当前位置: 仪器信息网 > 行业主题 > >

压汞法介孔总孔容和孔

仪器信息网压汞法介孔总孔容和孔专题为您提供2024年最新压汞法介孔总孔容和孔价格报价、厂家品牌的相关信息, 包括压汞法介孔总孔容和孔参数、型号等,不管是国产,还是进口品牌的压汞法介孔总孔容和孔您都可以在这里找到。 除此之外,仪器信息网还免费为您整合压汞法介孔总孔容和孔相关的耗材配件、试剂标物,还有压汞法介孔总孔容和孔相关的最新资讯、资料,以及压汞法介孔总孔容和孔相关的解决方案。

压汞法介孔总孔容和孔相关的资讯

  • 使用密度仪联用和压汞法测量片剂的密度和孔隙率
    孔隙率在制药行业中的应用孔隙率会影响溶剂渗透片剂固体基质的难易程度,是片剂或颗粒剂产品重要的质量属性。溶剂的渗透速率会影响片剂的崩解和溶出过程,并进一步影响药物的生物利用度和临床疗效。通常,具有确定药物活性成分(API)含量的片剂,孔隙率更高,会更快地溶解,进而更快地释放API。哪些分析技术能够测量孔隙率?使用AccuPyc系列气体置换法密度仪和GeoPyc系列包裹密度分析仪分别测量片剂的骨架体积和包裹体积,结合质量可由此算得相应的密度值。同时,这两款仪器彼此都可根据另一台所提供的密度生成相应的孔隙率值。使用AutoPore系列全自动压汞仪测量片剂的孔道信息。压汞法分析技术是基于在精确控制的压力下将汞压入孔结构中的方法实现的。除孔隙度外,压汞法表征还可获得样品的众多特性,例如:孔径分布、总孔体积、中值孔径、堆积密度和骨架密度等。案例研究:两种方法确定孔隙率研究对象为阿司匹林片。骨架密度、包裹密度和孔隙率数据如下表。无论是气体置换或者压汞法,都能够进入片剂表面的孔隙,因此两种方法得到的骨架密度接近。由于GeoPyc包裹密度的测试中,包裹介质DryFlo的粒径远大于片剂的孔径,所以包裹密度值与AutoPore测得的值有差异。对于压汞法,即使没有施加压力,汞也能进入这些孔隙,因此包裹密度值较大。而包裹密度的差异,也得到了不同的孔隙率结果。总结使用不同的方法都能测得片的孔隙率,用于制剂的过程控制和质量控制。结合片的特性和研究的精度要求,即可选择AccuPyc和GeoPyc系列密度仪联合,也可以选择AutoPore压汞法分析,高效、快速地获得片剂的孔隙率。如您想了解更多关于 Micromeritics 密度测量解决方案的内容,可以观看我们的专题网络研讨会。扫描二维码即可观看。关于 Micromeritics品质、 专业、 可靠, 这就是 Micromeritics。Micromeritics 是提供表征颗粒、粉体和多孔材料的物理性能、化学活性和流动性的全球高性能设备生产商。我们能够提供一系列行业前沿的技术,包括比重密度法、吸附、动态化学吸附、压汞技术、粉末流变技术、催化剂活性检测和粒径测定。公司在美国、英国和西班牙均设立了研发和生产基地,并在美洲、欧洲和亚洲设有直销和服务业务。Micromeritics 的产品是全球具有创造力的企业、政府和学术机构旗下 10,000 多个实验室的优选仪器。我们拥有专业的科学家队伍和响应迅速的支持团队,他们能够将 Micromeritics 技术应用于各种要求严苛的应用中,助力客户取得成功。
  • 儒雅香孔府家酒研发中心揭牌
    6月4日,曲阜孔府家酒业有限公司与江南大学合作签约暨儒雅香孔府家酒研发中心揭牌仪式在山东曲阜举行。江南大学副校长徐岩、山东省轻工业协会会长李伟鸣、山东白酒工业协会秘书长姜祖模及当地政府领导出席了签约仪式并为儒雅香孔府家酒研发中心成立剪彩。合作协议书的签署及孔府家研发中心的成立,标志着孔府家酒业与江南大学强强联手、产学研深度合作的开始。技术创新体系的不断完善,有助于孔府家酒的品质提升和内涵挖掘,进一步强化了企业核心竞争力。   孔府家酒业董事长邱振新对《华夏酒报》记者表示,多年来,孔府家始终坚持走自主创新、科技带动的发展道路,坚持创新和技术领先的发展战略,根据市场需求,注重品质特色和实际效果,在酿酒工艺、酒体风味、口感、香型研发、窖泥制作等方面取得了较大发展。“从上个世纪80年代孔府家酒在低度浓香白酒方面的率先突破,到儒雅香孔府家酒的研发成功,再到今天儒雅香孔府家酒研发中心的揭牌成立,孔府家的每一次跨越,都与技术创新有着密不可分的关系。”邱振新如是说。   徐岩对两家单位的合作寄予厚望,他表示,江南大学将投入全部科研力量加强对儒雅香孔府家酒的研究,同时会应用“1文章来源华夏酒报69工程”的最新研究成果,结合国际领先的技术手段以及孔府家酒的文化和市场营销定位,从新的高度诠释孔府家儒雅香的风味特征和品质内涵。   随着白酒市场竞争的不断升级,消费者理性化程度和多元化需求日益凸显,酒类产品应面向未来、审时度势,积极寻求品质风格的创新。通过推进产、学、研一体化进程,建立多样化、开放性的技术创新体系,传统白酒的内在价值将得到全新表现。
  • EZ6001总溶解砷在饮用水吸附工艺过程控制的应用
    EZ6001总溶解砷在饮用水吸附工艺过程控制的应用EZ6001总溶解砷在饮用水吸附工艺过程控制的应用——改进砷处理系统控制的在线监测哈希公司 安道尔共和国一条源水供应是来自于比利牛斯山的Birena山脉。与其他水源不同的是在春季总砷的含量高达10~20ppm(总溶解性砷14~18ppb)。砷是一种有毒的化学物质,摄入剂量过大会对身体健康产生严重危害。WHO在1983年制定了饮用水中砷最 大摄入剂量为10µg/L。2001年WHO声明为了人类生命健康该限值应该进一步降低。在2015年,当地政府投资了超过50万欧元设计一家新车间去除从Birena泉水中取水引入的砷,砷去除工艺是基于一种选择性的氧化铁介质吸附技术。考虑到砷的性质包括它本身的化学组成和它的处理过程,当局制定了完整的方案确保工艺效果及可能遇到的挑战:(1)厂区监测包括日常外部实验室检测,结果至少要3~4天,利用在线仪表得到实时数据就显得尤为重要。(2)精确的砷浓度监测控制,优化除砷系统旁路的安全使用,并对吸附系统的表现提供可靠的信息。在线砷仪表和手工测量有着相似的最 低检出限。(3)可以得到处理后进入蓄水池水的砷浓度实时数据(对于任何突发事件的安全响应和快速反应)。当地主管部门对哈希的产品线非常了解,他们在不同工艺段已经使用了浊度仪、pH探头和电导率在线测量装置。图1 Birena饮用水厂图2&3 Birena饮用水厂内吸附过滤装置选择性介质由于其很高的吸附去除率被普遍应用在去除砷的工艺中,吸附单元操作简单,整个过程只需要一台泵即可操作运行。然而正如普通的过滤/吸附过程,最重要的是建立和控制运行过程,(滤池反冲洗和再生过程)并保持在可行的水利设计范围内。因此,在线砷监控对于Birena饮用水厂旁路控制、吸附单元和饮用水过程水质量控制非常关键。符合客户要求的仪器为 EZ6001.99003302总溶解性三价和五价砷在线分析仪:该泉水中只检测出了五价砷作为砷的来源;过程中布置了三个监测点(原水、滤出水、出厂水);源水非常干净,没有预处理装置;作为 PLC 连接的 x3 模拟输出。EZ6001 分析仪的特性和精度允许在饮用水当中通过伏安法来监测砷;在线监砷分析仪提高了除砷装置的利用效率,确保出厂水砷浓度不超标;能够对过滤器可能发生的突发工艺变化进行预警;便于更好地监测过滤器过滤介质表现、穿透情况和生命周期。在本案例中, 被应用于饮用水厂过程中砷监测,仪表运行稳定,实时数据可以指导控制吸附除砷装置工作,对水厂优化去除特征污染物起到了很好的帮助,确保当地居民能够喝到放心安全的饮用水。 END
  • 中石油发布比表面积和孔容测定团标征求意见稿
    中国石油天然气股份有限公司石油化工研究院组织制定的《拟薄水铝石比表面积和孔容的测定 氮吸附法》团体标准,现公开征求意见。在催化裂化催化剂制备中,拟薄水铝石是主要原料之一,其质量的好坏对催化剂物化性能有较大影响。拟薄水铝石产品最有可能含有α-三水铝石、β1-三水铝石和β2-三水铝石这些杂晶相,对催化剂的制备有较大的不良影响。为了稳定产品质量,提高产品的竞争力,建立氮气物理吸附法测定拟薄水铝石比表面积和孔容的方法研究是非常必要的。国内目前还没有针对拟薄水铝石比表面积和孔容测定的标准,国内外涉及氮吸附法标准有ASTM D3663-91催化剂表面积测定法(氮气物理吸附法)、GB/T 19587-2017 气体吸附BET法测定固态物质比表面积(氮气物理吸附法),但两项标准中都没有对样品进行预处理的步骤,且只能测定比表面积。在对国内不同厂家的拟薄水铝石试样进行测试时,比表面范围在200m2/g- 500m2/g, 孔容范围在0.1cm3/g-1.5cm3/g,因此对标准中要求的自动吸附仪有较高要求。自动吸附仪:真空度小于 1.33Pa,温度控制灵敏度±0.1℃,体积控制灵敏度 0.05cm3,压力测量范围0.3kPa~133.3kPa,最小检测限 13.33Pa。凡符合静态氮吸附容量法基本原理、并且能满足上述要求的商品自动吸附仪,均可用于本文件。对仪器的精密度也有了明确的规范在附录A中:本文件适用于比表面积大于200.0 m2/g,孔体积大于0.1000 cm3/g的拟薄水铝石。拟薄水铝石比表面积和孔容的测定 氮吸附法(征求意见稿)全自动化学吸附仪是一种用于化学、生物学、化学工程领域的分析仪器,能实现室温至1200 ℃的连续线性升温,温度自动控制。标准配置中具备多路气体接口,分别可接反应气、载气和脉冲进样气体。每次脉冲的气体体积可由进样环的大小或由电控阀的环路来确定。可进行多种化学吸附和程序升温反应研究并获得催化剂、催化剂载体和其他各种材料有关物理特性的信息。吸附仪的组成:温控系统、气流控制系统(质量流量计)、冷阱、分析LOOP环、炉子和TCD热导池检测器。一台全自动化学吸附仪通常具备TPD、TPR、TPO等多项功能。TPD:程序升温脱附,将已吸附吸附质的吸附剂或催化剂按预定的升温程序(如等速升温)加热,得到吸附质的脱附量与温度关系图的方法。主要包括以下现象:(1)分子从表面脱附,从气相在吸附到表面;(2)分子从表面扩散到次层,从次层扩散到表面;(3)分子在内控的扩散。TPR:程序升温还原,在程序升温条件下,一种反应气体或反应气体与惰性气体混合物通过已吸附某种反应气体的催化剂,连续测量流出气体中两种反应气体以及反应产物浓度便可以测量表面反应速率。若在程序升温条件下,连续涌入还原性气体使活性组分发生还原反应,从流出气体中测量还原气体浓度而测定其还原速度,称为TPR技术。TPO:程序升温氧化,是一种在等速升温条件下的氧化过程,与TPR类似,在升温过程中发生氧化,气相中的氧气浓度将随温度变化而变化,记录氧气浓度随时间变化的图谱。主要用于积碳催化剂的烧碳再生考察,也有用于研究气相氧与催化剂表面吸附氢和表面氧空位的反应。找靠谱仪器,就上仪器信息网仪器导购专场仪器导购专场简介:仪器信息网仪器导购专场栏目深耕科学仪器行业21年,截止目前,已经涵盖14大类、900+个细分领域专场,收录数万台优质仪器,成为专业性及影响力兼具的国内一线科学仪器导购平台。
  • 晶圆加工精度控制的关键!Yaw偏航角追踪的闭环XY方向控制
    近年来,半导体行业飞速发展,节点技术不断缩小,EUV(紫外)和电子束技术成为佳选择,对例如晶圆,光罩,光束对准,光学元件,反射镜等的纳米加工要求也逐步提升。尤其是对于想要实现纳米精度的快速和长距离运动,需要闭环运动控制的传感器,且这种传感器必须满足生产和质量保证过程的高标准(超高真空(UHV)和洁净室兼容性的要求)。而对于暴露于高温以及随着对晶圆尺寸越来越大的需求,在大行程范围内实现超高精度是非常必要和迫切的。 attocube是纳米精密应用专家,研发团队根据法布里-佩罗干涉仪原理开发的基于激光干涉的位移传感器IDS3010获得了保护[1]。IDS3010 能够实现运动控制和位移检测,具有皮米分辨率、纳米精度和高达 25 MHz 的实时数据输出。基于光纤传输的IDS3010提供了三个通道,用于测量多轴载物台位移以及确定其角度的变化。UHV兼容的微型传感器头为不同的应用案例和设备集成提供了高度的灵活性。与半导体行业中的晶圆多自由度(multiple degree of freedom,DOF)的位置控制这一典型应用契合。 图1a显示了“传统”的基于载物台控制的应用,其中移动载物台配备了两个反射镜,激光探头固定在机架上。图1b显示了另一种xy平台控制的方式,其中传感器头固定在移动载物台上,反射镜固定在框架上。可实现这种方案的原因是attocube研发的传感器头是基于光纤的,而且它们的尺寸和重量也很小(外径仅为14 mm,重量仅为7 g)。图1突出显示了IDS3010在xy方向上的控制应用,而且我们的激光干涉仪能够在各种环境和工作距离(长达5米)下工作,为其他运动控制应用提供了无限的可能性。 图 1:显示了两个 xy 方向控制应用示例:a) 安装在移动载物台上的晶圆,其中连接了反射镜。三个传感器头固定在框架上。载物台的xy运动由IDS3010控制。b)显示了另一种可能的应用,其中微型传感器头安装在移动晶圆台上,而反射镜固定在框架上。 实验装置测量设置与图1a所示的示例类似,由一个电磁驱动xy位移台组成,该电磁位移台沿x轴的行程范围为1米。在移动载物台上放置了两个高质量的平面反射镜,用作测量表面。为了控制载物台位置,我们使用了带有三个固定准直传感器头的IDS3010(型号M12 / C1.6 / wf)。 IDS3010允许通过可用的实时数据输出(正弦、AquadB、HSSL、线性模拟输出)进行即时位置反馈。这些接口为闭环定位控制系统提供实时输入。对于实验室的测试,研究者们使用具有5 MHz带宽和纳米分辨率的正余弦数据输出。由于显示的测试是在室温环境条件下执行的,因此使用环境补偿单元(ECU)来确保测量的准确性[2]。在精密半导体加工的真空条件下不需要环境补偿,也同样能保证纳米的测量精度。 两个传感器头(SH1 和 SH2)测量 yz 反射镜表面上的位移。SH1 的正余弦信号用于 x 轴的闭环控制。SH1 和 SH2 水平相距 40 mm,因此可以计算偏航旋转并将其用作4-DOF装置的实时补偿。在我们的3-DOF装置中,我们无法补偿沿x轴的偏航旋转。三个传感器头 (SH3) 控制 y 轴。传感器头通过柔性光纤连接到IDS3010的三个通道,无需额外的光学元件。在平面反射镜上进行测量时,M12/C1.6/wf 传感器头的角度公差规定为± 30 m°,距离为 1 米。这种公差仍然是用户友好的,以便对齐xy的设置,同时也保证了低余弦误差。与其他干涉仪制造商相比,这是另一个好处。重要的是,我们的测量原理使我们能够拥有不同的传感器头可供客户选择。 测量结果图2a显示了驱动器的xy位移值。先实现了30x30毫米的正方形。之后,x轴被移动到1.0米的总行程。在这一点上,重要的是SH3需要具有大约300 mm的一定偏移距离,以便SH1和SH2可以测量到1米。此主从轴关系已明确指定。Xy方向运动的相应偏航(z轴的旋转)如图2b所示。该图显示,通过移动x 轴可达 1 米。图2c显示了μ°范围内重复的角度偏差,这主要是由沿运动轴分布的电之间的距离引起的。如果电磁驱动位移台具有额外的旋转设备,则可以补偿偏航旋转。图2:a)显示了xy方向运动的位移数据。x轴以1.0米的行程移动,而y轴仅移动30毫米,并包括偏移距离。b) 描绘了 a) 中所示的 xy 方向运动的偏航(z 轴的旋转)。总偏航旋转在30m°范围内。c) 局部放大的偏航旋转在几十μ°范围内的详细角度变化情况。 结果IDS3010被证明是闭环位移台应用的有力工具。位移和角度都可以在高达25 MHz的带宽下检测到。另外,小型化多种类的传感器头为灵活集成提供了更多可能,并确保可用性和准确性的正确组合,以此应对苛刻的定位任务。此外,传感器头的轻巧性(7克)提供了新的设置可能性,可以显著减少移动质量。以太网连接和多种标准编程语言(例如C +,C#,DLL,Python和LabView)允许将IDS3010轻松集成到各种不同的应用系统中。 参考文献[1] Patent: Interferometric displacement sensor for integration into machine tools and semiconductor lithography systems US10260863B2[2] National Metrology Institute of Germany (PTB) calibration certificate Calibration mark: 54012 PTB 15 2016
  • 大昌华嘉将于天津举办亚基介孔分子筛的合成表征及催化研讨会
    大昌华嘉商业(中国)有限公司将于2011年11月2日上午在联合研究大厦材料化学系四楼会议室与南开大学天津大学联合举办 &ldquo &beta 亚基介孔分子筛的合成,表征及催化学术讲座&rdquo 。 此次会议分为两个部分,第一部分:日本Pro. Yoshihiro SUGI讲解&beta 亚基介孔分子筛的合成,表征及催化,后一部分是郝昌德经理介绍美国麦奇克公司的动态激光在纳米技术上的最新应用,欢迎您届时光临。 大昌华嘉商业(中国)有限公司科技事业部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。大昌华嘉在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 日本拜尔有限公司(Bel Japan,Inc.)是一家研究生产容量法和重量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 美国麦奇克有限公司(Microtrac Inc.)是世界上最著名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。 Yoshihiro SUGI教授简介: Yoshihiro SUGI, Faculty of Engineering, Gifu University Awards: 1994 Prize for Distinguished Patent Applications, Agency of Science and Technology 1995 JPI Prize for Distinguished Papers. 1996 Prize for Distinguished Patent Applications, Agency of Science and Technology 2003 The Best Article of the Month, BCSJ #5, 2003. 2009 The Japan Petroleum Institute Award Major Interest: Catalysis (Homogenous and Heterogenous), Zeolite Synthesis, Ecomaterials. SEMINAR ARRANGEMENTS CHECK LIST 本次会议初步议程如下:联合研究大厦材料化学系四楼会议室 Conference 会场一 (8:30-12:20) Time / 时间 Content / 内容 CIP / 主持人 8:30-8:45 Registration / 会议注册 8:45-9:00DKSH Presentation / 大昌华嘉公司介绍 樊润 经理 9:00-10:10 Mesoporous Zeolite with Beta Zeolite Subunit: Synthesis, Characterization and Catalysis,&beta 亚基介孔分子筛的合成,表征及催化 Yoshihiro SUGI 教授 Keita Tsuji博士 10:10-10:30 Discusssion,Coffee Break讨论,茶歇 10:30-11:30 Mesoporous Zeolite with Beta Zeolite Subunit: Synthesis, Characterization and Catalysis,&beta 亚基介孔分子筛的合成,表征及催化 Yoshihiro SUGI 教授 Keita Tsuji博士 11:30-12:30 Laser Diffraction and Image Analysis 光散射与图像分析原理及应用;Dynamic Light Scattering &ndash latest advances with probe technology 动态激光散射在纳米上的应用 郝昌德 经理 12:30- Lunch午餐 本次会议内容丰富多彩,主办单位将向与会者赠送精美礼品。为便于会务安排,请将参会回执于10月25日前传真或发送电子邮件至大昌华嘉公司。 联系方式: 地 址: 北京市光华路7号汉威大厦西区26层 电 话: 010- 6561 3988 联系人: 樊润 13901255059 张媛 13301217002 传 真: 010- 6561 0278 电子邮件: Rain.fan@dksh.com Helen.zhang@dksh.com 大昌华嘉商业(中国)有限公司 2011年9月23日 回 执 姓名 单位 地址 电话 手机 E-mail 邮编 参加人数 我希望参加以下会议: 会场
  • 大昌华嘉将于北京举办亚基介孔分子筛的合成表征及催化研讨会
    大昌华嘉商业(中国)有限公司将于2011年11月1日在清华大学化学馆301报告厅与清华大学化学系徐柏庆教授课题组联合举办 &ldquo &beta 亚基介孔分子筛的合成,表征及催化学术讲座&rdquo 。 此次会议分为上下午两场,上午是大昌华嘉公司特邀请美国麦奇克公司副总裁Mr. Paul Cloake介绍动态激光在纳米技术上的最新应用,下午是日本Pro. Yoshihiro SUGI讲解&beta 亚基介孔分子筛的合成,表征及催化,欢迎您届时光临。 大昌华嘉商业(中国)有限公司科技事业部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。大昌华嘉在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 日本拜尔有限公司(Bel Japan,Inc.)是一家研究生产容量法和重量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 Yoshihiro SUGI教授简介: Yoshihiro SUGI, Faculty of Engineering, Gifu University Awards: 1994 Prize for Distinguished Patent Applications, Agency of Science and Technology 1995 JPI Prize for Distinguished Papers. 1996 Prize for Distinguished Patent Applications, Agency of Science and Technology 2003 The Best Article of the Month, BCSJ #5, 2003. 2009 The Japan Petroleum Institute Award Major Interest: Catalysis (Homogenous and Heterogenous), Zeolite Synthesis, Ecomaterials. SEMINAR ARRANGEMENTS CHECK LIST 本次会议初步议程如下:清华大学化学馆301报告厅 Conference 1 会场一 (8:30-12:20) Time / 时间 Content / 内容 CIP / 主持人 8:45-9:00 Registration / 会议注册 9:00-9:20 DKSH Presentation / 大昌华嘉公司介绍 Sinndy Yan严秀英 经理 9:20-10:30 Laser Diffraction and Image Analysis 光散射与图像分析原理及应用 Paul Cloake 副总裁 10:30-10:50 Coffee Break茶歇 10:50-11:50 Dynamic Light Scattering &ndash latest advances with probe technology 动态激光散射在纳米上的应用 Paul Cloake 副总裁 11:50-12:20 Question / 仪器展示及问题讨论 Sinndy Yan严秀英 经理 12:20-13:20 Lunch午餐 Conference 2 会场二 (13:30-17:30) 13:30-14:00 DKSH Presentation / 大昌华嘉公司介绍 Rain Fan樊润 经理 14:00-15:10 Mesoporous Zeolite with Beta Zeolite Subunit: Synthesis, Characterization and Catalysis, &beta 亚基介孔分子筛的合成,表征及催化 Yoshihiro SUGI 教授 Keita Tsuji博士 15:10-15:30 Coffee Break茶歇 15:30-16:30 Mesoporous Zeolite with Beta Zeolite Subunit: Synthesis, Characterization and Catalysis &beta 亚基介孔分子筛的合成,表征及催化 Pro.Yoshihiro SUGI Dr.Keita Tsuji 16:30-17:30 Discussion /问题讨论 Rain Fan樊润 经理 17:30 End / 结束 本次会议内容丰富多彩,主办单位将向与会者赠送精美礼品。为便于会务安排,请将参会回执于10月25日前传真或发送电子邮件至大昌华嘉公司。 联系方式: 地 址: 北京市光华路7号汉威大厦西区26层 电 话: 010- 6561 3988 联系人: 张媛 13301217002 王卫华13810747749 樊润 13901255059 传 真: 010- 6561 0278 电子邮件: Helen.zhang@dksh.com 备注:化学馆的具体地点在清华大学西北部理学院的正北面(从清华西北门进入往东200-300米路北即到)。西北门禁止没有清华车证的私家车出入,开车的客户可以从西门或者南门进入。 回 执 姓名 单位 地址 电话 手机 E-mail 邮编 参加人数 我希望参加以下会议: 会场1 会场2
  • 多孔材料的比表面和孔分析理论及颗粒表征技术进展研讨会
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪;1978年首次将连续扫描注汞技术应用到压汞仪中;1982年发明世界第一台多站自动比表面和孔隙度分析仪;至2005年,研制出最新一代、也是目前唯一一台可以进行静态和动态、物理和化学吸附、具有微孔分析能力的全自动比表面和孔隙度分析仪&mdash Autosorb系列。2010年3月1日,正式推出了至今最先进的双站微孔分析仪&mdash &mdash Autosorb-iQ。美国康塔,一直走在粉体及多孔物质分析技术的前列。 为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术,美国康塔仪器公司将于2012年11月29日在武汉市武昌区湖滨花园酒店举办&ldquo 粉体和多孔材料表征分析技术研讨会&rdquo ,欢迎光临指导。 日 期:2012 年11 月29日 时 间:9:00 ~ 17:00 地 点:湖滨花园酒店(武汉市武昌洪山区珞瑜路115号) 内 容:多孔材料的比表面和孔分析理论及颗粒表征技术进展 背景知识、吸附理论 气体吸附法测量比表面和孔径大小 如何正确应用BET 理论计算微孔样品比表面 孔分析模型及非定域密度函数理论在孔径分析中的应用 新一代颗粒、形貌表征技术&mdash &mdash Occhio粒度粒形分析仪技术及应用 如有不详之处,敬请联系美国康塔仪器公司上海代表处 朱蕾娜:021-52828278, zhuleina@quantachrome-china.com
  • RO反渗透系统氯和亚硫酸盐过程控制应用
    RO反渗透系统氯和亚硫酸盐过程控制应用解决方案众所周知,工业生产中会涉及到众多的反渗透(RO)系统,这些系统如果不采用一些氧化剂或者生物杀菌剂,就会极易受到生物污染,从而会导致该系统功能退化和膜的寿命显著下降,所以在这个过程中,一般都会加入氯(Cl2)来消灭大多数的致病微生物。然而,在反渗透(RO)系统中,膜极易受到进水中氯的破坏,这会导致较低的盐排斥率和较差的渗透。用户不得不频繁的更好价格昂贵的RO反渗透膜,以及面对频繁的设备停机。为了保护反渗透(RO)系统,氯的残留必须要维持到一个非常低得浓度,用户在除氯的过程中,一般采用颗粒活性炭(GAC)来消除水中的氯,那么实时监测GAC系统的健康状况,就变得尤为重要,这就需要一个非常灵敏、准确且易于使用的仪器来完成这项任务,但是传统的DPD法或者安培滴定法都存在一定的局限性。 另外,亚硫酸氢钠经常被用于降低进入反渗透系统(RO)中的氯,在这个过程中,亚硫酸氢钠的用量至关重要,因为亚硫酸氢盐会与溶解物发生反应,让水中的氧气导致厌氧生物生长加速,从而迅速污染反渗透(RO)系统。 但是由于氯或次氯酸盐的浓度会随着其年龄的变化而变化,因此获取氯或次氯酸盐的难度很大,这也意味着监测亚硫酸氢盐是困难的。传统的亚硫酸盐分析方法存在着一定的局限性,比如量程,准确性,精确度和易用性。即使不存在氯,过量的亚硫酸氢盐会降低pH值,也会导致ORP读数增加,这样会导致控制系统提示需要加入更多的亚硫酸氢盐,最终产生生物淤积,降低了膜的使用寿命。由此可知,一个灵敏、精确和易用的氯监测和亚硫酸盐检测仪器,对解决用户上述的痛点至关重要,传统的DPD法或者安培滴定法存在量程、精确性和易用性等方面的局限性,因而市场上缺乏可以真正解决用户这些痛点的在线或实验室,亦或者两者相结合的整体解决方案。哈希公司一直致力于对氯参数的分析和研究,在该领域拥有超过60年的技术研究历史,深厚的技术积淀为用户找到了一套切实可行的在线和实验室超低量程氯和亚硫酸盐监测方案提供了可能性。ULR CL17 sc总氯分析仪DR 1300 FL荧光比色计ULR CL17 sc是哈希最新推出的一款超低量程的总氯分析仪,它的量程范围可达0 – 5 PPM,并且检出限可以做到8ppb, 是一款非常灵敏型和准确性的过程仪表,它既可以单独用于过程中超低浓度总氯的检测与控制,也可以配套最新上市的DR 1300 FL荧光比色计,这是一款实验室用途的分析仪,是采用荧光原理来监测RO反渗透系统进水中的超低浓度的总氯、余氯和亚硫酸盐等参数,ULR CL17sc和DR 1300 FL一起组成了哈希在RO反渗透系统中对超低浓度的氯和亚硫酸盐等参数的检测,为保护用户重要的设备和资产,以及过程工艺中精确控氯和加亚硫酸盐提供了科学的决策依据,帮助您降低生产成本,提高运营效率,创造更大价值。END
  • 纳米孔测序的过去、现在和将来
    p strong   导读: /strong /p p   纵观测序技术的发展历程,没有哪一个技术像纳米孔测序那样慢热,但也没有哪一个技术像纳米孔测序这么接近普罗大众。将单链DNA拉过蛋白孔,检测碱基穿过时电导的微小改变,纳米孔测序的这一基础理念已经有十几年历史了。 /p p br/ /p p   1996年哈佛大学的Daniel Branton、加州大学的David Deamer及其同事,在美国国家科学院院刊PNAS杂志上首次发表文章指出,可以用膜通道检测多核苷酸序列。然而从第一篇论文到纳米孔测序的成形,这条道路并不是一帆风顺的。研究者们产生了很多分歧,也遇到了大量的技术死胡同。 /p p   strong  一个平凡的开始 /strong /p p   利用纳米孔进行测序的理念是非常直观的:让DNA碱基一个个穿过纳米孔,同时快速鉴定每一个碱基。然而真正实施起来人们却遇到了很多问题。如何在碱基穿过的时候进行检测?DNA链穿过纳米孔时是否需要放慢速度?如何大量生成同样大小的纳米孔? /p p   Deamer和Branton最初的想法是,给持续开启的通道施加跨膜电压,把线性DNA或RNA链拉过纳米孔。这一过程会立刻改变纳米孔的离子流,对此加以检测就可以确定DNA或RNA的构成。然而,在这种情况下DNA穿过纳米孔的速度太快,难以进行有效检测。 /p p   进入二十一世纪之后,越来越多的研究者致力于解决这些问题,让纳米孔测序成为现实。“可以说是NIH的$1000基因组计划刺激了纳米孔测序的发展,”Oxford Nanpore公司的创始人之一,牛津大学的Hagan Bayley最近撰文指出。 /p p   人们开始尝试改良纳米孔本身。天然的生物学通道(比如alpha-hemolysin)和开口小于2nm的人工纳米孔都可以用于纳米孔测序。研究者们发现,虽然人工纳米孔免去了和生物学材料打交道的麻烦,但大规模制造这么小的纳米孔实在太困难。最终,蛋白通道成为了纳米孔测序的主流。 /p p   strong  真正实现商业化 /strong /p p   2005年,Bayley、Gordon Sanghera和Spike Wilcocks创立的Oxford Nanopore公司正式登场。为了开发稳定可靠的纳米孔测序平台,该公司从2007年开始研发以蛋白为基础的纳米孔测序系统。2012年,该公司在AGBT(基因组生物学技术进展年会)上发布了自己的纳米孔系统——MinION。 /p p   MinION是首个U盘大小的纳米孔测序仪,价格在一千美元作用,一天能生成约1Gb数据。该系统发布之后很快引起了轰动,被许多人视为基因组测序的未来。然而直到2014年的AGBT,人们才首次看到MinION系统的实战表现。 /p p   Broad研究所的David Jaffe在这次会议上展示了自己的MinION数据,他利用纳米孔测序的长读取来组装细菌基因组。研究显示,这个平台的平均读长大约在5kb左右,最长能达到20kb。对于这么小的装置来说,这种测序能力是相当令人震撼的。虽然MinION的总体序列质量和错误率受到了一些质疑,但仍然有很多研究者希望尝试这种迷你测序仪。 /p p   这一次,人们并没有等太久。2014年Oxford Nanopore公司启动了先期体验项目,研究者只需要提供一千美元的押金和相应的运费,就可以获得测序设备和一次性的流动槽,在自己的项目中尝试MinION系统。 /p p   2015年初,先期体验项目的数据陆续发布出来。三月份,Exeter大学的研究人员在Biomolecular Detection and Quantification杂志上发表文章,对MinION系统性能进行了评估。文章写到“作为首个基于纳米孔的商业化单分子测序仪,MinION是很有前景的。然而,目前的错误率限制了它与现有测序技术竞争的能力。不过我们发现,MinION与Illumina MiSeq数据结合起来使用,有助于de novo基因组装配。” /p p   七月份,一个瑞典研究团队用MinION建立了细菌基因组草图。研究表明,这一系统生成了能定位的长读取,精确度达到79%。作者们总结道,“随着进一步的技术发展,我们相信MinION不仅可用于基因组装配,也能用于实地的快速检测。”此外,还有研究者用MinION对绿脓杆菌和大肠杆菌E.coli进行了测序。 /p p    strong 高通量就在前方 /strong /p p   纳米孔测序目前还处于发展初期。除了解决错误率问题,平行测序能力对于这一技术的推广也很重要。问题是,怎样才能同时评估成千上万个纳米孔的离子流改变。 /p p   八月份,Hagan Bayley和牛津大学的研究人员在这方面取得了突破性进展。他们开发的光传感纳米孔芯片,能够同时检测大量的纳米孔。检测方法的改变是这项研究的关键所在。Bayley等人将纳米孔的离子流变化转化为可以直接观测到的荧光改变,并在多种蛋白纳米孔(包括alpha-hemolysin)中展示了这一技术的可行性。这一技术为大规模纳米孔测序平台奠定了基础。 /p p   strong  参考文献: /strong /p p   1. Kasianowicz J.J., Brandin, E., Branton, D., and Deamer, D.W. 1996. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Nat. Acad. Sci. USA, 93(24): 13770-13773. /p p   2. Laver, T. et al. 2015. Assessing the performance of the Oxford Nanopore Technologies MinION. Biomolecular Detection and Quantification, Vol 3, pg 1-8. /p p   3. Karlsson, A et al. 2015. Scaffolding of a bacterial genome using MinION nanopore sequencing. Scientific Reports, doi: 10.138/srep11996 /p p   4. Huang S. et al. 2015. High-throughput optical sensing of nucleic acids in a nanopore array. Nature Nanotechnology. doi: 10.1038/nnano.2015.189 /p
  • 2022上半年比表面和孔径分析仪新品盘点
    常规测定材料比表面积和孔径的方法有气体吸附法、压汞法、扫描电镜、小角X光散射、以及小角中子散射等,其中,气体吸附法是最常见的测试方法,尤其是针对具有不规则表面和复杂孔径分布的材料,其孔径测量范围从0.35nm到100nm 以上,涵盖了全部微孔和介孔,甚至延伸到大孔。近年来,受益于锂电池等新兴领域应用拓展,气体吸附分析仪市场迎来良好发展机遇。为满足逐渐丰富的应用场景和市场需求,诸多吸附表征仪器企业也在不断推陈出新,2022年上半年,多款比表面积和孔径分析类新品陆续上市,主要以气体吸附法为主。本文特对仪器信息网新品栏目中申报的相关产品进行梳理与盘点,以飨读者。(特别声明:受限于时间与资源,新品盘点范围仅限本网收录的不完全统计,如有遗漏,欢迎补充完善)(1)安东帕安东帕比表面和孔径分析仪:Nova系列2022年2月,安东帕发布最新一代比表面及孔径分析仪 Nova 系列。全新Nova 系列包含600BET、800BET、600、800四个型号,可对不同吸附质在不同温度下,相对压力范围从1x10-4至0.5或0.999的等温线进行测定,从而计算得到材料的比表面积、孔径分布和孔容的信息。全新Nova系列在保证测试精度的基础上,分析速度得以进一步提升,可在短短20分钟内对4个样品进行5点BET分析,且重复性2022年,理化联科(北京)仪器科技有限公司推出专为锂电行业设计的的iPore450超低比表面积与孔径分析仪。理化联科iPore450超低比表面积与孔径分析仪对于低比表面样品,样品管及仪器管路的背景吸附量不能忽略不计,会影响BET计算结果。样品比表面值越小,影响越显著;样品称样量越小,偏差越大。iPore 450采用背景校准技术,消除了电池材料比表面值的质量非线性影响。该设备还采用了气密式一体化填塞棒、快紧接口连接,以及移除式杜瓦瓶托架等全新技术,减少人员操作产生的误差,克服仪器环境引起的的偏差,实现了超低比表面样品的精确测量,重复性可达0.05% ,重现性优于0.5%。(3)国仪精测6月17日,国仪精测发布高性能微孔分析仪Ultra Sorb、蒸汽吸附仪S-Sorb、高温高压气体吸附仪H-Sorb升级版、动态法比表面积测试仪F-Sorb CES直管升级版四款重磅新品。高性能微孔分析仪Ultra Sorb聚焦于微孔材料的表面特性表征,设备在不锈钢管路基础上,突破性设计VCR金属面密封样品管,提升气体管路的整体密封性,具有高真空长时间可保持性、极低的系统漏气率控温精度高、高通量等独特优势。系统漏气率低至1x10-11Pa.m3/s, P/Po低至1x10-9准确测定,让极限0.35nm微孔分析成为可能。可广泛应用于环保、燃料电池、医药和催化等行业。蒸气吸附仪S-Sorb是测定水和有机蒸气等温吸附曲线的设备,可测试材料对水蒸气、有机蒸汽及各种气体的吸脱附量、吸脱附速度等参数。该设备使用不锈钢管路通过VCR接口连接,提升管路真空度。核心系统器件125℃下恒温,具有耐压耐腐蚀型蒸汽发生器,系统漏气率低至1x10-11Pa.m3/s 。可广泛应用于食品、药品和水净化等行业。高温高压气体吸附仪H-Sorb主要是在高温高压场景下使用静态容量法进行材料吸附量的测试,可以测试分析吸脱附等温线、Langmuir模型回归等温线、PCT曲线、吸脱附动力学曲线、吸氢及放氢压力平台、TPD程序升温脱附、吸放氢循环试验和吉布斯超临界吸附等。具备高度集成的测试系统,可实现高精度宽温控温,高压下系统漏气率仍低至1x10-10Pa.m3/s。设备可以应用在煤层气、页岩气和储氢材料等行业。动态法比表面积测试仪F-Sorb采用动态色谱法测试原理,可以通过直接对比法、单点和多点BET快速测试样品的比表面积。设备测试效率高;独有的直管样品管,易安装、易装样、易清洗;配备全自动步进电机,实现精准流量调节。可广泛应用于锂电池、陶瓷、医药等粉末材料的生产质检中。(4)MicromeriticsAutoChem III 化学吸附系统2022年6月,全球领先的材料表征技术公司 Micromeritics宣布新品 AutoChem III 的上市。AutoChem III 的全新设计旨在简化关键实验步骤,每天能够为用户节省几个小时,减少测试时间,提高实验效率。新型 Autocool 高度集成空气冷却系统不需要额外的低温液体或外部冷却介质,即可将实验时间缩短 30 分钟或更长时间;独特的 AutoTrap 为 TPR 实验提供高效的蒸汽捕获,无需制备冷却浴;获得研发专利的KwikConnect 样品管安装一体式设计保证了密封性,规避了由传统螺纹接头带来的泄漏风险。AutoChem III 的动态化学吸附和程序升温分析在开发新催化剂材料至关重要的性能指标中发挥着极其重要的作用,助力碳捕获和利用、氢清洁能源以及其他净零等技术的发展。(5)真理光学 微孔径快速测量仪2022年6月,珠海真理光学仪器有限公司发布微孔径快速测量仪 。测试方法为真理光学团队首创研发的光通量微孔径测量法(专利申请号:CN202110766064.2),测量方法快速可靠,比传统的显微镜和电镜检测方法快10倍以上,且能够输出全部孔的孔径、分布及位置,这是其他方法不具备的。
  • Picarro | 揭秘中国长江流域溶解温室气体(CO2、CH4和N2O)的空间分布和调控因素
    长江,全长6300余千米,中国第一大河,干流自西而东横贯中国中部,数百条支流辐辏南北,于崇明岛以东注入东海,流域面积180万平方千米,约占全国总面积的1/5,年入海水量9513亿立方米,占全国河流总入海水量的1/3以上。长江承载着丰富的生态系统和人类活动,对于全球气候变化的干预具有重要意义。在全球温室气体变化成为全球关注焦点的当下,长江作为世界上最大的亚热带河流,碳氮存储量备受科研研究所关注。今天的推荐的文章将带大家揭秘中国长江流域溶解温室气体(CO2、CH4和N2O)的空间分布和调控因素。河流,尤其是(亚)热带地区的大型河流,在全球温室气体预算中起着重要作用。在大尺度温室气体预算中忽略水生成分可能会高估陆地生态系统中碳和氮的储存量,但由于河流数据集的空间分布偏差,对潜在生态过程的理解不足,河流温室气体排放的估计存在很大的不确定性。长江是世界上最大的亚热带河流,近几十年来面临着密集的人类活动。三峡大坝(TGD)不同时空尺度的温室气体排放和河口河流碳输出受到广泛关注。然而,目前还缺乏关于长江流域温室气体浓度大尺度纵向模式和驱动因素的研究。长江从青藏高原流入大海,其水文形态和生物地球化学配置梯度较大,为理清大尺度格局的调控机制提供了理想系统。为生成溶解温室气体浓度的空间数据集,了解和预测温室气体的空间趋势,以及深入了解不同温室气体来源在大型河流尺度上的作用。研究人员于2020年10月17日至11月4日期间在长江干流和支流进行了采样活动,收集了温室气体浓度(CO2、CH4和N2O,Picarro G2508气体浓度分析仪)和水化学参数(原位水温、电导率、pH值、溶解氧、NO3–、NH4+、溶解总磷 (DTP) 浓度)的测量结果,并将结果与上、中、下游的水文形态特征相结合。【结果】(a-c)长江干流和支流中CO2、CH4和N2O摩尔浓度箱线图,分别按上、中和下游分类。(d-f)分别为长江干流中观测到的CO2、CH4和N2O浓度图。采样点组显示了预测长江干流温室气体浓度的参数之间的关系。(I)影响温室气体浓度的预测因子的回归树。(Ⅱ)各终端节点内采样点的空间表征,表明长江沿岸温室气体浓度相似的采样点具有相同的预测因子。CO2、CH4和N2O的交叉验证均方根误差分别为13.5、0.13、0.20,R2分别为0.49、0.31和0.68。【结论】研究首次系统地估计了长江沿岸温室气体(GHG)的纵向变化以及土地覆盖和水生物地球化学对三种温室气体的影响。结果发现长江中游地区CO2和N2O浓度较高,存在显著的空间集聚现象。非线性回归结果表明,湿地覆盖度高、溶解氧低时,河流温室气体排放量高。湿地和氧气,而不是三峡大坝和支流,分别是CO2和CH4浓度空间变化的主要相关因素。令人惊讶的是,CO2可以很好地预测N2O,这意味着它们有共同的驱动因素或来源。作者建议在估算长江流域温室气体排放时考虑湿地对温室气体预算的贡献及其对环境变化的敏感性。根据研究,未来对大型河流温室气体排放的控制可能很大程度上取决于如何通过减少养分负荷来调节外部输入和内部代谢。
  • 多孔材料的孔分析技术讲座
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪;1978年首次将连续扫描注汞技术应用到压汞仪中;1982年发明世界第一台多站自动比表面和孔隙度分析仪......;至2005年,研制出最新一代、也是目前唯一一台可以进行静态和动态、物理和化学吸附、具有微孔分析能力的全自动比表面和孔隙度分析仪&mdash Autosorb-1-C系列。美国康塔,一直走在粉体及多孔物质分析技术的前列。 为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术,美国康塔仪器公司与华东理工大学化工学院将于2010年12月16日在华东理工大学举办&ldquo 粉体和多孔材料表征分析技术研讨会&rdquo ,欢迎光临指导。 日 期:2010年12月16日(星期四) 时 间:下午1: 30 ~ 下午5: 00 地 点:华东理工大学联反所报告厅 内 容:多孔材料的孔分析技术进展 Ÿ 背景知识 Ÿ 吸附理论 Ÿ 气体吸附法测量比表面和孔径大小 Ÿ 如何正确应用BET理论计算比表面 Ÿ 非定域密度函数理论在孔径分析中的应用 Ÿ 压汞法测孔技术 Ÿ NOVA系列全自动比表面和孔径分析仪测试技术培训 主讲人:杨正红 (美国康塔仪器公司 首席代表、中国区经理) 联系方式:华东理工大学联反所 陈庆军 博士 电 话:13636454811 E-mail: chenqingjunsh@163.com
  • 理化联科发布理化联科iPore400比表面和孔径分析仪新品
    iPore系列全自动比表面和孔径分析仪按照欧洲标准设计制造,符合ISO15901及GB/T 19587-2017 标准,可对沸石分子筛、碳材料、金属氧化物、MOF、COF、石墨烯等多孔材料进行比表面积、孔径分布和总孔体积等分析。iPore 400可广泛应用于电池材料、金属粉末、固体药物制剂(原料药API及其辅料)等超低比表面样品的质量控制和研发。iPore 400型能同时测定6个样品,并对另外六个样品进行独立地脱气处理。具有两套独立的真空系统,适合高校及企业单位对材料比表面及微介孔材料进行精确分析。iPore系列物理吸附分析仪配置iBox26全自动智能脱气站,符合新一代物理吸附分析仪的5S标准。 1S: 全系统温度恒定控制 2S: 全新死体积恒定控制技术 3S: 32位模数转换电子电路系统 4S: 全新的智能化脱气系统 5S: 移动端远程操控及售后服务APP技术特点全新死体积恒定技术通过压力传感器和伺服反馈电梯精确控制液氮液位,保持分析过程中死体积的精确恒定。全域自动恒温系统拥有双路进气预热及0.02℃高精度恒温系统,可在35-50℃之间设定温度,实时显示全区域气路和歧管的系统温度,克服实验环境带来的误差。配置PFC流控阀组系统抽真空时按程序设定比例进行,合理调节真空抽速,防止粉末扬析以及高真空状态下抽速过慢的问题。32位芯片及电路系统采用全新32位芯片及电路系统,相比24位系统,压力传感器分析精度提升30 倍以上,确保超低比表面测量的精度。内置13.3' ' 触屏电脑可对仪器进行实时控制和数据分析。安装专用移动APP后可实现远程操控和售后服务。创新点:iPore系列物理吸附分析仪按照欧洲标准设计制造。全系列标准配制iBox26全自动智能脱气站,符合新一代物理吸附仪的5S标准。 ★ 内置13.3”PAD电脑,可对仪器进行实时控制和数据分析。安装专用移动APP后可实现远程操控和售后服务。 ★ 压敏死体积恒定技术:通过压力传感器和伺服反馈电梯精确控制液氮液位,保持分析过程中死体积恒定。 ★ 全域自动恒温系统:拥有双路进气预热及0.02℃ 高精度恒温系统,可根据需要在35-50℃之间设定恒定温度;实时显示全区域气路和歧管的系统温度,克服环境带来的误差。 ★ 配置PFC流控阀组:系统抽真空时按程序设定比例进行,合理调节真空抽速,防止粉末扬析以及高真空状态下抽速过慢的问题。 ★ 32位芯片及电路系统:采用全新32位芯片及电路系统,相比24位系统,压力传感器分析精度提升30倍以上,确保超低比表面测量的极致精度。 理化联科iPore400比表面和孔径分析仪
  • 对抗病毒,微孔板检测和成像能够开展哪些工作?
    2020年注定是不平凡的一年,而在每个平凡工作岗位上的我们,总希望能在这个特殊的时期做点什么,哪怕微小的贡献,汇集在一起,一定会成为改变的推动力。所以,小编梳理了一下在抗病毒药物、疫苗研发生产等相关领域的工作中,我们的微孔板检测及成像设备能够开展的实验和项目,希望能够对在攻坚岗位上奋斗的老师们有所帮助。病毒,可以是恶魔,也可以是工具我们都知道,病毒(virus)由一种核酸分子(dna或rna)与蛋白质(protein)构成或仅由蛋白质构成(如朊病毒)的有机形态,它介于生命与非生命之间,超然在五界之外(传统的五界分类法)。这样一种看起来无比“简单而低级”的东西,却在人类历史上留下持续至今挥之不去的阴影,比如ebola,比如hiv,比如,现在全国上下一心对抗的新冠病毒。但是,拥有高级智慧的人类,怎会轻易被这些简单而低级的玩意儿打败?所以,我们有了疫苗,有了抗病毒药物,聪明的人类还利用病毒感染宿主细胞进行自我复制的机制,把恶魔变成工具,应用到人类的生产生活中,比如通过病毒进行花卉育种,利用病毒作为载体进行生物研究、基因治疗等等。所以今天,我们首先分享一些围绕抗病毒药物研发、疫苗生产等相关领域,微孔板检测和成像设备的应用方向,后续我们会为大家继续分享微孔板相关设备在如何“利用”病毒开展生物研究工作。病毒的数量与感染性测定病毒感染哺乳动物细胞后,除了通过rt-pcr的方法,可以通过细胞病变效应、红细胞吸附和免疫标记检查法等评价病毒在细胞中的增殖情况。细胞病变效应(cytopathic effect, cpe),是指病毒在敏感细胞内增殖引起的光镜下可见的细胞病理改变。大多数动物病毒感染敏感细胞培养都能引起其显微表现改变,例如细胞聚集成团肿大圆缩脱落及细胞融合成为多核细胞,细胞内出现包涵体(inclusion body),乃至细胞裂解等,正是因为cpe的表现,我们可以在体外细胞水平评价病毒感染宿主细胞的情况。病毒毒价测定是病毒学相关研究中最基本的技术手段,无论疫苗研发、抗病毒药物评估或者是病毒重组载体构建,均需要在不同环节评定病毒毒价,而目前主要方法包括蚀斑实验、tcid50测定和免疫染色法等。病毒蚀斑实验病毒蚀斑是一种检查和准确滴定病毒感染性的方法。方法:将稀释的病毒悬液加入单层细胞培养瓶中。病毒吸附后,再覆盖一层融化的半固体营养琼脂,使病毒在单层细胞培养中有限扩散。结果是每一个有感染性的病毒在单层细胞中可产生一个局限性的感染灶。用活性染料 (如中性红) 染色,则活细胞着色,受病毒感染而破坏的细胞不着色,形成肉眼可见的蚀斑(plaque)。每个蚀斑是由一个感染性病毒颗粒形成的,称作蚀斑形成单位 (plaque forming unit,pfu)。通常以每毫升病毒液的空斑形成单位既 pfu/ml表示。上图来自武汉大学基础医学院,病毒感染6孔板细胞后形成空斑病灶,使用中性红染色后,通过cytation的4x物镜明场模式对全孔进行拼接成像,软件分析识别孔中的空斑病灶个数。tcid50法tcid50法是测定病毒能使50%的组织培养细胞发生感染的最小量。方法:一般是将病毒悬液作10倍的系列稀释,分别接种细胞,经一定时间后观察cpe、血细胞吸附等指标,以最高稀释度能感染50%细胞的量为终点。最后用统计方法(reed muench法)计算出50%组织细胞感染量( 50%tissue culture infectious dose,tcid50)。免疫染色法空斑实验法或常规tcid50测定滴度依赖于病毒在感染细胞中的复制以及感染周边细胞形成局灶型病变;而免疫染色法只需要病毒感染靶细胞并表达病毒所编码的蛋白。因此,免疫染色法(infectious units per ml, or ifu/ml)测定病毒滴度需要的时间比空斑法(pfu/ml)更短。其中,免疫染色法包括hrp组化或免疫荧光染色等。同样类型方法也适用于表达荧光报告基因的重组病毒的毒价测定。例如,以针对杆状病毒囊膜蛋白gp64的单克隆抗体标记被病毒感染的细胞,然后以hrp-标记的二抗与感染细胞进行染色。通过底物显色,在光学显微镜下计数感染斑点的数量,经过稀释倍数的换算,即可得出病毒的滴度(ifu/ml)。输问题:无论是plaque assays还是tcid50,均涉及较多微孔的细胞计数或阴/阳性孔判断,常规的显微镜观测法,操作不便且对研究者伤害较大。因此biotek为大家提供了更加自动化的解决方法:通过cytation/lionheartfx自动化成像设备进行cpe或者plaque的成像及计数。上图:cytation5自动化成像系统支持明场、彩色明场、荧光场等模式自动化成像检测,并且可选择大视野成像模式,4倍镜一个视野可覆盖384孔板整孔,提高全孔、整板成像的检测速度。上图:两种病毒感染细胞后,通过红色/绿色荧光探针标记的抗体进行免疫荧光染色,采用cytation双荧光通道自动成像,并对病毒感染的细胞病灶进行识别成像。抗病毒药物筛选相关应用
  • DNA测序界还在等待纳米孔测序技术的到来
    即插即用型的测序仪。科研人员们很快就可以用到这种便携式的DNA测序仪了。 美国佛罗里达州的Marco岛(Marco Island, Florida)是基因组测序者们的圣地,十几年来,这里每年都会举行一次基因组测序盛会,全世界的基因组测序仪制造商们都会在会上拿出他们最先进的技术 和产品,其中有很多都是革命性的创新技术。最近最吸引人的就是英国牛津纳米孔技术公司(Oxford Nanopore Technologies)在两年前发布的技术,他们能够进行实时测序,而且拥有非常长的读长,这项技术只需要让待测DNA分子通过一个纳米级的孔道就行 了(Science, 4 May 2012, p. 534),在此之前很多人都认为这是不可能完成的任务。牛津纳米孔技术公司表示他们会尽快推出原型机,让广大科研工作者都享受到技术进步带来的便利。 经过了两年多的沉寂,他们最终给出了答卷。虽然该公司并没有派人参加这次的大会,但是据一位与该公司有合作的科研人员介绍,他们已经用这种新技术对 一种细菌进行了基因组测序,而他本人也使用测序结果组装出了细菌的完整基因组序列。并且牛津纳米孔技术公司也在积极兑现承诺,通知科研人员们对他们的新设 备进行测试。不过并不是所有人都认可该公司的这第二步棋,因为他们得到的测序数据的质量并不高,单单靠这些数据是不可能获得完整基因组序列的。 与此同时,传统的测序仪也在飞速地发展,希望进一步降低测序服务的成本。比如全世界最大的测序仪制造商Illumina公司就在今年1月登上了头 条,因为他们宣称将推出一台新产品,能够将个人基因组测序的成本降低到1000美元这个具有重要意义的分界线,因为很多人都认为如果个人基因组测序的费用 能够降低到这个水平,将使测序成为一项临床常规检测手段(Science, 17 March 2006, p. 1544)。 Illumina公司推出的这台新设备与其它新一代测序仪(next-gen sequencers)一样,采用的也都是合成测序策略,即在新DNA链合成的时候检测出被添加上的碱基。这些碱基必须加上化学标签(修饰物),以方便辨 认。采用这种技术测得的片段读长都很短,需要进行后续拼接。而牛津纳米孔技术公司采用的测序策略则完全不同,他们使用的是实时测序方法,让一根DNA长链 穿过纳米级别的孔径来完成测序。当DNA链上的碱基通过纳米孔时,它们会阻断纳米孔中的离子流,而每一种碱基引起的变化都不相同,因此就可以判断出碱基的 序列。从理论上来说,这种技术的测序读长可以达到数千bp,不会产生延迟,也不需要进行事后的序列拼接。这项技术提出距今已经过去了接近20年,最终于 2012年成为了现实。当时牛津纳米孔技术公司提交了一份病毒基因组序列,据称就是使用纳米孔技术测得的。 但为什么后来就没动静了呢? 基因组测序成本经过了多年的下降,目前已经达到了一个平台期,不过也有可能会继续跳水,如图中虚线所示,只要Illumina公司宣传的1000美元个人基因组测序目标能够实现。(M:百万美元 K:一千美元) 据牛津纳米孔技术公司介绍,这两年来他们一直在寻找一种新型的基质膜来为纳米孔提供支撑,因为最开始使用的基质膜不适宜进行大规模制造。他们也调整 了产品开发策略,放弃了最开始计划的大型测序仪开发计划,转而投向开发小型手持式、一次性测序设备,因为他们感觉这块市场需求更大。 美国马萨诸塞州博大研究所(Broad Institute in Cambridge, Massachusetts)的David Jaffe在今年也透露一些新进展。他们课题组对大肠杆菌(Escherichia coli)这种常见的细菌和Scardovia wiggsiae(这是一种与牙齿腐烂相关的细菌)细菌进行了基因组测序,由他们提供DNA样品,牛津纳米孔技术公司完成了测序工作。这两种细菌的基因组长度分别为460万bp和155万bp。该工作表明牛津纳米孔技术公司的测序技术已经从两年前的病毒基因组水平提升到了细菌基因组水平。 但是Jaffe的内幕消息也证实牛津纳米孔技术公司还有很长的一段路需要走。该公司提供的数据证明纳米孔测序技术的确拥有相当大的读长优势,几乎可 以对一段DNA样品进行完整测序,一次最多能够得到10kb的序列。不过虽然有如此完美的数据,但是系统误差却让Jaffe等人无法将这些大片段拼接成完 整的基因组序列,而这也是纳米孔测序技术的终极目标。不过Jaffe等人发现,可以使用这些纳米孔测序数据对常见的Illumina测序仪获得的基因组序 列进行优化。美国马里兰州美国国立人类基因组研究院(National Human Genome Research Institute in Bethesda, Maryland)的Jeffery Schloss表示,虽然这种技术还处于初级阶段,但是在某些方面已经表现出了很强的应用优势。不过其他人却没有这么乐观,比如加拿大蒙特利尔麦基尔大学 (McGill University in Montreal, Canada)的基因组学家Ken Dewar就指出,如果纳米孔技术只能够对现有技术起到修补作用,那么开发一台手持式的纳米孔测序仪有什么意义呢? 牛津纳米孔技术公司目前正在邀请科研人员们自己来验证纳米孔测序技术的实力。就在Jaffe透露消息的当天,该公司就向全世界发出了电子邮件,邀请 数百位申请者来体验他们的便携式测序仪MinION,只需要缴纳1000美元押金即可。首先这些试用者需要先用牛津纳米孔技术公司提供的DNA样品进行预 试验,熟悉仪器操作等流程,然后就可以对任意的DNA进行测序。 美国加州大学圣克鲁兹分校(University of California, Santa Cruz)的David Deamer是纳米孔测序技术的先驱,他可早就等不及了,他指出,大家可以有很多样品拿来试用。我们可要好好地&lsquo 虐&rsquo 一下这台仪器。比如有人会用来对食品 进行快速检测,看看是否存在有害微生物污染,也有人会想看看MinION能否测出古老的DNA。Deamer还想看看这台仪器是不是能够一次读出16kb 的序列。就在牛津纳米孔技术公司大肆推介这种低成本的手持式测序仪的同时,Illumina公司也没有坐以待毙,他们决定反其道而行,推出了一款专门供超大 型测序中心使用的最高级的测序仪。就在上个月,Illumina公司推出了价值数百万美元的HiSeq X,这台测序仪在一年的时间内能够测得1800个人的基因组序列,据该公司介绍,这将使个人基因组测序成本下探到1000美元以下,而且耗费的人工、仪器 折旧和试剂成本都将大幅度降低。据Illumina公司的市场部高级经理Joel Fellis介绍:&ldquo 我们看到大规模测序的需求在逐年上升。比如英国就计划到2017年时为全英国10万人进行个人基因组测序。&rdquo 不过事情可没有这么简单。任何有计划购买HiSeq X的客户必须一次订购10台以上的设备,而且必须承诺只能将这些设备用于个人基因组测序。美国加州大学圣克鲁兹分校的生物工程师Zak Wescoe表示,这已经超出了绝大部分科研人员能够承受的费用。而且这些设备只有满负荷运转时才能够将个人基因组测序的成本压低到1000美元的水平。 美国华盛顿大学基因组研究院(The Genome Institute at Washington University in St. Louis)的副主席Elaine Mardis也认为,可没有太多地方每年都能够提供1.8万人的个人基因组测序需求,也没有这么大的数据分析能力,所以Mardis这样评价道:&ldquo 我不知 道有谁会买这些测序仪。&rdquo Deanna Church是美国加利福尼亚州门罗公园Personalis公司(Personalis in Menlo Park, California)的基因组学家,他对技术进步带来的成本降低非常欢迎。他说道:&ldquo 在这块市场中将出现好几个竞争者,总有一些技术会最终胜出。&rdquo
  • 滨海正红发布正红30孔电热炉配PFA溶样罐新品
    元素分析消解仪消解仪是目前元素分析直接、有效、经济的一种样品前处理手段之一。随着实验室设备的技术创新和发展,消解仪以其大批量处理、高智能化、高效的包裹式消解、良好的温度均匀性和更安全的常压式消解等优势,逐渐得到更多的消解实验人员的青睐。常应用到原子吸收、原子荧光、ICP、ICP-MS、极谱仪等的样品前处理中。应用领域环境监测:污水、饮用水、淤泥、矿泥、排污、土壤等食品农产品检验:奶粉、鱼类、蔬菜、烟草、植物、化肥、副食品等消费品质量控制:化妆品、工业制品等科学研究:实验分析、项目开发等疾病预防控制:生物样品、人体毛发等消解应用标准 环境样品EPA方法:3010a、3010b、3050b、3060等(土壤、沉积物、淤泥、废气物) 土壤处理GB方法:GB/T17138-1997、GB/T22105.1-2008、GB/T22105.2-2008等 水处理EPA方法:200.2、200.7、200.8、200.9、245.1等 汞分析EPA方法:7470a、7471、245.1等 食品处理GB方法:GB/T5009.11-2003等 涂料涂层处理GB方法:GB/T22788-2006等 电子产品有毒有害物质处理方法:SJ/T1365-2006土壤消解方法 采用硝酸-氢氟酸-高氯酸全消解的方法,彻底破坏土壤的矿物晶格,使试样中的待测元素全部进入试液。元素分析的理想搭档 适合配套到火焰原子吸收光谱仪、原子荧光光谱仪、ICP光谱仪、ICP-MS光谱仪、ICP-MS、极谱仪、测汞仪、化学分析法等的样品前处理。高品质工艺,质量更可靠消解仪体表面喷涂特氟龙涂层,易清洁、耐腐蚀;进口PFA特氟龙台面,整机外围无金属部件,可在强酸强碱等恶劣环境中放心使用。 产品特点:1、板面进口PFA特氟龙涂层, 一抹即净、永不生锈,能够有效防止消解过程中产生的酸液、酸气对仪器的腐蚀2、工作温度:室温至260℃,可连续工作48h,5-30分钟可升到200℃(因孔深而异),和平板式电热板相比,热效率提高5倍以上,更加低碳3、环绕立体式加热,孔间温差小,使样品各部位受热均匀,程度上防止了热量的散失,保证样品处理效果的一致性,消解速度更快,使用方便,寿命长4、采用PID温控数显,保证仪器温度的稳定性、温控精度±1℃,电压:220V/50Hz5、板面与控制盒可以做成分体式,这样在实验过程中的酸雾就不会腐蚀控制盒里的元器件,从而增加了使用寿命,多个样品同时处理无交叉污染品名电热消解仪规格30位48位型号XJ型XJ型加热方式电加热 PID数显电加热 PID数显温控范围200-260℃200-260℃控温精度±1℃±1℃处理能力批次30个样品批次48个样品消化管PTFE消解管 60mlPTFE消解管60mlPFA透明消解管 60mlPFA透明消解管 60mlPTFE消解管特点PTFE消解管选用高纯实验级聚四氟乙烯材料加工,纯白色不透明;盖子可加工成螺纹、塞子、插口式;盖和体可顺序编号,不混淆PFA透明消解管特点PFA这种材料的化学稳定性可显著减少交差污染,摩擦系数在塑料中低,还有很好的电性能,其电绝缘性不受温度影响,有“塑料王”之称;金属元素含量小于0.01ppb;盖和体可顺序编号,不混淆;PFA消解管盖与体螺纹连接,密封性好加热板块表面防腐进口Teflon涂层进口Teflon涂层外形尺寸孔径x深度30x60mm 30x60mm加热板材质精致铝合金精致铝合金额定功率2000W2800W额定电压220V220V净重说明可根据客户样品量加工成12 、16、20、24、36、42、54、63、72等位数及特殊孔径×深度的消解仪。南京滨正红仪器有限公司创新点:1、进口PFA特氟龙涂层, 一抹即净、永不生锈,防腐铸铝加热板升温速度快; 2、板面与控制盒可以做成分体式,这样在实验过程中的酸雾就不会腐蚀控制盒里的元器件,从而增加了使用寿命,多个样品同时处理无交叉污染; 3、可定制时间设定功能,分段式温控; 4、电源线裸露部分采用PFA管子包裹,进一步防止酸气对元器件的腐蚀; 正红30孔电热炉配PFA溶样罐
  • 安捷伦科技最新推出的 BenchBot 机器人扩大了微孔板操纵自动化的潜在应用
    安捷伦科技最新推出的 BenchBot 机器人扩大了微孔板操纵自动化的潜在应用 2011 年 1 月 31 日,北京&mdash &mdash 安捷伦科技公司(纽约证交所:A)今日宣布其自动化微孔板操作设备产品线增加了一名新成员:BenchBot 机器人。作为安捷伦自动化解决方案产品系列的一员,BenchBot 是安捷伦继直驱机器臂(DDR)和 BenchCel 微孔板操纵器后的又一力作。 BenchBot 是一种中等大小的微孔板操纵器,设计用于满足各类不同实验室的工作流程自动化需求。BenchBot是大多数应用的理想选择,它具有以下特点: 紧凑、可升级设计,支持多种实验室设备; 简单的一键式定位,易于集成和快速设置; VWorks 软件有效的调度能力,最大程度地提高自动化系统的处理通量; 可与 100 多种实验室设备轻松集成,具有极大的灵活性; 与符合美国国家标准学会制定的生物分子筛选相关标准的多种实验室器皿兼容,包括 PCR 微孔板、深孔板、过滤微孔板、管架和大多数枪头盒。 安捷伦自动化解决方案部门总经理 Nitin Sood 说:&ldquo BenchBot 机器人将我们大型自动化微孔板操纵器的强大功能纳入到紧凑的设计中,适用于狭窄的实验室空间,使大量随科学需要而不断变化的工作流程实现自动化。BenchBot 易于与种类繁多的实验室设备集成,适用于更广泛的应用&mdash &mdash 从新一代测序和芯片样品制备到高通量 LC/MS 样品管理以及多种细胞分析,都能轻松应对。&rdquo BenchBot 机器人将于二月份面市。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是通信、电子、生命科学和化学分析领域的技术领导者。公司的 18500 名员工为 100 多个国家的客户提供服务。在2010财政年度,安捷伦的业务净收入为54亿美元。要了解更多安捷伦科技的信息,请访问:www.agilent.com.cn。
  • 悟空助力国家医学攻关产教融合创新平台项目
    5月27日-28日,由西安交通大学医学部主办,依托西安交通大学国家医学攻关产教融合创新平台和天然血管药物筛选与分析国家地方联合工程研究中心联合举办的“CMC-药理学实践培训”顺利举行。本次培训班分为仪器示教、培训讲座、药理学研究创新研讨会、实验教学等环节。徐宗本院士、来自西安交通大学、空军军医大学、陕西中医药大学、西安医学院的师生、海能技术总裁刘文玉先生及技术工程师参加了本次活动。本次培训使用的CMC/RL-2020型分析仪是由西安交通大学医学部贺浪冲教授团队与海能旗下悟空仪器团队共同合作开发的,该仪器实现了生物体内配体-受体特异性结合现象在体外的仿生模拟,为认识靶向药物作用规律、发现新的药物先导物提供了有效分析手段。药理学实践《型分析仪》培训班在仪器示教环节,贺浪冲教授团队的师生以理论讲授+仪器实操示范相结合的形式,深入介绍了《CMC/RL-2020型分析仪》在研究配体-受体亲和作用的应用。徐宗本院士提出将人工智能与分析仪器进行有机结合,对《CMC/RL-2020型分析仪》应用于药物筛选发现领域提出了更高的要求与期望。贺浪冲教授介绍《CMC/RL-2020型分析仪》的设计、研制与应用背景等。来自陕西省内四所医学类高校的近80名师生就细胞膜色谱(CMC)分析仪应用中遇到的问题、使用感受和用户需求等内容进行现场探讨和互动交流。在CMC-药理学实践《CMC/RL-2020型分析仪》培训暨药理学研究创新研讨会上,贺浪冲教授强调“工欲善其事,必先利其器”,介绍了自主研制的“CMC/RL-2020型分析仪”从提出CMC理论与技术,到研制成分析仪器,再到应用于药物发现与药物分析的发展历程,并结合新时代生物学与人工智能的进步,开辟“生物分析装备产业”新赛道,全力提升国产分析装备竞争力。西安交通大学研究生院副院长龙建纲教授从构建人才自主培养体系出发,指出项目驱动、学科交叉、产教融合“三位一体”协同融合发展,期待在各方力量支持下院校团队与海能合作共赢,促进以CMC技术为代表的一系列分析装备应用落地。刘文玉先生提到,创新引领科学发展,充分展现了科学仪器国产化的家国情怀和企业凡人匠心的“螺丝钉”精神,并诚邀与会师生到海能参观与实践。西安交通大学药学院党委书记张彦民教授总结,本次活动是CMC药理学实践的新延续,期望海能的科学仪器真正成为中国式标杆,助力生物色谱的发展。CMC技术实验教学环节,学员们在演练学习中掌握CMC技术的基本原理和实践方法,熟悉海能的仪器操作。悟空助力国家医学攻关产教融合创新能够参与到这一产教融合项目中,悟空仪器深感荣幸,也期待与更多科研工作者携手,不断探索与创新,推动更多科研成果落地转化,为国产仪器的发展贡献智慧和力量。
  • 加速BET表面积和孔隙度测量
    micromeritics® tristar® ii plus表面积和孔隙度测试仪可自动并同时测量多达三个样品,以减少分析时间,更快地提供数据。 tristar ii plus表面积和孔隙度测试仪tristar ii plus专为建立和维持稳定的测试环境而设计。分析过程中无任何可移动组件。由等温夹套为测试提供温度控制,简化操作的同时为用户提供精确且重复性高的测试结果。micromeritics microactive数据处理和控制软件提供了简单易用的界面,可将数据实时转换为精确的表面积和孔隙度信息。观看视频,了解tristar ii plus如何帮助您加快表面积和孔隙度测量!点击播放视频 关于麦克仪器公司麦克仪器公司是专业提供表征颗粒,粉体和多孔材料的物理性能,化学活性和流动性的高性能设备的全球领先的生产商。我们的技术包括:比重密度法、吸附、动态化学吸附、颗粒大小和形状、压汞孔隙度测定、粉末流变学和催化剂活性测试。公司在美国、英国和西班牙设有研发和生产基地,并在美洲、欧洲和亚洲设有直销和服务业务。麦克仪器是创新性的公司,产品是著名的政府和学术机构的10,000多个实验室的首选仪器。我们拥有世界一流的科学家和积极响应的支持团队,通过将micromeritics技术应用于客户的需求,帮助客户获得成功。更多信息,请访问 www.micromeritics.com.cn 服务热线:400-630-2202
  • 测序黑马齐碳科技获4亿B轮融资 国产纳米孔测序仪产业化加速
    6月8日,齐碳科技正式对外宣布完成超4亿人民币B轮融资,由高瓴创投和鼎晖VGC(创新与成长基金)联合领投,博远资本、华盖资本及阳光融汇资本跟投,老股东高榕资本、中关村协同创新基金、银杏谷资本、雅惠投资及BV百度风投持续加码。齐碳科技专注于纳米孔单分子基因测序仪及配套试剂、芯片的自主研发、制造及应用开发。据了解,本轮融资完成后,齐碳将进一步加大科研投入,加速产业化进程,计划于今年内完成定型产品量产并推向市场。单分子纳米孔测序技术备受青睐纳米孔技术因其不需要复杂的酶扩增以及荧光标记,且其具有低成本高通量的特点而受到广大研究者们的青睐。纳米孔DNA测序的基本原理图与传统Sanger测序技术相比,纳米孔单分子测序技术的核心优势在于它的便携性、低成本和高通量。总体而言,相较于主流二代测序仪,纳米孔测序仪具有长读长、小巧便携、实时输出结果等优势,特别适合病原微生物快速检测、基因组结构变异以及重复序列变异检测。美国国家卫生研究院(NIH)提出了“1000美元测序”的概念,而基于纳米孔的DNA测序技术是最有潜力实现这一目标的方法之一,众多实验研究也进一步验证了纳米孔DNA测序技术的可行性。齐碳科技为国内唯一实现纳米孔测序仪产品化的企业齐碳科技创立于2016年,致力于纳米孔基因测序仪及配套试剂耗材的自主研发、制造与应用,是目前全球唯二、国内唯一通过自主研发实现纳米孔基因测序仪产品化的高科技企业。2020年9月,齐碳科技成功发布我国第一台纳米孔单分子基因测序仪QNome-9604,填补了国内新一代基因测序技术领域的空白。该款测序仪可直接检测过孔核酸,无需PCR扩增,读长可达150Kbp以上,8小时可稳定产出500Mbp数据,单次准确率达90%,设备小巧便携,可突破中心实验室使用限制,应用场景更为灵活。目前该产品已通过TÜV莱茵第三方检测,认定QNome-9604在基因测序通路数量、准确率、读长等方面的检测数据全部达标。投资人观点齐碳科技联合创始人&董事长胡庚博士表示,非常感谢齐碳科技的新老股东们对我们的长期关注与支持。齐碳科技成立至今不到五年,高效的完成了首款国产纳米孔基因测序仪的技术研发和产品定型,并将于今年实现产品量产,这一切都离不开团队的努力、股东的支持和市场的关注。本轮融资完成后,齐碳科技将投入更多的资源到团队扩充、产品升级、产能提升及商业拓展中,努力将更快更好的基因测序技术推广到更广阔的应用场景中。高瓴联席首席投资官、高瓴创投生物医药与医疗器械负责人易诺青表示:“齐碳科技研发了国内首台纳米孔基因测序仪,成功打破了基因测序设备、配套芯片及试剂研发领域的高壁垒和海外垄断,攻克了国内基因测序‘卡脖子’的技术难题。在市场应用空间中,微生物病原检测、癌症检测等细分领域适合成为纳米孔基因测序仪的首选应用方向。我们将长期支持国家重点领域科技研发,推动高水平科技自立自强。”鼎晖创始合伙人、鼎晖投资创始合伙人王霖表示:“基因测序行业增长迅速,传统二代测序技术在应用中存在一定的局限。作为下一代长读长测序技术中壁垒最高的产业链上游,齐碳科技具有强大的研发实力,产品迭代升级、性能提升速度快,公司目前在纳米孔基因测序仪方面的技术已达到全球领先水平。我们很高兴可以和齐碳科技这类硬科技公司携手同行,并期待公司产品早日实现在科研端和临床端的大规模应用。”博远资本创始合伙人陈鹏辉表示:纳米孔测序技术近年来快速发展,准确度、通量、成本等各方面都有了极大提升,科研和临床的应用场景持续拓宽,照亮了过去从未看到的基因组的黑暗角落。齐碳科技在具有强大战斗力的创始人团队带领下,成功突破纳米孔测序仪的超高技术门槛,产品顺利进入商业化阶段,公司也成为了国内该领域毫无疑问的龙头企业。博远资本非常高兴能够参与本轮融资,将持续赋能公司未来发展,在生命科学和精准医疗领域贡献更大价值。华盖资本医疗基金执行总经理孟楠认为,基因检测技术开发与应用在全球范围内已经进入高速发展期,齐碳科技创始团队具有全球视野及高效的研发能力,其拥有纳米孔基因测序方面的技术已达到全球领先水平。“我们高度认可齐碳科技团队的产品研发能力和开拓能力,相信在白净卫博士的带领下,公司将获得长足发展。华盖未来将助力公司成为测序领域的领导者,持续为社会创造价值。”阳光融汇资本合伙人石晟昊表示:第四代基因测序技术在读长,测序时间等方面有天然优势,齐碳科技团队的技术扎实、完整。作为这一技术路线国内产品化和商业化最快的公司,齐碳科技具有显著的投资价值。阳光融汇非常荣幸参与本轮融资,相信公司未来将在创始团队的带领下持续拓展第四代基因测序的技术和应用边界,成为基因测序行业龙头企业。
  • 汞减排,污染防控的一道新题
    科技日报2010年05月22日专题报道,生活在贵州铜仁万山汞矿二坑附近的刘老汉,上肢和头部经常剧烈颤动,不但没有劳动能力,连生活也无法自理。因为他曾在汞矿冶炼厂的化验室工作,大量吸入了汞蒸气,导致严重汞中毒……   而这并非孤例。世界最著名的汞中毒事件发生在上世纪50年代,生活在日本熊本县水俣湾的居民突然发现身边很多人患上了不明原因的神经性疾病,手脚痉挛,口齿不清,失去视觉和听力……患病人群迅速扩大,严重者不治身亡 部分新生儿畸形、痴呆 居民又发现,家里饲养的猫,海湾的水鸟也出现了同样的症状。   “水俣病”直到1956年才被确认。其发病原因是,日本智索公司从1932年起,在氮肥生产中用汞作催化剂,副产品剧毒化合物甲基汞未经处理就排入水俣湾海域。居民食用了甲基汞严重超标的鱼类,导致汞中毒。   首轮政府间汞谈判拉开序幕   汞,俗称水银,在自然界多以硫化汞形式存在,其绝大多数化学形态都具有较高毒性,可以通过挥发、溶解、沉降、甲基化和反甲基化,在大气、土壤、水体中进行转移和转化,并在生物体内富集,放大危害。   为避免汞造成更多的环境污染,由联合国环境规划署组织的首轮政府间汞问题谈判,将于6月7日到11日在瑞典首都斯德哥尔摩举行。环境保护部有关人士表示,国际汞谈判将举行5轮,除今年6月外,还将在2011年举行两轮谈判,2013年1月将举行最后一轮谈判,届时,包括中国在内的各国政府,有望达成国际汞污染控制公约。   据估算,目前每年全球人为因素向大气共排放汞近2000吨,其中燃料燃烧占40%以上,其它排放源按排放量排序依次为黄金冶炼、有色金属冶炼、水泥生产、垃圾处理等。   北京大学公共卫生学院教授潘小川说,欧美发达国家在工业化初期向大气环境排放大量的汞,但近年来由于各类污染物控制设备的大规模安装运行,石油和天然气等清洁燃料的使用,汞排放呈递减趋势。与之相反,发展中国家煤炭消费总量逐年增加,金属冶炼等汞排放量较高行业发展迅猛,汞排放量呈增长态势。目前,亚洲地区的汞排放量已超全球排放总量的一半。   据北京地球村环境教育中心收集的资料显示,汞减排、汞限制行动已逐渐在世界各地铺开。国际社会已要求印度在2010年禁止聚氯乙烯行业使用汞的产品 美国使用汞的企业数量已缩减到10%以内 欧盟大部分工厂将在2020年停止对汞的使用,并将在2011年开始全面禁止汞产品的出口、排放和金矿开采过程中汞的使用等。   中国汞污染“家底不清”   水俣病的罪魁祸首是化工生产所排放的汞,中国汞排放的现状如何?   一位不愿透露姓名的环境保护部工作人员表示,目前,我国只有一些水体中的汞污染数据,没有大气中汞含量的数据,总而言之,存在“家底不清”问题。而“家底不清”,也是所有接受记者采访的专家的一致看法。   不过,北京师范大学环境历史学博士生毛达,对2009到2010年在中国期刊全文数据库(CNKI)上公开发表的、标题带“汞”的690篇学术论文进行了总结,发现:在我国北方农村的空气中,汞含量高于国外农村,但低于国内其他地区,污染风险较小,但重庆市主城区空气中汞含量高于全球平均水平 在水体中,黄河中下游地区和长江的马鞍山段、乌江中上游,汞含量都较低 但在河口海岸,富营养化的水体有助于甲基汞的形成。   据悉,汞在土壤中可以金属汞、无机汞和有机汞形态存在,95%以上的汞会迅速被土壤吸附固定。汞会富含在表层土中,不容易下移到深层土中,可向大气中挥发迁移,也有部分汞会随地表径流而迁移。   毛达还归纳发现,河南的耕地,海南的经济作物产地,还有辽宁葫芦岛的土壤中,汞含量不高 但情况糟糕的地方是矿区以及工业化比较集中的区域,如贵州和湘西汞矿、煤电厂、温度计等汞产品生产企业、垃圾焚烧厂周围的土壤中,汞含量较高。   在食物中,经区域性调查发现,锦州淡水鱼和稻米、福建的贝类、青岛的鱼、宁波的大米和黄金茶,以及成都的鱼都没有发现汞超标 但是淡水鱼、蘑菇、蔬菜、内脏和进口金枪鱼是“高危食品”。毛达说,据国外研究,我国所进口的金枪鱼中,很可能有汞超标的。国外专家还建议,中国应在进口金枪鱼产品上注明一天以及一个月的最多摄入量。   在护肤品中,美白类超标现象严重,被调查的628种产品中有485种汞超标,“全效激白祛斑套装”等彩妆类也存在较严重的汞超标。   燃煤发电和氯碱为汞污染控制重点   尽管火山爆发、森林火灾和地热活动等自然活动会排放汞,但目前,人为活动排放的汞越来越多。   在中国,最大的汞污染源仍然是燃煤发电。因为在煤炭中,往往伴生着汞等重金属。据初步估算,我国大气汞排放约一半来自于煤炭燃烧,此外,金属冶炼、水泥生产、汞矿开采、电池/荧光灯生产、生物质燃烧、废弃物和垃圾焚烧也是重要的汞排放源。   由王立刚、刘柏谦合著,冶金工业出版社出版的《燃煤汞污染及其控制》一书显示,在贵州等部分地区,煤炭中汞的含量明显高于东北、内蒙古等地。随着西部大开发战略和“西电东送”工程建设的实施,大量火力发电厂恰恰都投建于贵州地区,燃煤引起的大气汞污染较为突出。   “中挪合作减少中国汞污染能力建设项目”是由中国和挪威两国政府合作开展的汞减排项目,在2006年启动。项目资料显示,控制燃煤汞排放的途径包括非技术控制措施和技术性控制措施。非技术控制措施包括:燃用低汞煤 采用不含汞或含汞量低的天然气、石油和其它非化石燃料替代燃煤 提高能源效率,减少能源使用,以降低燃煤大气汞排放。技术控制措施主要分为三种:燃料预处理、燃烧技术改进和烟气净化,这三种措施又分别称为燃烧前脱汞、燃烧中脱汞和燃烧后烟气脱汞。   《燃煤汞污染及其控制》一书具体解释说,燃料预处理是指在煤进入锅炉燃烧前进行常规的“洗选”,汞能依附在各种杂质表面,被“洗掉”。这是相对简单并且成本较低的减少汞排放的方法。但由于燃煤种类、燃煤品质、燃烧状况和设备等因素都会影响汞的脱除效率,因此,目前没有一种技术是汞减排的“万灵丹”,适合一个电厂的烟气脱汞技术未必适用于其它的电厂。   环境保护部污染防治司化学品处处长臧文超也表示赞同,他说,现有的脱硫、除尘、脱硝装置,可减少汞排放,但无法彻底清除。目前中国虽然也开展了脱汞设备的研制工作,但鉴于国际上尚没有大规模商用的经验,又缺乏相应的控制政策、法规和标准,今后脱汞、减汞工作也只能在探索中前行。
  • 微波消解大不同之温压双控
    新来的销售在群里抱怨说被忽悠了:“不是说‘温压双控’是我们的卖点吗?客户告诉我,大家都是。”我问:“谁告诉客户的?你觉得我忽悠你这自己人的可能更大,还是那客户被别人忽悠的可能更大?”最后真相大白,客户握着那销售的手说:“多亏……”好吧,这句未经证实,我很怀疑其实并没有握手。当然,这并不妨碍我们科普一下微波消解仪常见的一个名词——“温压双控”!什么是微波消解仪的温压双控?温度和压力是微波消解仪的两个重要参数指标,温度是决定样品是否完全消解以及多长时间彻底消解的重要指标。压力是重要的安全指标。能够同时控制温度和压力,我们称之为温压双控。注意是“同时控制”,不是二选一,也不是依次控制或者主次控制。 微波消解仪搞温压双控的好处是什么?同时控制温度和压力,能够实时监控反应罐的反应温度以及所产生的压力,反应温度越高,样品消解更彻底,但产生的压力会更大,采用温压双控方式能够有效平衡控制样品反应进程,从而达到安全彻底消解的目的。简而言之,实现消解性能和安全性的完美统一。 微波消解仪如何实现温压双控?温度和压力同时控制,实时监测温度和压力数值,反馈到控制系统,调节磁控管微波输出,进而控制反应进程。温压双控是区别于温度模式和压力模式只能选一种的控制方式,也并非以温度控制方式为主,压力只能设定一个限值的方式。温压双控是温度和压力两个参数,任何一个达到设定值,都可以通过控制系统来调节微波功率输出。这种控制是连续的非脉冲的控制,区别于通过变频器开关的脉冲式控制。屹尧微波消解仪从什么时间开始做温压双控?早在2001年,屹尧科技就推出了国内首款温压双控的微波消解仪WX-2000。目前,我们所有的微波消解仪型号均采用温压双控模式控温,能够实时监控每个反应罐。嗯,重要的事情再说一遍:2001年就实现了,全线微波消解仪都具备这功能。我们的温压双控是真正意义上的温压双重控制,不同于某些厂家温度模式和压力模式只能选一种的控制方式。我们不一样,用过的都知道。 进口微波消解仪是否都是温压双控?主流的进口品牌都宣称有温度和压力双重控制,这话不假,但是否都是真正意义上的温压双控?据我所知,有的只是以温度控制为主,压力只是设定个安全限值,你懂的。至于它们光纤温度传感器是否易损耗这事儿,用过的都知道,当然,也看运气,我的确见过人品特别过硬的。使用成本是一方面,而且出于预算考虑,有的还不给客户配压力传感器,当然,这一点可能是客户自愿的,只是,如此一来,温压双控也就只剩个噱头了。 不是真正的温压双控,是否就不能用?诚实的答案是看样品,也看客户对消解效果和安全性的要求。我们老家有一种三轮车改造过来的三轮汽车,能在风景优美的乡间小路上跑出限速两倍的车速,别提多拉风了。嗯,那是当年,后来,后来的事儿有点伤感,就不提了。 温压双控的微波消解仪,就没有缺点了吗?必须承认,肯定有。至少它成本就会更贵,价格相应就会更高。其次,还要看技术水平、制造工艺等等,越是高精尖的东西,越是考验综合实力。有和有不一样,记得我同学的女朋友就被她闺蜜指出过:“你这也算有男朋友?”当然,我那同学如今混得很好,所以,我有日子没见到他了……
  • 理化中心承办《气体吸附法分析微孔》国家标准审查会议
    理化中心物理室承办《压汞法和气体吸附法测定固体材料孔径分布和孔隙度——第3部分:气体吸附法分析微孔》国家标准的审查会议   根据全国筛网筛分和颗粒分检方法标准化技术委员会“全国筛标委(2008)委字第010号”文的安排,2008年6月17日在湖南张家界天门山大酒店4楼小会议室召开了《压汞法和气体吸附法测定固体材料孔径分布和孔隙度—第3 部分:气体吸附法分析微孔》国家标准的审查会。参加会议的有全国筛网筛分和颗粒分检方法标准化技术委员会委员和中国颗粒测试学会测试专业委员会等专家35人。   会议由中国颗粒学会颗粒测试专业委员会胡荣泽主任主持。全国筛网筛分和颗粒分检方法标准化技术委员会的秘书长余方致辞,对参加标准审查会的各位专家表示热烈欢迎。   会议听取了北京市理化分析测试中心周素红关于《压汞法和气体吸附法测定固体材料孔径分布和孔隙度—第3 部分:气体吸附法分析微孔》国家标准(送审稿)的编制说明。随后,与会专家对标准送审稿逐条进行了认真讨论和审查,并提出修改意见24条。   与会专家对该国家标准送审稿按修改决议修改后一致同意审查通过。会议要求标准负责起草单位按修改决议修改标准送审稿,提出标准报批稿,尽快上报审批。同时认为上报的标准从内容上符合国内国情,满足生产需要,应尽早做好标准宣贯的准备,以利标准的实施。
  • 哈佛华人团队结合冷冻电镜和AlphaFold揭示核孔复合体精细结构 有望成为结构生物学新规范
    “我们通过冷冻电镜技术拿到了核孔复合体高分辨率的密度图。然后借助于 AlphaFold 结构预测,搭建出核孔复合体胞质环的精细模型。通过原子模型,为解释细胞核的运输机制,理解细胞生命活动的基本过程提供了重要的结构基础,同时也能为非常多相关的疾病提供重要的线索。”美国国家科学院院士、哈佛大学医学院生物化学及分子药理学教授团队表示。6 月 10 日,该课题组在 Science 上发表题为《核孔复合体胞质环的结构》的论文 [1]。图 | 相关论文(来源:Science)董颖、皮雄、彼得罗丰塔纳(Pietro Fontana)担任共同第一作者,吴皓担任通讯作者。图|吴皓(来源:吴皓个人主页)利用单颗粒低温冷冻电子显微镜和 AlphaFold 预测,确定了来自非洲爪蟾卵母细胞中一个接近完整的结构对于在该研究中 AlphaFold 所起到的作用,董颖表示,此次解析的核孔复合体(NPC,nuclear pore complex)是真核生物中最大的膜蛋白复合物之一,它位于核膜上,介导核膜内外的物质转运。由于其分子量巨大,组成成分复杂,动态变化多样,这使得电镜解析图谱的分辨率很有限(6-7 埃),并且搭建分子模型困难重重。但是 AlphaFold 的出现很好地弥补或一定程度上解决了图谱分辨率不足的问题,它可以预测很多没有结构的蛋白亚基,从而补充解释蛋白复合物结构里缺失的结构单元的高分辨信息;还可以预测部分亚基相互作用界面,从而说明亚基作用的结构基础以及生物学意义。另一方面,AlphaFold 预测也并非万能,它给出了诸多的可能性之后,课题组也需要理性分析哪一种结果最为合理,最能解释得清楚相关生物学现象。论文共同作者皮雄表示:“AlphaFold 能够预测出相互作用的蛋白亚基,与我们通过冷冻电子显微学计算出来的比较相符,从而大大方便了我们确定相互作用的蛋白亚基,进而加速我们模型搭建的过程。”图 | 皮雄(来源:皮雄)据悉,核孔复合体是细胞质和细胞核之间双向物质运输的管道。该团队利用单颗粒低温冷冻电子显微镜和 AlphaFold 预测,确定了来自非洲爪蟾卵母细胞的核孔复合体胞质环的一个接近完整的结构。使用 AlphaFold 预测核孔蛋白的结构,并以突出的二级结构密度作为指导,将核孔蛋白的结构拟合到中等分辨率的图谱中。利用 AlphaFold 进行复杂的预测,还可以进一步建立或证实某些分子间的相互作用。课题组鉴定了 Nup358 的 5 个拷贝的结合模式,这是最大的核孔复合体亚基,具有 Phe-Gly 重复序列,并预测它包含一个线圈-线圈结构域,在一定条件下可能作为成核中心辅助核孔复合体形成。核孔复合物是真核细胞核膜中的分子管道,可以调节细胞核和胞质溶胶之间生物分子的进出口,脊椎动物核孔复合体的分子量约为 110 至 125 MDa,直径约为 120 nm。核孔复合体被分为四个主环:胞质侧的细胞质环(CR,cytoplasmic ring),核膜平面上的内环(Inner Ring, IR)和管腔环 (Luminal Ring, LR),以及面向细胞核的核环 (Nuclear Ring, NR)。每个环具有相似的八重对称,并由不同的核孔蛋白的多个副本组成。核孔复合体参与了许多生物过程,其功能障碍与越来越多的严重疾病有关。尽管在过去的 20 年里,许多团体进行了开创性的研究,但人们仍然缺乏对核孔复合体的组织、动态和复杂性的充分理解。图 | 董颖(来源:董颖)(来源:Science)预测核孔复合体中最大的蛋白 Nup358 具有 s-形球状结构域此次研究中,该团队使用非洲爪蟾卵母细胞,作为结构表征的模型系统,因为每个卵母细胞都有大量的NPC颗粒,因此这些颗粒可以在没有去垢剂提取的帮助下,在天然核膜上可视化。据悉,课题组使用单颗粒冷冻电子显微镜,来分析不同倾斜角度的数据并进行三维重建,之后用 AlphaFold 进行模型构建和结构预测,重建了 X.laevis NPC 的 6.9 和 6.7埃分辨率的全 CR 原聚体和一个核心区域,并使用 AlphaFold 预测了单个核孔蛋白的结构。对于任何模糊的亚基相互作用,该团队也预测了复杂的结构,这进一步指导了 CR 原聚物的模型拟合。他们将核孔蛋白或复杂结构置于 CR 密度中,以获得一个几乎完整的 CR 原子模型,由内部和外部 Y复合物、两个 Nup205 拷贝、两个 Nup214-Nup88-Nup62 复合物拷贝、一个 Nup155 和 5 个 Nup358 拷贝组成。值得注意的是,课题组预测了核孔复合体中最大的蛋白 Nup358 具有 s 形球状结构域,一个线圈结构域和一个含有苯丙氨酸-甘氨酸(FG)重复序列的 c 端区域,而先前显示形成的一个凝胶样的凝析相,可用于选择性物质通道。其中,四个 Nup358 拷贝夹在内部和外部 y 复合体周围以稳定 CR,第五个 Nup358 位于夹子簇的中心。另据悉,AlphaFold 还预测了一个同源低聚物,可能是 Nup358 的五聚体、卷曲螺旋结构,这可能为 Nup358 募集到核孔复合体提供亲合力,并降低 Nup358 在核孔复合体生物发生中凝聚的阈值。可以说,此次研究提供了一个整合的低温冷冻电子显微镜和结构预测的例子,可作为从中等分辨率密度图中、获得更精确的兆道尔顿蛋白复合物模型的新方法。该论文提出的更准确、以及几乎完整的 CR 模型,扩展了他们对NPC分子相互作用的理解,代表了向完整的NPC分子结构迈出的实质性一步,对NPC的功能、生物发生和调控具有影响。(来源:Science)有望成为结构生物学的规范该团队在论文中表示,几乎完整的 NPC CR 模型揭示了其内部的分子相互作用及其生物学意义。CR 组装的一个意想不到的方面是,他们观察到了 Nups 之间的组成和绑定模式的不对称性:其一,两个 Y 配合物之间的构象差异;其二,两个 Nup205 分子与 Y 配合物的结合模式不同;其三,两个 Nup214-Nup88-Nup62 配合物并排放置;其四,5 个 Nup358 配合物具有不同的结合模式。因此,这种不对称性是代表 CR 的基础状态、还是由放线菌素 D(Actinomycin D,ActD) 的结合引起的,以及它是否会是 NR、IR 或 LR 结构中的共同特征?这将是一个很有趣的问题。而研究人员的 X.laevis NPC 样本来自单倍体卵母细胞,这可能与体细胞中的核孔复合体有更大的不同。该团队认为,Nup358 的多个拷贝、及其低聚卷曲螺旋关联,解释了其在细胞质中卵发生过程中,作为NPC组装的关键驱动因素的作用,这不同于有丝分裂后和较慢的间期NPC组装。这一过程发生在内质网(ER,endoplasmic reticulum)的堆叠膜片上,称为环状膜层(AL,annulate lamellae),其苯丙氨酸-甘氨酸(FG,Phenylalanine-glycine)重复序列中的 Nup358复合物作为紧固件,从开始空间就可指导核孔复合体生物发生。这说明,Nup358 的低聚结构可能会降低 Nup358 复合体形成的阈值,从而有助于解释其在不同 Nups 中的成核作用。此外,课题组还提出了一种综合的方法,利用冷冻电子显微镜和 AlphaFold 结构预测的最新发展,从而带来了更精确的核孔复合体建模。在学界最近发表的论文或预印本论文中,也使用了类似的方法来确定核孔复合体的结构。AlphaFold 预测与传统结构建模不同,这是基于人工智能的建模方式。实现高分辨率的目标,是获得尽可能好的最佳模型。而在建模过程中,包含来自 AlphaFold 的信息,可能类似于该领域之前对立体化学约束所做的事情。随着复杂预测的能力更加普遍,该团队预计这种方法不仅有助于新结构的建模,而且有助于重新绘制以前的中分辨率低温电子显微镜图,成为结构生物学的规范。(来源:Science)董颖表示:“很多时候,我们采取科学的验证方式——用一系列生化实验对 AlphaFold 预测结果进行反向验证。我们利用人工智能,冷冻电镜与传统生物化学综合研究方式,推动了我们对复杂、动态的生物大分子的结构和功能的进一步理解。由此可见,AlphaFold 的出现给我们研究科学问题的方式也带来了革命性影响。我们在未来的科学研究中,只要大胆尝试,多方位思考,总能碰撞出美妙的火花!”担任论文共同作者的傅天民,目前在俄亥俄州立大学药学院,担任生物化学与药理学助理教授。其表示,该课题由他之前在吴皓教授实验室发起。他介绍了该研究的背后故事:2019 年初,吴皓教授与实验室的学生们,在佛罗里达参加美国生物化学与分子生物学年会。会后,吴老师带着学生们去吃火锅,饭桌上大家聊起结构生物学最重大的问题还有哪些,傅天民提出核孔复合物的结构是一个重要且没完全解决的问题,这个提议得到了吴皓教授的支持。回到波士顿后,王隆飞打算用酵母细胞来研究核孔复合物,傅天民则着手用非洲爪蟾的卵母细胞来研究。之所以选定爪蟾卵母细胞主要因为这类细胞易于获取,而且细胞核上有丰富的核孔复合物。后来,傅天民要去俄亥俄州立大学建立自已的实验室,课题转交给两个新来的博后董颖和 Pietro,他们两个紧密合作,克服了一系列技术难题,初步拿到了一些高质量的样品,收集了一些数据。随后,皮雄博士加入课题。皮雄博士和董颖博士通过大量的数据处理,为冷冻样品优化提供了正确的方向。最后通过大家几个月不懈的努力,利用进一步优化的高质量样品,收集了几万张冷冻电镜照片。最终皮雄博士通过冷冻电镜三维重构技术得到了高分辨率的密度图。Alex 利用 AI 结构预测对结构模型搭建起了重要作用。吴皓教授整个过程的支持、指导是课题得以成功的决定力量。董颖表示:“NPC是我进入吴老师实验室的第一个课题。现在回想起来整个研究经历都有些百感交集。当时我们‘白手起家,从零开始’。我从未接触过动物实验,我只能查找文献,自己摸索一切实验流程。中途可谓困难重重,我时常在解剖镜前解剖蛙卵,铺膜制样,一坐就是一整天。制样优化样品周期很长,我们寻找了各式各样的载网(因为不是所有载网在高角度拍摄的条件下都稳定),我做了很多载网稳定性的分析,光是优化样品就花了半年多。优化中途,陆续已有相关研究报道出现,当时我们整个团队几乎都要放弃。就在这时,皮雄博士通过大量的计算,得到了七埃左右分辨率的密度图。同时吴老师提议我们为模型搭建寻找新的切入点——恰逢AlphaFold横空出世,我们一不做二不休,立刻开启寻找冷冻电镜与AlphaFold对接的可能。”经过几个月没日没夜的计算、预测、模型搭建,课题组惊奇地发现新的研究方式带来了意想不到的研究结果。功夫不负有心人,最终他们非常有幸地与来自不同研究组的科学家们同台展示了研究结果。皮雄表示:“核孔复合体作为细胞生命活动的‘南天门’,严密调控着细胞的生命活动。作为一个功能如此复杂,形态巨大的复合体,它的精细结构是如此的严密和复杂。拿到它的精细结构也是非常困难。作为一个如此困难的课题,需要团队每个成员紧密合作,协同前进。每一部分工作都包含了团队每个成员的巨大努力。研究中,我主要负责冷冻电镜的数据处理,拿到高分辨率的核孔复合体的密度图,同时也参与了冷冻样品的优化。”(来源:Science)对于该成果的应用,董颖表示:“已经有相关研究报道说明NPC结构和功能的异常和许多疾病相关,例如神经退行性疾病阿尔兹海默症,介导了一些病毒如HIV的入侵,甚至会诱导一些癌症的发生。由于核孔复合体介导了很多重要物质的转运,其研究一直是近几年来科学界研究的一大热点。目前针对它的研究还处于相对基础的阶段,这主要受到它的复杂性,和动态性的局限。但就它推广到应用的可能性来讲,我认为只要我们能够把它‘看’得足够清楚,运动的原理理解的足够清楚,我们就有可能对它进行靶向药物设计,调节它的底物转运。给治疗人类疾病提供更多可能。最近几年来随着冷冻电镜技术和人工智能的进步,相信二者能共同推动其成为新兴药物靶点,逐步应用到疾病治疗。”对于后续计划,董颖表示:“我们队 NPC 的研究还只是冰山一角,后续有很多有趣的研究方向——现举几个例子:(1)由于核孔复合体底物众多,但出核和入核的底物的识别和转运机制如何?NPC 转运物质的孔道呈现有趣的胶状结构,这一结构高度动态,很可能在底物转运过程中发生相分离,我们可以借助单分子荧光标记来细化这些转录途径。(2)研究 NPC 的某些特定的活动状态,已经有研究报道酵母中可能存在多种 NPC 的状态和组装形式,这些结构组成具体参与了怎样的生物学功能还不清楚。(3)NPC 组装和解聚如何发生,特定组装状态下有哪些多辅助分子参与稳定其状态,这些我们可以联合质谱技术来鉴定新的作用亚基。”澳大利亚莫纳什大学药物科学研究所曹剑骏评价称,在本文中,该团队首先利用核孔复合体在非洲角蟾卵母的极高丰度这一特质,对天然膜环境中地核孔复合体进行直接观察,避免了可能存在人为纯化干扰。同时,课题组使用倾斜样品的方式,解决了膜蛋白样品在膜中的受限的角度分布,从而实现蛋白结构的三维重建。此过程中,该团队以令人敬佩的毅力手工选取了 20 万单颗粒样品,以实现整个核孔复合体的低分辨率(19 埃)结构,并集中于胞质环的局部结构解析得到中等分辨率(~7 埃)的电子云密度图。但这一分辨率依旧只能辨别大致的二级结构特征,而存在建模困难。因此,该团队尝试借助最新的 AlphaFold 基于序列的结构预测功能,由单个亚基、多亚基局部预测出发,实现整个胞质环的结构解析。该团队同时将基于 AlphaFold 的结果与传统的同源结构预测相对比,为蛋白结构工作者提供了一个优秀范例,展示了如何借助 AlphaFold 这一新工具解析未知蛋白结构。研究中,课题组同样也得到了核内环的信号,但是尚未得以解析,想来将来会由相应的工作面世,从而完备整个核孔复合物的结构信息。同时,该论文的蛋白结构分辨率受制于天然核孔结构的非均一性和单颗粒的人工手动筛选通量,而后者有希望得到 AI 辅助单颗粒筛选软件的帮助,从而解放研究人员双手实现以更多的单颗粒数据收集,最终有望解析出各类不同状态的核孔复合体结构,进一步阐述这一精妙的分子复合体的调节机制。-End-支持:Ren参考:1、Pietro Fontana et al., Structure of cytoplasmic ringof nuclear pore complex by integrative cryo-EM and AlphaFold. Science (2022) DOI: 10.1126/science.abm9326
  • 麦克仪器:药物粉体密度及孔隙度测定-why and how?
    p style=" text-align: justify text-indent: 2em " 在药物制剂的研发及生产过程中,往往都会涉及到相关的药物粉体。这些粉体及其片剂的理化性质会影响其混合均匀度、压缩成型过程,以及最终制剂的生物利用度和疗效等,因此,在粉碎、混合、压片、制粒等过程中需要对其相关物理特性进行调控以确保最终制剂质量。除了关注度较高的粒度粒形,比表面积,流动性等性质外,密度及孔隙度的表征也是药物质量的重要指标,并且在研发及生产的众多环节都有所涉及。因而在美国药典USP& lt 267& gt 、USP& lt 699& gt ,日本药典JP 3.03,欧洲药典Ph. Eur. 2.9.32、Ph. Eur. 2.2.42和2020年版《中国药典》通用技术0992中,都明确规定了药物粉体相关的密度、孔隙度测定方法。 !--699-- !--267-- !--699-- !--267-- !--699-- !--267-- /p p style=" text-align: justify text-indent: 2em " 密度主要会影响粉体的流动性,均匀性,压缩性以及离析度、结晶度等等。由片料包裹密度除以骨架密度算得的片料固相分数(Solid Fraction)是辊压过程中的关键工艺参数,测定固相分数可了解药物中固体含量百分比等相关信息,从而提高辊压过程的有效性,并建立可控的辊压速度、辊压压力等工艺操作参数,对工艺过程的参数设置及优化制剂质量具有重要意义。此外,药物材料的骨架密度还可以作为其结晶状态以及二元混合物比例的标志。 /p p style=" text-align: justify text-indent: 2em " 孔隙度(Porosity)会影响药物的辊压制粒、崩解等过程,以及片剂强度、压实度、含量均匀度及溶出度等性质,是药物崩解、溶出和生物利用度的一个关键质量属性。此外,孔隙度测量还可以预测评估压缩过程中颗粒的变形特性,测量辊压后片料的总孔体积和固相分数,以及评估药物包衣的完整性,帮助确定包衣过程中物料流的参数设置等。 /p p style=" text-align: justify text-indent: 2em " 综上所述,掌握和控制药物制剂的密度及孔隙度对药物的最终疗效及生产稳定性非常重要。本文将介绍药物粉体密度及孔隙度的定义及测试原理,并举例说明相关测试结果。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong span style=" text-indent: 32px " 密度测试 /span /strong /span /p p style=" text-align: justify text-indent: 2em " 密度是单位体积粉体的质量。由于粉体的颗粒内部和颗粒间会存在空隙,所以粉体所占有的体积会因测量方法不同而有所差异,并由此产生如骨架密度、包裹密度等不同的密度概念。 /p p style=" text-align: justify text-indent: 2em " (1)真密度和骨架密度(颗粒密度) /p p style=" text-align: justify text-indent: 2em " 真密度也称绝对密度,所对应的真体积是指不包含开孔和闭孔的体积。骨架密度(颗粒密度)对应的骨架体积是样品的真实体积与闭孔体积之和,即不包括与外界连通的开孔体积。 /p p style=" text-align: justify text-indent: 2em " 骨架密度的测定方法一般采用基于阿基米德原理的气体置换法测定,该法是目前世界公认的测真密度、骨架密度最可靠的技术之一,并为无损测量。图1所示为麦克仪器的AccuPyc II全自动气体置换法真密度仪,测试采用惰性气体如氦气或氮气作为置换介质取代材料的孔隙体积,根据理想气体定律PV=nRT确定样品体积,结合样品质量可算得骨架密度。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/2664b594-14e3-4eef-bb84-11a6fe859c65.jpg" title=" 图片1.jpg" alt=" 图片1.jpg" / /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/SH100677/C222910.htm" target=" _self" strong 图1 & nbsp AccuPyc II全自动气体置换法真密度仪 /strong /a /p p style=" text-align: justify text-indent: 2em " (2)包裹密度 /p p style=" text-align: justify text-indent: 2em " 包裹密度所对应的包裹体积包含颗粒的骨架体积和开孔、闭孔体积,以及颗粒外表面的一些粗糙空隙。 /p p style=" text-align: justify text-indent: 2em " 图2所示为麦克仪器的GeoPyc 1365全自动包裹密度分析仪。包裹密度的测试原理是使用一种独特的替代测试技术,通常采用一种具备高流动性的微小刚性球状准流体介质作为替代介质将样品包裹起来。这种替代介质的颗粒很小,在混合过程中可与样品表面紧密贴合,但不会进入样品的孔隙中。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/1d69e4af-3ac4-4276-b882-bcbeeba43019.jpg" title=" 图片2.jpg" alt=" 图片2.jpg" / /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/SH100677/C12222.htm" target=" _self" strong 图2 & nbsp GeoPyc 1365全自动包裹密度分析仪 /strong /a /p p style=" line-height: 150% text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 孔隙度测试 /strong /span /p p style=" text-align: justify text-indent: 2em " 孔隙度指的是颗粒内的孔隙以及样品间隙所占体积与粉体体积之比,通常可通过压汞法和密度计算法等获得。孔隙度越高则表明药物中的总孔体积越大,对应的固体分数就越低。 /p p style=" text-align: justify text-indent: 2em " (1)压汞法 /p p style=" text-align: justify text-indent: 2em " 压汞法是测量药物孔隙度特性常用的方法,可测得样品中与外界连通的开孔体积占总体积的百分比。压汞法的原理是基于汞对大多数固体材料不润湿,界面张力会抵抗汞进入孔中,要使得汞进入材料的开孔中则需要施加外部压力。汞压入的孔半径与所受外压成反比,根据Washburn方程可算出汞压入的孔半径与所受外力的对应关系。图3所示为麦克仪器的AutoPore V全自动压汞仪,其分析技术就是在精确控制的压力下将汞压入材料的多孔结构中,通过测量不同外压下进入孔隙中汞的量,就可知道相应孔体积的大小。压汞法具有快速、高分辨率及分析范围广等优点,除了可测得孔隙度外,该表征还可获得样品的众多特性,例如:孔径分布、总孔体积、总孔比表面积、中值孔径等等。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 150px height: 321px " src=" https://img1.17img.cn/17img/images/202007/uepic/178f7a4e-5000-496a-916d-eca9b6ca290f.jpg" title=" 图片3.jpg" alt=" 图片3.jpg" width=" 150" height=" 321" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/SH100677/C222916.htm" target=" _self" strong 图3 & nbsp AutoPore V全自动压汞仪 /strong /a /p p style=" text-align: justify text-indent: 2em " (2)密度计算法 /p p style=" text-align: justify text-indent: 2em " 除了压汞法外,通过将气体置换法真密度仪与包裹密度分析仪联用,结合材料的骨架密度和包裹密度,由式①也可直接计算出孔隙度。同时,由式②还可以算出片料的固体分数。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/f07054e4-3ce8-4391-8f9b-055fb8a21a43.jpg" title=" 微信图片_20200730153431.png" alt=" 微信图片_20200730153431.png" / /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 300px height: 300px " src=" https://img1.17img.cn/17img/images/202007/uepic/5f5355a4-3750-4a8b-8217-0d32b592540a.jpg" title=" 图片4.jpg" alt=" 图片4.jpg" width=" 300" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 图4 & nbsp AccuPyc II全自动气体置换法真密度仪及GeoPyc 1365全自动包裹密度分析仪 /strong /p p style=" line-height: 150% text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 密度及孔隙度测试举例 /strong /span /p p style=" text-align: justify text-indent: 2em " (1)药物辅料硬脂酸镁的骨架密度测定 /p p style=" text-align: justify text-indent: 2em " 硬脂酸镁是新型药用辅料,可作固体制剂的成膜包衣材料、胶体液体制剂的增稠剂、混悬剂等。使用麦克仪器的AccuPyc II全自动气体置换法真密度仪对其进行骨架密度测试,结果表明,仪器在约16分钟内完成了10个测试循环,该硬脂酸镁样品的密度平均值为1.5157 g/cm3,标准偏差仅为0.0006 g/cm3,密度结果均围绕其平均值波动,结果非常稳定,实现了药物材料快速、高精度的体积测量和密度计算。 /p p style=" text-align: justify text-indent: 2em " (2)药物的压汞法孔隙度测定 /p p style=" text-align: justify text-indent: 2em " 使用麦克仪器公司的AutoPore V 全自动压汞仪对某药物进行压汞测试。其堆积密度为1.1639 g/ml,骨架密度为1.5382 g/ml,由此计算得到的孔隙度为24.3332%。 /p p style=" text-align: justify text-indent: 2em " (3)药物片料的密度计算法孔隙度及固相分数测定 /p p style=" text-align: justify text-indent: 2em " 使用麦克仪器的GeoPyc 1365全自动包裹密度分析仪对辊压后得到的某药物片料进行孔隙度测试。测得该药物的包裹密度为1.3409 g/cm3,其标准偏差为0.0007 g/cm3,结合由AccuPyc II全自动气体置换法真密度仪测得的骨架密度1.4630 g/cm3,最后算得孔隙率为8.35 %。根据上文公式②,由骨架密度除以包裹密度可算得其固相分数为91.65 %& nbsp 。 /p p style=" line-height: 150% text-align: justify text-indent: 2em " strong 总结 /strong /p p style=" text-align: justify text-indent: 2em " 药物粉体及相关制剂的密度及孔隙度表征对其处方设计、制备、质量控制等都具有重要指导意义。密度和孔隙度不仅是辊压和压片等过程的关键工艺参数,也是硬度、崩解度、溶出度、生物利用度等的关键质量属性,会直接影响和制约药物的性质及疗效。因而研究和掌握药物粉体及制剂的密度、孔隙度对获得高质量的药物至关重要。采用气体置换法真密度仪和包裹密度分析仪可分别获得药物粉体的骨架密度和包裹密度,通过压汞法或者结合两种密度仪的密度计算法可测得药物的孔隙度及片料的固体分数。借助这些性质表征有助于掌握及预测原料药及辅料在配方中的特性,评估药物制剂的批次变化及药物相关性能,从而优化制造过程和提升产品质量。 /p p style=" text-align: right text-indent: 2em " strong 作者:林宇彤 /strong /p p style=" text-align: right text-indent: 2em " strong 麦克仪器应用工程师 /strong /p
  • 机场噪声综合性文件《民用运输机场周围区域民用航空器噪声污染防控行动方案(2024—2027年)》发布
    日前,民航局、生态环境部、自然资源部、市场监管总局等部门联合印发了《民用运输机场周围区域民用航空器噪声污染防控行动方案(2024-2027年)》(以下简称《行动方案》)。近年来,随着中国民航运输规模快速增长,噪声污染问题日益突出。2021年全国人大常委会审议通过的《中华人民共和国噪声防治法》第五条、第八条、第四十五条、第五十二条、第五十三条、第五十四条、第五十七条以及第八十条等对机场噪声污染防治提出明确要求。《中共中央 国务院关于深入打好污染防治攻坚战的意见》以及《“十四五”噪声污染防治行动计划》《“十四五”民用航空发展规划》等对机场噪声污染防控作出部署,强调要立足我国国情以及民航发展阶段,加快夯实机场噪声污染防控工作基础,推进政策标准体系建设,深化相关技术研究。《行动方案》是我国机场噪声污染治理领域第一份综合性文件,阐明了2024—2027年推进机场噪声污染防控工作的指导思想、主要目标,并从4个方面提出13项重点任务。一是加快推进机场噪声污染防控标准体系建设,包括加快完善机场噪声防控相关国家标准,健全机场噪声防控民航标准与规章。二是统筹推进机场噪声污染防控监督管理,包括加强规划衔接协调,加快提升机场噪声监测能力,深入推进机场建设项目噪声环境影响评价,建立健全机场噪声污染监管协同机制。三是深入推进机场噪声污染防控,包括落实机场噪声污染防治责任,推动机场噪声污染减缓试点。四是强化机场噪声污染防控科技支撑,包括开展机场噪声影响机理研究,推进机场噪声监测技术研发,统筹开展空地协同机场噪声防控技术攻关,开展机场噪声防控经济政策研究,积极开展国际交流合作。《行动方案》以2025年、2027年为目标年,提出机场噪声防控的工作目标。具体是:到2025年,机场噪声污染防控标准体系基本建成,机场噪声污染防控多方协同机制初步形成,试点工作取得实效,监测关键技术研发取得积极进展,年旅客吞吐量500万人次以上机场基本具备民用航空器噪声事件实时监测与精准溯源能力。到2027年,机场噪声污染监测与防控关键技术实现突破,防控标准建设持续推进,协同治理效能进一步提升,年旅客吞吐量1000万人次以上机场周围区域声环境质量逐步改善。《行动方案》提出了多项保障措施。一是加强组织领导,生态环境部、民航局将会同相关部门加强与地方政府的工作协同,统筹指导、协调推进《行动方案》确定的重点任务,并做好跟踪评估。二是营造良好氛围,生态环境部、民航局会同相关部门加强机场噪声污染防控相关法律法规、政策标准和相关知识的宣传教育普及工作,邀请相关媒体积极宣传机场噪声污染防治先进典型、成功经验、有效做法,鼓励行业协会、科研单位积极开展机场噪声污染防控与减缓相关知识宣传和业务培训。
  • 大孔容材料测试绝密技巧在线分享
    大孔容材料测试绝密技巧在线分享专注于氧化铝/氧化硅/碳纳米管/石墨烯材料发展方向的小伙伴,在进行物理吸附测试的时候都会产生以下疑问: 我的材料是不是大孔容材料,通过什么标准判断呢?如何正确规范地完成大孔容材料物理吸附测试?大孔容样品在测试时应该关注哪些数值?测试材料的结果能说明什么问题?̷..本次课程能提供什么? 本次公开课是专门为需要了解大孔容样品物理吸附相关流程的小伙伴精心设计的,通过认真聆听课程内容,并及时与老师进行互动,可在最短时间内搞清楚样品的孔容孔径测试流程,及常见问题的解决方法。本次公开课将于6月9号(周二)进行线上直播,主讲人:北京精微高博科学技术有限公司高级工程师—赵丙倩。课堂内容将会围绕以下3个主题展开分享和讨论:01 燃情六月, 全面剖析大孔容材料的物理吸附特征1.介绍常见的大孔容材料类型(如,氧化铝、氧化硅等),帮助用户了解自己的样品2.详述大孔容材料的物理吸附特征02大孔容样品物理吸附的关注指标,及对性能的影响1.列举大孔容样品物理吸附的关注指标2.深度分析材料的物理吸附实验数据03 解读大孔容材料物理吸附测试问题及解决方案1. 剖析大孔容材料在测试中遇到的常见问题2.指导用户获取正确的大孔容材料分析解决方案 赵丙倩精微高博公司资深应用工程师在多孔材料的表征方面具有丰富的理论和实践经验。专注于大孔容材料的测试研究,尤其是氧化铝、氧化硅、碳纳米管、石墨烯等大孔容材料的比表面积、孔容孔径的分析测试。精微高博(JWGB)成立于2004年,推出中国第一台静态容量法氮吸附仪JW-RB,被誉为“中国氮吸附仪的开拓者”。15年来已发展为集研发、制造、销售、服务于一体的国家级高新技术企业,专业从事比表面积及孔径分析仪、化学吸附仪、竞争性吸附仪、蒸汽吸附仪、真密度仪等物性分析设备的研究,是中国材料表征仪器的领先制造商,产品销售全球十几个国家和地区,致力于向全球客户提供高质量、高易用性、高性价比的产品和服务解决方案。
  • 三思纵横参加第27届质量控制与测试工业设备展览会完美收官
    三思纵横参加第27届质量控制与测试工业设备展览会完美收官 10月25-27日在上海世贸商城举办的第27届中国国际质量控制与测试工业设备展览会顺利闭幕,我们三思纵横团队带着满满的收获和期待,从这场全球测试与测量行业的盛会中满载而归。“中国国际质量控制与测试工业设备展览会” (简称Q.C.CHINA)创建于1995年。 每年一届的Q.C.CHINA是目前中国工业检测行业中规模最大、历史最久、范围最广的品牌展会。展会以无损检测技术与设备、物理测试与材料试验机、分析仪器与实验室设备、计量与测试技术为主要展出内容,汇集了世界各地检测设备制造商及代理商带来的高端技术和先进手段与设备,是行业权威的技术与产品发布平台,也是全球同行相识交流的重要纽带。 随着工业检测的需求面不断扩大与深入,企业对产品质量检验的设施与技术的要求也越来越高,如何提升检测手段、完善检测设备是检测从业人士身负的重任和义务。(钱总早早的到展台就位) 此次参展工作,由上海大区营销总监钱伟光带领上海办团队,全员披挂上阵,向广大参观客户展示三思纵横的高品质检测设备。钱伟光总监等人向参观客户展示了三思纵横的最新产品和技术,其中包括全自动微机控制电子万能试验机、动态疲劳试验机系列、全自动压力试验机、粉末压实密度仪等。由于三思工作人员各个都富有激情和专业的讲解,吸引众多观众前来了解,三思纵横的展台经常被人群包围。工作人员详细解说介绍了三思纵横设备的各项优势功能,参观客户对三思纵横的高品质检测设备表现出极大的兴趣。 这次参展的成功是客户对三思纵横力学检测设备品质与服务的肯定,满足客户的需求是我们首要任务,在努力的路上我们依然不断前行。
  • 东胜创新举行“BTX电穿孔、电融合技术的应用”全国巡回讲座
    近日,东胜创新主办的“电穿孔、电融合技术的应用”巡回讲座分为三场依次在广州、上海、北京举行。在广州的专场已于10月21日圆满结束,来自美国BTX公司的技术专家Robin E. Butler介绍了“Electroporation and Electrofusion——A methodology for efficient gene transfer in In vivo, In Utero,96 Well and Fusion applications”。 接下来的两场分别将于 10月22日下午14:30—17:00在上海中国科学院营养所35号楼2楼多功能厅; 10月24日上午 9:00—11:30在北京中国农业大学新综合楼马协三层举行。 上海的专场还将增加由中国科学院神经科学研究所的丁玉强研究员介绍“在体子宫内胚胎电转技术——在神经科学研究中的应用”;北京的专场还将增加由中国农业大学生命科学学院的卫恒习介绍“电融合技术在转基因动物克隆中的应用”。 背景介绍: 一、电穿孔、电融合技术的应用范围: 哺乳动物细胞或组织的转染、细菌和酵母的转化、动物细胞融合、活体/离体基因或药物导入、卵内基因或药物导入、核转移、植物组织和原生质体的转化、杂交瘤生成、胚胎操作、植物原生质体融合、蛋白质电整合/电插入。 二、美国BTX公司——电穿孔、电融合专家 自1983年成立以来,以电穿孔仪、电融合仪为主要产品,开发了电穿孔、电融合、转染、转化等方面的众多最新技术和产品,成为电穿孔、电融合领域全球领先的专业厂家。 三、东胜创新BTX产品链接 http://www.eastwin.com.cn/product_btx.asp
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制