会产生一些小分子极性物质,与各种金属离子一起影响油脂的导电性。   有研究结果显示,合格食用植物油电导率较低,而地沟油电导率较大,是菜籽毛油的3倍,是大豆色拉油的11 倍,猪油的28倍。研究者据此认为,可以通过导电性来对地沟油与食用油进行检测。   地沟油成分复杂,在回收使用过程中不可避免地混有动物油脂。动物脂肪中普遍含有大量胆固醇,而在植物油中一般不含胆固醇。有研究显示,大豆油、菜籽油中胆固醇的含量均为0.031 mg/g,而纯地沟油中胆固醇含量为0.429mg/g。   但这些指标其实都可能对地沟油“网开一面”。科学松鼠会成员、食品工程博士“云无心”指出,如果一批地沟油只是炸过薯条或者油条的,那么它也完全可能不含电解质,电导率也很低。   对于胆固醇的测定,同样如此:成分主要是植物油的地沟油也完全可以过关。再加上与合格食用油进行勾兑,可以进一步稀释地沟油内胆固醇的含量。   研究者们还寻找了其他的突破口。氯化钠、谷氨酸钠是食品烹调时最常用调味成分,可随食物残渣残留于煎炸废油、潲水油等废弃油脂内,使普通油与废弃油中氯化钠和谷氨酸钠含量有显著差异。在《现代科学仪器》2010年的一篇论文中,研究者在地沟油中检出平均钠离子含量远远高于合格食用油。   还有研究者研究得出,合格食用油不含人工合成的化学物质十二烷基苯磺酸钠,而地沟油是从餐饮业餐具洗涤系统中收集,且与地下生活污水接触,含有大量洗涤剂烷基苯磺酸钠。   有研究者测定地沟油中挥发性成分,发现样品油中含有16种挥发性有害成分,其中15种为脂肪烃,1种为己醛。而己醛是油脂氧化变质二级产物,可以当作判别地沟油一个重要依据。   有的研究者通过薄层色谱法研究发现,潲水油和煎炸老油的薄层色谱有明显的拖尾斑,而食用植物油则没有。经柱色谱分离并进行红外分析拖尾斑成分,发现潲水油、煎炸老油的拖尾成分是合格食用油所不含的醛、酮类化合物。   还有研究指出,脂肪酸组成的测定每种食用油都有其特征脂肪酸图谱,脂肪酸相对含量一定。地沟油是一个混合油体系,含有多种动植物油脂。对掺伪地沟油的食用油体系来说,此种食用油的脂肪酸相对组成被打乱,通过与其正常的脂肪酸图谱对比,可判断是否掺伪。   但刘志洪分析认为,这些方法都或多或少存在一些问题,难以达到“既不错怪好油,又不放过坏油”的理想效果。什么成分都有的地沟油让人摸不着头脑。大连市产品质量监督检验所研究员潘炜坦言,现有的350多种检测方法,可以称为“所有的方法都有效,但所有的方法都不适合用于所有的地沟油”。   科学争议   地沟油检测真的无解?   目前,卫生部还未公布所选定的7种检测方法,但包括刘志洪、杜斌和李里特在内的多位专家均对此持谨慎态度。   “地沟油是分析检测上特别复杂的样本。”分析化学专业教授刘志洪感叹,目前确实没有一个成熟的方法来检测地沟油。华南农业大学食品学院副教授杜斌接受南方日报记者采访时也断言,“检测地沟油目前基本没什么好方法。”   科学松鼠会成员、食品工程博士“云无心”解释,检测必须是针对一种确定的物质。按照目前的分析技术,只要能够列举出来的成分,基本上就可以检测出来。但是,能够检测一个指标,跟用它来进行判定,完全是两回事。   “云无心”表示,要可靠地检测一种东西,就需要这种东西有相对明确一致的组成与性质。地沟油并非如此。作为一种废料,其组成千差万别。此外,把地沟油掺杂到正常油中,更可以控制任何一个指标的数值,使之符合“检测标准”。   在接受南方日报记者采访时,中国农业大学食品科学与营养工程学院教授、国家食品与营养咨询委副主任李里特表示,地沟油的定义不清晰是导致检测“地沟油”难的原因之一。   “‘地沟油’一词所涵盖的内容太多了。从下水道里收集来的油被称为地沟油,厨房里面用过的油也被称为地沟油,动物内脏炼制的油还被称为地沟油。”   他指出,这样定义不清晰的后果就是检测变得难上加难,因为检测很难包罗万象。刘志洪也持有同样的观点,他认为地沟油难以检测,是由于“来源太复杂”了。   刘志洪表示,卫生部初步确定的7种方法肯定也是对里面存在的多种指标进行检测,比如黄曲霉素,多环芳烃、重金属,胆固醇等指标。“这些东西如果单独拿出来看,每一种都有检测方法,但把它合在一起装在不同的地沟油里,有的含这些指标,有的又不含,有的有这个超标,有的是那个超标。”   对地沟油检测方法已经潜心研究两年的上海市粮食科学研究所所长曹文明甚至表示,地沟油所共有且特有的特征指标可能并不存在。也就是说,至少短期内无法找到一种定性地沟油的方法。   “用一个单独的方法想把它鉴别出来,我觉得可能性不大。”刘志洪明确表示,如果想要检出地沟油,必须先把地沟油的成分搞清楚,再针对这些成分提出检测方法,而且一定要综合多种指标多种检测方法联用组合。   “监管部门不要执着于地沟油的检测。”李里特教授在接受南方日报采访时强调,从技术上进行地沟油检测不但不可行,而且也并非是杜绝地沟油的有效方法。   刘志洪则明确表示,地沟油根本就不是靠科学家来解决的问题,“地沟油问题并不是科技上的问题。食品安全本身也不是科学上的问题。”   刘志洪说,地沟油其实有很多其他的用途,可以做成燃料等其他产品,关键在于建立一套将其变废为宝的制度。
  • 卫生部公布27个食品添加剂产品标准
    根据《中华人民共和国食品安全法》、卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)和卫生部2011年第6号公告等规定,我部组织中国疾病预防控制中心参照国际标准,指定亚硝酸钾等27个食品添加剂产品标准。   特此公告。   附件1. 亚硝酸钾等27个食品添加剂产品标准目录 序号 标准名称 1. 亚硝酸钾 2. 铵磷脂 3. 二氧化硫 4. 喹啉黄 5. 辣椒橙 6. 阿力甜 7. 乙酸钠 8. 硬脂酸(十八烷酸) 9. 聚甘油蓖麻醇酯 10. 5'肌苷酸二钠 11. 琥珀酸单甘油酯 12. 对羟基苯甲酸甲酯钠 13. 5'尿苷酸二钠 14. 5'腺苷酸 15. 二甲基二碳酸盐 16. 乳化硅油 17. 肌醇 18. 苯氧乙酸烯丙酯 19. 二氢-β-紫罗兰酮 20. 二氢香豆素 21. 氧化芳樟醇 22. L-硒-甲基硒代半胱氨酸 23. 冰乙酸(低压羰基化法) 24. 番茄红素(合成) 25. 富马酸一钠 26. 硅酸钙 27. 乙二胺四乙酸二钠 二〇一一年七月二十二日   原文请见:卫生部关于亚硝酸钾等27个食品添加剂产品标准的公告
  • 搞大事!85项食品安全国家标准将在明年实施(附下载连接)
    关于发布《食品安全国家标准 茶叶》(GB 31608-2023)等85项食品安全国家标准和3项修改单的公告(2023年 第6号)2023年   第6号根据《中华人民共和国食品安全法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品安全国家标准茶叶》(GB31608-2023)等85项食品安全国家标准和3项修改单。其编号和名称如下:(可点连接直接下载)GB   31608 - 2023         食品安全国家标准   茶叶 GB   31639 - 2023         食品安全国家标准   食品加工用菌种制剂 GB   31611 - 2023         食品安全国家标准   食品加工用植物蛋白肽 GB   1886.231- 2023   食品安全国家标准   食品添加剂   乳酸链球菌素 GB   1886. 373 - 2023   食品安全国家标准   食品添加剂甲醇钠 GB   1886. 372 - 2023   食品安全国家标准   食品添加剂L-蛋氨酰基甘氨酸盐酸盐 GB   1886. 371 - 2023   食品安全国家标准   食品添加剂ε-聚赖氨酸盐酸盐 GB   1886. 370 - 2023   食品安全国家标准   食品添加剂辛烯基琥珀酸淀粉钠 GB   1886. 369 - 2023   食品安全国家标准   食品添加剂   蓝锭果红 GB   1886. 368 - 2023   食品安全国家标准   食品添加剂   (2S,5R)-N-[4-(2-氨基-2- 氧代乙 基)苯基]-5-甲基-2-(丙基-2-)环己烷甲酰胺 GB   1886. 367 - 2023   食品安全国家标准   食品添加剂   6-甲基辛醛 GB   1886. 366 - 2023   食品安全国家标准   食品添加剂   β-胡萝卜素 GB   1886. 365 - 2023   食品安全国家标准   食品添加剂   5-甲基-2-呋喃甲硫醇 GB   1903. 61 - 2023     食品安全国家标准   食品营养强化剂碳酸铜 GB   1903. 64 - 2023     食品安全国家标准   食品营养强化剂氯化锰 GB   1903. 63 - 2023     食品安全国家标准   食品营养强化剂甘油磷酸钙 GB   1903. 62 - 2023     食品安全国家标准   食品营养强化剂还原铁 GB   1903. 59 - 2023     食品安全国家标准   食品营养强化剂氯化铬 GB   1903. 60 - 2023     食品安全国家标准   食品营养强化剂L-肉碱酒石酸盐 GB   4789.26- 2023     食品安全国家标准   食品微生物学检验商业无菌检验 GB   4789.35- 2023     食品安全国家标准   食品微生物学检验乳酸菌检验 GB   4789. 45 - 2023     食品安全国家标准   微生物检验方法验证通则 GB   4806.7- 2023       食品安全国家标准   食品接触用塑料材料及制品 GB   4806.9- 2023       食品安全国家标准   食品接触用金属材料及制品 GB   4806.11- 2023     食品安全国家标准   食品接触用橡胶材料及制品 GB   4806. 14 - 2023     食品安全国家标准   食品接触材料及制品用油墨 GB   4806. 13 - 2023     食品安全国家标准   食品接触用复合材料及制品 GB   5009.8- 2023       食品安全国家标准   食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定 GB   5009.9- 2023       食品安全国家标准   食品中淀粉的测定 GB   5009.12- 2023     食品安全国家标准   食品中铅的测定 GB   5009.15- 2023     食品安全国家标准   食品中镉的测定 GB   5009.16- 2023     食品安全国家标准   食品中锡的测定 GB   5009.26- 2023     食品安全国家标准   食品中 N- 亚硝胺类化合物的测定 GB   5009.35- 2023     食品安全国家标准   食品中合成着色剂的测定 GB   5009.36- 2023     食品安全国家标准   食品中氰化物的测定 GB   5009.43- 2023     食品安全国家标准   味精中谷氨酸钠的测定 GB   5009.88- 2023     食品安全国家标准   食品中膳食纤维的测定 GB   5009.89- 2023     食品安全国家标准   食品中烟酸和烟酰胺的测定 GB   5009.97- 2023     食品安全国家标准   食品 中环己基氨基磺酸 盐的测定 GB   5009.123- 2023   食品安全国家标准   食品中铬的测定 GB   5009.129- 2023   食品安全国家标准   食品中乙氧基 喹 的测定 GB   5009.140- 2023   食品安全国家标准   食品中乙酰磺胺酸钾的测定 GB   5009.154- 2023   食品安全国家标准   食品中维生素B 6 的测定 GB   5009.189- 2023   食品安全国家标准   食品中米 酵菌酸 的测定 GB   5009.210- 2023   食品安全国家标准   食品中泛酸的测定 GB   5009.225- 2023   食品安全国家标准   酒和食用酒精中乙醇浓度的测定 GB   5009.227- 2023   食品安全国家标准   食品中过氧化值的测定 GB   5009.240- 2023   食品安全国家标准   食品 中伏马菌素 的测定 GB   5009.259- 2023   食品安全国家标准   食品中生物素的测定 GB   5009.270- 2023   食品安全国家标准   食品中肌醇的测定 GB   5009. 295 - 2023   食品安全国家标准   化学分析方法验证通则 GB 5009.294-2023 食品安全国家标准 食品中色氨酸的测定GB   5009. 293 - 2023   食品安全国家标准   食品中单辛酸甘油酯的测定 GB   5009. 292 - 2023   食品安全国家标准   食品中β-阿朴-8 ’ -胡萝卜素醛的测定 GB   5009. 289 - 2023   食品安全国家标准   食品 中低聚半乳糖 的测定 GB   5009. 291 - 2023   食品安全国家标准   食品中氯酸盐和高氯酸盐的测定 GB   5009. 290 - 2023   食品安全国家标准   食品中维生素K 2 的测定 GB   5009. 297 - 2023   食品安全国家标准   食品中 钼 的测定 GB   5009. 288 - 2023   食品安全国家标准   食品中 胭脂虫红的 测定 GB   5009. 296 - 2023   食品安全国家标准   食品中维生素D的测定 GB   5009. 298 - 2023   食品安全国家标准   食品中三氯蔗糖(蔗糖素)的测定 GB   31614 .1- 2023     食品安全国家标准   食品中唾液酸的测定 GB   12693- 2023         食品安全国家标准   乳制品良好生产规范 GB   19303- 2023         食品安全国家标准   熟肉制品生产卫生规范 GB   22923- 2023         食品安全国家标准   特殊医学用途配方食品良好生产规范 GB   23790- 2023         食品安全国家标准   婴幼儿配方食品良好生产规范 GB   31612 - 2023         食品安全国家标准   食品加工用菌种制剂生产卫生规范 GB   31604.1- 2023     食品安全国家标准   食品接触材料及制品迁移试验通则 GB   31604.7- 2023     食品安全国家标准   食品接触材料及制品脱色试验  GB   31604.46- 2023   食品安全国家标准   食品接触材料及制品游离 酚 的测定和迁移量的测定 GB   31604.47- 2023   食品安全国家标准   食品接触材料及制品纸、纸板及纸制品中荧光性物质的测定  GB   31604. 59 - 2023   食品安全国家标准   食品接触材料及制品   化学分析方法验证通则 GB   31604. 58 - 2023   食品安全国家标准   食品接触材料及制品   9 种抗氧化剂迁移量的测定 GB   31604. 29 - 2023   食品安全国家标准   食品接触材料及制品丙烯酸和甲基丙烯酸及其酯类迁移量的测定 GB   31604. 49 - 2023   食品安全国家标准   食品接触材料及制品多元素的测定和多元素迁移量的测定 GB   31604. 57 - 2023   食品安全国家标准   食品接触材料及制品二苯甲酮类物质迁移量的测定 GB   31604. 56 - 2023   食品安全国家标准   食品接触材料及制品月桂内酰胺迁移量的测定 GB   31604. 54 - 2023   食品安全国家标准   食品接触材料及制品双酚F和双酚S迁移量的测定 GB   31604. 55 - 2023   食品安全国家标准   食品接触材料及制品   异噻唑 啉 酮类化合物迁移量的测定 GB   31610 .1- 2023     食品安全国家标准   动物性水产品及其制品中 颚口线虫 的检验 GB   31610 .2- 2023     食品安全国家标准   动物性水产品及其制品 中异尖线虫 的检验 GB   31610 .3- 2023     食品安全国家标准   动物性水产品及其制品中 广州管圆线虫 的检验 GB   31610 .4- 2023     食品安全国家标准   动物性水产品及其制品中华支 睾 吸虫的检验 GB   31610 .5- 2023     食品安全国家标准   动物性水产品中及其制品中并 殖 吸虫的检验 GB   31610 .6- 2023     食品安全国家标准   动物性水产品及其制品中 曼氏迭宫绦虫 裂头蚴的检验 GB   1886.91-2016《食品安全国家标准食品添加剂硬脂酸镁》第1号修改单 GB   1903.24-2016 《食品安全国家标准   食品营养强化剂维生素 C 磷酸酯镁》第 1 号修改单 GB   5009.84-2016 《食品安全国家标准   食品中维生素 B 1 的测定》第 1 号修改单 以上标准文本可在食品安全国家标准数据检索平台(https://sppt.cfsa.net.cn:8086/db)查阅下载。  国家卫生健康委市场监管总局2023年9月6日
  • 高分辨率质谱在阿达木单抗表征中的应用
    p   单克隆抗体的生产方式赋予了它们复杂且具有异质性的分子特点。通常需要借助多种正交分析技术才能全面表征各种变体。 在本应用纪要中,我们使用质谱这种强大的工具对阿达木单抗进行了表征。 /p p    strong span style=" color: rgb(0, 112, 192) " 简介 /span /strong /p p   Humira& reg (阿达木单抗)是一种FDA和EMA批准的抗TNFα抗体,被用于治疗多种炎症性疾病,包括类风 湿性关节炎、幼年特发性关节炎、银屑病关节炎、银屑病和克罗恩病。它是2014年销量最高的单克隆抗体产品,全球销售额超过130亿美元。 /p p   阿达木单抗是由CHO细胞表达的完全人重组抗体。 和所有通过重组DNA技术制备的蛋白质一样,其最终产品是不同变体的混合物。我们必须全面表征产品的异质性,因为这会影响其安全性和功效。 /p p   质谱是目前被广泛使用的生物药物表征技术之一。得益于硬件和软件的创新,该技术现已得到常规应用。在本应用纪要中,我们将使用质谱对Humira& reg 进行不同水平的表征。 /p p    strong span style=" color: rgb(0, 112, 192) " 完整阿达木单抗的表征 /span /strong /p p   利用质谱分析单克隆抗体最简单的方式就是测定完整蛋白质的分子量。该检测可提供有关蛋白质鉴定和糖基化谱图的有用信息。 /p p   测定时需要对抗体脱盐,去除制剂缓冲液中的非挥发性盐类。脱盐步骤可使用超滤装置离线完成,但该过程非常耗时。配备反相色谱柱的液相色谱是一种替代方法:盐类在死体积内洗脱并被导入废液,然后用乙腈水溶液梯度将单克隆抗体洗脱到质谱仪的离子源中。 /p p   典型分析条件如表1所示。应当注意,考虑到传质限制,须采用较高的柱温以改善峰形,进而提高MS灵敏度。 /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " 表1:阿达木单抗完整质量数测定的分析条件 /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/83d0cd65-f7b9-4177-b0f7-5ff513e8505b.jpg" title=" 1_副本.jpg" / /p p   所得电喷雾质谱图为包络迹线,其中包括不同电荷态的蛋白质。使用MaxEnt& reg 算法进行去卷积处理,得到更容易解析的谱图(见图1)。通过去卷积谱图可轻松确定糖基化谱图。 /p p   在阿达木单抗上观察到的主要糖型为G0F/G0F和G0F/G1F,质量精度通常低于20 ppm。 /p p   如果需要测定不含糖基的蛋白质的分子量,为了简化谱图,可进行去糖基化。通常采用PNGase F酶去糖基化,但反应时间相当长(需要数小时甚至过夜)。为了加快分析速度,我们选用了Rapid PNGase F酶(纽英伦生物技术公司)。在50 ° C下温育10~15 min后, 获得完全去糖基化的抗体。该反应可在大多数制剂缓冲液中直接进行,无需更换缓冲液。对应的质谱图如图2所示。由于质谱图得以简化,我们可轻松观察到其它修饰,例如C端赖氨酸剪裁。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/da262e93-2bdb-4c3b-b5df-dfcf6b1eb709.jpg" title=" 2_副本.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " 图1:完整阿达木单抗的电喷雾质谱图(A)和MaxEnt& reg 去卷积质谱图(B)。 /span /p p strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/175a864c-b84f-4c37-bd2f-de937b179ade.jpg" title=" 3_副本.jpg" / /p p style=" text-align: center "   strong   span style=" color: rgb(0, 112, 192) " /span /strong span style=" color: rgb(0, 112, 192) " 图2:N-去糖基化阿达木单抗的电喷雾质谱图(A)和MaxEnt& reg 去卷积质谱图(B)。 /span /p p    strong span style=" color: rgb(0, 112, 192) " IdeS酶解后的阿达木单抗亚基分析 /span /strong /p p   尽管完整质量数测定(经过或不经过去糖基化处理)已经能够快速简单地鉴定抗体及确定糖基化分布,高分离度对于色谱分离和质谱测定而言通常也很有价值。 /p p   完整抗体的大小(约150 kDa)限制了分离度。还原二硫键可得到轻链和重链,但在低丰度变体的测定中,重链(约50 kDa)仍然是一个问题。 /p p   IdeS酶(Genovis,商品名FabRICATOR& reg )是采用质谱法表征单克隆抗体时的重要工具。酶解并还原二硫键之后得到的肽段(见图3)分子量约为25 kDa,因此可采用LC/MS分析,而且色谱分离度和质量精度极佳。 此外,样品制备仅需不到一小时。该方法通常被称为 “自中而上”策略。 /p p   或者,也可使用IdeS和Rapid PNGase F(后者须在还原条件下反应)进行连续酶解,获得去糖基化的肽段。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/b21e335e-8fd8-445a-a855-c340edabcbd1.jpg" title=" 4_副本.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " 图3:用IdeS酶解mAb之后还原二硫键 /span /p p   为了大限度提高色谱分离度,我们优化了分析条件。 最关键的参数是色谱柱的性质以及流动相中所用的改性剂。 使用不同色谱柱获得的色谱图如图4所示。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/d4c71121-5a2b-4cc0-b26d-53ba57dfce8f.jpg" title=" 5_副本.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " 图4:使用不同HPLC色谱柱分离经IdeS酶解和二硫键还原所得的阿达木单抗肽段的结果比较 /span /p p   由图可观察到明显差异,购自Thermo的MabPac RP色谱柱所得的结果最佳。我们在该色谱柱上测试了两种改性剂: 甲酸(FA)和三氟乙酸(TFA),以及这两种改性剂的混合物。 /p p   最佳分析条件如表2所示。图5展示了用IdeS酶解阿达木单抗之后,还原或不还原二硫键所得的色谱图。测得分子量的质量精度低于1 Da。得益于良好的色谱分离度,我们还可分离并定量各种变体,例如N端焦谷氨 酸、无糖基化变体或氧化物质。 /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " 表2:阿达木单抗亚基分析条件 /span /p p style=" text-align: center" br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/6afe117f-4c86-4523-8404-641d94e12497.jpg" title=" 无标题_副本.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " 图5:经IdeS酶解和DTT还原的阿达木单抗样品的LC/MS分析结果 /span /p p style=" text-align: left "   该方法还可用于研究抗体氧化。我们使用不同浓度的H2O2 进行了强制氧化研究。在20 ° C下温育45分钟后, 用IdeS酶解样品,然后用DTT还原,最后通过LC/MS 进行分析。所得液相色谱图如图6所示。 /p p   不同峰的质谱鉴定非常简单直接。可明确测得Fc/2和 F(ab’)2 区域的氧化物质浓度增加。 /p p   在稳定性研究中,这种分析方法非常适用于监测单克隆抗体的氧化。亚基水平的分析能够粗略定位氧化位点。更精确的定位可通过肽图分析实现。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/e3b20720-c738-41e3-91c0-9912e87e02a5.jpg" title=" 6_副本.jpg" / /p p style=" text-align: center "   span style=" color: rgb(0, 112, 192) "  图6:色谱图随H2O2 浓度增加发生的变化 /span /p p    strong span style=" color: rgb(0, 112, 192) " 通过UPLC-UV-MS sup E /sup 肽图分析对阿达木单抗进行鉴定和目标纯度分析 /span /strong /p p   肽图分析策略涉及使用特定的蛋白酶(例如胰蛋白酶) 得到小分子肽,再利用LC与UV和/或MS检测联用的方法分析所得的肽混合物。 /p p   随着液相色谱和质谱技术不断进步,采用肽图分析法分析单克隆抗体现在已经能够达到接近100%的序列覆盖率,同时详尽表征翻译后修饰。 如今,人们在常规分析中使用亚2 µ m色谱柱获取高分离度肽图,而借助高分辨率质谱则能够以低于 5 ppm的质量精度实现肽的鉴定。 /p p   除了质量测定以外,还可使用MSE模式记录碎片数据。 在MSE采集模式下,仪器每秒交替采集低能量和高能量谱图,因此几乎可以同时获得分子质量和序列信息 (图7)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/fbe321ec-3274-4d6b-acb9-2fe1c51b3e85.jpg" title=" 7_副本.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " 图7:MSE采集模式的原理。 /span /p p   过去MS检测通常仅用于方法开发,但随着功能强大且经过验证的软件被开发出来,质谱法现在也被应用于常规分析中。 /p p   放大后的阿达木单抗肽图分析基峰离子(BPI)色谱图如图9所示。这些数据使用表3所列的分析条件获得。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/4fac9c35-d14d-446a-89bb-bbf9abfa6226.jpg" title=" yaji_副本.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " 表3:阿达木单抗肽图分析的分析条件 /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/d1e374ea-bc16-4db0-a1c8-2da8667c190f.jpg" title=" 8_副本.jpg" / /p p   使用UNIFI软件解决方案(沃特世)基于分子量对每个峰进行鉴定(质量数容差5 ppm),进而计算出序列覆盖率 (图8)。 必要时,可使用碎片数据(MSE)确证胰蛋白酶肽的鉴定结果。图10展示了碎片离子谱图的一个示例(MSE-高 能量)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/b0cc8c39-7298-4968-af6d-87b4ec76d53a.jpg" title=" 9_副本.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " 图8:利用UPLC-UV-MSE对阿达木单抗进行肽图分析并采用UNIFI软件解决方案处理数据之后所得的序列覆盖图 /span /p p   肽图分析法还可用于评估单克隆抗体的纯度。完整质量数测定和亚基分析能够提供单克隆抗体纯度的大体情况,肽图分析法则能够进行目标纯度分析。可评估的主要修饰包括: /p p   ■ 脱酰胺化 /p p   ■ 氧化 /p p   ■ 糖基化 /p p   ■ N端焦谷氨酸 /p p   ■ C端赖氨酸截断 /p p   即使UPLC肽图的分离度再高,色谱分离度通常也不足以通过UV检测对修饰进行相对定量。因此,我们使用MS数据进行定量分析。该过程可使用UNIFI等软件解决方案完全自动化地完成。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/daf3b1a7-ab1b-4c9c-ac80-08dea0ac6ed9.jpg" title=" 10_副本.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " 图9:阿达木单抗的肽图(BPI色谱图) /span /p p   使用该方法分析阿达木单抗样品,获得了如下结果: /p p   ■ 序列覆盖率:100%(质量数容差10 ppm)。 /p p   ■ 使用更苛刻的标准(质量数容差5 ppm, 至少以2b/y碎片离子确证鉴定结果)所得的序列覆盖率仍然非常高(93%)。 /p p   ■ 重链上2.9%的N端谷氨酸以焦谷氨酸形式存在。 /p p   ■ 大部分重链都不含C端赖氨酸(89%)。 /p p   ■ 在轻链的152N上观察到了显著的脱酰胺化。 /p p   ■ 观察到的主要糖型为G0F、G1F和G2F,相对强度分别为75%、23%和2%(基于糖肽EEQNSTYR)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/93a63c98-dd03-4921-a7cf-236379984a3c.jpg" title=" 11_副本.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " 图10:阿达木单抗轻链T1肽的高能量MSE谱图(带标注) /span /p p   利用UPLC与荧光检测和高分辨率质谱检测联用的方法对阿达木单抗进行N-糖分析 /p p   大多数治疗性单克隆抗体都是IgG类抗体,在重链的Fc 区氨基酸297N处有一个糖基化位点(见图11)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/30b15311-c672-40c6-aa50-920177aaee2e.jpg" title=" 12_副本.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " 图11:单克隆抗体中常见的N-糖 /span /p p   糖基化是单克隆抗体的一项关键品质属性,因为Fc区 域的N-糖特征可影响抗体与Fc受体的结合,从而调控 ADCC和ADCP活性。末端半乳糖对于补体依赖性细胞毒性(CDC)也很重要。最后,糖基还会影响治疗性抗体的安全性。 /p p   因此,必须采用灵敏且可重现的方法来表征单克隆抗体的糖基化以及批次间一致性。得益于优异的分离度和重现性,使用亚2 µ m色谱柱分析2-AB标记的N-糖成为了表征单克隆抗体的首选方法。不同游离寡糖的相对定量通常采用荧光检测法。 /p p   该方法的两个缺点是样品制备时间长(通常为2~3天), 且很难鉴定低丰度游离寡糖。 /p p   我们对方案进行了优化,将样品制备时间缩短为不到一天,并结合高灵敏度MS/MSE和荧光检测建立了自动化MS工作流程。包括数据处理和报告在内的整个流程可在24小时内完成(见图12)。表4汇总了分析条件。 /p p   阿达木单抗的UPLC/FLUO色谱图如图13所示。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/448b85af-dfca-4b58-a3af-3513a8a0c928.jpg" title=" 13_副本.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " 图12:N-糖分析工作流程 /span /p p    span style=" color: rgb(0, 112, 192) " 表4:阿达木单抗游离N-糖的分析条件 /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/df32e840-8042-4c12-a9a9-bffa7781485a.jpg" title=" Ntang_副本.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/8bd603a8-3e4d-4b31-8107-a23999844b42.jpg" title=" 15_副本.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " 图13:阿达木单抗N-糖分析所得的UPLC/FLUO色谱图 /span /p p   鉴定不仅基于游离寡糖的分子量,还基于“葡萄糖单元 ”(GU)校准。大多数情况下,将这两种方法相结合都能准确鉴定N-糖。必要时,可使用MSE模式下采集的碎片数据来确证鉴定结果,或者在两个假定结果之间做出选择。GlycoWorkbench应用程序可用于解析碎片谱图。带标注的MSE谱图示例如图14所示。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/3092e407-ec1b-42c8-b670-c1ca726e5f52.jpg" title=" 16_副本.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " 图14:分析阿达木单抗样品中的2-AB标记G0F游离寡糖所得的高能量MSE谱图(带标注) /span /p p   检出的主要N-糖(占所有检出N-糖的95%)列于表5中。 /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " 表5:阿达木单抗样品中检出的主要N-糖 /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/de10208a-c2b3-41e2-91a2-acf08569e5c8.jpg" title=" 17_副本.jpg" / /p p   有趣的是,使用本应用纪要所列的不同方法测得的要糖型比率非常一致(仅考虑所有方法都能检出的糖型,即G0F、G1F和G2F),如表6所示。 /p p   表6:使用不同方法获得的阿达木单抗糖型测定结果比较 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/753139b8-e6e8-4a94-9a6e-a0411df6303b.jpg" title=" 18_副本.jpg" / /p p    strong 注:本文引自Quality Assistance的应用文章。 /strong /p p br/ /p
  • 吉林省卫生健康委员会废止《食品安全地方标准 乳与乳制品中 L-羟脯氨酸的测定》等7项食品安全地方标准
    根据《中华人民共和国食品安全法》和《国家卫生健康委办公厅关于进一步加强食品安全地方标准管理工作的通知》(国卫办食品函〔2019〕556号)要求,现决定自2023年10月15日废止以下7项食品安全地方标准,其编号和名称如下:DBS22/010-2013 《食品安全地方标准 面制食品中十二烷基苯磺酸钠的测定高效液相色谱-荧光检测器法》DBS22/013-2013 《食品安全地方标准 植物源性食品中α-玉米赤霉烯醇和赤霉烯酮的测定 液相色谱-质谱/质谱法》DBS22/017-2013 《食品安全地方标准 柑橘类水果及其饮料中橘红 2 号的测定高效液相色谱法》DBS22/018-2013 《食品安全地方标准 鲜(冻)畜肉中鸭源性成分的定性检测PCR 方法》DBS22/003-2012《食品安全地方标准 生牛乳中雄激素的测定气相色谱-质谱法》DBS22/004-2012 《食品安全地方标准 植物油中胆固醇的测定气相色谱-质谱法》DBS22/008-2012 《食品安全地方标准 乳与乳制品中 L-羟脯氨酸的测定》吉林省卫生健康委员会2023年10月8日
  • 上海有机所等揭示糖基化修饰调控阿尔茨海默病beta淀粉样蛋白病理性聚集机制
    在阿尔茨海默病(AD)进展中,存在beta淀粉样蛋白(β-Amyloid,Aβ)的积累。Aβ在受影响的脑组织区域形成病理性聚集,被认为与AD的发生、进展和表型密切相关。多种翻译后修饰(如磷酸化、硝基化、糖基化等)对Aβ的病理性聚集及体内生物活性具有重要且不同的调控作用。在AD患者脑内,多种病理相关蛋白的糖基化位点、数量和水平都发生了显著性改变,表明了糖基化修饰在AD发生和发展中的重要意义。2011年,科学家对AD病人脑脊液中的Aβ片段进行鉴定,检测到之前未在哺乳动物中发现的酪氨酸O-糖基化修饰,然而由于天然来源的翻译后修饰蛋白丰度低、微观不均一等困难,Aβ糖基化修饰的生物学功能及在疾病中的作用尚未能得以阐释。  近日,中国科学院上海有机化学研究所生物与化学交叉研究中心刘聪课题组与北京大学药学院董甦伟课题组合作,在J. Am. Chem. Soc.上发表题为O-Glycosylation Induces Amyloid-β to Form New Fibril Polymorphs Vulnerable for Degradation的研究论文,利用化学合成策略构建了一系列含不同O-糖基化修饰的均一结构Aβ,并系统研究了糖基化修饰对Aβ病理性聚集的调控作用及其构效关系。  该研究中,研究人员首先合成了三种O-糖修饰的酪氨酸砌块,糖基分别是α-GalNAc, Galβ1-3GalNAc和Neuα2,3Galβ1-3GalNAc。然后,通过固相多肽合成策略将上述三种酪氨酸砌块制备相应的Aβ糖肽。然而,Aβ含有较多大位阻氨基酸,且自身疏水性强、容易聚集,再加上糖基的引入,给Aβ糖肽的合成带来了不少困难。为了克服这些合成难题,研究人员利用微波辅助的合成策略以及多赖氨酸亲水标签等方法,以较高效率获得了结构均一、含有不同O-糖修饰的Aβ糖肽。他们进一步对三种Aβ糖肽和不含糖链的Aβ多肽进行性质表征,发现糖基化修饰能够显著抑制Aβ的聚集,并且抑制效果与糖链结构相关。通过对Aβ聚集/解聚动力学的进一步研究,表明糖基修饰可以降低纤维结构的稳定性。在酶解实验中,糖基修饰的Aβ纤维表现出了更差的酶解稳定性。  为进一步阐述糖基化修饰降低Aβ纤维稳定性的分子机理,研究人员通过冷冻电镜技术(Cryo-EM),获得了Galβ1-3GalNAc糖型Aβ纤维的3.1埃近原子级分辨率结构。糖基修饰的Aβ组装形成了一种全新的淀粉样纤维结构,其纤维核心由6-42位氨基酸残基组成,并且在Tyr10残基侧链附近可以观察到修饰糖基的电子密度。通过与未修饰的Aβ纤维核心结构进行比较,研究发现Tyr10的糖基化会增大其与相邻氨基酸残基的空间位阻,从而导致整个Aβ纤维核心结构的重排。相较而言,糖基化Aβ纤维的结构具有更小的原纤维间交互界面,且仅由两对盐桥(Asp23和相邻原纤维的Lys28)所维持。这为糖基化修饰降低Aβ纤维稳定性提供了分子层面的解释。  该工作首次发现糖基化修饰在动态调控Aβ病理性聚集方面的重要功能,为后续研究不同糖基修饰对神经退行性疾病病理蛋白聚集的生物活性及病理毒性的调控作用,提供了有利的研究工具及新的研究思路。该工作得到了国家自然科学基金委、北京市自然科学基金委和中科院稳定支持基础研究领域青年团队计划的资助。  论文链接
  • 环保部:氨基酸生产企业排放执行标准
    环境保护部办公厅函 环办函〔2009〕94号   关于氨基酸生产企业适用国家水污染物排放标准问题的复函   福建省环境保护局:   你局《关于福建省麦丹生物集团有限公司等两企业执行相关标准问题的请示》(闽环科函〔2008〕88号)收悉。经研究,现就氨基酸生产企业执行排放标准问题函复如下:   一、《味精工业污染物排放标准》(GB 19431-2004)适用于味精(谷氨酸钠)生产企业和利用半成品生产谷氨酸的企业。若企业不生产上述产品,则不适用该标准。   二、以发酵工艺生产药用氨基酸的企业适用《发酵类制药工业水污染物排放标准》(GB 1903-2008)。若麦丹生物集团有限公司等两企业采用发酵工艺生产药用氨基酸,则应执行《发酵类制药工业水污染物排放标准》。   三、目前,国家尚未制定适用于味精和药用氨基酸以外的其他氨基酸生产企业的行业型污染物排放标准,在这类国家排放标准出台前,上述氨基酸生产企业应执行《污水综合排放标准》等国家综合型污染物排放标准或地方污染物排放标准。   二○○九年二月二日
  • 卫生部发布29项食品安全国家标准
    卫生部发布29项食品安全国家标准 日前,根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》规定,经食品安全国家标准审评委员会审查通过,卫生部发布了《食品添加剂氨水》(GB29201-2012)等29项食品安全国家标准的公告。公告详情如下: 关于发布《食品添加剂氨水》(GB29201-2012)等29项食品安全国家标准的公告 (卫生部公告2012年第23号)   根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品添加剂氨水》(GB29201-2012)等29项食品安全国家标准。其编号和名称如下:   GB 29201-2012 食品添加剂 氨水.pdf   GB 29202-2012 食品添加剂 氮气.pdf   GB 29203-2012 食品添加剂 碘化钾.pdf   GB 29204-2012 食品添加剂 硅胶.pdf   GB 29205-2012 食品添加剂 硫酸.pdf   GB 29206-2012 食品添加剂 硫酸铵.pdf   GB 29207-2012 食品添加剂 硫酸镁.pdf   GB 29208-2012 食品添加剂 硫酸锰.pdf   GB 29209-2012 食品添加剂 硫酸钠.pdf   GB 29210-2012 食品添加剂 硫酸铜.pdf   GB 29211-2012 食品添加剂 硫酸亚铁.pdf   GB 29212-2012 食品添加剂 羰基铁粉.pdf   GB 29213-2012 食品添加剂 硝酸钾.pdf   GB 29214-2012 食品添加剂 亚铁氰化钠.pdf   GB 29215-2012 食品添加剂 植物活性炭(木质活性炭).pdf   GB 29216-2012 食品添加剂 丙二醇.pdf   GB 29217-2012 食品添加剂 环己基氨基磺酸钙.pdf   GB 29218-2012 食品添加剂 甲醇.pdf   GB 29219-2012 食品添加剂 山梨糖醇.pdf   GB 29220-2012 食品添加剂 山梨醇酐三硬脂酸酯(司盘65).pdf   GB 29221-2012 食品添加剂 聚氧乙烯(20)山梨醇酐单月桂酸酯(吐温20).pdf   GB 29222-2012 食品添加剂 聚氧乙烯(20)山梨醇酐单棕榈酸酯(吐温40).pdf   GB 29223-2012 食品添加剂 脱氢乙酸.pdf   GB 29224-2012 食品添加剂 乙酸乙酯.pdf   GB 29225-2012 食品添加剂 凹凸棒粘土.pdf   GB 29226-2012 食品添加剂 天门冬氨酸钙.pdf   GB 29227-2012 食品添加剂 丙酮.pdf   GB 14936-2012 食品添加剂 硅藻土.pdf   GB 10287-2012 食品添加剂 松香甘油酯和氢化松香甘油酯.pdf   特此公告。   卫生部   2012年12月25日
  • 卫生部发布29项食品安全国家标准
    日前,根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》规定,经食品安全国家标准审评委员会审查通过,卫生部发布了《食品添加剂氨水》(GB29201-2012)等29项食品安全国家标准的公告。公告详情如下: 关于发布《食品添加剂氨水》(GB29201-2012)等29项食品安全国家标准的公告 (卫生部公告2012年第23号)   根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品添加剂氨水》(GB29201-2012)等29项食品安全国家标准。其编号和名称如下:   GB 29201-2012 食品添加剂 氨水.pdf   GB 29202-2012 食品添加剂 氮气.pdf   GB 29203-2012 食品添加剂 碘化钾.pdf   GB 29204-2012 食品添加剂 硅胶.pdf   GB 29205-2012 食品添加剂 硫酸.pdf   GB 29206-2012 食品添加剂 硫酸铵.pdf   GB 29207-2012 食品添加剂 硫酸镁.pdf   GB 29208-2012 食品添加剂 硫酸锰.pdf   GB 29209-2012 食品添加剂 硫酸钠.pdf   GB 29210-2012 食品添加剂 硫酸铜.pdf   GB 29211-2012 食品添加剂 硫酸亚铁.pdf   GB 29212-2012 食品添加剂 羰基铁粉.pdf   GB 29213-2012 食品添加剂 硝酸钾.pdf   GB 29214-2012 食品添加剂 亚铁氰化钠.pdf   GB 29215-2012 食品添加剂 植物活性炭(木质活性炭).pdf   GB 29216-2012 食品添加剂 丙二醇.pdf   GB 29217-2012 食品添加剂 环己基氨基磺酸钙.pdf   GB 29218-2012 食品添加剂 甲醇.pdf   GB 29219-2012 食品添加剂 山梨糖醇.pdf   GB 29220-2012 食品添加剂 山梨醇酐三硬脂酸酯(司盘65).pdf   GB 29221-2012 食品添加剂 聚氧乙烯(20)山梨醇酐单月桂酸酯(吐温20).pdf   GB 29222-2012 食品添加剂 聚氧乙烯(20)山梨醇酐单棕榈酸酯(吐温40).pdf   GB 29223-2012 食品添加剂 脱氢乙酸.pdf   GB 29224-2012 食品添加剂 乙酸乙酯.pdf   GB 29225-2012 食品添加剂 凹凸棒粘土.pdf   GB 29226-2012 食品添加剂 天门冬氨酸钙.pdf   GB 29227-2012 食品添加剂 丙酮.pdf   GB 14936-2012 食品添加剂 硅藻土.pdf   GB 10287-2012 食品添加剂 松香甘油酯和氢化松香甘油酯.pdf   特此公告。   卫生部   2012年12月25日
  • 李灵军与叶慧团队合作成果:生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析
    瓜氨酸化是影响蛋白质结构和功能的关键的翻译后修饰。尽管它与各种生物过程和疾病发病紧密相关,但由于缺乏有效的方法来富集、检测和定位该翻译后修饰,其潜在机制仍然知之甚少。近期,威斯康星大学麦迪逊分校李灵军教授课题组报道了生物素硫醇标签的设计和开发,该标签能够通过质谱法对瓜氨酸化进行衍生化、富集来实现可靠的鉴定。作者对小鼠组织的瓜氨酸化蛋白质组进行了全局分析并且从432种瓜氨酸化蛋白质中识别出691个修饰位点,这是迄今为止最大的瓜氨酸化数据集。作者发现并阐述了这个翻译后修饰的新的分布和功能并且表示该方法有希望为进一步破译瓜氨酸化的生理和病理作用奠定基础。这项工作以“Enabling Global Analysis Of Protein Citrullination Via Biotin Thiol Tag-Assisted Mass Spectrometry”为题发表在国际化学权威杂志Analytical Chemistry上 (https://doi.org/10.1021/acs.analchem.2c03844),文章作者为Yatao Shi#, Zihui Li#, Bin Wang#,Xudong Shi , Hui Ye, Daniel G. Delafield, Langlang Lv, Zhengqing Ye, Zhengwei Chen, Fengfei Ma,Lingjun Li*。此外,李灵军教授课题组进一步拓展了此方法的实用性。作者通过应用二甲基化亮氨酸(DiLeu)等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。相关成果以“12-Plex DiLeu Isobaric Labeling Enabled High-Throughput Investigation of Citrullination Alterations in the DNA Damage Response”为题同样发表在Analytical Chemistry上(https://doi.org/10.1021/acs.analchem.1c04073),文章作者为Zihui Li, Bin Wang, Qinying Yu, Yatao Shi, Lingjun Li*。  研究的主要内容  作者设计了一种生物素硫醇标签,它可以很容易的以低成本合成并且可以与瓜氨酸残基和2,3-丁二酮发生特异性反应(图 1a)。这种衍生化不仅增加了质量转移以允许更可靠的鉴定,而且还引入了生物素部分,使修饰分子的后续富集成为可能。该生物素硫醇标签设计具有紧凑的结构,在高能碰撞解离 (HCD) 期间仅产生两个碎片/诊断离子(图 1b)。 因此,肽主链可以保持良好的裂解效率,并在 HCD 或电子转移解离 (ETD) 期间分别产生丰富的b/y或c/z离子系列。在 HCD(图 1c)、ETD或电子转移/高能碰撞解离(EThcD)碎裂下,衍生化肽标准品的序列收集质谱图几乎完全覆盖相应的肽序列。实验结果表明生物素硫醇标签衍生的瓜氨酸化肽可以产生用于解析及标注的高质量的串联质谱图,并且与各种裂解技术相结合时可以提高瓜氨酸化位点的识别可信度。  图1|用于瓜氨酸化分析的生物素硫醇标签设计。a,使用生物素硫醇标签和 2,3-丁二酮对瓜氨酸肽进行衍生化。 b,HCD、ETD 或 EThcD 片段化后生物素硫醇标签衍生的瓜氨酸化肽的片段化位点。c,HCD 裂解后生物素硫醇标签衍生的瓜氨酸肽标准品 SAVRACitSSVPGVR 的串联质谱图。  在接下来的实验中作者使用该生物素硫醇标签和基于质谱的自下而上的蛋白质组学方法对瓜氨酸化进行分析(图2a)。作者在体外利用 PAD(一种可以催化瓜氨酸化的酶)催化的人组蛋白 H3 蛋白来验证这个过程。作为未被PAD催化的阴性对照,未发现组蛋白的肽段被鉴定为瓜氨酸化,证明了生物素标签反应的高特异性(图 2b)。在体外 PAD 处理后,作者 发现许多精氨酸残基被催化为瓜氨酸,并且大量的位点被高可信度的鉴定为瓜氨酸化位点(图 2c),进一步表明该方法的高效性。在 HCD 碎裂后,其产生了一系列丰富的 b/y 离子,可以帮助准确的表征在同一肽段上单个(图 2d)以及多个(图 2e)瓜氨酸化位点。  图2|使用生物素硫醇标签进行体外瓜氨酸化分析。a,使用生物素硫醇标签进行蛋白质瓜氨酸化分析的实验工作流程。b、c,在体外 PAD 处理之前 (b) 和之后 (c) 组蛋白 H3 蛋白的瓜氨酸化分析。 已识别的瓜氨酸化位点在序列中以蓝色字母突出显示。 序列下方的红色矩形表示鉴定的瓜氨酸化肽,而瓜氨酸化位点以蓝色显示。 d,PAD处理的组蛋白 H3 (R64Cit) 的已鉴定瓜氨酸化肽的串联质谱图示例。 e,PAD 处理的组蛋白 H3 的同一肽上鉴定的两个瓜氨酸化位点(R70Cit 和 R73Cit)的串联质谱图示例。  接下来,作者们尝试利用所开发的方法对复杂的生物样本中的瓜氨酸化进行全局分析,并希望能够以此提供阐明生物体中瓜氨酸化调节机制的依据。首先,作者对小鼠的六个身体器官和五个大脑区域进行了深入的瓜氨酸组分析,生成了第一个小鼠瓜氨酸组组织特异性数据库。作者从432种瓜氨酸化蛋白质中以高置信度的方式鉴定了691个瓜氨酸化位点(图 3a)。更重要的是,这些蛋白质中约有 60% 未曾在UniProt 数据库检索并被报道,这一结果极大地扩展了对瓜氨酸化以及这些底物蛋白质如何受到瓜氨酸化影响的理解。作者发现结果中与 UniProt 数据库的已知的瓜氨酸位点重叠部分较少(图 3b),这可能是因为 UniProt 中描述的近 40% 的瓜氨酸化位点是基于相似性外推理论而没有实际的实验证据。此外,许多报道的位点位于组蛋白上,尤其是蛋白质末端,可能会逃过自下而上质谱策略的检测(图 3b)。图 3c 展示了单位点瓜氨酸化和多位点瓜氨酸化蛋白质分布情况,其中 70% 的已鉴定蛋白质仅有一个瓜氨酸化位点被检测到。  这个新发现的瓜氨酸化蛋白质组为推测瓜氨酸化的调控机制提供了宝贵的资源。例如,作者在髓鞘碱性蛋白(MBP)上鉴定到了九个瓜氨酸化位点,而在 UniProt 数据库中只有四个(图3d)。作者的结果提供了高质量的串联质谱图,不仅证实了已知修饰位点的存在(图3e),而且还高可信度的识别了未知的位点(图 3f)。然后作者进行了瓜氨酸化肽段的序列分析,发现在鉴定的瓜氨酸化位点两侧并没有高度保守的氨基酸序列模式(图3g),但是谷氨酸残基更频繁地出现在瓜氨酸的N末端侧附近。这与Fert-Bober 等人报道的小鼠瓜氨酸组分析结论一致。另一方面,Tanikawa 等人发现在人体组织和血浆中大约五分之一的 PAD4 底物含有 RG/RGG 基序。同样,Lee 等人及相关研究人员观察到天冬氨酸和甘氨酸残基在瓜氨酸化位点出现频率偏高。值得注意的是,这些研究使用了不同的人源细胞系或组织,因此作者的结果可能表明在不同物种之间瓜氨酸化位点周围的序列模式是不同的。为了更好地辨别瓜氨酸化蛋白质所涉及的功能,作者展示了基因本体论(GO)富集分析的热图,其显示了二十个最显著富集的细胞成分(图3h)以及KEGG途径(图3i)。作者发现小鼠大脑组织和身体器官之间存在明显差异,而瓜氨酸蛋白更多地参与大脑功能。具体来说瓜氨酸化蛋白质集中在轴突、髓鞘、核周体和突触中,因此在中枢神经系统中可能发挥着重要的作用。  图3|不同小鼠组织的大规模瓜氨酸组分析。a,不同小鼠组织中已鉴定的瓜氨酸化蛋白和瓜氨酸化位点的数量。 b,本研究中鉴定的瓜氨酸化位点与 UniProt 数据库中报告的位点比较。 c,每个鉴定的瓜氨酸化蛋白质的瓜氨酸化位点数量分布。d,本研究中确定的瓜氨酸化位点与 UniProt 数据库中关于髓鞘碱性蛋白的瓜氨酸化位点的比较。e、f,在髓磷脂碱性蛋白 R157Cit (e) 和 R228Cit (f) 上鉴定的两个瓜氨酸化位点的示例串联质谱图。g,鉴定的瓜氨酸化肽的序列。瓜氨酸化位点位于中间的“0”位置。字母的高度表示每个氨基酸在特定位置的相对频率。 h,i,使用 Metascape 生成的热图显示不同小鼠组织中显着丰富的(p 值 0.01)细胞成分 (h) (KEGG) 通路 (i)。  为了进一步拓展该方法的实用性,作者应用了二甲基化亮氨酸(DiLeu)等重标记策略,第一次实现了对瓜氨酸化进行高通量的定量研究。作者首先使用瓜氨酸化标准肽段进行测试,证明在优化反应条件下DiLeu标记和生物素硫醇标记反应可以分步进行而不互相干扰(图 4B,4C)。同时,将标准肽段按照已知比例进行4-plex DiLeu标记并混合,再进行生物素硫醇标记和瓜氨酸化分析,结果显示了非常好的定量准确性(图5)。作者进一步优化了运用该方法在复杂生物样品中进行定量分析的实验方法,并且证明此方法依然可以实现极佳的定量准确度和精确度(图6)。  图4|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记分步反应的特异性和效率  图5|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记定量分析的准确性  图6|复杂生物样品测试DiLeu标记和生物素硫醇标记定量分析的准确度和精确度  作者接下来应用该方法对DNA损伤中瓜氨酸化的作用进行了研究。作者在MCF7细胞中用三种方法造成了DNA损伤,并定量分析了蛋白质瓜氨酸化的变化。作者一共鉴定到63种瓜氨酸化蛋白以及其包含的78个瓜氨酸化位点,并发现三个实验组中的瓜氨酸化表达相比于对照组呈现出非常不同的趋势(图7A),这一结果表明瓜氨酸化在不同类型的DNA损伤模型中具有差异性的作用。通过对实验组中显著变化的瓜氨酸化蛋白进行生物过程网络分析,作者发现瓜氨酸化主要对DNA代谢,蛋白结构变化,翻译以及DNA修复等过程进行调控(图 7B,7C)。该实验结果表明蛋白瓜氨酸化对DNA损伤以及相关发病机理具有非常重要的作用。  图7|高通量定量分析研究瓜氨酸化在DNA损伤中的变化及作用(来源:Anal. Chem.)  小结  本文章介绍了一种生物素硫醇标签的设计和开发,该标签可与瓜氨酸化肽段发生特异性反应并极大地提高了瓜氨酸化的富集和检测效率。在使用标准肽和重组蛋白证明该方法的有效性后,作者进一步优化了从复杂生物样品中检测瓜氨酸化的实验过程。通过此方法对小鼠五个大脑区域和六个身体器官的蛋白质瓜氨酸化进行分析,作者鉴定出432个瓜氨酸化蛋白以及691个瓜氨酸化位点,这是迄今为止最大的数据集。该研究揭示了这种翻译后修饰可能在神经系统中发挥的关键作用,并表明它们在包括呼吸和糖酵解在内的许多代谢过程中也可能发挥着重要作用。总的来说,实验结果表明蛋白质瓜氨酸化在不同组织中具有广泛分布并参与各种生物过程,这扩展了目前对蛋白质瓜氨酸化生理作用的认知和理解。此外,作者进一步拓展了此方法的实用性,通过应用DiLeu等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。更重要的是,该方法可以提供一种普适、简单而强大的检测方法来明确鉴定蛋白质瓜氨酸化,这也将启发和有益于未来对这种翻译后修饰在生理和病理条件下的功能作用的研究。  相关研究成果近期发表在Analytical Chemistry上的两篇文章中, 通过生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析文章的共同第一作者是威斯康星大学麦迪逊分校博士生石亚涛,李子辉,王斌,并与中国药科大学叶慧教授课题组合作 应用二甲基化亮氨酸等重标记策略进行蛋白质瓜氨酸化高通量定量研究文章的第一作者是威斯康星大学麦迪逊分校博士生李子辉,两篇文章通讯作者为李灵军教授。更多关于李灵军教授研究团队的最新研究进展欢迎登陆课题组网站:https://www.lilabs.org/
  • 国家市场监督管理总局批准发布《氨基酸产品和添加剂预混合饲料中赖氨酸、蛋氨酸和苏氨酸含量的测定》等431项推荐性国家标准和2项国家标准修改单
    国家市场监督管理总局(国家标准化管理委员会)批准《液压传动连接 金属管接头 第1部分:24°锥形》等431项推荐性国家标准和2项国家标准修改单,现予以公告。国家市场监督管理总局 国家标准化管理委员会2023-08-06附件相关标准如下:序号标准编号及标准名称代替标准号实施日期1GB/T 20706-2023 可可粉质量要求GB/T 20706-20062024-03-012GB/T 20705-2023 可可液块及可可饼块质量要求GB/T 20705-20062024-03-013GB/T 22427.7-2023 淀粉黏度测定GB/T 22427.7-20082024-03-014GB/T 26174-2023 厨房纸巾GB/T 26174-20102024-09-015GB/T 42957-2023氨基酸产品和添加剂预混合饲料中赖氨酸、蛋氨酸和苏氨酸含量的测定2024-03-016GB/T 42762-2023 杯壶类产品通用技术要求2024-03-017GB/T 42821-2023 贝类包纳米虫病诊断方法2024-03-018GB/T 15000.5-2023 标准样品工作导则 第5部分:质量控制样品的内部研制2023-08-069GB/Z 42962-2023 产业帮扶 猪产业项目运营管理指南2023-08-0610GB/Z 42963-2023 产业帮扶 竹产业项目运营管理指南2023-08-0611GB/T 42893-2023 电子商务交易产品质量监测实施指南2023-12-0112GB/T 41247-2023 电子商务直播售货质量管理规范2023-10-0113GB/T 42958-2023 肥料产品使用说明编写指南2024-03-0114GB/T 42954-2023 肥料中植物生长调节剂的测定 气相色谱-质谱联用法2024-03-0115GB/T 42955-2023 肥料中总氮含量的测定 杜马斯燃烧法2024-03-0116GB/T 27021.12-2023 合格评定 管理体系审核认证机构要求第12部分:协作业务关系管理体系审核与认证能力要求2023-08-0617GB/T 27000-2023 合格评定 词汇和通用原则GB/T 27000-20062023-08-0618GB/T 1270-2023 化学试剂 六水合氯化钴(氯化钴)GB/T 1270-19962024-03-0119GB/T 667-2023 化学试剂 六水合硝酸锌(硝酸锌)GB/T 667-19952024-03-0120GB/T 669-2023 化学试剂 硝酸锶GB/T 669-19942024-03-0121GB/T 686-2023 化学试剂 丙酮GB/T 686-20082024-03-0122GB/T 684-2023 化学试剂 甲苯GB/T 684-19992024-03-0123GB/T 9722-2023 化学试剂 气相色谱法通则GB/T 9722-20062024-03-0124GB/T 603-2023 化学试剂 试验方法中所用制剂及制品的制备GB/T 603-20022024-03-0125GB/T 649-2023 化学试剂 溴化钾GB/T 649-19992024-03-0126GB/T 678-2023 化学试剂 乙醇(无水乙醇)GB/T 678-20022024-03-0127GB/T 26176-2023 家用和类似用途豆浆机GB/T 26176-20102024-03-0128GB/T 42812-2023 连作障碍土壤改良通用技术规范2024-03-0129GB/T 29344-2023 灵芝孢子粉采收及加工技术规范GB/T 29344-20122024-03-0130GB/T 22638.11-2023 铝箔试验方法 第11部分:力学性能的测试2024-03-0131GB/T 42916-2023 铝及铝合金产品标识2024-03-0132GB/T 22648-2023 铝塑复合软管、电池软包用铝箔GB/T 22648-20082024-03-0133GB/T 42817-2023 农产品产地土壤改良剂使用技术规范2024-03-0134GB/T 42819-2023 农产品产地重金属污染土壤钝化通用技术规程2024-03-0135GB/T 29490-2023 企业知识产权合规管理体系 要求GB/T 29490-20132024-01-0136GB/T 42936-2023 设施管理 过程管理指南2023-08-0637GB/T 42931-2023 设施管理 基准比较分析指南2023-08-0638GB/T 42935-2023 设施管理 信息化管理指南2023-08-0639GB/T 14699-2023 饲料 采样GB/T 14699.1-20052024-03-0140GB/T 42959-2023 饲料微生物检验 采样2024-03-0141GB/T 22260-2023 饲料中蛋白质同化激素的测定 液相色谱-串联质谱法GB/T 22260-20082024-03-0142GB/T 13882-2023 饲料中碘的测定GB/T 13882-20102024-03-0143GB/T 8381.3-2023 饲料中林可胺类药物的测定 液相色谱-串联质谱法GB/T 8381.3-20052024-03-0144GB/T 42956-2023饲料中泰乐菌素、泰万菌素、替米考星的测定 液相色谱-串联质谱法2024-03-0145GB/T 13883-2023 饲料中硒的测定GB/T 13883-20082024-03-0146GB/T 13093-2023 饲料中细菌总数的测定GB/T 13093-20062024-03-0147GB/T 12956-2023 卫生间配套设备要求GB/T 12956-20082024-03-0148GB/T 10510-2023 硝酸磷肥、硝酸磷钾肥GB/T 10510-20072024-03-0149GB/T 42828.1-2023 盐碱地改良通用技术 第1部分:铁尾砂改良2024-03-0150GB/T 42828.2-2023 盐碱地改良通用技术 第2部分:稻田池塘渔农改良2024-03-0151GB/T 42828.3-2023 盐碱地改良通用技术 第3部分:生物改良2024-03-0152GB/T 13217.7-2023 油墨附着力检验方法GB/T 13217.7-20092024-03-0153GB/T 42944-2023 纸、纸板和纸制品 有效回收组分的测定2024-03-0154GB/T 42945-2023 纸浆 细小纤维质量分数的测定2024-03-0155GB/T 42943-2023 纸浆模塑制品技术通则2024-03-0156GB/T 42748-2023 专利评估指引2023-09-0157GB/T 22461.1-2023 表面化学分析 词汇 第1部分:通用术语及谱学术语GB/T 22461-20082024-03-0158GB/T 27921-2023 风险管理 风险评估技术GB/T 27921-20112023-08-0659GB/T 27914-2023 风险管理 法律风险管理指南GB/T 27914-20112023-08-0660GB/T 7139-2023 塑料 氯乙烯均聚物和共聚物 氯含量的测定GB/T 7139-20022024-03-01
  • 全柱成像等电毛细管电泳技术与高分辨质谱联用,助力复杂蛋白治疗产品深入表征
    近年来,随着人们对医疗健康行业需求的不断增长,生物制药行业也在随之蓬勃发展。近两年的新冠疫情全球大流行,在改变人们日常生活的同时更是催生了生物制药行业对于先进分析技术的需求。蛋白质分离、纯化和分析是生物治疗药物开发中的关键组成部分,但该过程可能复杂且极具挑战性。而全柱成像等电毛细管电泳(whole column imaged capillary isoelectric focusing, WC-iCIEF)技术,可以根据蛋白质的等电点(isoelectric point, pI)差异将其分离,在此基础上,将iCIEF与高分辨质谱联用,可以借助质谱的高灵敏度、高分辨率和高质量精度使各种蛋白质变异体的鉴定更容易、更准确。从2021年6月开始,我们与蛋白质成像技术专家 Advanced Electrophoresis Solutions Ltd (AES)宣布达成协议,将蛋白质分离技术与质谱相结合,通过简化表征来推进治疗性蛋白质药物的开发。到目前为止,通过将iCIEF技术与高分辨质谱联合使用,我们已经对单抗、ADC和融合蛋白等多种产品进行了各种层面的表征。下图1~3展示了iCIEF技术对单抗\ADC\融合蛋白的分离结果,可见对于不同种类的重组生物治疗性产品,均可根据pI差异将其电荷变异体进行分离,且系统具有优异的稳定性与重现性。图1 iCIEF-UV分析帕博利珠单抗电荷变异体,8针平行进样(点击查看大图)图2 iCIEF-UV分析恩美曲妥珠电荷变异体,3针平行进样(点击查看大图)图3 iCIEF-UV分析依那西普电荷变异体,3针平行进样(点击查看大图)滑动查看更多我们使用的CEInfinite iCIEF平台(AES)除了高质量的iCIEF-UV功能外,还可以与高分辨质谱直接在线串联,直接测定电荷变异体的分子量,无需额外转换接口。下图4展示了我们使用iCIEF-MS直连技术分析帕博利珠单抗的结果,可见即使是pI仅差0.02的碱峰B1和主峰,也可以在iCIEF上得到基线分离,随后的高分辨质谱分子量测定结果显示该碱峰与主峰相比,主要差异是其中一条重链的N端未发生焦谷氨酸环化。另外观察原始质谱谱图不难发现,得益于Orbitrap高分辨质谱的灵敏度,即使是强度比主峰低2~3个数量级的碱峰B3,仍可得到糖型分布清晰的谱图。图4 iCIEF-MS在线直联分析帕博利珠电荷变异体。上,iCIEF-UV分离图谱。中,碱峰B1与主峰解卷积结果镜像图对此。下,主峰与所有碱峰原始质谱图对比。(点击查看大图)与市面上其他供应商相比,AES的CEInfinite iCIEF平台具有一个独特优势:可以实现全自动的馏分收集。我们选择了帕博利珠单抗,对其电荷变异体的每个峰离线收集后进行酶解,随后上样至高分辨液质联用平台进行肽图分析。图5展示了酸/碱峰中各种CQA含量的变化,可见轻重链末端、重链糖型和侧链常见PTM的变化趋势。另外通过表1中分离之前/之后特定CQA含量对比可以很明显的发现,经iCIEF分离后,酸/碱峰中特定修饰的比率有明显增高,可见基于pI差异,将生物治疗性产品的电荷变异体进行分离后,接下来采用肽图进行深入表征的分析策略,能够帮助研究人员将导致电荷异质性的修饰精确定位到氨基酸位点的层面。图5 iCIEF-MS离线收集馏分,酶解肽图分析酸/碱峰中各种CQA含量的变化。上,末端修饰变化。中,重链糖基化修饰变化。下,侧链修饰变化(点击查看大图)表1 iCIEF分离前/后特定CQA含量变化情况对比(点击查看大图)这部分工作已经在2021年的美国质谱年会上发表,有兴趣的读者扫描一下二维码下载原文:在精zhun医疗概念兴起的推动下,对生物治疗性产品表征的需求不断增长,将高分辨质谱与基于电荷异质性的iCIEF蛋白质分离技术相结合,将支持我们的客户实现更精确的分析,在持续开发生物治疗性产品的进程中发挥重要作用。如需合作转载本文,请文末留言
  • “2024年食品检测标准全面解读——GB 5009系列”主题约稿函
    过去的一年里,我国在食品安全领域取得了显著的进步。不仅首部现代设施农业建设规划出台,婴配粉“史上最严”新国标正式实施、同时还发布了85项新的食品安全国家标准。就在今年3月,又公布了47项新的食品安全国家标准,这些举措都旨在强化国家食品安全保障。其中,“食品5009”标准作为中国的一套食品卫生检验方法标准,是保障食品安全的重要手段之一。该标准涵盖了多种食品卫生检验方法,包括食品中各种成分的测定方法,以及食品接触材料的环保测试等。5009系列标准与其他食品安全国家标准相互配套使用,形成了一个完整的食品安全检测体系。值得一提的是,仅今年实施的5009系列标准就已超过30项。在这样的背景下,仪器信息网特别策划了“2024年食品检测标准全面解读——GB 5009系列”主题约稿,诚邀各位专家和仪器厂商踊跃投稿,共同探讨和分享食品及农产品行业分析检测技术的最新研究与应用。投稿文章将在专题展示并在仪器信息网相关渠道推广,投稿邮箱:caixf@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:13001246355(同微信)。1、 约稿主题:2024年食品检测标准全面解读——GB 5009系列2、 稿件字符数不少于1000字,如有图片,图片像素应不低于300DPI;3、 稿件无抄袭、署名排序无争议,文责自负,请勿一稿多投;4、 投稿须为Word文档,本网编辑有权对文稿进行修改,如不同意请注明。5、 供稿人建议是贵公司相关产品负责人,请提供姓名、职务、照片等信息。6、 稿件内容会择时在仪器信息网资讯栏目发布显示(单独成文/整合综述文章),同时在专题中推送宣传。7、 回稿时间2024年7月15日前投稿邮箱:caixf @instrument.com.cn 仪器信息网编辑部附问题:您可以根据下述列表中某一标准解读进行稿件撰写,也可以由此展开相关话题。1、对于下述列表中新标准的深度解读;2、标准新增和修订了哪些方法,您认为这种方法相比之前的方法有什么优势和特点?3、标准新增了的该方法,贵司是否有满足该标准要求的仪器设备,以及解决方案?4、新标准的实施对于食品检测领域会产生哪些影响?您认为这种变化会带来哪些机遇和挑战?标准名称GB 5009.8-2023 食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定 GB 5009.9-2023 食品安全国家标准 食品中淀粉的测定GB 5009.12-2023 食品安全国家标准 食品中铅的测定 GB 5009.15-2023 食品安全国家标准 食品中镉的测定 GB 5009.16-2023 食品安全国家标准 食品中锡的测定 GB 5009.123-2023 食品安全国家标准 食品中铬的测定 GB 5009.36-2023 食品安全国家标准 食品中氰化物的测定 GB 5009.43-2023 食品安全国家标准 味精中谷氨酸钠的测定 GB 5009.88-2023 食品安全国家标准 食品中膳食纤维的测定 GB 5009.89-2023 食品安全国家标准 食品中烟酸和烟酰胺的测定 GB 5009.97-2023 食品安全国家标准 食品中环己基氨基磺酸盐的测定 GB 5009.26-2023 食品安全国家标准 食品中 N-亚硝胺类化合物的测定 GB 5009.129-2023 食品安全国家标准 食品中乙氧基喹的测定 GB 5009.140-2023 食品安全国家标准 食品中乙酰磺胺酸钾的测定 GB 5009.154-2023 食品安全国家标准 食品中维生素B6的测定 GB 5009.189-2023 食品安全国家标准 食品中米酵菌酸的测定 GB 5009.210-2023 食品安全国家标准 食品中泛酸的测定 GB 5009.225-2023 食品安全国家标准 酒和食用酒精中乙醇浓度的测定 GB 5009.227-2023 食品安全国家标准 食品中过氧化值的测定 GB 5009.240-2023 食品安全国家标准 食品中伏马菌素的测定 GB 5009.259-2023 食品安全国家标准 食品中生物素的测定 GB 5009.270-2023 食品安全国家标准 食品中肌醇的测定 GB 5009.35-2023 食品安全国家标准 食品中合成着色剂的测定 GB 5009. 296-2023 食品安全国家标准 食品中维生素D的测定 GB 5009. 298-2023 食品安全国家标准 食品中三氯蔗糖(蔗糖素)的测定 GB 5009. 295-2023 食品安全国家标准 化学分析方法验证通则 GB 5009. 297-2023 食品安全国家标准 食品中钼的测定 GB&ensp 5009.294-2023&ensp 食品安全国家标准&ensp 食品中色氨酸的测定GB 5009. 293-2023 食品安全国家标准 食品中单辛酸甘油酯的测定 GB 5009. 292-2023 食品安全国家标准 食品中β-阿朴-8‘-胡萝卜素醛的测定 GB 5009. 289-2023 食品安全国家标准 食品中低聚半乳糖 的测定 GB 5009. 291-2023 食品安全国家标准 食品中氯酸盐和高氯酸盐的测定 GB 5009. 290-2023 食品安全国家标准 食品中维生素K2 的测定 GB 5009. 288-2023 食品安全国家标准 食品中胭脂虫红的测定 GB 5009.2-2024 食品安全国家标准 食品相对密度的测定GB 5009.138-2024 食品安全国家标准 食品中镍的测定GB 5009.11-2024 食品安全国家标准 食品中总砷及无机砷的测定GB 5009.191-2024 食品安全国家标准 食品中氯丙醇及其脂肪酸酯、缩水甘油酯的测定GB 5009.299-2024 食品安全国家标准 食品中乳铁蛋白的测定GB 5009.205-2024 食品安全国家标准 食品中二噁英及其类似物毒性当量的测定
  • 化工油食用油混装无异于投毒,行业标准如何规范?
    7月8日,中储粮因“罐车运输油罐混用”的问题冲上微博热搜。近日,媒体曝光罐车化工油食用油混装,一些油罐车既承接糖浆、大豆油等可食用液体,也运送煤制油等化工类液体,引发关注。两家龙头企业中储粮油脂(天津)有限公司和汇福粮油集团陷入此次舆论旋涡。涉事企业食用油产品中储粮金鼎食用油下架,客服回应据某新闻报道:7月8日下午,有网友发现中储粮旗下食用油品牌金鼎淘宝旗舰店系列食用油如葵花籽油、玉米胚芽油、橄榄油、芝麻油等均已下架。客服回应称,仓库最近休息,过一阵会重新上架。当问及金鼎下架食用油是否与近期中储粮罐车运输油罐混用事件有关,客服称具体原因不清楚。当记者再次追问,客服回复称,“尊敬的顾客您好,金鼎食用油所有产品均符合国家有关食品安全标准”“支持您去检测”。涉事公司之一汇福粮油:相关部门调查已结束针对运输罐车运完煤制油后未清洗直接混运食用油事件,7月8日,记者致电涉事公司之一的汇福粮油官网电话,相关工作人员称公司积极配合调查,目前相关监管部门对公司的调查已经结束,一切以之后的官方通报为准。该工作人员对记者称,公司没有罐装车,报道涉及的罐车是“客户自备”,从汇福粮油拉走相关食用油。至于相关合作客户,公司会等待相关部门的进一步调查结果再去商议后续是否还合作。另据媒体报道,河北省三河市市场监督管理局近期表示,针对汇福粮油集团卷入油罐车运输乱象一事,相关部门已完成调查,并已将调查结果报给廊坊市市场监督管理局。资料显示,三河汇福粮油集团有限公司始建于1999年10月,为国家农业产业化重点龙头企业,主要产品为汇福食用油、汇福豆粕,业务涉及粮油加工、国际贸易等板块,目前汇福粮油集团拥有河北燕郊、江苏泰州、辽宁盘锦三个加工基地,总加工能力达到1000万吨。据全国工商联《2023中国民营企业500强榜单》,三河汇福粮油集团有限公司以667.19亿元营业收入位列榜单159位。新京报近期的调查报道显示,罐车运输行业存在食品类液体和化工类液体运输混用且不清洗的情况,有食用油运输罐车运完了煤制油等类物品再装运食用油的情况,调查涉及汇福粮油集团和中储粮油脂(天津)有限公司。其中,中储粮集团7月6日在官方微博发布声明称,从7月5日开始在全系统开展专项大排查,对违反相关规定的运输单位和承运车辆依法终止运输合作,并列入集团公司服务采购“黑名单”,对发现的重大问题,主动向有关监管部门报告,对于直属企业及员工违反操作规程和工作纪律的,从严从快严肃处理。食用油“接触”燃油可能并非首例一位不愿具名的业内人士对21世纪经济报道记者说道:“这种情况一般都是燃油罐车运输卸货完回程,为了覆盖油费、人力成本顺带运输的。如果中间还要进行清洗的话,至少增加三五百块费用,多一些还要八九百。这笔钱司机没能力承担、公司更不会承担。专程运输和回程捎带的运费差距很大,所以这种运输方式基本也不挣钱。”上述人士进一步指出,“事实上,现在许多大型食品企业的生产基地应该都能覆盖全国主要城市区域,不会出现超长途运输的情况。而且部分公司为了降本增效,旗下都设有运输公司,也不会交给第三方来做。”此前老干妈、海天卷入油辣椒矿物油超标!早在2017年,便有公开报道称在对国内市场上包括海天、老干妈等多10款畅销的油辣椒产品测评过程中,均发现不同程度的成分问题,包括矿物油超标、含有谷氨酸钠、含有多环芳烃化合物、增塑剂及增味剂等。矿物油指的是由石油所得精炼液态烃的混合物,原油经常压和减压分馏、溶剂抽提和脱蜡,加氢精制而得。该类油包括轻质、重质燃料油,润滑油,冷却油等矿物性碳氢化合物。生活中常见的燃油便是其中一类。食品用油中检测出矿物油超标成分,上述检测结果也被质疑为是否出现过食用油与燃油接触的情况。化工油食用油混装无异于投毒,专家解读危害罐车运输油罐混用对人体有何危害?行业有何规范标准?据中国新闻周刊,食品安全博士、上海市食品安全研究会专家组成员刘少伟介绍,煤制油属于化工产品,含有重金属和苯等化工原料,“装化工原料再装食用油不可避免会有残留”,长期摄入含有这些化工残留的食用油,可能导致人体中毒,出现恶心、呕吐、腹泻等症状,甚至对肝脏、肾脏等器官造成不可逆的损害,但消费者很难分辨出来。央视网评中储粮罐车运输油罐混用:这样的草台班子是要消费者的命央视网评7月8日发文,谁也想不到街边加油站的油罐车里面可能也装过我们炒菜的食用油。近日媒体曝光罐车化工油食用油混装,一些油罐车既承接糖浆、大豆油等可食用液体,也运送煤制油等化工类液体,引发舆论哗然。让人意外的是,中储粮这样的央企下属天津分公司居然是涉事主角之一。近日中储粮集团公开回应,称要在全系统深入开展专项大排查。对于检查发现存在违反规定的运输单位和承运车辆,立即依法终止运输合作,并列入集团公司服务采购“黑名单”。该集团要求直属企业按照有关法律法规及规定全面排查出入库等环节使用的运输工具是否符合要求,相关运输承运单位运输工具是否符合食品安全规定,运输过程中的操作是否规范。中储粮亡羊补牢的同时,消费者仍有不少困惑与错愕。因为这件事的性质完全不同于一般的地沟油。通常来说,我们只要不贪图便宜,选大品牌,选知名厂家,就能避开劣质食用油。但大品牌也会在运输环节出现化工油食用油混装的漏洞,这显然超出了大多数人的认知。这不仅仅是做饭烧菜的问题,还有面包、薯条、烘焙、蛋糕,几乎囊括所有的零食等领域。而食品类液体和化工液体运输混用且不清洗,居然已经是较长时间以来罐车运输行业里公开的秘密。这说明我们的“食品安全大于天”还只是一种愿景。容量动辄大几十吨的罐车,残留个几十斤化工液体很正常。但混装食用液体后,这就不是一般的食品事故,形同投毒。这种混装行为不仅是对《食品安全法》的公然挑衅,更是对消费者生命健康的极端漠视。一切不合理的商业行为背后都有经济利益作祟。对于运输方来说,最终还是钱的问题,不少罐车在换货运输过程中不清洗罐体,为的是可以省下数百元的清洗费用,成本下来了竞争力上去了,别的运输车辆只有跟着“卷”。但对于食用液体出入库的管理方,尤其是中字头这样的接收方,坚称“不验罐是因为没办法分辨”,则完全令人咋舌。相信这不是因为无能,而是因为无德、无责任心导致助纣为虐。舞台上的草台班子,无非演出效果差一点,出不了大事,这样的草台班子会要了消费者的命。要说《食品安全法》及相关监管部门对食品运输没有规范也不符合现实,运输管得严、销售环节管得严,食用油没问题,运输车辆本身也没有问题,但到了衔接的关键节点则出现没人管、不愿管的真空,造成食用油进了消费者嘴里,就是严重的食品安全问题,这说明法律手段尚有空子可以钻。据悉,食用油运输方面迄今尚无强制性国家标准,只有推荐性的某项规范当中提到运输散装食用植物油应使用专用车辆,约束率相当有限。能否多部门协同以及技术手段此刻能否补足短板,成为很多外行人的疑问,亟须行业内专家给予解惑。————————————————————————————————点击图片 免费报名为了促进粮油行业分析检测技术交流,研讨国内外最新研究应用进展,仪器信息网将举办第三届“粮油食品质量安全及品质检测新技术”主题网络研讨会。届时,我们将特别邀请行业专家及相关厂商技术人员参与本次网络研讨会,把最新的科研成果和检测技术呈现给大家。
  • 我国首次主持的8项ISO肉禽蛋鱼领域国际标准正式发布实施
    近日,由我国主持制修订的《肉与肉制品 术语》《猪屠宰操作规程》《发酵肉制品》《肉与肉制品 着色剂测定》《肉与肉制品 总磷含量测定》《肉与肉制品 氯化物的测定—参考方法》《冷冻鱼糜》《肉与肉制品 L-(+)-谷氨酸含量测定—参考方法》等8项国际标准由国际标准化组织(ISO)正式发布实施,上述标准的制修订工作分别由南京农业大学、中国动物疫病预防控制中心(农业农村部屠宰技术中心)、中国肉类食品综合研究中心、上海市质量监督检验技术研究院、中国水产科学研究院黄海水产研究所、华测检测认证集团股份有限公司主持。这是我国首次主持肉禽蛋鱼及其制品领域ISO国际标准制修订工作,打破了我国在该领域国际标准为零的现状,标志着我国在该领域标准国际化工作取得重大突破,是助力我国肉禽蛋鱼及其制品领域的先进技术、产品加快走向世界的重要成果。 中国商业联合会作为国际标准化组织食品技术委员会肉禽蛋鱼及其制品分委员会(ISO/TC 34/SC 6)国内技术对口单位和秘书处承担单位。在国家标准化管理委员会的大力支持下,经过不懈努力,使我国成为ISO/TC 34/SC 6中最活跃和最有影响力的国家。为提升我国在肉禽蛋鱼及其制品领域的国际标准话语权和参与度,助力中国标准“走出去”,中国商业联合会多次召开国际标准研讨会,组织国内相关单位和专家研究该领域的国际标准,撰写项目提案及标准草案,并于2018年9月代表中国在ISO/TC 34/SC 6第23届年会上正式提出了8项新标准项目提案。经与国外专家多次沟通,积极交换意见,争取到了成员国支持,标准成功立项。为顺利推进标准的制定进程,成立了“术语”“猪屠宰”等7个工作组,且都由我国专家担任召集人,共有中国、美国、法国、俄罗斯、意大利等15个国家的106位国内外专家注册到相应工作组实质性参与标准制修订工作。中国商业联合会作为ISO/TC 34/SC6秘书处一直积极跟进国际标准制修订工作的进度,组织国内注册专家参加相关国际标准知识培训,仔细学习ISO导则,指导各个工作组按时召开工作组会议。经过两年多的研究和多轮国际协商,以及委员会各成员国的多轮投票表决,终于就标准的技术和编辑内容达成一致,使得标准提前半年发布。 通过参加国际标准化组织的相关活动、主导肉禽蛋鱼及其制品领域的国际标准制修订工作,有力提升了中国的话语权和国际影响力。在2020 年ISO/TC 34/SC 6第24届年会上,中国商业联合会又组织我国相关单位和专家顺势提出了《肉与肉制品 多聚磷酸盐含量的测定》《肉与肉制品 亚硝酸盐和硝酸盐含量的测定》《肉与肉制品 氮含量的测定—参考方法》 《肉与肉制品 水分含量的测定—参考方法》《蛋与蛋制品 氟虫腈及其代谢物残留量的测定液相色谱—质谱联用法》等5项国际标准新项目提案,这些标准项目也都在2021年5月通过投票获批立项。 短短4年时间里,我国在肉禽蛋鱼及其制品领域共主导制修订13项ISO国际标准,完成了从采用先进国际标准到主导先进标准的制定的脱变,这是我国食品领域国际标准化工作的一个重要的里程碑。
  • 天木生物DREM cell设备成功助力高产谷氨酰胺酶突变株超高通量筛选
    工业微生物常用于重要的生物和化学制品的生产,优良菌株的选育是生物产业的核心工作之一。近年来合成生物技术的快速发展使得高性能工业菌株基因型的理性构建性显著增加,但如何从海量候选菌株库中高通量筛选到规模生产用的工业菌株仍面临挑战。多孔板(MTP)筛选系统和流式细胞术(FACS)是研究者常用的筛选手段,但MTP通量较低,而FACS难以用于检测胞外分泌的代谢物。液滴微流控技术在微生物育种领域的应用,成功实现了大容量突变库的全面评价以及高效筛选,不仅在筛选通量方面实现了大幅度提升,有效提高了菌株选育工作效率,而且在筛选成本方面也展现出巨大优势,可显著降低筛选过程中试剂耗材的用量,将单克隆的筛选成本降低至十分之一或百分之一,实现高通量、低消耗的优良工业菌株选育。天木生物基于液滴微流控技术开发了皮升级单细胞分选平台--DREM cell(Droplet entrapping microfluidic cell-sorter)具有体积小、通量高、体系封闭、无交叉污染等特点,越来越成为科学研究和企业生产的重要技术手段。近日,清华大学张翀、安徽工程大学薛正莲研究团队应用DREM cell将液滴微流控技术与基因编码荧光生物传感器相结合,成功实现了高产谷氨酰胺酶突变株的超高通量筛选,相关研究成果以“Combining genetically encoded biosensors with droplet microfluidic system for enhanced glutaminase production by Bacillus amyloliquefaciens”为题,发表在生物化工领域专业期刊《Biochemical Engineering Journal》上。研究团队开发了一种利用谷氨酸拟荧光蛋白传感器 iGluSnFR 的谷氨酰胺酶荧光检测方法,相较于传统的高效液相色谱法,速度提高了700倍。基于iGlusnFR传感器,结合DREM cell单细胞分选平台实现谷氨酰胺酶生产菌株的高通量筛选,单次实验可筛选10万克隆,效率远远超过传统孔板筛选技术。最终项目团队对常压室温等离子体(ARTP)诱变的解淀粉芽孢杆菌全基因组突变文库进行超高通量筛选,成功获得了一株谷氨酰胺酶产量提高47%以上的突变株。该筛选平台,与微孔板筛选系统相比,筛选率提高500倍,试剂用量减少2万倍,并且可以节省大量的多孔板、培养皿、枪头等耗材。▲图丨液滴微流控高通量筛选平台流程图背景信息研究团队所使用的液滴微流控细胞分选仪(DREM cell)是天木生物基于液滴微流控技术开发的皮升级液滴微流控单细胞分选平台,可将待筛选细胞进行包被形成单细胞微液滴,结合荧光筛选模型,可以在细胞水平完成微生物的高通量分离、培养、检测、分选等。▲图丨液滴微流控细胞分选仪(来源:天木生物)高通量皮升级液滴单细胞分选系统(DREM cell)相比于传统筛选方法,筛选效率可提升1万倍,试剂消耗量可下降至百万分之一,在筛选通量显著提升的同时,单克隆筛选成本大幅度降低。该仪器不仅可广泛应用于细菌、酵母、动物细胞等的高通量筛选,还可以应用于蛋白、核酸、抗体等生物大分子筛选等相关研究领域。项目技术参数液滴体积1-1000pL荧光激发与检测可选波段:(1)激发波长488nm,检测波长525±15nm,灵敏度1μM荧光素/单液滴(2)激发波长532nm,检测波长578±11nm,灵敏度100nM试卤灵/单液滴液滴生产频率0-10000个/s液滴分选频率0-1000个/s微注入速度0-1000个/s样品低温控制系统4℃恒温控制,±0.5℃工作环境常压状态下,室温,30%≤湿度≤80%,洁净暗室整机功率600W应用范围细胞、酵母、细菌、蛋白、核酸等
  • 新疆维吾尔自治区质量协会立项《大蒜粉》及《大蒜及其制品中蒜氨酸的测定 高效液相色谱法》团体标准
    根据《新疆质量协会团体标准管理办法》的相关规定,经新疆维吾尔自治区质量协会标准化技术委员会组织专家对新疆胡蒜研究院(有限公司)提出的《大蒜粉》及《大蒜及其制品中蒜氨酸的测定 高效液相色谱法》团体标准项目进行立项论证,符合立项条件,现予以公告。请相关单位严格按照《新疆质量协会团体标准管理办法》有关要求,加强组织协调,严把质量关,确保本标准的适用性和有效性,按期完成标准的编制工作。特此公告。 新疆质量协会标准化技术委员会联系人:赵齐婉茹联系电话:0991-4583319,18099679678联系地址:乌市水区南湖北路华凌国际公寓10-1-2503新疆维吾尔自治区质量协会2023年11月6日
  • 新疆维吾尔自治区质量协会发布《大蒜粉》及《大蒜及其制品中蒜氨酸的测定 高效液相色谱法》团体标准征求意见稿
    各有关单位、相关专家:根据《新疆质量协会团体标准管理办法》,由新疆胡蒜研究院(有限公司)、新疆医科大学、新疆大蒜药用研究重点实验室等单位共同起草的《大蒜粉》、《大蒜及其制品中蒜氨酸的测定 高效液相色谱法》团体标准已形成标准征求意见稿。按照《团体标准管理规定》和相关要求,为保证团体标准的科学性、严谨性和适用性,现公开征求意见。请有关单位及专家提出宝贵意见或建议,并于2024年1月1日之前将“意见反馈表”(见附件3)以电子邮件形式反馈至协会秘书处,逾期未复函视为无异议。感谢您对我们工作的大力支持!新疆质量协会标准化技术委员会联系人:赵齐婉茹电话:0991-4583319 邮箱:xjzlxh96@sina.com地址:乌市水区南湖北路华凌国际公寓10-1-2503附件:1、《大蒜粉》团体标准编制说明2、《大蒜粉(征求意见稿)》3、《大蒜及其制品中蒜氨酸的测定 高效液相色谱法》团体标准编制说明4、《大蒜及其制品中蒜氨酸的测定 高效液相色谱法(征求意见稿)》5、团体标准征求意见反馈表新疆维吾尔自治区质量协会2023年11月30日团体标准征求意见反馈表.docx《大蒜粉》及《大蒜及其制品中蒜氨酸的测定 高效液相色谱法》团体标准编制说明及标准文本.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制