当前位置: 仪器信息网 > 行业主题 > >

压汞法介孔总孔容和孔

仪器信息网压汞法介孔总孔容和孔专题为您提供2024年最新压汞法介孔总孔容和孔价格报价、厂家品牌的相关信息, 包括压汞法介孔总孔容和孔参数、型号等,不管是国产,还是进口品牌的压汞法介孔总孔容和孔您都可以在这里找到。 除此之外,仪器信息网还免费为您整合压汞法介孔总孔容和孔相关的耗材配件、试剂标物,还有压汞法介孔总孔容和孔相关的最新资讯、资料,以及压汞法介孔总孔容和孔相关的解决方案。

压汞法介孔总孔容和孔相关的论坛

  • 表面电位测试,粒度测试,氮气吸附法测孔径分布、比表面积和孔容、压汞法测孔径分布、孔隙率,孔容

    表面电位测试、粒度测试、比表面积测试、氮气吸附法测孔径分布、氮气吸附法测孔容、压汞法测孔径分布、压汞法测孔隙率(或气孔率)、压汞法测孔容。表面电位/激光粒度测试仪器 型号:zeta plus(made in USA);粒度测试范围:3nm~3um。比表面仪(氮气吸附法)型号:ASPA2010(made in USA) 孔径测试范围:1.7nm~300nm。压汞仪 型号:poresizer9320(made in USA) 孔径测试范围10nm~360um。流变仪 型号:SR5上海硅酸盐研究所国家重点实验室电话:52412224

  • 测定固体材料孔径分布和孔隙度 压汞法

    测定固体材料孔径分布和孔隙度 压汞法

    一般测试样品的孔径分布,所使用的方法就是静态容量法和压汞法。其原理是通过测试的分压和对应的各级孔的吸附量,来表征材料孔径的分布。表征的方法是,通过各级孔径的体积与对应的分压下的一个曲线图,来表征材料的孔径分布。今天我们主要讲讲测定固体材料孔径分布和孔隙度 -压汞法它的原理如下: [font=宋体]由于非浸润[/font][font=宋体]液体[/font][font=宋体]汞仅在施加外压力[/font][font=宋体]时方可[/font][font=宋体]进入[/font][font=宋体]多[/font][font=宋体]孔体(不包含[/font][font=宋体]闭孔[/font][font=宋体]),在[/font][font=宋体]不断增压的情况下,[/font][font=宋体]进入[/font][font=宋体]多[/font][font=宋体]孔[/font][font=宋体]体的汞体积[/font][font=宋体](或孔径)[/font][font=宋体]与外压力具有一定函数关系[/font][font=宋体],[/font][font=宋体]从而测得样品的孔径分布。[/font][font=宋体]在假设孔为圆柱形的前提下,[/font][font=宋体][color=#222222]Washburn方程[/color][/font][font=宋体][color=#222222]给出了压力与孔径[/color][/font][font=宋体][color=#222222]间[/color][/font][font=宋体][color=#222222][font=宋体]的关系[/font],[/color][/font][font=宋体][color=#222222]见下[/color][/font][font=宋体][color=#222222]式[/color][/font][font=宋体][color=#222222]。[/color][/font][img=,156,66]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301515009551_4103_2140715_3.png!w156x66.jpg[/img][font=宋体]其中,[/font]γ为汞的表面张力、θ为汞在样品上的接触角。我们实验室所购压汞仪为美国麦克仪器的9500系列的全自动压汞仪。最高压力可加至33000psia(≈230MPa),可分析孔径范围为0.0055um-400um。压汞检测适用范围: 适用于大多数非浸润多孔材料,不适用于汞齐化的材料,如:金、铝、还原铜、还原镍和银等一些金属;样品预处理: 最好在>110℃温度下,真空状态下干燥处理1h以上;样品尺寸的选择 因为检测中心使用的是5cc的膨胀计,样品尺寸为φ14×20mm的样品较为适宜。 但样品最佳的尺寸要根据所分析材料的总孔体积选择。一般,当Stem Volume Used 小于25%或大于90%时,需要改变分析变量。第一:可以选择稍大或稍小的样品量以提供更好的分辨率,第二改变毛细管体积。具体操作如[b][font=黑体] 1.[/font][font=黑体][color=#222222]样品烘干[/color][/font][/b][font=宋体][color=#222222]1[/color][/font][font=宋体][color=#222222]10[/color][/font][font=宋体][color=#222222]℃±[/color][/font][font=宋体][color=#222222]5[/color][/font][font=宋体][color=#222222]℃,2h,贮存在干燥器中冷却至室温备用。[/color][/font][font=宋体][color=#222222] [/color][/font][font=宋体][color=#ff0000][font=宋体]最好在>[/font][font=宋体]110℃温度下,真空状态下干燥处理1h以上[/font][/color][/font][font=宋体][color=#ff0000]。[/color][/font][font=黑体][color=#222222]2 [/color][/font][b][font=黑体][color=#222222]膨胀计[/color][/font][font=黑体][color=#222222]装样[/color][/font][/b][font=宋体][color=#222222]将干燥[/color][/font][font=宋体][color=#222222]冷却后的样品[/color][/font][font=宋体][color=#222222]称重[/color][/font][font=宋体][color=#222222]后[/color][/font][font=宋体][color=#222222]放入[/color][/font][font=宋体][color=#222222]一干净的膨胀计中,[/color][/font][font=宋体][color=#222222]用成套[/color][/font][font=宋体][color=#222222]的密封件[/color][/font][font=宋体][color=#222222]密封[/color][/font][font=宋体][color=#222222],[/color][/font][font=宋体][color=#222222]密封时[/color][/font][font=宋体][color=#222222]必须使用密封脂[/color][/font][font=宋体][color=#222222],确保[/color][/font][font=宋体][color=#222222]密封性[/color][/font][font=宋体][color=#222222],密封不严可能造成真空度无法达到要求[/color][/font][font=宋体][color=#222222]。[/color][/font][font=楷体][color=#222222]注意:在样品装样等过程中必须戴好乳胶手套,皮肤不得直接接触样品和膨胀剂等,全程佩戴好口罩等防护用品。[/color][/font][font=黑体][color=#222222]3 [/color][/font][b][font=黑体][color=#222222]抽真空[/color][/font][/b][font=宋体][color=#222222]抽真空的目的是去除样品中的大多数水分及气体。[/color][/font][font=宋体][color=#222222]首先[/color][/font][font=宋体][color=#222222]将[/color][/font][font=宋体][color=#222222]装有样品的[/color][/font][font=宋体][color=#222222]膨胀计[/color][/font][font=宋体][color=#222222]安装在压汞[/color][/font][font=宋体][color=#222222]仪低压[/color][/font][font=宋体][color=#222222]站,建立低压测试文件开始分析,[/color][/font][font=宋体][color=#222222]真空度[/color][/font][font=宋体][color=#222222]达到小于[/color][/font][font=宋体][color=#222222]50μmHg[/color][/font][font=宋体][color=#ff0000][font=宋体](使用真空泵将膨胀计抽真空至[/font][font=宋体]20mg汞柱[/font][/color][/font][font=宋体][color=#ff0000])[/color][/font][font=宋体][color=#ff0000]。[/color][/font][font=宋体][color=#222222]要求后开始下一步低压测试[/color][/font][font=宋体][color=#222222]。[/color][/font][font=黑体][color=#222222]4 [/color][/font][b][font=黑体][color=#222222]低压[/color][/font][font=黑体][color=#222222]测试[/color][/font][/b][font=宋体][color=#222222]抽真空结束后压汞仪[/color][/font][font=宋体][color=#222222]以分级连续升压或在[/color][/font][font=宋体][color=#222222]可[/color][/font][font=宋体][color=#222222]控[/color][/font][font=宋体][color=#222222]的[/color][/font][font=宋体][color=#222222]方式下以步进式[/color][/font][font=宋体][color=#222222]升压[/color][/font][font=宋体][color=#222222]的方式增压[/color][/font][font=宋体][color=#222222]。系统[/color][/font][font=宋体][color=#222222]记录压力和对应的进[/color][/font][font=宋体][color=#222222]汞[/color][/font][font=宋体][color=#222222]体积。当[/color][/font][font=宋体][color=#222222]达到设定[/color][/font][font=宋体][color=#222222]的压力[/color][/font][font=宋体][color=#222222][back=#ffff00](一般为[/back][/color][/font][font=宋体][color=#222222][back=#ffff00]30psia[/back][/color][/font][font=宋体][color=#222222][back=#ffff00])[/back][/color][/font][font=宋体][color=#222222]后,减压[/color][/font][font=宋体][color=#222222]力[/color][/font][font=宋体][color=#222222]至大气压。[/color][/font][font=宋体][color=#222222]当泄压结束后将膨胀计组件松开取下,毛细管向上称重并记录。[/color][/font][font=黑体][color=#222222]5 [/color][/font][b][font=黑体][color=#222222]高压[/color][/font][font=黑体][color=#222222]测试[/color][/font][/b][font=宋体][color=#222222]安装膨胀计于[/color][/font][font=宋体][color=#222222]高压[/color][/font][font=宋体][color=#222222]站[/color][/font][font=宋体][color=#222222],[/color][/font][font=宋体][color=#222222]确保密封性。建立高压测试文件开始孔径分布的高压分析。通过[/color][/font][font=宋体][color=#222222]计算机图表[/color][/font][font=宋体][color=#222222]记录[/color][/font][font=宋体][color=#222222]压力和相应的注汞体积。当[/color][/font][font=宋体][color=#222222]达到[/color][/font][font=宋体][color=#222222]所需的最大压力,[/color][/font][font=宋体][color=#222222]逐步减压[/color][/font][font=宋体][color=#222222]至大气压。[/color][/font][font=黑体][color=#222222]6 [/color][/font][b][font=黑体][color=#222222]测试[/color][/font][font=黑体][color=#222222]完毕[/color][/font][/b][font=宋体][color=#222222]从测[/color][/font][font=宋体][color=#222222]孔仪中取出膨胀计前,必须确保[/color][/font][font=宋体][color=#222222]仪器[/color][/font][font=宋体][color=#222222]内的压力已降至大气压。[/color][/font][font=黑体][color=#222222]7 [/color][/font][b][font=黑体][color=#222222]空管校准[/color][/font][/b][font=宋体][color=#222222]为消除由于汞压缩而产生的相对注汞体积、样品管和其他仪器元件等产生的误差[/color][/font][font=宋体][color=#222222]。[/color][/font][font=宋体][color=#222222][font=宋体]在使用新的膨胀计时需按住[/font][font=宋体]8[/font][/color][/font][font=宋体][color=#222222].2-8.6[/color][/font][font=宋体][color=#222222]进行空管校准测试,建立专用的膨胀计数据,以便后续测试时减去空白,得到样品的真实孔径分布数据。[/color][/font][b][font=黑体]8.结果计算[/font][font=黑体] [/font][/b][font=宋体][font=宋体]通过以上测试获取样品的中位孔径、最可几孔径以及孔径分布曲线等数据,典型孔径分布曲线如下图[/font][font=宋体]1[/font][/font][font=宋体]-3[/font][font=宋体]所示。[/font]8.1压汞图谱介绍[font=宋体] [/font][img=,690,584]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301522043958_4855_2140715_3.png!w690x584.jpg[/img]8.2压汞过程中汞的变化量过程图[img=,690,575]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301523249691_5499_2140715_3.png!w690x575.jpg[/img]8.3压力转化为孔径后的汞的变化量过程图[img=,690,575]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301524109350_4028_2140715_3.png!w690x575.jpg[/img]8.4压汞测试报告结果[img=,690,274]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301526057747_9550_2140715_3.png!w690x274.jpg[/img]Total intrusion Volume【总侵入体积】,mL/g,是指在分析过程中获得的最大压力下,汞侵入样品孔隙的最大体积。 Total Pore Area【总孔面积】,m2/g,是基于圆柱几何假设的孔壁面积。Median Pore Diameter(Volume)【中值孔径(体积)】,nm,是指在较大和较小的直径上出现等量孔隙体积时的孔径。Median Pore Diameter(Area)【中值孔径(面积)】 ,nm,是在较大和较小的直径上出现相等数量的孔壁面积时的孔径。 注:中值孔径(体积)和中值孔径(面积)经常不同,因为分布中较大的孔对总体积贡献很大,而较小的孔对总孔面积贡献更大。随着孔隙分布变得更宽或呈双峰,这两个数字之间的差异将变得更大。END

  • 压汞法测试孔径参数分析报告

    压汞法测试孔径分布参数分析报告 [font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]压汞法是一种通过测量汞在压力作用下进入多孔材料孔隙的过程来评估材料孔结构特性的方法。[/color][/font][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]?这种方法利用汞对大多数固体材料具有非润湿性的特点,通过外加压力使汞进入固体孔中。对于圆柱型孔模型,汞能进入的孔的大小与压力符合[/color][/font][url=https://www.baidu.com/s?sa=re_dqa_generate&wd=Washburn%E6%96%B9%E7%A8%8B&rsv_pq=9c1d7da0003485f1&oq=%E5%8E%8B%E6%B1%9E%E6%B3%95%E6%B5%8B%E8%AF%95%E5%AD%94%E5%BE%84&rsv_t=1a84+LljYYdttKWJacycBpf21Lrul8D0l64HszgINjh2DJ9F370Tuf816B4d9Kn1Gcu/ErS2gscp&tn=44004473_52_oem_dg&ie=utf-8]Washburn方程[font=cos-icon !important][size=9px][/size][/font][/url][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333],通过控制不同的压力,可以测出压入孔中汞的体积,从而得到对应于不同压力的孔径大小的累积分布曲线或微分曲线。今天我们聊聊关于 压汞法测试孔径参数分析报告[/color][/font] [font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]一、对孔径测试及压汞仪的了解 [/color][/font] [font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]孔的定义:不同的孔可视作固体内的孔、通道或空腔,或者是形成床层、压制提或团聚体的固体颗粒间的空间(如缝隙或空隙);本测试不能测试固体中的闭孔; 孔径测试的常用方法: -压汞法:加压向孔内充汞。适用于根据最大挤压压力60000psi,孔径范围0.003um到400um之间的大多数材料。(本公司设备最大挤压压力33000psi ,测试孔径范围0.0055um到400um ) -气体吸附分析介孔-大孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围0.002um至0.1um之间; -气体吸附分析微孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围0.4nm至2.0nm之间; [/color][/font] [color=#333333]二[font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]、压汞仪了解[/color][/font] [/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]压汞法原理:汞对大多数固体材料具有非润湿性,需外加压力才能进入固体孔中,对于圆柱型孔模型,汞能进入的孔的大小与压力符合Washburn方程,控制不同的压力,即可测出压入孔中汞的体积,由此得到对应于不同压力的孔径大小的累积分布曲线或微分曲线。 [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]Washburn方程了解: h2 = crσ cosθ t / (2η) 其中,c为毛细管形状系数,r为平均毛细管半径,σ为液体的?表面张力,η为?液体粘度,θ为?接触角,t为?时间 [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333] 方程的作用:将压力与孔径间建立了关系; 方程的基础:将所有孔都假设成理想的圆柱形孔模型; 方程的不足:实际上孔的结构多种多样,存在以偏概全的问题; 压汞法优势:压汞法能测试的孔径范围宽广,覆盖大孔和中孔范围,可通过测试结果推导出尽可能多的孔结构信息; [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333] 三、压汞仪原理及使用 [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]Autopore IV9500压汞法原理:将已烘干样品放入合适的膨胀计,将膨胀计放入低压测试区间,先对膨胀计抽真空,然后压入汞,运用氮气压缩方式测试0至30psi的压汞量;测试完成后将膨胀剂放入高压测试区间,通过油压方式测试30至33000psi的压汞量,根据Washburn方程得到对应于不同压力的孔径大小,并作出相应数据分析。 [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]膨胀计的选择: 要求:样品孔体积应在25%至90%范围的毛细管体积; 对不同孔隙率的样品在加工上及膨胀计选择上需合理。 [/color][/font][/color][table=622][tr][td=1,1,90] [font=宋体]样品大致孔隙率[/font][/td][td=1,1,212] [font=宋体]膨胀计选择[/font][/td][td=1,1,320] [font=宋体]样品大小[/font][/td][/tr][tr][td=1,1,90] [font=&]3%-10%[/font][/td][td=1,1,212] [font=&]最大可挤体积[/font][font=&]0.392cc[/font][/td][td=1,1,320] [font=&]接近[/font][font=&]φ13.5*20[/font][font=&]mm(3cc)[/font][/td][/tr][tr][td=1,1,90] [font=&]10%-25%[/font][/td][td=1,1,212] [font=&]最大可挤体积[/font][font=&]1.131cc[/font][/td][td=1,1,320] [font=&]接近[/font][font=&]φ13.5*20[/font][font=&]mm(3cc)[/font][/td][/tr][tr][td=1,1,90] [font=&]25%-65%[/font][/td][td=1,1,212] [font=&]最大可挤体积[/font][font=&]1.131cc[/font][/td][td=1,1,320] [font=&]接近[/font][font=&]φ10*20[/font][font=&]mm(1.5cc)/3*[/font][font=&]φ8*10[/font][font=&]mm(0.5cc[/font][font=&])[/font][/td][/tr][tr][td=1,1,90] [font=&]≥[/font][font=&]65%[/font][/td][td=1,1,212] [font=&]最大可挤体积[/font][font=&]1.131cc[/font][/td][td=1,1,320] [font=&]接近[/font][font=&]φ8*10[/font][font=&]mm(0.5cc)[/font][/td][/tr][/table] 压汞仪低压测试原理 [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]低压测试原理 一、使用真空泵将膨胀计抽真空至20mg汞柱; 二、通过真空效果,将汞压入膨胀计; 三、通过外接的氮气压力进行压汞至30psi,过程中根据设定点位收集 压汞体积;[/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]高压测试原理 一、将做完低压已灌满汞的膨胀计装入高压装置; 二、通过液压泵和倍增器进行加压至33000psi; 三、过程中根据设定点位收集 压汞体积;[/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]四、数据分析处理[/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]常规参数分析[/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]已知条件:样品质量Ws:直接称量; 空管体积Vp:通过空管校准,系统内部计算得出; 空管质量Wp:直接称得; 汞的密度ρ:根据控制室温直接给出; 样品+空管+汞质量Wpsm:直接称得; 累计压入体积:Ii=Vi/Ws,为了更好的进行物质间对比,这里的累计压入体 积是以单重量样品来计算的; 总压入体积:Itot=Vtot/Ws,通过不同物质对比,可以很直观的看出不同物质的孔体积差异; 样品体积:Vb=Vp-Vm=Vp-(Wpsm-Ws-Wp)/ ρ,样品体积是根据空管体积减去压入的汞体积计算得出。 孔隙率%:Ppc=100*Vtot/Vb,孔隙率能总体看出样品的孔量。[/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]体密(0.51psi下):Yb=Ws/Vb=Ws/(Vp-(Wpsm-Wp-Ws)/ ρ),该数据属于表观数据,将物质内的孔体积都算在密度内; 骨架密度(32983.86 psi):Ys=Ws/Vs=Ws/(Vb-Vtot),该数据是扣除了孔体积后的样品体积计算得出的密度,更接近于样品的真实密度。当然,这里只代表在32983.86 psi下所能测得的孔径。 中值孔径(V):先通过Ik=Itot/2,计算出中位累计进汞体积,再根据数据查出相应的孔径,即为中值孔径。 中值孔径(A):先通过Ak=Atot/2,计算出中位累计面积,再根据数据查出相应的孔径,即为中值孔径。 平均孔径(4V/A):以理想型圆柱体模型为基础,Dav=4*Itot/Atot,从而算出其平均直径。 累计孔面积:Ai=Aij+Aij-1+….+Ai1;而单孔面积计算是Aij=4*Iij/Dmi,从这也看出,相同压汞体积下,孔径越小,孔面积越大。[/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]累计压汞量与孔径关系图分析[/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333][img=,678,577]https://ng1.17img.cn/bbsfiles/images/2024/08/202408192134048883_4302_2140715_3.png!w678x577.jpg[/img][img=,678,577]https://ng1.17img.cn/bbsfiles/images/2024/08/202408192134048883_4302_2140715_3.png!w678x577.jpg[/img][img=,672,576]https://ng1.17img.cn/bbsfiles/images/2024/08/202408192134126732_6933_2140715_3.png!w672x576.jpg[/img] 1、从图中看出,一般的压汞过程接近正态分布,且孔体积的增加较为集中; 2、M825中心总压入汞量:0.1008mL/g;M825边部总压入汞量:0.1135mL/g; 说明M825中心的孔体积比边部少; 3、降压过程,孔结构简单的容易退汞,从图中看出M825中心比M825边部退汞 多,能看出M825边部的孔比M825中心结构更复杂多样; [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]累计压汞量与孔径关系一阶导数微分图分析 [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333][img=,678,577]https://ng1.17img.cn/bbsfiles/images/2024/08/202408192136219149_3954_2140715_3.png!w678x577.jpg[/img][img=,676,584]https://ng1.17img.cn/bbsfiles/images/2024/08/202408192136296556_7465_2140715_3.png!w676x584.jpg[/img] [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]1、一阶导数:Idi=-(Ii-Ii-1)/Di-Di-1,表达的是瞬时的速率; 2、第一个峰的出现正好在最可几孔径附近,说明当时进汞体积加速,孔体积富集; 3、第二个峰出现在低孔径处,也是出现在高压强下,将许多不易进汞的孔填满; 4、对于第二个峰,当然还有一个假设,高压下导致样品坍塌,一些原本的闭孔被 填满。 [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]累计压汞量与孔径对数微分图分析 [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333][img=,678,577]https://ng1.17img.cn/bbsfiles/images/2024/08/202408192139010814_9803_2140715_3.png!w678x577.jpg[/img][img=,690,579]https://ng1.17img.cn/bbsfiles/images/2024/08/202408192139064276_6168_2140715_3.png!w690x579.jpg[/img] [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]1、对数微分:Ildi=-(Ii-Ii-1)/logDi-logDi-1; 2、从中只能看出最可几孔径,其他不明; [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]累计孔面积与孔径关系图分析 [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333][img=,673,584]https://ng1.17img.cn/bbsfiles/images/2024/08/202408192140458508_5207_2140715_3.png!w673x584.jpg[/img] [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]1、孔面积的计算: Aij=4*Iij/Dmi,由公式得出,相同压汞体积下,孔径越小,孔 面积越大。 2、从图2可看出,1区间属于高斜率孔面积累计区,对应图1的1区间正好是最可几孔 径附近;2区间属于平稳增加孔面积区域,对应图1的2区间,其孔径增加量也较为平 均;3区间属于高斜率孔面积累计区,而孔体积的增加变化不明显,说明很有可能是 出现大量细小孔,短时间内增加孔面积。 [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]END[/color][/font][/color]

  • 压汞法测试孔径参数分析报告

    本材料检测中心主要从事石墨及碳素材料等分析,孔径分析测试主要是使用麦克莫瑞提克的压汞仪,型号为9500.今天主要谈谈孔径测试及压汞仪的了解。[font=宋体]一、[/font][font=宋体]对孔径测试及压汞仪的了解[/font][font=宋体]孔径测试[/font][font=宋体] [/font][font=宋体]孔的定义:不同的孔可视作固体内的孔、通道或空腔,或者是形成床层、压制提或团聚体的固体颗粒间的空间(如缝隙或空隙);本测试不能测试固体中的闭孔;[/font][font=宋体]二、[/font][font=宋体]孔径测试的常用方法:[/font][font=宋体]三、[/font][font=宋体][font=宋体]压汞法:加压向孔内充汞。适用于根据最大挤压压力[/font][font=Calibri]60000psi[/font][font=宋体],孔径范围[/font][font=Calibri]0.003um[/font][font=宋体]到[/font][font=Calibri]400um[/font][font=宋体]之间的大多数材料。(本公司设备最大挤压压力[/font][font=Calibri]33000psi [/font][font=宋体],测试孔径范围[/font][font=Calibri]0.0055um[/font][font=宋体]到[/font][font=Calibri]400um [/font][font=宋体])[/font][/font][font=宋体]四、[/font][font=宋体][font=宋体]气体吸附分析介孔[/font][font=Calibri]-[/font][font=宋体]大孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围[/font][font=Calibri]0.002um[/font][font=宋体]至[/font][font=Calibri]0.1um[/font][font=宋体]之间;[/font][/font][font=宋体]五、[/font][font=宋体][font=宋体]气体吸附分析微孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围[/font][font=Calibri]0.4nm[/font][font=宋体]至[/font][font=Calibri]2.0nm[/font][font=宋体]之间;[/font][/font][font=宋体]孔径测试[/font][font=宋体]孔的定义:不同的孔可视作固体内的孔、通道或空腔,或者是形成床层、压制提或团聚体的固体颗粒间的空间(如缝隙或空隙);本测试不能测试固体中的闭孔;[/font][font=宋体]孔径测试的常用方法:[/font][font=宋体] [font=宋体]压汞法:加压向孔内充汞。适用于根据最大挤压压力[/font][font=Calibri]60000psi[/font][font=宋体],孔径范围[/font][font=Calibri]0.003um[/font][font=宋体]到[/font][font=Calibri]400um[/font][font=宋体]之间的大多数材料。(本公司设备最大挤压压力[/font][font=Calibri]33000psi [/font][font=宋体],测试孔径范围[/font][font=Calibri]0.0055um[/font][font=宋体]到[/font][font=Calibri]400um [/font][font=宋体])[/font][/font][font=宋体] [font=宋体]气体吸附分析介孔[/font][font=Calibri]-[/font][font=宋体]大孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围[/font][font=Calibri]0.002um[/font][font=宋体]至[/font][font=Calibri]0.1um[/font][font=宋体]之间;[/font][/font][font=宋体] [font=宋体]气体吸附分析微孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围[/font][font=Calibri]0.4nm[/font][font=宋体]至[/font][font=Calibri]2.0nm[/font][font=宋体]之间;[/font][/font][font=宋体]压汞仪了解[/font][font=宋体][font=宋体]压汞法原理:汞对大多数固体材料具有非润湿性,需外加压力才能进入固体孔中,对于圆柱型孔模型,汞能进入的孔的大小与压力符合[/font][font=Calibri]Washburn[/font][font=宋体]方程,控制不同的压力,即可测出压入孔中汞的体积,由此得到对应于不同压力的孔径大小的累积分布曲线或微分曲线。[/font][/font][font=宋体][font=Calibri]Washburn[/font][font=宋体]方程了解: [/font][/font][font=宋体] [/font][font=宋体] [font=宋体]方程的作用:将压力与孔径间建立了关系;[/font][/font][font=宋体] [font=宋体]方程的基础:将所有孔都假设成理想的圆柱形孔模型;[/font][/font][font=宋体] [font=宋体]方程的不足:实际上孔的结构多种多样,存在以偏概全的问题;[/font][/font][font=宋体]压汞法优势:压汞法能测试的孔径范围宽广,覆盖大孔和中孔范围,可通过测试结果推导出尽可能多的孔结构信息;[/font][font=宋体]压汞仪测试原理[/font][font=宋体][font=Calibri]Autopore IV9500[/font][font=宋体]压汞法原理:将已烘干样品放入合适的膨胀计,将膨胀计放入低压测试区间,先对膨胀计抽真空,然后压入汞,运用氮气压缩方式测试[/font][font=Calibri]0[/font][font=宋体]至[/font][font=Calibri]30psi[/font][font=宋体]的压汞量;测试完成后将膨胀剂放入高压测试区间,通过油压方式测试[/font][font=Calibri]30[/font][font=宋体]至[/font][font=Calibri]33000psi[/font][font=宋体]的压汞量,根据[/font][font=Calibri]Washburn[/font][font=宋体]方程得到对应于不同压力的孔径大小,并作出相应数据分析。[/font][/font][font=宋体][font=宋体]膨胀计的选择:[/font] [/font][font=宋体] [font=宋体]要求:样品孔体积应在[/font][font=Calibri]25%[/font][font=宋体]至[/font][font=Calibri]90%[/font][font=宋体]范围的毛细管体积;[/font][/font][font=宋体] [font=宋体]对不同孔隙率的样品在加工上及膨胀计选择上需合理。[/font][/font][font=宋体] [font=宋体]压汞仪低压测试原理[/font][/font][font=宋体] [/font][font=宋体]低压测试原理[/font][font=宋体] [font=宋体]一、使用真空泵将膨胀计抽真空至[/font][font=Calibri]20mg[/font][font=宋体]汞柱;[/font][/font][font=宋体] [font=宋体]二、通过真空效果,将汞压入膨胀计;[/font][/font][font=宋体] [font=宋体]三、通过外接的氮气压力进行压汞至[/font][font=Calibri]30psi[/font][font=宋体],过程中根据设定点位收集 压汞体积;[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体]压汞仪高压测试原理[/font][font=宋体]高压测试原理[/font][font=宋体] [font=宋体]一、将做完低压已灌满汞的膨胀计装入高压装置;[/font][/font][font=宋体] [font=宋体]二、通过液压泵和倍增器进行加压至[/font][font=Calibri]33000psi[/font][font=宋体];[/font][/font][font=宋体] [font=宋体]三、过程中根据设定点位收集[/font] [font=宋体]压汞体积;[/font][/font][font=宋体] [/font][font=宋体]三、数据分析处理[/font][font=宋体] [/font][font=宋体] [font=宋体]常规参数分析[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]已知条件:样品质量[/font][font=Calibri]Ws[/font][font=宋体]:直接称量;[/font][/font][font=宋体] [font=宋体]空管体积[/font][font=Calibri]Vp[/font][font=宋体]:通过空管校准,系统内部计算得出;[/font][/font][font=宋体] [font=宋体]空管质量[/font][font=Calibri]Wp[/font][font=宋体]:直接称得;[/font][/font][font=宋体] [font=宋体]汞的密度[/font][font=宋体]ρ:根据控制室温直接给出;[/font][/font][font=宋体] [font=宋体]样品[/font][font=Calibri]+[/font][font=宋体]空管[/font][font=Calibri]+[/font][font=宋体]汞质量[/font][font=Calibri]Wpsm[/font][font=宋体]:直接称得;[/font][/font][font=宋体][font=宋体]累计压入体积:[/font][font=Calibri]Ii=Vi/Ws[/font][font=宋体],为了更好的进行物质间对比,这里的累计压入体 积是以单重量样品来计算的;[/font][/font][font=宋体][font=宋体]总压入体积:[/font][font=Calibri]Itot=Vtot/Ws[/font][font=宋体],通过不同物质对比,可以很直观的看出不同物质的孔体积差异;[/font][/font][font=宋体][font=宋体]样品体积:[/font][font=Calibri]Vb=Vp-Vm=Vp-(Wpsm-Ws-Wp)/ [/font][font=宋体]ρ[/font][font=Calibri],[/font][font=宋体]样品体积是根据空管体积减去压入的汞体积计算得出。[/font][/font][font=宋体][font=宋体]孔隙率[/font][font=Calibri]%[/font][font=宋体]:[/font][font=Calibri]Ppc=100*Vtot/Vb[/font][font=宋体],孔隙率能总体看出样品的孔量。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]体密[/font][font=Calibri](0.51psi[/font][font=宋体]下[/font][font=Calibri])[/font][font=宋体]:[/font][font=Calibri]Yb=Ws/Vb=Ws/(Vp-(Wpsm-Wp-Ws)/ [/font][font=宋体]ρ[/font][font=Calibri])[/font][font=宋体],该数据属于表观数据,将物质内的孔体积都算在密度内;[/font][/font][font=宋体][font=宋体]骨架密度([/font][font=Calibri]32983.86 psi[/font][font=宋体]):[/font][font=Calibri]Ys=Ws/Vs=Ws/(Vb-Vtot)[/font][font=宋体],该数据是扣除了孔体积后的样品体积计算得出的密度,更接近于样品的真实密度。当然,这里只代表在[/font][font=Calibri]32983.86 psi[/font][font=宋体]下所能测得的孔径。[/font][/font][font=宋体][font=宋体]中值孔径([/font][font=Calibri]V[/font][font=宋体]):先通过[/font][font=Calibri]Ik=Itot/2[/font][font=宋体],计算出中位累计进汞体积,再根据数据查出相应的孔径,即为中值孔径。[/font][/font][font=宋体][font=宋体]中值孔径([/font][font=Calibri]A[/font][font=宋体]):先通过[/font][font=Calibri]Ak=Atot/2[/font][font=宋体],计算出中位累计面积,再根据数据查出相应的孔径,即为中值孔径。[/font][/font][font=宋体][font=宋体]平均孔径([/font][font=Calibri]4V/A[/font][font=宋体])[/font][font=Calibri]:[/font][font=宋体]以理想型圆柱体模型为基础,[/font][font=Calibri]Dav=4*Itot/Atot,[/font][font=宋体]从而算出其平均直径。[/font][/font][font=宋体][font=宋体]累计孔面积:[/font][font=Calibri]Ai=Aij+Aij-1+[/font][font=宋体]…[/font][font=Calibri].+Ai1[/font][font=宋体];而单孔面积计算是[/font][font=Calibri]Aij=4*Iij/Dmi[/font][font=宋体],从这也看出,相同压汞体积下,孔径越小,孔面积越大。[/font][/font]END[font=宋体] [/font]

  • 【讨论】静态容量法微孔测试

    1. 微孔:指孔径<2nm的孔;2. 微孔的常规测试方法:◎ 用测介孔的仪器和介孔分析的基本假设,向微孔方向延伸,①孔径和填充压力仍用Kelvin方程处理;②填充于孔中的氮取液氮的密度;◎ 可用t-图法或D&R法,求出<2nm以下微孔的总孔体积、总内表面积;还可用MP法粗略的算出2nm到~1nm之间的孔容/孔径分布;◎ 关键是:选择好“标准等温线”,需要有“标准等温线”的数据库和正确的分析方法;◎ 缺点是:仍采用介孔分析的基本假设来分析微孔是不确切的;不能精确测定微孔区的等温吸附曲线和精确的微孔孔容/孔径分布;3. 微孔分布的精确测试方法:◎ 与上述常规测试方法有重大差别;◎ 微孔精确测试仪器有极高的真空要求,测试系统的实际真空需≤10-3Pa,氮气相对压力P/Po需达到10-8数量级,因此需采用双级真空系统,即用机械泵做前级泵,再加分子泵(或其他二级真空泵)作为二级真空系统;◎ 需有准确测量10-3Pa量级的多级压力传感器;有低压下压力的精密控制系统,在P/Po<0.1的区间可控点应超过100个点;◎ 需有专用的微孔分析软件:HK、FS或NLDFT等;◎ 可以精确测定P/Po在10-7到10-1之间的等温吸附曲线;可以精确测定孔径从0.35到2nm之间的总孔体积、孔容/孔径分布和最可几孔径

  • 小孔在减压阀中的大用处

    实验室经常会用到气体。其中有减压阀,以前一直用,我是不问为什么的。了解之后,才发现,减压阀里面就靠一个小孔实现减压,也是非常之神奇:高压介质通过一个小孔充到一个相对较大的腔里实现减压,实际上是靠截流减压.膜片或活塞的两面一面是出口腔,一面是人为给的压力,并且控制小孔大小的阀杆和膜片(活塞)相连.这样只要给一个固定的压力,那么出口腔的压力就会一直等于这个压力,这个认为给定的压力可以有弹簧或气源或液压源来提供.我个人认为,这个孔必然形成阻流器,输出端如果是一个空腔的话,以某恒定流量输出,不仅能减压,而且能稳压。我以为阻流孔加工很有要求,应该很贵吧,上网一查,国内很多工厂都能做!I服了U,我们科技真是进步了,流体能控制了。各位以为对否?

  • 泊肃叶压差法代高精度孔径测量中的压力控制解决方案

    泊肃叶压差法代高精度孔径测量中的压力控制解决方案

    [b][color=#3366ff]摘要:针对现有压力衰减法孔径测量中存在的基本概念不清和实施方法不明确等问题,本文详细介绍了压力衰减法的孔径测量基本原理,并重点介绍压差法测量中的高精度压力控制方法,为各种微小孔径和等效孔径的准确测量提供切实可行的解决方案。[/color][/b][align=center][img=压力衰减法孔径测量,550,294]https://ng1.17img.cn/bbsfiles/images/2022/12/202212230914562217_9430_3221506_3.jpg!w690x370.jpg[/img][/align][b][size=18px][color=#3366ff]1. 问题的提出[/color][/size][/b] 在工业生产和实验室研究中存在着大量管件内部孔径的测量需求,而且还要求具有较高的测量精度,常见的需要精密测量的几类孔径有: (1)毛细管内径。 (2)鲁尔接头或其他连接器母接头孔径。 (3)各种喷灯气孔孔径。 (4)栓环缝通道等效孔径。 (5)药用玻璃瓶或药品包装系统漏孔孔径。 通道孔径主要分为直接测量方法和间接测量方法。直接测量主要是通过精密的尺规等工具进行测量,如游标卡尺、圆锥尺、针规和塞规等,但直接测量方法并不适应于细长管和针栓环缝通道等的孔径或等效通径的测量。 间接测量法主要有光学法和流体标定法。光学法一般是利用像素为基本单位对各种形状的孔进行测量,适用于元件表面孔和裂纹的测量。但对于细长或者弯曲多变的孔径,光学法不适用。流体标定方法是一种基于压力衰减法的有效的等效通径标定方法,流体介质多以气体和液体为主,通过流量计和压力传感器分别测量流体流量和压力差。但在目前的压力衰减法中普遍存在以下几方面的问题: (1)在低于和高于一个标准大气压的负压和正压条件下,都可以采用压力衰减法进行孔径测量,但绝大多数文献和专利报道对此并没有明确的规定,正负压测试条件的使用显着非常随意和混乱。 (2)压力衰减法的核心是在被测孔径管道的两侧形成恒定压力差,并同时测量由此压差引起的流量变化,其中的恒定压力控制是建立试验条件和影响测量精度的最重要因素。对于精确的压力控制在各种文献和专利报道中很少看到,大多报道只是给出一个不完整的压力衰减法测试框图,对精确的压力控制以生成高精度的恒定压差还未见报道。 针对上述现有压力衰减法孔径测量中存在的问题,本文将详细介绍压力衰减法孔径测量的基本原理,重点介绍压差法测量中的高精度压力控制方法,为微小孔径和等效孔径的准确测量提供切实可行的解决方案。[b][size=18px][color=#3366ff]2. 压力衰减法基本原理——泊肃叶定律[/color][/size][/b] 在恒定压差条件下,在粗细均匀的水平刚性圆管中作层流流动的黏性流体,其体积流量满足如图1所示的泊肃叶(Poiseuille)公式。[align=center][img=泊肃叶定律,600,311]https://ng1.17img.cn/bbsfiles/images/2022/12/202212230917419388_2550_3221506_3.jpg!w690x358.jpg[/img][/align][align=center][color=#3366ff][b]图1 流体介质的泊肃叶定律[/b][/color][/align] 从泊肃叶公式中可以看出,体积流量与管孔半径的四次方成正比,孔径微小的变化都会对流量产生明显的影响。这就是压力衰减法孔径测量的依据,孔径的微小改变都会引起流量的显著变化,因此压力衰减法在孔径测量中具有很高的灵敏度,但前提是一要准确控制管道两端的压力,二是要准确测量体积流量。[b][size=18px][color=#3366ff]3. 孔径测量解决方案[/color][/size][/b] 依据泊肃叶定律,孔径测量的关键是实现准确的压力控制和流量测量。为此,本文针对高精度孔径测量提出的解决方案如图2所示。[align=center][b][color=#3366ff][img=压力衰减法孔径测量装置结构示意图,600,572]https://ng1.17img.cn/bbsfiles/images/2022/12/202212230918265466_3029_3221506_3.jpg!w690x658.jpg[/img][/color][/b][/align][align=center][b][color=#3366ff]图2 压力衰减法孔径测量装置结构示意图[/color][/b][/align] 如图2所示,被测孔径管件安装在两个压力腔室之间,整个装置的目的是精确控制这两个腔室的压力以形成稳定的压力差,在压力差稳定的装置下测量流进和留出两个腔室的气体流量,从而可计算得到被测孔径大小。 此孔径测量装置涉及以下几方面的主要内容: (1)此孔径测量装置采用了正压压力控制方案,这主要是因为正压控制同样可以达到很高的精度,而且,相对于负压真空环境下的测量和控制造价较低。正压控制过程中,采用纯净的高压气瓶和减压阀提供稳定的高压气源,高压气源同时供给两个压力控制阀以实现不同的正压压力控制。 (2)由于要测量进出两个腔室的气体流量,需要在两个腔室的进气口和出气口处分别安装气体质量流量计进行流量测量,因此压力控制阀无法直接对两个腔室的压力直接控制。为此,解决方案采用了串级控制方式,即在两个腔室上分别增加压力传感器,通过双通道PID压力控制器采集压力传感器信号,并两个通道分别设定不同的压力值,由此来驱动压力控制阀进行双回路的压力控制,由此实现两个腔室内的压力准确稳定在设定值上。 (3)压力控制阀是一个自带PID控制板和压力传感器的闭环压力控制装置,通过接收双通道PID压力控制器的控制信号,可以使压力控制阀出口处的压力准确恒定。压力控制阀自带泄压放气孔,由此两个压力控制阀组成的压差控制回路可使气体单向流过被测孔径管件。 (4)此解决方案中的孔径测量装置是一个对称装置,这种对称结构设计的目的是可以对被测孔径管件进行双向测试,这也是一种提高孔径测量精度的途径之一。 (5)压力控制器采用的是双通道高精度PID控制器,AD精度为24位,DA精度为16位,两个通道独立运行,可满足各种孔径精度测量中的压力控制需要。 (6)整个孔径测量装置的测量精度,除了受压力控制器精度影响之外,还会受到压力控制阀、压力传感器和气体质量流量计精度的影响,因此要针对不同的孔径测量精度要求选择合适精度的部件。 (7)由于此孔径测量装置是直接控制两个腔室的压力,所以在室温下运行时腔室温度的波动对压力变化没有影响,腔室压力控制自动会消除掉温度影响而保持腔室气压恒定。 (8)为了实现数据的自动采集和计算孔径测量结果,双通道压力控制器和两个气体质量流量计需要与计算机通讯连接(图2中并未绘出)。由此,通过计算机可设定控制压力,采集压力和流量变化曲线以监控压力和流量是否稳定,当达到稳态状态后可通过压力和流量采集数据并依据泊肃叶公式计算得到孔径测量值。[b][size=18px][color=#3366ff]4. 总结[/color][/size][/b] 综上所述,本文所提出的基于压力衰减法的孔径测量解决方案,具有很高的测量精度和广泛的适用性,整个测量过程自动运行,关键是可以满足多种形式的微小孔径测量,在替代传统塞规的前提下,是一种高精度的无损测量解决方案。特别是采用气体作为流体介质,非常适合微小尺寸(如毛细管等)和漏孔的等效口径测量。[align=center]~~~~~~~~~~~~~~~~~~~~~[/align]

  • 药物粉体的密度及孔隙度测定

    [size=18px][b][b]1. 引言[/b] [/b]在药物制剂的研发及生产过程中,往往都会涉及到相关的药物粉体。这些粉体及其片剂的理化性质会影响其混合均匀度、压缩成型过程,以及最终制剂的生物利用度和疗效等,因此,在粉碎、混合、压片、制粒等过程中需要对其相关物理特性进行调控以确保最终制剂质量。除了关注度较高的粒度粒形,比表面积,流动性等性质外,密度及孔隙度的表征也是药物质量的重要指标,并且在研发及生产的众多环节都有所涉及。因而在美国药典USP 、USP ,日本药典JP 3.03,欧洲药典Ph. Eur. 2.9.32、Ph. Eur. 2.2.42和2020年版《中国药典》通用技术0992中,都明确规定了药物粉体相关的密度、孔隙度测定方法。密度主要会影响粉体的流动性,均匀性,压缩性以及离析度、结晶度等等。由片料包裹密度除以骨架密度算得的片料固相分数(Solid Fraction)是辊压过程中的关键工艺参数,测定固相分数可了解药物中固体含量百分比等相关信息,从而提高辊压过程的有效性,并建立可控的辊压速度、辊压压力等工艺操作参数,对工艺过程的参数设置及优化制剂质量具有重要意义。此外,药物材料的骨架密度还可以作为其结晶状态以及二元混合物比例的标志。孔隙度(Porosity)会影响药物的辊压制粒、崩解等过程,以及片剂强度、压实度、含量均匀度及溶出度等性质,是药物崩解、溶出和生物利用度的一个关键质量属性。此外,孔隙度测量还可以预测评估压缩过程中颗粒的变形特性,测量辊压后片料的总孔体积和固相分数,以及评估药物包衣的完整性,帮助确定包衣过程中物料流的参数设置等。综上所述,掌握和控制药物制剂的密度及孔隙度对药物的最终疗效及生产稳定性非常重要。本文将介绍药物粉体密度及孔隙度的定义及测试原理,并举例说明相关测试结果。[b][b]2. 密度测试[/b][/b]密度是单位体积粉体的质量。由于粉体的颗粒内部和颗粒间会存在空隙,所以粉体所占有的体积会因测量方法不同而有所差异,并由此产生如骨架密度、包裹密度等不同的密度概念。(1)真密度和骨架密度(颗粒密度)真密度也称绝对密度,所对应的真体积是指不包含开孔和闭孔的体积。骨架密度(颗粒密度)对应的骨架体积是样品的真实体积与闭孔体积之和,即不包括与外界连通的开孔体积。骨架密度的测定方法一般采用基于阿基米德原理的气体置换法测定,该法是目前世界公认的测真密度、骨架密度可靠的技术之一,并为无损测量。图1所示为麦克仪器的AccuPyc II[b]全自动气体置换法真密度仪[/b],测试采用惰性气体如氦气或氮气作为置换介质取代材料的孔隙体积,根据理想气体定律PV=nRT确定样品体积,结合样品质量可算得骨架密度。[/size][align=center][size=18px][img]http://img72.chem17.com/9/20200731/637318055225383925887.png[/img][/size][/align][size=18px][/size][align=center][size=18px]图1 AccuPyc II[/size][/align][size=18px][b]全自动气体置换法真密度仪[/b](2)包裹密度包裹密度所对应的包裹体积包含颗粒的骨架体积和开孔、闭孔体积,以及颗粒外表面的一些粗糙空隙。图2所示为麦克仪器的GeoPyc 1365[b]全自动包裹密度分析仪[/b]。包裹密度的测试原理是使用一种独特的替代测试技术,通常采用一种具备高流动性的微小刚性球状准流体介质作为替代介质将样品包裹起来。这种替代介质的颗粒很小,在混合过程中可与样品表面紧密贴合,但不会进入样品的孔隙中。[/size][align=center][size=18px][img]http://img75.chem17.com/9/20200731/637318055440362564765.png[/img][/size][/align][size=18px][/size][align=center][size=18px]图2 GeoPyc 1365[/size][/align][size=18px][b]全自动包裹密度分析仪[b]3. 孔隙度测试[/b] [/b]孔隙度指的是颗粒内的孔隙以及样品间隙所占体积与粉体体积之比,通常可通过压汞法和密度计算法等获得。孔隙度越高则表明药物中的总孔体积越大,对应的固体分数就越低。(1)压汞法压汞法是测量药物孔隙度特性常用的方法,可测得样品中与外界连通的开孔体积占总体积的百分比。压汞法的原理是基于汞对大多数固体材料不润湿,界面张力会抵抗汞进入孔中,要使得汞进入材料的开孔中则需要施加外部压力。汞压入的孔半径与所受外压成反比,根据Washburn方程可算出汞压入的孔半径与所受外力的对应关系。图3所示为麦克仪器的AutoPore V全自动压汞仪,其分析技术就是在[color=red]精确[/color]控制的压力下将汞压入材料的多孔结构中,通过测量不同外压下进入孔隙中汞的量,就可知道相应孔体积的大小。压汞法具有快速、高分辨率及分析范围广等优点,除了可测得孔隙度外,该表征还可获得样品的众多特性,例如:孔径分布、总孔体积、总孔比表面积、中值孔径等等。[/size][align=center][size=18px][img]http://img73.chem17.com/9/20200731/637318055737357739692.png[/img][/size][/align][align=center][size=18px]图3 AutoPore V[/size][/align][align=center][b][size=18px]全自动压汞仪[/size][/b][/align][size=18px](2)密度计算法除了压汞法外,通过将气体置换法真密度仪与包裹密度分析仪联用,结合材料的骨架密度和包裹密度,由式①也可直接计算出孔隙度。同时,由式②还可以算出片料的固体分数。[/size][align=center][size=18px][img]http://img74.chem17.com/9/20200731/637318055914530037790.jpg[/img][/size][/align][size=18px][/size][align=center][size=18px][img]http://img74.chem17.com/9/20200731/637318056110665447694.png[/img][/size][/align][size=18px]图4 AccuPyc II[b]全自动气体置换法真密度仪[/b]及GeoPyc 1365[b]全自动包裹密度分析仪[b]4. 密度及孔隙度测试举例[/b] [/b](1)药物辅料硬脂酸镁的骨架密度测定硬脂酸镁是新型药用辅料,可作固体制剂的成膜包衣材料、胶体液体制剂的增稠剂、混悬剂等。使用麦克仪器的AccuPyc II全自动气体置换法真密度仪对其进行骨架密度测试,结果表明,仪器在约16分钟内完成了10个测试循环,该硬脂酸镁样品的密度平均值为1.5157 g/cm3,标准偏差仅为0.0006 g/cm3,密度结果均围绕其平均值波动,结果非常稳定,实现了药物材料快速、高精度的体积测量和密度计算。(2)药物的压汞法孔隙度测定使用麦克仪器公司的AutoPore V [b]全自动压汞仪[/b]对某药物进行压汞测试。其堆积密度为1.1639 g/ml,骨架密度为1.5382 g/ml,由此计算得到的孔隙度为24.3332%。(3)药物片料的密度计算法孔隙度及固相分数测定使用麦克仪器的GeoPyc 1365[b]全自动包裹密度分析仪[/b]对辊压后得到的某药物片料进行孔隙度测试。测得该药物的包裹密度为1.3409 g/cm3,其标准偏差为0.0007 g/cm3,结合由AccuPyc II全自动气体置换法真密度仪测得的骨架密度1.4630 g/cm3,最后算得孔隙率为8.35 %。根据上文公式②,由骨架密度除以包裹密度可算得其固相分数为91.65 %。[b][b]5. 总结[/b][/b][/size][size=18px]药物粉体及相关制剂的密度及孔隙度表征对其处方设计、制备、质量控制等都具有重要指导意义。密度和孔隙度不仅是辊压和压片等过程的关键工艺参数,也是硬度、崩解度、溶出度、生物利用度等的关键质量属性,会直接影响和制约药物的性质及疗效。因而研究和掌握药物粉体及制剂的密度、孔隙度对获得高质量的药物至关重要。采用气体置换法真密度仪和包裹密度分析仪可分别获得药物粉体的骨架密度和包裹密度,通过压汞法或者结合两种密度仪的密度计算法可测得药物的孔隙度及片料的固体分数。借助这些性质表征有助于掌握及预测原料药及辅料在配方中的特性,评估药物制剂的批次变化及药物相关性能,从而优化制造过程和提升产品质量。[/size][size=18px][/size][size=18px][font=arial, helvetica, sans-serif][size=16px]关于麦克仪器公司[/size][/font][font=arial, helvetica, sans-serif][size=16px]麦克仪器公司是专业提供表征颗粒,粉体和多孔材料的物理性能,化学活性和流动性的高性能设备的全球领先的生产商。我们的技术包括:比重密度法、吸附、动态化学吸附、颗粒大小和形状、压汞孔隙度测定、粉末流变学和催化剂活性测试。公司在美国、英国和西班牙设有研发和生产基地,并在美洲、欧洲和亚洲设有直销和服务业务。麦克仪器是创新性的公司,产品是著名的政府和学术机构的10,000多个实验室的首选仪器。我们拥有世界一流的科学家和积极响应的支持团队,通过将Micromeritics技术应用于客户的需求,帮助客户获得成功。更多信息,请访问: [/size][/font][url=http://www.micromeritics.com.cn/][color=#0000ff][font=arial, helvetica, sans-serif]www.micromeritics.com.cn [/font][/color][/url][/size]

  • 总汞回收率及质控样偏高

    请教各位老师,,我们用的仪器是吉天AFS一933,总汞做出来回收率和质控样都偏高,但是样品空白又是0,这种是什么情况呢?

  • 微孔滤膜含磷,测定地表水可溶性总磷怎么办?

    我们现在想做地表水中的可溶性总磷,用0.45um的微孔滤膜过滤完地表水样品测得的可溶性总磷比,不用滤膜过滤测得的总磷还高,我们平时测得地表水可溶性总磷浓度就很低,只有0.035mg/L,这可怎么办呀,我换了好多种滤膜了,我查了一下几乎所有滤膜的磷含量的值都是30ug,大家都用什么滤膜呀,那种滤膜完全不含磷呀,告诉我一下吧,谢谢各位。

  • 压汞数据分析

    压汞数据分析在做压汞测试时,科学指南针检测平台工作人员在与很多同学沟通中了解到,好多同学对压汞测试不太了解,针对此,科学指南针检测平台团队组织相关同事对网上海量知识进行整理,希望可以帮助到科研圈的伙伴们;以YG1为例简要叙述一下压汞和退汞(绿色曲线)过程,以下图1~图5所示图1描述的是压汞过程-红色曲线,以及绿色曲线的退汞过程。其中曲线的拐点1,2,3,4,5代表材料中各类孔结构的范围。?1-2-3阶段:是大孔,主要是颗粒空隙之间的孔容;3-4阶段:随着压力的增加进汞量基本没有增加,能量消耗主要表现为材料颗粒被压缩;4-5阶段:随着压力值越来越大,材料颗粒吸收了更多的能量,体积被进一步压缩,另一方面,材料基体中含有的毛细孔,细观孔也在高压下被汞注入。到了5阶段以后,更小的小孔也在强大的压力下注满汞。图2 所示的是,1克材料中,相应 每一级压力(荷载)对应的孔容值。?图3描述的是 材料孔结构的分布(图),各阶段的峰值是该孔径范围内的最可几孔径,即在此处的进汞量(孔容)最大。?图4描述的是 孔径分布密度函数,即是说整个孔径分布的范围,分成若干(或无数)个以1nm为单位的孔隙,假如某个nm上有孔存在,那么就把这个孔的孔容值以纵坐标表示。 图5描述的是退汞过程中,假如某个nm上有孔存在,那么就把这个孔的 孔容变化量的值用纵坐标表示。从图5可以看出,被压进孔中的汞基本上没有变化产生。 那么图1的退汞曲线为什么在压汞曲线的上方这个现象呢?主要是因为在压汞过程中材料吸收大量的能量;退汞时,随着压力的降低,材料基体应力释放发生体积膨胀,产生的裂隙或者位置变化了的空隙空间被汞冲填,从而表现出图1的退汞曲线。[img]https://ng1.17img.cn/bbsfiles/images/2022/12/202212182032155205_9499_2140715_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/12/202212182032154658_1833_2140715_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/12/202212182032158205_2259_2140715_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/12/202212182032161436_9289_2140715_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/12/202212182032160772_385_2140715_3.png[/img]

  • 核磁共振应用岩土孔隙结构分析和孔隙度测量

    核磁共振应用岩土孔隙结构分析和孔隙度测量应用背景一般认为土壤由固相(土壤颗粒)、液相(土壤水)和气相(土壤所含气体)三相构成,在土壤颗粒空隙完全由液相填充,即水占土壤空隙的比例为百分之百时该土壤称之为饱和土。反之,土壤孔隙由水和空气填充,即饱和度小于100时但大于0时,该土壤为非饱和土。 土体孔隙中的水,按其存在的状态、性质和流动方式,可分为3类 吸附水、毛细水与重力水; 对于土水间物理化学作用较显著的黏性土, 吸附水在土体中的含量是3类孔隙水中最高的, 当饱和度在70 以下时, 吸附作用将是土水作用的主要形式. 鉴于吸附水在较大饱和度范围内对土体工程力学和物理化学特性的重要影响, 那么对土体中吸附水的含量及其变化的研究工作就具有非常重要的理论和实践意义; 质子核磁共振技术是一项研究单位体积中质子(即氢核)含量与分布的快速、无损探测技术. 由于水中1H 的核磁信号较强, 且水广泛存在于大自然中。核磁共振技术在岩土工程中的应用主要集中在岩石径分布和吸附水含量的测试,具体方法为联合T2 曲线和压汞曲线换算岩石孔径分布及通过离心方法确定吸附水T2 截止值进而测定吸附水含量。 当孔隙内的液体为水且磁场梯度近似为零的条件下,多孔介质体系的横向弛豫时间和纵向弛豫时间只与多孔介质的孔隙结构有关系,主要受体系的表面弛豫机制影响,而近似与其他两类弛豫机制无关核磁共振在石油岩心领域的功能 :1)孔隙度、含水率、含水饱和度的测定2)冻融温度-渗流-应力损伤本构模型3)冻融机理研究4)冻土未动水含量测定5)天然气水合物的形成与过程分解6)毛细水与吸附水含量测定应用举例一:土壤孔径分布http://pic.yupoo.com/niumagnmr_v/EgYE1QNa/mLjjF.png土壤T2分布图以及土壤的孔径分布直方图应用举例二:土壤吸附水含量测试分析http://pic.yupoo.com/niumagnmr_v/EgYElVas/Bw5iy.png

  • 煤储层微小孔孔隙结构的低场核磁共振研究

    煤层气主要以吸附状态存在于煤孔隙中,正确认识煤的孔隙结构及分布特征,是研究煤储层孔隙性、空间结构、渗流特征以及煤层气可采性的重要依据。目前,岩石孔隙结构和孔径分布特征主要通过压汞法分析获得的毛细管压力曲线和低温 氮吸附脱附实验得到吸附脱附曲线来进行评价和分析。鉴于,煤储层与常规储层相比,具有易碎、易压缩、孔隙结构复杂性和高度非均质性等特 征,这使得两种方法在煤储层应用方面存在较多不足。如低温氮吸附脱附实验方法对样品孔径的测试范围在1. 7 ~ 300 nm,能较好地反映微小孔 及中孔的分布情况,而无法反映大孔及裂隙的分布情况,测试范围具有局限性; 压汞法对样品有损坏,且无法重复利用低场核磁共振技术测试原理与上述两种方法不同,主要通过测量煤岩孔隙中流体的T2弛豫时间来获取煤样孔隙系统中微小孔、中孔、大孔及裂隙的分 布情况、连通性以及煤岩的各种物性参数。该方法具有快速、无损、信息量丰富等优点低场核磁共振实验结果通过低场核磁共振实验,得到煤样的T2弛豫时间谱( 图3)。根据样品T2谱的形态特征可得,样品按照孔隙大小主要分为两类: 一类微小孔为主,中孔、大孔及裂隙对不发育,如高煤阶 样品; 另一类样品微小孔、大孔或裂隙发育为主,中孔相对不发育,如中煤阶样品。http://pic.yupoo.com/niumagqw1/FIyv44f0/uwWAO.png煤样液氮吸/脱附曲线特征与表面弛豫率关系http://pic.yupoo.com/niumagqw1/FIyv4a8R/13IJuA.png高煤阶煤表面弛豫率明显低于 中煤阶煤,其主要原因为: 高煤阶煤的微孔比例相对较高,孔隙结构较复杂,且多以“细颈瓶”型毛细孔为主。因此,表面弛豫率的大小,与样品孔隙结构的复杂性及孔隙类型具有较好的对应关系。

  • 【转帖】东莞爆发基孔肯雅热疫情 已发现91例疑似病例

    [align=center][size=4][img]http://img1.gtimg.com/news/pics/hv1/72/122/638/41517132.jpg[/img][/size][/align][size=4]白纹伊蚊(俗称花斑蚊)是引起近期印度洋岛屿基孔肯雅流行的“罪魁祸首”,该蚊种在我国分布较为广泛。(资料图)[/size][size=4]南方日报讯(记者/陈枫通讯员/粤卫信)省卫生厅昨晚通报,东莞市发生一起基孔肯雅热社区聚集性疫情。截至本月1日共发现91例疑似病例。病例均为轻症病例,以发热并伴有关节痛、肌肉骨骼痛或皮疹症状为主,绝大多数已经痊愈,无住院、重症和死亡病例。[/size][size=4]本月1日,我省东莞市报告万江新村社区发现基孔肯雅热疑似病例。2日,省疾病预防控制中心在东莞市送检的15例发热病例血标本中检测到10例基孔肯雅热病毒核酸阳性。根据病例的临床特征、流行病学调查及实验室检测结果,省疾控中心认定这是一起基孔肯雅热社区聚集性疫情。[/size][size=4]接到报告后,省委书记汪洋、省长黄华华、副省长雷于蓝分别作出批示。省卫生厅高度重视,组织召开专题会议,并分别于前昨两日派出两个工作组赶赴东莞指导防控工作。省卫生厅要求东莞市根据基孔肯雅热预防控制技术指南和诊疗方案,切实做好疫情处置、流行病学调查、医疗救治和爱国卫生工作。东莞高度重视,迅速开展流行病学调查,积极做好发热病例监测和蚊媒监测,开展健康教育,加大基孔肯雅热等传染病知识的宣传力度,动员群众开展爱国卫生运动,翻盆倒罐,清除蚊虫孳生地,对相关场所进行消毒,严防疫情扩散蔓延。[/size][size=4]省疾控中心专家何剑峰介绍说,基孔肯雅热(Chikungunyafever)其实不是新病,而是一种始发于非洲的病毒性传染病。“基孔肯雅”的意思是“屈肢痛”,形容病人因严重的关节疼痛而蜷缩着身体的特征体态。蚊虫是其主要传播媒介。其潜伏期一般为2天至4天,也可长达7天至12天。主要症状有发热、关节痛、躯干部皮疹等,可伴有恶心、呕吐、畏光、结膜充血、腹痛或出血症状。[/size][size=4]据了解,“基孔肯雅热”的临床症状和传播途径与登革热基本一样。我省从2008年起就发现国外的输入性病例,这次东莞疫情很可能也是由输入性病例引发的。该病的病死率极低,市民不用惊慌。[/size][size=4][b]■小资料[/b][/size][size=4]基孔肯雅热(Chikungunyafever)是一种始发于非洲的病毒性传染病。1952年,首次在坦桑尼亚发现本病流行,1953年分离到基孔肯雅病毒(Chikungunyavirus,CHIK-V)。“基孔肯雅”这个名称音译自坦桑尼亚的Swahili土语,意思是“屈肢痛”,形容病人因严重的关节疼痛而蜷缩着身体的特征体态。这种传染病主要分布于冬季气温18℃以上的非洲及东南亚热带及亚热带地区。[/size][size=4]基孔肯雅热的潜伏期一般为2天~4天,也可长达7天至12天。其主要症状有发热、关节痛、躯干部皮疹等,可伴有恶心、呕吐、畏光、结膜充血、腹痛或出血症状。初期症状容易与感冒、关节炎、登革热等病混淆,导致误诊,恢复期可长达几周至数月,甚至3年以上,目前尚无特异性治疗手段,多为对症治疗。[/size][size=4]蚊虫是基孔肯雅热的主要传播媒介,包括埃及伊蚊、白纹伊蚊、非洲伊蚊和带叉-泰氏伊蚊。其中埃及伊蚊为家栖蚊种,是传播基孔肯雅病毒能力最强的蚊种;白纹伊蚊是引起近期印度洋岛屿基孔肯雅流行的主要媒介,该蚊种在我国分布较为广泛。[/size]

  • 免费直播讲座——氮吸附法介孔与大孔的测试与分析

    [b][color=#ff0000][b][color=#ff0000]直播时间:[/color][/b]2018/11/15 10:00[/color][color=#ff0000]讲师介绍:[/color][/b]钟家湘 : 北京理工大学材料学院教授,获得国务院颁发的政府特殊津贴;2004至2017年,担任北京精微高博科学技术有限公司学术带头人,曾研发成功多种系列的氮吸附比表面及孔径分析仪,被誉为中国氮吸附仪的开拓者,2015年获我国第二届科学仪器行业“研发特别贡献奖”[color=#ff0000][b]内容简介:[/b][/color]本讲主要内容:1. 测试方法、过程,从吸附量到孔体积的详细推算;2. BJH法孔径分布的表征方法,各个表征参数的物理含义、推导过程、应用价值;3. 孔径分析的重点、难点,吸脱附如何选择,滞后曲线与孔型的关系;4. 影响测试精度因素的分析比表面与孔径分析原理及应用专家系列讲座目录第一讲 [color=#ffffff]1.[/color]氮吸附法比表面及孔径分析原理[color=#ffffff][/color]第二讲 连续流动色谱法比表面仪原理及应用第三讲 静态容量法比表面及孔径分析仪原理及应用第四讲 氮吸附法介孔与大孔的测试与分析第五讲 氮吸附法微孔的测试与分析第六讲 密度函数理论在孔径分析中的应用[color=#ff0000][b]免费报名链接:[/b][/color][url]https://www.instrument.com.cn/ykt/Course/Live/Index?sId=127[/url][b][color=#ff0000]温馨提示:[/color][/b]本讲座直播免费哦,点播需购买整个系列讲座,详情见[url]https://www.instrument.com.cn/ykt/course/course/detail?sid=106[/url],免费名额有限哦,先到先得!

  • 【转帖】法国科学家揭示基孔肯雅病毒侵入细胞机制

    法国科学家揭示基孔肯雅病毒侵入细胞机制 来源:新华社法国国家科研中心日前发表公报说,该机构与巴斯德研究所合作,通过揭示基孔肯雅病毒表面蛋白质的3D结构,掌握了这种病毒侵入细胞的机制,这一发现将有助于开发新的抗病毒药物。公报称,研究人员借助电子显微镜清楚观测到这种病毒表面蛋白质的3D结构,他们发现,蛋白质E1、E2、p62等在病毒入侵机制中发挥着关键作用。首先,基孔肯雅病毒会在E2的帮助下附着在细胞膜上,然后被运送到核内体,后者的酸性环境会激发E1的活性,在它的作用下,病毒与核内体融为一体,并趁机在细胞中释放核糖核酸,从而复制更多的病毒。在完成对一个细胞的感染后,病毒表面的蛋白质会重新组合,在p62的帮助下冲破酸性环境,寻找新的传播目标。基孔肯雅病毒是导致基孔肯雅热的元凶,是以发热、皮疹及关节痛为主要特征的急性传染病,主要在南亚、非洲中部和东部等地区传播,目前尚无防治的特效药或疫苗。研究人员说,掌握基孔肯雅病毒的传播机制将有助于提高基孔肯雅热的防治水平。

  • 增材制造中的孔隙度表征

    [size=18px][b]前言[/b]增材制造(AM)技术又称3D打印,凭借其定制化、精密制造等优势,近年来在医疗、汽车及航天航空等领域发挥着越来越重要的作用。与传统工艺类似,增材制造工艺中的原材料和成品都需要进行相关的表征测试,以符合相应的质量标准。其中,孔隙度是评估增材制造过程的重要指标,粉体的孔隙度会强烈影响成型过程及成品部件的机械强度和表面质量,同时成品的孔隙度也是评估其性能的关键参数之一,因此相关的孔隙度表征尤为重要。[b][b]孔隙度表征的重要性[/b][/b]孔隙度(porosity)是表征部件或粉体致密程度的指标,为材料中孔隙的体积占总体积的百分比。在增材制造过程中,成品的孔隙度与致密度密切相关,呈反比关系,若部件的孔隙越多,则致密度越低,同时机械强度也越低,在受力环境下越容易出现疲劳或裂纹。因此针对不同应用领域和性能特点的产品,需要精准调控孔隙度以满足实际应用需求。例如在航天航空和电力等领域,由于环境较为极端,相关产品通常需要承受较高的疲劳应力,有些部件的致密度需达到99%以上,由此需要成品具有较低的孔隙度。而在生物医疗领域,如人工骨骼植入体,考虑到生物相容性及复杂的生物环境,植入体需要与较高孔隙度的周围骨组织相匹配。适宜的孔隙度可为细胞提供合适的增殖空间,以及减少应力屏蔽效应并促进骨长入和骨整合,否则易出现骨吸收和植入体松动等问题[1]。同时植入体还需具备良好的生物力学性能,而高力学性能往往和高孔隙度之间有所冲突,这就对精确控制植入体的孔隙度提出了很高要求。成品孔隙度及相关性能往往与粉体孔隙度息息相关,因此精确调控原料粉体的孔隙度也是质量控制中非常重要的一环。一方面,原料粉体的孔隙度会影响其流动性,进而影响送粉稳定性及铺粉均匀性;另一方面,原料粉体的孔隙度会影响增材制造过程中的烧结动力学及最终产品的表面光洁度、孔隙度及机械强度。通常,孔隙度低的粉体成型后部件致密度高,表面光洁度更好。有研究表明,在如粉末床熔融(PBF)这类增材制造工艺中,由于其较快的凝固速率和较高的粉体孔隙度,易造成制件内部产生常见的球形气孔及其它裂纹和孔隙等各类加工缺陷,并且一些缺陷在经过后续热处理等工艺后也难以消除,对成型部件的力学性能带来严重影响[2]。此外,增材制造工艺中常见的球化现象易使成型表面非常粗糙并产生大量球间孔隙,而调节粉体孔隙度也有利于改善此现象,获得致密度和力学性能更好的成品。因此,为了减少相关加工缺陷,表征和调控粉体的孔隙度必不可少。综上可知,了解和掌控原料粉体及成品的孔隙度参数,有利于更好地掌握增材制造的整个过程,对于确保生产过程的高效进行和最终成品的优异性能非常重要。[b][b]孔隙度表征方法及仪器[/b][/b](1)压汞法压汞法是测量粉体和成型产品孔隙度特性常用的方法,可测得样品中与外界连通的开孔体积占总体积的百分比。压汞法的原理是基于汞对大多数固体材料不润湿,界面张力会抵抗汞进入孔中,要使得汞进入材料的开孔中则需要施加外部压力(如图1所示),并且汞压入的孔半径与所受外压成反比,外压越大,则汞能进入的孔半径越小。压汞法分析技术就是在精确控制的压力下将汞压入材料的多孔结构中,具有快速、高分辨率及分析范围广等优点。除了可测得孔隙度外,压汞法表征还可获得样品的众多特性,例如:孔径分布、总孔体积、总孔比表面积、中值孔径等等。麦克仪器的AutoPore系列[b]全自动压汞仪[/b](如图2所示)可用于测量增材制造行业原料粉体及成品部件的孔隙度。仪器可测量样品在低至3nm的介孔及大孔范围内的孔隙度和孔径信息。测试可采用快速扫描、时间或速率平衡等不同的模式进行,并且测试分辨率高,进汞体积可精确至0.1μL。 [/size][align=center][size=18px] [/size][/align][align=center][size=18px][img=,400,291]http://img5.app17.com/EditImg/20200821/637336024645350226.png[/img][/size][/align][size=18px] 图1 汞压入孔中的示意图 [img=,173,371]http://img5.app17.com/EditImg/20200821/637336024759854427.png[/img] 图2 AutoPore系列[b]全自动压汞仪[/b] (2)密度计算法除了压汞法外,结合材料的骨架密度和包裹密度也可算得孔隙度。麦克仪器具有AccuPyc系列气体置换法密度仪(如图3所示)和GeoPyc系列包裹密度分析仪(如图4所示),将两款仪器连用可以直接算出孔隙度。AccuPyc系列[b]密度仪[/b]采用气体置换法,常用惰性气体如氦气或氮气作为置换介质取代材料的孔隙体积,根据理想气体定律PV=nRT确定样品体积,并结合样品质量算得骨架密度。由于气体分子尺寸比较小,置换气体能够进入相比于样品体积来说非常微小的开口孔隙,对于尤其是增材制造用的这类孔隙度较低的粉体,采用气体置换法测得的骨架密度结果精确度非常高,比传统的阿基米德浸液法更准确,重复性更好。GeoPyc系列[b]包裹密度分析仪[/b]采用独特的替代测试技术,使用一种具备高度流动性的微小刚性球状准流体物质作为替代介质,其在检测过程中紧密覆盖在材料外表面并填充材料间隙,可精确测出样品的包裹体积并算得密度。这两种仪器均为无损检测,能够精确高效地评估原料粉体和成品的孔隙度。 [img=,250,250]http://img5.app17.com/EditImg/20200615/637278273241573999.jpg[/img]图3 AccuPyc系列 气体置换法[b]密度仪[/b] [img=,250,167]http://img5.app17.com/EditImg/20200615/637278274474444164.png[/img]图4 GeoPyc系列[b]包裹密度分析仪 [b]增材制造的孔隙度测试案例[/b][/b]以下以某种采用增材制造工艺获得的镁锌锆合金医疗功能部件为例,采用压汞法对样品进行了孔隙度测试,并分析了其孔径分布,结果如图5所示[3]。该样品通过压汞仪测得的孔隙度为29%,与由阿基米德法测得的表观孔隙度值相吻合。此外,从压汞法给出的孔径分布结果可以看出该部件在不同尺寸范围内的孔隙特征。 [img=,500,383]http://img5.app17.com/EditImg/20200821/637336025783996226.png[/img]图5 采用AutoPore系列[b]压汞仪[/b]对某医疗部件进行孔隙度及孔径分布测试的结果[3][b][b]总结[/b][/b]在增材制造工艺中,材料孔隙度的表征具有十分重要的意义。研究和掌握原料粉体及最终成品的孔隙度对于减少部件内部缺陷,提升加工效率以及获得高质量成品至关重要。麦克仪器可提供一系列用于增材制造行业中表征孔隙度的仪器,AutoPore系列全自动压汞仪可快速高精度地测得原料粉体及成品的孔隙度,此外,还可以将AccuPyc系列气体置换法密度仪与GeoPyc系列包裹密度分析仪连用来测得孔隙度。利用这些仪器可为增材制造行业的孔隙度表征提供精确高效的测试结果,由此更好的筛选原料粉体,优化增材制造工艺以及评估成品性能。 [b][b]参考文献[/b][/b][/size][size=18px]【1】Karageorgiou V, Kaplan D L. Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005, 26(27): 5474-5491.【2】Tammas-Williams S, Zhao H, Léonard F, et al. XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by Selective Electron Beam Melting[J]. Materials Characterization, 2015: 47-61.【3】Salehi M, Maleksaeedi S, Sapari M A B, et al. Additive manufacturing of magnesium–zinc–zirconium (ZK) alloys via capillary-mediated binderless three-dimensional printing[J]. Materials & Design, 2019, 169.[b][font=等线] [/font][/b][/size][size=18px][b][font=等线][/font][/b][/size][font=等线][font=arial, helvetica, sans-serif][size=16px]关于麦克仪器公司[/size][/font][font=arial, helvetica, sans-serif][size=16px]麦克仪器公司是专业提供表征颗粒,粉体和多孔材料的物理性能,化学活性和流动性的高性能设备的全球领先的生产商。我们的技术包括:比重密度法、吸附、动态化学吸附、颗粒大小和形状、压汞孔隙度测定、粉末流变学和催化剂活性测试。公司在美国、英国和西班牙设有研发和生产基地,并在美洲、欧洲和亚洲设有直销和服务业务。麦克仪器是创新性的公司,产品是著名的政府和学术机构的10,000多个实验室的首选仪器。我们拥有世界一流的科学家和积极响应的支持团队,通过将Micromeritics技术应用于客户的需求,帮助客户获得成功。更多信息,请访问: [/size][/font][url=http://www.micromeritics.com.cn/][color=#0000ff][font=arial, helvetica, sans-serif]www.micromeritics.com.cn [/font][/color][/url][/font]

  • 孔板流量计和V锥流量计选择差压值的经验之谈

    孔板流量计和V锥流量计在选择差压值的时候该依靠什么理论来选择呢?很多时候,我们都把这两个放在一起,很多人也叫V锥流量计(孔板流量计)。V型锥流量计是差压类型中一款比较有典型代表的流量计,它的出现是差压类型的流量计的一个比较具有时代性意义的事情。她的工作原理是利用V锥产生的流体,运用测估量压差来测量某一特定的流量。它改变了节流的一般配置,也改为了环状的形态。工作中的表现来证明,V锥流量计和其他类型的流量计相比,具有测量精度准确高、测量限制小、测量范围广、适应更多恶劣环境等等优势。同时,V锥体作为整流器也成为了在行业中比较有实用价值的一种流量计。  下面,简单介绍一下孔板流量计的基本概念,孔板流量计是测量差压的一种流量计,与其他流量计一起配合可以测量出一些介质的流量。同时,与差压变送器配合运用,即可以测量出气体和液体中的流量,这款流量计广泛地于石油化工等能源行业中发挥作用。  介绍完这以上两个信息,相信大家会有一个大概的认识,那么下面就出现了一个比较复杂的问题,就是差压值该如何选区呢?又该选多大的数值呢?下面,我将给大家几个比较有价值的知识点,具体的操作请大家以后再在实践中慢慢摸索。  首先一点,差压值如果选得稍微大一点,那么则需要稍微短一些的直管段。根据这个原理,在孔板流量计选择差压值的时候,需要我们考虑多方面的因素,我们应该去选择差压最大的数值。那么V锥流量计又该如何选择呢?它的直管段需求不是很高,所以选取的时候就要按照这个特点来进行。  其次,在差压值稍微大点的时候,我推荐大家使用的比较小的雷诺数值,经过这样的处理,雷诺数会大于推荐我们使用的数值,所以,测量也就更加精确,也更加稳定。 差压值选取比较大的时候有点比较多,但是,什么事情都是有两面性的,当经济社会发展过后,对产品的综合性能的要求会越来越高,如果我们选取差压太大的情况下,会导致非常小的开孔,则对压力产生不好的影响,对于我们的使用者而言,则会增大成本,因为压力的流失会导致很大的资金浪费,不过对于V锥流量计而言,差压值选取的时候,尽量选取适中的数值,这样会对我们的使用者的使用更加符合我们的意愿。 V锥流量计(孔板流量计)的选择基本点,我在以上已经给大家简单地介绍了关于孔板流量计和V锥流量计选取差压值的一些技术要点,其实都是一些经验之谈,如果真正想从根本上解决选取难度大的问题,这需要我们在平时的使用中多积累经验,不断利用经验来摸索出一套有价值的理论知识。

  • 微孔测试技术

    一般把微纳米粉体表面上的孔按其尺寸分为三类,孔径大于50nm为大孔,孔径在2至50nm为中孔或介孔,孔径小于2nm称为微孔。从理论上说,氮吸附法测定孔径分布只适合于介孔。随着技术的不断进步,氮吸附法测孔的范围已可扩大至0.35~500nm的范畴,再大的孔需用压汞法测定,0.35nm已到微孔的极限,再小已无意义。测定微孔的技术非常复杂,因为,在氮气相对压力很低( 0.01)时才能发生微孔填充,孔径在0.5~1nm的孔只有在氮分压小于0.00001时,才能产生微孔填充,动态法是无能为力的,静态容量法需要氮气压力小于1Pa, 为了测定更细微的孔,常采用分子泵,采用氩气作为吸附质比较有利,他产生微孔填充的压力比氮气高,另一种可行的方法是采用CO2作吸附质在室温进行吸附,可以无需分子涡轮泵级的真空度。微孔分析的方法也很多,有D-R法、t-图法、 αs- 图法、 HK 、SF法、 NLDFT法等,其中t-图法相对比较实用。t-图法中,吸附量V被定义为吸附统计层厚t的函数,关键在于选择适当的t曲线,由V-t图中,可以很方便的得到比表面积、微孔孔径、微孔体积,在活性炭等微孔材料的分析中应用较多,效果很好。

  • 故事新编 : “孔融让梨”

    孔融母亲: “只剩下四个梨, 你们三兄弟和父亲一人一个吧。”数天后。孔融母亲: “今天只得一个梨, 拿去让你弟弟吃吧。”爱吃是孩子的天性,但不想逆母意, 况且父母都不吃了, 所以孔融只好不情不愿地把梨让给弟弟。当弟弟吃梨的时候, 孔融母亲出现并问: “谁给你梨?”“哥哥。”“噢, 哥哥这样疼你, 你要尊重哥哥啊。”吃了梨的弟弟经母亲教悔, 感受到哥哥的爱, 对哥哥更亲了。孔融觉得弟弟尊重自己, 疼爱弟弟之情渐生。 久之, 家中父慈子孝,兄友弟恭。某日, 出现了史书所记之“孔融让梨”, 惜史家并无记载孔融之母。 成功的男人背后必有一女人, 妻乎?母乎? (以上依据二十多年前老妻教育子女之片断印象编写)

  • 金霉素发酵过程DO自控节能报告

    核心提示:华中正大 关锋义一、在发酵过程中溶解氧进行控制的意义  在反应器中氧参与菌体的生长、产物的形成和维持细胞的代谢。氧是难溶华中正大 关锋义一、在发酵过程中溶解氧进行控制的意义·  在反应器中氧参与菌体的生长、产物的形成和维持细胞的代谢。氧是难溶于水的气体,在室温及常压条件下,纯氧的溶解度仅为36mg/L,空气中氧的溶解度仅为8mg/L。当水中溶有糖或其它盐类时,氧的溶解度则更低。·   以谷氨酸发酵一、在发酵过程中溶解氧进行控制的意义为例,同化100g葡萄糖需耗氧41.4g,而培养基中溶解氧只够菌体生长14s的消耗。因此足够的通风供氧对好氧氨基酸发酵非常关键。·   在工业发酵中产率是否受氧的限制,单凭通气量的大小是难以确定的。因溶解氧的高低不仅取决于供氧、通气搅拌等,还取决于需氧状况。故了解溶解氧是否够的最简便又有效的办法是就地监测发酵液中的溶解氧浓度。从溶解氧变化的情况可以了解氧的供需规律及其对生长和产物合成的影响。·   在发酵过程中溶解氧低于某一临界值,就会影响菌体的生长与产物的合成,但并不是维持溶解氧越高越好。即使是专性好气菌,过高的溶解氧对生长可能不利,而且有可能改变其代谢途径,不利于目的产物的合成。·  了解发酵过程中溶解氧和其他参数间的关系,可以通过观察发酵溶解氧的异常变化,及时发现生产可能出现的问题,如某些操作故障或事故、中间补料是否得当、污染杂菌等,以便尽早采取措施补救。·   在发酵过程中进行溶解氧的控制,可以“按需供风”,调节不同发酵罐批不同发酵时段间的供氧水平,以达到节能降耗,降低生产成本之目的。二、在金霉素发酵过程中溶解氧的变化规律·  金霉素生长、代谢过程可从培养液中溶氧浓度的变化反映出菌体的生长生理状况。·   在金霉素发酵过程的不同阶段,随着发酵培养体积的不断增加和菌体的生长代谢的不断变化,发酵罐内溶氧值不同,按一定规律变化。一般情况下,发酵接种后1-5小时为适应期,溶氧值最高;5-15小时,经过适应期后,需氧量上升,溶氧值较高;15-40小时,随着菌体的生长代谢旺盛,需氧量大增,溶氧值最低;40-80小时,需氧量中等,溶氧值回升;80-124小时,需氧量较少,溶氧值较高。 三、金霉素发酵罐DO控制系统·  1. 空气流量检测与控制系统·  1.1 空气流量检测系统使用由重庆耐德仪器仪表有限公司生产的涡街流量计,型号为YYW-A-125-DIII R/DBLU-20125A2B1PAT1P1/S/YYW-A1-200-DXQIIIR-B ,量程为0-2218.2m3/0-4800m3·  1.2 空气流量控制系统使用ZJHP-16B-125/ZJHP-16B-200气动单座调节阀,适用温度-17℃-220℃、流量特性为线性。·  2. 溶解氧检测系统使用由Mettler生产的InPro6800/120溶氧电极,可适应发酵高温消毒条件;DO变送器4100e ,具有自动手动自检、编程、校准等功能。·  3. 溶解氧控制系统采用美国Honeywell公司S9000控制系统/北京康拓生化公司的KT3000控制系统的2个PID回路组成1个串级PID调节单元。达到可分时段改变设定值,各时段空气流量在不低于设定值前提下溶氧值按设定值调节的控制目标。均由北京康拓生化公司集成、指导安装与调试运行。·  发酵罐DO未控制罐批曲线·  发酵罐DO控制罐批曲线·  溶氧控制发酵中的一些现象·  溶氧控制发酵前期和后期因空气流量较小,罐压较低有时出现泡沫大的现象,可关小排气阀门进行改善。·  溶氧控制改善了发酵10-30h的过速生长现象。·  发酵前期偏低的通气量会使生长迟滞,偏高的通气量会使生长过速,失去控制溶氧的意义,前期通气量需控制在合适的水平。·  发酵过程DO自控实施效果·  金霉素发酵DO自控试验总结论·  采用单因素方差分析方法,分析结论为:对发酵过程进行DO自控,与发酵最为紧密的发酵指标:发酵周期、发酵效价、补糖量、通氨量、提炼收率均无显著性差异,产品质量指标无显著性差异。·   通过对三个发酵车间对照组与试验组数据对比,发现试验组通氨量会有所降低(2-7%),TC会有所升高(2-3%)。·   三个发酵车间同时实施DO自控,总节气率为26.9%,每年可节电1200万KW·h。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制