当前位置: 仪器信息网 > 行业主题 > >

环丁基二羧酸二乙酯标

仪器信息网环丁基二羧酸二乙酯标专题为您提供2024年最新环丁基二羧酸二乙酯标价格报价、厂家品牌的相关信息, 包括环丁基二羧酸二乙酯标参数、型号等,不管是国产,还是进口品牌的环丁基二羧酸二乙酯标您都可以在这里找到。 除此之外,仪器信息网还免费为您整合环丁基二羧酸二乙酯标相关的耗材配件、试剂标物,还有环丁基二羧酸二乙酯标相关的最新资讯、资料,以及环丁基二羧酸二乙酯标相关的解决方案。

环丁基二羧酸二乙酯标相关的资讯

  • 土壤/水质中11种邻苯二甲酸酯类混标全新上市!
    11种邻苯二甲酸酯类混标迪马科技根据《ISO 13913-2014 /ISO 18856-2004土壤/水质中邻苯二甲酸酯类的测定GC/MS法》定制了11种邻苯二甲酸酯类混标。 产品信息:DIKMA NO:46907DESCRIPTION:Custom Mixed phthalate esters Standard(11 Analytes) ,1000 μg/mL in Ethyl acetate 1mL中文名称:邻苯二甲酸酯混标(11种化合物),1000 μg/mL在乙酸乙酯中,1 mL/安瓿 适用于ISO 13913-2014/ISO 18856-2004土壤/水质中邻苯二甲酸酯类的测定GC/MS法,1000 μg/mL在乙酸乙酯中,1 mL/安瓿,Cat. No.: 46907序号化合物英文名CAS1邻苯二甲酸二甲酯Dimethyl phthalate (DMP)131-11-32邻苯二甲酸二乙酯Diethyl phthalate (DEP)84-66-23邻苯二甲酸二丙酯Dipropyl phthalate(DPP)131-16-84邻苯二甲酸二异丁酯Diisobutyl phthalate (DiBP)84-69-55邻苯二甲酸二丁酯Dibuthyl phthalate (DBP)84-74-26邻苯二甲酸丁苄酯Butylbenzyl phthalate (BBzP) 85-68-77邻苯二甲酸二环己酯Dicyclohexyl phthalate (DCHP)84-61-78邻苯二甲酸二(2-乙基己)酯Bis(2-ethylhexyl) phthalate (DEHP)117-81-79邻苯二甲酸二正辛酯Dioctyl phthalate (DOP)117-84-010邻苯二甲酸二癸酯Didecyl phthalate(DDcP)84-77-5111,2-苯二羧酸双十一烷基酯Diundecyl phthalate(DUP)3648-20-2
  • 【药物一致性评价热潮】10种热门品种!
    参比制剂是指用于仿制药质量和疗效一致性评价的对照药品,通常为被仿制的对象,如原研药品或国际公认的同种药物。参比制剂应为处方工艺合理、质量稳定、疗效确切的药品。 随着药物一致性趋势不断的越演越烈,一些热门的药物也开始被各大医疗企业争相进行检测审核,cato归纳了近期一致性参比制剂备案前10品种的杂质列表 。 第一种:通用名:克拉霉素英文名:Clarithromycin主成分化学名:6-O-甲基红霉素主成分结构式:(CHP2015)主成分分子式:C38H69NO13主成分分子量:747.96主成分cas登记号:81103-11-9 品种简介:克拉霉素是红霉素的衍生物,为半合成抗生素。20世纪80年代初由日本大正公司开发成功,并以商品名Clarith注册。尔后,大正公司首先将其技术转让给美国雅培公司生产 1990年在爱尔兰、意大利上市。1991年在日本获批上市。1991年10月获FDA批准上市,商品名Biaxin,1993年以Klacid在中国香港上市,在欧洲和亚洲的商品名为克拉仙,已在全球50多个国家上市,市场用量稳步增长,并在临床中发挥了重要作用。克拉霉素剂型主要为片剂、颗粒剂或混悬剂,目前生产的剂型还有分散片、缓释片、注射剂和复方制剂。目前为WHO和多个国家的基本药物。第二种:通用名:阿莫西林英文名:amoxicillin主成分化学名:(2S,5R,6R)-3,3-二甲基-6-[(R)-(-)-2-氨基-2-(4-羟基苯基)乙酰氨基]-7-氧代-4-硫杂-1-氮杂双环[3. 2. 0]庚烷-2-甲酸三水合物 主成分分子式:C16H19N3O5S?3H2O主成分分子量:419.46主成分cas登记号:61336-70-7 品种简介:阿莫西林是青霉素类半合成抗生素,原研公司为葛兰素史克公司,最早于1972年上市,商品名为AMOXIL。 第三种:通用名:头孢拉定英文名:Cefradine主成分化学名:先锋瑞丁、头孢拉丁、头孢握定、头孢雷定、己环胺菌素、头孢环己烯、环己烯胺头孢菌素、环烯头孢菌素。主成分分子式:C16H19N3O4S主成分分子量:349.40主成分cas登记号:38821-53-3 品种简介:头孢拉定属于头孢菌素类抗菌药物,且为第一代头孢菌素,对不产青霉素酶和产青霉素酶金葡菌、凝固酶阴性葡萄球菌、A组溶血性链球菌、肺炎链球菌和草绿色链球菌等革兰阳性球菌的部分菌株具良好抗菌作用。厌氧革兰阳性菌对本品多敏感,脆弱拟杆菌对本品呈现耐药。耐甲氧西林葡萄球菌属、肠球菌属对本品耐药。本品对革兰阳性菌与革兰阴性菌的作用与头孢氨苄相似。本品对淋球菌有一定作用,对产酶淋球菌也具活性;对流感嗜血杆菌的活性较差。第四种:通用名:头孢氨苄英文名:Cephalexin主成分化学名:头孢菌素Ⅳ、先锋霉素Ⅳ、头孢力新、苯甘孢霉素、西保力、头孢立新主成分分子式:C16H17N3O4S主成分分子量:347.39主成分cas登记号:15686-71-2 品种简介:头孢氨苄,抗生素\β-内酰胺类\头孢菌素类。它能抑制细胞壁的合成,使细胞内容物膨胀至破裂溶解,杀死细菌。 第五种:通用名:氨氯地平英文名:Amlodipine主成分化学名:3-乙基-5-甲基-2-(2-氨乙氧甲基)-4-(2-氯苯基)-1,4-二氢-6-甲基-3,5-吡啶二羧酸酯苯磺酸盐主成分分子式:C20H25N2O5ClC6H6O3S主成分分子量:567.1主成分cas登记号:111470-99-6 品种简介:氨氯地平,钙离子拮抗药,可用于治疗各种类型高血压(单独或与其他药物合并使用)和心绞痛,尤其自发性心绞痛(单独或与其他药物合并使用)。氨氯地平的作用是通过松弛在动脉壁的平滑肌,降低总外周阻力从而降低血压;在心绞痛时,氨氯地平增加血液流向心肌。本品对肾脏有一定的保护作用。其制剂有苯磺酸氨氯地平片、甲磺酸氨氯地平片、马来酸左旋氨氯地平片等。 第六种:通用名:二甲双胍英文名:METFORMIN HYDROCHLORIDE TABLETS主成分分子式:C4H11N5?HCL主成分分子量:165.63主成分CAS号:1115-70-4 品种简介:二甲双胍为目前应用最广泛的糖尿病一线用药。该化合物最早于1922年开发,后期由Jean Sterne医师重新开发并于1957年在法国上市用于治疗2型糖尿病,1958年在英国上市,1972年在加拿大上市,并最终于1994年获得FDA批准,1995年上市。申请机构为施贵宝。二甲双胍口服制剂有速释片、缓释片、口服溶液,其中速释片有250mg、500mg、850mg、1g。缓释片规格为500mg、750mg、1g。我国国产上市的二甲双胍片以250mg为主。原研本地化的产品有中美上海施贵宝公司的格华止片,规格有500mg、850mg。国内有山德士(中国)制药有限公司的二甲双胍片上市,规格为250mg。进口二甲双胍片有 Alphapharm Pty Limited的迪化唐锭片上市,规格为250mg。 第七种:通用名:布洛芬英文名:Ibuprofen主成分化学名:2-(-4-异丁基苯基)丙酸;异丁苯丙酸,异丁洛芬,芬必得,α-甲基-4-(2-甲基丙基)苯乙酸主成分分子式:C13H18O2主成分cas登记号:15687-27-1 品种简介:布洛芬是世界卫生组织、美国FDA唯一共同推荐的儿童退烧药,是公认的儿童首选抗炎药。布洛芬具有抗炎、镇痛、解热作用。治疗风湿和类风湿关节炎的疗效稍逊于乙酰水杨酸和保泰松。适用于治疗风湿性关节炎、类风湿性关节炎、骨关节炎、强直性脊椎炎和神经炎等。 第八种:通用名:奥美拉唑
  • 化学党顶级笑话第二弹,你看懂几个?
    p    span style=" font-family: 楷体,楷体_GB2312,SimKai " 还记得上一次的化学党顶级笑话吗?(戳这里: a style=" color: rgb(0, 176, 240) text-decoration: underline " title=" 化学顶级笑话,非化学界人士看不懂哒" target=" _blank" href=" http://www.instrument.com.cn/news/20150206/153427.shtml" span style=" font-family: 楷体,楷体_GB2312,SimKai color: rgb(0, 176, 240) " 化学顶级笑话,非化学界人士看不懂哒 /span /a ) /span /p p span style=" font-family: 楷体,楷体_GB2312,SimKai "   小编最近逛知乎,有才的网友们又发布了不少隐藏化学知识的笑话,号称只有化学学霸才能看得懂!现摘取精彩内容,你能看懂几个? /span /p p    span style=" color: rgb(255, 0, 0) " strong 1 /strong /span /p p   一年级,语文课上。老师在黑板上写下了“井”字,便说:“同学们,有谁知道这个念什么吗?”喧闹的教室顿时变得鸦雀无声,老师略失望。这时一只小手怯懦的从教室角落升了起来:“老师,我知道。1,1,2,2,3,3,4,4-八甲基环丁烷。” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/1149483f-ab65-4855-a094-84aeb41abc70.jpg" title=" 1057012652_1DB701FE_副本.png" / /p p span style=" color: rgb(255, 0, 0) " strong   2 /strong /span br/ /p p   文理综合题:请给下面句子断句: /p p   根据苯环的碳碳键键能能否否定定论一或定论二? /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/de4c1768-5eab-4a21-9774-ecbb72588d31.jpg" title=" 1.jpg" / /p p br/ /p p   span style=" color: rgb(255, 0, 0) "   strong 3 /strong /span /p p   一位老教授进入实验室时,看见自己的学生正将一块拳头大小的钠投入水缸里。于是发生如下对话: /p p   “嘿,孩子!请先等等!”教授连忙制止。 /p p   “怎么了,教授?”学生问道。 /p p   “看见我的手杖了么,孩子,你先用它搅拌水缸里的水,搅拌20分钟后再把钠块扔进去。”说罢,将自己的手杖递给了学生。 /p p   “这样子才能顺利反应吗?”学生一脸疑惑。 /p p   “不,这样我就有20分钟的时间可以逃跑。”教授笑着说。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/48d6bb03-0e8d-4b40-9921-a985e74b9d3b.jpg" title=" 2_副本.jpg" / /p p    strong span style=" color: rgb(255, 0, 0) " 4 /span /strong /p p   普通青年:江河湖海。 /p p   文艺青年:琴瑟琵琶。 /p p   逗比青年:哼嗬哈嘿! /p p   化工青年:烷烯炔烃。 /p p   追问:五个字?其他人沉默。。。。 /p p   化工青年:钾钙钠镁铝。 /p p   含泪问:六个字? /p p   化工青年:氦氖氩氪氙氡(推眼镜)我给大家背一下镧系和锕系...镧铈镨钕钷钐铕钆铽镝钬铒铥镱镥。 /p p   看到化工青年的风光,药学青年不甘示弱—— /p p   药学青年:吡啶嘧啶哌啶噻吩噻唑噻啶恶唑呤喹啉卟啉咕啉,苯苄蒽芘萜莰,酸醛醚酯酚醇。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/db514d5a-a13e-468d-9e23-5e7ce570cfc4.jpg" title=" 20160517122759_5nANT.thumb.224_0_副本.jpg" / /p p    span style=" color:#ff0000" strong 5 /strong /span /p p   德国的钢材放入浓硫酸里都难以被腐蚀,浸了几个小时还是基本完好如初 反观中国的钢材,在稀硫酸里浸一会就已经被溶解的不成样子了。 /p p   我们需要追赶的地方太多了。 /p p   把钢材放进德国产的稀硫酸就腐蚀了,把钢材放进中国产的的浓硫酸一点变化都没。中国的浓硫酸质量还不如德国的稀硫酸。 /p p   我们要追赶的太多。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/4c637264-9b4a-4f8c-bc6a-e209d48a8d0f.jpg" title=" 3_副本.jpg" / /p p    span style=" color: rgb(255, 0, 0) " strong 6 /strong /span /p p   一列水分子整齐地走了过去 /p p   其他水分子赞叹地说:“不愧是当冰的!” /p p   几个水分子飞向了天空 /p p   其他水分子赞叹地说:“真蒸汽啊!” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/6700e419-9193-4cdf-b555-136bdc9ed179.jpg" title=" 4.jpg" / /p p   span style=" color: rgb(255, 0, 0) " strong  6 /strong /span /p p   一天化学老师在逛街,遇到了恐怖分子,然后与其英勇搏斗,一刀把恐怖分子劈成了恐怖原子。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/e9a69798-be41-4c98-8b4b-9a8d177b2b67.jpg" title=" 5_副本.jpg" / /p p    span style=" color: rgb(255, 0, 0) " strong 7 /strong /span /p p   记者问甲醛:“你幸福吗?” /p p   甲醛说:“嗯,姓福,叫福尔马林。” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/664c90da-6b5f-4204-8b01-c59a2b4eaee0.jpg" title=" 6_副本.jpg" / /p p    strong span style=" color: rgb(255, 0, 0) " 8 /span /strong /p p   “知道吗? /p p   大一的女生是金 /p p   大二是银 /p p   大三是铜 /p p   大四是铁。” /p p   “很好啊,越来越活泼。” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/c69ff1eb-f7f5-4b71-9389-0901672ebb00.jpg" title=" timg (1)_副本.jpg" / /p p    span style=" color: rgb(255, 0, 0) " strong 9 /strong /span /p p   一位科学家找了一群中国青少年和一群美国青少年做实验。 /p p   他给了每群青少年一块钾金属,让他们测出金属的密度。 /p p   中国孩子一声不吭地围着钾块用尺子量尺寸、用天平称重量,忙得满头大汗,半天也还没得出结果。 /p p   再看美国孩子,他们经过讨论后先称了重量,然后将钾块扔进了装有水的量筒里! /p p   现场观众爆发出了热烈的掌声!美国孩子们运用了自己的智慧测出了钾块的体积! /p p   接着,科学家给了他们铷块、铯块、钫块,在中国孩子还在量尺寸的时候,看呐!美国孩子们手脚敏捷地将它们扔进了量筒! /p p   观众们被他们的智慧感动了!全场爆发出了经久不息的掌声! /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/2adf72b0-2043-4090-a854-9fe2c26193d6.jpg" title=" 7_副本.jpg" / /p p    strong span style=" color: rgb(255, 0, 0) " 10 /span /strong /p p   有一天,我新认识了一个做有机的教授,我好奇他是做哪方面的,于是问他:老师你是做什么的呀?他回答道:我是做“镍”的...... /p p   当时愕然了许久才反应过来。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/1d9b70e4-2536-4a50-a18b-be90eebe162f.jpg" title=" 8107cfbc213cf37fc1d20bdfb9cfd9ec_b_副本.jpg" / /p p    span style=" color: rgb(255, 0, 0) " strong 11 /strong /span /p p   听说一事儿,说有一老太太去镶了一颗金牙,结果从此天天头晕。一检查才发现她还有一颗用铝补的蛀牙,俩金属放一块儿成一原电池,整天满嘴电流能不头晕么? /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/3095ddbd-c11d-473f-8140-7ca44dc7a6d0.jpg" title=" 8_副本.jpg" / /p p    span style=" color: rgb(255, 0, 0) " strong 12 /strong /span /p p   话说有一年的考研班,有一个学生,每次均是前几个到,每到必坐第一排,上课认真听讲,笔记做的一丝不苟。老师极其之满意,觉得这学生考研简直肯定没问题了。 /p p   终于,在考研班快结束最后一堂课上,老师问:还有人有问题吗? /p p   该生 弱弱的举了手,问:老师我有问题。 /p p   老师曰:什么问题? /p p   答:我想问一下,您每次上课都讲的SP的平方(SP2)以及SP的立方(SP3)都是什么意思? /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/99923ce2-6817-411b-99fa-a5a0f67bf4bb.jpg" title=" 21f8d2c6-5261-4753-a92c-c63b87ec506b.jpg" / /p p    span style=" color: rgb(255, 0, 0) " strong 13 /strong /span /p p   太上老君不能将孙悟空炼化的真正原因是:古时候炼丹炉是煤炭炉,最高只能达到1200℃左右,而孙悟空是石猴,主要成分二氧化硅,熔点1600℃左右,的确炼不掉!懂点化学多么重要! /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/96794f83-bdc4-4934-80e2-687b45d3ea83.jpg" title=" 9_副本.jpg" / /p p    span style=" color: rgb(255, 0, 0) " strong 14 /strong /span /p p   你好,我喜欢你,有机会吗 /p p   不好意思。。。有机不会 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/7a3cd588-6255-4b97-bee0-d17f5f52e85f.jpg" title=" c42cca4d-e0e4-4faa-a18b-3acdf3c8c74f.jpg" / /p p    span style=" color: rgb(255, 0, 0) " strong 15 /strong /span /p p   市长参观新公园,大家问他有什么意见,市长指着一处空地说:“挺好的,不过这里多些绿化那就更好了。” /p p   园长点点头,第二天叫人在这里堆了一吨盐。。。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/a0870917-b763-4ef4-b6f1-a2069a2f0594.jpg" title=" 11_副本.jpg" / /p p   strong span style=" color: rgb(255, 0, 0) "  16 /span /strong /p p   纹身馆来了四个不同年纪的人,分别要纹四种化学物质在身上。 /p p   20岁的说:我要纹多巴胺,我希望获得兴奋和开心的情绪。 /p p   40岁的说:我要纹地西泮,我希望能镇静地对抗压力。 /p p   60岁的说:我要纹丙酸睾酮,我希望能重振雄风。 /p p   80岁的说:我要纹海葵毒素?? /p p   其他三人看到都很吃惊,问:你希望它给你带来什么? /p p   80岁的叹了口气:这是我的全合成课题,我希望我能早点毕业。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/cd62ace0-4c7c-45ce-9a5e-9760d415a42a.jpg" title=" timg_副本.jpg" / /p p   span style=" color: rgb(255, 0, 0) " strong  17 /strong /span /p p   根据一个数学家的笑话改编 /p p   有个农场有100只鸡。这一天农场的鸡都病了,农场主很着急,就找来一个实验化学家,求他帮忙解决。实验化学家满口答应。他先找农场主要了7000000块钱基金建造了一个养鸡场,买了一堆试剂和仪器。又从农场里弄来10只鸡,又向农场主申请100000块钱基金买了50只健康的鸡,实验化学家选出了其中的5只病鸡和5只健康的鸡,用花钱买来的仪器对鸡做了色谱、质谱、X射线衍射、圆二色、热重、电化学、核磁、二维核磁、远红外光谱、红外光谱、紫外可见光谱、光电子能谱、穆斯堡尔谱以及酸碱滴定和配位滴定等测试,对病鸡和健康的鸡的相对数据进行了对比。然后将剩下的5只病鸡和45只健康的鸡养在了养鸡场,通过观察病鸡和健康的鸡的生活习惯:吃的有什么不同,平常爱不爱遛弯,喜不喜欢看电影之类的,得出了影响鸡生病的主要因素。然后想法把45只健康的鸡中25只也染上了与5只病鸡相同的病,用各种不同的试剂进行试验,在死掉了28只鸡后,终于研究出了治疗病鸡的有效方法。此时实验化学家把治好的2只鸡和剩下的20只健康的鸡做了小鸡炖蘑菇、盐酥鸡、香鸡排、宫保鸡丁、葱油淋鸡、椒麻鸡、怪味鸡、左宗堂鸡、港式油鸡、酱瀑鸡丁、烧酒鸡、水晶鸡、三怀鸡、鼓椒风爪、麻油鸡、锅塌鸡片等菜肴自己吃了,并在核心期刊Chicken Letters上发表一篇了Towards a systematic approach to the good care of your chickabiddies,并申请了三个专利,凭此晋升为副教授,而他将建好的养鸡场与其他人合资,自己入股做了股东,从而学术挣钱两不误。而他将治疗方法交给了农场主时,已经过去了一年了,95只鸡已经死掉了35只了,农场主用实验化学家的方法对鸡进行治疗,结果不错,60只鸡治好了58只,只死了2只鸡。 /p p   后来农场主的鸡繁衍到了100只,又生了一种新的病。农场主觉得上次的成本太高了,就找来一个计算化学家,求他帮忙解决。计算化学家满口答应。他向农场主申请了200000块钱买了一堆服务器建立了一个集群,又买了一个专业级的计算鸡的软件Chickian2010,然后参考了Towards a systematic approach to the good care of your chickabiddies中的成果,将上次鸡的病情输入了计算机,选择了十几种方法和和基组对鸡进行计算,然后反复迭代优化参数,终于复现了文献中的结果,然后他找农场主要了5只病鸡,进行检验计算,最后结果表明对5只鸡的误差均在系统误差之内。于是计算化学家在Journal of Chicken Caring(THEOCHICK)发表了论文A density functional theory study of caring your chickabiddies,然后将论文交给了农场主,告诉他先学习学习Linux操作系统,然后学会内坐标描述你的鸡,再了解几个IOP,然后将你的鸡的病情输入计算机,调用Chickian2010计算你的鸡就可以得到治疗方法。此时时间过了3个月,农场主还剩85只鸡活着,可是农场主的计算机本来就不好,花了2个月才稍微学会了Linux和Chickian2010,此时85只鸡剩下了80只,农场主对每一只鸡用计算化学家推荐的方法计算并治疗,结果80只鸡有35只彻底治好了,30只治的半死不活,15只给治死了。过了几个月,那30只半死不活的后来有10只好了,20只死了。 /p p   后来农场主的鸡又繁衍到了100只,又生了一种新的病。农场主觉得上次的成本虽然不高,但是效果不太好,就找来一个理论化学家,求他帮忙解决。理论化学家满口答应。理论化学家向农场主申请了700块钱劳务费。结果不到半个月,理论化学家拿着他在Chicken Hen Hen Chichen上面发表的An accurate model of caring your chickabiddies with feed additives correction交给了农场主,称这是一种新的治病的方法。农场主很高兴,感觉这次的花费还很值,于是就用这种方法给他的100只鸡治病,结果没有一星期100只鸡死掉了99只,只有一只胖乎乎的鸡处于半死不活的状态。农场主愤怒的给理论化学家打电话,质问他原因。理论化学家说你没有注意到我论文里面的使用条件吗?农场主拿过论文仔细看,最后在Appendix一栏里发现:这个方法只对真空中的球形的鸡有效。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/5cd0214b-d354-440d-bbd0-00c396831601.jpg" title=" 12_副本.jpg" / /p p br/ /p
  • HPLC级叔丁基甲醚促销
    货号:CAEQ-4-018397-4000 HPLC级叔丁基甲醚 规格:4L 报价:540元 促销价:整箱起订432元/瓶,4瓶/箱 促销时间:2011年5月3日至2011年5月31日 高效液相色谱法已经在产品检测、研发以及药物质量控制和环境分析领域成为首要的技术方法,因而对所使用的溶剂提出了更高的要求。 CNW液相色谱溶剂具有以下优点:1)低紫外吸收,确保最佳灵敏度;2)严格控制非挥发性物质、游离酸、游离碱和水分含量至最低;3)严格的梯度测试以检测干扰峰和基线漂移情况;4)可用于荧光检测。我们可以为您提供满足不同分析需求的溶剂,如UV-IR表示可满足紫外可见吸收光谱、红外光谱等分析;HPLC preparative表示可满足制备色谱分析;HPLC isocratic表示可满足等度洗脱分析;HPLC gradient表示可满足梯度洗脱分析;GPC表示可满足大分子化合物凝胶渗透色谱分析;另外我们还可以为您提供满足所有现代LC/MS精确检测分析用的溶剂。 订货信息: 产品货号 产品名称 品牌 规格 报价(元) 4.003302.4000# HPLC级甲醇 CNW 4L 180.00 4.003306.4000# HPLC级乙腈 CNW 4L 420.00 4.003513.2500# HPLC级水 CNW 2.5L 200.00 4.003513.4000 HPLC级水 CNW 4L 320.00 4.012256.0500# HPLC级苯CNW 500ml 400.00 4.012256.1000 HPLC级苯 CNW 1L 600.00 4.012256.4000# HPLC级苯 CNW 4L 1360.00 4.012783.0500# HPLC级吡啶 CNW 500ml520.00 4.012783.1000# HPLC级吡啶 CNW 1L 860.00 4.012783.4000 HPLC级吡啶 CNW 4L 2800.00 4.010734.0500 HPLC级二甲基亚砜 CNW 500ml 360.00 4.010734.4000# HPLC级二甲基亚砜 CNW 4L 1150.00 4.011410.0250# HPLC级1,4-二氧六环 CNW 250ml 480.00 4.010410.0500 HPLC级1,4-二氧六环 CNW 500ml 860.00 4.010410.1000# HPLC级1,4-二氧六环 CNW 1L 1360.00 4.014077.4000 HPLC级N,N-二甲基甲酰胺 CNW 4L 520.00 4.014080.0500# HPLC级N,N-二甲基乙酰胺 CNW 500ml 360.00 4.014080.1000# HPLC级N,N-二甲基乙酰胺 CNW 1L 480.00 4.014080.2500 HPLC级N,N-二甲基乙酰胺 CNW 2.5L 800.00 4.011556.4000# HPLC级环己烷 CNW 4L 520.00 4.011406.0500# HPLC级N-甲基吡咯烷酮 CNW 500ml 320.00 4.011406.4000 HPLC级N-甲基吡咯烷酮 CNW4L 980.00 4.012001.4000# HPLC级二氯甲烷 CNW 4L 600.00 4.011408.0500 HPLC级1-氯丁烷 CNW 500ml 450.00 4.011408.1000# HPLC级1-氯丁烷 CNW 1L 750.00 4.011412.0500# HPLC级氯苯 CNW 500ml 560.00 4.011412.1000 HPLC级氯苯 CNW 1L 960.00 4.011404.1000 HPLC级1,2-二氯苯 CNW 1L 750.00 4.011414.0500# HPLC级1,2,4-三氯苯 CNW 500ml 520.004.011414.1000 HPLC级1,2,4-三氯苯 CNW 1L 860.00 4.018397.4000# HPLC级叔丁基甲醚 CNW 4L 540.00 4.011321.4000# HPLC级四氢呋喃 CNW 4L 720.00 4.014048.4000# HPLC级乙酸乙酯 CNW 4L 450.00 4.016362.4000# HPLC级乙醇 CNW 4L 520.00 4.013493.4000# HPLC级异丙醇 CNW4L 420.00 4.010893.1000# HPLC级异丁醇 CNW 1L 560.00 4.010893.4000 HPLC级异丁醇CNW 4L 1800.00 4.010566.4000# HPLC级异辛烷 CNW 4L 860.00 4.019067.1000 HPLC级正丙醇 CNW 1L 300.00 4.019067.2500 HPLC级正丙醇 CNW 2.5L 640.004.014508.1000# HPLC级正丁醇 CNW 1L 360.00 4.014508.4000# HPLC级正丁醇 CNW 4L 860.00 4.019030.4000# HPLC级正庚烷 CNW 4L 800.00 4.011518.4000# HPLC级正己烷 CNW 4L 450.00 4.019028.4000# HPLC级正戊烷 CNW 4L 800.00 4.011402.1000 HPLC级叔丁醇 CNW 1L 640.00 4.011401.0500 HPLC级正辛醇 CNW 500ml 480.00 4.011405.0250 HPLC级1,2-二氯乙烷 CNW 250ml400.00 4.011405.1000 HPLC级1,2-二氯乙烷 CNW 1L 600.00 4.011403.1000 HPLC级4-甲基-2-戊酮 CNW 1L 560.00 4.000306.4000 LS-MS甲醇 CNW 4L 600.00 4.000308.4000 LS-MS乙腈CNW 4L 840.00 4.000302.4000 LS-MS水 CNW 4L 600.00 了解更多产品请进入安谱公司网站 http://www.anpel.com.cn/
  • 色谱检测方法新标准来啦(十一)——GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法
    近年来,消费者对功效化妆品的需求与日俱增,庞大的需求吸引着越来越多的企业布局相关领域。但是,随之而来的夸大功效等乱象,严重侵害了消费者权益。为规范和指导化妆品功效宣称评价工作,2021年4月9日国家药监局网站发布了《化妆品功效宣称评价规范》,中国化妆品行业正式迈入功效评价时代。按照要求:2021年5月1日-2021年12月31日期间注册备案的化妆品,应当于2022年5月1日前按照《化妆品功效宣称评价规范》要求,上传产品功效宣称依据的摘要。 同时,《化妆品标签管理办法》也将正式施行,对标签的要求做了更进一步的释义和规范。按照要求,自2022年5月1日起,申请注册备案的化妆品,必须符合《化妆品标签管理办法》的规定和要求。此前申请注册备案的化妆品,未按照本《办法》规定进行标签标识的,应在2023年5月1日前完成产品标签的更新。中国化妆品标签监管也将迈入新台阶。 壬二酸结构 壬二酸(Azelaic acid,CAS 123-99-9),又名杜鹃花酸,是一种天然存在的直链饱和二羧酸,分子式为C9H16O4。壬二酸在医学临床上常用来治疗玫瑰痤疮及寻常型痤疮,同时可以用于美白类和祛痘类化妆品,能有效抑制皮肤上的痤疮杆菌和租房阻断脂肪酸的生成,防止黑色素的形成,可预防斑点形成,减少黑色素沉着。近年来由于其疗效显著以及相对安全性,壬二酸在皮肤保护和皮肤病治疗类化妆品中得到越来越多的使用。科学的检测方法对于目前市场上化妆品标签准确标注壬二酸成分的含量具有非常重要的意义。为此,国家市场监督管理总局和中国国家标准化管理委员会正式发布了《GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法》。 检测方法 方法原理试样在浓硫酸和乙醇条件下衍生,用正己烷萃取,浓缩后经气相色谱分离检测,根据保留时间定性,外标法定量。 气相色谱法仪器配置:GC主机+SPL+FID,可选配液体自动进样器色 谱 柱:SH-5 Cap. Column 30m x 0.25mm x 0.25um 方法参数初始温度60℃(保持2min),以10℃/min升到150℃(保持1min),以5℃/min升温至165℃(保持2min),以25℃/min升温至250℃;SPL进样口温度:260℃;FID检测器温度:280℃;分流比:5:1;进样量:1微升;标准曲线浓度:10mg/L,20mg/L,50mg/L,100mg/L,200mg/L,500mg/L,1000mg/L 壬二酸衍生物气相色谱图(壬二酸二乙酯) 灵敏度要求:本方法检出限15mg/KG,定量限50mg/kg。 岛津推荐仪器 气相色谱仪: GC-2010 Pro / AOC-20系列 GC-2010 Pro继承了高性能毛细柱气相色谱仪GC-2010Plus的基本性能。其良好的重现性确保其具备高可靠性。配备了高性能检测器使高灵敏度分析得以实现。同时,高速柱温箱冷却技术可大幅缩短分析时间,是一款高性价比气相色谱仪产品。扫码了解更多信息 气相色谱仪: Nexis GC-2030 / AOC-30系列Nexis GC-2030加强版气相色谱仪配备了全新智能交互界面,仅需触屏即可完成仪器操作并可以实时了解仪器运行状态。创新ClickTek技术全面提升用户分析体验,使色谱柱的安装和仪器维护进入徒手时代。通过不断强化Analytical Intelligence功能,优化人机交互体验,为实验室赋能。预老化功能、基线检查和系统适应性测试、远程控制和监视以及LabSolutions平台可形成从仪器启动到完成分析的全自动化工作流程。 扫码了解更多信息参考资料:1、GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法2、https://pubchem.ncbi.nlm.nih.gov/compound/Azelaic-acid3、国家药监局关于发布《化妆品功效宣称评价规范》的公告(2021年 第50号) 本文内容非商业广告,仅供专业人士参考。
  • 施一公的第二个“黄金十年”:在清华发了近60篇顶级期刊论文
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201702/insimg/0747f7a4-dfd4-4bc0-8d19-fb49d1791ad8.jpg" title=" 201702270905596183_副本.jpg" / /p p   身材高挑瘦削,行色匆匆,记者在教学楼一层咖啡厅偶遇施一公。他刚出差回来,喝杯咖啡稍作休息,准备下一场活动。“给我打电话吧,”他低头一看表,边说着“我要去开会了”,边在楼梯上一路小跑。 /p p   出差、做实验、辅导学生、开会,施一公每天工作10个小时以上。 /p p   中科院院士、赛克勒国际生物物理学奖得主、美国科学院外籍院士、首位获得瑞典皇家科学院爱明诺夫奖的中国科学家???岁的施一公有很多故事,2008年从海外归来,是其职业生涯第二个“黄金十年”的开始。 /p p    strong 第一个“黄金十年”:大洋彼岸的他有一个中国梦 /strong /p p   学术研究的第一个重要十年,施一公是在普林斯顿度过的。那是他攀登事业高峰的历程,也是他从一名博士后到世界结构生物学领域顶尖科学家的“黄金十年”。 /p p   名校毕业,普林斯顿大学分子生物学系最年轻的正教授,拥有全校最大的实验室??这些“重量级”的待遇勾勒出一个学术“大牛”,一个生活优渥、前途大好的科学家形象。施一公离开美国时,每年的研究经费是200万美元。 /p p   人在海外,但在施一公心里,祖国的分量很重。 /p p   “科学无国界,但是科学家有自己的祖国。”施一公说,他回国的念头在读博士期间就有了。在外多久,对家的思念和对国家的责任感就积蓄多久。2006年,清华大学邀请施一公回国任职,施一公经过一晚上的思考就答应了。2007年,他正式调入清华大学,被聘为清华大学生命科学与医学研究院副院长,生物科学与技术系副主任。 /p p    strong 第二个“黄金十年”:在清华发了近60篇顶级期刊论文 /strong /p p   作为国家首批“千人计划”的一员,施一公身负重任。回国至今,已经累计以清华大学为第一单位发表顶级论文近60篇。 /p p   2015年8月21日,《科学》发表了施一公研究组两篇题为《酵母剪接体激活状态3.5埃的结构》、《第一步催化反应后的酵母剪接体3.4埃的结构》的长文,被认为是RNA剪接研究领域的又一突破性进展。“这项研究成果的意义很可能超过了我过去25年科研生涯中所有研究成果的总和!”施一公说。 /p p   继2015年率先解析剪接体的结构之后,施一公团队在2016年又相继解析了3个关键工作状态下剪接体以及组装过程中一个剪接体复合物的原子级高分辨率结构,这极大地推动了RNA剪接这一基础研究领域的发展。 /p p   2017年2月20日,科技部发布2016年度中国科学十大进展,清华大学生命科学学院施一公实验室的成果赫然在列。 /p p    strong 为更多学子创造灿烂的“黄金时代” /strong /p p   就任清华大学副校长后,施一公依然带领他的实验室团队隔天下午4点在操场跑步,每次5到6公里。 /p p   “你问我最初回国最想做什么,我想教书育人。”十年过去了,这句他当年说过的话言犹在耳。他的身影经常会出现在实验室和教学楼,坚持日常教学工作,包括给本科生上基础课。 /p p   施一公的学生闫创业从2008年就加入团队,对老师行事风格深有体会,“他做研究不怕困难,敢于争先。” /p p   施一公“走路快、说话快,做事雷厉风行”“对数字有着超乎常人的记忆力”。对学生来说,他却是“从不发脾气的老师”。“他能够看到我们实验中的不足和被忽略的细节。”他的学生万蕊雪说。 /p p   2016年12月,施一公领衔成立浙江西湖高等研究院,成立大会上他说出了自己的愿景:这里,将拥有世界上最杰出的一批科学家,培养最优秀的青年人才,从事最尖端的基础和应用研究,探索适合中国国情的科研教育体制机制,为中国的高科技可持续发展提供强大的引擎和支撑,为世界文明做出无愧于中华民族的贡献。 /p p   想必,施一公的第三个黄金十年将为更多学子创造灿烂的“黄金时代”?? /p p br/ /p
  • 菲力尔与您相约“一场全球光电的顶级盛宴”
    2016年9月6日,一年一度的中国国际光电博览会(cioe)将在深圳举行。中国国际光电博览会是目前全球最大规模、最具影响力和权威性的光电专业展览,可以说是“一场全球光电的顶级盛宴”。flir 机芯oem机芯与组件业务将携全线产品出席本次展会,展位号为1dboston机芯lepton机芯flir作为机芯生产领先厂商,我们将展出一系列制冷、非制冷型机芯产品。如在今年春季推出的全新非制冷机芯产品 boson 将作为flir重点推广产品向业内人士展出。出色的性能,以及更为轻盈的重量,使得这一款产品得到了市场极大的关注。在制冷型机芯方面,我们将在展台展示经典产品minicore 系列,以最新推出的长波无镜头机芯。flir one cat s60手机同时,为了增加展会现场的趣味性,我们还将展示基于lepton机芯的红外热成像产品,如大受欢迎的flir one产品:与ios或android系统手机连接便可浏览热图像;以及搭载lepton机芯的cat s60手机等。flir相信,红外热成像的普及将为消费者带来更为实用及有趣的体验。禅思zenmuse xt热像仪此外,本次展会上flir还将展示为无人机而专门打造的热成像产品: vue,vue pro,以及vue pro r。设计用于专业应用领域的vue系列热成像相机,不仅仅是热像仪,更是提供热测量和数据记录的绝佳利器。此外,与小型无人机知名厂商大疆共同合作的禅思zenmuse xt无人机热像仪也将在本次展会展出。 以上便是本次光电博览会,菲力尔将要携带的部分机芯产品。除此之外,本次光电博览会,菲力尔还将会有一系列活动等待您的参与,精美的礼品也会免费送到您的手上。菲力尔诚邀您的参与!
  • 美国发明航天器细菌快速检测新技术
    美国航天局科研人员最近开发出一种能快速检测航天器细菌的新技术。这项技术也能同时运用于军事、医疗、制药等领域,如检测可引发炭疽病的炭疽杆菌。   美航天局下属喷气推进实验室的科研人员在10月刊的《应用与环境微生物学》(Applied and Environmental Microbiology)杂志上报告说,这项新技术能找到构成细菌芽孢的主要物质吡啶二羧酸,从而发现细菌芽孢的位置。而芽孢是细菌生长到一定阶段在细菌体内形成的一种微生物体,其数量及其生长状况等是鉴定细菌的依据之一。   该项技术的工作原理是,先在被检测物表面约一角钱硬币大小的地方涂上铽 ,然后将其置于紫外线灯下照射,几分钟内,人们通过显微镜和特殊相机便能看到是否有细菌芽孢,因为铽能把细菌芽孢的主要物质吡啶二羧酸变成明亮的绿色。铽是一种化学金属元素,它的化学符号是TB,被用于生成电视机屏幕上的绿色。   参与开发这一新技术的艾德里安庞塞说,细菌芽孢可以在极其恶劣的环境下生存,可抵御高温、低温、强辐射和化学物质,并最多可以在太空存活6年之久。庞塞说,发现了细菌芽孢,就可以发现细菌本身。   目前这项被称为“航天器洁净方法”的技术已引起了美国国土安全部的兴趣。美国国土安全部化学生物研究项目负责人詹姆士安东尼认为,该技术将有助于加快生物污染事件发生后的现场检测工作,并节省时间和成本。
  • 修饰新法问世 让MOFs拥有更大孔径
    p style=" text-align: justify text-indent: 2em " MOFs是一种将桥接的有机配体和无机金属中心连接成网状结构的混合多孔材料,在催化和化学传感领域应用广泛,而且可以作为药物传递的载体。MOFs的孔径大小与其应用息息相关,如果化学家有方法能使其孔径变大,MOFs在上述领域就会发挥更大的作用。而一项最新研究表明,可以通过选择性地去除MOFs中的有机配体,来将其微孔转化为更大尺寸的介孔。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201811/uepic/785da53f-dfbf-413a-ac38-19b059f57a40.jpg" title=" ss.jpg" alt=" ss.jpg" / /p p style=" text-align: justify text-indent: 2em " 当孔径为大于2nm的介孔时,MOFs不仅可以容纳更大的药物分子,还能够防止催化应用中的气体扩散。现有增加MOFs孔径尺寸的方法主要有三种,一种是依赖于复杂的、定制的配体,这种方法成本高昂。另一种是通过简单地增加配体长度来调整孔径,这种方法虽然已有多种应用,但是使用这种方法,想在创造MOFs特定孔径尺寸的同时控制好某些反应附带衍生的缺陷,却是十分困难的。此外,还有一些使用化学或热处理手段增加MOFs孔径的方法,但这些方法往往又需要苛刻的条件。 /p p style=" text-align: justify text-indent: 2em " 为了解决这些问题,加泰罗尼亚纳米科学与技术研究所的博士后研究员Vincent Guillerm提供了一种新方法,选择那些可通过与臭氧反应被选择性剪切掉的配体合成MOFs,通过这种方法来将MOFs的微孔变成孔径较大的介孔。他和他的同事用锆团簇和两种配体(偶氮苯-4,4-二羧酸和4,4& #39 -二苯乙烯二羧酸)构建了MOFs,这两种配体的长度都在1.33nm左右。 /p p style=" text-align: justify text-indent: 2em " 然后他们将臭氧引入系统,与4,4& #39 -二苯乙烯二羧酸发生反应,让这部分配体转化为对苯二甲酸和苯甲酸,有效地切断了它们与金属中心的连接。而偶氮苯-4,4-二羧酸配体由于没有碳碳双键,不易与臭氧反应,因此不受影响。这种方法还需要一个额外的清洗步骤,来消除臭氧反应中产生的副产品。因此研究人员又还利用4,4’-联苯二甲酸和1,4-苯二丙烯酸为配体构建了另一个介孔尺寸的MOF。在这个MOF中,臭氧反应裂解的配体产物能够从材料中直接升华,无需再清洗。 /p p style=" text-align: justify text-indent: 2em " 据参与该项研究的另一位负责人Daniel Maspoch介绍,在切割配体之前,本实验所用的MOFs孔径尺寸都在1.5nm左右。经过臭氧切割,这些MOFs的孔径覆盖了2到5nm的直径范围。而不同的孔径尺寸,是由于两种配体在整个材料中的随机分布引起的。因为随机分布会造成不同区域的配体浓度差,进而影响孔径变化范围。因此,研究组希望能更好地控制这种分布,以帮助他们缩小孔径增大的范围。 /p p style=" text-align: justify text-indent: 2em " 除了扩大孔径尺寸外,这项研究成果还会带来另一个潜在的好处:配体在被剪切的过程中,可能会释放出一些可与其他化学物质发生反应的结合位点。“这很可能对MOFs以外的工程材料来带益处。”Maspoch说,“如果你能够有选择性地打破物体内部的一些化学键,你就能让这一物体生发出一些新的功能。” /p p style=" text-align: justify text-indent: 2em " 加州大学伯克利分校的Omar M.Yaghi是MOFs的专家。他高度肯定了这项研究成果,表示它为改善MOFs性能增添了新的创造性。“这项研究优雅、聪睿、精确,而且证明了在原子、分子层面,网状化学控制物质的应用已经越来越广泛。”Yaghi说。 /p
  • 液相色谱法/液相色谱质谱联用法测定苯氧羧酸类除草剂中游离酚
    引言酚类化合物是一种细胞原浆毒,其毒性作用是与细胞原浆中蛋白质发生化学反应,形成变性蛋白质,使细胞失去活性,它所引起的病理变化主要取决于毒物的浓度,低浓度时可使细胞变性,高浓度时使蛋白质凝固,低浓度对局部损害虽不如高浓度严重,但低浓度时由于其渗透力强,可向深部组织渗透,因而后果更加严重。酚类化合物可经皮肤、粘膜的接触,呼吸道吸入和经口进入消化道等多种途径进入体内。 FAO与WHO 早已对2,4-滴、2,4-滴酯类、2,4-滴钠盐、二甲铵盐、2甲4氯、2甲4氯钠、2甲4氯丁酸、2甲4氯丙酸等农药中的游离酚进行了限定,对苯氧羧酸类除草剂中的游离酚进行限量有利于减少有害杂质对农产品安全的影响,也有利于各级质量管理部门对农药产品质量实施监督。进而保证农药产品的安全性、保障人身健康和环境安全。 《GB/T 41225-2021苯氧羧酸类除草剂中游离酚限量及检测方法》新标准已于2022年7月1日正式实施,新标准共给出3种试验方法:化学显色法,高效液相色谱法,液质联用法。 岛津解决方案一、 UV-3600i Plus紫外可见近红外分光光度计高灵敏度—标配三检测器配置了三个检测器,一个检测紫外及可见区域的PMT检测器,检测近红外区域的InGaAs 和 PbS检测器。InGaAs检测器弥补了PMT和 PbS转换波长灵敏度低的特点,从而保证了在整个检测波长范围内高灵敏度测定。在1500 nm波长检测时噪声小于0.00003 Abs,达到超低的噪声水平。 高分辨率—宽测量范围及超低的杂散光采用高性能双光栅单色器,实现高分辨率(分辨率高达0.1nm)和超低杂散光(340nm处杂散光0.00005%以下)。测定波长范围为185nm-3300nm,可在紫外、可见及近红外的宽波段范围进行测定,应对不同领域的测定要求。 丰富可选的附件使用多功能大样品室和积分球附件可测定固体样品,使用保证测定精度的绝对反射测定装置ASR系列也可进行高精度的绝对反射测定。此外,可安装电子冷热式恒温池架和超微量池架等,适应广泛的应用测定。 智能化软件全新升级的LabSolutions UV-Vis软件包括光谱模块,光度模块,动力学及报告编辑模块等功能。软件具有自动光谱评价、自动Excel数据传输、自动样品测试等功能,可升级为DB或者CS版实现更强大的数据管理,确保数据完整性和可信度。 二、Prominence Plus 系列液相色谱仪深根本土,经典焕新。由精心挑选和优化的模块组成稳健的液相色谱系统,Prominence Plus 系列液相色谱仪具有优异的可扩展性和兼容性。无论是常规分析还是高效的快速分析,可让更多的用户得到一如既往的高准确性高可靠性的分析结果,成为各个领域实验室的有力工具,包括制药、生物制药、化学、环境和食品等。 灵动 Prominence Plus系列包含高效/超高效液相色谱系统,灵活兼容常规LC及快速LC分析需求; 经典的积木式设计,基于强大的系统管理器,提供优异的模块扩展性,灵活应对您多样的用需求。 高效 最高支持66Mpa高压输液; 支持2μm-3μm小粒径色谱柱,实现高分离度高灵敏度的快速分析; 可靠 延续Prominence系列一贯的高稳定性、高耐用性、低维护性的特点,助您轻松开展分析工作; 快速液相模式可实现高效而精确的梯度分析,获得理想的保留时间重复性; 专业 60年液相色谱技术沉淀之作,力求优异性能与轻松操作间的平衡; 使用功能强大的LabSolutions工作站,符合GMP法规数据完整性技术要求,匹配实验LIMS系统。 三、超快速液相色谱质谱联用仪岛津LCMS-8045三重四极杆液质联用仪 迅捷的速度,敏捷的灵敏度得益于岛津深厚的质谱研发积淀,在诺贝尔获奖者的指导下实现关键技术的突破。作为行业范围内将三重四极杆高灵敏度和高速度相结合的公司,为质谱领域带来真 正意义上的创新。为用户着想,秉承超快速分析的理念,显著提升分析通量,打 造实验室的效率之星。 优异的稳定性,值得信赖的准确性LCMS-8045重视仪器抗污染能力和整体耐用性,即使在严苛的连续分析中也可保 持出色的稳定性,提供准确可靠的分析结果。无论是食品安全还是药物分析,环 境监测还是临床研究,在面对复杂基质样品时都可以轻松应对。 功能丰富的软件,强大的MRM方法包Labsolutions LCMS集合型工作站软件,具备丰富的支持多组分定 量方法制作的便利功能,以直观的界面帮助用户迅速上手。从方 法建立、实时分析到报告编辑,化繁为简,大幅提升分析工作的 效率。更提供多领域分析方法包,无需方法摸索,即刻开展工作。 本文内容非商业广告,仅供专业人士参考。
  • 火眼“金”睛:测定水中丁基黄原酸的在线监测解决方案
    黄金抗腐蚀性强,极为稳定,是首饰业、电子业、现代通讯、航天航空业等部门的重要材料,因为稀有而逐渐成为了珍稀品,甚至成为了一个国家的财富象征。“点石成金”的神奇药水丁基黄原酸盐“点石成金”的故事众所周知,仙道点铁石而成黄金,化腐朽为神奇。跟传说的手指一点而成金不同的是,21世纪的今天,“点石成金”靠神奇药水---丁基黄原酸盐。丁基黄原酸盐为黄色粉末固状,俗称“丁基黄药”,是一种重要的金属硫化矿捕集药剂,被广泛应用于各种重金属硫化矿(如PbS、ZnS、CuS等)和部分贵金属硫化矿(如Au2S3、Ag2S等)的浮选捕收。Tips:浮选捕收剂的目的是通过在被浮矿物表面选择性吸附形成疏水层,从而使疏水性矿粒附着气泡上浮至泡沫产品中,成为精矿,实现了真正的“千淘万漉不辛苦,吹尽狂沙始到金”。浮选捕收剂的结构示意图浮选捕收剂与矿物作用的原理图“危害健康”的有毒药水丁基黄原酸盐丁基黄原酸盐也是会对身体造成伤害的有毒药水,金矿在提炼过程会产生大量的毒副产品,如部分丁基黄原酸盐随废水排入地表水,污染饮用水源和土壤。此外,金矿提炼过程中还伴随着如铅、汞、镉等重金属污染,严重者会导致该地三十年内寸草不生!Tips:丁基黄原酸盐对人体和畜禽的危害主要表现在伤及神经系统和肝脏器官,对造血系统也有不良影响。谱育科技全新工业污染物监测方案根据《水质 丁基黄原酸的测定 吹扫捕集/气相色谱-质谱法》(HJ 896-2017)中的描述:水样中需加入硫代硫酸钠、氢氧化钠、氟苯及磷酸对丁基黄原酸进行衍生(衍生方程式如下),通过测定二硫化碳,间接测定水中丁基黄原酸的浓度。C4H9OCSSK(Na) + HCl→CS2↑+ C4H9OH + K(Na)Cl谱育科技EXPEC 2100 水中挥发性有机物在线监测系统可以实现对丁基黄原酸的在线监测。吹扫捕集-气相色谱-质谱法测定水中的丁基黄原酸我国在《集中式生活饮用水地表水源地特定项目标准限值》(GB 3838-2002)中对生活饮用水中丁基黄原酸的含量进行了严格限定。谱育科技可为您提供吹扫捕集-气相色谱-质谱法 对水中的丁基黄原酸进行分析,该方法具有灵敏度高、重复性好、无人化操作等优点。方案特点★ 丁基黄原酸在0.2-4μg/L线性相关系数R2>0.999,连续6针进样的重复性RSD为8.24%;★ 丁基黄原酸的检出限为0.03μg/L,达到实验室检测水平;★ EXPEC 2100产品提供高精度压力控制,保证卓越的保留时间稳定性和峰面积稳定性;★ 搭配EXPEC 2100可实现无人化操作,可以实现对水中挥发性有机物的在线监测。EXPEC 2100水中挥发性有机物在线监测系统可实现对丁基黄原酸的全自动在线监测,助力实现“既要金山银山,也要绿水青山”这一美好愿望。
  • 公开征求氧化铁铬等4种食品相关产品新品种意见
    根据《食品相关产品新品种行政许可管理规定》和《食品相关产品新品种申报与受理规定》要求,氧化铁铬等4种食品相关产品新品种已通过专家评审委员会技术评审(具体情况见附件)。现公开征求意见。请于2024年1月21日前将书面意见反馈至我中心,如在截止日期前未反馈相关意见,视为无不同意见。邮 箱:biaozhun@cfsa.net.cn 一、氧化铁铬1.背景资料:该物质在常温下为黑色粉末,不溶于水。 美国食品药品管理局和日本化学研究检验所均允许该物质 作为着色剂用于食品接触用塑料材料及制品。2.工艺必要性。该物质为黑色无机着色剂,具有较好的 耐候性、耐温性、化学稳定性等性能,并可用于黑色塑料制 品的红外线识别。二、(1R,2R,3S,4S)-rel-二环[2.2.1]庚烷-2,3-二羧酸钙盐 (1:1) 1.背景资料:该物质在常温下为白色粉末,极微溶于水。 美国食品药品管理局和欧盟委员会均允许该物质用于聚丙 烯(PP)、聚乙烯(PE)塑料材料及制品。2.工艺必要性:加入该物质的 PP、PE 具有较低的水蒸 气渗透率和氧气透过率。三、聚丁二酸-己二酸丁二酯1.背景资料:该物质在常温下为白色颗粒,不溶于水, 可溶于氢氧化钠和氯仿。美国食品药品管理局和欧盟委员会 均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性:该树脂较易熔融,加工性能良好。以该 物质为原料生产的塑料薄膜,具有较好的透明度和光泽度。四、1,3-苯二甲酸与 1,4-苯二甲酸和 1,4-二(羟甲基)环己烷的聚合物 1.背景资料:该物质在常温下为固体,不溶于水和乙醇。 美国食品药品管理局、欧盟委员会、日本厚生劳动省和南方 共同市场均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性:该物质为基础树脂,相较于其他聚酯材 料密度低,可以制造较轻便的产品;有较低的吸水性,能更 好的保持尺寸稳定性,可应用于透明板材、薄膜等产品生产。
  • 专注仪器设备传感器,对标业界顶级企业--访安徽见行联合创始人孙洪明
    “2024中国检测技术与半导体应用大会暨半导体分析检测仪器与设备发展论坛”于2024年7月11-13日在上海虹桥新华联索菲特大酒店隆重举行。大会以“大会报告+分会报告+产品展览+高校科技成果展示+学术墙报+晚宴交流”的形式召开,91个口头报告专家及15个提供墙报的学生,分别来自于半导体检测领域知名科研院校、半导体制造企业、半导体检测企业等。大会设立了包括集成电路晶圆级缺陷检测技术、半导体器件可靠性及失效分析、集成电路先进制造及封装技术、半导体检测设备及核心零部件等在内的15个分会场报告,多样的报告主题讨论极大促进了与会者之间的互动交流和融合创新。会场外也精心布置了国内多家知名企业展位,如安捷伦、珀金埃尔默、北方华创等,他们纷纷展示了各自在半导体量检测领域的新技术、新设备。会议期间,仪器信息网特别采访了安徽见行科技有限公司联合创始人孙洪明。在采访中,孙老师就见行科技在半导体量检测设备传感器方面的发展现状,见行科技系列产品技术优势、市场应用情况,最近一年取得的成绩以及未来的发展规划,后摩尔定律时代半导体量检测设备零部件面临的挑战和机遇等话题进行了深入的交流和分享。以下是现场采访视频:纳米级产品系列仪器信息网:近年来,贵公司在半导体量检测方面提供了什么样的解决方案及产品?孙老师:大家好,我是见行科技联合创始人孙洪明,也很高兴能够有机会参加仪器信息网采访,谢谢大家。见行是一个小微公司,主要提供三个系列的产品,一个系列是电涡流传感器,一个系列是电容传感器,还有一个是压电位移台,这三个系列的产品都是纳米级的。涡流、电容、压电材料是技术核心仪器信息网:其运用的主要原理与技术有哪些?孙老师:我给大家分别简单的介绍一下。电涡流传感器的原理是通过涡流的原理测位移,那么涡流大家都比较熟知的可能是家里的电磁炉,那么电磁炉是通过涡流产生热,那么我们电涡流传感器是通过探头产生的涡流在目标导体里边,涡流会对原来的电感和电阻产生影响,它跟位移有一个函数关系值,那么我们通过解调里边的电感和电阻的数值来反映距离的值。第二个电容传感器是两个极板,那么极板之间它有一个电容的容值,通过容值的这种分析来反映它的这种距离。那么第三个就是说压电材料,你给它一个电,那么它会有一个形变,这个形变是非常微小的,但是非常迅速,那么它也可以达到纳米级的这种促动,这是三个产品的基本原理。不断实现技术突破,成就见行特色优势仪器信息网:系列产品有哪些创新点?孙老师:比如说电涡流传感器,它最大一个突出点,它可以适应各种检测环境,它对检测环境不挑剔,比如说一些有油污、水污它都可以去适应,但它最大的一个弱点是它的温漂系数非常大,因为你比如说温度的改变,本身它的线圈的电阻值和电感值,它自身就会发生变化。全世界通行的方法都是说只用它的电感值的变化来反映它的距离,电阻值这个参数认为没有用。那么见行,利用电阻值的变化来反馈它的温度来进行闭环的温度补偿,也就是说我们在测量的时候,我们不用去测环境的温度,我们直接测电阻值,直接就能反馈出温度的变化。所以在温飘这个领域,见行在全球的领域是最优的。那么涉及到电容,因为我们涉及到纳米级的测量,就是说涉及到这种溯源和传递,比如说标准的定义,这个很难,那么如果我们去做的时候,包括现在我们去标定的时候,我们也用的是国外的一些仪器和设备,你在没有标准值的时候,那么如何做出自己的标准,那么见行它有自己的独特的这种工艺,比如说我们自己制作了我们自己的标准的这种探头。那么另外还有涉及到一些细节,比如说电容传感器探头接触面的这种工艺是极其复杂的,那么我们在这里边进行了极其深入的研究,那么研究的时候,我们要面对国情,一开始我们设计的也是全世界最领先的,但是国内制造不出来,我们的配套加工不出来,那么我们会降指标,后边又出现了良率的问题。比如说我们可以达到国外的这种水准,在国内这种良率,它只有百分之三四的时候,你也不可能进行产业应用和批产。经过不断的这种磨合,现在我们探头既能国内生产,良率指标又很高,然后又不弱于国外。那么再说到就是压电制动器,它是一个触动的一个装置,我们做的基本上都是闭环反馈,因为本身我们有了位移传感器,我们用的就是电容位移传感器它所反馈的,那么我们的电容传感器,在做促动器这个行业里边,见行的位移传感器应该是最好的,所以我们的反馈也是最好的,这就是见行的产品的这种特色和优势。我补充下,见行两个字,“见”就是看见,看见就是测量、传感,那么“行”就是制动、触动、推动。所以见行这两个字就代表着见行所从事业务。“看得见”又“看得准”仪器信息网:相关解决方案/产品市场应用情况如何?帮助客户解决了哪些问题?孙老师:现在见行传感器是最成熟的,那么传感器里边,尤其是电涡流传感器是最为成熟的,我们投入的时间和精力也是最多的,我们主要是帮助客户解决的是看见这个问题,看见这个问题其实就是一个测量的问题。那么比如说我们所有的量检测设备,这里边包括我们的光刻设备里边,那么首先第一个你要解决的是看见的问题,第一你看得见,第二你要看得准,这个问题是非常关键的问题,我们相当于给我们的下游的包括这次会议的一些设备商比如说量检测的设备,那么比如说键合类的设备,比如说光刻类的设备,那么首先它要解决看见的问题。见行在位移这个领域能提供全世界最先进的传感设备给我们的客户,助力他们更好的去发展。瞄准国内空白领域,注重零部件底层超越仪器信息网:您是如何进入这个行业的?能否简单说下公司发展历程?孙老师:这个可以聊一聊,因为今天会议是在上海,其实我去安徽合肥去创立公司之前,其实我就是在虹桥这一边是一个偶然的因素。那么我想去做一点事情,当时因为我们整个团队都是中国科学技术大学的,当时实验室有三个技术领域这个方向,那么我就当时用了半年的左右的时间去调研,调研我就选择了这个方向,选择这个方向的原因有几条,第一,这个的确是国内的空白,没有其他企业去做。第二它又足够的高端,因为全世界从事这个领域,能够达到纳米级的这种电容电涡流这种检测,包括制动,全世界也不会超过10家的这种企业。我们从事企业,就是说赚钱是我们的首要的目标,但除了赚钱,还得做一点有意义的事情。所以当时我就觉得这个方向这个领域应该是值得去做的,所以我们我回到合肥之后,跟我们几个合伙人,当时就决定在这个领域方向去发力去做,但是具体电容、电涡流传感器,包括压电制动系统应用到哪个领域和方向,我们当时并不是很清晰。然后后边的事情大家就知道了,美国和中国之间这种贸易制裁,一些核心的元器件,已经开始限定了之后,反而是给了见行一个机会。03年之前见行几乎没有做市场推广和宣传,客户都是通过一些媒体,通过一些有学术论文他们去查去找。那么在中国在这个领域这个方向,我们可以查连续十几年在这个方向都有科研,就是中国科学技术大学传感与制动实验室,然后找到实验室了,然后他就找到我们公司。说一下我们的营收,我们19年成立了公司,一直到22年8月份,我们基本上没有营收,因为那时候我们都闷头研发,但是在这个期间国内的一些Top级的一些企业它已经找到了我们,找到我们之后,我们当时是不卖给他东西,因为那时候东西我没有做好,因为我觉得我卖给你,我是不负责任,你可以免费去用,一直他就这么去用。原来都是客户找我们,几乎多数是通过论文和文献的方式,他找到我们的,然后他找到我们之后,他提出他的需求,我们就给他定制化的这种研发,然后一点点做。那么你看到22年8月之后,尤其是电涡流传感器,稳定了之后,我就开始进行销售。那么22年我的营收,订单额是400万左右,那么23年一年就达到2,400万,那么今年上半年已经达到了去年的营收这种水准,那么所以这也是我们前期都是客户来找我们,然后我们去帮他去把他这种功能去完善。那么在这个过程中,我觉得也是核心的元器件,或者是说产业的这种新兴者的必经的路径。那么产业链上下游要有一个紧密的一种结合。第一,做核心元器件也有做核心元器件的这种操守,你做这个事情你要做得好,你要做到极致,你要能跟全世界最顶级的企业进行PK,你要坚守这个原则,你有问题的东西不要去给客户,你给客户你会给他添麻烦。第二作为产业链,上游的企业对下游企业那也要有一个支撑。那么包括就是说你的资金价格或者是应用场景,真正是你的核心合作伙伴,你要给他去开放,你要去磨练,你要有给他这种成长空间。所以今天走到我们这种比较紧密的这种结合方式,用我的客户说,我们见行的电涡流传感器真正达到了世界领先的这种水准,因为这也是超出他们意料之外的。那么原来他们用国外的产品的时候,比如说我们说做光刻那一块,他的供应商,国外采用的供应商,同时也是荷兰A公司的供应商,那么A公司明确规定最顶级的那种产品,它的供应链是不可能给大陆地区的这些供应商的。如果所有的这种元器件都是这样,那么我们国内这种半导体的产业,你就是不可能存在超越,那么超越的根和源在哪?那么我们必须从最底层,比如说我一个电涡流传感器,那么可能在整个光刻机里边,10万个零部件里边,我只占一两个,那么这一两个重不重要?重要,如果所有10万个零部件,都能从最底层去超越国外,那么我们再加上材料再加上工艺,我们就有超越的这种可能。但是如果你不给产业这么小的这种根枝末梢,你不给他去成长的这种空间的时候,那么他没法成长起来,你就对付用的时候,永远我们是不会超越到国外的这种文化产业水准的。对标业界顶级企业,横向拓宽发展渠道仪器信息网:贵公司未来有哪些发展规划?孙老师:那么首先的第一点就是说面向于半导体的这种产业,见行现在只能是证明,我们现在所从事的这块业务,是被我们的产业被我们的合作伙伴认可了,只能是初步的证明了见行现在能够立足了。那么包括像这次会议,那么我们来也向产业做更多的这种学习,做更多的了解。那么看看见行能不能在整个半导体的这种产业链,无论是光刻设备、量检测设备、键合设备、封装设备里边是否能够从事更多的工作。那么第二,那么见行也想把见行这种前面经过市场实际的验证的这种模式,继续去横向的去推广,从事更多的种类或者是品类这种工作。那么另外本身就是说因为见行做的东西就是非常小,那么就是说见行也会在其他的领域,比如说我们会面向航天航空,比如说或者是像军工或者是一般的大众类的这种产业去发展。那么首先见行特征有几点,包括见行今天能做到这个水平的原因,就是说跟我们的出发或者是使命是相关的。第一,一定是对标国际最顶级的品牌的最顶级的这种产品,这点是不容置疑的。那么前面说到的其实是侥幸进入半导体这个行业,但是半导体对核心元器件的需求量非常小。那么第二个我对标的一定是有大市场的,因为在广在的泛在的其他的工业领域,我们还是有很多的核心的这种元器件,是被国外卡脖子的,因为制约工业的核心的三个要素就是传感、材料和工艺。那么见行尤其是传感领域,在更多的产业领域做出自己的贡献。研发投入不设限是见行高速发展的底气仪器信息网:随着芯片的制程需求越来越精密,您认为这对半导体量检测设备的零部件带来了哪些机遇和挑战? 孙老师:现在这两天我参加会议的时候,大家更多讨论的就是摩尔定律,那么因为我刚刚上午参加一个会议,苏州一家企业他说他给出了一张数表,那么从22纳米制程之后,光刻这个领域,摩尔定律渐渐就开始失效,但是往更深度的时候,路线在短时间内是不可变的。那么这个时候就要求尤其是见行,从事精密这个领域的,就需要我们做更多的工作,那么去做更深入的这种研发。这种研发不只是一个全世界顶标级的这种企业,它不只是一种技术层面的研发,包括一些理论层面的这种支撑。如果你理论层面支撑不够的时候,你只跨越了技术的门槛的时候,你是到达不了国际顶尖的这种企业的。那么所以在这个方向的时候,新的产业和领域,更精密的时候,需要大家做更多的投入做更多的工作,尤其是研发的投入。这一点我补充一下,见行科技之所以能做到今天,包括当下见行做所有的研发,是不做限制的。我们的研发部门,他要什么仪器,可以买什么仪器,要什么设备,可以买什么,没有预算管制,无限制投入,因为我们的PK的是最顶级的企业。
  • 你需要知道的液质使用禁忌,千万别踩雷!
    p style=" text-align: center " strong 正负离子的分析 /strong /p p & nbsp /p p 酸性物质适合做负离子检测,所以流动相偏碱性较合适,促使其解离,碱性物质适合做正离子检测,流动相中适当的加入酸,促使其形成正离子,流动相中适当加一些醋酸钠(或者醋酸铵),可形成加钠的正离子或者加铵的正离子。 /p p & nbsp /p p 推荐使用的流动相和添加剂: /p p & nbsp /p p 有机溶剂:反相:乙腈/甲醇/乙醇/异丙醇/二氯甲烷 /p p 正相:吐仑/己烷/苯/环己烷/四氯化碳 /p p & nbsp /p p 缓冲液:乙酸铵/甲酸铵 /p p & nbsp /p p 酸:甲酸/乙酸/三氟乙酸(正离子) /p p & nbsp /p p 碱:氨水 /p p & nbsp /p p 不推荐使用/尽量不用的: /p p & nbsp /p p 有机溶剂:四氢呋喃 /p p & nbsp /p p 缓冲液:磷酸盐/柠檬酸盐/碳酸盐 /p p & nbsp /p p 酸:硫酸/磷酸/盐酸/高氯酸/磺酸 /p p & nbsp /p p 碱:季胺/强碱/三乙胺 /p p & nbsp /p p 其他:清洁剂/表面活性剂/离子对试剂/不挥发的盐 /p p style=" text-align: center " & nbsp /p p style=" text-align: center " strong 糖苷类/盐类分析 /strong /p p & nbsp /p p 糖苷类的物质在做FAB和esi(+)时,峰往往比其他峰要强,此为经验,原因只是推测可能和天然产物的提取过程有关;盐类化合物如盐酸盐、硫酸盐在质谱中酸的部分一般不会出现;二羧酸盐(esi负离子模式)除了分子离子峰外,会出现连续掉44的两个峰,为失去羧酸根的离子,这三个峰非常特征,但是会受锥孔电压的影响,调低电压谱图会更漂亮。 /p p & nbsp /p p style=" text-align: center " strong 胺类分析 /strong /p p & nbsp /p p 胺类物质做esi质谱时要注意进样量要少,因为很容易离子化,不易冲洗干净,会影响后面样品的测定。像三乙胺在液质联用时不能用于调节流动相pH值。若不慎引入三乙胺,在正离子检测时总会出现很强的102峰(三乙胺的)。 /p p & nbsp /p p style=" text-align: center " strong 水和氮气的选择 /strong /p p & nbsp /p p 质谱用水一般用娃哈哈纯净水之类的就很好;质谱用甲醇和乙腈,换用了很多品牌,发现Merck的还是稍微好一些;Finnigan用的氮气不一定要用到液氮瓶,用普通的钢瓶气就可以了,可能还省钱些;建议大家买一个好一点的手电筒和一个放大镜,手电筒用来看源里面,放大镜看你割的毛细管平整。 /p p & nbsp /p p style=" text-align: center " strong 基线问题 /strong /p p & nbsp /p p 质谱的基线其实跟液相的紫外检测器和荧光检测器一样,基线高的原因不外乎内部和外部的原因。 /p p & nbsp /p p 1)你选择的流动相在质谱的响应比较高,比如水相比较多的时候,噪音比较大些;还有如果盐含量比较大的时候,噪音更大些。 /p p & nbsp /p p 2)检测器的灵敏度越高的时候,噪音应该越高。如果质谱的污染比较严重时,基线肯定比较高。比如离子阱检测器,用得久了,阱中的离子就会增多,一方面降低了质谱的灵敏度,另一方面增加了基线噪音。 /p p & nbsp /p p 3)质谱的基线很多时候还跟你选择的离子宽度有关。比如你作选择离子扫描的时候,基线就低些。你作选择反应扫描的时候,离子宽度不要选得太宽,太宽噪音就高些。 /p p & nbsp /p p 4)多级质谱一般做二级或三级质谱,基线噪音就低很多。 /p p & nbsp /p p style=" text-align: center " strong 质谱维护经验 /strong /p p & nbsp /p p 做样前-检查氮气,流动相,质谱仪的真空度,毛细管温度& #8230 /p p & nbsp /p p 1) 最好不用直接进样(容易污染离子源)。 /p p & nbsp /p p 2) 做联用时最好分流(a可以使用常规柱,b缩短分析时间,c 延长质量分析器寿命)。 /p p & nbsp /p p 3) 最好使用在线切换阀,降前每个样品的前后1-2分钟的流动相切入废液(避免样品中的盐进入质谱,做Sequence时可以把平衡柱子的流动相切入废液)。 /p p & nbsp /p p 4 )开始联用前,直接运行质谱数分钟,可以先将温度(毛细管温度和离子源温度(APCI))加热到预设定值(如果是APCI源还可以避免将烧掉heater,太贵了,最好别烧)。 /p p & nbsp /p p 5) 待机时将切换阀置于waste,避免刚开液相时将流动相打入离子源。 /p p & nbsp /p p 6) 关机前毛细管的温度先降下来,稳定一段时间后再关闭电源,避免风扇停止转动后毛细管外围的热量向里扩散,容易引起内部线路及电子元器件老化加速。 /p p & nbsp /p p 7) 每天清理毛细管口外部,擦洗干净,每次停机时注意清洗Skimmer,用无尘擦拭纸,kimberly那种。 /p p & nbsp /p p 8 )如果用的是钢瓶而且天天做样的话,将两个钢瓶并联,当然,一月不做一次的话就算了。 /p p & nbsp /p p 9) 做定量时注意离子源喷针的具体位置,否则标准曲线就不能用了。 /p p & nbsp /p p 10)不要不经过柱子分离进行定量分析,结果不可靠(竞争性抑制目标分子离子化)。 /p p & nbsp /p p 11 )如果是负离子检测的话,可以相流动相中加入少量异丙醇。 /p p & nbsp /p p 12) 不要使用不挥发性盐,如果使用挥发性盐,但浓度不要超过20mmol/l。 /p p & nbsp /p p 13) 需要使用酸的情况下可以用甲酸,乙酸,三氟乙酸可以用,但能用甲酸或乙酸时就别用TFA。 /p p & nbsp /p p style=" text-align: center " strong 缓冲液浓度选择 /strong /p p & nbsp /p p 理论上液质联用禁止使用任何不挥发性的缓冲盐,如果需要尽量使用诸如乙酸氨等挥发性盐,浓度不要超过20mmol/l。 /p p & nbsp /p p 对于不挥发性的缓冲盐,如果你的仪器有吹扫捕集的话也可使用,但一定要小心。万不得已也不要用,首先有不挥发盐是得不到好的离子流的,其次盐留在质谱中很难除掉,除非停机清洗,不然一直会影响其他样品的分析。 /p p & nbsp /p p 可以找质谱友好的条件来做液质联机,例如色谱条件为20mM磷酸盐的水/乙腈流动相,做液质联机的时候就可以用醋酸铵代替,然后用醋酸调节pH值与磷酸盐的一致即可。 /p p & nbsp /p p 除了难挥发的盐,三乙胺、表面活性剂、还有高浓度(& gt 0.5%)的TFA,都对质谱不好,液质联用的流动相中应该避免。 /p p br/ /p
  • 高分子表征技术专题——二维相关红外光谱分析技术在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!二维相关红外光谱分析技术在高分子表征中的应用Applications of Two-dimensional Correlation Infrared Spectroscopy in the Characterization of Polymers本文作者:侯磊,武培怡 作者机构:东华大学化学化工与生物工程学院,上海,201620作者简介:武培怡,男,1968年生. 1985年,南京大学化学系获学士学位,1998年,德国ESSEN大学获博士学位. 1998~2000年在日本触媒研究中心从事研究工作,2000~2017年任复旦大学高分子科学系教授,2017年起任东华大学化学化工与生物工程学院教授. 2001年入选上海市科委启明星计划、上海市教委曙光计划,2003年入选上海市科委白玉兰科技人才计划,2004年入选上海市科委启明星跟踪计划,获得国家杰出青年基金资助、上海市引进海外高层次留学人员专项资金资助,2005年度入选教育部首届新世纪人才计划,2007年入选上海市优秀学科带头人计划,2016年入选英国皇家化学会会士,2017年获陶氏化学“Dow Innovation Challenge Award”. 主要研究方向包括二维相关光谱在聚合物体系中的应用、智能仿生材料、聚合物功能膜等.摘要二维相关光谱作为一种先进的光谱分析方法,具有提高谱图分辨率、解析动态过程等优势,近来在高分子表征中引起了越来越多的关注. 高分子体系涉及了丰富的相互作用和复杂的结构,分子光谱是常用的表征手段,而借助二维相关光谱分析技术,能够有效识别精细结构、判别动态变化机制,从而显著丰富和完善分析结果. 本文重点围绕二维相关红外光谱,简述了发展历史和基本原理,随后结合实际过程,介绍了相关实验和分析技巧,最后列举了其在高分子表征中的典型应用,展示了二维相关红外光谱分析的特点,具体涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散、天然高分子的结构表征等研究. 希望通过本文的介绍,能够帮助读者更好地理解二维相关光谱,进一步拓展其在高分子领域中的应用.AbstractTwo-dimensional correlation spectroscopy (2Dcos) is an advanced analysis method, which holds great advantages in improving spectral resolutions and interpreting dynamic processes, and has attracted great attention in the field of polymers. Molecular spectroscopy is frequently applied in the characterization of polymers, which involves abundant molecular interactions and complex structures. Under the help of 2Dcos analysis, fine structures as well as dynamic mechanisms within the polymer systems can be effectively identified, thus significantly enriching and improving the analysis results. In this paper, we will mainly focus on the two-dimensional correlation infrared spectroscopy (2DIR). Firstly, the history and basic principles of 2Dcos are briefly introduced. Then, some relevant experimental and analytical techniques are presented based on the actual process. Finally, typical applications of 2DIR in the polymer characterization are demonstrated and the features thereinto are also shown. Particularly, the response mechanisms of temperature-responsive polymers, complex molecular interactions in stretchable ionic conductors, diffusion processes of small molecules in polymer matrix and structures of natural polymers are investigated. It is hoped that this paper will help readers better understand 2Dcos and further expand its applications in the field of polymers.关键词分子光谱   二维相关光谱   高分子   分子相互作用 KeywordsMolecular spectroscopy   Two-dimensional correlation spectroscopy   Polymer   Molecular interactions  高分子材料体系涉及丰富的相互作用和多级结构,这是决定材料最终性能的关键. 分子光谱(红外、拉曼光谱)作为表征高分子材料的常用手段,一方面可以检测不同化学结构/组分所对应的官能团,依据特征吸收峰强度和位置,实现对高分子化学结构的鉴别,另一方面,可以基于不同官能团特征吸收峰的强度和位置变化,判别基团所处的物理或化学环境,实现对体系中复杂相互作用的解析. 随着高分子材料的发展,体系趋向多样化、多功能化,而传统的一维分子光谱存在谱峰重叠严重、分辨能力有限等问题,一定程度限制了分子光谱在复杂高分子体系的应用拓展.二维相关光谱(Two-dimensional correlation spectroscopy,2Dcos)作为一种先进的光谱分析手段,尤其适合于从分子水平探讨各类外扰作用下复杂高分子体系涉及的结构和相互作用变化. 相较于传统的一维光谱,二维相关光谱的优势在于:(1)对于包含许多重叠峰的复杂谱图,起到图谱简化的作用;(2)通过将原始谱图在第二维度上延伸,能够明显提高原始一维谱图的分辨率;(3)谱峰的相关性可帮助判断体系中的相互作用以及峰归属;(4)可用于确定外界刺激下不同过程的发生次序. 本文首先将结合二维相关光谱的发展历史,介绍其基本原理. 其次,围绕动态谱图获取和二维相关分析,介绍二维相关光谱的一些实验和分析技巧. 最后,结合具体体系,重点阐述二维相关光谱在高分子表征中的应用.1 基本原理1.1 发展历史二维相关光谱分析方法的基本概念最早起源于核磁共振(NMR)领域. 二维核磁共振(2DNMR)谱通过多脉冲技术激发核自旋,采集原子核自旋弛豫过程的衰减信号,最后经双重傅里叶变换得到[1]. 通过将核磁信号扩展到第二维度,可以显著提高谱图的分辨率,并且有效简化包含许多重叠峰的复杂光谱. 与此同时,通过选择相关的光谱信号,可以鉴别和研究分子内/间的相互作用. 尽管二维光谱技术在核磁领域取得了快速发展,却在很长一段时间内未能深入到其他光谱分支,如红外、拉曼、紫外-可见吸收、荧光光谱等. 阻碍二维光谱技术发展的一个根本原因在于多重射频脉冲的二维核磁技术可以成功地在精密而昂贵的核磁仪器上实施,却不能在普通的红外、拉曼和紫外-可见吸收等光谱仪器上实现. 因为这类光谱的时间标尺(time scale)远小于核磁共振[2]. 一般来说,核磁时间标尺数量级在毫秒到微秒之间,而红外吸收光谱观察分子振动的时间标尺在皮秒数量级,因此产生二维红外光谱必须采用特殊的新途径.二维相关光谱概念上的突破是由特拉华大学(University of Delaware)的化学家Noda[3,4]提出的. 他把核磁实验中的多重射频励磁看作是一种对体系的外扰(外部扰动). 施加于体系的外扰可以多种多样,如热、磁、机械、电场、化学甚至声波等. 每种外扰对体系的影响是独特而有选择性的,并由特定的宏观刺激和分子相互作用的机理所决定. 因此,包含在动态光谱中的信息类型是由外扰的方式和电磁波的种类所决定的. 外扰的波形没有任何限制,从简单的正弦波、脉冲、到随机的噪音或静态的物理量(如时间、温度、压力等)的变化均可应用于外扰. 由此,Noda设计出一种完全不同的二维光谱实验技术,他用外扰来激发被检测体系的分子,由于被激发分子的弛豫过程慢于振动光谱的时间标尺,因而可使用时间或温度等外扰分辨振动光谱(红外、拉曼)技术来跟踪研究被检测体系受外界扰动而产生的动态变化,结合数学中的相关分析技术,将原有的光谱信号扩展到第二维度,从而得到二维相关光谱(如图1所示). 二维相关光谱实际研究的就是动态光谱的变化[5,6]. 此后,随着二维相关光谱技术的发展,逐渐在荧光光谱、X射线衍射谱、凝胶渗透色谱等也得到了应用. 总体而言,二维相关光谱分析在红外光谱中的应用最为成功,这主要是由于红外光谱的信噪比相对较高,具有高灵敏度、高选择性和非破坏性等特点,能够在分子结构和链段运动等方面提供丰富信息. 另一方面,红外光谱的谱峰重叠严重,解析起来存在一定困难,二维相关光谱的引入可以很好地解决这一问题. Fig. 1 Acquisition procedure of generalized 2D correlation spectra. In the 2D synchronous and asynchronous spectra, red colors represent positive intensities while green colors represent negative ones.1.2 计算原理二维相关光谱考虑外扰变量下(如时间、温度、压力、浓度、电场、磁场等)光谱强度y(v, p)的变化情况,其中v为光谱变量,可以为任何光谱量化的参数,如红外波数、拉曼位移、紫外波长、X射线散射角等,p为外扰变量,可以是任意合理的物理或化学变量,如时间、温度、压力、电场强度、浓度、pH、离子强度等. 对于体系在一定外扰区间(1~N)下引起的动态光谱y˜(v, p)定义为[2,5]:y¯(v)为体系的参考光谱,通常选为平均谱. 参考光谱的定义为实际过程中,可以选择某一个参考点p = Pref处的光谱作为参考光谱. 参考点可以是实验的初始状态或结束状态,也可以直接简单地设为0,这种情况下,动态光谱即为我们观察到的光谱强度.二维相关强度X(v1, v2)表示在外扰变量区间内,对光谱变量v1和v2光谱强度变化y˜(v, p)的函数进行比较. 由于相关函数是计算2个互不依赖的光谱变量v1和v2处强度的变化,因此可以将X(v1, v2)转变为复数形式[2]:这里,组成复数的相互垂直的实部和虚部分别称作同步和异步二维相关强度. 同步二维相关强度Ф(v1, v2)表示随着p值的变化,v1和v2处光谱强度的相似性变化,而异步二维相关强度Ѱ(v1, v2)则表示光谱强度的相异性变化.二维相关光谱的快速计算方式在于对动态光谱进行Hilbert-Noda变换,将其从外扰域转换到频率域上,最终得到二维相关光谱[2,5].二维相关同步谱:二维相关异步谱:其中Mjk代表Hilbert-Noda转变矩阵的第j行第k列的元素,表示为:1.3 解谱规则二维相关光谱图包含同步谱和异步谱2类,图1展示了典型的同步和异步谱图.1.3.1 二维相关光谱同步谱图二维相关光谱同步谱图表现了给定2波数v1和v2处光谱强度的同步或者一致变化. 同步谱图沿对角线(对应于光谱坐标v1 = v2)方向对称,其中相关峰可以出现在对角线上,也可以出现在对角线外. 落在对角线上的相关峰称作自动峰,自动峰强度对应于外扰过程中光谱变化的自相关函数. 在同步谱中,自动峰的强度始终为正,代表了对应波数下光谱强度动态波动的整体程度. 所以,在动态谱图中表现出更大程度强度变化的区域对应的自动峰越强,而那些基本保持不变的峰自动峰强度小甚至没有自动峰. 交叉峰处于同步谱图的非对角线区域,表现了不同波数光谱信号的同步变化. 这样一种同步的变化,反过来,预示着2波数间可能存在一定的相关性. 尽管自动峰的强度始终为正,但交叉峰的强度可正可负. 如果2波数的交叉峰为正,说明这2个波数对应的光谱强度在外扰下同时增加或者同时降低;如果两波数的交叉峰为负,说明这2个波数对应的光谱强度一个增加另一个降低.1.3.2 二维相关光谱异步谱图异步谱图呈现了2个给定波数v1和v2处光谱强度的异步或者相继变化,它关于对角线反对称. 异步谱图中只有交叉峰,而无自动峰. 异步交叉峰只有在2个给定波数的光谱强度发生异相(如延迟或加快)变化时才出现. 这一特点尤其可以帮助区分光谱中的来源不同的重叠峰. 于是,外扰过程中,混合物中的不同组分、材料中的不同相或者化学基团经历不同的变化对光谱强度的贡献能够得以辨别. 即使是2个谱带靠的很近,只要它们的瞬间特征或者时间依赖光谱强度变化模式存在本质不同,它们之间便会出现异步交叉峰. 所以异步交叉峰的出现意味着这些谱带有着不同的来源或者是不同分子环境下的官能团. 异步谱图的交叉峰可正可负,而异步谱图中交叉峰的符号可以用来辅助判断谱带在外扰过程中的变化次序.1.3.3 二维相关光谱读谱规则利用同步和异步谱图的交叉峰,可以获得外扰条件下光谱强度发生变化的先后次序关系. 为方便表述,将同步谱图中(v1, v2)处的峰强度记为Φ(v1, v2),将异步谱图中(v1, v2)处的峰强度记为Ψ(v1, v2). 根据Noda规则[5]:(1)当Φ(v1, v2) 0时,如果Ψ(v1, v2) 0,则v1谱带处的强度变化发生先于v2谱带处的强度变化(表示为v1→v2),而如果Ψ(v1, v2) 0,则v2→v1;(2)当Φ(v1, v2) 0时,如果Ψ(v1, v2) 0,则v2→v1,而如果Ψ(v1, v2) 0,则v1→v2. 简单说来,如果(v1, v2)在同步和异步谱图的交叉峰符号一致(都为正或者都为负),则v1→v2;如果(v1, v2)在同步和异步谱图的交叉峰符号不一致(一个为正而另一个为负),则v2→v1.2 实验技巧二维相关光谱作为一种有效的光谱分析手段,是针对一系列动态光谱的数学分析,具体可分为2个过程:动态谱图获取和二维相关分析. 本节将结合实际操作过程,介绍二维相关红外光谱的一些实验和分析技巧.2.1 动态谱图获取2.1.1 样品制备对于固体聚合物样品,溴化钾压片法制备的样品可直接用于透射红外光谱测试;另外,还可使用溶液铸膜(solution casting)法在红外窗片上直接制备得到适合透射红外光谱测试的薄膜. 对于溶液样品,主要应考虑样品的密封问题,避免测试过程中溶剂的挥发. 此外,水溶液或者水凝胶样品,为避免H2O分子的红外吸收对高分子链上C―H和C=O基团吸收峰的影响,可以用D2O作溶剂.2.1.2 测试条件测试模式方面,为得到高信噪比的红外光谱图,一般使用透射模式进行数据采集. 特殊的样品也可选用其他附件,例如对样品表面进行研究时可选用ATR附件. 测试条件方面,为兼顾扫描时间和信噪比,可设置红外谱图分辨率为4 cm-1,扫描次数为32次.2.1.3 测试环境二维相关光谱的特点在于只对光谱的变化敏感,能够显著放大一系列动态光谱的变化情况. 不论样品浓度、厚度如何,如果其处于静态,不发生变化,则对应的二维相关光谱无任何信号. 因此,为了使二维相关光谱的信号只来源于样品本身的结构变化,需要保证测试过程中环境的相对稳定,排除测试环境变化引起的水或二氧化碳吸收峰变化的干扰. 通常,可以借助干燥空气或者氮气吹扫,待测试环境稳定后进行背景采集,随后开展一系列动态光谱的采集.2.2 二维相关光谱分析将采集的一系列动态光谱在特定的软件上进行数学处理,即可得到二维相关光谱同步和异步谱图. 目前,能够快速获得二维相关光谱的软件种类很多[7],大都是免费获取或者是商业化的软件,包括2D Shige、TDCOS、Mat2DCorr、2DCS、Midas 2010、R corr2D、Python Scikit Spectra、Python NumPy等. 关于二维相关光谱的谱图分析,重点在两部分:精细结构的分辨和动态过程的解析. 二维相关光谱异步谱可以区分光谱中来源不同的重叠峰,将异步谱中谱峰对应的波数进行基团归属,即可分辨体系的精细结构. 此外,通过结合同步谱和异步谱交叉峰的符号,可以获得外扰条件下光谱强度发生变化的先后次序关系. 为了方便解析复杂体系谱峰响应的先后次序,根据Noda规则,本课题组提出了一种简便的判断方式[8]. 如表1、2所示,分别读出了图1异步谱中所有谱峰对应的波数及其在同步和异步谱中交叉峰的符号(强度正负),之后将其对应一一相乘,结果如表3所示. 该表中每一个正值都代表它所对应的横轴的波数先于或快于纵轴的波数响应,而每一个负值代表它所对应的横轴的波数后于或慢于纵轴的波数响应. 基于此,可以直观地得出对应动态过程的谱峰响应次序(“→”表示先于或快于):1647→1628→1622→1615 cm-1.Table 1 Signs of cross-peaks in synchronous spectrum (corresponding to Fig. 1).Table 2 Signs of cross-peaks in synchronous spectrum (corresponding to Fig. 1).Table 3 The final results of multiplication on the signs of each cross-peak in synchronous and asynchronous spectra.3 典型应用基于二维相关光谱在判断精细结构和解析动态过程的优势,本节将结合本课题组的研究工作,介绍二维相关光谱在高分子表征中的应用,主要涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散机理等.3.1 温度响应高分子的响应机制温度响应高分子能够在外界温度发生变化时改变自身的物理或化学性质,形成对环境的感应并产生反馈,在智能传感、药物缓释、可控驱动、过滤分离、智能窗户等领域得到了广泛关注和应用[9~11]. 温度响应高分子的响应过程往往源于分子结构或链构象的变化,分子光谱(红外、拉曼光谱)对分子基团及相应的相互作用十分敏感,非常适合于研究其中的响应机理. 传统的一维分子光谱存在谱峰重叠严重、分辨能力低以及难以捕捉动态过程等不足,借助二维相关光谱分析,可以对温度响应高分子的精细结构和动态响应机制进行深入解析,探讨其中的构效关系.聚(N-异丙基丙烯酰胺)(PNIPAM)在水溶液中呈现LCST (lower critical solution temperature)型转变,即升温过程发生相分离,相转变温度约为32 ℃[12]. PNIPAM分子链同时存在亲水的酰胺基团和疏水的碳链骨架、异丙基侧基,利用变温红外光谱对PNIPAM水溶液升温过程进行跟踪,观察到vas(CH3)和vs(CH2)吸收峰波数的降低以及Amide I区域1625和1649 cm-1处吸收峰的相互转化,表明聚合物链C―H基团的脱水和分子间/内氢键C=O… H―N的形成. 基于二维相关光谱分析,获取了PNIPAM水溶液相分离的微观动力学机理:温度升高首先发生侧基CH3的两步脱水,随后是主链的塌缩和聚集,最后为酰胺氢键的形成,并最终导致了相分离[13].PNIPAM的LCST型转变对溶剂组成也十分敏感. 尽管水和甲醇都是PNIPAM的良溶剂,但在两者以一定比例混合的状态下对PNIPAM则为不良溶剂. 例如:当甲醇和水的体积比为0.35:0.65时,PNIPAM在该混合溶剂中的LCST约为-7.5 ℃,这种现象称为“共不溶”现象. 利用红外光谱和二维相关光谱分析研究PNIPAM在水/甲醇混合溶剂中温度响应行为[14],传统一维红外光谱分析表明,相比于纯水溶液,PNIPAM链在水/甲醇混合溶剂中处于塌缩的状态,并且PNIPAM和甲醇的相互作用明显被削弱了,这主要归因于混合溶剂中水-甲醇团簇的形成导致了PNIPAM链水合位点的减少. 进一步的二维相关红外光谱分析证实了水-甲醇团簇对PNIPAM链水合过程的抑制作用.除此之外,本课题组还探讨了其他LCST型聚合物的转变机理[15~19]、共聚(无规共聚、嵌段共聚)结构对温敏聚合物相变行为的影响[20~22]、温度响应水/微凝胶的体积转变过程[23~25]等,相关工作已进行过系统总结[26,27],这里不再赘述.水凝胶结构与生物组织十分相近,在仿生皮肤等领域获得了广泛关注. 将两性离子单体与丙烯酸(acrylate acid, AA)共聚,通过调节盐浓度,制备得到具有优异可塑性、可拉伸性、自愈合性的超分子聚电解质水凝胶[28]. 同时,聚电解质的离子传输性质赋予了水凝胶对温度、应变、应力的多重感知功能. 基于对干态和湿态凝胶的红外光谱解析,获取了该水凝胶涉及的丰富的分子间/内相互作用,包括聚丙烯酸(PAA)链段羧基之间的氢键相互作用、两性离子链段中磺酸根与季铵盐的静电相互作用、PAA链段羧酸根和两性离子链段季铵盐的静电相互作用等,而这些丰富的分子间/内相互作用是该超分子水凝胶力学性能的决定性因素. 在此基础上,用甲基丙烯酸(methyacrylate acid, MAA)取代丙烯酸,即在PAA链段引入疏水的α-甲基,通过调节MAA和两性离子单体的比例,实现了超分子水凝胶在LCST和UCST (upper critical solution temperature)行为之间的转变[29],如图2所示. 具体地,当两性离子单体与MAA质量比大于1时,聚合物在水溶液中表现出UCST行为;当两性离子单体与MAA质量比等于1时,聚合物在宽的温度范围(10~80 ℃)内均不溶于水;两性离子单体与MAA质量比小于1时,聚合物在水溶液中表现出LCST行为. 同时,LCST和UCST可以通过两性离子和MAA单体的共聚比例方便地进行调节. 二维相关红外光谱从分子水平有效揭示了这一体系独特相行为的产生原因. 结果表明,羰基氢键结构的转化是LCST型水凝胶相行为的驱动力,而磺酸根涉及相互作用(水合作用、静电作用等)的变化是UCST型水凝胶相行为的驱动力.Fig. 2 (a) The chemical structure of the polyzwitterion Turbidity curves and typical photos for the (b) UCST- and (c) LCST-type hydrogels Temperature-dependent FTIR spectra (d, e) and 2D correlation spectra (f, g) of typical UCST- and LCST-type hydrogels (Reprinted with permission from Ref.[29] Copyright (2018) American Chemical Society).在天然的阳离子多糖(季铵化壳聚糖)中原位聚合亲水的阴离子单体(AA),构筑了具有温度、pH、机械力、电学等刺激响应行为的双网络聚电解质水凝胶. 该水凝胶同时集成了生物相容、离子传输、黏附、可拉伸、自愈合等多种功能,可作为仿生离子皮肤用于监测压力、温度、pH、电信号等刺激引起的生理信号变化[30]. 值得注意的是,该离子皮肤具有温度可调的黏附性,即升温黏附强度提升,降温黏附强度下降,例如水凝胶在猪皮上37 ℃下的黏附强度是20 ℃下的5.5倍,且具有良好的循环稳定性,这主要源于聚电解质水凝胶的UCST型转变. 季铵化壳聚糖由疏水主链和亲水的季铵盐基团组成,具有两亲性结构,通过改变聚合过程中AA组分的比例,可以实现对双网络聚电解质水凝胶相变行为的调控. 利用温度分辨红外光谱及二维相关分析对水凝胶的温度响应机理进行研究,结果表明体系的UCST型转变源于焓变驱动的季铵化壳聚糖与PAA链段间离子相互作用的解离和氢键作用的增强. 关于水凝胶的黏附性,涉及了丰富的分子相互作用,如PAA与基体间的氢键、季铵化壳聚糖与基体间的疏水相互作用、离子相互作用等. 二维相关红外光谱分析表明,升温相变过程中离子对解离,释放了大量解离的羧基,促使了PAA链段中羧基二聚体之间强氢键以及与季铵化壳聚糖链段羟基之间氢键的形成,提高了水凝胶的强度. 同时,水凝胶中羧基二聚体的形成有利于氨基的质子化,从而改善了组织黏附性.聚甲基丙烯酸(PMAA)在合适的水环境中也可表现出LCST型相转变[31]. 通过在PMAA水溶液中引入AlCl3等无机盐,调节盐浓度,实现了体系相转变温度的广泛可调,并构筑了具有多级结构、可实现紫外-可见-红外宽谱带光管理的新型水玻璃. 该水玻璃不仅可以可逆地切换可见光区域的透射率,阻挡紫外和红外光,还具有缺口不敏感性、自我修复断裂和划痕的功能. 借助二维相关红外光谱可对该水玻璃的动态响应机制进行解析,经分析,PMAA链段上不同化学基团在升温过程的响应次序为:α-甲基→亚甲基→羧基,表明疏水的α-甲基的脱水合是该体系相转变过程的驱动力,导致了聚合物主链的塌缩以及羧基之间氢键结构的解离. 此外,温度分辨小角X射线散射(SAXS)、微小角中子散射(VSANS)光谱证实了聚合物链塌缩引起的散射强度增加,从而产生可见光透过率的变化.一些聚电解质复合物在水溶液中也表现出热致相转变行为[32]. 通过调节典型聚电解质复合物——聚苯乙烯磺酸盐/聚二烯丙基二甲基铵在溴化钾水溶液中的浓度,同时观察到了LCST和UCST型相转变现象:低浓度下,聚电解质复合物呈现UCST型固液相转变;高浓度下,聚电解质复合物则表现为LCST型液液相分离. 基于温度分辨拉曼光谱和二维相关光谱分析,深入研究了体系中的水合效应和阴-阳离子相互作用. 研究发现,在水溶液中,聚电解质复合物的阴-阳离子相互作用呈现2种状态:直接接触型离子对(contact ion pairs, CIPs)和溶剂分离型离子对(solvent-separated ion pairs, SIPs). 聚合物浓度较低时,疏水的聚电解质链段使得阴-阳离子直接结合,CIPs占主导,而温度的升高导致了CIPs的解离,从而引起体系的UCST型转变;聚合物浓度较高时,CIPs比例低,升温导致了阴-阳离子的结合,从而引起体系的LCST型转变. 二维相关拉曼光谱分析则给出了相转变过程中的基团衍化次序,进一步揭示了聚电解质复合物两种截然不同的相转变机理:UCST型体系升温呈现出阴-阳离子相互作用逐渐减弱的解离过程,即“CIPs→SIPs→自由离子”,而LCST型体系升温呈现出阴-阳离子相互作用逐渐增强的缔合过程,即“自由离子→SIPs→CIPs”(图3). Fig. 3 2D correlation synchronous and asynchronous Raman spectra of polyelectrolyte complexes with (a) UCST- and (b) LCST-type transitions (c) Schematic illustration of the phase transition mechanisms (Reprinted with permission from Ref.[32] Copyright (2020) American Chemical Society).将温度响应聚合物引入分离膜,能够赋予膜材料温度响应功能,实现可控的物质分离[33]. 利用温敏性聚N-乙烯基己内酰胺(PVCL)和非温敏性聚乙烯基吡咯烷酮(PVP)协同稳定金属有机框架(MOF)纳米片,并进一步抽滤得到层层堆叠的温度响应纳米片复合膜. 其中PVCL提供温敏性,PVP提供支撑作用,PVCL和PVP的协同作用使得在升降温循环过程中,层间纳米孔道体积既可以同步增大和缩小,而层间距维持稳定. 所得MOF纳米片复合膜水通量及对染料截留能力具有温度敏感性. 温度升高,PVCL链塌缩使得层间纳米孔道体积增大,因而水通量增大,且升降温循环过程稳定性良好. 将尺寸相近的3种染料分子(亮绿、中性红、结晶紫)混合液进行过滤测试发现,随温度升高,尺寸较小的亮绿和中性红分子截留率下降明显高于结晶紫. 值得注意的是,对不同温度下滤液的紫外-可见光谱进行二维相关光谱分析,可以得到不同染料随温度升高的流出顺序:亮绿→中性红→结晶紫,证实了复合膜中纳米孔道尺寸随温度升高而逐渐增大. 利用二维相关红外光谱进一步对纳米片复合膜的温度响应机制进行了解析,结果显示,PVCL链段在升温过程的脱水和塌缩作为复合膜温敏行为的驱动力,降低了MOF纳米片的界面润湿性,最终导致纳米孔道的变化,而PVP链段在这一过程中并未发生明显变化,主要起到层间支撑作用(图4).Fig. 4 (a) Temperature-dependent FTIR spectra of the composite membrane (30-60 ℃). The arrows indicate the spectral variation trends at different wavenumbers (b) 2D correlation synchronous (left) and asynchronous (right) spectra of the composite membrane (c) Schematic illustration of the "smart" membrane separation performance (Reprinted with permission from Ref.[33] Copyright (2020) Springer Nature).3.2 可拉伸离子导体中复杂相互作用的揭示生命系统的生理活动与离子传导密切相关,譬如皮肤和神经纤维须通过离子传导电信号实现环境感知和运动反馈. 可拉伸离子导体是模拟弹性生物组织离子传输的重要材料,在仿生皮肤、人工肌肉、可拉伸储能、软机器人等领域取得了广泛应用.在进行可拉伸离子导体的构筑时,往往需要兼顾力学和离子传导等性能,其中涉及了丰富的分子相互作用. 本课题组围绕可拉伸离子导体,在对体系分子内/分子间相互作用机理的研究基础上,提出了一系列调控力学、电学和光学性质的分子设计. 例如:利用纳米级无定形矿物粒子和天然多糖的离子作用,调节物理交联PAA的黏弹性,所构筑的仿生皮肤可以快速自修复,且具有更高的应力响应灵敏度[34];基于AA和两性离子共聚物,选择结构匹配的离子液体,通过带电荷基团之间的离子协同效应构筑了导电纳米通道,氢键作用实现了导电通道和动态交联网络之间的协同效应,所制备的本征可拉伸导体材料透明性好、可拉伸性能突出(10000%)[35];基于聚阴离子和聚阳离子间的弱氢键相互作用构筑了一种聚离子弹性体,所得聚离子弹性体高度透明,具有接近生物组织的力学性能和感知功能,并且可以实现同步的致动和反馈效果[36];利用含氟聚离子液体与离子液体之间的离子-偶极和离子-离子相互作用,设计了一种可水下通信的光学伪装离子凝胶,该离子凝胶透明、力学性能可调、可3D打印,且具有水下自愈合、水下黏附、导离子等功能[37]. 二维相关红外光谱的优势在于从动态过程中识别体系的精细结构和复杂相互作用,因而是研究离子凝胶/弹性体中分子相互作用机制的有效手段.通过合理调控分子间/内相互作用,设计制备了一种基于天然小分子α-硫辛酸(α-thioctic acid, TA)的可涂覆离子凝胶油墨(图5)[38]. 在离子液体1-乙基-3-甲基咪唑硫酸乙酯([EMI][ES])存在的条件下,TA室温即可进行浓度诱导的自发开环聚合,得到稳定、透明、高拉伸且自愈合的离子凝胶弹性体. 该弹性体易溶于乙醇,因而能够方便地涂覆到任意表面,赋予涂覆体稳定的离子导电能力和应变感知功能. 利用红外光谱等手段探讨了离子凝胶中离子液体对聚硫辛酸(polyTA)的稳定机制:相比于纯的polyTA体系,离子凝胶的COOH伸缩振动区域在1734 cm-1出现了明显的肩峰,而离子液体的S=O伸缩振动峰在离子凝胶中呈现了明显的红移,表明polyTA的羧基与硫酸乙酯阴离子形成了COOH… [ES]氢键. 分子动力学模拟结果表明了COOH… [ES]氢键的热力学稳定性,同时该氢键能够有效降低polyTA的势能. 因此,离子液体主要通过阴离子ES与polyTA基间形成强氢键而稳定polyTA. 二维相关红外光谱则揭示了离子凝胶升温过程不同化学基团的响应次序:COOH… [ES]氢键→羧酸二聚体→自由羧基,说明COOH… [ES]氢键对温度变化最敏感,进一步证实了COOH… [ES]氢键对于稳定polyTA离子凝胶的重要作用. Fig. 5 (a) Schematic illustration of the COOH[ES] H-bonding in the ionogel (b) ATR-FTIR spectral comparison among ionogel, [EMI][ES] and neat polyTA (c) Temperature-variable FTIR spectra of the ionogel in the C=O stretching region from 25 °C to 151 °C Perturbation-correlation moving window (d) and 2D correlation synchronous and asynchronous spectra (e) generated from (c). (Reprinted with permission from Ref.[38] Copyright (2021) Wiley).受指纹结构启发,构筑了一种具有共形和可重复编辑褶皱结构的本征可拉伸离子导电芯鞘纤维[39],其中,纤维芯层为离子凝胶弹性体,鞘层为氟橡胶,芯鞘界面借助共价交联网络和离子-偶极相互作用实现协同拓扑互锁和物理黏附. 经过表面褶皱结构的优化,该离子纤维拉伸应变感知灵敏度(gauge factor)可提升至10以上,超过了绝大多数可拉伸离子导体应变传感器. 利用红外光谱对离子凝胶芯层的分子相互作用进行研究,发现其中涉及了离子液体阳离子咪唑环上C―H与聚合物侧基乙氧基间的氢键、聚合物链段C=O间的偶极-偶极相互作用、离子液体阴-阳离子间的弱静电相互作用等,而这些都对离子凝胶的高拉伸行为做出了重要贡献. 基于对芯层和鞘层力学性能的研究,发现表面褶皱形成的主要原因在于,高模量的氟橡胶鞘层弹性回复率显著低于离子凝胶芯层,在应变回复过程中造成了芯层和鞘层的界面失稳. 随着预应变的增加,弹性回复率差异变大,从而导致更加密集的褶皱结构. 此外,形成的表面褶皱可通过加热至60 ℃完全消除,从而赋予纤维可重复编辑褶皱的能力. 二维相关红外光谱揭示了离子凝胶芯层高温下残余应变的消除主要源于聚合物链段C=O间偶极-偶极相互作用的减弱和构象重排,而氟橡胶鞘层由C―F间偶极-偶极相互作用锚定的链构象也可以通过加热消除.通过在强氢键交联的PAA网络中引入熵驱动的弱交联两性离子超分子网络,产生竞争机制,设计制备了一系列透明、抗冻、保湿、黏附、高拉伸、高回弹、自愈合、应变硬化、导质子、可重复加工等综合性能优异的离子皮肤(图6)[40]. 不同于传统水凝胶和离子凝胶,该离子弹性体不含大量溶剂,仅含有少量达到吸湿平衡的水分子,这使得分子间的羧酸二聚体氢键足以交联PAA分子链而形成强交联网络,而弱交联的两性离子超分子网络则提供柔性. 通过红外光谱、核磁共振谱和力学松弛等实验探讨了这一二元网络体系中的分子相互作用. 其中,具有较低pKa值的两性离子的存在使得PAA轻度去质子化,游离的质子是主要载流子. 去质子化的PAA与两性离子的阳离子端也可以发生离子缔合. 利用变温红外光谱并结合二维相关光谱分析,验证了体系中的3种主要分子相互作用,并根据它们对于温度的响应顺序判别了其结合强度,即PAA链段羧酸二聚体氢键 PAA-甜菜碱离子相互作用 甜菜碱-甜菜碱离子相互作用,这一光谱表征结果为该离子皮肤强弱协同竞争网络的分子设计提供了重要依据. Fig. 6 (a) Temperature-variable FTIR spectra of PAA/betaine ionic elastomer upon heating (b) 2D correlation synchronous and asynchronous spectra generated from (a) FTIR (c) and 1H-NMR (d) spectra of PAA, betaine, and PAA/betaine (e) Schematic illustration of PAA/betaine elastomer and the order of interaction strength among the three main interacting pairs (Reprinted with permission from Ref.[40] Copyright (2021) Springer Nature).3.3 小分子在聚合物基质中的扩散聚合物生产和加工的许多工序都涉及小分子物质在聚合物基体的扩散,研究这类扩散行为具有重要的理论和实践意义. ATR-FTIR光谱可对小分子在聚合物基质中的扩散过程进行实时、原位、快速、多组分检测,能够同时获取扩散系数和分子层面相互作用等信息. 扩散装置示意图如图7所示,聚合物基体处于ATR晶体和扩散物质之间,当扩散物质从聚合物基体的上表面扩散至下表面时即可被检测到. 随着时间的增加,与扩散物质相关的特征吸收峰强逐渐增大直至扩散平衡(扩散谱图,图7(b)). 以扩散时间为横坐标、扩散物质特征吸收峰强度/面积为纵坐标作图,即可得到扩散曲线(图7(c)). 结合二维相关光谱分析,可以提供动态扩散过程结构与相互作用的变化信息,有助于解析扩散机制[41~45].Fig. 7 (a) Schematic illustration of the diffusion experiments by ATR-FTIR spectroscopy (b) typical diffusion spectra (c) a typical diffusion curve.基于朗伯比尔定律和菲克扩散模型,Fieldson等[46]建立了基于ATR-FTIR光谱测试计算扩散系数的公式:其中这里,At为扩散时间t时,特征红外吸收峰的强度或面积;A∞为扩散达到平衡时,特征红外吸收峰的强度或面积;L为聚合物薄膜基体的厚度;D为扩散剂的扩散系数;γ为光波在聚合物基体中渗透深度的倒数,可表示为:其中,θ (θ = 45o)为红外光的入射角;n1和n2分别为聚合物和ATR晶体的折光指数;λ为红外光的波长. 基于以上扩散方程对ATR-FTIR光谱测试得到的扩散曲线进行拟合,即可得到相关扩散系数. 此外,根据曲线拟合情况可以判断该扩散过程的扩散模型.利用时间分辨ATR-FTIR光谱并结合二维相关光谱分析技术对水分子在乙基纤维素(EC)基薄膜中的扩散行为进行系统研究[47]. 分析表明,水分子在EC中的扩散行为符合菲克扩散模型,通过对扩散曲线的拟合计算得到了相关的扩散系数. 此外,探讨了EC中增塑剂(柠檬酸三乙酯)含量对水分子扩散行为的影响,结果表明,增塑剂的添加不影响水分子的扩散模型,主要起到加速水分子扩散的作用,这主要源于增塑剂的加入改善了EC链的活动性而提高了EC基体的自由体积(free volume). 利用二维相关光谱对水分子羟基伸缩振动区域扩散谱图进行解析,观察到在整个扩散过程中,主要存在着4种类型的水分子,即本体水(强氢键作用)、团簇水(中等强度氢键作用)、相对自由的水分子(弱氢键作用)以及自由的水分子(极弱氢键作用). 依据Noda规则,判别出不同状态水分子扩散的先后顺序:团簇水→本体水→相对自由的水分子或自由的水分子,表明扩散首先来自体积较小、相对弱氢键结合的团簇水,其次才是大量的本体水,而随着扩散过程的进行,部分水分子与聚合物基体相互作用而脱离团簇水或本体水,产生了(相对)自由的水分子.EC被广泛用作药物包衣材料以实现药物缓释的功能,利用ATR-FTIR光谱对药物分子在EC基薄膜中的扩散行为进行实时监测可以有效模拟这一药物缓释过程(图8),从而为EC基药物包衣材料的配方优化提供理论指导[48]. 扩散谱图直观呈现了体系中各组分的变化情况,包括水分子(1637 cm-1)和药物分子(1569 cm-1)特征吸收峰强度的上升,增塑剂(1737 cm-1)特征吸收峰强度的下降等,表明水分子和药物分子在EC基薄膜中的扩散以及薄膜中增塑剂的部分溶解. 定量分析结果表明,扩散主要包含3个阶段:(A)水分子扩散;(B) EC膜吸水饱和,水扩散停止并溶解EC基体中的致孔剂;(C) 随着致孔剂的溶解,EC薄膜中形成孔道,使得药物分子和水分子共同扩散,同时增塑剂溶解. 二维相关红外光谱分析结果进一步证实了C阶段的各组分变化顺序:水分子扩散→药物分子扩散→增塑剂溶解,并且显示药物分子始终处于水合状态. 此外,通过改变药物分子的水溶性、致孔剂的种类以探讨膜配方对扩散行为的影响,结果表明随着致孔剂水溶性的增加和/或药物分子水溶性的降低,B阶段将缩短甚至消除. Fig. 8 (a) Time-resolved ATR-FTIR spectra collected during the water and drug diffusion (b) 2D correlation synchronous and asynchronous spectra during the diffusion of Stage C (c) Schematic illustration of water and drug diffusion across the EC-based film (Reprinted with permission from Ref.[48] Copyright (2015) Elsevier).氢氧化物/尿素是溶解纤维素的重要组合,其中尿素可稳定纤维素的疏水部分,有利于形成包合物从而促进纤维素的溶解. 在分子层面上,尿素溶液对纤维素的作用机理尚不明确. 采用ATR-FTIR光谱并结合二维相关光谱衍生的外扰相关移动窗口(perturbation-correlation moving window,PCMW)技术研究了不同浓度尿素水溶液(0,20 wt%、40 wt%和50 wt%)在黏胶纤维膜中的扩散行为,在分子水平揭示了尿素溶液的动态扩散行为以及与黏胶纤维的相互作用机制[49]. 从扩散谱图的变化规律以及对应的扩散曲线看,尿素溶液的扩散过程可大致分为2个步骤,水分子首先通过黏胶纤维膜,随后带动尿素分子一起通过. PCMW谱图显示,尿素浓度越高,尿素分子扩散滞后现象越明显. 根据菲克扩散模型,尿素分子在黏胶纤维膜的扩散系数随尿素浓度的增加而减小. 在红外光谱中,特征谱峰出现位移表明相应官能团相互作用的变化. 基于扩散过程Amide Ⅲ(尿素)和CH2-O(6)H伸缩振动(纤维素)的峰位移变化趋势,尿素水溶液在黏胶纤维中的扩散过程可以概括为:首先水分子破坏黏胶纤维膜无定形区的氢键网络,与羟基形成新的纤维素-水氢键,随后尿素分子在水分子的“桥连”作用下形成纤维素-水-尿素氢键,从而间接作用于纤维素. 低浓度下,水分子相对含量较大,可以快速打开扩散通道带动尿素分子通过黏胶纤维膜. 而高浓度下,尿素分子发生聚集且固定了大量水分子,从而在宏观上延缓了尿素溶液的扩散.热转移印花是纺织品印花方法之一,本质上是分散染料向聚酯纤维动态扩散的过程. 借助ATR-FTIR光谱对分散红9 (DR 9)在聚对苯二甲酸乙二醇酯(PET)薄膜中的扩散过程进行了原位跟踪,模拟了热转移印花过程,并结合二维相关光谱探讨了分散染料-分散染料、分散染料-PET相互作用机制,在分子水平上阐释了其扩散机理(图9)[50]. DR 9在PET薄膜中的扩散过程符合菲克扩散模型. 温度越高,扩散速度越快,这主要归因于:(1) 温度升高导致了PET基体自由体积的增加和分子链热运动的增强;(2) DR 9在高温下分子运动的增强. 此外,将不同温度下的扩散系数按照Arrhenius公式进行线性拟合,可以计算得到DR 9在PET中扩散活化能为15.33 kJ/mol. 通过对扩散过程中不同阶段的红外谱图进行对比,观察到了体系中存在丰富的分子间/内相互作用,包括PET和DR 9的C=O基团间偶极-偶极相互作用、芳香基团间π-π相互作用以及DR 9分子内氢键等. 二维相关红外光谱分析进一步细化了扩散体系中不同化学基团的分子间/内相互作用及其在扩散过程中的变化情况. 高温下,随着DR 9分子热运动增强,DR 9分子之间的相互作用减弱. 借助DR 9和PET中C=O基团之间的偶极-偶极相互作用,DR 9扩散进入PET基体. 在扩散过程中,DR 9中形成了较强的分子内氢键,从而提高了DR 9的平面性,促进了扩散过程. 随着越来越多的DR 9分子扩散到PET基体中,DR 9和PET的芳香基团之间的π-π相互作用成为主导,DR 9的分子内氢键减弱. Fig. 9 (a) Time-resolved ATR-FTIR spectra and (b) 2D correlation synchronous and asynchronous spectra of DR 9 diffusion in PET at 140 ℃ (c) Schematic diagram of DR 9 diffusion into PET (Reprinted with permission from Ref.[50] Copyright (2020) American Chemical Society).采用时间分辨ATR-FTIR光谱对不同温度下碳酸丙烯酯(PC)-双三氟甲磺酰亚胺锂(LiTFSI)在聚偏氟乙烯-六氟丙烯共聚物(P(VDF-HFP))中的扩散行为进行了原位监测,同时获得了凝胶聚合物电解质中各扩散组分的扩散系数和分子层面相互作用信息[51]. 基于PC中C=O伸缩振动区域的二阶导数分析,推断出PC在凝胶电解质主要存在四种状态,即与P(VDF-HFP)发生偶极-偶极相互作、PC分子间发生偶极-偶极相互作用、与锂离子发生强离子-偶极相互作用、与锂离子发生弱离子-偶极相互作用. 同时,LiTFSI参与的分子相互作用也得以识别,包括锂离子与PC中C=O之间的离子-偶极相互作用,锂离子与P(VDF-HFP)中C―F之间的离子-偶极相互作用、TFSI-的溶剂化作用等. 扩散过程中,首先是PC分子以溶剂团簇的形式扩散进入P(VDF-HFP),PC分子中的C=O与P(VDF-HFP)中的C―F发生偶极-偶极相互作用,一定程度减弱了P(VDF-HFP)聚合物链间的偶极-偶极相互作用,从而有利于锂盐的扩散. 随后,借助锂离子与C=O的离子-偶极相互作用,锂离子随着PC分子扩散进入P(VDF-HFP),TFSI-在扩散过程中也一直处于溶剂化状态. 这里,PC分子既充当了增塑剂的角色,同时也是离子(包括阴离子和阳离子)扩散的载体. 本工作在分子水平上揭示了PC-LiTFSI在P(VDF-HFP)的传导机制,对高性能凝胶聚合物电解质的结构设计和性能优化具有一定的指导意义.3.4 天然高分子的结构表征海藻酸钠(SA)作为一类天然多糖,生产成本低、无毒且具有良好的生物相容性、可降解性,在食品工业、制药、纺织印染等领域得到了广泛应用. 随着实验室和工业对SA的日趋重视,理解SA内部的氢键结构也变得越发重要. 利用红外光谱对SA升温过程特征基团的变化进行原位监测,结合二维相关光谱等分析手段从分子水平研究了SA体系的相互作用机制,探讨了温度扰动下SA分子间/内、SA与水分子间氢键结构的演变历程[52]. 研究发现,加热过程可分为30~60 ℃和60~170 ℃ 2个阶段:第一阶段为弱氢键结合的水分子脱除,第二阶段为强氢键结合的水分子脱除. 二维相关红外光谱结果表明:30~60 ℃区间内,随脱水过程发生,SA与水分子的氢键逐步断裂,SA中C―OH和COO-基团逐渐参与形成分子间/内氢键(O3H3⋯O5和O2H2⋯O=C―O-),因此水分子的存在一定程度破坏了SA中原有的氢键结构;60~170 ℃区间内,强结合水脱除,SA与水分子的氢键进一步断裂,同时SA分子间/内氢键相互作用逐步减弱,出现了部分相对自由的C―OH和COO-基团(图10). 由于相对自由的COO-比C―OH更早出现,可以推测C―OH形成的分子间/内氢键相互作用比COO-更强.Fig. 10 2D synchronous and asynchronous spectra of the SA film during heating between (a) 30-60 °C and (b) 60-170 °C (c) Schematic illustration of the heat-induced hydrogen bonding transformation in the SA film[52] (Reprinted with permission from Ref.[52] Copyright (2019) Elsevier).多元羧酸与纤维素的羟基反应,能使纤维素大分子间形成立体的交联网络结构,从而赋予棉纤维织物抗皱性能. 1,2,3,4-丁烷四羧酸(BTCA)作为一类典型的用于棉纤维织物抗皱整理的多元羧酸,其与纤维素的酯化过程受到了广泛关注,但其中关于分子水平相互作用机制及动态反应机理仍不清晰. 利用FTIR光谱对加热过程中纤维素与BTCA在催化剂次亚磷酸钠(SHP)作用下的酯化反应过程进行原位跟踪,并借助二维相关光谱分析技术探讨了该反应的分子机理,重点关注了分子层面相互作用机制以及反应全过程中的化学基团转变历程[53]. 分析表明,室温下,体系中的O―H和C=O等极性基团有强氢键相互作用. SHP存在时,碱金属离子(Na+)与羧基反应并将其转化为相应的羧酸盐,从而一定程度削弱了BTCA间的氢键相互作用. 在30~100 ℃的加热过程中,体系中的氢键部分断裂,导致一些O―H和C=O处于相对自由的状态. 这里,SHP的存在和加热过程都会导致体系中氢键相互作用的减弱,从而使相应的化学基团更自由,有利于酸酐生成和酯化反应. 当加热至100 ℃以上后,羧酸盐和自由羧酸开始脱水形成环酐. 一旦形成环酐,就会与纤维素大分子链上的O―H反应生成酯. 通过逐步成酐和酯化反应过程,BTCA实现了对纤维素的交联. 该结果对多元羧酸的抗皱整理工艺优化及寻找更有效的多元羧酸类抗皱整理剂和催化剂具有一定的指导作用.4 总结与展望本文主要介绍了二维相关光谱的基本原理、实验和分析技巧等,并结合具体的体系(如温度响应高分子、可拉伸离子导体、小分子在聚合物中的扩散过程、天然高分子等),简述了二维相关光谱在高分子表征中的应用. 这里,二维相关光谱不仅能够有效鉴别高分子体系涉及的丰富相互作用,还能提供外扰作用下动态过程发生的分子机制. 相关研究结果一方面有助于启发新型功能高分子材料的结构设计,另一方面也可以为实际工艺过程的配方优化和参数调整提供指导.二维相关光谱作为一种先进的光谱分析手段,在高分子材料体系的表征中得到了越来越多的关注. 随着高分子材料涉及的体系越来越复杂、功能越来越强大,这为二维相关光谱的应用提供了更多的机遇,但同时也带来了更多的挑战. 在后续的研究工作中,二维相关光谱分析可以重点关注以下几方面:(1) 光谱手段的多样性. 目前关于二维相关光谱在高分子体系中的应用主要是基于中红外光谱,关注的是分子层面相互作用信息. 一方面,中红外光谱也有一定的局限性,例如低浓度溶液体系信号弱、水的吸收峰干扰严重等. 对于中红外光谱难以表征的体系,可以尝试其他分子光谱手段,如拉曼光谱、近红外光谱等,开展二维相关光谱分析. 另一方面,其他光谱手段,包括荧光光谱、圆二色谱、紫外-可见吸收光谱、X射线衍射谱等,都可以进行二维相关光谱分析,以获取多层面丰富的结构信息. 目前,这些光谱在处理二维相关分析时,大部分因信噪比低而导致噪音被显著放大,使得结构解析变得困难,如何有效解决这一问题是丰富二维相关分析光谱手段的关键.(2) 外扰变量的丰富性. 时间、温度便于控制,是目前获取动态光谱最常用的外扰变量. 然而,影响高分子结构和性能的因素是多种多样的,例如湿度变化能够引起高分子力学性质的改变、紫外光照射可以引起高分子的老化等,尤其是刺激响应高分子,可以对温度、压力、电场、磁场、pH、浓度等丰富的外扰产生响应,引起物理或化学性质的变化. 最近,Li等[54]利用二维相关红外光谱研究了乙醇诱导聚丙烯酰胺/Pluronic 127水凝胶相分离的机理,获取了氢键解离和无定形-结晶转变等信息. 因此,利用二维相关光谱探讨不同刺激下高分子结构的演变机制,将进一步拓宽二维相关光谱的应用范围. 需要注意的是,对于测试过程无法原位施加的外扰变量,应尽量避免其他因素改变而引起的光谱变化,否则将影响二维相关光谱分析结果的真实性和可靠性.(3) 多种分析手段的关联. 一方面,通过二维相关光谱交叉谱的计算和解析,可以将不同分析手段所得结果进行关联,这能够帮助理解高分子不同层面结构的内在联系. 另一方,二维相关光谱分析结果涉及丰富的相互作用和结构变化,经过与其他分析表征手段的结果进行比对和相互验证,可有效加深人们对二维相关光谱分析结果的理解. 参考文献1Ernst R R, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in one and Two Dimensions. Oxford: Clarendon Press, 19872Noda I, Dowrey A, Marcott C, Story G, Ozaki Y. Appl Spectrosc, 2000, 54(7): 236A-248A. doi:10.1366/0003702001950454 3Noda I. J Am Chem Soc, 1989, 111(21): 8116-8118. doi:10.1021/ja00203a008 4Noda I. Appl Spectrosc, 1990, 44(4): 550-561. doi:10.1366/0003702904087398 5Noda I. Appl Spectrosc, 1993, 47(9): 1329-1336. doi:10.1366/0003702934067694 6Noda I. Anal Sci, 2007, 23(2): 139-146. doi:10.2116/analsci.23.139 7Park Y, Jin S, Noda I, Jung Y M. J Mol Struct, 2020, 1217: 128405. doi:10.1016/j.molstruc.2020.128405 8Sun S, Tang H, Wu P, Wan X. Phys Chem Chem Phys, 2009, 11(42): 9861-9870. doi:10.1039/b909914j 9Kim Y J, Matsunaga Y T. J Mater Chem B, 2017, 5(23): 4307-4321. doi:10.1039/c7tb00157f 10Chilkoti A, Dreher M R, Meyer D E, Raucher D. Adv Drug Deliv Rev, 2002, 54(5): 613-630. doi:10.1016/s0169-409x(02)00041-8 11Weber C, Hoogenboom R, Schubert U S. Prog Polym Sci, 2012, 37(5): 686-714. doi:10.1016/j.progpolymsci.2011.10.002 12Tang L, Wang L, Yang X, Feng Y, Li Y, Feng W. Prog Mater Sci, 2021, 115: 100702. doi:10.1016/j.pmatsci.2020.100702 13Sun B, Lin Y, Wu P, Siesler H W. Macromolecules, 2008, 41(4): 1512-1520. doi:10.1021/ma702062h 14Sun S, Wu P. Macromolecules, 2010, 43(22): 9501-9510. doi:10.1021/ma1016693 15Sun S, Wu P. J Phys Chem B, 2011, 115(40): 11609-11618. doi:10.1021/jp2071056 16Wang H, Sun S, Wu P. J Phys Chem B, 2011, 115(28): 8832-8844. doi:10.1021/jp2008682 17Sun B, Lai H, Wu P. J Phys Chem B, 2011, 115(6): 1335-1346. doi:10.1021/jp1066007 18Sun S, Wu P. Macromolecules, 2013, 46(1): 236-246. doi:10.1021/ma3022376 19Zhang B, Tang H, Wu P. Macromolecules, 2014, 47(14): 4728-4737. doi:10.1021/ma500774g 20Hou L, Wu P. Soft Matter, 2014, 10(20): 3578-3586. doi:10.1039/c4sm00282b 21Hou L, Wu P. Soft Matter, 2015, 11(14): 2771-2781. doi:10.1039/c5sm00026b 22Sun W, An Z, Wu P. Macromolecules, 2017, 50(5): 2175-2182. doi:10.1021/acs.macromol.7b00020 23Hou L, Ma K, An Z, Wu P. Macromolecules, 2014, 47(3): 1144-1154. doi:10.1021/ma4021906 24Li T, Tang H, Wu P. Soft Matter, 2015, 11(10): 1911-1918. doi:10.1039/c4sm02812k 25Sun S, Hu J, Tang H, Wu P. J Phys Chem B, 2010, 114(30): 9761-9770. doi:10.1021/jp103818c 26Sun S, Wu P. Chinese J Polym Sci, 2017, 35(6): 700-712. doi:10.1007/s10118-017-1938-1 27Sun Shengtong(孙胜童), Wu Peiyi(武培怡). Materials Science and Technology(材料科学与工艺), 2017, 25(1): 1-9. doi:10.11951/j.issn.1005-0299.20160386 28Lei Z, Wu P. Nat Commun, 2018, 9(1): 1134. doi:10.1038/s41467-018-03456-w 29Lei Z, Wu P. ACS Nano, 2018, 12(12): 12860-12868. doi:10.1021/acsnano.8b08062 30Shi X, Wu P. Small, 2021, 17(26): 2101220. doi:10.1002/smll.202101220 31Lei Z, Wu B, Wu P. Research, 2021, 2021: 4515164. doi:10.34133/2021/4515164 32Ye Z, Sun S, Wu P. ACS Macro Lett, 2020, 9(7): 974-979. doi:10.1021/acsmacrolett.0c00303 33Jia W, Wu B, Sun S, Wu P. Nano Res, 2020, 13(11): 2973-2978. doi:10.1007/s12274-020-2959-6 34Lei Z, Wang Q, Sun S, Zhu W, Wu P. Adv Mater, 2017, 29(22): 1700321. doi:10.1002/adma.201700321 35Lei Z, Wu P. Nat Commun, 2019, 10(1): 3429. doi:10.1038/s41467-019-11364-w 36Lei Z, Wu P. Mater Horiz, 2019, 6(3): 538-545. doi:10.1039/c8mh01157e 37Yu Z, Wu P. Adv Mater, 2021, 33(24): 2008479. doi:10.1002/adma.202008479 38Wang Y, Sun S, Wu P. Adv Funct Mater, 2021, 31(24): 2101494. doi:10.1002/adfm.202101494 39He C, Sun S, Wu P. Mater Horiz, 2021, 8(7): 2088-2096. doi:10.1039/d1mh00736j 40Zhang W, Wu B, Sun S, Wu P. Nat Commun, 2021, 12(1): 4082. doi:10.1038/s41467-021-24382-4 41Shen Yi(沈怡), Peng Yun(彭云), Wu Peiyi(武培怡), Yang Yuliang(杨玉良). Progress in Chemstry(化学进展), 2005, (3): 499-513. doi:10.3321/j.issn:1005-281X.2005.03.016 42Liu M, Wu P, Ding Y, Chen G, Li S. Macromolecules, 2002, 35(14): 5500-5507. doi:10.1021/ma011819f 43Tang B, Wu P, Siesler H W. J Phys Chem B, 2008, 112(10): 2880-2887. doi:10.1021/jp075729+ 44Wang M, Wu P, Sengupta S S, Chadhary B I, Cogen J M, Li B. Ind Eng Chem Res, 2011, 50(10): 6447-6454. doi:10.1021/ie102221a 45Lai H, Wang Z, Wu P, Chaudhary B I, Sengupta S S, Cogen J M, Li B. Ind Eng Chem Res, 2012, 51(27): 9365-9375. doi:10.1021/ie300007m 46Fieldson G T, Barbari T A. Polymer, 1993, 34(6): 1146-1153. doi:10.1016/0032-3861(93)90765-3 47Hou L, Feng K, Wu P, Gao H. Cellulose, 2014, 21(6): 4009-4017. doi:10.1007/s10570-014-0458-1 48Feng K, Hou L, Schoener C A, Wu P, Gao H. Eur J Pharm Biopharm, 2015, 93: 46-51. doi:10.1016/j.ejpb.2015.03.011 49Dong Y, Hou L, Wu P. Cellulose, 2020, 27(5): 2403-2415. doi:10.1007/s10570-020-02997-y 50Yan L, Hou L, Sun S, Wu P. Ind Eng Chem Res, 2020, 59(16): 7398-7404. doi:10.1021/acs.iecr.9b07110 51Li H, Hou L, Wu P. Chinese J Polym Sci, 2021, 39(8): 975-983. doi:10.1007/s10118-021-2571-6 52Hou L, Wu P. Carbohydr Polym, 2019, 205: 420-426. doi:10.1016/j.carbpol.2018.10.091 53Hou L, Wu P. Cellulose, 2019, 26(4): 2759-2769. doi:10.1007/s10570-019-02255-w 54Li Y, Wang D, Wen J, Liu J, Zhang D, Li J, Chu H. Adv Funct Mater, 2021, 31(22): 2011259. doi:10.1002/adfm.202011259 《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21362DOI:10.11777/j.issn1000-3304.2021.21362
  • 离心机的世界也可以很有趣——你所不知道的“温度控制”
    相信看过美剧《CSI》(犯罪现场调查)的朋友们一定对剧中诸如指纹数据库、从带血棉签中五分钟内验出DNA等等炫酷的证据检测桥段并不陌生,虽然是源于想象的虚构,但却自然而逼真。其实,纵观司法科学鉴定技术的发展长河,《CSI》里面的许多高科技手法在现实中已被广泛应用,特别是DNA技术的应用无疑是个历史性的突破。从犯罪现场到实验室的王牌证据长期以来,作为给犯罪嫌疑人定罪的“毋庸置疑的铁证”,DNA鉴定一直被认为是目前法庭科学领域中最有效的统一认定技术,虽然说对于少数特殊情况存在一定的例外和局限性,但总的来说,DNA证据仍是当今人类世界可靠性最高的证据。尤其是在血腥的犯罪现场留有血迹、精斑、毛发等人体生物检材的命案中,DNA证据一直是对付罪犯的利器,被社会各界寄予厚望。众所周知,得到足量且纯净的DNA样本是进行准确鉴定的前提,因此DNA提取纯化技术是法医DNA检验的第一个步骤,也是最关键的步骤。通常,从犯罪现场提取到的各种生物检材难免会腐败、变质和被污染,这就对DNA提取纯化技术有了更高的要求。目前在法医实验室中,常用的提取方法无外乎五种,即Chelex100法、有机法(苯酚-氯仿提取)、磁珠法、盐析法、碱性法(NaOH提取)。不管哪种方法,提取过程大体上分为材料准备、破碎细胞或包膜以释放内容物、核酸分离纯化、沉淀或吸附核酸并去除杂质、将核酸溶解在适量缓冲液或水中。而作为整个过程当中至关重要的环节,离心分离的好坏直接决定着实验的成败。不容忽视的离心内部环境——温度控制说到DNA提取等生物样品分离实验,除了在司法鉴定中扮演着举足轻重的角色以外,在基因工程和蛋白质工程等分子生物学领域也应用极广,而样品分离实验自然离不开离心机的性能技术指标与正确使用,比如转速设定、离心时间、摆放位置等,而其中最关键也是容易被忽视的一点就是样品的温度控制。下面我们拿DNA提取实验举例,采用传统且应用最广泛的有机法在不同温度条件下提取血液DNA。在细胞的细胞核中,DNA与蛋白质结合形成染色体,因此提取DNA时既要将蛋白质等物质除尽,又要尽可能保持DNA分子的完整性,即保持DNA带不发生断裂,无外源核酸污染。实验在4℃和常温条件下分别进行。4℃条件下采用高速冷冻离心机,而常温条件采用小型台式高速离心机,实验结果显示,4℃条件提取的DNA条带整齐无拖带,而常温提取的DNA有明显的拖带现象,表明前者的DNA片段完整无断裂,未被污染,且分子大小相同,而后者的DNA有部分已断裂。在本实验采用的有机法中,由于酚类容易被氧化,产生醌、二羧酸等氧化物,可破坏核酸中的磷酸二酯键,并引起DNA链的交联,常温条件下由于离心机转子高速旋转产生大量热,加速了酚的氧化,并增加了血液中细胞释放的内源核酸酶的活性,导致部分基因组DNA降解。而在4℃条件下提取的DNA由于温度低,酚不易被氧化,内源核酸酶活性较低,因此能够保证DNA的完整性。【1】看过了上面的实验,您是不是对温度控制的重要性有了直观的认识呢?其实,对于诸如生物制药或营养物质萃取等对生物活性保留要求很苛刻的技术项目,离心萃取的温度都需要严格符合要求,与标准相差几摄氏度可能就会严重影响品质,常见的情况就是超过温度区间范围会对活性酶的指标有影响或者温度过低导致凝结,因此选用带精确温控的离心机则是重中之重。需要严格温控的实验基本上都要求样品保持在较低的温度,因此在使用带冷冻功能的离心机之前需要进行预冷,并进行温度校准和监测温度波动。现在问题来了,市面上离心机的温度传感器通常都在机腔内,而中间会隔着不同大小规格的离心管,不同型号的转子以及腔内空气等介质,所以即使准备工作做得很周全,在离心机高速运转的时候,传感器所探测到的腔体温度与样品的实际温度难免会有差值,这个差值又因为转子选择,温度、转速设置的不同而发生进一步的变化。如前所述,这个差值在那些要求极为苛刻的实验项目中是绝不允许的。奥豪斯离心机陪你玩转温度控制看了这么多,有人一定要问,有没有什么好的办法能自动解决这个温度差值呢?重点马上登场。配有强劲的冷冻系统和样品温度补偿功能的奥豪斯FC5515R高速冷冻离心机应运而生,全面瓦解让您头疼的温度控制难题!早在产品研发阶段,奥豪斯就对在不同条件下腔体温度与样品实际温度间的温差数据进行了完善的测定,建立了补偿模型,并将这个补偿模型内置在离心机的控制软件系统,传感器测得的腔体温度经过补偿,出现在显示屏上的温度数值即为离心样品的实际温度,保证离心过程在设定的样品温度进行。这样一来,通过系统内设的样品温度补偿,完美地解决了离心机设置显示的温度与离心过程中样品的实际温度不一致的问题。此外,FC5515R强劲的冷冻系统保证了即便在全速运转的情况下,也能将温度保持在所需温度。怎么样,看完了上面的精彩片段您还会为离心过程中的温度控制难题发愁吗?事实上,奥豪斯所有带冷冻功能的离心机型号都具有以上所述的特点。如果您想了解更多相关案例以及奥豪斯离心机家族的产品信息,或正在寻求更专业细致的选型指导,请及时联系我们,我们的工程师们将会在第一时间为您提供专业的解答和建议!【1】参考文献:李强子,张丽. 温度对提取DNA质量的影响[J]. 中国生物制品学杂志,2016年4月,29(4)
  • 一种全自动在线连续分析水中四乙基铅和甲基叔丁基醚的方法
    概述石油被誉为“工业的血液”,其产品被广泛用于国民经济的各个领域。近年来由于安全管理不到位、人员违规操作等原因导致石油企业事故屡屡发生,泄露的石油不仅污染了空气,还污染了地表水和地下水,其中四乙基铅和甲基叔丁基醚作为石油中重要的添加剂常在污染水体中被检出。目前,实验室普遍采用《HJ 959-2018 水质 四乙基铅的测定 顶空/气相色谱-质谱法》测定水中四乙基铅的含量,而谱育科技EXPEC 2100 水中挥发性有机物在线监测系统已实现对四乙基铅和甲基叔丁基醚的现场自动连续监测。图EXPEC 2100 水中挥发性有机物在线监测系统由EXPEC 240 全自动吹扫捕集进样器 和 EXPEC 2000-MS 在线GC-MS组成,搭配 EXPEC 243 自动稀释仪实现了标准溶液的自动配制。本文使用该系统建立了水中四乙基铅和甲基叔丁基醚的在线监测方法。 方法参数吹扫捕集参数:吹扫时间:3 min;解吸温度:200 ℃;解吸时间:1 min;色谱参数:进样口温度:100 ℃;分离比:5:1;载气流量:1 mL/min;程序升温:初始温度40 ℃保持2 min,以15 ℃/min升至80 ℃,再以20 ℃升至200 ℃并保持3.3 min;质谱参数:离子阱温度:70 ℃;扫描模式:全扫描模式;质量数扫描范围:40-300 amu。分析结果方法学指标绘制标准曲线如上图所示:四乙基铅和甲基叔丁基醚的校准曲线线性相关系数R2均在0.99以上。小结EXPEC 2100水中挥发性有机物监测系统参照HJ 959-2018标准建立的一种在线监测水中四乙基铅和甲基叔丁基醚的方法。与HJ 959-2018方法相比:1. 具有更低的检出限;2. 全流程在线监测,省时省力;3. 可实时上传分析数据。
  • 用户使用CS电化学工作站发表顶级论文
    武汉理工大学化学化工与生命科学学院化学系刘金平教授课题组在《Energy & Environmental Science》, 《Advanced Functional Materials》, 《Advanced Materials》 等顶级杂志上发表论文:在《Energy & Environmental Science》(影响因子29.518)发表Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries(DOI: 10.1039/C6EE01871H);在《Advanced Materials》(影响因子19.791)上发表Facile Formation of a Solid Electrolyte Interface as a Smart Blocking Layer for High-Stability Sulfur Cathode(DOI: 10.1002/adma.201700273);在《Advanced Functional Materials》(影响因子12.124)上发表Carbon-Stabilized High-Capacity Ferroferric Oxide Nanorod Array for Flexible Solid-State Alkaline Battery–Supercapacitor Hybrid Device with High Environmental Suitability(DOI: 10.1002/adfm.201502265)和Fabrication and Shell Optimization of Synergistic TiO2-MoO3 Core–Shell Nanowire Array Anode for High Energy and Power Density Lithium-Ion Batteries(DOI: 10.1002/adfm.201500634)。使用我司CS系列工作站CV和EIS等电化学测试技术,这些文章深入地研究了高能量储电材料在充放电循环中电极材料的反应和变化,揭示了材料的循环性能和反应机理,对材料的性质进行分析,从而可以开辟一条新型电极材料的道路,用于未来的可充电电池,并提供一些绿色、经济及可持续的电化学储能方法的新思路。 《Advanced Materials》是Wiley出版社旗下材料科学领域的顶尖期刊,在国际材料领域科研界享誉盛名,最新影响因子为19.791。该期刊以通讯文章接收发表材料领域相关的顶尖科研成果;其姊妹刊《Advanced Functional Materials》则发表材料类顶级全文,影响因子12.124;《Energy & Environmental Science》由英国皇家化学会创办,影响因子29.518,是能源和环境科学领域顶级期刊,在该领域400余份期刊中排名第一。 刘金平教授简介:刘金平教授,博士生导师,于2000年进入华中师范大学物理学院人才基地班,2009年获得华中师范大学博士学位。2008年曾在新加坡南洋理工大学任研究助理,合作导师是李长明教授(其系美国医学与生物工程院院士,英国皇家化学学会会士,国家“千人计划”特聘教授)。2010~2011年间,刘金平教授在南洋理工大学做博士后研究工作。2009~2014年先后在华中师范大学任讲师、副教授。2015年1月加入武汉理工大学,现任该校化学化工与生命科学学院化学系教授。刘金平教授长期从事能源材料电化学相关研究,连续两年入选Elsevier “中国高被引学者”。 迄今发表SCI论文90余篇,被SCI他引5000余次;以第一作者或通讯作者在Nano Lett., Adv. Mater.系列, Energy & Environ. Sci.等期刊上发表多篇论文(包括邀请综述及封面论文),单篇引用最高近600次(2篇引用500次以上),单篇引用超过100次的17篇,论文H指数42。其中,14篇论文被评为全球ESI高被引(1%)或热点(0.1%)论文。相关结果被Nanowerk,NPG Asia Materials,Chemistry Views和Materials Views等网站或杂志亮点报道,受邀撰写英文专著章节1篇(World Scientific Publishing)。刘金平教授课题组购买多台我司的CS系统电化学工作站,进行了大量的数据测试和分析,曾多次向同行推荐我司的电化学工作站。一直以来,科思特仪器股份有限公司致力于电化学技术的推广和应用,在电化学测量、腐蚀监测、电化学科学仪器研发、工业腐蚀监测解决方案等领域深入探索,提供技术服务与应用支持。CS系列电化学工作站已广泛应用于全国众多高校和科研机构,服务于新型电池、先进材料、腐蚀与防护和分析电化学科研前沿,赢得良好的美誉度。CST系列工业腐蚀监测设备,包括多通道快速腐蚀测试仪、钢筋锈蚀测试仪、电偶腐蚀/电化学噪声测试仪、阴极保护监测器以及无线收发器等产品,广泛应用于国内众多油气田、石化、电力、交通以及建筑行业的腐蚀监测。
  • 理邦仪器二季度表现亮眼,同比环比双增长!
    近日,理邦仪器(300206.SZ)发布2024年半年度报告,报告期内,公司实现营业收入9.22亿元,同比下降15.39%。实现归属于上市公司股东的净利润1.25亿元,同比下降39.59%。实现归属于上市公司股东的扣除非经常性损益的净利润1.14亿元,同比下降40.47%。基本每股收益0.2158元。利邦仪器主要从事医疗电子设备产品和体外诊断产品的研发、生产、销售、服务,目前业务主要涵盖病人监护、心电诊断、妇幼健康、超声影像、体外诊断、智慧健康六大领域。理邦仪器表示,2024 年上半年,公司继续围绕“创新性、平台型、国际化”的发展战略,加强新品开发、推动智慧医疗业务升级、积极开展国内外市场推广活动、持续加快国际市场本地化建设,使得EDAN 品牌的国际影响力进一步得到提升。报告期内,公司实现营业收入 92,218.96 万元,受去年第一季度高基数的影响,本报告期营业收入同比下降 15.39%。从区域角度来看,2024 年上半年,公司国内市场实现营业收入 40,768.93 万元,同比下降 35.10%;而国际市场表现相对强劲,实现营业收入 51,450.03 万元,同比增长 11.40%。国际市场的增长在一定程度上抵消了国内市场的下滑,显示了公司持续推进国际市场本地化战略的成效。单从2024 年第二季度的业绩来看,公司实现营业收入 47,854.51 万元,同比增长 6.27%,环比 2024 年第一季度增长 7.87%。这一环比增长表明,公司业务在逐步回归上升通道,特别是在国际市场的带动下,整体营收情况稳步向好。此外,在报告期内,公司持续致力于将信息技术与医疗健康领域进行深度融合,对“智慧医疗业务”进行了整合并更名为“智慧健康业务”。目前,公司已经建立了一个全新的产品矩阵,该矩阵以“物联互联-互通-共享”为核心,专注于医疗卫生健康信息化的建设、研发和服务创新。
  • 百灵威正丁基锂新品上市
    正丁基锂(n-Butyllithium),可去除多种碳-氢键中的质子,尤其是当电子离域化或杂原子作用下共轭碱稳定时。正丁基锂性质独特,是有机合成中z重要的有机锂化合物之y。百灵威隆重推出Amethyst Chemicals 品p正丁基锂产品,特点如下: ◆ 通过多项严格检测,活性锂含量高,浑浊杂质少,反应收率高。 ◆ 产品溶解于正己烷溶液,有效保证正丁基锂的稳定性。 ◆ 包装设计独特,含密封衬垫可抽取包装,较同类包装密闭性提升1.5倍,抽取面积扩大15倍;可多次抽取,使用率高。 ◆ j具竞争力的价格,比同类进口产品低50%,g内现货充足,提供大包装。 反应收率高 &bull 可多次抽取 &bull 成本优势好 编号 CAS 产品名称 规格 目录价 274232 109-72-8 n-Butyllithium, [1.6M in hexanes] 100mL 800mL ¥342 ¥605 913796 109-72-8 n-Butyllithium, [2.4M in hexanes] 100mL 800mL 10L ¥351¥712 询价 温馨提示: 1.正丁基锂对空气和水敏感,请将产品储存于密闭、干燥、低温(2-8℃)环境中。 2.长期存放可能会产生少量浑浊,这属于正常现象,不影响产品pz。 3.使用注射器抽取溶液时,应在瓶口用注射针连接氮气球,以平衡正丁基锂吸出时的压力变化。 4.正丁基锂的反应体系需保持氮气环境,以阻挡空气和水气进入,所用溶剂应为无水或c干溶剂。
  • 3月回顾|质谱领域重要成果汇总
    2023年3月,质谱研究领域的新鲜成果迭出,包括一种基于电喷雾电离质谱法的新型个人健康监测仪、基于MALDITOF技术指尖涂片检测乳腺癌、基于单细胞蛋白质组学技术揭示男性更容易感染COVID-19、利用超高场离子云扫描质谱技术实现高分辨生物分子异构体分析等。仪器信息网特别将相关成果进行编译,以飨读者。  青铜时代的贸易证据(点击了解)  对于考古学家而言,陶瓷瓶中的有机残留物的GC-MS分析似乎揭示了长达公元前三千年的芳香油贸易。从土耳其的一处考古遗址出土的陶瓷瓶被怀疑曾经装有液体,直至最近研究人员对其中的残留物进行了分析!其中GC-MS鉴定了大部分样品中存在的二羧酸、油酸和棕榈酸,这表明它们可能主要含有基于植物的油。二萜类化合物也显示了松香树脂和其他植物衍生产品成分的添加。这是该地区这类商品贸易的最古老证据,突显了GC-MS在考古研究中的重要性。  硅胶手环电喷雾电离质谱法(SWESI-MS)  佩戴手腕监测器能否更好地了解我们的个人健康状况?最近的一项研究成果显示,简单的硅胶手环可能正好可以做到这一点!研究人员使用一种新的环境采样方法,被称为硅胶手环电喷雾电离质谱法(SWESI-MS),对人类暴露于环境化学物质(暴露组)和出汗代谢物进行了表征。类似于纸喷雾质谱法,分析物直接从手环表面检测出来。检测到了典型的汗液代谢物,以及一些其他的代谢物,该成果证实基于质谱检测法的手环有望作为临床监测器。不过作者指出需要进一步研究,但相信这种手环作为非侵入性可穿戴采样器,能够提供个体特征并确定外部和内部健康风险。  单细胞蛋白质组学与COVID-19感染差异  日本大阪大学的研究表明,性别特异性的Treg细胞差异可能解释了为什么男性似乎更容易感染COVID-19。他们使用单细胞蛋白质组学,展示了COVID-19患者循环Tfr细胞的比例发生变化,这是Treg细胞群体的一个子集,负责控制抗体产生,以及与抗体产生相关的其他细胞。女性拥有更多的循环Tfr细胞,而男性有更高的抗体水平,这可能导致在男性COVID-19患者中观察到的抗体产生失调。  MALDITOF助力指尖检测乳腺癌  乳腺X线检查(和活检)是筛查和诊断的黄金标准 但是它会暴露个体于辐射,其灵敏度和特异性有限,可能会使病患感觉不舒服,也可能在文化上不可接受。为了寻找替代方法,英国中塞克斯大学的研究人员结合自下而上的蛋白质组学和MALDI MS来从指尖涂片中检测乳腺癌。再将质谱数据集应用于统计分析和机器学习方法后,最高的预测方法准确率为97.8%。  超高场离子云扫描技术实现高分辨生物分子异构体分析  清华大学精密仪器系生物医学仪器与应用研究团队向高E/N场寻求突破离子迁移分析低分辨率的局限,提出一种超高场离子云扫描技术,并在离子阱质谱仪器上实现迁移分辨率超过10,000的高分辨IM分析,提升较现有技术水平一个数量级以上。研究工作中,离子云扫描方法展现出多种优点,如分析部件结构简单、操作方便、具有强大的时间/空间串级质谱能力等,可以方便地与多类质量分析器联用,用于设计混合型串联分析质谱仪器,在生物分子复杂结构解析上展现出较好的应用前景。
  • 中国兽医药品监察所就《动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法》等7项食品安全国家标准公开征求意见
    各相关单位:  根据《中华人民共和国食品安全法》和《中华人民共和国农产品质量安全法》有关要求,我办组织起草了《动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法》等7项食品安全国家标准。现公开征求意见,如有修改意见,请于2022年7月10日前反馈至全国兽药残留专家委员会办公室。  联系人:张玉洁  联系电话:010-62103930  E-mail:syclyny@163.com  地址:北京中关村南大街8号科技楼206  邮编:1000811. 动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法   本标准规定了猪、牛、羊、鸡组织(肌肉、肝脏、肾脏和脂肪)、鸡蛋、牛奶中己烯雌酚、己烷雌酚和己二烯雌酚残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的药物经酶解后用乙腈提取(脂肪样品先经乙腈提取,吹干复溶后再酶解),加入正己烷和乙酸乙酯后进行液-液-液三相体系净化,取中间层氮吹复溶后通过碳酸钠溶液液液萃取和硅胶柱固相萃取进行净化,液相色谱-串联质谱仪测定,基质匹配内标法定量。   2.牛可食性组织中盐霉素残留量的测定 液相色谱-串联质谱法   本标准规定了牛可食性组织中盐霉素残留量检测的制样和液相色谱-串联质谱测定方法,适用于牛肌肉、肝脏、肾脏和脂肪组织中盐霉素残留量的测定。方法原理为:试样中的药物残留用乙腈提取,提取液过滤膜后用液相色谱-串联质谱仪测定,基质匹配外标法定量。   3. 动物性食品中碘醚柳胺残留量的测定 高效液相色谱法   本标准规定了动物性食品中碘醚柳胺的制样和高效液相色谱测定方法。适用于牛、羊的肌肉、肝脏、肾脏和脂肪组织中碘醚柳胺残留量的测定。方法原理为:试样中残留的碘醚柳胺,经乙腈-丙酮溶液提取,混合型阴离子交换固相萃取柱净化,高效液相色谱-荧光法测定,外标法定量。   4. 禽蛋中β内酰胺类药物残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中青霉素V、青霉素G、氨苄西林、氯唑西林、阿莫西林、头孢氨苄、头孢喹肟残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的青霉素 V、青霉素 G、氨苄西林、氯唑西林、阿莫西林、头孢氨苄、头孢喹肟,经 80%乙腈水溶液提取,固相萃取柱净化浓缩,液相色谱-串联质谱测定,基质匹配标准溶液内标法定量。   5. 禽蛋中头孢噻呋残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中头孢噻呋代谢物去呋喃甲酰基头孢噻呋残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的头孢噻呋及代谢物,加入 0.4%二硫赤藓醇溶液混匀,用 14%碘乙酰胺溶液衍生化,生成稳定的乙酰胺衍生物,水饱和正己烷除脂,固相萃取柱净化浓缩,液相色谱-串联质谱测定,内标法定量。   6. 禽蛋中卡巴氧和喹乙醇的代谢物残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中卡巴氧代谢物喹噁啉-2-羧酸(QCA)和喹乙醇代谢物 3-甲基喹噁啉-2-羧酸(MQCA)残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试料中QCA和MQCA残留经偏磷酸溶液水解提取,叔丁基甲醚萃取后,用磷酸盐缓冲液反萃取,混合型强阴离子交换柱净化,酸性甲醇洗脱,液相色谱-串联质谱法测定,内标法定量。   7. 水产品中邻苯二甲酸酯类物质的测定 液相色谱-串联质谱法   本标准规定了水产品中邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二烯丙酯等21种邻苯二甲酸酯(PAEs)含量检测的制样和液相色谱-串联质谱测定方法。方法原理为:水产品中的邻苯二甲酸酯经乙腈提取,分散固相萃取净化,反相液相色谱柱分离,以甲醇和0.1%甲酸水溶液为流动相进行洗脱,应用高效液相色谱-串联质谱法测定和确证,基质匹配外标法定量。
  • 重磅!35项食品安全国家标准立项计划公示!
    各有关单位:为贯彻落实食品安全“最严谨的标准”要求,根据《中华人民共和国食品安全法》及其实施条例规定,我委制定了《2024年度食品安全国家标准立项计划》,现印发给你们,请认真组织落实,同时提出以下要求:一、标准研制应当以保障人民健康为宗旨,以食品安全风险评估结果为依据,充分考虑我国经济发展水平和客观实际需要,参考相关国际标准和风险评估结果,深入调查研究,确保标准指标设置科学合理。二、项目牵头单位负责组建标准起草协作组,提供项目所需人员、经费、科研等方面的资源和保障条件,确保项目承担单位分工协作、密切配合、优势互补,并充分调动发挥监管部门、行业组织、企业、科研院校和专业机构等相关单位和领域专家的作用。三、项目承担单位登录食品安全国家标准管理信息系统(https://sppt.cfsa.net.cn),填报并打印2024年食品安全国家标准制定、修订项目委托协议书或购买服务合同,由项目承担单位相关负责人签字并加盖单位公章,于2024年8月10日前报送食品安全国家标准审评委员会秘书处办公室。四、项目承担单位应当制定工作计划、项目路线图和进度表,保证标准研制质量和工作进度,对所制定标准文本负全责,确保标准在起草、送审、修改、校对、印刷、解读等各环节准确无误。项目完成后,应当按规定向秘书处办公室提交经费决算报告,经费决算报告须由财务负责人和单位相关负责人签字并加盖公章。对未如期完成项目的将采取追回经费、取消再次申请资格等方式。国家卫生健康委办公厅2024年7月16日2024年度食品安全国家标准立项计划序号项目名称制定/修订承担单位食品产品标准 5项1食用油脂制品修订上海市疾病预防控制中心、上海市质量监督检验技术研究院、江南大学、国家食品安全风险评估中心、中国焙烤食品糖制品工业协会2预制菜制定国家食品安全风险评估中心、中国物流与采购联合会食材供应链分会、中国商业联合会、成都市食品检验研究院、全国畜禽屠宰质量标准创新中心、中轻食品工业管理中心、中国食品科学技术学会3复合调味料修订成都市食品检验研究院、重庆市食品药品检验检测研究院、广州质量监督检测研究院、国家食品安全风险评估中心、中国肉类食品综合研究中心4冲调谷物制品修订中国食品科学技术学会、国家食品安全风险评估中心、江南大学、北京工商大学、中国焙烤食品糖制品工业协会5湿米制品制定广东省公共卫生研究院、海南省疾病预防控制中心、云南省卫生健康综合监督中心、国家食品安全风险评估中心、上海市质量监督检验技术研究院食品添加剂质量规格标准 14项6食品添加剂 酸处理淀粉修订上海市质量监督检验技术研究院、国家食品安全风险评估中心、上海市食品添加剂和配料行业协会、四川省食品检验研究院、浙江省食品添加剂与配料行业协会7食品添加剂 氧化淀粉修订上海市质量监督检验技术研究院、国家食品安全风险评估中心、上海市食品添加剂和配料行业协会、四川省食品检验研究院、浙江省食品添加剂与配料行业协会8食品添加剂 淀粉磷酸酯钠(又名淀粉磷酸酯,磷酸酯淀粉,单淀粉磷酸酯)修订江南大学、中国食品添加剂和配料协会、江西省检验检测认证总院食品检验检测研究院、上海市食品添加剂和配料行业协会、皖南医学院9食品添加剂 磷酸酯双淀粉修订江南大学、中国食品添加剂和配料协会、江西省检验检测认证总院食品检验检测研究院、上海市食品添加剂和配料行业协会、皖南医学院10食品添加剂 磷酸化二淀粉磷酸酯修订江西省检验检测认证总院食品检验检测研究院、中国生物发酵产业协会、湖南省产商品质量检验研究院、山东省食品药品检验研究院、大连工业大学11食品添加剂 乙酰化二淀粉磷酸酯修订江西省检验检测认证总院食品检验检测研究院、中国生物发酵产业协会、湖南省产商品质量检验研究院、山东省食品药品检验研究院、大连工业大学12食品添加剂 醋酸酯淀粉修订中国食品添加剂和配料协会、发酵行业生产力促进中心、中国生物发酵产业协会、沈阳市食品药品检验所、华中农业大学13食品添加剂 乙酰化双淀粉已二酸酯修订中国食品添加剂和配料协会、发酵行业生产力促进中心、中国生物发酵产业协会、沈阳市食品药品检验所、华中农业大学14食品添加剂 羟丙基二淀粉磷酸酯修订四川省疾病预防控制中心、四川省食品检验研究院、沈阳市食品药品检验所、深圳市计量质量检测研究院、大连工业大学15食品添加剂 羟丙基淀粉修订四川省疾病预防控制中心、四川省食品检验研究院、沈阳市食品药品检验所、深圳市计量质量检测研究院16食品添加剂 氧化羟丙基淀粉修订国家食品安全风险评估中心、上海市质量监督检验技术研究院、江南大学、发酵行业生产力促进中心、广州质量监督检测研究院17食品添加剂 羧甲基淀粉钠修订国家食品安全风险评估中心、上海市质量监督检验技术研究院、江南大学、发酵行业生产力促进中心、广州质量监督检测研究院18食品添加剂 结冷胶修订国家食品安全风险评估中心、中国食品添加剂和配料协会19食品添加剂 镍修订中海油天津化工研究设计院有限公司食品中放射性物质标准 1项20食品中放射性核素碳-14的测定制定中国疾病预防控制中心辐射防护与核安全医学所、北京市疾病预防控制中心、浙江省疾病预防控制中心、福建省职业病与化学中毒预防控制中心、国家食品安全风险评估中心理化检验方法与规程标准 5项21食品粘度的测定制定山东省食品药品检验研究院、国家食品安全风险评估中心、深圳市计量质量检测研究院22食品接触材料及制品 1,2-环己二羧酸二(异壬基)酯和1,4-苯二羧酸双(2-乙基己基)酯迁移量的测定制定南京海关危险货物与包装检测中心、北京市疾病预防控制中心、南京农业大学、宁波检验检疫科学技术研究院、国家食品安全风险评估中心23食品接触材料及制品 1,4-二氯苯迁移量的测定制定广州海关技术中心、国家食品安全风险评估中心、广东省食品检验所(广东省酒类检测中心)、上海市质量监督检验技术研究院、宁波检验检疫科学技术研究院24食品接触材料及制品 苯酚与甲醛和缩水甘油醚及其羟基和氯化衍生物的测定制定北京市产品质量监督检验研究院、广州海关技术中心、湖南省产商品质量检验研究院、上海市食品接触材料协会、国家食品安全风险评估中心25食品中甘油三酯、甘油二酯和单甘酯的测定制定北京市疾病预防控制中心、青岛海关技术中心、四川省食品检验研究院、华南理工大学微生物检验方法与规程标准 2项26食品微生物学检验 金黄色葡萄球菌检验修订四川省疾病预防控制中心、国家食品安全风险评估中心、四川省食品检验研究院、北京市疾病预防控制中心、北京市食品检验研究院(北京市食品安全监控和风险评估中心)27食品微生物学检验 副溶血性弧菌检验修订深圳海关食品检验检疫技术中心、广州海关技术中心、厦门海关技术中心、浙江省疾病预防控制中心、国家食品安全风险评估中心毒理学评价方法与规程标准 1项28食品安全性毒理学评价程序修订国家食品安全风险评估中心、农业农村部农药检定所、中国兽医药品监察所、中国农业大学生产经营规范标准 2项29湿米面制品中米酵菌酸污染控制规范制定广东省疾病预防控制中心、广东省公共卫生研究院、国家食品安全风险评估中心、广州质量监督检测研究院30食品添加剂生产通用卫生规范修订国家食品安全风险评估中心、发酵行业生产力促进中心、中国食品添加剂和配料协会、中国生物发酵产业协会、上海市食品化妆品质量安全管理协会营养与特殊膳食食品标准 5项31食品营养强化剂 麦角钙化醇(维生素D2)修订江南大学、国家食品安全风险评估中心、发酵行业生产力促进中心、广州海关技术中心32食品营养强化剂 L-赖氨酸-L-谷氨酸制定东北农业大学、中国生物发酵产业协会、国家食品安全风险评估中心、山东省食品药品检验研究院、中国营养保健食品协会33食品营养强化剂 L-谷氨酸钙制定江西省检验检测认证总院食品检验检测研究院、国家食品安全风险评估中心、山东省食品药品检验研究院、江西农业大学、中国生物发酵产业协会34食品营养强化剂 L-谷氨酸钾制定国家食品安全风险评估中心、山东省食品药品检验研究院、发酵行业生产力促进中心、东北农业大学35食品营养强化剂 L-天冬氨酸镁 制定中国生物发酵产业协会、国家食品安全风险评估中心、山东省食品药品检验研究院、东北农业大学、沈阳市食品药品检验所
  • 赛默飞的验“毒”术:教你测定“毒淀粉”中的顺丁烯二酸(酐)
    毒奶粉、瘦肉精、塑化剂&hellip 近年来食品&ldquo 染毒&rdquo 事件频发,食品安全已经成为公众关注的焦点之一。因此,作为食品安全问题源头之一的食品添加剂也渐渐进入消费者视野。今年3月,台湾爆发&ldquo 毒淀粉&rdquo 事件,食物中惊现含有顺丁烯二酸(酐) 的有毒淀粉。作为检测领域的世界领导者,赛默飞世尔科技(以下简称:赛默飞)积极响应,针对顺丁烯二酸酐可水解成马来酸的特性,提出运用离子色谱法测定淀粉中的顺丁烯二酸(酐)的解决方案。 顺丁烯二酸(HO2CCH=CHCO2H),又称&ldquo 马来酸&rdquo ,是饱和二元羧酸,可以用于树脂化学黏合剂原料。在淀粉中加入一定量的顺丁烯二酸,可增加食物的弹性、黏性、外观光亮度、以及保质期。然而,长期超标食用含顺丁烯二酸的食品,将极大程度损伤人体肾脏功能,甚至引发不孕不育。令人担忧的是,食品专家指出,顺丁烯二酸(酐)在食品领域可能存在一定滥用现象,成本的低廉以及效果的显著促使不法商家使用顺丁烯二酸(酐)作为食品添加剂,以谋取暴利。 离子色谱法测定淀粉中的顺丁烯二酸(酐) 顺丁烯二酸与反丁烯二酸(又称&ldquo 富马酸&rdquo )互为几何异构体,其中反丁烯二酸可以作为食品添加剂应用于食品中,主要起酸度调节剂作用,是食品添加剂卫生标准(GB2760-2011)允许添加的食品添加剂。相反,顺丁烯二酸(酐)则并未收入允许添加的食品添加剂目录。对于顺丁烯二酸(酐)在食品领域可能存在的滥用现象,赛默飞推出一种测定淀粉中顺丁烯二酸(酐)的方法,以满足食品安全监测的迫切需求。 顺丁烯二酸酐遇水则水解成马来酸,因此可以通过检测样品中马来酸的含量,得到顺丁烯二酸(酐)的总量。赛默飞针对马来酸作为一种有机酸极易溶于水且呈阴离子状态的特性,运用离子色谱法测定淀粉中顺丁烯二酸(酐)的测定方法。 与我国目前已有毛细管电泳法以及现行国家标准GB/T 23296.21-2009采用的高效液相色谱法等检测方法相比,赛默飞推出的离子色谱法测定淀粉中顺丁烯二酸(酐),不但样品前处理简单、便捷,而且方法稳定,线性范围内相关性好,准确度高,受其他因素干扰小,可以成为检测淀粉中的马来酸的有效手段。 赛默飞验&ldquo 毒&rdquo 术解决食品安全中的添加剂隐患 作为科学服务领域的世界领导者,赛默飞始终积极关注食品安全问题。对于近年来食品添加剂引发的食品安全事故层出不穷,赛默飞采取快速应对方式,在事件发生的第一时间组织分析专家开展检测工作,及时建立和发布相应解决方案。除了&ldquo 毒淀粉&rdquo ,赛默飞对于&ldquo 毒奶粉&rdquo 、塑化剂、瘦肉精等都有着独到的验&ldquo 毒&rdquo 术。 早在&ldquo 毒奶粉&rdquo 事件爆发之时,美国食品和药物管理局就发布过用赛默飞TSQ Quantum LC-MS/MS系统检测婴儿配方乳制品中三聚氰胺和三聚氰酸残留的方法。2007年,美国国家食品安全与技术中心又借助赛默飞的TSQ Quantum Ultra TM三重四级杆液相色谱串联质谱仪,建立了一个新的液相色谱串联质谱方法测定食品中的三聚氰胺。除了提供先进的检测技术,赛默飞还将独有的线样品前处理技术TurboFlow色谱净化和TSQ Quantum LC-MS/MS分析结合,使分析流程得到大大简化和操作自动化。赛默飞三聚氰胺检测方法因此获得了&ldquo 2009荣格食品饮料业技术创新奖&rdquo 。除此之外,赛默飞还针对塑化剂中的邻苯二甲酸二乙基乙酯(DEHP)和邻苯二甲酸二异壬酯(DINP),瘦肉精中的&beta -受体激动剂,以及防霉保鲜剂中的富马酸二甲酯(DMF)等食品添加剂推出了简单易行,分析时间短,且适用于大规模筛选的处理办法。 不止如此,赛默飞立足于整个食品安全的产业链,涵盖仪器设备、试剂以及LIMS实验室信息管理系统的无敌产品组合,为大家提供从农场到实验室到工厂&mdash &mdash 最全面的食品安全解决方案。 了解更多赛默飞食品安全完全解决方案信息,请点击http://www.thermo.com.cn/foodsafety。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 赛默飞发布针对左乙拉西坦中四丁基铵的检测方案
    2015年8月20日,北京——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布针对左乙拉西坦中四丁基铵的检测方案。左乙拉西坦是一种新型吡咯烷酮衍生物型抗癫痫药物。左乙拉西坦的结构和作用机制均与已上市的其他抗癫痫药物不同,具有较强的抗癫痫作用。四丁基溴化铵是在左乙拉西坦的合成过程中作为相转移催化剂使用,原料药的合成工艺准则要求必须要严格控制其残留量。赛默飞发布的测定左乙拉西坦原料药中四丁基胺的离子色谱方法,采用Thermo ScientificTM DionexTM ICS-900 基础型离子色谱系统,样品中基体不影响待测物质的准确分析。ICS-900配备SCS1柱容量较小的分析柱,采用MSA+35%乙腈作为淋洗液,采用抑制电导的方式检测,四丁基胺的检出限可以做到8 ug/L,待测物四丁基胺在SCS1上的峰形很对称,方法分析速度快,操作简便,灵敏度等均可完全能够满足左乙拉西坦中残留的四丁基胺根离子的检测要求。ICS-900基础型离子色谱系统检测方案下载地址:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/Chrom/pharma/documents/Suppressed-Conducitivity-Ion-Chromatography-Method-Determination-Tetrabutyl-Ammonium-Levetiracetam.pdf----------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com
  • 34项食品安全国家标准立项计划(征求意见稿)发布!
    各有关单位:根据《食品安全法》及其实施条例规定,为做好食品安全国家标准制定、修订工作,经向部门、行业和社会广泛征集年度立项建议,经食品安全国家标准审评委员会各相关专业委员会审议通过,我委拟订了《2024年度食品安全国家标准立项计划(征求意见稿)》,优先制定、修订风险防控和产业急需的食品安全国家标准34项。现公开征求意见,请于2024年4月7日前将意见书面反馈秘书处。传真:010—68792408食品安全国家标准审评委员会秘书处2024年3月12日2024年度食品安全国家标准立项计划(征求意见稿)序号建议项目名称制定/修订建议承担单位食品产品标准 5项1食用油脂制品修订上海市疾病预防控制中心、上海市质量监督检验技术研究院、江南大学、国家食品安全风险评估中心、中国焙烤食品糖制品工业协会2预制菜制定国家食品安全风险评估中心、中国物流与采购联合会冷链物流专业委员会、中国商业联合会、成都市食品检验研究院、全国畜禽屠宰质量标准创新中心3复合调味料修订成都市食品检验研究院、重庆市食品药品检验检测研究院、广州质量监督检测研究院、国家食品安全风险评估中心、中国肉类食品综合研究中心4冲调谷物制品修订中国食品科学技术学会、国家食品安全风险评估中心、江南大学、北京工商大学、中国焙烤食品糖制品工业协会5湿米制品制定广东省公共卫生研究院、海南省疾病预防控制中心、云南省卫生健康综合监督中心、国家食品安全风险评估中心、上海市质量监督检验技术研究院食品添加剂标准 12项6食品添加剂 酸处理淀粉修订上海市质量监督检验技术研究院、国家食品安全风险评估中心、上海市食品添加剂和配料行业协会、四川省食品检验研究院、浙江省食品添加剂与配料行业协会7食品添加剂 氧化淀粉修订上海市质量监督检验技术研究院、国家食品安全风险评估中心、上海市食品添加剂和配料行业协会、四川省食品检验研究院、浙江省食品添加剂与配料行业协会8食品添加剂 淀粉磷酸酯钠(又名淀粉磷酸酯,磷酸酯淀粉,单淀粉磷酸酯)修订江南大学、中国食品添加剂和配料协会、江西省检验检测认证总院食品检验检测研究院、上海市食品添加剂和配料行业协会9食品添加剂 磷酸酯双淀粉修订江南大学、中国食品添加剂和配料协会、江西省检验检测认证总院食品检验检测研究院、上海市食品添加剂和配料行业协会10食品添加剂 磷酸化二淀粉磷酸酯修订江西省检验检测认证总院食品检验检测研究院、中国生物发酵产业协会、湖南省产商品质量检验研究院、山东省食品药品检验研究院11食品添加剂 乙酰化二淀粉磷酸酯修订江西省检验检测认证总院食品检验检测研究院、中国生物发酵产业协会、湖南省产商品质量检验研究院、山东省食品药品检验研究院12食品添加剂 醋酸酯淀粉修订中国食品添加剂和配料协会、发酵行业生产力促进中心、中国生物发酵产业协会、沈阳市食品药品检验所、华中农业大学13食品添加剂 乙酰化双淀粉已二酸酯修订中国食品添加剂和配料协会、发酵行业生产力促进中心、中国生物发酵产业协会、沈阳市食品药品检验所、华中农业大学14食品添加剂 羟丙基二淀粉磷酸酯修订四川省疾病预防控制中心、四川省食品检验研究院、沈阳市食品药品检验所、深圳市计量质量检测研究院15食品添加剂 羟丙基淀粉修订四川省疾病预防控制中心、四川省食品检验研究院、沈阳市食品药品检验所、深圳市计量质量检测研究院16食品添加剂 氧化羟丙基淀粉修订国家食品安全风险评估中心、上海市质量监督检验技术研究院、江南大学、发酵行业生产力促进中心、广州质量监督检测研究院17食品添加剂 羧甲基淀粉钠修订国家食品安全风险评估中心、上海市质量监督检验技术研究院、江南大学、发酵行业生产力促进中心、广州质量监督检测研究院食品中放射性物质标准 1项18食品中放射性核素碳-14的测定制定中国疾病预防控制中心辐射防护与核安全医学所、北京市疾病预防控制中心、福建省职业病与化学中毒预防控制中心、浙江省疾病预防控制中心、国家食品安全风险评估中心理化检验方法与规程标准 6项19食品粘度的测定制定山东省食品药品检验研究院、国家食品安全风险评估中心20食品接触材料及制品 1,2-环己二羧酸二(异壬基)酯和1,4-苯二羧酸双(2-乙基己基)酯迁移量的测定制定南京海关危险货物与包装检测中心、北京市疾病预防控制中心、南京农业大学、宁波检验检疫科学技术研究院、国家食品安全风险评估中心21食品接触材料及制品 1,4-二氯苯迁移量的测定制定广州海关技术中心、国家食品安全风险评估中心、广东省食品检验所(广东省酒类检测中心)、上海市质量监督检验技术研究院、宁波检验检疫科学技术研究院22食品接触材料及制品 苯酚与甲醛和缩水甘油醚及其羟基和氯化衍生物的测定制定北京市产品质量监督检验研究院、广州海关技术中心、湖南省产商品质量检验研究院、上海市食品接触材料协会、国家食品安全风险评估中心23食品中甘油三酯、甘油二酯和单甘酯的测定制定北京市疾病预防控制中心、青岛海关技术中心、四川省食品检验研究院、华南理工大学24食品中茶叶茶氨酸的测定制定厦门海关技术中心、福建省产品质量检验研究院、国家食品安全风险评估中心微生物检验方法与规程标准 2项25食品微生物学检验 金黄色葡萄球菌检验修订四川省疾病预防控制中心、国家食品安全风险评估中心、四川省食品检验研究院、北京市疾病预防控制中心26食品微生物学检验 副溶血性弧菌检验修订深圳海关食品检验检疫技术中心、广州海关技术中心、厦门海关技术中心、浙江省疾病预防控制中心、国家食品安全风险评估中心毒理学评价方法与规程标准 1项27食品安全性毒理学评价程序修订国家食品安全风险评估中心生产经营规范标准 2项28湿米面制品中米酵菌酸污染控制规范制定广东省疾病预防控制中心、广东省公共卫生研究院、国家食品安全风险评估中心、广州质量监督检测研究院29食品添加剂生产通用卫生规范修订国家食品安全风险评估中心、发酵行业生产力促进中心、中国食品添加剂和配料协会、中国生物发酵产业协会营养与特殊膳食食品标准 5项30食品营养强化剂 麦角钙化醇(维生素D2)修订江南大学、国家食品安全风险评估中心、发酵行业生产力促进中心、广州海关技术中心31食品营养强化剂 L-赖氨酸-L-谷氨酸制定东北农业大学、中国生物发酵产业协会、国家食品安全风险评估中心、山东省食品药品检验研究院、中国营养保健食品协会32食品营养强化剂 L-谷氨酸钙制定江西省检验检测认证总院食品检验检测研究院、国家食品安全风险评估中心、山东省食品药品检验研究院、江西农业大学、中国生物发酵产业协会33食品营养强化剂 L-谷氨酸钾制定国家食品安全风险评估中心、山东省食品药品检验研究院、发酵行业生产力促进中心、东北农业大学34食品营养强化剂 L-天冬氨酸镁 制定中国生物发酵产业协会、国家食品安全风险评估中心、山东省食品药品检验研究院、东北农业大学、沈阳市食品药品检验所
  • 全球新冠持续多久?梅奥顶级专家给出答案
    新冠出现动物感染,或将无休止传播  日前,科学期刊《疫苗》主编、梅奥诊所顶级流行病学家格雷戈里波兰博士 (Gregory Poland) 在接受媒体采访时对疫情的走势作出最新研判:新冠疫情将持续到下个世纪,后代将持续接种疫苗。根据微信公众号「加拿大家园」摘引外网,Gregory Poland作为美国疫苗接种和免疫学方面的顶级专家之一,他结合研究和疫情实际情况对这一结论给出了详述。  他指出:尽管许多人做出了乐观的预测,但现在认为新冠病毒将成为地方性流感病毒还为时过早。它对一些全球卫生专家所指出的「新冠病毒大流行转变为地方性流感病毒」的说法表示不认同。  此前,有不少专家表示,奥密克戎变种病毒虽然有快速传播的特征,也有温和的性质,新冠病毒的模式将稳定且可预测,但Gregory Poland博士并不持有同样乐观的观点。  「我们还没有处于可以预测流行病的任何阶段,我们无法根除它。」需要特别强调的是,Gregory Poland博士指出:新冠病毒已显示出感染动物的能力,这意味着它可能跨物种传播,并继续变异、无限期地传播。这种病毒会传播很长时间,以至于人们仍然会在未来几代人中接受新冠疫苗。  不管是已接种疫苗还是未接种疫苗甚至动物之间,新冠都能如此猖獗的传播,Gregory Poland博士和其他专家都在担心未来几十年内无法控制住,如果一定要作出一个预测,他指出,子子孙孙都将接种新冠疫苗。  对于这个结论,Gregory Poland博士给出了一个类比:如果你今年秋天接种了流感疫苗,那么这针流感疫苗其实是针对1918年出现并引起大流行的流感病毒株。央视新闻客户端消息:1月23日据美国有线电视新闻网报道,斯坦福医学院流行病学家和传染病研究学者伊芳马尔多纳多(Yvonne Maldonado)表示,奥密克戎变异株过后,另一个全新的新冠病毒毒株或将袭来,随之奥密克戎变异株则被代替,但新冠病毒可能永远不会完全消失。  世卫组织发言人:可能永远也无法消灭病毒  疫情严峻对社会的影响似乎已经渗透多个角落。  2月6日,央视新闻客户端消息:为了掌握美国新冠病毒扩散程度,美国疾控中心从1月17日至31日的15天里,要求全美各地400多个废水监控站点每天对当地公共废水系统进行新冠病毒监测。  当地时间4日,美国疾控中心在媒体简报会上公布了这一监测数据,结果显示,在这15天中,废水监控系统一共收集了代表约5300万美国人的34000多份废水样本,其中98%的监测站点在其所有收集的样本中都检测到了新冠病毒。与此同时,美国国家环境保护局还指出,由于大约五分之一的美国家庭房屋没有连接公共下水道,只使用当地化粪池系统,这意味着利用废水监测以评估全美新冠病毒传播水平,仍有一定的局限性,并不能完全反映出美国疫情的严重程度。  如果病毒已经覆盖地球多个角落,那么人类下一步的策略是什么?  日前,世卫组织在2022年世界经济论坛上举行了有关疫苗公平问题的会议。在发言中,世界卫生组织卫生紧急项目负责人迈克尔瑞安表示,新冠病毒可能最终会成为这个地球生态系统的一部分,同时他还呼吁,应保证新冠疫苗的公平分配。  迈克尔瑞安:我们今年不会消灭新冠病毒,人们可能永远也无法消灭新冠病毒,我们可以结束的是公共卫生紧急状态。  「目前人们要做的是降低发病率,最大限度地为所有人接种疫苗,这需要更加公平的疫苗分配。截至目前,全世界已有一半以上的人口接种了两剂新冠疫苗,但在非洲地区,这个数字只有7%。」迈克尔瑞安还表示。  世卫组织也仍建议对新冠病毒感染者进行14天隔离。  新华社日内瓦1月12日电,世界卫生组织指出,新冠变异病毒奥密克戎毒株在几乎所有国家正迅速取代德尔塔毒株,各国应做好准备,谨防在即将到来的春季新冠和其他呼吸道疾病同时暴发。  世卫组织新冠病毒技术负责人玛丽亚范克尔克霍夫当天在记者会上说,随着人们社交活动的增加,以及春季流感病毒等其他呼吸道病原体的流行,预计未来将出现新冠和其他呼吸道疾病同时暴发的状况。她呼吁各国为此做好准备,确保呼吸道疾病监测系统的一体化运行。  世卫组织表示,住院人数没有出现之前激增的情况可能是由于奥密克戎毒株的毒性程度降低,以及人们因接种疫苗或感染后康复而产生的广泛免疫力。但世卫组织警告说,庞大的新增病例数正在给医疗系统带来沉重负担。  吴尊友:全球新冠大流行,3月不可能结束  新冠肺炎疫情已连续两年打乱全球民众的正常生活,如何彻底终止这场大流行成为人们心中越来越强烈的期盼。近段时间,一些来自国外的研究不断传递出这样的声音——“奥密克戎传播力强但毒性弱的特点已呈现出‘流感化’的趋势,新冠病毒给全人类造成的危害似乎在逐渐降低”。我们是否有理由对在不远的将来彻底终结新冠疫情抱以乐观的态度?就相关问题,《环球时报》记者近日独家专访了中国疾控中心流行病学首席专家吴尊友。  “奥密克戎不可能是‘大号流感’”  环球时报:国外现在有种声音,认为奥密克戎传播力强但致病力弱,越来越像是“大号流感”。对此,您怎么看?  吴尊友:奥密克戎不可能是“大号流感”,因为它感染的部位和流感是不一样的,它造成临床症状的严重性和流感完全是两个级别。流感病毒的感染部位是上呼吸道,而新冠病毒的感染部位是下呼吸道。上呼吸道感染很少会引起肺炎,除非久病不治,拖了很长时间,这种情况下少数患者会引起肺炎。而下呼吸道感染多数人会出现肺炎,包括感染奥密克戎毒株。此前天津的数据显示,在361例感染病例中,有42%的感染者有不同程度的肺炎症状,这个比例已经很高。  出现这么高比例的肺炎患者,如果不是因为我们的疫苗发挥了保护作用,病人病情的严重性会大得多。因为有疫苗“打底”以后,感染者具有一定的免疫力,所以症状就会轻很多。此外,就是我们国家的反应比较快,当病人刚刚确诊尚未出现症状,或是仅仅是轻症的时候,所有病例都会住院治疗,这和欧美国家不一样。在国外,没有症状或者症状较轻的,根本就不会安排住院治疗。这也就是我们国家从2020年6月北京新发地出现疫情后几乎没有死亡病例的原因——因为我们治疗的早。  放眼世界,奥密克戎造成肺炎的比例较高,除中国外,其他国家因奥密克戎导致的重症率、病死率远比流感要高得多。以美国为例,奥密克戎毒株流行期间,其造成的死亡人数,甚至远远高于德尔塔毒株流行期间造成的死亡人数。流感造成死亡的比例还是比较小的。所以奥密克戎不可能是一个“大号流感”。如果把它当成“大号流感”来看的话,会淡化疫情,削弱人们对它的重视程度,对疫情防控非常不利。  环球时报:1月19日,顶级医学学术刊物《柳叶刀》发表了美国(华盛顿大学)健康指标与评估研究所(IHME)主任默里的一篇论文。该论文预测,新冠病毒全球大流行即将结束,3月将成为关键时间点。请问您如何看待这种观点?  吴尊友:我认为这篇论文中表达的观点不太准确。这篇论文的作者是一名统计学家,是数学模型领域的全球顶级专家,他对生物学以及病毒的了解并不是特别清楚。他是根据流感来提出这种假设——如果此前的流感能在两年之内结束,那么新冠已流行两年,应该到了要结束的时候。他是基于这种逻辑来展开分析的,但因为流感和新冠有很多不同,他的这种假设有一些要接受现实挑战的地方。首先就在于感染流感后免疫力维持时间通常能达到一年,而感染新冠后免疫力维持时间一般在3到6个月左右。其次就在于新冠病毒的变异很快,差不多每天都在变。而流感病毒的变异是有规律性的,且变异周期较长,通常是一年一变或几年一变,在这一年或几年内,病毒的变异若仅在“亚型”内,不会影响交叉保护。所以,从病毒变异的特点以及从新冠流行两年的规律来看,“3月份成为新冠疫情世界大流行结束的关键时间点”这种观点,科学的依据是不充分的。  “新冠病毒流行的趋势肯定会减弱”  环球时报:您的判断呢?  吴尊友:今后一段时间内新冠病毒流行的趋势肯定会减弱,因为每一种新毒株的流行在到了高峰以后总会下降,奥密克戎在南非已开始出现下降趋势,在其他国家经过一段时间流行后也有下降迹象。如印度在去年4月、5月德尔塔毒株大流行后,有一段时间处在较低的流行水平,我们当时还在研究为什么印度的疫情突然就降低了,现在第四波疫情发生以后,印度的疫情又升上来。再如日本,在去年东京奥运会期间,疫情比较严重,但在奥运会结束后,疫情一下子呈现大幅度下降趋势,我们也试图解释为什么日本的疫情突然就平缓了,然而,全球第四波疫情来袭时,日本的疫情突然又升上来。新冠病毒就呈现这样一个流行规律,它一波流行峰过去后必然有下降的时候,所以从全球角度而言,3月或者未来一段时间流行趋势减弱,这种可能性是存在的,而且这种可能性是很大的。  全球新冠这一轮的大流行是有几个重要因素促成的,一个是冬季比较适合新冠病毒的生存和传播;第二个是冬季的节日比较多,感恩节、圣诞节以及新年,人们都会聚集,等到冬季过去,人们回到工作岗位,促进流行的因素也就减少了;第三个因素就是变异毒株的奥密克戎传染性比较强,特别是既往感染过或接种过疫苗的人也会感染、传播。  环球时报:有观点认为,根据病毒进化的特点,病毒的传播力越强,其毒性越弱,致病力也就越弱,到最后会呈现“强弩之末”的态势,直至与寄主和谐共生,请问这种观点是否科学?  吴尊友:这种观点把几个问题混淆而谈了。新冠病毒的传染性与致病性,在生物学上并没有必然的联系,它更多的是从社会学的角度来看这样一个问题。以我个人理解,这种传染性越强,致病性越弱的反向关系,更多的是社会性因素。以新冠病毒、“非典”还有中东呼吸综合症这三种呼吸道传染病为例,它们都是冠状病毒,但病死率是完全不一样的。新冠的病死率不到2%,非典的病死率大概在10%左右,中东呼吸综合症的病死率大概在34%,在三种冠状病毒当中恰恰是病死率最低的新冠,对人类造成的影响最大。  为什么会出现这种情况?主要是因为病人的症状如果比较轻的话,就不容易去就诊,就像我们前面讲的奥密克戎一样,它造成症状较轻的患者不容易去就诊,反而更容易传染给家人,传染给社会。但如果感染以后就出现重症的情况,病人很快就会去住院,病毒传染给他人的机会自然就会降低,病毒的传染性就减弱了。传染性是和人的社会行为有关的,交流越频繁,人口越密集,传染性就越强,而患病的严重性会限制病人和社会之间的互动能力。  所以,“传播力越强,其毒性越弱,致病力也就越弱”这种说法在生物学上基本是不可能实现的,它更多的是从社会学的角度来看这样一个问题。我个人不认为新冠的流行最终会呈现这种趋势,新冠病毒的变异,至少到目前为止也看不到这种规律,未来会不会出现呢?我想这种观点可能过于乐观了。  “对付新冠病毒,要通过综合的方法”  环球时报:新冠病毒不仅可以感染人类,还可以在动物中传播,因此有观点认为,人类可能永远也无法彻底终结新冠的流行,将与病毒长期共存,请问您如何看待这种观点?  吴尊友:应分为两个层面来表述这一问题。第一个就是新冠与人类共存,目前看来应是永久性的。第二个就是新冠流行的严重程度和规模将取决于人类与新冠斗争的程度。应该说新冠病毒会永远存在,只是流行水平会不一样。  现在难以判定的是,它是像目前这样维持一个高水平的流行,持续影响人们的生活和社会经济的发展,还是可以通过人类的智慧,运用科学技术能够把它控制在一个地方性传染病的流行水平,不再影响人们的生活和工作及社会活动。我们现在难以确定未来新冠流行的程度,这要依赖于我们对新冠科学认识的水平,以及人类防控疫情的技术水平和能力。  环球时报:近一段时间以来,在我国多地暴发的疫情中,感染者基本上都是轻症和无症状感染者,为什么会出现这样的情况?  吴尊友: 近期轻症和无症状感染者的增多有两方面的原因,其中一部分是由于奥密克戎的感染者其本身的症状可能相对比较轻,但不论是感染奥密克戎,还是德尔塔毒株,感染者都出现症状比较轻的情况,这是由于我国的疫苗接种,在70%到80%的接种人群中已产生一定免疫力,虽然这种免疫力不能完全阻止感染,但却使得感染者的症状大大减轻,或者根本就不显示症状。  无症状感染者的增多确实也增加了防控工作的难度,因为在发现疫情后想要把传播链理清楚就更难了。但应该看到,疫苗在控制疫情方面发挥的作用是巨大的,感染者的症状减轻了,需要医疗照顾或者发生重症、危重症甚至死亡的病例大幅度减少,也就减少了医疗的负担。所以疫苗仍然是我们控制新冠,包括奥密克戎最重磅的“武器”。  环球时报:世卫组织相关发言人1月24日在回复《环球时报》记者问询时表示,当全球疫苗接种率达到70%时,就意味着大流行最关键时期已过去,请问中国是否有这样的时间表?  吴尊友: 目前看来,世卫组织这一说法是值得商榷的。在第四波新冠疫情大流行发生以前,德法英等欧洲多数国家的两针疫苗接种率都已超过70%,包括美国的疫苗总体接种率也是在70%以上。这里就存在一个问题。原来我们所说的接种疫苗实现群体免疫的概念,在奥密克戎出现以后,因为突破病例的发生使得群体免疫的概念受到挑战。  如果新冠的变异毒株,多数都具有免疫逃逸能力的话,想要通过接种疫苗实现群体免疫从而终止新冠疫情的大流行,这个方法就不再适用了。所以说“70%的疫苗接种率就意味着大流行最关键时期已经过去”这个说法本身就是有问题的,我们国家已经达到70%了,但只要有病毒具有逃逸性,还是会感染,这一轮天津疫情感染的病例当中多数都是接种过疫苗的,疫苗只是让感染者的症状更轻了。现在已不能用疫苗接种率这样一个指标来制定新冠大流行终止的时间表,因为它是很复杂的,没有一个单独的方法能把新冠控制住。现在要通过综合的方法,疫苗毫无疑问是对付包括奥密克戎在内的新冠病毒最重要的重磅武器。还有严格的公共卫生措施,良好的个人卫生习惯,及时的医疗干预,中西医结合,预防加治疗这些手段综合的应用才能够控制住新冠的大流行。  “‘动态清零’是到目前为止最佳的防控方式”  环球时报:国外媒体一直试图从各种角度攻击中国的“动态清零”政策,为什么说中国的“动态清零”仍然是应对疫情最佳方式?如果要调整目前的“动态清零”,可能将会依据什么标准?  吴尊友: 实际上中国的“动态清零”政策使得中国的疫情比全世界的平均水平低出几百倍。全球目前因为新冠流行失去生命的人数很多,仅美国一个国家因为新冠累计死亡人数就达到了92万余人,而我们只是在早期武汉暴发新冠疫情时出现了几千死亡患者,在武汉的疫情结束以后,几乎再未出现感染新冠死亡的病例。这些数据足以证明“动态清零”不仅对疫情防控、减少死亡病例行之有效,同时对社会经济的发展也是非常有效的。中国人民现在的生活应该说是非常幸福的,人民普遍有安全感,虽然说局部疫情的暴发会对少数人造成一些影响,但是从全国一盘棋的角度而言,疫情的防控,世界上没有哪个国家能像中国这样成功,应该说“动态清零”政策是到目前为止最佳的防控方式。如果我们没有找到一个新的方法能够确保病毒输入后不造成大范围传播,没有一个更好的办法能够控制住疫情的话,动态清零的策略暂时也不会调整。
  • 36项在研/拟制订!新污染物生态环境监测分析方法标准土壤和沉积物篇
    为加强新污染物生态环境监测工作,优化完善生态环境监测标准体系,生态环境部组织制订《新污染物生态环境监测标准体系表》(以下简称《体系表》),用于规范和指导新污染物生态环境监测标准制修订工作。《体系表》中新污染物生态环境监测标准项目共219项,包括生态环境监测技术规范(以下简称技术规范)、生态环境监测分析方法标准(以下简称分析方法标准)和生态环境标准样品(以下简称标准样品)共3类。《体系表》中生态环境监测标准编制状态分为已发布、在研和拟制订三种。其中,已发布表示标准已发布实施且现行有效,在研表示标准目前正在制修订,拟制订表示下一步计划制修订。《体系表》主要由新污染物生态环境监测标准体系框架图和体系表标准项目表构成。《体系表》定期更新。《新污染物治理行动方案》明确新污染物主要包括国际公约管控的持久性有机污染物、内分泌干扰物、抗生素等,提出动态发布重点管控新污染物清单和动态制订化学物质环境风险优先 评估计划、优先控制化学品名录的目标和行动举措。本体系表所指新污染物,主要包括现阶段已发布的《重点管控新污染物清单(2023 年版)》(生态环境部、工业和信息化部、农业农村部、商务部、海关总署、国家市场监督管理总局令第 28 号)、《关于持久性有机污染物的斯德哥尔摩公约》《优先控制化学品名录(第一批)》(环境保护部 工业和信息化部 国家卫计委公告2017年 第 83 号)、《优先控制化学品名录(第二批)》(生态环境部工业和信息化部 国家卫健委公告 2020 年第47号)和《第一批化学物质环境风险优先评估计划》(环办固体〔2022〕32号)中的受控物质。其中,新污染物生态环境监测标准与土壤和沉积物相关的分析方法标准52项,按编制状态分类,已发布16项、在研3项、拟制订33项。具体标准请查阅下图。新污染物生态环境监测标准体系项目表序号指标标准类型及标准项目名称建标理由*状态备注分析方法标准1抗生素土壤和沉积物 磺胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订2土壤和沉积物 氟喹诺酮类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订3土壤和沉积物 大环内酯类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订4土壤和沉积物 氯霉素类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订5土壤和沉积物 四环素类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订6土壤和沉积物 氨基糖苷类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订7土壤和沉积物 林可酰胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订8土壤和沉积物 β-内酰胺类抗生素的测定 液相色谱-三重四极杆质谱法A拟制订9三氯杀螨醇土壤和沉积物 三氯杀螨醇的测定 气相色谱-质谱法A拟制订10微塑料土壤和沉积物 微塑料的测定 傅里叶变换显微红外光谱法A拟制订11土壤和沉积物 聚乙烯等 5 种树脂类微塑料的测定 热裂解-热脱附/气相色谱-质谱法A拟制订12多氯萘土壤和沉积物 多氯萘的测定 气相色谱-三重四极杆质谱法B拟制订13六溴联苯土壤和沉积物 六溴联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法B拟制订14毒杀芬土壤和沉积物 毒杀芬的测定 气相色谱-三重四极杆质谱法(HJ 1290-2023)B已发布15有机磷酸酯类土壤和沉积物 有机磷酸酯类化合物的测定 液相色谱-三重四极杆质谱法C拟制订16土壤和沉积物 有机磷酸酯类化合物的测定 气相色谱-质谱法C拟制订17麝香类土壤和沉积物 麝香类化合物的测定 气相色谱-质谱法C拟制订18N,N'-二甲苯基-对苯二胺土壤和沉积物 N,N'-二甲苯基-对苯二胺的测定 气相色谱-三重四极杆质谱法C拟制订19甲醛和乙醛土壤和沉积物 醛、酮类化合物的测定 高效液相色谱法(HJ 997-2018)C已发布20苯胺类(邻甲苯胺)土壤和沉积物 13 种苯胺类和 2 种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法(HJ 1210-2021)C已发布21多环芳烃土壤和沉积物 多环芳烃的测定 高效液相色谱法(HJ 784-2016)C已发布22烷基汞土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(HJ 1269-2022)C已发布23硝基苯土壤和沉积物 硝基苯类化合物的测定 气相色谱-质谱法C拟制订24邻苯二甲酸酯类土壤和沉积物 6 种邻苯二甲酸酯类化合物的测定 气相色谱-质谱法(HJ 1184-2021)D已发布25土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法(HJ 834-2017)D已发布26紫外吸收剂土壤和沉积物 8 种紫外吸收剂的测定 气相色谱-质谱法D拟制订27土壤和沉积物 8 种紫外吸收剂的测定 液相色谱-三重四极杆质谱法D拟制订28卡拉花醛土壤和沉积物 卡拉花醛的测定 气相色谱-质谱法D拟制订29有机锡化合物(三丁基锡)土壤和沉积物 4 种有机锡化合物的测定 液相色谱-电感耦合等离子体质谱法D拟制订30得克隆土壤和沉积物 得克隆的测定 气相色谱-质谱法A B拟制订31多氯联苯土壤和沉积物 多氯联苯的测定 气相色谱-质谱法(HJ 743-2015)A B已发布32土壤和沉积物 多氯联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B拟制订33有机氯农药土壤和沉积物 有机氯农药的测定 气相色谱法(HJ 921-2017)A B已发布34土壤和沉积物 有机氯农药的测定 气相色谱-质谱法(HJ 835-2017)A B已发布35二噁英类土壤和沉积物 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(修订 HJ 77.4-2008)B C在研36多溴二苯醚土壤和沉积物 多溴二苯醚的测定 气相色谱-质谱法(HJ 952-2018)A B C已发布37土壤和沉积物 多溴二苯醚的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B C拟制订38短链 氯化石蜡土壤和沉积物 短链氯化石蜡的测定 气相色谱-高分辨质谱法A B C拟制订39土壤和沉积物 短链氯化石蜡的测定 液相色谱-高分辨质谱法A B C拟制订40土壤和沉积物 短链氯化石蜡的测定 电子捕获负化学源低分辨质谱法A B C在研41五氯苯酚土壤和沉积物 五氯苯酚及其盐类酯类的测定 气相色谱-三重四极杆质谱法A B C拟制订42土壤和沉积物 酚类化合物的测定 气相色谱法(HJ 703-2014)A B C已发布43土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法(HJ 834-2017)A B C已发布44挥发性有机物土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法(HJ 605-2011)A C D已发布45土壤和沉积物 挥发性有机物的测定 顶空/气相色谱法(HJ 741-2015)A C D已发布46壬基酚双酚 A4-叔辛基苯酚2,4,6-三叔丁基苯酚土壤和沉积物 19 种酚类化合物的测定 液相色谱-三重四极杆质谱法A C D拟制订47土壤和沉积物 烷基酚类化合物和双酚 A 的测定 液相色谱-三重四极杆质谱法A C D拟制订48六溴环十二烷双酚 A土壤和沉积物 六溴环十二烷和四溴双酚 A 的测定 液相色谱-三重四极杆质谱法A B C D在研49全氟 化合物类土壤和沉积物 21 种全氟烷基磺酸和全氟烷基羧酸及其盐类和相关化合物的测定液相色谱-三重四极杆质谱法A B C D拟制订50土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法(HJ 1334-2023)A B C D已发布51土壤和沉积物 全氟辛基磺酰氟的测定 液相色谱-三重四极杆质谱法A B CD拟制订52氯苯类土壤和沉积物 氯苯类化合物的测定 气相色谱-质谱法A B C D拟制订*:A:管控清单;B:履约;C:优控名录;D:优评计划。仪器信息网将在5月7-9日举办“第五届土壤检测技术与应用”网络会议,其中”土壤新污染物检测“专场将为大家分享最新的分析技术进展与应用,点击免费报名:第五届土壤检测技术与应用网络会议_3i讲堂_仪器信息网 https://www.instrument.com.cn/webinar/meetings/soil240507/
  • 岛津'PFAS二高一自'方案:高效分析新污染物
    全氟或多氟烷基化合物(Per- and Polyfluoroalkyl Substances,PFAS),是近年来备受关注的一类新污染物。研究表明,经由饮用水和其他环境介质的PFAS暴露给公众健康带来一定风险,目前全氟辛基磺酸(PFOS)、全氟己基磺酸(PFHxS)、全氟辛酸(PFOA)三类PFAS已列入POPs公约及我国《重点管控新污染物清单》。国内外相继发布了水质PFAS分析相关法规(HJ 1333-2023、GB 5750.8-2023、EPA 537.1等),现有方案一般采用离线SPE进行浓缩富集,样品用量大,操作繁琐耗时,容易引入误差或干扰。此外,不同法规的分析目标物数量存在差异,给法规依从分析带来挑战。岛津特别推出 “PFAS二高一自”应用方案:高灵敏-直接进样方案、高通量-平行液相方案、自动化-On-line SPE分析方案,水样直接上机,至多覆盖46种分析目标物,让PFAS分析更有信心。“PFAS二高一自”应用方案PFAS广泛用于铬雾抑制剂、灭火剂、不粘涂层等领域,在水体中呈现种类多、含量低的特点。为了同时兼顾法规和科研需求,覆盖更多的分析目标物,提升灵敏度和分析效率,岛津隆重推出“PFAS二高一自”特色应用方案,在法规基础上进行升级,满足您的个性化需求。三种方案均采用LCMS-8060NX三重四极杆串联质谱仪,灵敏度极高,水样无需离线SPE浓缩,直接上机,PFOA和PFOS轻松达到ppt级别灵敏度,满足大部分法规的要求,来看看“PFAS二高一自”的亮点吧!高灵敏-直接进样方案Nexera LC+LCMS-8060NX● 优异的灵敏度,PFOA和PFOS-0.5 ng/L;● 40种目标物+9种内标同时分析高通量-平行液相方案Nexera MX+LCMS-8060NX● 单次分析时间仅5.5 min,两条流路交替分析,通量高;● 41种目标物+9种内标同时分析自动化-On-line SPE分析方案On-line SPE+LCMS-8060NX● 1mL样品直接上机,PFOA、PFOS线性低点0.2ng/L;● 15 min分析46种目标物+9种内标“PFAS二高一自”特色应用方案推荐搭配以下全氟分析专用的配件和方法包●洁净样品瓶1.5 mL,Shimadzu LabTotal Vial for LC/LCMS(P/N 227-34001-01);●延迟柱和无氟化管路包(P/N:S225-46100-41),有效避免系统本底的干扰;●PFASs MRM数据库,包含93种PFAS的MRM参数,68个目标+25个内标(P/N:M232-07175-41);●LC/MS/MS 饮用水中PFAS分析方法包(P/N:S225-45420-91),覆盖EPA 533和537.1法规要求;↓高灵敏-直接进样方案赏析↓高灵敏-直接进样方案,非常考验仪器的极致灵敏度及稳定性,LCMS-8060NX标配Ion Fucus离子源,进一步提升了离子导入效率,从而提升了灵敏度及抗污染性能。40种目标物仅需50 μL上样量,线性范围0.5-100 ng/L,以PFOA和PFOS为例,定量限可达0.5 ng/L,灵敏度优于美国EPA的MCLs(最大污染水平)4 ng/L。● 线性在1-100 ng/L范围内,PFOA和PFOS,线性回归系数r20.99;↓高灵敏-平行液相方案赏析↓在传统的LCMS分析过程中,梯度洗脱的冲洗再平衡阶段质谱不再采集“有用”数据,属于质谱空闲时间,单次分析的质谱空闲时间一般在30-50%,岛津Nexera MX平行液相系统,采用独特的MX-DST技术,实现了流路1在分析的同时,流路2在冲洗和平衡,在液相梯度完成并且目标峰出峰结束后,便可交替流路开始下一针的分析(即重叠进样功能),将质谱空闲时间有效利用起来。同时,Nexera MX搭配LabSolutions Connect软件和MX Solution软件,实现参数优化和数据采集的智能化处理。使用高通量-平行液相系统,41种PFAS目标物、9种内标单次分析仅5.5 min,大大提升了质谱的利用率,实现了降本增效。兼顾效率的同时,灵敏度也能达到PPT级别。● 仪器配置及条件● 色谱图41种PFAS目标物、9种内标色谱分离良好,2 ng/L PFOA 和PFOS色谱图如下。41种PFAS目标物、9种内标TIC图(62 ng/L)↓自动化-On-line SPE分析方案赏析↓自动化-On-line SPE分析方案,配备了捕集上样模块,实现在线富集,超大体积进样(2000 μL定量环),实现一机多用,节省样品分析时间等,轻松实现自动化分析,告别繁复的手动前处理。46种PFAS目标物、9种内标在10 min内实现了良好的分离,色谱峰形良好。46种分析目标物以全氟/多氟烷基酸类,全氟烷基酸前体类为主,包括了羧酸类、磺酸类、饱和/不饱和调聚羧酸类、调聚磺酸、磺酸醚、羧酸醚、磺酰胺等共10类。● 系统配置系统控制器:SCL-40输液泵:LC-40D X3×2,LC-40B X3自动进样器:SIL-40C X3(2000 μL定量环)柱温箱:CTO-40C(FCV-36AH)质谱仪:LCMS-8060NX混合器:20μL×2● 分析目标物分类自动化-On-line SPE分析目标物分类● 自动化-On-line SPE分析条件● 灵敏度自动化-On-line SPE分析方案标准曲线图(PFOA和PFOS)●线性结果46种PFAS线性相关系数R0.995,具体如下表所示;结语“PFAS二高一自”特色应用方案,简化了前处理了,实现了更多目标物的分析,更适合法规依从和风险筛查。以上案例中的LCMS-8060NX,可以升级为新款LCMS-8060RX三重四极杆液质联用仪,LCMS-8060RX采用全新开发的IonFocus离子源,配备新开发的CoreSpray技术,提高ESI 喷雾针同轴度,进一步提升了分析数据的稳定性。
  • 岛津大气中PM2.5物质成分分析仪器(2)
    近来,雾霾天气频袭中国,在相关大气污染报道中,不断出现PM2.5一词。这是指在悬浮粒子状物质中粒径小于2.5&mu m的微小粒子,容易深入肺部,可对健康造成严重影响。 日本已于2009年9月设定了微小粒子状物质(PM2.5)的环境标准,在2010年3月31日修订的「基于大气污染防止法第22条规定的与大气污染状况持续监控相关的事务处理标准」中,规定按照国家指针实施PM2.5的成分分析。2011年7月29日,日本环境省分布了新的「PM2.5成分分析指针」。 继昨日介绍之后,在此继续介绍使用岛津分析装置分析PM2.5成分的应用实例。 ICP-MS分析无机元素成分例 介绍使用ICP-MS定量城市大气粉尘标准物质(NIST SRM1648)的实例。前处理采用微波分解装置分解样品,制成硝酸溶液后进行测定。下表表示大气粉尘标准物质的定量结果。结果与保证值非常一致。 ICPM-8500的特长 实现高灵敏度、多元素的同时分析 具有ppt水平的高灵敏度,并且实现多元素的同时分析。 采用等离子微炬管,降低了氩气消耗量 采用微炬管,使氩气消耗量减半,并且,可以高灵敏度同时分析从微量到高浓度的样品。 台式装置,维护简便 通过使用自动进样器AS-9和自动稀释装置ADU-1(选配件),可以实现自动分析。 X射线荧光装置(EDX)分析无机元素成分例 EDX-720的特长 简便操作,全自动测定 实现设定工作的自动化,初学者也可完成高精度的测定。 无需前处理,直接测定滤纸 如果使用能量色散型X射线荧光分析装置,则可以无化学前处理地对捕集在滤纸上的PM2.5物质进行元素分析。 可以高灵敏度地分析宽范围的元素 TOC仪(燃烧催化氧化/NDIR检测方式)分析水溶性有机物例 作为WSOC(水溶性有机碳)的主成分二羧酸的代表例,以下表示草酸分析的结果。在配制样品的纯水中含有大约0.02mg/L的TOC杂质,因此,各草酸水溶液的TOC值偏高,但都能够以3%以下的变动系数CV值进行定量。 分析条件 装置:TOC-LCPH 催化剂:高灵敏度催化剂 进样量:500&mu L 测定项目:TOC(经过酸化通气处理的TOC) 工作曲线:0-3mgC/L邻苯二甲酸氢钾水溶液 样品:特级试剂草酸2mgC/L、1mgC/L、0.2mgC/L水溶液 草酸水溶液的TOC测定结果 样品名 TOC值(mgC/L) n=3的CV值 2mgC/L草酸水溶液 2.013 0.95% 1mgC/L草酸水溶液 1.017 1.11% 0.2mgC/L草酸水溶液 0.223 2.06% TOC-L的特长 宽测量范围4&mu g/L~30000mg/L,适用于从超纯净水到高污染水(TOC-LCSH/CPH)的一切物质。 采用680℃燃烧催化氧化方式,高效率地测定所有有机成分。具备检测限为4µ g/L的高灵敏度检测能力,对应广泛领域的样品。 省空间省能源设计 与本公司以往装置相比,电力消耗降低36%,装置幅宽缩短约20%。 丰富的型号与选配件 ・ 备有方便处理测定数据的PC型号和简单操作的单机型号 ・ 安装选配件可以测定从固体样品到气体样品 ・ 安装TN单元可以测定总氮 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制