当前位置: 仪器信息网 > 行业主题 > >

乙基乙烯基醚含稳定剂

仪器信息网乙基乙烯基醚含稳定剂专题为您提供2024年最新乙基乙烯基醚含稳定剂价格报价、厂家品牌的相关信息, 包括乙基乙烯基醚含稳定剂参数、型号等,不管是国产,还是进口品牌的乙基乙烯基醚含稳定剂您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙基乙烯基醚含稳定剂相关的耗材配件、试剂标物,还有乙基乙烯基醚含稳定剂相关的最新资讯、资料,以及乙基乙烯基醚含稳定剂相关的解决方案。

乙基乙烯基醚含稳定剂相关的资讯

  • 全自动乌氏粘度仪-甲基乙烯基硅橡胶粘均分子量测定
    甲基乙烯基硅橡胶简称乙烯基硅橡胶,是由二甲基硅氧烷与少量乙烯基硅氧烷共聚而成,乙烯基含量一般为0.1%~0.3% (摩尔分数)。少量不饱和乙烯基的引入使它的硫化工艺及成品性能,特别是耐热老化性和高温抗压缩变形有很大改进。甲基乙烯基硅氧烷单元的含量对硫化作用和硫化胶耐热性有很大影响,含量过少则作用不显著,含量过大【达0.5% (摩尔分数)】 会降低硫化胶的耐热性。甲基乙烯基硅橡胶具有很好的耐高、低温性,可在-50~250℃下长期工作,防潮、电绝缘性,耐电弧,电晕性。耐老化、耐臭氧性。表面不粘性和憎水性。压缩变形小,耐饱和蒸汽性。广泛应用于耐高、低温密封管、垫圈、滚筒、按键胶辊、瓷绝缘子的更新换代。按照GB/T 28610粘均分子量测定方法。粘度法是测定聚合物分子量较为简捷的方法。特性粘度[η]是高分子溶液浓度趋近于零时的粘数值或对数粘数值(ηsp/C或Inηr/C)。在甲苯溶剂中,高分子物质的分子量和特性粘度的关系用下式表示: [η]=KMα式中:K-----常数,K=9.46×10-3;M----粘均分子量; α-----特性常数值;α=0.71用此计算公式计算得到分子量。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:甲苯、无水乙醇。(AR级)溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入甲苯,软件中启动测试任务待结束。粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。样品制备:在万分之一天平上精准称量精确到0.0001g,通过自动配液器将溶液浓度精准配制,再将样品瓶放置到多位溶样器室温中溶解,待溶解完毕取出待用(室温静置需N小时以上)。样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。按照以下公式1-5计算:ηr=t/t0---------------------------------------------------1ηsp=ηr-1--------------------------------------------------2c=m/v---------------------------------------------------3[η]=KMα-------------------------------------------------5式中:ηr------相对粘度;t ------溶液时间值,单位为秒(s);t0-----溶剂时间值,单位为秒(s);ηsp-----增比粘度;c------样品的浓度,单位为克每毫升g/ml;m----样品质量,单位为g;v---溶剂体积,单位为ml;[η]------特性粘度;M----粘均分子量; K-----常数,K=9.46×10-3; α-----特性常数值,α=0.71;
  • 美环保局撤销对亚乙烯基酯的进口限制建议
    美国环保局(EPA)近日撤销了根据《有毒物质控制法案》对亚乙烯基酯(vinylidene esters)发布一项重要新用途规则的提案,该物质也是两个&ldquo 制造前通知(pre-manufacture notices)&rdquo 的目标物质。EPA指出,采取该行动是对拟议规则收到的公众评议的回应。具体来说,提交的信息表明,氰基丙烯酸酯(cyanoacrylates)比拟议规则中的亚乙烯基酯更适合作为评估水生生物潜在毒性的结构类似物,这是拟议的重要新用途规则的通知要求的依据。   决定一种新的化学品作为新用途使用必须考虑以下相关因素,包括(一)该化学物质的预计制造和加工量 (二)该使用方法改变人类或环境暴露于该化学物质的类型或形式的程度 (三)该使用方法增加人类或环境暴露于该化学物质的强度和持续时间的程度 (四)制造、加工、分销,以及处理该化学物质的合理预期方式和方法 和(五)任何其他相关因素。
  • 全自动乌氏粘度计-用毛细管法测定聚乙烯基吡咯烷酮的k值
    聚乙烯吡咯烷酮(polyvinyl pyrrolidone)简称PVP,是一种非离子型高分子化合物,是N-乙烯基酰胺类聚合物中最具特色,且被研究得最深、广泛的精细化学品品种。已发展成为非离子、阳离子、阴离子3大类,工业级、医药级、食品级3种规格,相对分子质量从数千至一百万以上的均聚物、共聚物和交联聚合物系列产品,并以其优异独特的性能获得广泛应用。PVP按其平均分子量大小分为四级,习惯上常以K值表示,不同的K值分别代表相应的PVP平均分子量范围。K值实际上是与PVP水溶液的相对粘度有关的特征值,而粘度又是与高聚物分子量有关的物理量,因此可以用K值来表征PVP的平均分子量。通常K值越大,其粘度越大,粘接性越强。测定K值最常用的方法是用毛细管粘度计测的PVP水溶液的相对粘度n,再根据公式计算出K值。 实验方法如下实验所需仪器:卓祥全自动粘度仪、自动配液器、万分之一电子天平。实验所需试剂1:溶剂:纯水,无水乙醇为清洗剂。溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入纯水,软件中启动测试任务待结束,测的溶剂时间T0。粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。样品溶液的制备:在万分之一天平上精准称量精确到*g,溶解在**ml溶剂中,通过自动配液器将溶液浓度精准配制到**g/ml,溶解条件:常温搅拌。样品粘度的测定:加入**ml样品,测量样品时间**,计算粘度结果粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。
  • 公开征集对《环氧乙烯基酯树脂》等505项行业标准和53项推荐性国家标准计划项目的意见
    p style=" text-align: center " strong 公开征集对《环氧乙烯基酯树脂》等505项行业标准 /strong /p p style=" text-align: center " strong 和53项推荐性国家标准计划项目的意见 /strong /p p br/ /p p style=" text-indent: 2em " 根据标准化工作的总体安排,现将申请立项的《环氧乙烯基酯树脂》等505项行业标准计划项目和《半导体器件 机械和气候试验方法 第7部分:内部水汽含量测试和其它残余气体分析》等53项推荐性国家标准计划项目予以公示(见附件1、2),截止日期为2018年5月28日。如对拟立项标准项目有不同意见,请在公示期间填写《标准立项反馈意见表》(见附件3)并反馈至工业和信息化部科技司,电子邮件发送至KJBZ@miit.gov.cn(邮件主题注明:标准立项公示反馈)。 br/ /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 地址:北京市西长安街13号 工业和信息化部科技司 标准处 /p p style=" text-indent: 2em " 邮编:100846 /p p style=" text-indent: 2em " 联系电话:010-68205241 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 公示时间:2018年4月27日-2018年5月28日 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 附件: /p p style=" line-height: 16px text-indent: 2em " 1. img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201805/ueattachment/7df061fd-09ed-4c73-8b2a-4a13e8bc3dc7.docx" 《环氧乙烯基酯树脂》等505项行业标准制修订计划(征求意见稿).docx.docx /a /p p style=" line-height: 16px text-indent: 2em " 2. img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201805/ueattachment/42cef454-a775-4eca-8729-8bd443ee71da.docx" 《半导体器件 机械和气候试验方法 第7部分:内部水汽含量测试和其它残余气体分析》等53项国家标准制修订计划.docx& nbsp /a /p p style=" line-height: 16px text-indent: 2em " 3. img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201805/ueattachment/db790b51-8e34-4048-807f-a40e0f01499b.doc" 标准立项反馈意见表.doc /a /p p br/ /p p style=" text-align: right " 工业和信息化部科技司 /p p style=" text-align: right " 2018年4月27日 /p p & nbsp /p p & nbsp /p p br/ /p
  • 乙烯生产稳定保障:英国肖氏SDHmini露点仪助力氮气含水量监控
    在乙烯装置的运行过程中,氮气含水量的监测和控制对于保证装置的稳定运行和产品质量具有重要意义。氮气作为乙烯生产过程中的重要介质,其干燥程度直接影响催化剂的活性、设备的运行效率以及产品的最终质量。因此,对氮气含水量的准确测试与监控成为了乙烯装置管理中不可或缺的一环。乙烯生产稳定保障:英国肖氏SDHmini露点仪助力氮气含水量监控一、氮气含水量对乙烯装置稳定性的影响乙烯装置在高温高压的环境下运行,氮气中含有的微量水分会对系统的稳定运行造成不良影响。首先,水分会与装置中的催化剂发生反应,导致催化剂中毒或失活,从而影响催化反应的效率和选择性。其次,水分还会与系统中的金属部件发生腐蚀反应,加速设备的老化和损坏,缩短设备的使用寿命。此外,水分还可能导致系统中的阀门、仪表等部件发生冻结,造成装置的非计划停车和安全事故。乙烯生产稳定保障:英国肖氏SDHmini露点仪助力氮气含水量监控二、氮气含水量对乙烯产品质量的影响乙烯作为重要的化工原料,其纯度和质量对于下游产品的生产具有重要影响。氮气中含有的微量水分会直接影响乙烯产品的纯度和质量。在乙烯的精馏和分离过程中,水分会随乙烯一起进入产品,导致产品纯度下降,影响产品的使用性能和市场竞争力。此外,水分还可能与乙烯中的其他杂质发生反应,生成新的杂质,进一步降低产品的质量和纯度。三、氮气含水量测试的重要性鉴于氮气含水量对乙烯装置运行稳定性和产品质量的重要影响,对氮气进行含水量测试显得尤为重要。通过定期或不定期地对氮气进行含水量测试,可以及时发现氮气中的水分含量是否超标,从而采取相应的措施进行处理和调整。例如,当发现氮气中含水量超标时,可以采取更换干燥剂、调整干燥设备运行参数等措施来降低氮气中的水分含量,保证乙烯装置的稳定运行和产品质量。乙烯生产稳定保障:英国肖氏SDHmini露点仪助力氮气含水量监控为了确保氮气含水量的测试结果的准确性和可靠性,乙烯装置运行测试通常采用较高精度、高可靠性的露点仪。在众多露点仪品牌中,英国肖氏SHAW手持式露点仪SDHmini凭借其良好的性能和便捷的操作,成为了工业应用的理想选择。进口露点仪英国肖氏SHAW研发的SDHmini手持式露点仪具备一系列先进的技术特点,使得它在氮气含水量测试中表现出色。首先,它拥有自动校准功能,可以自动调整仪器状态,确保测试结果的准确性。同时,场校准/电子跨度检查装置使得用户可以通过简单的菜单指示进行操作,轻松完成校准工作。在测试精度方面,SDHmini手持式露点仪具有±2℃露点的准确度,重复性优于±0.3℃露点,能够满足乙烯装置对氮气含水量高精度测试的需求。此外,该露点仪对样品流速的要求较低,理想流速为2-5L/min,最大可达10L/min,使得测试过程更加灵活便捷。在反应时间方面,SDHmini手持式露点仪表现出色。从潮湿至干燥的过程,在-10℃至-60℃的温度范围内,反应时间小于120秒;而从干燥至潮湿的过程,在-110℃至-20℃的温度范围内,反应时间小于20秒。这种快速的反应时间使得测试过程更加高效,能够及时发现氮气中的水分变化。在设计和制造上,SDHmini手持式露点仪同样表现出色。它的尺寸适中,便于携带和操作;重量仅为1.75kg,减轻了测试人员的负担。同时,该露点仪的操作压力、操作湿度、操作温度以及保存温度等参数均符合工业应用的要求,确保了在各种环境下的稳定工作。此外,其防水分类达到IP66/NEMA 4X标准,可在恶劣环境下正常工作。在显示和数据处理方面,SDHmini手持式露点仪采用了全彩色LCD大屏幕,分辨率高达320 x 240(24 bits),使得测试数据清晰可见。同时,SDHmini手持式露点仪还具备数据记录功能,可存储多达300,000个读数,并支持数据和时间打印以及下载到PC中,便于数据的分析和管理。乙烯生产稳定保障:英国肖氏SDHmini露点仪助力氮气含水量监控进口露点仪品牌英国肖氏SHAW便携式露点仪SDHmini凭借其良好的性能和便捷的操作,成为了乙烯装置氮气含水量测试的得力助手。通过使用SDHmini手持式露点仪进行氮气含水量的测试与监控,可以确保乙烯装置的稳定运行和产品质量,为乙烯生产的高效、稳定和安全提供有力保障。更多乙烯生产稳定保障:英国肖氏SDHmini露点仪助力氮气含水量监控、请致电英肖仪器仪表(上海)有限公司1⃣ ️ 7⃣ ️ 3⃣ ️ 1⃣ ️ 7⃣ ️ 6⃣ ️ 0⃣ ️ 8⃣ ️ 3⃣ ️ 7⃣ ️ 6⃣ ️ ,英肖仪器仪表(上海)有限公司是进口露点仪品牌英国肖氏SHAW总代理、代表处、肖氏SHAW露点仪售后服务保障。
  • 中国氟硅有机材料工业协会《含氢硅油中含氢量的测定 顶空气相色谱法》等25项待发布团体标准公示
    经项目征集、审核、发布审议等程序,氟硅协会拟于2023年3月发布《含氢硅油中含氢量的测定 顶空气相色谱法》等25项待发布团体标准,为保障项目立项的公正性,现对13项氟硅团体标准进行公示,公示时间2023年3月16日至3月25日,共计10日。如任何单位、个人对拟发布标准持有异议,请以正式发函方式向协会提出意见和建议。氟硅协会标委会邮箱:fsibwh@163.com。1、FGJ2021001《含氢硅油中含氢量的测定 顶空气相色谱法》报批稿.pdf2、FGJ2021002《乙烯基硅油、甲基乙烯基硅橡胶中乙烯基含量的测定 顶空气相色谱法》报批稿.pdf3、FGJ2021033《“领跑者”标准评价要求 硅酮建筑密封胶》报批稿.pdf4、FGJ2021034 《硅橡胶组合物 分类与命名》 报批稿.pdf5、FGJ2021034《六甲基二硅烷》报批稿.pdf6、FGJ2021040《乙烯基三甲基硅烷》报批稿.pdf7、FGJ2021041《低挥发性环甲基硅氧烷端乙烯基硅油》报批稿.pdf8、FGJ2021042《低挥发性甲基环硅氧烷的二甲基硅油》(报批稿).pdf9、FGJ2021057 《缩合型甲基苯基硅树脂》 报批稿.pdf10、FGJ2021052《纸张用无溶剂型有机硅离型剂》报批稿.pdf11、FGJ2021046 《乙烯基三甲氧基硅烷》 报批稿.pdf12、FGJ2021048《274#高真空扩散泵油》报批稿.pdf13、FGJ2021049 《275#高真空扩散泵油》报批稿.pdf14、FGJ2021050《通讯基站冷缩套管用硅橡胶》报批稿.pdf15、FGJ2021051《新能源汽车线缆用硅橡胶》报批稿.pdf16、FGJ2021056《加成型硅凝胶》报批稿.pdf17、FGJ2021013《保护膜用加成型有机硅压敏胶》报批稿.pdf18、FGJ2021016《按键用液体硅橡胶》(报批稿).pdf19、FGJ2021017《冷缩电缆附件用液体硅橡胶》(报批稿).pdf20、FGJ2021036《绝缘栅双极型晶体管用有机硅凝胶》(报批稿).pdf21、FGJ2021009《全氟-2-(2-硫酰氟乙氧基)丙基乙烯基醚》 报批稿.pdf22、FGJ2021010《全氟乙基乙烯基醚》报批稿.pdf23、FGJ2021011《全氟甲基乙烯基醚》报批稿.pdf24、FGJ2021012《全氟正丙基乙烯乙基醚》报批稿.pdf25、FGJ2021059《乙烯-三氟氯乙烯共聚物(ECTFE)树脂》(报批稿).pdf
  • 苏州大学:基于自由基促进的阳离子RAFT聚合实现快速活性3D打印!
    基于可逆失活自由基聚合(RDRP) 的3D 打印技术为制备具有“活性”的聚合物材料提供了有效手段。该类材料由于保留有活性位点,可进一步用于聚合后修饰及功能化,以制备多种多样的刺激响应性材料,目前正成为该领域的研究热点。然而,相较于商用体系,已有技术的打印速率通常较低,限制了其实际应用。同时,已报道工作主要基于RDRP方法,机理较为单一。近期,苏州大学朱健教授团队探索了基于阳离子可逆加成断裂链转移(RAFT)聚合的立体光刻蚀(SLA)3D打印(ACS Macro Lett. 2021, 10, 1315)以及阳离子/自由基RAFT聚合联用的数字光处理(DLP)3D打印(Macromolecules 2022, 55, 7181)。拓宽了活性3D打印的聚合机理及单体适用范围,为调控材料性能提供了丰富手段。相较于自由基RAFT聚合,阳离子RAFT聚合通常具有更快的聚合速率。在本文中,该研究团队考察了基于自由基促进的阳离子RAFT(RPC-RAFT)聚合的DLP 3D打印体系,实现了较为快速的打印速率(12.99 cm/h)。首先,作者设计了模型聚合来研究该方法的聚合行为,其机理如图一所示。商业可得的光引发剂(TPO)与二苯基碘鎓盐(DPI)被用于产生初始的阳离子引发种,随后聚合由一种二硫代氨基甲酸酯RAFT试剂(图3 B)通过阳离子RAFT过程调控。图1. 推测的聚合机理。如图2A所示,聚合呈现一级线性动力学,聚合物分子量与理论值吻合较好,分子量分布窄,符合活性聚合特征。图2. 在405 nm波长光源下IBVE的聚合动力学结果:A) 单体转化率半对数与聚合时间的关系曲线;B) 分子量(Mn)和分子量分布(Ɖ )与单体转化率的关系;C)IBVE聚合物的SEC曲线。随后研究团队详细研究了交联体系的聚合行为(图3),对双官能度单体二乙二醇二乙烯基醚(DDE),单官能度单体异丁基乙烯基醚(IBVE),RAFT试剂以及TPO/DPI引发体系不同配比进行了考察。结果显示没有IBVE时,聚合速率与单体最终转化率降低,这可能是由过高的交联密度导致。DDE与IBVE的比例在3:1到1:3之间变化时对聚合速率影响较小。进一步提高IBVE含量则会导致鎓盐析出。改变RAFT试剂的比例对聚合速率影响较小,这与传统的自由基RAFT聚合不同,可能是由于在阳离子RAFT聚合中不存在阻聚效应。图3. A)商用DLP 3D打印机模型示意图;B) 用于RPC-RAFT聚合3D打印的树脂配方; 聚合树脂在405 nm波长光源照射以及不同反应条件下单体的转化率与时间曲线:C) 不同光催化剂浓度;D)不同官能度乙烯基醚配比;E)不同RAFT试剂浓度。利用优化后的打印树脂与商业可得的DLP 3D打印机,研究团队成功打印出具有较好分辨率的物体(图4)。然而,打印速率最高为6.77 cm/h。当进一步优化打印条件提高速率时,由于IBVE相对较低的沸点(83 °C),释放的聚合热使树脂出现了沸腾现象。 图4. 具有不同形状的3D物体数字模型以及相应的3D打印实体模型。于是研究人员将低沸点的IBVE替换为高沸点(179.09 °C)的环己基乙烯基醚(CVE),成功将打印速率提升至12.99 cm/h,该速率为目前活性打印体系的最高值。在该打印条件下,成功打印出具有不同形成的三维物体(图5)。 图5. 具有不同形状的3D物体数字模型以及相应的3D打印实体模型。最终,研究人员通过荧光单体(TPE-a)的聚合后修饰证明了所打印物体的活性特征。如图6所示,在利用该树脂所打印的薄膜表面涂上荧光单体溶液并用打印机形成的图案光照射,随后洗去溶液。经过照射的部分由光引发RAFT聚合扩链成功实现了荧光单体的接枝,因此在紫外光下呈现出荧光图案(图6 F)。在对比实验中,打印的薄膜由不含RAFT试剂的树脂制备,经过相同操作后在紫外光下则无荧光图案(图6 D),证明了该方法所打印物体具有活性特征。 图6. A) DLP 3D打印机中进行3D打印物体后功能化修饰示意图;B)3D打印物体后功能化修饰机理图;C) 未经后功能化修饰的3D打印物体在可见光下的数字图像;D) 未经后功能化修饰的3D打印物体在紫外光下的数字图像;E) 经后功能化修饰的3D打印物体在可见光下的数字图像;F) 经后功能化修饰的3D打印物体在紫外光下的数字图像。该工作以“Fast Living 3D Printing via Free Radical Promoted Cationic RAFT Polymerization”为题发表在《Small》上 。论文第一作者是苏州大学在读博士生赵博文,通讯作者为苏州大学朱健教授和李佳佳博士后。该工作获得了国家自然科学基金,中国博士后科学基金以及江苏省优势学科基金的资助。后续工作敬请关注。原文链接:https://doi.org/10.1002/smll.202207637摩方精密作为微纳3D打印的先行者和领导者,拥有全球领先的超高精度打印系统,其面投影微立体光刻(PμSL)技术可应用于精密电子器件、医疗器械、微流控、微机械等众多科研领域。在三维复杂结构微加工领域,摩方团队拥有超过二十年的科研及工程实践经验。针对客户在新产品开发中可能出现的工艺和材料难题,摩方将持续提供简易高效的技术支持方案。
  • 实用建议:如何合理设计稳定的冻干蛋白配方(一)
    为什么要用冻干的方法制备稳定的蛋白药物产品?在蛋白药物治疗的早期研发中,有必要设计一种在运输和长期储存期间稳定的配方。显然,水溶剂的液体产品对于生产来说是很容易且经济的,对于终端使用者也是十分方便的。水溶剂的液体产品存在的问题1. 大多数的蛋白以液体状态存在时,易于化学(脱酰胺或氧化)和/或物理降解(聚合,沉淀) 2. 如果严格控制水溶剂蛋白的储存条件,并且对配方进行合理设计,可以减缓其降解,但是在实际的运输过程中,精确控制储存条件通常是行不通的,蛋白会因受到多种应力的作用而变性,包括摇动,高低温,冷冻等 3. 尽管会设计配方和运输条件尽可能规避这些应力导致的损害,但是仍然不能足够阻止在长期储存过程中造成的损害。例如,在某些情况下,尽量减少化学降解的条件会导致物理损伤,反之亦然,那么就无法找到提供必要的长期稳定性的折衷条件。解决方案:冻干配方设计合理的冻干配方,理论上可以解决以上存在的所有这些问题。在干燥的样品中,降解反应可以得到充分的抑制或减缓,蛋白产品在室温状态可以仍然维持其稳定性,保存期可达到数月或数年的时间。而且,在运输过程中,短期的温控偏离,冻干的蛋白样品通常也不会受到损害。即使在两种或多种降解途径需要不同条件才能实现最大热力学稳定性的情况下,干燥产品中反应速率的降低也可以实现长期的稳定性。因此,一般来说,当配方前研究表明在液体配方中不能获得足够的蛋白稳定性时,冷冻干燥提供了颇有吸引力的替代方案。冻干蛋白配方可能遇到的问题然而,相对水针剂产品,只需要简单灌装即可来说,冻干过程较为复杂,且耗时、成本高,再有,一个十分关心的问题,如果配方中没有合适的稳定赋形剂,大多数蛋白制剂在冻干的过程中至少部分会因冻结应力和脱水应力而变性,结果通常是不可逆的聚合,通常是在冻结之后立即聚合或在储存过程中,小部分蛋白分子发生聚合。因为大多数的蛋白药物是非肠道给药,即使只有百分之几的蛋白聚合也是不可以接受的。因此,只是简单的设计一个配方,允许蛋白能承受冻干过程中的应力,但是无法确保冻干后的样品能有长期的稳定性。一个较差的冻干配方,蛋白很容易发生反应,须要求在零度以下储存,这样的配方应当认为是不成功的。本文将提供一些实践的指导,用于配方的设计,可以在冻结和干燥过程中保护蛋白,并且在室温条件下长期储存和运输过程中具有很好的稳定性。再有,会简要地讨论,配方设计须考虑到工艺条件的物理限制,已获得最终低水分含量的良好蛋糕。我们将不讨论冻干工艺的设计和优化,也不会偏离关于赋形剂选择的实用建议,以解决关于这些化合物稳定蛋白质的机制的争论。有丰富经验的药物科学家可能跟这篇文章的内容也没有很大的关系,但是可以将蛋白药物产品推向市场,然而,我们的目标主要是针对对于稳定的冻干蛋白配方设计还不太了解以及具有很大挑战的那些研发人员提供一个很好的开始。 配方设计的主要制约因素有哪些?当合理设计冻干配方时,需要考虑的因素很多,从整体来看,工作会比较复杂,但如果能很好的理解决定最终成功的主要限制因素,那么就会容易很多。01蛋白的稳定性首先记住蛋白产品选择冻干方法的主要原因是其不稳定性,整个配方中最敏感的成分也是蛋白质,那么在配方设计中首要关心的是赋形剂的选择,能够提供蛋白好的稳定性。02最终药物配置在配方研发开始之前,须确定好最终药物的配置,需要考虑的问题包括给药途径(常为非肠道给药),共同给药的其他物质,产品体积,蛋白浓度,冻干盛装容器(西林瓶、预充针或其它)等,如果最终药物需要多次使用,在配方中需要加入防腐剂,这个可能会降低蛋白的稳定性。03配方张力在选择赋形剂时,可能会考虑设计等张溶液,甘露醇和甘氨酸通常是良好的张力调节剂,这些赋形剂经常优于NaCl,因为NaCl具有较低的共晶融化温度和玻璃态转变温度,使得冻干更难进行。另外,如果样品中含有相对低的蛋白量,经常会加入填充剂,避免在冻干的过程中蛋白损失,甘露醇和甘氨酸同时也可以充当这个角色,因为他们会最大程度的结晶并且形成机械强度较高的蛋糕结构。然而,须意识到单独使用晶体类的赋形剂通常不能够在冻干过程和储存期间给蛋白提供足够的稳定性。04产品的蛋糕结构最终冻干的样品须具有优雅的外观结构,较强的机械强度并且没有出现任何塌陷和/或共晶融化,水分残留要相对较低(1g水/100g 干物质),如果产品发生塌陷,不仅外观不能接受,而且会导致样品最终的水分含量较高,复水时间延长。05产品玻璃化转变温度为了确保干燥后蛋白具有长期稳定性,非晶态成分(包含蛋白)的玻璃转化温度要高于计划的储存温度。水是无定形相的增塑剂,需要保持较低的水分含量确保样品的Tg 要高于运输和储存的最高温度。06产品塌陷温度一般来说,达到最终的目标,在整个冻干过程中,需要维持产品温度在其玻璃转化温度以下。在干燥过程中,当冰晶升华时,对于非晶态样品,产品温度须维持在其塌陷温度以下,塌陷温度通常与热致相变温度(也就是最大冻结浓缩无定形相的玻璃态转变温度Tg’)一致,同时,也有必要维持产品温度在任何晶体成分的共晶融化温度以下。在实际中,这些温度可以通过差示扫描量热仪DSC或冻干显微镜来测定。在配方开发中有必要测定产品的塌陷温度。 冻干显微镜Lyostat5及搭配使用的DSC模块为什么要测定塌陷温度?在低于产品的塌陷温度下干燥是需要付出代价的,产品的温度越低,干燥的速度越慢,干燥的成本就越高。通常,在-40℃以下干燥是不实际的,同时样品能降低到的温度还受一些物理条件的限制,比如冻干机的性能以及产品的配方。在配方开发过程中,药物研发人员应该与工艺工程师(设计冻干工艺人员)紧密配合,并且清楚了解放大化生产型冻干机与实验室研发冻干机的区别是非常重要的,通常情况下,生产型冻干机和实验室冻干机在工艺参数控制方面会有所不同,一部分原因是生产型冻干机较大,在冻干过程中每瓶样品的产品温度差异较大。因此,如果对冻干过程熟悉的研发人员可以提供有用的信息帮助配方科学家做出正确的判断,避免由于误判导致将较好的配方排除在外。对于塌陷温度较低的产品,也有一些方法,如可以通过控制过程参数来实现短时快速干燥。配方设计需平衡蛋白稳定性和塌陷温度很明显,配方设计的一个目标是保证蛋白稳定性的前提下提供较高的塌陷温度,产品的塌陷温度主要取决于配方的组成,如果蛋白的含量超过所有溶质的20%,会对Tg’有较大的的影响。尽管单纯的蛋白溶液通常用DSC很难测出Tg’,根据实验得出,增加蛋白含量,对于大多数的配方来说,均可以提高Tg’。通过外推法得到纯的蛋白溶液的Tg’,大约为-10℃,远远高于大多数的单一赋形剂的Tg’(如蔗糖的Tg’为-32℃),因此,从工艺过程的经济角度考虑,更期望配方中较高的蛋白质和稳定剂比例,然而,蛋白的稳定性通常随着稳定剂与蛋白含量比例的增加而提高,因此须在高的塌陷温度和较好的稳定性方面做出平衡。并且,如下文讨论的内容,随着蛋白浓度的增加,蛋白质在预冻过程中抵抗冻结应力损伤的能力就会得到改善,那么在高蛋白浓度和高稳定剂和蛋白重量比的情况下,稳定性是最好的,这样,就会导致整个配方较高的固形物浓度,给工艺带来困难,总浓度超过10%的配方将比较难冻干。如何改变Tg'?在升华之前对配方进行一些处理可以改变Tg’,如经常使用的退火处理,在退火处理过程中,会从无定形相中移走一小部分成分,如使用甘氨酸作为晶体的填充剂,取决于预冻的方法,可能一部分的甘氨酸分子会保留在样品的无定形相中,甘氨酸具有相对较低的Tg’(-42℃),因此让甘氨酸尽可能的结晶是非常重要的,这样可以提高样品中无定形相的Tg’,加快干燥,节省成本。对于赋形剂结晶,设计理想完善的方案,可以用DSC模仿冻结和退火工艺的条件来进行,这个方法可以参考Carpenter 和 Chang的文章内容。 在哪些步骤蛋白需要维持稳定性?实际上,从灌装到最终干燥的产品复水,每一步均会对蛋白造成损伤,并且要求配方的成分能够抑制蛋白的降解。在快速处理步骤(如灌装,预冻,干燥和复水等)中,主要的问题通常是物理损害,如低聚物的形成和/或蛋白沉淀;通常,蛋白从液体到固体的转变,相对与减缓化学变化,更多的会减缓蛋白的物理变化的速率,因此,储存过程中的化学降解经常是更严重的稳定性问题。在储存期间或复水时,蛋白也会发生聚合。在预冻和干燥过程中,受到冻结和干燥应力的作用,蛋白的结构很容易遭到破坏,如果在这些过程中,能够抑制蛋白去折叠(变性),那么降解过程就会达到最小化,因此,配方设计主要的关注点就是在这些过程中能够保护蛋白,在干燥后的样品中具有较高的Tg及较低的含水量,能阻止样品内部发生化学反应,更好的保持蛋白的天然性能。01在预冻过程中的蛋白的稳定性特定的蛋白是否易受冷冻破坏的影响取决于许多因素,除了在配方中包含适当的稳定剂外。一般来说,会考虑三个很重要的参数:蛋白浓度,缓冲液的种类以及预冻方法。蛋白浓度增加蛋白质的浓度能够提高蛋白对冻结变性的抵抗力,可以通过简单地测定冻融后蛋白聚合的百分比,该百分比与蛋白质浓度呈反比。通常,如果预冻过程中去折叠的蛋白分子部分与浓度无关,那么预计增加蛋白浓度会增加蛋白聚合。然而,现在人们认为,增加蛋白质浓度会直接减少冷冻诱导的蛋白质去折叠。据推测,冻结阶段的损伤包括蛋白在冰水界面的变性,假设只有有限数量的蛋白分子在这个界面变性,增加蛋白的初始浓度会导致较低比例的变性蛋白。处于实际的目的,将蛋白浓度作为一个重要的考虑因素,在配方开发过程中尽可能保持较高的浓度,就显得特别简单了。缓冲液种类缓冲液的选择也是非常关键,主要引起问题的是磷酸钠和磷酸钾,在预冻和退火过程中,二者的pH值会有明显的变化。对于磷酸钠,其二元碱形式的容易结晶,导致在冷冻样品中,剩余的无定形相中的pH会降到4或更低。对于磷酸钾,其二氢盐结晶后,pH会变到接近9. pH改变的风险以及对蛋白的损害可以通过提高最初的冷却速度,限制退火步骤的时间,降低缓冲液的浓度等来控制,所有这些措施可以降低盐类结晶的机会。快速冷冻,不进行退火也限制了蛋白质在暴露在冷冻状态下的时间。尽管其他的赋形剂能够辅助抑制pH的改变,较好的方法是避免使用磷酸钠和磷酸钾。在预冻阶段pH有较小变化的缓冲液包括柠檬酸盐,组氨酸,Tris溶液等。预冻方法排除由于pH变化造成的问题,在实验中发现,预冻过程中,蛋白质受破坏的程度跟冷却的速率有关系,较快的冷却速度形成的冰晶体较小,冰的比表面积越大,受破坏的程度越大,这个推测是由于蛋白在冰水界面变性导致。冷却的速度通常受冻干机设备本身性能的限制,然而,一些对冷冻敏感的蛋白,即使慢速冷却也会导致其变性。02、在干燥和储存过程中蛋白的稳定性尽管整个蛋白分子在预冻过程中保持了其原有的结构,然而,在后续的脱水干燥过程中如果不加入合适的稳定剂也会面临变性的风险。简单的说,当去除蛋白分子的水合外层时,蛋白质天然的结构便遭到破坏。对多个蛋白的红外光谱研究表明:无合适的稳定剂存在时,在干燥的蛋白样品中,其结构将会遭到去折叠。如果样品迅速复水,损伤的程度(如,聚合百分比)与干燥蛋白质的红外光谱的非天然表现直接相关。因此,降低复水后结构的破坏需要减小预冻和主干燥过程中蛋白结构的去折叠。而且,即使样品立即复水后100%的天然蛋白分子被恢复,干燥的固体中也会有相当一部分去折叠的分子。在复水过程中分子内的再折叠可以主导分子间的相互作用,从而导致聚集,在复水后表现为100%的天然分子。适当的赋形剂可以阻止或至少减轻蛋白结构的去折叠,配方是否成功可以通过红外光谱检查干燥后蛋白的二级结构来立即判断,更重要的是,发表的一些研究显示,干燥样品的长期稳定性取决于干燥过程中天然蛋白的保留量,如果干燥后的蛋白样品存在结构上的去折叠,即使样品在低于其Tg温度以下储存,蛋白也会很快被破坏,因此,红外光谱法可作为蛋白配方的另外一种工具,研发人员可以在冻干后对样品进行检测,确定其结构是否遭到破坏。欢迎先关注我们,下一期内容将继续为大家带来“实用建议:如何合理设计稳定的冻干蛋白配方(二)”,详细分享:蛋白样品冻干的首选赋形剂有哪些、基于成功蛋白冻干配方会导致最终失败的一些细节问题等。莱奥德创冻干技术分享关注“莱奥德创冻干工场“,立即获取冻干线上技术分享内容。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干技术分享平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题内容分享。内容结合了来自Biopharma的冻干理论指导体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题内容。获取方式Step 1:关注公众号 扫码关注莱奥德创公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的内容Banner Step 4:开始学习 更多关于冻干技术分享平台的介绍请点击下方阅读:● 冻干免费技术内容获取-莱奥德创金字塔冻干技术分享平台► 点击阅读如果您对上述设备或冻干服务感兴趣,欢迎随时联系德祥科技/莱奥德创,可拨打热线400-006-9696或点击下方链接咨询。译自:《Rational Design of Stable Lyophilized Protein Formulations:Some Practical Advice》 John F.Carpenter,Michael J.Pikal,Byeong S.Chang,Theodore W.RandolpH pHarmaceutical Research, Vol.14,No.8,1997* 如有理解错误之处,还请参考原文关于莱奥德创冻干工场上海莱奥德创生物科技有限公司专注于提供前沿的冻干设备应用和制剂开发相关服务,依托于合作伙伴加拿大ATS集团SP品牌和英国Biopharma Group等的紧密合作,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。莱奥德创在上海及广州设有实验室,拥有专业的技术团队及国内外专家支持体系。莱奥德创面向生物制药、食品科学等各个领域行业客户,提供冻干研发、放大、委托生产及培训等服务。前期研发● 产品配方特征研究:共晶点温度(Te)、塌陷温度(Tc)、玻璃态转化温度(Tg'、Tg)测定等;● 实验室工艺开发:冻干工艺开发:冻干制剂配方开发,工艺确定,申报材料撰写;● 冻干工艺优化:利用中试冻干机上PAT工具优化及缩短工艺;● 冻干产品质量指标测试:水分含量,冻干饼韧度分析;● 咨询服务:如产品外观问题、产品质量问题、其他troubleshooting等;工艺放大/技术转移● 冻干工艺转移/放大: 远程技术指导+现场服务;● 小批量冻干生产(NON-GMP),临床一期生产(GMP);其他业务● 企业小团队线上线下培训服务:冻干原理,工艺开发,设备使用维护等;● 冻干设备租赁服务。400-006-9696www.lyoinnovation.com莱奥德创冻干工场中国(上海)自由贸易试验区富特南路215号自贸壹号生命科技产业园4号楼1单元1层1002室德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 实用建议:如何合理设计稳定的冻干蛋白配方(二)
    本篇继上一篇“实用建议:“如何合理设计稳定的冻干蛋白配方(一)”继续为大家分享蛋白样品冻干的理想赋形剂有哪些、基于成功蛋白冻干配方会导致Final失败的一些细节问题等。 》》》对于蛋白样品,理想的赋形剂有哪些?从冻干对蛋白的所有危险以及我们需要在各个环节考虑的所有因素来看,快速开发一个稳定的蛋白配方看起来似乎是不可能的。幸运的是,如果我们能够采用合理的方法对配方进行很好的设计,大多数的配方问题是可以得到快速解决。这里,我们主要是对初始配方成分的选择提供基础。在一些情况下,初始的配方很有可能就是走向市场的Final产品。给定的组分,进行不同微小的修改,已经被成功地用于蛋白药物。需要强调的是对于冻干配方,在能够提供良好稳定性和结构的情况下,成分越简单越好。所加入的赋形剂都须要有数据证明对配方起有益的作用。01给定蛋白质维持稳定性的具体条件对于一些通用型的稳定剂,可以有效地保护绝大多数的蛋白质,在选择这些稳定剂之前,我们有必要通过优化影响蛋白物理和化学稳定性的具体因素来选择合适的稳定剂。影响蛋白物理和化学稳定性的具体因素:1. 避免极端的pH值可以显著降低蛋白脱氨基的几率。而且,通过优化溶液的pH值,可以显著提高蛋白在冻干过程中抵抗去折叠的能力。2. 还应该研究其他能提高蛋白质稳定性的特异性配体(通过增加去折叠的自由能)。肝素和其他聚阴离子对生长因子的稳定性影响就是一个很好的例子。3. 其它需要考虑的重要因素是离子强度对蛋白的去折叠和聚合的影响。须意识到,在预冻过程中,由于冰的形成将溶液浓缩,离子强度可增加50倍。因此负责原料药纯化和做药物配方前研究的人员已经对这些问题有了深刻的认识,配方科学家应该在着手设计冻干配方之前与他们进行沟通。即使在针对蛋白质稳定性优化的特定的溶液条件下,但是如果样品需要幸免于冻干的损害并长期保存,有必要加入一些其它的保护剂。首先,我们考虑一些已经用在冻干蛋白配方中的成分,但它们不能提供蛋白的稳定性,而且可能会促进蛋白在储存期间的破坏。我们将提供一个简单、有效的思路,并且讨论选择这些成分的原理。02不能提供蛋白稳定性的赋形剂部分多聚物作为赋形剂的优缺点在冻干工艺的快速开发过程中,为了获得一个强壮的蛋糕结构,一些多聚物,如葡聚糖,羟乙基淀粉,因具有较高的塌陷温度,导致Final产品的Tg也会比较高,常常是受欢迎的赋形剂。不好的是,这些多聚物在冻干过程中不能抑制蛋白结构的去折叠,因此在后续的储存中不能提供稳定性。无法抑制冻干诱导变性的原因大概是聚合物过大而无法与蛋白质氢键合,无法代替脱水过程中损失的水,或者是因为聚合物与蛋白质形成了分离的无定形相。尽管当这些多聚物单独使用时不是一种很好的稳定剂,但是经证实,如果其结合双糖稳定剂可以具有较好好的作用。冻干过程中的有效稳定剂对大量的化合物进行测定,显示在冻干过程在较有效的稳定剂是双糖,但是避免使用还原性糖。还原性糖在冻干过程中可以有效抑制蛋白结构的去折叠,但是在干燥样品的储存过程中,可以通过美拉德反应(糖的羰基和蛋白质上的游离氨基)降解蛋白,结果形成含有降解蛋白的棕色糖浆,而不是含活性蛋白的白色蛋糕状结构。通常,我们减缓这个过程的方法是将样品储存在零度以下,这就失去了产品冻干的意义,这些还原性的糖包括:葡萄糖,乳糖,麦芽糖,麦芽糊精等。在早期的研究中,晶体类的填充剂如甘露醇,甘氨酸在冻干过程中不能提供蛋白很好的稳定性,但是,一些配方使用了这两种物质的混合物,并且成功地推向了市场。在这些案例中,甘露醇和甘氨酸适当的比例可以导致一大部分的化合物保持无定形状态。这部分无定形状态的化合物足以抑制冻干过程中蛋白的去折叠并且提供长期储存的稳定性。但是建议谨慎选择这种方法,因为达到合适的工艺条件再加上合适的赋形剂比例,既耗时又很难办到的。03赋形剂的合理选择如何合理的选择赋形剂?案例分享举个具体的案例说明,假设:1. 蛋白药物的浓度定在2mg/ml;2. 主要的降解途径是冻干后或复水后蛋白的聚合以及储存期间蛋白的脱氨基;3. 优化具体的条件(如用柠檬酸盐缓冲液控制pH为6)只能将冻干和复水后聚合程度降到10%,尽管样品在低于Tg温度的20℃下进行储存脱氨基速度仍然不能接受。加入晶体类的膨胀剂,如甘露醇,保持样品强壮的结构及良好的外观。在这种情况下,主要缺少的成分是非还原性双糖,其在干燥样品中会与蛋白形成无定形的结构,作为主要的稳定剂,主要选择蔗糖或海藻糖。它们在预冻阶段能够很有效地保护蛋白并且能够很好的抑制复水过程中蛋白结构的去折叠。预冻阶段的保护取决于初始糖的总浓度,有时,超过5%(w/t)的浓度可以尽可能大程度地保持蛋白的稳定性。相反,在干燥阶段,蛋白的保护取决于Final糖和蛋白的质量比。一般来说,糖和蛋白的重量比至少为1:1时,可以提供较好的稳定性,当达到5:1时,可以达到很佳的稳定性。保持蛋白的浓度不变,选取一定范围的糖浓度进行筛选和检测,通过干燥样品中天然结构保留率以及复水后蛋白聚合降低的程度来确定最合适的浓度。一般来说,合适的糖浓度,可以在冻干过程中提供蛋白很好的稳定性,并且如果Final样品的Tg高于储存温度,在后期的储存期间也可以提供蛋白较好的稳定性。例如,假定最高的储存温度为30℃,那么Final产品的Tg >50℃应该是稳定的,但前提是Final样品的含水量需要达到允许的水平,因为水分的存在会降低样品的Tg。可以使用DSC检测每种样品的Tg值。蔗糖/海藻糖如何选择?蔗糖和海藻糖,作为两种常用的稳定剂,均有其优势和劣势,可根据不同的情况进行选择:● 在任何水分含量的样品中,海藻糖均会有较高的Tg,因此较为容易冻干。另外Tg >50℃的条件可以允许样品有较高的残留水分。然而,技术工程师应该能够针对这两种双糖设计经济有效的工艺。如果样品中蛋白浓度较高,可以提高Tg,这样就会弱化海藻糖的作用;● 与蔗糖相比,海藻糖更能抵抗酸解,双糖水解后会产生还原性的单糖,这是需要避免的。通常情况下,如果pH不是很低,如pH4左右或更低,这个应该不是很大的问题;● 蔗糖在冻干过程中抑制蛋白去折叠方面看似比海藻糖更有优势,当蛋白在预冻阶段非常不稳定(需要较高的糖浓度)和/或蛋白浓度较高时,这种优势更明显。海藻糖的相对不稳定性是由于在预冻和干燥过程中其更易于与蛋白之间产生相分离。对于给定的配方,这是否会有问题不能被预测,因此,每种制剂配方都需要检查其保护蛋白的能力。表面活性剂的作用在这里,我们案例中的配方可能就比较完整了,就像许多蛋白质的情况一样。然而,我们假设,即使蔗糖完全抑制可检测的蛋白质去折叠,正如用红外光谱对干燥固体的结构分析所评估那样,在复水后,仍然有1%的聚合蛋白。因为在原始的样品中是没有任何聚合的,假设在冻干过程中,一小部分蛋白发生了去折叠,在复水后,部分这些分子又重新折叠,但是部分聚合在一起。这个实际上看起来是个很普遍的问题,就像在冻干之前一些处理造成的聚合。幸运的是,通过在配方中加入一些非离子型表面活性剂,如聚山梨醇酯(吐温)通常可以抑制蛋白的聚合。要求的浓度通常比较低(<0.5% w/v),通过将表面活性剂滴定到包含所有其它组分的冻干制剂中,可以识别出理想浓度。应避免加入过量,因为表面活性剂在室温下是液体的状态,如果浓度较高,会降低配方的玻璃态转变温度。然而,通常在优化蛋白质稳定性所需的非常低的浓度下,不会有问题。表面活性剂看作是画龙点睛,通常在冻干产品配方中加入表面活性剂是有利的,可以抑制处理过程中界面引起的去折叠和聚集(如起泡夹带或瓶-液界面引起的)。最重要的是表面活性剂在冻干/复水过程中抑制聚合的能力,目前还不太清楚表面活性剂的保护在哪一步起作用的。有资料证明,表面活性剂在冻融及复水过程中可减少蛋白聚合并且在预冻阶段有助于抑制蛋白的去折叠,对干燥固体中聚集物特定红外波段的检查表明,表面活性剂可以抑制冻干过程中产生的聚集。在复水过程中,曲折叠分子的聚合能通过表面活性剂得到抑制,猜测是通过分子之间的相互作用和/或作为一种润湿剂,加速冻干产品的溶解。如果显示表面活性剂在复水过程中是有益的,则可以通过在稀释剂中加入表面活性剂来达到这种效果。 》》》还有哪些意想不到的危险可能会导致失败?尽管根据上述给出的建议,对于给定蛋白,我们可以设计出成功的配方,但是,还有其他一些问题可能会导致Final失败,特别是在长期储存期间。● 赋形剂中经常会有一些污染物,这些会导致蛋白快速的化学降解,糖类和甘露醇中会含有过渡金属元素,表面活性剂可能被过氧化物污染,所有的这些可以促进蛋白的氧化;● 在储存过程中,水分从胶塞转移到产品,引起水分参与的降解,直接损坏蛋白,并且降低蛋白的Tg,加速蛋白的降解,特别是当储存温度高于Tg 时;● 即使在高温(如40℃)下的储存稳定性研究中,一切都表现出理想的状态,但有一个常见的,但很少报道的事件可能是灾难性的,这个问题可以用下面的故事来说明。产品在实验室中在40℃下储存可以保持几个月的稳定性,在冬季,产品在运输过程中也保持良好的稳定性,没有来自消费者的问题报告,然而,有时在夏季,运输后,在室温下储存仅2周后发现产品过度降解,用差示扫描量热仪DSC对一开始的干燥粉末进行了检查,给出了合理的解释,结果发现,制剂中的甘露醇没有全部结晶,而是形成了Tg约为45℃的亚稳玻璃态,当在夏季运输过程中,超过了这个温度时,甘露醇变发生结晶,最先与甘露醇结合的水被转移到了剩余的无定形相中,蛋白相的水含量增加,降低了它的玻璃化转变温度,因此,加速了蛋白质的降解。这个问题可以使用DSC设计合理的退火方案使甘露醇再预冻阶段全部结晶来避免,另外也可以通过调整甘露醇的浓度,降低残留水分含量,使甘露醇即使在45℃的条件下也不会结晶。 》》》对于给定的蛋白药物,这些信息足够吗?对于大多数的蛋白,上面给出的建议一般会设计出成功的配方,但是,每种蛋白都有其独特的物理化学特性和稳定性要求。因此,针对每种不同的蛋白,配方也需要自定义设计。结合蛋白本身的特性知识以及选择合理的赋形剂可以快速设计出稳定的冻干蛋白配方。最后,在快速冻干工艺中保持干物质的物理性质和在干燥后获得天然的蛋白质之间需要折衷,研究表明:当蔗糖结合葡聚糖一起使用时,由于蔗糖的作用,蛋白质的天然结构可以保留在干燥的固体中;葡聚糖的存在提高了制剂的Tg,并提供了一种无定形的填充剂,快速干燥的同时保留了所需的蛋糕性质;其他的一些聚合物有可能提供与葡聚糖相同的优势,如羟乙基淀粉也具有较高的Tg,通常比葡聚糖更容易接受用于肠胃外给药。期望可以合理地利用这些多聚物作为Tg的调节剂,使得制剂更稳定,更容易快速冻干。莱奥德创冻干技术分享关注“莱奥德创冻干工场“,立即获取冻干线上技术分享内容。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干技术分享平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题内容分享。内容结合了来自Biopharma的冻干理论指导体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题内容。获取方式Step 1:关注公众号 扫码关注莱奥德创公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的内容Banner Step 4:开始学习 如果您对上述设备或冻干服务感兴趣,欢迎随时联系德祥科技/莱奥德创,可拨打热线400-006-9696或点击下方链接咨询。译自:《Rational Design of Stable Lyophilized Protein Formulations:Some Practical Advice》 John F.Carpenter,Michael J.Pikal,Byeong S.Chang,Theodore W.RandolpH pHarmaceutical Research, Vol.14,No.8,1997* 如有理解错误之处,还请参考原文关于莱奥德创冻干工场上海莱奥德创生物科技有限公司专注于提供前沿的冻干设备应用和制剂开发相关服务,依托于合作伙伴加拿大ATS集团SP品牌和英国Biopharma Group等的紧密合作,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。莱奥德创在上海及广州设有实验室,拥有专业的技术团队及国内外专家支持体系。莱奥德创面向生物制药、食品科学等各个领域行业客户,提供冻干研发、放大、委托生产及培训等服务。前期研发● 产品配方特征研究:共晶点温度(Te)、塌陷温度(Tc)、玻璃态转化温度(Tg'、Tg)测定等;● 实验室工艺开发:冻干工艺开发:冻干制剂配方开发,工艺确定,申报材料撰写;● 冻干工艺优化:利用中试冻干机上PAT工具优化及缩短工艺;● 冻干产品质量指标测试:水分含量,冻干饼韧度分析;● 咨询服务:如产品外观问题、产品质量问题、其他troubleshooting等;工艺放大/技术转移● 冻干工艺转移/放大: 远程技术指导+现场服务;● 小批量冻干生产(NON-GMP),临床一期生产(GMP);其他业务● 企业小团队线上线下培训服务:冻干原理,工艺开发,设备使用维护等;● 冻干设备租赁服务。400-006-9696www.lyoinnovation.com莱奥德创冻干工场中国(上海)自由贸易试验区富特南路215号自贸壹号生命科技产业园4号楼1单元1层1002室德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。德祥始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 稳定性线下课程-如何使用Turbiscan分析配方的不稳定机理,如何以数据微基础有效的改善配方,制定质控标准
    大昌华嘉科学仪器部重磅发布稳定性分析线下系列讲座,课程议题是如何使用Turbiscan分析配方的不稳定机理,如何以数据微基础有效的改善配方,制定质控标准。线下课程更加注重理论基础和实际操作培训,让用户可以体验高效、精确的稳定性测试技术。欢迎大家参加!课程详情主讲专家介绍何羽薇何羽薇老师有30年分析仪器使用经验,重点关注材料化学、表面化学和流变学相关仪器的应用开发。何羽薇老师的应用经验涵盖食品、化妆品、陶瓷、涂料、墨水、石油化工等领域,擅长仪器图谱分析并熟练将仪器得到的数据应用到产品开发。研究方向重点在使用多重光散射仪,粒度仪、流变仪,表界面张力仪,ZETA电位仪,并结合稳定性基础DLVO理论,从表面化学、颗粒间相互作用入手,分析样品稳定性机理,为新产品的研发,问题样品的解决提供思路和解决方案。培训适合对象◆ 生产企业负责食品研发、质量控制相关负责人◆ 食品添加剂的研究人员、应用工程师◆ 高等食品院校和科研机构中从事食品行业的科研人培训内容简介天1、 稳定性基础理论DLVO理论2、 体相中乳化剂的存在方式及其对稳定性的影响3、 各种类型乳化吸附特性比较及乳化剂的界面竞争吸附4、 最新的picking乳液和Junus乳液的特点及应用5、 推荐乳化剂预测方法综述及乳状液稳定性预测实验设计6、 实操第二天1、 流变学基础知识2、 各种类型稳定剂的基本流变学分类3、 不同的流变仪的不同的作用4、乳状液体系稳定剂与乳化液滴的相互作用及其对体系稳定性的影响5、推荐稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么6、实操第三天1、工艺过程中,乳化罐叶片位置角度对混合均匀度的而影响,需要关注的流体动力学影响2、热处理对稳定性的影响3、均质与杀菌工艺参数影响稳定性的基本原理4、推荐评价稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么5、如何解读稳定性分析仪报告,从中可以得到哪些信息。稳定性实验数据处理 GB/T 384316、疑难解答互动交流线下实操课程连续举办4期,每期3天:上海,10月14-16日收费标准本次线下课程为收费培训,市场价格3500元/人。开课前10天报名享优惠价格,2800元/人。本次课程开班人数最低为15人,报名满15人开班,不满暂不开班,请感兴趣的朋友踊跃预报名。报名方式:联系人:李文艳 电话:13811359706/4008210778邮箱:swallow.li@dksh.com或者识别以下二维码报名~
  • 大连化物所实现高温稳定的铜基催化剂的研制
    近日,大连化物所碳资源小分子与氢能利用创新特区研究组(DNL19T3)孙剑研究员、俞佳枫副研究员团队,与日本富山大学Noritatsu Tsubaki教授、我所电镜技术研究组(DNL2002)刘岳峰副研究员等人合作,成功构建了800℃高温稳定的铜基多相催化剂。合作团队结合磁控溅射(Sputtering,SP)和火焰喷射(Flame spray pyrolysis,FSP)两种负载型催化剂制备新技术,分别对金属铜的电子结构和TiO2载体的可还原性进行重构,首次在较低温条件下构建了非贵金属铜基催化剂上经典的金属载体强相互作用(Strong metal-support interaction, SMSI),进而实现了耐水耐高温铜催化剂的可控制备。  长期以来,铜基催化剂因其廉价和高活性而被广泛应用于多种工业催化反应中。但受限于较低的塔曼温度,铜纳米颗粒极易在300℃以上烧结聚集而导致失活,严重限制了其高温应用。因此,构建可稳定铜颗粒的保护层,从根本上限制其聚集长大是解决这一问题的关键技术之一。然而,金属铜的功函数较低,且对氢气活化能力较弱,很难诱导载体物种向其表面迁移形成包裹,无法像传统贵金属一样在温和条件下形成金属载体强相互作用。  本工作中,合作团队通过利用自主开发的SP技术,改变了Cu的外围电子环境,同时采用FSP技术,增加了氧化物中晶格氧无序度,分别促进电子转移和载体还原,实现了在300℃较温和条件下即可形成SMSI。研究发现,在高温(550-800℃)CO2加氢(逆水气变换)反应条件下,该铜基多相催化剂可连续稳定运行700小时,且未见颗粒长大。本工作实现了铜催化剂上SMSI的构筑和调控,阐明了催化剂表界面上的反应过程和催化机理,为提高铜基催化剂的水热稳定性提供了全新策略,有望进一步拓宽铜基催化剂的高温应用领域。  近年来,孙剑团队在CO2加氢和先进纳米催化材料的制备和新应用方面取得了系列成果,采用SP技术(Sci. Adv.,2018;ACS Catal.,2014)和FSP技术(ACS Catal.,2020;Chem. Sci.,2018;Chem. Comm.,2021;Appl. Catal. B: Environ. ,2016)先后开发了一系列与传统催化剂不同性质的催化材料,并成功应用于加氢、氧化、重整等多种催化反应中。  相关成果以“Ultra-high Thermal Stability of Sputtering Reconstructed Cu-based Catalysts”为题,于近日发表在《自然-通讯》(Nature Communications)上。该文章的第一作者是大连化物所DNL19T3俞佳枫。该工作得到国家自然科学基金、中国科学院青年创新促进会、兴辽英才青年拔尖人才计划、大连市杰出青年科技人才计划、大连化物所创新基金等项目的支持。(文/图 俞佳枫、孙剑)  文章链接:https://doi.org/10.1038/s41467-021-27557-1
  • 稳定性分析系列讲座-产品稳定性的机理、影响因素及如何使用仪器快速预判
    大昌华嘉科学仪器部重磅发布稳定性分析系列讲座,包括线上和线下课程两类,本系列课主要介绍了多重光散射技术在食品领域的应用,并阐述了不同的配方、工艺对产品稳定性的影响效果。同时,线下课程更加注重理论基础和实际操作培训,让用户可以体验高效、精确的稳定性测试技术。欢迎大家参加!线上课程:讲师介绍何羽薇大昌华嘉科学仪器部技术专员何羽薇老师有30年分析仪器使用经验,重点关注材料化学、表面化学和流变学相关仪器的应用开发。课程详情主讲专家介绍——何羽薇何羽薇老师的应用经验涵盖食品、化妆品、陶瓷、涂料、墨水、石油化工等领域,擅长仪器图谱分析并熟练将仪器得到的数据应用到产品开发。研究方向重点在使用多重光散射仪,粒度仪、流变仪,表界面张力仪,ZETA电位仪,并结合稳定性基础DLVO理论,从表面化学、颗粒间相互作用入手,分析样品稳定性机理,为新产品的研发,问题样品的解决提供思路和解决方案。培训适合对象◆ 生产企业负责食品研发、质量控制相关负责人◆ 食品添加剂的研究人员、应用工程师◆ 高等食品院校和科研机构中从事食品行业的科研人培训内容简介从7月13日起,课程将首先从食品行业的稳定性问题开始分享。每周一、周四上午 10:30-11:30 精彩内容源源不断7月13日 讲,综述(1h)◆ 关于稳定性,讲讲那些你没有关注但是很重要的东西◆ 从原料、配方到工艺,在开发产品的时候需要关注的那些关键点,如何检测,如何预判,如何解决7月16日 第二讲,乳品及含乳饮品稳定性的特点,添加不同成分的乳品不稳定性的原因如何预判及解决方案(1h)◆ 纯牛奶稳定性◆ 高钙奶、高蛋白奶◆ 风味奶(红枣奶、香蕉奶)◆ 咖啡奶(中性乳饮料)◆ 发酵乳及酸饮:褐色乳饮料、酸性奶饮料、搅拌型酸奶◆ 凝固型酸奶、鲜奶酪、再制奶酪等7月20日 第三讲、乳化类型产品的特点,不稳定的原因,需要特别注意点(1h)◆ 稀奶油、发泡奶油◆ 核桃奶、杏仁露、椰奶、豆奶7月23日 第四讲,果汁饮料的稳定性特点,不稳定的原因,需要特别注意点(1h)◆ 透明果汁饮料◆ 不透明脱脂饮料◆ 多肽类蛋白饮料7月27日 第五讲,粉体类原料的润湿性对产品稳定性的重要性,如何评价(1h)◆ 奶粉◆ 植脂末◆ 茶粉7月30日 第六讲,如何获得口感极佳的肉类制品,如何控制肉汤的口感和稳定性(1h)◆ 肉的乳化性、凝胶性,分别有哪些影响因素需要控制◆ 制备良好口感制品,需要的稳定性控制因素◆ 肉汤的物理稳定性,决定了肉汤的口感8月3日 第七讲,调味料稳定性(1h)◆ 耗油的稳定性研究◆ 果酱、番茄酱、芝麻酱、花生酱的稳定性研究◆ 色拉酱的稳定性研究8月6日 第八讲,其他(1h)◆ 啤酒的澄清度控制因素,啤酒泡沫稳定性评价◆ 打蛋液泡沫的稳定性决定了烘焙产品的口感 识别二维码报名“稳定性分析系列讲座”同时,我们推出了精彩的线下实操课程:有关分散体系稳定性的基础知识及分散体系中各组分的潜在不稳定风险及其原理分析天1、 稳定性基础理论DLVO理论2、 体相中乳化剂的存在方式及其对稳定性的影响3、 各种类型乳化吸附特性比较及乳化剂的界面竞争吸附4、 最新的picking乳液和Junus乳液的特点及应用5、 推荐乳化剂预测方法综述及乳状液稳定性预测实验设计6、 实操第二天1、 流变学基础知识2、 各种类型稳定剂的基本流变学分类3、 不同的流变仪的不同的作用4、乳状液体系稳定剂与乳化液滴的相互作用及其对体系稳定性的影响5、推荐稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么6、实操第三天1、工艺过程中,乳化罐叶片位置角度对混合均匀度的而影响,需要关注的流体动力学影响2、热处理对稳定性的影响3、均质与杀菌工艺参数影响稳定性的基本原理4、推荐评价稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么5、如何解读稳定性分析仪报告,从中可以得到那些信息。稳定性实验数据处理 GB/T 384316、疑难解答互动交流线下实操课程时间,连续4个月,每月1期,每期3天:线下培训为收费培训,具体价格请电话/邮箱咨询。欢迎感兴趣的朋友踊跃报名!
  • 稳定性分析系列讲座-产品稳定性的机理、影响因素及如何使用仪器快速预判
    大昌华嘉科学仪器部重磅发布稳定性分析系列讲座,包括线上和线下课程两类,本系列课主要介绍了多重光散射技术在食品领域的应用,并阐述了不同的配方、工艺对产品稳定性的影响效果。同时,线下课程更加注重理论基础和实际操作培训,让用户可以体验高效、精确的稳定性测试技术。欢迎大家参加!线上课程:讲师介绍何羽薇大昌华嘉科学仪器部技术专员何羽薇老师有30年分析仪器使用经验,重点关注材料化学、表面化学和流变学相关仪器的应用开发。课程详情主讲专家介绍——何羽薇何羽薇老师的应用经验涵盖食品、化妆品、陶瓷、涂料、墨水、石油化工等领域,擅长仪器图谱分析并熟练将仪器得到的数据应用到产品开发。研究方向重点在使用多重光散射仪,粒度仪、流变仪,表界面张力仪,ZETA电位仪,并结合稳定性基础DLVO理论,从表面化学、颗粒间相互作用入手,分析样品稳定性机理,为新产品的研发,问题样品的解决提供思路和解决方案。培训适合对象◆ 生产企业负责食品研发、质量控制相关负责人◆ 食品添加剂的研究人员、应用工程师◆ 高等食品院校和科研机构中从事食品行业的科研人培训内容简介从7月13日起,课程将首先从食品行业的稳定性问题开始分享。每周二上午 10:30-11:30 精彩内容源源不断7月13日 讲,综述(1h)◆ 关于稳定性,讲讲那些你没有关注但是很重要的东西◆ 从原料、配方到工艺,在开发产品的时候需要关注的那些关键点,如何检测,如何预判,如何解决7月16日 第二讲,乳品及含乳饮品稳定性的特点,添加不同成分的乳品不稳定性的原因如何预判及解决方案(1h)◆ 纯牛奶稳定性◆ 高钙奶、高蛋白奶◆ 风味奶(红枣奶、香蕉奶)◆ 咖啡奶(中性乳饮料)◆ 发酵乳及酸饮:褐色乳饮料、酸性奶饮料、搅拌型酸奶◆ 凝固型酸奶、鲜奶酪、再制奶酪等7月21日 第三讲、乳化类型产品的特点,不稳定的原因,需要特别注意点(1h)◆ 稀奶油、发泡奶油◆ 核桃奶、杏仁露、椰奶、豆奶7月28日 第四讲,果汁饮料的稳定性特点,不稳定的原因,需要特别注意点(1h)◆ 透明果汁饮料◆ 不透明脱脂饮料◆ 多肽类蛋白饮料8月4日 第五讲,粉体类原料的润湿性对产品稳定性的重要性,如何评价(1h)◆ 奶粉◆ 植脂末◆ 茶粉8月11日 第六讲,如何获得口感极佳的肉类制品,如何控制肉汤的口感和稳定性(1h)◆ 肉的乳化性、凝胶性,分别有哪些影响因素需要控制◆ 制备良好口感制品,需要的稳定性控制因素◆ 肉汤的物理稳定性,决定了肉汤的口感8月18日 第七讲,调味料稳定性(1h)◆ 耗油的稳定性研究◆ 果酱、番茄酱、芝麻酱、花生酱的稳定性研究◆ 色拉酱的稳定性研究8月25日 第八讲,其他(1h)◆ 啤酒的澄清度控制因素,啤酒泡沫稳定性评价◆ 打蛋液泡沫的稳定性决定了烘焙产品的口感 识别二维码报名“稳定性分析系列讲座”同时,我们推出了精彩的线下实操课程:有关分散体系稳定性的基础知识及分散体系中各组分的潜在不稳定风险及其原理分析天1、 稳定性基础理论DLVO理论2、 体相中乳化剂的存在方式及其对稳定性的影响3、 各种类型乳化吸附特性比较及乳化剂的界面竞争吸附4、 最新的picking乳液和Junus乳液的特点及应用5、 推荐乳化剂预测方法综述及乳状液稳定性预测实验设计6、 实操第二天1、 流变学基础知识2、 各种类型稳定剂的基本流变学分类3、 不同的流变仪的不同的作用4、乳状液体系稳定剂与乳化液滴的相互作用及其对体系稳定性的影响5、推荐稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么6、实操第三天1、工艺过程中,乳化罐叶片位置角度对混合均匀度的而影响,需要关注的流体动力学影响2、热处理对稳定性的影响3、均质与杀菌工艺参数影响稳定性的基本原理4、推荐评价稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么5、如何解读稳定性分析仪报告,从中可以得到那些信息。稳定性实验数据处理 GB/T 384316、疑难解答互动交流线下实操课程时间,连续4个月,每月1期,每期3天:线下培训为收费培训,具体价格请电话/邮箱咨询。欢迎感兴趣的朋友踊跃报名!
  • 热管理相变浆料PCM的稳定性表征
    PCM 浆料由于其高效的传热和热能存储特性,是高效热能管理的替代解决方案,受到越来越多关注。PCM 浆料有多种类型,例如冰浆、笼状物浆料和盐水合物 PCM 浆料 (SHPCMS)、微胶囊化 PCM 浆料 (MPCMS)、形状稳定 PCM 浆料 (SSPCMS) 和相变乳液 (PCE)。PCE 中的 PCM 液滴/颗粒可以在表面活性剂的帮助下分布到不混溶的载体流体中,这简化了材料的制备,使其成为一种有前途的 PCM 浆料。由于晶体生长的固有特性和与温度相关的固体分数,原始盐水合物 PCM 浆料无法呈现出良好的流动性和稳定性特征,有研究发现,表面活性剂和稳定剂的共同作用可以抑制晶体颗粒的生长,从而有助于浆体稳定性。本文基于为最佳开发盐水合物 PCM 浆料而提出的一种方法,介绍了 CaCl2&sdot 6H2O 浆料的制备、特性和性能改进。通过重力和离心稳定性测试研究了浆料的稳定性,以验证稳定剂的有效性。材料: 六水氯化钙 (CaCl2&sdot 6H2O)——基料;六水氯化锶 (SrCl2&sdot 6H2O) ——成核剂;十六烷基二甲基甜菜碱 (C16H33N+(CH3)2CH2COO-)——两性离子表面活性剂;聚乙烯醇 PVA——稳定剂;水杨酸钠——添加剂。浆料稳定性表征进行两组稳定性试验,其中设置了冷水浴系统以方便进行重力稳定性试验。在重力稳定性试验中,将装在单独试管中的不同CaCl2&sdot 6H2O浆料样品浸入浴中,观察颗粒沉降过程。晶体颗粒的沉降导致相分离界面,其变化由数码相机记录。本研究进行了大约一周的重力稳定性试验。另一项稳定性测试是在基于LUMiFuge的加速力场下进行的。它被用来深入了解不同添加剂对稳定性增强的影响。与重力稳定性试验相比,它依靠透射率百分比对时间的积分来分析浆料样品的“不稳定指数”,避免了在没有明显相分离的情况下引入的不确定性,并允许加速沉降过程。在本研究中,使用 LUMiFuge进行稳定性测试的转速在 30 分钟的测试期内设定为 1000 r/min。图1 重力稳定性试验中晶体颗粒的沉降过程(浆体样品从左到右分别为:原始CaCl2&sdot 6H2O浆体;添加成核剂;添加成核剂和表面活性剂;添加成核剂、表面活性剂和稳定剂)a) 刚生成时;b) 5分钟后;c) 15分钟后;d) 1小时后;e) 18小时后;f) 2天后;g) 4天后;h) 7天后。 图 2. 加速稳定性试验中不同 CaCl2&sdot 6H2O 浆料样品的不稳定性。 图1比较了不同浆料样品的重力稳定性,图2进一步展示了部分浆料样品在离心场下的稳定性测试,以深入了解不同添加剂提高稳定性的机理。稳定性测试在 15℃的水浴或环境空气中进行(分别用于重力和离心稳定性测试),浆料的质量固体分数约为 17w.t.%。从图1 可以清楚地看到,原料 CaCl2&sdot 6H2O 浆料迅速分层,在整个过程中呈现出沉积层高度最低和上方清澈透明溶液。原料 CaCl2&sdot 6H2O 浆料的相对较大的粒径是阻碍布朗运动的关键因素,导致沉降过程更快。重力稳定性试验中,添加成核剂和同时添加成核剂和表面活性剂的样品的沉降层高度在前18小时内相似(见图1)。有趣的是,沉降高度出现了交叉,添加成核剂和表面活性剂的样品在第一个小时内呈现出较快的分离过程,而之后速度减慢。这种交叉现象在加速稳定性试验中得到了证实,如图2所示。在重力稳定性试验中,添加成核剂的样品的沉降高度在18小时后继续略有降低,而同时添加成核剂和表面活性剂的浆料样品没有明显变化(见图1)。一开始的相似是因为晶体颗粒经历了一个长大过程,布朗运动对这些尺寸较小的颗粒影响较大。交叉现象可能是由于表面活性剂在晶粒表面积累起缓冲作用,阻碍了晶粒与溶液中分子的碰撞,从而抵消了部分布朗运动的影响。 但随着晶体的生长,由于仅含成核剂的 CaCl2&sdot 6H2O 浆料的粒径较大,布朗运动的相对影响减弱(图3b和c)。此外,在含成核剂和表面活性剂的浆料中,针状晶粒的尺寸相对较小,长宽比较大,在两性离子表面活性剂电位引入的排斥力的帮助下,可以形成更高的沉积层。图2证实了在加速稳定性测试中,含成核剂和表面活性剂的浆料样品的不稳定性低于仅含成核剂的浆料样品。相比之下,在重力和离心稳定性试验中,含有所有添加剂的浆料样品仅观察到轻微的分层。除了小粒径的影响外,PVA 在水杨酸钠的帮助下引入的综合效应也起到了一定作用,水杨酸钠作为支撑基质来容纳和隔离晶体颗粒。为了区分水杨酸钠的影响,在离心稳定性试验中测试了含有成核剂、表面活性剂和水杨酸钠的额外浆料样品。如图2所示,额外浆料样品的分层似乎经历了较慢的沉降过程,但最终的不稳定性与同时含有成核剂和表面活性剂的浆料样品相同。这是由于水杨酸钠的存在通过重构胶束增加了粘度,但粘度的增加与PVA和水杨酸钠共同的基质支持作用不同。图3. 不同浆料样品的晶体颗粒形态特征:a) 原始 CaCl2&sdot 6H2O 浆料;b) 添加成核剂;c) 添加成核剂和表面活性剂;d) 添加成核剂、表面活性剂和稳定剂。
  • 全自动乌氏粘度计在PVP(聚乙烯吡咯烷酮)材料中的应用
    聚乙烯吡咯烷酮(polyvinyl pyrrolidone),简称PVP,是一种非离子型高分子化合物,是N-乙烯基酰胺类聚合物中独具特色的精细化学品。已发展成为非离子、阳离子、阴离子3大类,工业级、医药级、食品级3种规格,相对分子质量从数千至一百万以上的均聚物、共聚物和交联聚合物系列产品,并以其独特的性能获得广泛应用。PVP(聚乙烯吡咯烷酮)材料作为一种合成水溶性高分子化合物,具有水溶性高分子化合物的一般性质,胶体保护作用、成膜性、粘结性、吸湿性、增溶或凝聚作用,其受到人们重视的独特性质是其优异的溶解性能及生理相容性。在合成高分子中像PVP(聚乙烯吡咯万通)材料这样既溶于水,又溶于大部分有机溶剂、毒性很低、生理相溶性好的并不多见,特别是在医药、食品、化妆品这些与人们健康密切相关的领域中,随着其原料丁内酯价格的降低,展示出发展的良好前景。PVP(聚乙烯吡咯烷酮)材料按其平均分子量大小分为四级,习惯上常以K值表示,不同的K值分别代表相应PVP(聚乙烯吡咯烷酮)材料的平均分子量范围。K值实际上是与PVP水溶液的相对粘度有关的特征值,而粘度又是与高聚物分子量有关的物理量,因此可以用K值来表征PVP的平均分子量。通常K值越大,其粘度越大,粘接性越强。在PVP(聚乙烯吡咯烷酮)材料的生产和研发中,K值通常使用乌氏毛细管法进行测量,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌式粘度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列全自动乌式黏度计、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列全自动乌式黏度计可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间的精度可到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列全自动乌式黏度计连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 一种全自动在线连续分析水中四乙基铅和甲基叔丁基醚的方法
    概述石油被誉为“工业的血液”,其产品被广泛用于国民经济的各个领域。近年来由于安全管理不到位、人员违规操作等原因导致石油企业事故屡屡发生,泄露的石油不仅污染了空气,还污染了地表水和地下水,其中四乙基铅和甲基叔丁基醚作为石油中重要的添加剂常在污染水体中被检出。目前,实验室普遍采用《HJ 959-2018 水质 四乙基铅的测定 顶空/气相色谱-质谱法》测定水中四乙基铅的含量,而谱育科技EXPEC 2100 水中挥发性有机物在线监测系统已实现对四乙基铅和甲基叔丁基醚的现场自动连续监测。图EXPEC 2100 水中挥发性有机物在线监测系统由EXPEC 240 全自动吹扫捕集进样器 和 EXPEC 2000-MS 在线GC-MS组成,搭配 EXPEC 243 自动稀释仪实现了标准溶液的自动配制。本文使用该系统建立了水中四乙基铅和甲基叔丁基醚的在线监测方法。 方法参数吹扫捕集参数:吹扫时间:3 min;解吸温度:200 ℃;解吸时间:1 min;色谱参数:进样口温度:100 ℃;分离比:5:1;载气流量:1 mL/min;程序升温:初始温度40 ℃保持2 min,以15 ℃/min升至80 ℃,再以20 ℃升至200 ℃并保持3.3 min;质谱参数:离子阱温度:70 ℃;扫描模式:全扫描模式;质量数扫描范围:40-300 amu。分析结果方法学指标绘制标准曲线如上图所示:四乙基铅和甲基叔丁基醚的校准曲线线性相关系数R2均在0.99以上。小结EXPEC 2100水中挥发性有机物监测系统参照HJ 959-2018标准建立的一种在线监测水中四乙基铅和甲基叔丁基醚的方法。与HJ 959-2018方法相比:1. 具有更低的检出限;2. 全流程在线监测,省时省力;3. 可实时上传分析数据。
  • PerkinElmer大庆石化大乙烯扩建项目合作一周年记
    技术领先服务专业,助力攻克检测难题 &mdash &mdash PerkinElmer大庆石化大乙烯扩建项目合作一周年记 1、项目重大,意义深远 2007年12月28日奠基的大庆石化120万吨/年乙烯改扩建工程是中国石油炼化业务&ldquo 十一五&rdquo 发展的重点工程,也是国家科技部863计划重点攻关项目。2012年120万吨/年乙烯改扩建工程建成投产,宣告我国首个国产化大型乙烯成套技术工业化获得成功,彻底改变了半个多世纪以来乙烯技术依赖进口的被动局面,极大地提升了中国石油化工行业在国际炼化领域的话语权。 奠基仪式 2、技术领先是攻克检测难题的保障 2012年8月,PerkinElmer公司作为该项目色谱产品供应商,出色地完成了分布在原材料、化一、化二、塑料、化纤等生产控制单位及产品检测中心的31套最新型号气相色谱仪的安装、调试和运行工作。 难点多、干扰大、分析任务繁重,这些都成为了摆在大庆石化和PerkinElmer面前的难题。凭借高超的技术实力和过硬的产品质量,PerkinElmer设计并提供了最为完善的解决方案。在此期间,PerkinElmer公司的技术、维修工程师们与大庆石化的检测团队一起进行现场实验、验证并改进技术方案,最终开发出了更适合该项目实施的新方法,成功攻克了这些高难度的技术障碍,取得了比预期更快的安装运行完成速度。这些努力和成绩也让大庆石化的工作者更加相信PerkinElmer的技术实力。 永久性气体专用色谱分析仪,因工艺需求是丁辛醇项目中使用频率较高的一台专用分析设备。考虑到用户的高频率分析需求,同时为保证该台设备长期稳定的运行,分析方案采用了多阀切换,一次进样完成对氢、氧、氮、甲烷、一氧化碳、二氧化碳及部分碳二组分的分析。据用户反映,自2012年8月至今,仪器硬件运行稳定没有出现过任何问题,并且检出数据可靠。 永久气分析谱图 另外,作为用户分析的重点,丙烯中的绿油由于组成复杂而导致分析方案较为繁琐,因此,提供一台能对其进行分析的高质量色谱仪是对色谱供应厂商的极大挑战。PerkinElmer独特的流路设计配合稳定可靠的硬件,使色谱仪在稳定运行的同时也为用户提供了精准的数据。 C1-C5,绿油分析谱图 聚乙烯中残留挥发性烃类含量的测定是全密度车间(塑料)检验的重点,产品中的残留挥发性烃类也是粉料料仓闪爆的三要素之一。在粉料的生产中,因粉尘及粉尘摩擦的不易控制性,唯一可以控制的残留挥发性烃类的浓度检测就显得尤为重要。料仓中的可燃性气体的量有积累的效应,所以准确测定聚氯乙烯粉料料仓中挥发性烃的类型及含量,对正确调整聚氯乙烯的生产工艺和保障粉料料仓的安全提供了重要依据。对此,作为整体化色谱解决方案的PerkinElmer公司采用了具有压力平衡的TurboMatix 16型顶空进样器配合Clarus 580型气相色谱仪进行检测,该方案得到了令用户满意的分析效果。 全密度车间分析室 聚乙烯中残留挥发烃类分析谱图 3、持续的现场服务是PerkinElmer赢得用户信任的关键 时光飞逝,在项目开工近一年之际,PerkinElmer公司主动深入用户现场,不仅由资深维修工程师对所有仪器进行全面检查,更积极开展一周年总结活动,在总结前期经验的基础上讨论和解决新出现的问题。这让用户惊喜的同时,也对PerkinElmer公司的售后服务赞不绝口。2013年7月22日至2013年7月25日,PerkinElmer公司在黑龙江省大庆市举办了为期4天的色谱用户回访活动。活动期间,由地域销售经理、资深色谱服务专家、色谱应用技术人员组成的回访团队对黑龙江省大庆地区的石化用户逐一进行了走访。PerkinElmer公司本着对用户负责的精神,此次活动采取一对一模式对大庆石化及其周边客户的现有仪器使用情况、仪器保养及实际应用进行了针对性的交流与培训。 大庆石化厂区 大庆石化厂区 化二GC分析室 塑料GC分析室 PekinElmer资深色谱服务专家张沛然经理 PekinElmer色谱技术支持工程师与化二车 对用户2009年采购的Clarus 500型GC进行间技术人员对仪器日常使用、维护注意事 维护检查与经验交流 项和使用心得进行交流 回访期间,结合当前石油石化领域热点分析方案,PerkinElmer技术支持人员还与大庆石化质检中心、大庆石化研究院等单位开展了面对面的技术沟通。 质检中心经验交流会 面对面技术沟通活动 通过此次回访活动,不仅提高了用户的操作水平和相关知识、维护了仪器的状态,更解决了困扰用户多时的日常工作中的样品处理问题。同时此次服务团队的专业技术、服务理念以及PerkinElmer气相色谱仪的优异性能和长期的稳定性得到了用户的广泛认可。此次回访活动不但为客户解决了问题,更节约了数万元的维修费用,受到大庆石化领导和使用者的一致好评。 4、领先的技术,专业的服务,是PerkinElmer公司不变的承诺 作为分析仪器行业的领导者,PerkinElmer公司自1937年成立至今,不断为用户提供着最先进的仪器、技术与服务。在色谱领域,PerkinElmer公司于1955年5月推出了世界上第一台商用154型气相色谱仪,自此开创了PerkinElmer公司在气相色谱近60年的发展历程。在这期间,发明第一个气体进样阀、第一台电子积分仪、第一根毛细管色谱柱、第一台整合在一起的GC/MS、第一台带重叠加热功能的顶空进样器&hellip &hellip ,这一代又一代具有里程碑式意义的色谱产品标志着PerkinElmer公司一直从不间断地引导着GC产品的发展方向。 PerkinElmer是石化检测的全球领先者,与所有主要方法制定委员会(ASTM、EI、CGSB等)合作,以确保其解决方案符合或优于所有石化检测要求。PerkinElmer具有成熟的石化分析解决方案,包括炼厂气分析仪(RGA)、天然气分析仪(NGA)、痕量硫分析仪系统等标准模型的应用,用于轻质气体、氯气、变压器油气、液化石油气的其它标准型号分析仪以及模拟蒸馏分析仪均符合ASTM标准,这些典型的石化解决方案如下: 炼厂气分析仪 天然气分析仪 MERGE软件和SIMDIST软件 轻质气体分析仪 煤层气体分析仪 氩气和氧气分析仪 痕量一氧化碳/二氧化碳分析仪 痕量硫分析仪 全范围氢气、氦气、氧气和氮气分析仪 痕量烃分析仪 变压器油分析仪 痕量永久气体分析仪 汽油中含氧化合物分析仪 汽油中含氧化合物和总芳烃分析仪 含氧化合物和苯分析仪 精细烃分析仪 上世纪70年代,PerkinElmer公司色谱产品进入中国,一代又一代坚实可靠的色谱产品及服务为其在中国赢得了使用者的一致好评,特别是对仪器要求极高的石油化工系统。作为石油化工之都的大庆市聚集了PerkinElmer公司众多的色谱产品新老用户,中石化大庆石化公司就是其中之一。 在此次120万吨/年乙烯改扩建工程检测项目成功实施一周年之际,中石化大庆的工作人员们由衷地赞叹道&ldquo 领先的技术,专业的服务,是我们选择PerkinElmer公司最主要的原因&rdquo 。是的,这正是我们PerkinElmer公司对客户&ldquo 不变的承诺&rdquo 。
  • 合并广东卫伦、血液制品收入稳定增长,博晖创新第一季度营收增长28.69%
    p   公司于2016年12月11日召开第五届董事会第二十九次会议,审计通过了《关于公司与云南沃森生物技术股份有限公司签订& lt 关于广东卫伦生物制药有限公司股权的转让协议& gt 暨购买资产的议案》,同意公司收购云南沃森生物技术股份有限公司持有的广东卫伦生物制药有限公司21%的股权,收购完成后,公司共持有广东卫伦51%股权,公司于2017年1月达到对广东卫伦实现控制的各项条件,确认2017年1月1日为购买日,将其纳入合并范围。 !--关于广东卫伦生物制药有限公司股权的转让协议-- /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/af2c4bed-85db-4240-9572-a249bcdcaa40.jpg" title=" 1.jpg" style=" width: 600px height: 299px " width=" 600" vspace=" 0" hspace=" 0" border=" 0" height=" 299" / /p p   报告期内公司营业收入增长28.69%,一方面是因为报告期将广东卫伦新增纳入合并范围带来营业收入增加,另一方面,原血液制品业务收入稳定增长,带动营业收入增长。 /p p span style=" color: rgb(0, 176, 240) " strong 利润表变动情况及分析 /strong /span /p p   1、营业收入较去年同期增长28.69%,营业成本较去年同期增长50.94%,主要是因为报告期将广东卫伦新增纳入合并范围,其毛利率低于原公司产品毛利率 /p p   2、税金及附加较去年同期增长128.28%,主要系公司按照国家营改增制度规定将房产税由原管理费用计入该科目以及报告期增加合并范围所致。 /p p   3、财务费用较去年同期增加200.97万元,增幅6,731.87%,系报告期增加合并范围所致 /p p   4、资产减值损失较去年同期减少46.74万元,减幅258.42%,主要系Advion,Inc.转回存货跌价准备所致 /p p   5、报告期无投资收益,去年同期为89.50万元,系报告期完成对原联营企业的进一步股权收购而将其纳入合并范围,由权益法转为成本法核算所致 /p p   6、营业外收入较去年同期减少145.28万元,减幅69.62%,系报告期收到政府补助减少所致 /p p   7、营业外支出较去年同期增加13.18万元,主要系报告期固定资产报废损失,去年同期无发生额。 /p
  • 理加联合参加“第二届稳定同位素生态学学术研讨会暨稳定同位素技术研修班”
    2014年5月19日-22日,第二届稳定同位素生态学学术研讨会暨稳定同位素技术研修班在北京顺利召开,会议由清华大学地球科学研究中心主办,中国生态学学会联办,会议邀请了国内外本领域的著名专家做主题特邀报告,来自全国各地近200位学者参加了学术研讨会,另有120位学者参加了技术研修班。北京理加联合科技有限公司(以下简称:理加联合)应主办方邀请,携众多生态仪器设备参加了此次盛会。 5月19日-20日,中国 北京 清华园宾馆 稳定同位素生态学学术研讨会 5月19日,研讨会开始,清华大学地球系统科学研究中心暨全球变化研究院林光辉教授主持会议。 5月20日,理加联合市场总监朱湘宁先生在大会上为专家学者介绍了LGR激光稳定性同位素分析仪的新应用,并回答了与会学者提出的一系列问题。 报告结束后,与会学者表现出浓厚兴趣,并与我们的工程师在研发项目的进展与需求方面做了深切交流。与会学者表示,稳定同位素技术在现代生态学的发展中起着极为重要的作用,美国LGR公司的OA-ICOS技术能够快速、连续、精确的测量痕量物质,对于生态学研究而言,尤其是稳定同位素生态学研究,有着很高的契合性。 5月21-22日,中国 北京 清华大学 稳定同位素技术研修班 为了确保每位学者都可以亲自动手操作专业仪器,并与我们的工程师沟通,技术研修班分四组进行。 首先,中国科学院地理科学与资源研究所生态系统网络观测与模拟实验室温学发副研究员讲解“基于稳定同位素红外光谱技术连续测定温室气体同位素比值和通量”。 讲解结束,在理加联合工程师的指导下,学员亲自动手操作仪器,了解仪器的内部构造和操作技巧;更值得一提的是,由美国LGR公司推出的温室气体分析仪,以其强大的功能、小巧的身材、可背负式的设计赢得与会学者的一致青睐。 关于理加联合主要代理产品:美国LGR公司激光痕量气体和稳定同位素分析仪美国ASD公司地物光谱仪瑞典OPSIS公司凯氏定氮仪和自动消解仪美国CSI公司闭路涡度相关和大气廓线测量系统美国Resonon公司高光谱成像光谱仪意大利AMS集团全自动化学分析仪和流动分析仪 理加联合作为专业的生态与环境仪器的供应商和服务商,一直以“为客户提供最先进的产品和最优质的服务”为目标,在不断引进国外新产品和新技术的同时,努力提升自身的技术支持、售后服务和研发能力,为用户提供更高品质的产品和服务。欲了解更多信息,请浏览公司网站:www.li-ca.com
  • 进入冬季,为保证污水处理稳定达标,需要做哪些调整?
    中国大部分污水处理厂都处于温带地区,都会经历温度比较低的冬季,尤其是北方地区的污水处理,冬季运行具有低温时间长 、水温低 、进水污染物浓度高、污泥活性较弱等特点,增加了污水处理的难度,不利于污水处理的进行。因而进入冬季运行时应强化自身运行管理,应对冬季运行的不利因素,确保污水厂冬季高效运行,从而稳定达标、足额减排。在此结合以往进水情况和冬季运行的经验,总结以下运行办法,以强化和优化污水处理厂运行管理 ,确保足量处理污水、出水水质稳定达标。1、加强污水处理厂运行的全过程管理从细处入手确保各个污水处理单元充分发挥应有的功能。对出现的故障和问题,应及时发现、及时分析和解决。避免小问题和小故障得不到解决,拖成大问题,影响整个系统的稳定运行。须特别注意因为格栅 、沉砂池 、水解酸化池 、污泥脱水机等运行不正常,从而加重了生化处理系统的负担,引起生化系统运行不正常,造成出水不稳定的问题,这些状况需要引起足够重视并加以改进。污水处理厂应结合自身工艺运行的运行规律、污泥的性状、污染物的降解变化规律等生化系统的具体情况;结合进水水质 、水量的日变化、月度变化等情况。通过适当的工艺优化调整,确保足量处理污水、出水水质稳定达标,同时节能降耗优化运行成本。2、调整运行参数冬季污水处理厂进水浓度普遍偏高、水温较低、活性污泥活性较弱,反应速度较慢,污水处理厂需结合自身工艺和进水特征进行生产运行参数调整 。具体参考如下: a、以生活污水为主的厂可控制略低的F/M 、以工业废水为主的厂宜控制较低的 F/M ,宜控制在 0.03--0.08kgBOD5/kgMLSSd。b、根据自身工艺特点,进行适当的曝气控制。在保证所有单元格曝气充足前提下将DO值控制在 2.0~3.5mg/L ,不宜过高。如曝气过量,可能引起污泥系统活性不强、性状不佳、沉降性能较差等问题,还增加了运行成本。c.保证预处理单元的正常工作,保证 生化池各单元格中污泥MLVSS/MLSS 、SV30 、SVI在正常范围。d.根据具体工艺运行情况,对内外回流量、回流比等参数进行调整。e.适当提高污泥浓度MLSS,在细菌代谢能力下降的前提下,使总量的污泥代谢能力能保持稳定。3、保证脱氮效果在生物脱氮过程中,含氮化合物在微生物作用下相继发生下列反应:氨化反应一硝化反应一反硝化反应,最终以N2形式从污水中脱离。硝化反应的适宜温度是 20~30℃,15℃以下时,硝化速度下降,5℃时完全停止。反硝化反应的适宜温度是 20~ 40℃,低于15℃时,反硝化菌的增殖速率降低,代谢速率也降低。东北地区冬季的污水温度在10℃左右甚至更低 ,远远达不到硝化菌及反硝化菌的最适温度 ,对氮的去除效率有很大程度的影响。硝化细菌比反硝化细菌更易受到低温的影响,导致硝化反应不足,低温运行过程中如果控制不当极易出现NH3-N不稳定的情况。可通过适当提高MLSS,增加污泥龄(宜控制在15~25天)。适当增加曝气可以起到一定程度的保持水温的效果,并且可以提高DO ,是一种常用的控制NH3-N处理效果的方法。NH3-N处理的关键是硝化细菌,应保持处理系统 的稳定运行 ,不能受到严重冲击 ,否则冬季硝化细菌很难恢复。4、控制污泥膨胀冬季低温运行时因污泥活性降低 、工艺运行不正常极易出现污泥膨胀的问题。此时的污泥膨胀具有三个显著的特点:一是发生率极高,有60%的城市污水处理厂每年都发生污泥膨胀;二是普遍性,在各种类型的活性污泥工艺中都存在,甚至最不易发生污泥膨胀的间歇式曝气池也发生了这一问题;三是危害严重,它不仅使污泥流失 、出水悬浮物(SS )超标 ,而且还大大降低了处理能力。一旦发生污泥膨胀则很难控制或需要相当长的时间才能恢复。应对污泥膨胀应控制好适当的污泥负荷,不宜过低。有厌氧区选择区的工可以利用生物选择功能抑制丝状细菌的生产 ,避免污泥膨胀。工艺运行人员应对污泥性状进行及时了解,当SVI超过150时,应引起足够重视。必要时可投加化学药剂进行控制。人工合成的高分子阳离子多聚物对控制污泥膨胀的效果较好 ,而且对产泥量的影响很小,但是费用很高。在一些情况下,投加无机絮凝剂(如石灰或三氯化铁)效果也不错,但会使产泥量大大增加,给后续的污泥处理带来一定的困难。另外,投加泥土和纤维质也适用于一些工业废水的处理(如造纸废水),但这也只是一种短期行为。氯和过氧化氢已经在抑制丝状菌生长方面有了成功的应用。由于氯相对便宜且易于现场操作,因此应用得较为广泛,有超过50%的污水处理厂利用氯来控制丝状菌引起的污泥膨胀。加氯的目的是为了杀死附着在絮体微生物表面的丝状菌,但这两类细菌对氯的敏感性没有明显的差别,因此氯的投加量要控制到刚好能杀死丝状菌而不能伤害到絮体微生物,如果过量同样不利于改善污泥性能。5、合理调整药剂投加处理过程中有高效沉淀池或化学处理单元的污水厂,运行过程中应首先考虑应强化生化系统的处理污染物,再采取化学处理来把关。避免过分依靠化学处理来维持水的稳定,通过化学处理将产生大量的化学污泥 ,如处理不及会导致系统的恶性循环。投加药剂必须规范加药流程和制度,由专人负责加药管理;每天不同时段的加药量,必须结合二沉池水状况、烧杯实验数据以及出水在线数据等的情况;合理调节,避免药剂浪费。6、严控进水指标冬季进水量相对较少,工业污水比例有所提高,应加强进水源头的控制。一旦发现进水在线数据异常时,运行人员应立即现场查证,一旦确定进水污染物偏高的异常情况,应采用应急措施处理,并留下证据,及时与主管部门沟通 ,必要时以书面形式进行报告。7、加强生产数据的收集 、整理 、统计和分析工作 应特别注意强化数据的统计分析 ,并将数据分析的结论指导生产运行的调整和调节。各分公司、污水处理厂应加强化验分析工作,确保化验数据及时、准确 、可靠;同时确保生产有关数据的有效可靠。数据的可靠性是开展数据分析的前提,如果前提有误,那必然导致结果的错误。8、加强污泥脱水系统管理冬季污泥活性差,给污泥脱水系统的运行管理带来难度,脱水污泥的含水率不易控制。应加强污泥浓缩、脱水系统的运行管理,并根据生产需要合理安排脱水机的运行;保证生化系统维持适当MLSS。切忌避免由于脱水机运行不正常,引起剩余污泥(或化学污泥)在处理系统中恶性循环,导致进入生化系统的浓度升高,同时给活性污泥带来不良影响。同时对絮凝剂的用量进行积极探索,可开展小试摸索规律 ,尽量使用自来水进行配药,降低PAM用量。因冬季配药水温低,严重影响聚丙烯酰胺的溶解,可以考虑在配药罐、配水管、水箱处加装加热装置,以提高水温。9、注意巡检安全冬季低温时室外设施容易出现冻胀、结冰等情况,应加强厂内各处理单元的巡检工作,包括工艺巡检和设备巡检,及时发现运行过程的异常情况,及时处理。需特别注意进水、出水、生化池等地的巡检;及时发现异常情况,及时处理。10、加强设备及仪器保养冬季下雪、上冻后,对设备设施的维护保养工作将从室外工作转入室内工作,应提前做好关键设备的维护保养和维修工作,特别是对曝气和排泥系统进行系统的检修,保障关键设备冬季不大故障,如这些设备在冬季出现故障,带来的损失和检修难度将成倍增长。在运行中还应确保在线仪表设施(进水COD 、NH3-N以及过程控制中的DO 、PH等)的正常运行,保证数据获取和上传做到准确有效,以便充分发挥在线仪表的监控作用,及时发现和调整出现的异常情况。
  • 科研人员制备稳定钙钛矿纳米晶体,可使LED灯成本更低/寿命更长
    据外媒报道,发光二极管(LED)是照明行业的无名英雄。它们运行效率高,散发的热量少,持续时间长。现在,科学家们正在研究一种新材料以使LED在消费电子、医药和安全领域的应用变得更有效且寿命更长。来自美国能源部(DOE)阿贡国家实验室、布鲁克海文国家实验室、洛斯阿拉莫斯国家实验室和SLAC国家加速器实验室的研究人员报告称,他们已经为此类LED制备了稳定的钙钛矿纳米晶体。来自中国台湾地区的研究院也在这项研究中做出了贡献。钙钛矿是一类具有特殊晶体结构的材料,具有吸光和发光的特性,在一系列节能应用中非常有用,包括太阳能电池和各种探测器。虽然钙钛矿纳米晶体是一种新型LED材料的主要候选材料,但在测试中证明其不稳定。研究小组将纳米晶体稳定在多孔结构中,这种多孔结构被称为金属有机框架,简称MOF。基于地球上丰富的材料并在室温下制造,这些LED有朝一日可能会使成本更低的电视和消费电子产品以及更好的伽马射线成像设备,甚至是用于医学、安全扫描和科学研究的自供电X射线探测器。“我们通过将钙钛矿材料封装在MOF结构中来解决其稳定性问题,”DOE用户设施办公室Argonne的奈米材料中心(CNM)的科学家Xuedan Ma说道,“我们的研究表明,这种方法使我们能大幅提高发光纳米晶体的亮度和稳定性。”美国洛斯阿拉莫斯大学前J. R. Oppenheimer博士后Hsinhan Tsai补充称:“在MOF中结合钙钛矿纳米晶体的有趣概念已经以粉末形式被证明,但这是我们首次成功地将其集成为LED的发射层。”之前试图制造纳米晶体LED的尝试被纳米晶体降解回不需要的体积相所阻碍,这使其失去了纳米晶体的优势并削弱了它们作为实用LED的潜力。大块物质由数十亿个原子组成。像钙钛矿这样的材料在纳米阶段是由几个到几千个原子组成的,因此表现不同。在他们的新方法中,研究小组通过在MOF的矩阵中制造纳米晶体来稳定纳米晶体,就像网球被铁丝网夹住一样。他们使用框架中的铅节点作为金属前体,卤化物盐作为有机材料。卤化物盐的溶液中含有甲基溴化铵,它跟框架中的铅反应并在基体中的铅核周围组装纳米晶体。由于基质会使纳米晶体保持分离,所以它们不会相互作用和降解。这种方法是基于一种解决方案涂层的方法,比目前广泛使用的用于制造无机LED的真空处理要便宜得多。MOF稳定的LED可以制造出明亮的红色、蓝色和绿色光以及每种光的不同色调。洛斯阿拉莫斯国家实验室综合纳米技术中心的科学家Wanyi Nie说道:“在这项工作中,我们首次证明了在MOF中稳定的钙钛矿纳米晶体将创造出各种颜色的明亮、稳定的LED。我们可以创造不同的颜色、提高颜色纯度并提高光致发光量子产量,这是一种衡量材料发光能力的指标。”该研究小组使用先进光子源(APS)--DOE位于阿贡的科学用户设施办公室--进行时间分辨X射线吸收光谱分析,这项技术使他们能发现钙钛矿材料随时间的变化。研究人员能跟踪电荷在材料中移动的过程并了解光发射时发生的重要信息。“我们只能通过APS强大的单个X射线脉冲和独特的时间结构来实现这一点,”阿贡X射线科学部的小组负责人Xiaoyi Zhang说道,“我们可以追踪带电粒子在微小钙钛矿晶体中的位置。”在耐久性测试中,该材料在紫外线辐射、热和电场下表现良好且不会降解并失去其光探测和发光效率,这是电视和辐射探测器等实际应用的关键条件。
  • 微量试剂生产救星!稳定高效,解放双手!
    随着生命科学行业的高速发展,微量试剂的分液需求也逐日提升。目前业界通常采用人工移液器进行分液操作,但移液过程中难免会出现吸液量不足、枪头没有及时更换、移液速度过快导致气泡产生或液体飞溅、关盖失误导致漏液,或某些需要低温保存的试剂(如酶、核酸等)分解等诸多问题,影响分液质量。同时大量人力也在重复劳动中被消耗,容易陷入恶性循环。镁伽针对微量试剂的分液需求,研发出MRA-LSF-880系列产品,即微量试剂分液的自动化解决方案,一台设备可完成10 – 20人份的产出,真正做到解放双手,稳定高效。MRA-LSF-880 系列产品是针对微量灌装所研发的高通量、高精度解决方案,能够实现从上料、贴标、灌装、关盖、喷码、下料的全自动化步骤。它具有以下优势:采用移液模块,有效提升微量灌装的精度;通过多步骤CCD检测进行质量控制,提升良品率;针对酶类试剂的特性,配置三段低温保存模块;系统支持可视化监控以及样品溯源。01效率与质量兼得超高通量,峰值可达2500pcs/h高精度移液模块,峰值精度可达1%多步骤QC,CCD可检测液量、关盖、贴标、打码、管盖颜色等,NG品单独下料02兼容多种管型与试剂支持0.5 – 2 mL 可立螺旋管灌装酶类和水基试剂均可灌装,酶类试剂可配备三段温控低温保存Tip头自动装卸,母液无残留03运行环境清洁无污染上料区域配备FFU,确保料仓内清洁紫外消杀配合层流罩,确保运行环境百级洁净880 HP 将移液区与贴标喷码区分隔开,防止油墨粉尘等细小颗粒污染试剂除此之外,镁伽凭借在生命科学和实验室智能自动化领域积累的技术能力,还同步推出了从新冠核酸检测到抗原检测的全流程灌装解决方案,有效提高自动化程度及通量,赋能智能工厂全面升级,大幅提高产能,保障产品质量稳定。
  • 美国火车脱轨泄露的氯乙烯到底有多“毒”?
    2月13日,美国俄亥俄州一起火车脱轨事故冲上微博热搜榜第一名,近日仍在互联网上持续发酵。据悉,当地时间2月3日,美国俄亥俄州的一列火车脱离轨道造成大火,引发了氯乙烯等危险化学品泄漏。此次火车脱轨事故中泄漏的氯乙烯究竟是什么?氯乙烯对人体健康和周围环境可能造成哪些危害?应该如何科学、安全地处置氯乙烯等危险化学品?揭开氯乙烯的神秘面纱“氯乙烯,也叫乙烯基氯,其化学式为C?H?Cl。”西安科技大学地质与环境学院教授修福荣介绍,“常温常压下,氯乙烯为无色有气味的气体,其密度小于水但大于空气,加压冷凝处理后可变为液体状态。”此次火车脱轨事故中泄露的氯乙烯并非气体状态,而是液体状态。这可能与加压冷凝处理后,液体状态的氯乙烯密度更大,每个车厢可以运输更多的氯乙烯有关。“氯乙烯具有较强的易燃易爆性。”修福荣指出。氯乙烯与空气混合时,其爆炸极限为4%—21%,在加压处理后则更易爆炸。“氯乙烯的熔沸点较低,微溶于水,溶于乙醇、乙醚、丙酮等有机溶剂。”修福荣说。氯乙烯作为一种有机化合物,在化工中拥有广阔的应用空间,要用作合成塑料和各种有机合成的原料。“氯乙烯是PVC塑料合成的重要原料,有时也被用作冷冻剂。” 修福荣介绍。对人体与环境均有严重危害危险化学品,指具有毒害、腐蚀、爆炸、燃烧、助燃等性质,对人体、设施、环境具有危害的剧毒化学品和其他化学品。“氯乙烯就是一种典型的危险化学品,如果大量泄露,对人体健康与周围环境均会造成严重的危害。”修福荣指出。如果吸入或大量皮肤接触,氯乙烯会对人体产生十分严重的致癌和中毒作用。“氯乙烯属于1类致癌物,主要对神经系统、肝脏、消化系统及皮肤产生毒害或损伤作用。”?修福荣介绍。氯乙烯的中毒主要可以分为急性中毒、慢性中毒和皮肤接触中毒三种。急性中毒时,轻度中毒者往往表现为眩晕、胸闷、嗜睡等。而严重中毒则表现为昏迷、抽搐、甚至死亡。慢性中毒时,中毒者会出现神经衰弱、肝功能损伤、消化功能损害等症状。皮肤接触中毒时,往往会造成中毒者红斑、湿疹、水肿甚至肢体坏死。“氯乙烯大量泄露到空气中,可能对周围环境造成难以逆转的损害。”修福荣指出。氯乙烯因为密度比空气大,往往会在低处扩散,其影响范围较大;氯乙烯容易与空气混合形成易燃、易爆的混合物,遇热源或明火极易发生爆炸;弥散至大气中的氯乙烯会参与光化学烟雾的反应和形成,为大气污染推波助澜;此外,由于其严重的毒性,氯乙烯还会对生态环境造成严重损害,造成动植物大量死亡,进而影响生物多样性。科学处置避免可能风险此次发生于美国的危险化学品泄露事故,给我国的危险化学品处置敲响了警钟。我们应该如何从中吸取教训,科学、安全地处置氯乙烯等危险化学品,避免类似的事故在我国发生呢?“总的来说,我们要遵循我国的《危险化学品安全管理条例》,对各种危险化学品进行处置。”修福荣说,“具体来说,在生产操作环节、储存运输环节、废弃处置环节上要遵守相关安全规范,最大程度避免危险化学品造成的可能风险。”在生产操作环节,要坚持密闭操作,做好安全通风。操作人员要佩戴防毒面具、安全防护眼镜,穿戴防化服和手套;操作场所要远离火种和热源,安装防爆、通风系统和设备。在储存运输环节,储存时,要将各种危险化学品储存于阴凉、通风的库房;运输时,要按照危险化学品运输的相关规定进行配装和运输,远离火种和热源,与氧化剂分开,防止日光暴晒。在废弃处置环节,要根据不同的危险化学品特点,进行对应的科学处置。“氯乙烯废弃后,一般用焚烧法处置。”修福荣表示。需要特别指出的是,在对氯乙烯等含氯塑料的焚烧过程中,如果焚烧温度低于800℃,就会造成不完全燃烧,极易生成氯苯——剧毒物质二噁英合成的前体。“因此,我们要在专业的危险废物焚烧机构使用专业焚烧炉处置氯乙烯等含氯物质,并严格处理焚烧后产生的尾气。只有达到国家排放标准后,才能将其排放。”修福荣表示。
  • 精确称重确保直升机重心稳定
    精确称重确保直升机重心稳定 仅用四年时间,第一款直升机便从瑞士公司 Marenco Swisshelicopter AG 的生产线上诞生。 这家公司依靠梅特勒托利多的称重技术保持着最低的运营成本。 从举行第一次集体讨论会到完成原型和成功试飞,仅用四年时间,便从零开始大获成功。 这款涡轮机驱动的轻量级直升机采用的是位于瑞士格拉鲁斯北部的 Marenco Swisshelicopter AG 开发的碳电池。 Marenco Swisshelicopter SKYe SH09 采用先进的玻璃座舱,具备出色的飞行性能,并且运营成本低。 重心至关重要在与梅特勒托利多就该项目开展合作期间,Marenco Swisshelicopter AG 特别注重利用先进的称重技术开发便携式系统,以测定直升机的重心。 重心是一大关键因素,因为重心会影响施加在旋翼头等磨损件上的应力。 因此,这对直升机的运营成本具有巨大影响。 通过引入定制的解决方案,梅特勒托利多能够在确保低运营成本和出色的飞行舒适度上发挥重要的作用。 为了精确计算重心,一套带有四个 SWB505 MultiMount™ 称重模块的称重系统测量直升机滑脚下方四个点的重量。整个应用程序的设计基于客户对带有制图功能的触屏式 IND890 终端的需求,从而使操作变得简单、方便、快速。 来自瑞士的直升机 Marenco Swisshelicopter AG 由一组航空专家于 2007 年成立,致力于开发涡轮机驱动、最大重量 3.175 公吨的轻量级直升机。 Swisshelicopter SKYe SH09 预计将于 2016 年底上市。其无轴承、五刀片主旋翼带有一个内置操纵联动机构和一个覆盖的抗扭矩尾桨,使直升机飞行期间非常安静。 MultiMount™ 称重模块能够以很高的精度识别重心,降低与磨损相关的成本,并提升飞行品质。 为何选择MultiMount™ 称重模块 01 提升保护 02 下降保护 03 精准计量 04 设计通用 05 轻松安装
  • 可用于稳定一创纪录高容量锂离子电池性能的潜在材料
    p    strong 美国西北大学的研究人员发现了可稳定创纪录高储电量电池性能的新方法。 /strong /p p style=" text-align: center " img title=" 1-1.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/e211e33e-7d72-40e5-911f-ee1ef1fbcc48.jpg" / /p p style=" text-align: center " 电池正极结构示意图,红色为锂,绿色为氧,紫色为锰,深蓝色为铬,浅蓝色为钒。(来源:美国西北大学) /p p   在锂锰氧化物正极基础之上,这一创新可以使 span style=" color: rgb(255, 0, 0) " 智能手机 /span 和 span style=" color: rgb(255, 0, 0) " 电动汽车 /span 的电量增加至 span style=" color: rgb(255, 0, 0) " 两倍 /span 以上。 /p p   “ span style=" color: rgb(31, 73, 125) " i 这一电池电极已达到某一有记载最高的过渡金属氧化物基电极的容量。它的容量已超过你现用手机或电脑的两倍。 /i /span /p p style=" text-align: right " span style=" color: rgb(31, 73, 125) " i span style=" color: rgb(31, 73, 125) " i 美国西北大学McCormick工程学院,材料科学与工程专业Jerome B. Cohen教授Christopher Wolverton /i /span ” /i /span /p p    span style=" color: rgb(31, 73, 125) " i “这种电极的高容量表明其在用于电动车辆锂离子电池的目标上有了巨大提升。” /i /span Christopher补充道。 /p p   这一研究已于5月18日在科学发展杂志上在线报道。 /p p   锂离子电池以在正负极间往复迁移锂离子的方式而工作。正极使用含有锂离子、过渡金属和氧的化合物制取。过渡金属,通常为钴,当锂离子在正负极间来回迁移时有效地储存和释放电能。正极容量因而受到参与反应的过渡金属中的电子数量的限制。 /p p   一个法国研究团队于2016年首次鉴别出大容量锂锰氧化物的性能。 span style=" color: rgb(32, 88, 103) " strong 通过使用成本更低的锰替代传统用的钴,研究人员开发出一个成本更低廉且具有之前两倍容量的电极。 /strong /span 但它也并非完美无瑕。 strong span style=" color: rgb(32, 88, 103) " 由于电池性能在头两个循环过程中会大大削减,科学家们认为它无法应用于市场。与此同时,他们并未完全理解电池性能衰退及其拥有大容量的化学根源。 /span /strong /p p   在绘出一个综合的,原子间相接的正极图像之后,Wolverton的团队发现了材料具备高性能背后的原因: span style=" color: rgb(255, 0, 0) " strong 它驱使氧参与到反应过程中来。通过使用氧及过渡金属来储存与释放电能,电池具有了更大的容量来储存及利用更多的锂。 /strong /span /p p   随后,西北大学的团队将他们的研发重点转向如何稳定电池性能并阻止它的迅速衰减。 /p p    span style=" color: rgb(31, 73, 125) " i “通过充电过程理论的辅助,我们运用高速计算彻底检索元素周期表,以寻找合金化该含有其它元素化合物的方法,从而去增强电池的性能。 /i /span /p p style=" text-align: right " span style=" color: rgb(31, 73, 125) " i 文章共同第一作者,Wolverton 实验室的前博士生Zhenpeng Yao” /i /span /p p    strong span style=" color: rgb(255, 0, 0) " 计算鉴别出两种可能有效的元素:钒和铬。研究团队预估将锂锰氧化物与其中的一种混合将会产生可维持正极无与伦比高性能的稳定化合物。随后,Wolverton和他的搭档将在研究室中对这些理论上的化合物进行实验检测。 /span /strong /p p   该研究作为电化学能源科学中心,这一由美国能源部科学局资助的能源前沿研究中心的一部分,受到了其基础能源科学项目(项目编码:DE-AC02-06CH11357)的支持。哈佛大学的博士后研究人员Yao,与麻省理工学院的博士后研究人员Soo Kim,均为Wolverton实验室的前成员,并作为文章的共同第一作者。 /p
  • 聚乙烯中炭黑含量不同测试方法的探讨
    摘要采用GB13021《聚乙烯管材和管体炭黑含量测定(热失重法)》和热重分析仪两种方法测定聚乙烯中炭黑含量。对两种方法的测定结果进行了比较,结果表面,两种方法均有良好的重复性和准确度,测定结果基本一致,采用不同方法得到的测定结果间可以互相参考  关键词 GB13021,热重分析依法,炭黑含量  Carbon black content in polyethylene was determined by two methods of GB13021, polyethylene pipe and tube carbon black content determination (thermal gravimetric method) and thermo gravimetric analyzer. Compared with the measurement results of the two methods of the surface, the two methods have good repeatability and accuracy. The measurement results are basically the same, the determination results obtained by different methods can reference each other  Key wordsGB13021, thermal gravimetric analysis, carbon black content  近年来,聚乙烯管材已成为继PVC之后,世界消费量第二大的塑料管道品种,广泛应用于给水、农业灌溉、燃气输送、排污、油田、化工、通讯等领域。无添加剂的聚乙烯耐气候老化和日光曝晒性能很差,因而实际使用时都会添加炭黑[1]。炭黑能使材料具有足够的抗紫外老化能力,当炭黑含量为2.0%~3.0%时可确保有效地防止紫外线的影响[2]。由于炭黑含量大小对聚乙烯管材具有重要的影响,许多标准都对聚乙烯中的炭黑含量作了规定,为了研发生产和销售的目的,炭黑含量是聚乙烯管材必须进行检测的指标。目前管道用塑料中炭黑含量的测试方法主要执行GB13021–1991[3]。使用热重分析仪是现在常用的热分析手段,用来测量高聚物的成分极为方便,常用标准是ASTME1131–2008[4],热重分析仪也可以用于测定聚乙烯中的炭黑含量。目前这两种方法并存,不同实验室间经常采用不同的方法测试,存在炭黑含量分析结果无法直接比较的问题。笔者用以上两种方法测定同批聚乙烯粒料中的炭黑含量,对不同测试方法的优缺点、测量重复性以及两种方法测试结果的一致性进行了探讨,对炭黑含量测试方法的选择提供了参考。1实验部分  1.1主要仪器与材料  炭黑含量分析仪:HS-TH-3500型,上海和晟仪器科技有限公司;机械分析天平:精度0.0001g,上海天平仪器厂;热重分析仪:STA449C型;德国耐驰公司;电子天平:M2P型,德国赛多利斯公司;聚乙烯:市售。  1.2实验方法  1.2.1GB13021法  称取试样质量m1(1±0.05)g置于样品舟中,将样品舟放入炭黑含量分析仪中,调氮气流量130mL/min,在氮气保护下升温至600℃,恒温裂解30min,取出后放入干燥器冷却至室温,称量质量m2,再放入马弗炉中950℃灼烧10min,取出放入干燥器冷却至室温,称量质量m3。炭黑含量c(%)  按式(1)计算。  1.2.2热重分析仪法  称取试样质量(10±0.05)mg放入样品架上,合上加热炉,设置升温程序,氮气气氛下室温升至550℃,转换成氧气,在氧气气氛下升温至750℃,计算机自动采集升温过程中样品质量变化。  2结果与讨论  2.1测量结果比较  按照1.2.1测定聚乙烯中炭黑的含量,测定结果见表1。 按照1.2.2测定聚乙烯样品的热重曲线(见图1)。根据曲线上各步失重的百分数可以判断样品分解机理及各组分的含量。随着温度升高,聚乙烯发生裂解,持续到550℃质量恒定,因为炭黑在高纯氮气中不发生反应,此时切换气体,通入氧气,使炭黑反应至完全,试样质量再次恒定。从550℃切换氧气到650℃质量稳定时发生的质量减少就是聚乙烯中的炭黑含量。650℃质量稳定后剩余物质为聚乙烯中的灰分。聚乙烯样品中碳黑含量的测定结果列于表1。从测试结果看,两种测试方法的相对标准偏差均小于3%,说明两种方法均具有较好的重复性,其中热重分析仪法的相对标准偏差比GB13021的相对标准偏差略大,这跟热重分析仪法样品量少、样品不均匀有关。两种方法测试结果的一致性可以采用以下方法进行[5]:假设两种测试方法的测试结果分别为x11,x12…x1n,平均值为x1,标准偏差为S1;x21,x22…x2n,平均值为x2,标准偏差为S2。若把xx12-看作随机变量,则根据方差的基本法则有:  故若xx2S12(x1x2)-G-则认为两组数据是一致的。将表1中的数据代入公式可以计算出:xx0.8212-=,2S(x1-x2)=0.83,计算结果表明两组数据一致。两种方法测试的结果具有一致性,可以用来相互比对。  2.2热重分析仪法准确度  热重分析仪在分析过程中自动记录样品实时质量,人为因素小,热失重量的准确度可以用标准CaC2O4来验证。CaC2O4H2O随着温度升高会发生以下3步化学反应:CaC2O4H2O(固)=CaC2O4(固)+H2O(气)(3)CaC2O4(固)=CaCO3(固)+CO(气)(4)CaCO3(固)=CaO(固)+CO2(气)(5)在每步反应中都有气体放出,从而固体出现失重现象,根据化学反应方程和分子量就可以计算出每步化学反应的理论失重量。CaC2O4H2O的每步化学反应都可以反映在热失重曲线上,用热重分析仪得到的CaC2O4H2O失重量和理论值列于表2。 从表2可以看出热重分析仪在550~750℃内的测量相对偏差为1.3%,测量准确度高。热重分析仪法和GB13021方法测量炭黑含量的结果可靠。热重分析仪法快捷方便,但是测量相对标准偏差比GB13021测试方法的要大,原因是进行热重分析时所用样品量只有10mg,如果样品中的炭黑分布不均匀,用热重分析仪测聚乙烯中的炭黑含量时就会增大测试标准偏差。建议用热重分析法分析炭黑含量时尽量从多个聚乙烯颗粒上取样并且适当增加样品量。  3结语  从实验过程及分析结果可以看出炭黑含量分析的两种不同方法具有以下特点:(1)两种测试方法均可用来测定聚乙烯中的炭黑含量,测定结果基本一致,具有可比性。(2)GB13021法测炭黑含量试验重复性好,但是用到炭黑分析仪和马弗炉两种设备,实验过程中需要冷却和3次称量,操作较热重分析仪复杂。(3)热重分析法操作方便、快捷,结果直观,但是由于所用样品量小,测试结果标准偏差较大,测试中容易出现异常值,应该从多个颗粒上取样,尽可能增加样品量,测试次数至少2次,当出现两次偏差较大时,增加测试次数。
  • 美国缅因州修订全氯乙烯干洗机法规
    2013年9月9日消息,美国缅因州环保部(DEP)修订了全氯乙烯((Perc)干洗机法规第125章,指定了Perc排放测量的测试地点,并删除了过时措施。   修改后的法规规定,在离干洗机的洗衣桶3英尺(0.9米)范围内,Perc的排放体积不应该超过100ppm。该法规还将使缅因州法案与美国国家有害空气污染物排放标准(Neshaps)进行协调一致。   DEP表示,使用比色气体分析器管或感官检查的检测和合规措施已经被淘汰或被认为无效 后者的原因是多数干洗系统的所有者或运营者对Perc气味的感觉已逐渐迟钝。   全氯乙烯是一种有害空气污染物,可能会引起癌症或损害人类的神经系统。   修订后的法案已于8月28日生效。
  • 深圳先进院等实现柔性电子器件“乐高式”高效稳定组装
    近年来,柔性电子器件在人体健康检测与分析以及可穿戴设备等生物医学工程领域展现出广阔的应用前景。然而,在柔性电子器件的组装中,用于连接不同模块的商用导电胶易变形、断裂,使得接口不稳定性成为该领域内长期存在的难题,阻碍了整个器件的拉伸性和信号质量。   中国科学院深圳先进技术研究院、新加坡南洋理工大学、美国斯坦福大学的科学家另辟蹊径,绕开利用“商业胶水”组装柔性电子器件的思路,开发了基于双连续纳米分散网络的BIND界面(biphasic, nano-dispersed interface,BIND)。这种新型界面能够作为柔性电子器件通常所包含的柔性模块、刚性模块以及封装模块的通用接口,只需要按压10秒钟,便可以实现“乐高式”的高效稳定组装。2月15日,相关研究成果发表在《自然》(Nature)上。   人机接口是人与电子设备之间进行的数字虚拟世界和现实物理世界的信息交换,而柔性电子器件则是人机接口技术的关键核心和先导基础。柔性电子器件在生物医学工程领域的研究备受关注,大致可分为植入式和体表式两种,主要功能就是采集应力信号、温度信号、生理电信号、超声信号、生物化学信号等生理数据以监测人体健康状态。然而,商用导电胶的瓶颈却破坏了柔性电子器件的整体稳定性。无论单个模块的拉伸性多好,只要模块接口处的拉伸性很弱,那么整个器件的拉伸性就会受到制约。   联合团队发现,在特定的制备条件下,基于SEBS嵌段聚合物和黄金纳米颗粒的柔性界面即BIND界面,面对面贴合时有“魔术贴”式的电气与机械双重黏合特性,能够将不同功能的柔性传感器稳定地黏合在一起,从而实现柔性模块与柔性模块之间的高效连接。通过热蒸发金(Au)或银(Ag)纳米颗粒制备BIND界面,在自粘苯乙烯-乙烯-丁烯-苯乙烯(SEBS)热塑性弹性体内部形成互穿纳米结构,SEBS是广泛应用于可拉伸电子产品的软基板。SEBS基质表面附近的纳米颗粒形成了一个双相层(约90纳米深),其中一些纳米颗粒完全浸入其中,而另一些纳米颗粒部分暴露在外。这种界面结构在表面产生了暴露的SEBS和Au,在基体内部产生了互穿的Au纳米颗粒,这为坚固的BIND连接提供了连续的机械和电气途径。总之,这种即插即用的接口可以简化和加速皮肤上和可植入的可拉伸设备的开发。实验表明,采用新型接口的柔性医疗器件可高精度、高保真、抗干扰地监测体内外不同器官,包括表皮、脑皮层、坐骨神经、腓骨肌肉、膀胱等,比起商用导电胶组装的系统信号质量有大幅提升。   采用BIND界面的柔性模块接口,其导电拉伸率可达180%,机械拉伸率可达600%,高于采用商用导电胶连接的普通接口(分别为45%、60%);对于硬质模块接口,其导电拉伸率达200%,并能适用于聚酰亚胺(PI)、玻璃、金属等多种硬质材料;对于封装模块接口,BIND界面能提供0.24 N/mm的粘附力,是传统柔性封装的60倍。   该研究为智能柔性电子器件的模块化组装提供了可拉伸、稳定高效的通用接口,不仅简化了柔性医疗器件的使用,而且加速了多模态、多功能的柔性医疗器件的研发。通过该接口组装的智能柔性传感器件可用于多个医疗领域,例如植入式人机接口、体表健康监测、智能柔性传感、软体机器人等。   研究工作得到国家自然科学基金国家重大科研仪器研制项目、国家重点研发计划、神经工程研究中心、中科院人机智能协同系统重点实验室、中科院健康信息学重点实验室的支持。可拉伸混合设备的BIND连接研究团队开发的“魔术贴”式柔性组装方法与在肌电监测中的应用实例
  • 超薄!晶盛机电减薄机实现12英寸30μm晶圆稳定加工
    超薄晶圆因其高集成度、低功耗和卓越性能,已成为当前半导体产业发展的关键材料之一。随着半导体工艺进入2.5D/3D时代,晶圆的厚度不断减薄,对设备精度和工艺控制的要求也越来越高。晶盛机电的研发团队迅速响应市场需求,于近日成功研发出新型WGP12T减薄抛光设备,实现了稳定加工12英寸30μm超薄晶圆的技术突破。这一成就标志着晶盛机电在半导体设备制造领域再次取得重要进展,为中国半导体产业的技术提升和自主可控提供了强有力的支撑。▲ 12英寸30μm超薄晶圆据悉,新型WGP12T设备是在原有设备上进行了多项技术优化和工艺改进,成功使晶圆在设备上能稳定减薄至30μm以下,并确保晶圆表面平整度和粗糙度的高标准。在此过程中,团队成功解决了超薄晶圆减薄加工过程中出现的变形、裂纹和污染等难题,真正实现了30μm超薄晶圆的高效、稳定加工。这一技术突破为公司在全球半导体设备市场的竞争中增添了新的优势。▲ 新型WGP12T减薄抛光设备晶盛机电一直致力于半导体设备的研发与创新,此次行业领先的超薄晶圆加工技术突破,将为我国半导体行业提供更先进、更高效的晶圆加工解决方案。未来,晶盛机电将继续秉持“打造半导体材料装备领先企业,发展绿色智能高科技制造产业”的使命,持续深耕半导体设备领域,以技术创新为动力,不断突破技术壁垒,加速产品创新,为客户提供最前沿、最具竞争力的半导体解决方案,引领行业迈向新未来。
  • 药品研发与生产的稳定之锚:稳定性实验箱的应用
    在现代医药领域,药品的研发、生产和质量控制是一个高度复杂且精密的过程,常常受到诸多外界因素的挑战与考验。药品存放的时间长短、存放环境的空气质量、温度波动、湿度变化以及光照强度等因素,都可能对药品质量产生影响,使得药品中的有效成分逐渐降解,药品的疗效大打折扣,甚至完全失效,产生有害物质。 因此,深入研究药品的稳定性,全面了解影响药品质量的各种因素,显得尤为重要。通过科学的稳定性研究,我们可以为药品的生产、包装、贮存、运输等环节提供有力的科学依据,为患者提供安全、有效的用药保障。 为了全面而精准地评估药品在不同环境条件下的稳定性表现,科研人员常常借助稳定性试验箱这一关键设备来进行测试。这种试验箱具备模拟多种环境条件的强大功能,能够精确控制温度、湿度、光照等重要参数,从而为试验药品提供一个稳定且标准化的测试环境。通过将测试样品置于试验箱中,并暴露于特定环境条件下一段时间后,科研人员可以评估样品是否发生变化,确认其在不同环境下的稳定性表现。Aralab是欧洲标准环境控制设备、药物稳定测试设备和特殊测试设备的主要供应商之一,凭借逾30年的专业研发与生产经验,其各类箱体设备和步入式房间品质卓越,一直深受客户赞誉。「Aralab葡萄牙总部」Aralab FitoClima 600 & 1200系列箱体,为药品稳定性试验提供了卓越而全面的解决方案:这一系列箱体分为600L和1200L两种规格,内部配置灵活多变,可分别搭载4层和8层不锈钢搁板,更可按需升级至10层和20层。每层搁板均可轻松拆卸,清洗维护极为方便。为了满足科研人员在稳定性测试中的多样化需求,FitoClima 600&1200系列还提供了多种型号选择:&bull FitoClima 600/1200 P:专为精准温度控制而设计。&bull FitoClima 600/1200 PH:在温度控制的基础上增加了湿度控制功能,可模拟更加复杂的环境条件。&bull FitoClima 600 PLH:集温度、湿度、紫外线和可见光控制于一体,满足更加全面的需求。&bull FitoClima 600 PLH-R:在PLH的基础上,通过集成辐射计和光传感器,实现了辐照暴露程度的自动控制。&bull FitoClima 1200 PN/PNH:可控制零下温度(-20℃),湿度控制功能可选配。此外,箱体还配备了7英寸的彩色触摸屏,使得科研人员能够直观、便捷地设置所有环境变量。无论是温度、湿度还是光照,都能轻松调节,满足各种实验需求。利用这一系统,科研人员能够设计复杂而全面的环境模拟程序。例如,在生物医药领域,由于疫苗、血清、抗体、细胞因子和酶等制品对温度变化异常敏感,冻融过程可能引发蛋白质变性、聚集或活性丧失等风险,因此冻融测试成为必不可少的环节。借助FitoClima 1200 PN/PNH试验箱,科研人员可通过程序预先设置好从-20℃至60℃的不同温度区间,分别模拟冷冻和融化阶段的环境条件,然后一键启动,即可直接进行冻融循环测试,无需频繁更换试验箱,大大提高了实验效率和准确性。FitoClima 600&1200系列试验箱 技术参数&bull 温度范围:-5℃ 至 60℃1200 PN/PHN型号可以扩展至-20℃至60℃&bull 温度波动 (随时间变化):±0.1°C 至 ±0.2°C&bull 空间温度均匀性:± 0.15°C 至 ± 1.0°C&bull 湿度范围:20% 至 95% rH&bull 湿度波动 (随时间变化):± 1%rH&bull 空间湿度均匀性:± 2%rH作为Aralab的中国区授权经销商,上海昊扩提供Aralab旗下各类高精度的环境控制设备,包括: &bull 低温培养箱/恒温恒湿箱/光照培养箱 &bull 步入式恒温恒湿房间 &bull 环境试验箱 &bull 步入式环境测试室 &bull 高低温冲击箱 &bull 人工气候箱/室想要了解更多相关产品信息,欢迎来电咨询!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制