当前位置: 仪器信息网 > 行业主题 > >

乳酸乙酯光致抗蚀剂级

仪器信息网乳酸乙酯光致抗蚀剂级专题为您提供2024年最新乳酸乙酯光致抗蚀剂级价格报价、厂家品牌的相关信息, 包括乳酸乙酯光致抗蚀剂级参数、型号等,不管是国产,还是进口品牌的乳酸乙酯光致抗蚀剂级您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乳酸乙酯光致抗蚀剂级相关的耗材配件、试剂标物,还有乳酸乙酯光致抗蚀剂级相关的最新资讯、资料,以及乳酸乙酯光致抗蚀剂级相关的解决方案。

乳酸乙酯光致抗蚀剂级相关的论坛

  • 【资料】二虎食品添加剂-酸度调节剂之乳酸

    2 乳酸科技名词定义中文名称:乳酸 英文名称:lactic acid 其他名称:α羟基丙酸 定义:无氧糖酵解的终产物。是由乳酸脱氢酶的作用使丙酮酸还原而生成的。 所属学科:生物化学与分子生物学(一级学科);新陈代谢(二级学科) 百科名片乳酸纯品为无色液体,工业品为无色到浅黄色液体。无气味,具有吸湿性。相对密度1.2060(25/4℃)。熔点18℃。沸点122℃(2kPa)。折射率nD(20℃)1.4392。能与水、乙醇、甘油混溶,不溶于氯仿、二硫化碳和石油醚。在常压下加热分解,浓缩至50%时,部分变成乳酸酐,因此产品中常含有10%-15%的乳酸酐。生物学  在发酵过程中乳酸脱氢酶将丙酮酸转换为左旋乳酸。在一般的    乳酸新陈代谢和运动中乳酸不断被产生,但是其浓度一般不会上升。只有在乳酸产生过程加快,乳酸无法被及时运走时其浓度才会提高。乳酸运输速度由一系列因素影响,其中包括单羧基转运体、乳酸脱氢酶的浓度和异构体形式、组织的氧化能力。一般来说血液中的乳酸浓度在不运动时为1-2mmol/L,在强烈运动时可以上升到20mmol/L。   一般来说当组织的能量无法通过有氧呼吸得以满足,组织无法获得足够的氧或者无法足够快地处理氧的情况下乳酸的浓度会上升。在这种情况下丙酮酸脱氢酶无法及时将丙酮酸转换为乙酰辅酶A,丙酮酸开始堆积。在这种情况下假如乳酸脱氢酶不将丙酮酸还原为乳酸的话糖酵解过程和三磷酸腺苷的生产会获得抑制。产生乳酸的过程为:丙酮酸+NADH+H+→乳酸+NAD   这个过程的意义在于重建糖酵解所需要的烟酰腺嘌呤二核苷酸(NAD+)来保持三磷酸腺苷的生产。在氧气充足的肌肉细胞中乳酸可以被氧化为丙酮酸,然后直接用来作为三羧酸循环的燃料。它也可以在肝脏内糖异生的过程中通过科里循环转化为葡萄糖。乳杆菌属的细菌也可以进行乳酸发酵。这些细菌可以生活在口内,它们产生的乳酸是导致龋齿的原因。在医学里乳酸常被用在乳酸林格氏液中。这是一种与人的血液等张的氯化钠、氯化钾和乳酸在蒸馏水中的溶液。在损伤、手术或烧伤失血后常使用乳酸林格氏液来补充失血。 编辑本段基本信息  名称:乳酸 乳酸英文名:Lactic acid;2-Hydroxy propionic acid   别名:2-羟基丙酸;α-羟基丙酸;丙醇酸   分子式: C3H6O3   结构简式:

  • 乳酸菌抑制剂

    有没有针对乳酸菌的抑制剂?像脱氧剂能抑制细菌和霉菌等的生长,乳酸菌有这样的抑制剂吗

  • 【转帖】台湾乳酸菌饮料优安蜜惊爆含致癌防腐剂

    据台湾媒体报道,昌乳食品公司委托苗栗县农会乳品加工厂生产的“优安蜜”乳酸菌饮料,含有致癌的防腐剂“去水醋酸”,由于产品主要批发给北部的便当业者做附赠饮品,消费者早已喝下肚,消息传出引发恐慌;台北县政府昨立即前往三峡镇民生街一处经销商稽查采样,若被验出不合格,将依食品卫生管理法开罚三万至十五万元(新台币,下同),经销商则已紧急回收产品。 曾两度被验出 业者称现已合乎标准 壹周刊爆料,坊间有多达十一个品牌的乳酸菌饮料,乳酸菌数量偏低,不符合国家标准,昌乳食品公司的“优安蜜”更被验出有致癌之虞的防腐剂“去水醋酸”。 去水醋酸是一种广效的防腐剂,按照台湾法令,乳酸饮料中根本不能添加,喝太多会急性中毒,如果长期食用,会伤肝伤肾,导致孕妇畸胎,甚至致癌。

  • 乙腈中乳酸乙酯热脱附进样也不稳定?

    甲醇中乳酸乙酯不稳定,结果买了乙腈中乳酸乙酯,农残级乙腈稀释 做HJ734,乙腈中乳酸乙酯组合三热脱附进样 乳酸乙酯分解!在乳酸乙酯相邻峰位置出现分解峰,应该是氧化产物。各位用乙腈中乳酸乙酯稳定吗,是一个峰吗?

  • 【分享】火腿与乳酸饮料同食易致癌

    火腿与乳酸饮料易致癌常常吃三明治搭配优酪乳当早餐的人要小心,三明治中的火腿、培根等和乳酸饮料(含有机酸)一起食用,容易致癌。因为,为了保存香肠、火腿、培根、腊肉等加工肉制品,食品制造商会添加硝酸盐来防止食物腐败及肉毒杆菌生长。当硝酸盐碰上有机酸(乳酸、柠檬酸、酒石酸、苹果酸等)时,会转变为一种致癌物质——亚硝胺。因此,不要常常食用这类加工肉品,以免增加致癌风险。萝卜与橘子易诱发甲状腺肿大萝卜会产生一种抗甲状腺的物质硫氰酸,如果同时食用大量的橘子、苹果、葡萄等水果,水果中的类黄酮物质在肠道经细菌分解后就会转化为抑制甲状腺作用的硫氰酸,进而诱发甲状腺肿大。牛奶与巧克力易发生腹泻牛奶含丰富的蛋白质和钙,巧克力则含草酸,若二者混在一起吃,牛奶中的钙会与巧克力中的草酸结合成一种不溶于水的草酸钙,食用后不但不吸收,还会发生腹泻、头发干枯等症状,影响生长发育。海鲜与啤酒易诱发痛风海鲜是一种含有嘌呤和苷酸两种成分的食物,而啤酒中则富含分解这两种成分的重要催化剂———维生素B1。如果吃海鲜时饮啤酒,会促使有害物质在体内的结合,增加人体血液中的尿酸含量,从而形成难排的尿路结石。如果自身代谢有问题,吃海鲜的时候喝啤酒容易导致血尿酸水平急剧升高,诱发痛风,以至于出现痛风性肾病、痛风性关节炎等。水果与海鲜不容易消化吃海鲜的同时,若再吃葡萄、山楂、石榴、柿子等水果,就会出现呕吐、腹胀、腹痛、腹泻等。因为这些水果中含有鞣酸,遇到水产品中的蛋白质,会沉淀凝固,形成不容易消化的物质。人们吃海鲜后,应间隔4小时以上再吃这类水果。菠菜与豆腐易患结石症豆腐里含有氯化镁、硫酸钙这两种物质,而菠菜中则含有草酸,两种食物遇到一起可生成草酸镁和草酸钙。这两种白色的沉淀物不能被人体吸收,不仅影响人体吸收钙质,而且还容易患结石症。

  • 【原创】乳酸孢子 简介

    一.乳酸孢子简介1.孢子是一种与生殖有关的细胞(通常是单细胞),可以形成新生命的个体,普遍存在植物界的生殖循环中,会产生孢子的物种包括厥类苔藓等植物,还有真菌 (例如酵母菌、)等等。 对某些细菌来说,也有一种叫做「孢子」的特殊构造,是细菌在环境不适宜时,由整个细菌体浓缩形成的一种休眠孢子,可用以抵抗不良的环境,等到环境适合再萌芽。细菌孢子是细菌在恶劣环境时的变身,可协助细菌度过不适宜的环境。2.乳酸菌 乳酸菌是相当庞杂的菌群,为能利用碳水化合物进行发酵产生乳酸的一群细菌的总称。分类上,属革兰氏染色阳性菌,有些能有孢子产生。生存于人体内的乳酸菌有双叉菌、嗜酸乳杆菌及一种肠球菌,这些都是具有积极作用的好菌。乳酸菌用糖生产乳酸的过程叫做「乳酸发酵」. 所谓乳酸孢子,就是有孢子的乳酸菌。也叫孢子型乳酸菌、芽孢乳酸菌。孢子型乳酸菌就是一种在到达肠道之前呈休眠状态的有益菌。二.孢子型乳酸菌作用①使细胞活化:活化细胞、强化细胞机能.②净化肠道环境:调整肠道菌丛生态、改善肠道机能、抑制坏菌生长、减少肠道坏菌异常发酵、使肠道益菌增加。③净化血液:孢子型乳酸菌除了可以代谢产生蛋白质分解酵素及糖类分解酵素外尚可产生脂肪分解酵素,达到净化血液之效果。④增加免疫机能:乳酸孢子能刺激体内的各种防御因子,使其活化。⑤改善女性阴道感染。三.孢子型乳酸菌的优点与现有乳酸菌相比,它具有更好的耐热性、耐酸性、耐糖性、耐干燥,稳定性和保存性均好,还具有高乳酸的生成能力,在肠内也有高增殖力,孢子乳酸菌为真正可以达肠道后苏醒,开始萌芽、生长的独特乳酸菌。四.乳酸孢子的种类 乳酸孢子是能产生孢子的乳酸菌的总称。目前主要应用的是芽孢杆菌(即包括:地衣杆菌、枯草杆菌、蜡样穿孢杆菌、东洋杆菌等的孢子),在使用时多制成该菌休眠状态的活菌制剂,或与乳酸菌混合使用。五.孢子型乳酸菌的用途孢子型乳酸菌作为添加剂可用于营养食品,动物饲料以及农业中。在我国目前,乳酸孢子多作为益生素的成分之一用于饲料中。六.乳酸型孢子市场情况简介在国外,目前乳酸孢子已经用于保健品(如奶粉,酸奶等)行业。从网上报道的乳酸孢子生产厂家来看,台湾企业的乳酸孢子保健品市场很好,且他们的乳酸孢子原料来源多为从日本进口。在我国,乳酸孢子作为保健品暂时并不普遍,主要是乳酸孢子多作为益生素的成分之一用于饲料中。而且随着益生素部分代替抗生素在动物饲料中应用,前景看好。目前我国对于益生素年使用量在1000吨左右。

  • 【“仪”起享奥运】食品复配防腐剂--乳酸链球菌素与化学防腐剂

    [align=center][/align][font=宋体, SimSun][size=16px]目前在糕点中常用的化学防腐剂对霉菌、酵母的抑制作用较好,而对细菌的抑制作用较弱。生物防腐剂乳酸链球菌素是从乳酸乳球菌发酵产物中提取的、具有抗菌活性的多肽物质,能够抑制许多引起食品腐败变质的革兰氏阳性菌的生长、繁殖,特别对耐热芽孢杆菌、肉毒梭菌等所产生的芽孢有强烈的抑制作用。[/size][/font][size=16px][/size][font=宋体, SimSun][size=16px]张攀先[2]等人在实验中选用乳酸链球菌素与常用化学防腐剂对蒸蛋糕中腐败微生物进行抑制并进行优化复配,结论显示,[b]复配防腐剂(0.2g/kg 乳酸链球菌素+0.25g/kg 脱氢乙酸钠+0.3g/kg 丙酸钠)能够显著的抑制蒸蛋糕中腐败微生物的生长[/b],且抑菌效果要优于化学防腐剂(脱氢乙酸钠和丙酸钠),能够改善产品的品质,延长产品的保质期。且与化学防腐剂(脱氢乙酸钠和丙酸钠)相比,添加了乳酸链球菌素的复配防腐剂不仅增强了对蒸蛋糕中腐败微生物的抑制能力,同时也降低了化学防腐剂的添加量,提高了产品的安全性。[/size][/font]

  • 【原创大赛】测定乳酸乙酯纯度的方法筛选

    【原创大赛】测定乳酸乙酯纯度的方法筛选

    背景:最近做一个制剂,资料中显示有一种辅料是乳酸乙酯。因为以前没有接触过这个动东西,所以,还是费了点心思找找资料。首先去国家局网上查找这个辅料的信息。在药用辅料里面没有搜索到该品种。http://ng1.17img.cn/bbsfiles/images/2013/07/201307261147_453825_1609327_3.jpg倒是在食品中找到其作为食品添加剂的信息。http://ng1.17img.cn/bbsfiles/images/2013/07/201307261150_453828_1609327_3.jpg既然可以加到食品中,看来应该是一个比较安全的东西。为了做到心里有数,就百度了一下,发现用途还是挺广泛的。乳酸乙酯(2-羟基丙酸乙酯,CAS No.: 687-47-8 ),无色液体,略有气味。与水混溶,可混溶于醇、芳烃、酯、烃类、油类等有机溶剂。易燃,遇氧化剂易爆炸。用于香料、食品,还用作溶剂。通常由乳酸和乙醇在硫酸存在下酯化而得。用途:作为香料,调制朗姆酒、牛奶、奶油、葡萄酒、果酒、椰子香型香精,用于食品;也用作载体溶剂;高沸点溶剂及硝化纤维及醋酸纤维的溶剂;人造珍珠的高级溶剂。制药工业轧制药片时的润滑剂。用于电子行业,除了有独特的高纯度及低金属含量满足了半导体工业对高质量的要求,还是一种安全的有机溶解剂可用于感光材料的清洗。除此之外,还是农药生产中的主要有机溶剂,亦可用于涂料,油墨等领域,是当之无愧的环保溶剂。于上面的资料中,可以看到,该物质在制药中还是应用的,就是不知道为什么没有国家批准的药用辅料。鉴于此,就需要我们自己对乳酸乙酯做一定量的研究了。查寻GB标准,正在实施的标准为GB 8317-2006,其检验含量使用的方法为气相色谱法。因此,我们的检验就也照着这个思路来进行。实验过程:国标中的方法是:采用PEG-20M的固定液,5%~10%涂布在Chromosorb WAW DMCS (60目~80目)上。色谱条件为柱温从80℃到160℃,以3℃/min的速率升温。而且在附录中提供了乳酸乙酯的典型气相色谱图,http://ng1.17img.cn/bbsfiles/images/2013/07/201307261151_453829_1609327_3.jpg很奇怪的是没有溶剂峰,难道是直接进样的??按照国标试了一针,直接平头峰!最后还是决定用溶剂稀释。因为还牵涉到将来对乳酸乙酯做有关物质检查,而乙醇会是一个可能的有关物质。为了保证乙醇峰的定量准确,所以选择了极性小或者非极性的溶剂进行尝试试验。最终试验的结果溶剂选择为正己烷。并对色

  • 【讨论】乳酸标液配制

    需要用HPLC测定乳酸浓度,查了一下资料,说乳酸浓缩至50%时即出现脱水产生乳酸酐,产品中常含有10%-15%的乳酸酐。去sigma网站查,发现有85%水溶液乃至98% L-(+)-Lactic acid,问题来了:(1)这么高浓度的乳酸里面有没有酸酐存在?sigma在产品85%乳酸水溶液中的描述说Contains varying amounts of intermolecular esterification products,那85%是计算出的谁的含量?(2)关键的问题是:怎样配制一定浓度的乳酸标准溶液?应该购买什么样的色谱试剂来稀释?3Q!

  • 【原创大赛】乳酸乙酯、甲醇、组合三会擦出怎样的火花?

    【原创大赛】乳酸乙酯、甲醇、组合三会擦出怎样的火花?

    今年扩项 HJ734-2014,从收集的资料来看乳酸乙酯是不稳定的,问了一些做过的都说乳酸乙酯不好做,论坛帖子里也有这方面的讨论。我试验发现乳酸乙酯、甲醇、组合三在热脱附过程中发生一些化学反应! 收集的一些乳酸乙酯资料:[img=,690,223]https://ng1.17img.cn/bbsfiles/images/2020/09/202009081617462892_5801_2103464_3.png!w690x223.jpg[/img] [img=,690,157]https://ng1.17img.cn/bbsfiles/images/2020/09/202009081619363949_7837_2103464_3.png!w690x157.jpg[/img] 买了24种HJ734 VOC混标,甲醇水9:1溶剂,甲醇稀释后 直接液体进样发现乳酸乙酯峰挺高的,没有发生明显的反应,下图21.6min为乳酸乙酯[img=,690,364]https://ng1.17img.cn/bbsfiles/images/2020/09/202009081622552286_9904_2103464_3.png!w690x364.jpg[/img] 然后用组合三,甲醇为溶剂配制含乳酸乙酯的24种混合HJ734标液。这里配制方式有好几种:1.用24种混标甲醇水9:1溶剂的,用甲醇稀释。2.用22种混标甲醇水9:1溶剂的,加色谱纯乳酸乙酯,苯甲醛再用甲醇稀释。3.用22种混标纯甲醇溶剂的,加色谱纯乳酸乙酯,苯甲醛再用甲醇稀释。取1μl标液进组合三,在氮气80ml/min吹扫5min取下作为标准管。 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]:赛默飞Trace1300-ISQ,热脱附是 PE的 ATD350色谱条件 VF-624ms柱(60m*0.25mm*1.4μm)40℃保持5min以6℃/min至100℃以15℃ /min至140℃保持5min 以15℃ /min至220℃保持2min。热脱附条件:干吹1min,一级二级脱附都是300℃,冷肼-30℃,一级脱附11min二级脱附6min,进口分流30ml/min 脱附30ml/min,出口分流9 ml/min,色谱柱流量1.3 ml/min 热脱附发现无论是哪种配制方式,也无论怎么改变条件都发现乳酸乙酯峰小,发生了反应。在最初的色谱图发现了乙醇,而且乙醇随着标液浓度增大而增大,这个乙醇是反应的副产物: [img=,690,459]https://ng1.17img.cn/bbsfiles/images/2020/09/202009081653460004_8158_2103464_3.png!w690x459.jpg[/img]在甲苯前面有两个连着的峰 17.99min是丙酮酸甲酯[img=,690,431]https://ng1.17img.cn/bbsfiles/images/2020/09/202009081654475162_4856_2103464_3.png!w690x431.jpg[/img]18.07min是乳酸甲酯:[img=,690,432]https://ng1.17img.cn/bbsfiles/images/2020/09/202009081656071579_6357_2103464_3.png!w690x432.jpg[/img] 此外乳酸乙酯旁边还发现了:20.19min是丙酮酸乙酯[img=,690,443]https://ng1.17img.cn/bbsfiles/images/2020/09/202009081656566850_3396_2103464_3.png!w690x443.jpg[/img] 20.26min才是乳酸乙酯!确实比其他峰小了好多,相对响应比液体直接进样小了好多是反应的证明![img=,690,437]https://ng1.17img.cn/bbsfiles/images/2020/09/202009081657580589_4347_2103464_3.png!w690x437.jpg[/img] 用组合三还进了一针甲醇空白,改变全扫描范围发现还有残留甲醇。 根据以上推断:甲醇中乳酸乙酯标液进组合三吹扫后,还有残留甲醇,乳酸乙酯在热脱附过程中发生酯交换反应和氧化反应,甚至还有二级反应! 部分乳酸乙酯与甲醇反应生成乳酸甲酯与乙醇!部分乳酸甲酯被氧化成丙酮酸甲酯!乳酸乙酯本身也会被部分氧化成丙酮酸乙酯! 酯交换反应式:[img=,690,163]https://ng1.17img.cn/bbsfiles/images/2020/09/202009081711230387_9047_2103464_3.png!w690x163.jpg[/img] 氧化反应可能是系统有微量氧气把乳酸乙酯或乳酸甲酯的羟基氧化成羰基! 先后试过三家不同厂家的组合三,发现了同样的反应! 此外如果采用乙腈中乳酸乙酯再用甲醇稀释,同样也会发生反应!因为乳酸乙酯又遇见了甲醇。 结论:乳酸乙酯、甲醇、组合三在热脱附过程中可能会发生酯交换反应和氧化反应,所以不稳定!

  • 乳酸乙酯的检测

    我用顶空进样[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]跑不出来发酵液里面的乳酸乙酯,然后我今天弄了一个乳酸乙酯标准品浓度梯度去跑,只有最高浓度跑出来了乳酸乙酯,其他一个都没跑出来,有没有朋友知道是什么情况啊呜呜呜呜_我是直接放样品到顶空瓶里面,然后跑样,没有经过其他处理

  • 【原创大赛】乳酸乙酯有关物质检查的气相方法开发

    【原创大赛】乳酸乙酯有关物质检查的气相方法开发

    前面关于乳酸乙酯的那个帖子中以及提到,我们的一个制剂中要用到乳酸乙酯作为药用辅料。但是国家没有批准乳酸乙酯作为药用辅料的生产产家,只有食品添加剂的生产厂家。(详见http://bbs.instrument.com.cn/shtml/20130726/4872328/测定乳酸乙酯纯度的方法筛选) 东风兄说,对于国家没有批准药物辅料的品种,如果是口服制剂的话,可以用食品级的来代替。这个方案是完全可以的。我们曾经有一个品种,里面有很多原来没有药用级的辅料,因为这个事儿也头疼了很久,后来咨询国家局的专家,给的就是这样一个答复,前提是必须做好内控,切实的控制好质量。但是对于目前的这个品种来说,仅仅内控是不够的了,因为这个不是口服制剂,而是注射剂。因此,估计要在申报制剂的同时,要拖着报一个药用辅料才行。基于这样的思路,就不得不对乳酸乙酯多做一些研究。对于注射剂的药用辅料来说,除了常规的理化检验,含量测定和有关物质检查就是重点中的重点了。前面已经摸索了含量的测定方法了,这里,对有关物质也要进行一个方法摸索。乳酸乙酯,一般是乳酸和乙醇在催化剂的存在下发生的酯化反应。可能的有关物质,无怪乎就是乳酸、乙醇、甲醇、乳酸甲酯等等或者还有别的几种东西。在做含量的时候,选择正己烷做溶剂,也是包含了这方面的考虑的了。前面已经有了含量测定的色谱条件,因此,在那个条件的基础上,把升温速率稍微的温和一些,把采集时间稍微长一些,应该就可以有效的检测其有关物质。 试了几个条件,选择了效果最好的一个初步定为有关物质检查方法。其色谱条件如下:色谱柱为WEL-PEG20M,30m*0.32mm 0.25μm,(Cat NO:01918-32001;Serial NO:GC20131102);进样口温度为200℃;检测器温度为250℃;升温程序还需要暂时保密哦(不好意思,不得不如此,还望大家可以理解)。 我的色谱图为:http://ng1.17img.cn/bbsfiles/images/2013/07/201307311836_455030_1609327_3.jpg三针色谱图的重叠图:http://ng1.17img.cn/bbsfiles/images/2013/07/201307311836_455031_1609327_3.jpg从图谱上看,保留时间还是很稳定的吧?就是基线有些漂动。但是分离度还是可以的。总体上讲,作为乳酸乙酯有关物质检查的分析,还是可以满足要求的。如果需要,就是一些微调而已。还是很满意这样的效果的。

  • 乳酸菌的益处

    梅基尼可夫又称「乳酸菌之父」,他到保加利亚旅游时,发现当地有许多超过百岁的人瑞,于是便开始探讨当地人长寿的原因。他从当地人的饮食习惯中,发现他们有每日饮用「酸乳」的习惯,并经研究证实,饮用酸乳有助延年益寿,长保青春,其关键便在于酸乳中所含的乳酸菌。 人体的肠道每天必须消化吸收我们吃进去的食物,当肠道内的有益菌多于有害菌时,可确保肠道发挥正常的消化与吸收作用,维持正常的免疫功能。但是,当有害菌多于有益菌时,便造成肠道功能下降,使食物无法排出体外而留存在肠道中与有害菌交互作用,逐渐在肠道内产生致病毒素,引发各种疾病及老化现象;这就是一九○八年获得诺贝尔医学奖的梅基尼可夫所提出的「自身中毒」学说。保加利亚人因每天饮用的酸乳中含有多量有益菌,即乳酸菌,可有效抑制肠道中有害菌增生,并促使有益菌大量繁殖,使肠道功能维持在健康正常的状态,让体内毒素可顺利排出体外,避免产生其它致病原因,自然能常保健康与青春。

  • 乳酸菌饮品很随意,酸奶更有益

    乳酸菌广告效果乃商家随意而为 专家:酸奶更为有益中广网北京11月22日消息(记者吴善阳 实习记者陈彬)据中国之声《央广新闻》报道,近年来,乳酸菌饮品花样百出,商家打出的"乳酸菌"概念广告也是五花八门。但乳酸菌饮品真的"能够帮助肠胃做运动",其功能真如商家宣传的那么玄乎吗?专家指出,乳酸菌广告往往是商家随意而为,并没有统一的规范标准。要使行业健康有序发展,就必须尽早出台行业标准。 每天中午,记者发现多数在写字楼上班的白领都会饭后买一瓶乳酸菌饮品,仿佛真能让它"帮助肠胃做运动".食用乳酸菌饮品实质上是为我们补充乳酸菌,使人体菌群达到平衡,从而有益健康。上海交通大学病原生物学教研室主任、上海市食品学会乳酸菌专业委员会副主任委员郭晓奎表示广告效果都是厂家随意而为,没有机构认证。 郭晓奎:那些厂家在做广告上都是自己随意而为的,并没有哪个权威机关或者学术机构来验定,咱们国家从来就没有一个机构出这个认证。 继味全、达能之后,光明、伊利、蒙牛先后推出了自己的乳酸菌产品。商家各出奇招,时而请美女明星代言,时而请某医学博士,貌似权威。此外,商家总喜欢用一些不为人知的专业菌名做噱头,A+B益生菌、B益畅TM菌等。有的商家还推出"植物乳杆菌",用"自然"的名义抬高价格。其实,"植物乳杆菌"只是因为最初是在植物上发现的而得名,并不是在植物上独有的。 专家建议,传统固性酸奶更为有益。乳酸菌饮品主要配料为水,脱脂奶粉和食用香料,其含奶量甚少,千万不能将乳酸菌与酸奶等同看待。同济大学医学院营养与保健食品专家张欣文教授表示还是酸奶营养价值高。 张欣文:乳酸菌饮料里面放了比较多样的食品添加剂,所以它的营养价值来说就没有酸奶那么高。 记者发现,在国家食品药品监督管理局的数据中,只有6种乳酸菌饮品获得了国家批准文号。其中,杭州顶津食品有限公司是用"味全R活性乳酸菌饮品"的名字申请批准文号,并属于国产保健食品类,而市场上销售的"味全活性乳酸菌饮品"中,却将R去掉,以普通食品出售。其他诸如光明、伊利、蒙牛等品牌虽大推活性乳酸菌的保健功能,但并不属于国家批准的保健食品行列。郭晓奎表示大多企业所用菌种都是未经严格实验的。 郭晓奎:咱们国内大多数企业用的菌种都是没有经过严格的随机、对照、多中心等多种测试的。它可能委托两家企业做一下或者两家医院做一下实验,但是这个实验从严格意义上来说恐怕都存在一些问题。这是一个很乱的,但有前景的,管理上跟不上或者说学术支持也跟不上的一个行业。

  • 【原创大赛】乳酸乙酯标准曲线真的变成了曲线!

    【原创大赛】乳酸乙酯标准曲线真的变成了曲线!

    [font=微软雅黑][font=微软雅黑]上次写[/font][/font][font=微软雅黑][font=微软雅黑]了乳酸乙酯、甲醇、组合三会擦出怎样的火花?https://bbs.instrument.com.cn/topic/7632278,有人就问乳酸乙酯线性怎么样?这次继续讨论乳酸乙酯发生了反应,标准曲线会是怎么样的?会不会是虽然发生反应不过标准曲线每个点都反应掉相同的量比如反应掉一半,结果还是线性?带着这个疑问继续实验。[/font][/font][font=微软雅黑] [font=微软雅黑]按照HJ734-2014标准给的低浓度标准曲线配制24种混合标准溶液,溶剂是农残级甲醇,标准溶液浓度分别为5,10,20,50,100μg/ml。分别进1[font=微软雅黑]μl标准溶液到[/font]组合三吸附管氮气吹扫后热脱附进样。[/font][/font][font=微软雅黑][font=微软雅黑][font=微软雅黑] 标准曲线数据:[/font][/font][/font][font=微软雅黑][font=微软雅黑][font=微软雅黑] [img=,300,140]https://ng1.17img.cn/bbsfiles/images/2020/09/202009241404422139_1939_2103464_3.png!w300x140.jpg[/img][/font][/font][/font][font=微软雅黑][font=微软雅黑][font=微软雅黑] 线性拟合:产生了比较大的负截距,与x轴的交点甚至大于标准曲线最低点!R平方0.9828 不到0.99不能满足标准要求![/font][/font][/font][font=微软雅黑][font=微软雅黑][font=微软雅黑] [img=,690,438]https://ng1.17img.cn/bbsfiles/images/2020/09/202009241405150741_8433_2103464_3.png!w690x438.jpg[/img][/font][/font][/font][font=微软雅黑][font=微软雅黑][font=微软雅黑] HJ734-2014标准里也提到了平均响应因子法,用平均响应因子RF法,如图:浓度越大响应因子越高,曲线各个点的平均相对响应因子RRF相对标准偏差达40.8%,不满足标准里RSD≤30%的要求。[/font][/font][/font][font=微软雅黑][font=微软雅黑][font=微软雅黑] [img=,690,426]https://ng1.17img.cn/bbsfiles/images/2020/09/202009241406545528_6933_2103464_3.png!w690x426.jpg[/img][/font][/font][/font][font=微软雅黑] 浓度越大,响应因子越高这是为什么呢?因为乳酸乙酯在热脱附过程中反应比较复杂,酯交换是主要反应,为了简化只考虑这一主反应[/font][font=微软雅黑] 根据勒夏特列原理[/font][font=微软雅黑]:可逆化学反应平衡 乳酸乙酯+甲醇[/font][font=&]⇌ [/font][font=微软雅黑] 乳酸甲酯+乙醇。甲醇是溶剂所以是过量的,随着乳酸乙酯含量的减少,甲醇大大过量反应平衡更容易向右进行。所以标线各个点的反应程度是不一致的!在大浓度范围内线性是不成立的! [font=微软雅黑] [/font][/font][font=微软雅黑] 选用二次曲线,得到非常好的拟合 R平方0.9996,显然优于线性拟合。[/font][font=微软雅黑] [img=,690,433]https://ng1.17img.cn/bbsfiles/images/2020/09/202009241427385055_5861_2103464_3.png!w690x433.jpg[/img][/font][font=微软雅黑] [font=微软雅黑]本人标准曲线做了20多次都是类似的曲线,乳酸乙酯的标准曲线真的变成了曲线![/font][/font][font=微软雅黑] 结论:乳酸乙酯、甲醇、组合三在热脱附过程中的反应使得在较大浓度范围内线性不成立!二次曲线可能是更好的选择,欢迎大家继续讨论。[/font][url=https://bbs.instrument.com.cn/topic/7632278][font=微软雅黑][color=#000000][font=微软雅黑][/font][/color][/font][/url]

  • 【“仪”起享奥运】食品复配防腐剂--纳他霉素和乳酸链球菌素

    [align=center][/align][font=宋体, SimSun][size=15px]纳他霉素和乳酸链球菌素的复配可以同时抑制真菌和细菌的生长,延长食品的货架期,在食品工业中具有很高的研究价值。[/size][/font][font=宋体, SimSun][size=15px]纳他霉素,简称Natamycin,主要是由纳塔尔链霉菌和褐黄孢链霉菌等链霉菌发酵得到的一种多烯大环内酯类[i][/i]抗菌剂;通常以烯醇式结构存在,是一种无臭无味的结晶粉末。纳他霉素能够有效抑制和杀死酵母菌和霉菌,抑制食品腐败以及真菌毒素给人体带来的损害。[/size][/font][font=宋体, SimSun][size=15px][back=#0eb0c9][b]纳他霉素的理化性质[/b][/back][/size][/font][font=宋体, SimSun][size=15px]纳他霉素是一种两性物质[i][/i],分子中有1个酸性基团和1个碱性基团,几乎不溶于水和大部分有机溶剂,较易溶于冰醋酸[i][/i]和二甲基亚砜等稀酸稀碱溶液。由于环状的分子结构,纳他霉素的稳定性受光照、温度、重金属、PH等因素影响。在使用时应保持PH在4~7范围内,同时避免高温和光照。[/size][/font][font=宋体, SimSun][back=#0eb0c9][b][size=15px]纳他霉素的抑菌机理[/size][/b][/back][/font][font=宋体, SimSun][size=15px]纳他霉素是一种专一且高效的抗真菌剂,几乎对所有的酵母菌、霉菌都有很好的抑制效果。纳他霉素的抑菌机理是其与细胞膜上的麦角固醇结合,形成复合体从而改变细胞膜结构和渗透性,引起胞内电解质、氨基酸等物质泄漏,进一步使细胞死亡。李东等研究表明,纳他霉素对曲霉菌的最小抑制浓度为0.63mg/kg,对黑曲霉菌的最小抑制浓度为1.80mg/kg,对岛状青霉菌的最小抑制浓度为1.10mg/kg。张旋等研究表明,纳他霉素对真菌具有显著的抑制能力,最小抑菌浓度大致为1mg/L。[/size][/font][font=宋体, SimSun][size=15px]乳酸链球菌素,简称Nisin,是由乳酸链球菌在代谢过程中产生的具有杀菌作用的多肽物质[i][/i],其由34个氨基酸残基组成,是一种高效且无毒副作用的天然防腐剂。乳酸链球菌素的抗菌谱较窄,只能够有效抑制由细菌引起的食品腐败。[/size][/font][font=宋体, SimSun][back=#0eb0c9][b][size=15px]乳酸链球菌素的理化性质[/size][/b][/back][/font][font=宋体, SimSun][size=15px]乳酸链球菌素在酸性条件下非常稳定,尤其当PH<2.0时可耐受121℃灭菌而不失活;当PH在中性和碱性时,灭菌后乳酸链球菌素活力基本丧失。PH与乳酸链球菌素的溶解度也密切相关,随着PH的下降,其溶解度增加。[/size][/font][font=宋体, SimSun][back=#0eb0c9][b][size=15px]乳酸链球菌素的抑菌机理[/size][/b][/back][/font][font=宋体, SimSun][size=15px]乳酸链球菌素对大多数革兰氏阳性菌的抑菌效果很好,特别是对金黄色葡萄球菌、芽孢杆菌作用明显。其可以作用于细菌细胞膜,形成孔状结构,打破细胞内外平衡,导致细胞死亡;也可以抑制肽聚糖的合成,使细胞壁合成受阻,从而抑制细胞生长。姜爱丽等研究表明当PH在酸性时,乳酸链球菌素浓度高于10μg/mL,对单增李斯特菌有一定的抑菌效果。[/size][/font][font=宋体, SimSun][back=#0eb0c9][b][size=15px]复合防腐剂在食品工业中的应用[/size][/b][/back][/font][font=宋体, SimSun][size=15px]易建华等发现乳酸链球菌素和纳他霉素复合防腐剂对低盐酱菜的抑菌能力最佳。乳酸链球菌素与纳他霉素复合防腐剂在3个月内对酱菜酸度和感官影响很小,且抑菌效果非常好。[/size][/font][font=宋体, SimSun][size=15px]顾佳莹等研究发现,将蛋黄馅中添加15g/kg的乳酸链球菌素和100mg/kg的纳他霉素复配溶液可达到内部防腐的目的,且用300mg/kg的纳他霉素溶液喷洒蛋黄月饼表皮能达到外部防腐的目的。[/size][/font][font=宋体, SimSun][size=15px]李清秀等将乳酸链球菌素和纳他霉素复配应用于鸡肉中,很好地抑制了鸡肉中腐败微生物的生长,且对鸡肉的口感无影响。[/size][/font][font=宋体, SimSun][size=15px]丁培峰等通过实验研究了纳他霉素、乳酸链球菌素和茶多酚在酱油防腐中的应用,发现单一的防腐剂不能起到良好的抑菌效果,而3种防腐剂按比例复配,可以使酱油货架期达到1年。[/size][/font][font=宋体, SimSun][size=15px]张玉鑫研究表明乳酸链球菌素与纳他霉素的比例为0.02:0.0065时,其抑菌效果与山梨酸钾相当,可有效地抑制方便面料包中的腐败菌生长。[/size][/font]

  • 【原创大赛】鲜乳转化的奥秘——乳酸菌

    文/李莎(华测检测) 鲜乳能够由液态转化为凝固态的发酵乳,并产生令人心怡的风味和丝滑的口感,这华丽的转变和其中的奥秘离不开微小的生命——乳酸菌。传统的酸奶就是由嗜热链球菌和保加利亚乳杆菌混合发酵而成的。[b]乳酸菌简介[/b] 乳酸菌是一类能利用可发酵碳水化合物产生大量乳酸的细菌的通称。除极少数外,绝大部分都是人体内不可缺少的且具有重要生理功能的菌群,广泛存在于人体的肠道中。乳酸菌具有调节肠道微生态、促进营养成分在肠道的消化吸收、降低血清中的胆固醇含量、缓解高血压以及抗肿瘤作用等诸多益生功能,其分泌的物质如细菌素、胞外多糖、胞外糖苷酶等更是对机体健康有益的。 乳酸菌已经在食品发酵、医药、饲料等领域中长期应用。特别是在食品发酵领域,乳酸菌的品质和性能直接决定发酵乳品质的好坏。不同性能的乳酸菌能够产生不同黏度、风味和生理功能的发酵乳。乳酸菌能够利用鲜乳中的蛋白质进行生产繁殖,并产酸、酯、游离脂肪酸、游离氨基酸,当鲜乳的pH降低至酪蛋白的等电点时,酪蛋白变性凝固。乳酸菌分泌出的胞外多糖,还能将乳酸菌细胞和酪蛋白链接在一起形成网络结构,使得发酵乳的凝胶结构更加稳定。 经研究发现,将优良乳酸菌菌株进行组合有利于提升发酵乳的整体性能,将一种保加利亚乳杆菌与两种以上嗜热链球菌进行组合可以使混合乳酸菌同时具备发酵速率快、产品黏度好、特征风味浓郁等优良性能。 目前,主要通过收集天然乳酸菌来获得性能优良的新型乳酸菌。天然乳酸菌经过筛选、培育和研究,确定其种属,以及产酸、产香、益生功能等特性。由于越来越多功能性乳酸菌的发现,酸奶中除了添加嗜热链球菌和保加利亚乳杆菌外,还会添加一些功能性乳酸菌,增加发酵乳的益生功能,例如降低胆固醇、降血糖、抗菌消炎、提高人体免疫力。一方面,这些功能性乳酸菌能够在生长过程中会分泌出一些胞外多糖、细菌素、胞外糖苷酶等物质。另一方面,嗜热链球菌菌株和保加利亚乳杆菌菌株存在局限性,它们不耐胃酸和胆汁,在经过人体消化道时,这些常规的乳酸菌会失活,而发酵乳中添加的功能性乳酸菌能够在肠道内大量存活,发挥调节肠道菌群平衡,促进人体消化吸收等作用,被人们认为是新一代的益生菌。[b]可用于食品的乳酸菌菌种名单[/b] 2010年卫生部办公厅发布了《可用于食品的菌种名单》(卫办监督发〔2010〕65号),其中包含乳制品中常用的两歧双歧杆菌、长双歧杆菌、乳双歧杆菌、嗜酸乳杆菌、干酪乳杆菌、德氏乳杆菌保加利亚亚种(保加利亚乳杆菌)、嗜热链球菌等。该公告还规定,对于新菌种需要按照《新资源食品管理办法》执行。2011年卫生部又发布了《关于批准翅果油等2中新资源食品的公告(2011年 第1号)》,其中将乳酸乳球菌乳酸亚种、乳酸乳球菌乳脂亚种和乳酸乳球菌双乙酰亚种列入《可用于食品的菌种名单》,增加了可用于食品的乳酸菌种类。 此外,这几年我国卫生计生委也陆续发布了一些公告,增加了可用于食品的菌种名单,其中也包含有乳酸菌。[b]乳酸菌与人体的肠道健康[/b] 在人体肠道中,双歧杆菌和乳杆菌在肠道中普遍存在。婴儿时期,母乳喂养的婴儿肠道中双歧杆菌的数量占绝对优势,而人工牛乳喂养的婴儿肠道中最初普遍没有双歧杆菌,或者个别的双歧杆菌数量处于波动之中,而且常定植某些其它厌氧菌如拟杆菌和梭状芽孢打菌等。婴儿停止母乳或人工喂养后,由于食物的摄取,其肠道转变为类似成年人肠道。健康成年人肠道微生物可大致分为三类:第一类乳酸菌,包括双歧奸菌、乳杆菌和链球菌等,与宿主共生;第二类腐败菌,如拟杆菌、梭菌、消化球菌、大肠杆菌和葡萄球菌等;第三类包括真细菌、瘤胃球菌和巨型球菌等。该时期,双歧杆菌和乳杆菌数量较儿童期显著减少,有害菌滋生。老年人肠道中双歧杆菌和乳杆菌数量减少,拟杆菌、梭菌、肠杆菌和链球菌数量显著增加。 乳酸菌与人体的健康息息相关,特别是人体的胃肠道,其中最主要的两种乳酸菌是双歧杆菌和乳杆菌。双歧杆菌参与宿主的消化代谢、免疫及抗感染过程,它能通过细胞上的磷酸与肠黏膜上皮细胞特异性结合构成生物学屏障,也可产生具有分解肠黏膜上皮细胞内复杂多糖的细胞外糖苷酶,刺激肠道产生免疫抗体和病毒抗体,降低肠道pH及氧化还原电位,从而拮抗肠道需氧菌和条件致病菌的入侵,维持肠道微生态平衡。对于某些腐败菌和低温细菌,双歧杆菌通过产生有机酸对其产生抑制作用从而起到抗菌作用;由于机体吞唾细胞的吞噬活性可以在双歧杆菌的存在下激活,从而提高了机体的抗感染能力及免疫功能;双歧杆菌可以降低机体胆固醇水平,因其在发酵过程中产生一种影响胆固醇合成的物质;双歧杆菌还可以调节肠道正常细菌菌群平衡,起到防止便秘的作用;双歧杆菌的代谢活动还可以明显增加血液中超氧化物歧化酶的含量,从而起到抗衰老的作用。 乳杆菌对人体健康同样十分重要。由于其发酵碳水化合物的终产物是乳酸,可以帮助机体消化吸收;乳杆菌可以通过酸化肠内环境来阻止某些有害菌与肠上皮细胞的黏附,从而阻碍有害菌在肠道内的定植,进而优化胃肠功能,减少了疾病的发生率;乳杆菌还可以刺激免疫球蛋白的产生,从而增强机体的免疫力。 乳酸菌无处不在,与人类和动物的健康息息相关。随着人们对乳酸菌进一步深入地研究,相信越来越多的新型乳酸菌和其益生功能及机理会被人类发现,并造福于人类。

  • 【求助】求助气相色谱分析乳酸酯化体系

    各位高手:本人科研题目为乳酸乙醇酯化反应,因此为了确定反应体系中各组分的浓度及含量(定量),需要配制各组分的标准溶液进行GC分析并绘制标准曲线,由于乳酸乙酯不能用纯水配制标液(发生水解),因此体系中各组分(乙醇,乳酸,乳酸乙酯)的标液需要选择同一种溶剂来配制,但要同三种组分都不会发生任何作用,请问选择什么样的溶剂好呢?有篇文献是用的环戊酮配置乳酸乙酯标液,不知对其他两组分适用不适用。

  • 白酒样品中乳酸乙酯检测不到,请专家看一下。

    Agilent 7890-5975C检测白酒中的成分,其他NIST初步定性还好,可是乳酸乙酯换了几种程序升温方法都找不到,但是另一台[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]检测(不是顶空进样,是直接进样)显示含量高。乳酸乙酯含量高。柱子是HP-innowax,30m,顶空进样条件如下: Incubation Temp(℃) : 80 Incubation Time(s):1200 Agitator Speed(rpm): 250Syinge Temp(℃) : 150 Flush Time(s): 20进样量1mL,分流比5:1,辅助加热:280℃,前进样口250℃,离子源230℃,四级杆150℃,全扫描scan程序升温:40℃→5min→5℃/min→80℃→15℃/min→160℃→15℃/min→200℃乳酸乙酯挥发性差,是不是顶空就不能把乳酸乙酯分离出来?还是条件优化后有可能呢?

  • 乳酸乙酯无法检测出来,请问会是什么问题

    用百分之20的甲醇作为溶剂,加入了乳酸乙酯的标样,用180℃恒温了50min,除了溶剂峰,就没有看到其他峰。进样口温度为220℃,检测器为225℃,相同浓度下的乙酸乙酯都能出800多面积的峰。请问是什么问题啊?为什么会检测不出来呢?

  • 求助乳酸丁酯反应液分析检测

    [color=#444444]实验乳酸丁酯反应液中可能存在的物质有,正丁醇,乳酸,水(含量低)和乳酸丁酯,我想用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]对我的反应液进行分析,确定各组分的含量,但是最后发现乳酸好像不响应,我用的是ffap色谱柱,我想请求哪位高手指导一下我该怎么办,我用的条件是柱温180℃,进样温度210℃,检测器220℃,进样体积0.2μl[/color]

  • 【求助】寻求乳酸与乙醇酯化反应体系的GC分析要点

    各位大侠好:本人实验的内容是乳酸与乙醇酯化合成乳酸乙酯,所以反应后的体系为乳酸/乙醇/乳酸乙酯/水四元体系,比较好的分析方法应该是应用GC吧,想问问分析时应用什么样的柱子较好,应该注意一些什么问题?还望做过相同体系分析或知道的大侠给与指点~~

  • 概述D-乳酸的应用领域

    主要应用于聚乳酸材料的加工制造以及手性药物和农药中间体的合成。  1、手性化合物  高光学纯度D-乳酸(97%以上)作为一个手性中心是多种手性物质的前体,是重要的手性中间体与有机合成原料,广泛应用于制药、高效低毒农药及除草剂、化妆品等领域的手性合成。例如,日本タィセル化学工业公司利用D-乳酸制造优良除草剂骠马(Puma Super)。德国 Hoeehst公司也开发了以D-乳酸为原料的新型高效除草剂威霸(Whip Super)。德国BASF公司以D-乳酸异丙酯为原料生产除草剂Duplosan,并已大规模投放市场。此外,钙拮抗剂降压药、皮考啉酸衍生物以及二甲四氯丙酸、氟系除草剂等也以高光学纯度D-乳酸作为原料。  2、化学工业  以D-乳酸为原料的乳酸酯类在香料、合成树脂涂料、胶粘剂及印刷油墨等生产中应用广泛,在石油管道和电子工业的清洗等方面也有应用。其中,D-乳酸甲酯能与水及多种极性溶剂均匀混合,能充分溶解硝化纤维素、醋酸纤维素、乙酰丁酸纤维素等以及多种极性合成高分子聚合物,同时具有熔点高、蒸发速度慢的优点,是一种优秀的高沸点溶剂,可作为混合溶剂的成分改善作业性和增溶性,此外,还可用作医药、农药的原料和其它手性化合物合成的前体、中间体。  3、降解性材料  乳酸是生物塑料聚乳酸(polylactide, PLA)的原料。聚乳酸材料的物理性质依赖于D,L两种异构体的组成和含量。由消旋型D, L-乳酸合成的消旋体D, L-聚乳酸(PDLLA)为无定型结构,其机械性能较差,降解时间较短,且在体内会发生收缩,收缩率达50%以上,应用受到局限。L-聚乳酸(PLLA)和D-聚乳酸(PDLA)的链段排列规整,结晶度、机械强度和熔点等都远超过PDLLA。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制