当前位置: 仪器信息网 > 行业主题 > >

伐昔洛韦盐酸盐水合物

仪器信息网伐昔洛韦盐酸盐水合物专题为您提供2024年最新伐昔洛韦盐酸盐水合物价格报价、厂家品牌的相关信息, 包括伐昔洛韦盐酸盐水合物参数、型号等,不管是国产,还是进口品牌的伐昔洛韦盐酸盐水合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合伐昔洛韦盐酸盐水合物相关的耗材配件、试剂标物,还有伐昔洛韦盐酸盐水合物相关的最新资讯、资料,以及伐昔洛韦盐酸盐水合物相关的解决方案。

伐昔洛韦盐酸盐水合物相关的论坛

  • 请问测甲醛用的酚试剂到底是3-甲基-2-苯并噻唑酮腙盐酸盐还是其水合物

    98.0%(HPLC)(T) 分子式(M.F.) / 分子量(M.W.) C8H9N3S·HCl / 215.70 CAS编码 4338-98-1 相关CAS编码 149022-15-1,38894-11-0 第一个是别名 (英文)MBTH Hydrochloride Hydrate 别名 (英文)Sawicki's Reagent Hydrate 中文名3-甲基-2-苯并噻唑啉酮腙盐酸盐水合物 中文别名3-甲基-2-苯并噻唑啉腙盐酸盐水合物 第二个是别名 (英文)MBTH Hydrochloride 别名 (英文)Sawicki's Reagent 中文名3-甲基-2-苯并噻唑啉酮腙盐酸盐 中文别名MBTH盐酸盐 中文别名Sawicki's试剂

  • 【每日一贴】L-赖氨酸盐酸盐

    【中文名称】L-赖氨酸盐酸盐;L-2,6-二氨基己酸盐酸盐【英文名称】L-lysine monohydrochloride【结构或分子式】http://ng1.17img.cn/bbsfiles/images/2012/01/201201161702_345966_1615838_3.gif 【性状】 无色或白色结晶粉末。有微甜的苦味。【溶解情况】 易溶于水,水溶液呈酸性,微溶于乙醇,不溶于醚。【用途】 本品具有增强畜、禽食欲,提高抗病能力,促进外伤治愈的作用,有提高猪肉质量的功能,并且是合成脑神经及生殖细胞、核蛋白质及血红蛋白的必须物质。当本品供应不足时,幼禽、幼畜省长缓慢,氮平衡失调,皮下脂肪减少,骨钙化失常。【制备或来源】 一般饲用赖氨酸是利用制糖工业的废糖蜜经过生物发酵,将培养液中含碳、氮的有机物转化,再经离子交换树脂提取,脱氨浓缩,二次浓缩,其浓缩物经冷冻结晶,离心分离,烘干即得产品。【其他】 在210℃时变暗,224.5℃分解。L-赖氨酸易吸收水合成水合物,易吸收空气中的二氧化碳,故制取结晶困难,一般商品都是赖氨酸的盐酸盐。 一般在饲料中得添加量为0.1%~0.2%。【生产单位】 广西赖氨酸厂;吉林九站新中国糖厂;泉州赖氨酸厂;大连制药厂;陕西西北第二合成制药厂;苏州吴江天橱味精厂;江苏镇江制药厂;天津食品公司第二生化药厂;山东海阳氨基酸厂等

  • 【金秋计划】白藜芦醇-盐酸巴马汀共晶水合物的制备、晶体结构及溶解性研究

    植物源性多酚由于具有预防和治疗多种疾病的特性,在制药、化工和食品工业等领域引起广泛关注[1-2]。白藜芦醇(resveratrol,图1)是一种天然多酚,存在于葡萄皮、蔓越莓、可可等植物中,具有抗氧化、抗炎、保护心脏和抗癌等生物活性[3-4]。此外,白藜芦醇对阿尔茨海默病、帕金森病和癫痫等神经系统疾病也有神经保护作用[5-6]。该化合物在自然界中以反式和顺式2种异构体的形式存在,但反式异构体更丰富,生物活性更高[7]。然而,白藜芦醇较低的水溶性、生物利用度限制了其在人体中的吸收和生物利用有效性[8]。 药物共晶是活性药物成分和共晶形成物按一定化学计量比在非共价键相互作用下自组装而成的固体结晶材料[9-10],共晶中存在的氢键或其他非共价作用,会改变原药物晶体的结构,通过降低晶格能、提高溶剂的亲和力,从而改善药物在共晶中的溶解度[11]。因此,药物共晶技术成为解决药物生物利用度低的新途径、新领域。通过药物共晶技术提高药物生物利用度是今后药物开发新的研究方向。近年来,白藜芦醇共晶和多晶型用于提高其溶解度和生物利用度已有报道,如氨基苯甲酰胺[12]、异烟肼与烟酰胺[13]、乙烯基二吡啶[14]等共晶。不同共晶之间白藜芦醇的构象和分子堆积是灵活的,且白藜芦醇共晶的物理化学性质与其晶体堆积模式密切相关。基于共晶策略优势,利用高水溶性生物活性药物增强白藜芦醇的溶解度和生物利用度,同时有助于发挥2种药物在抗炎、抗病毒功效等方面协同作用,如白藜芦醇-金刚烷胺盐酸盐共晶[15]。 盐酸巴马汀(palmatine chloride,PCl,图1)又名黄藤素,是一类典型的异喹啉生物碱,主要存在于黄柏、黄连、三棵针、南天竹等天然中草药植物中[16-17]。PCl易溶于热水,具有抗菌、抗炎、抗病毒与抗肿瘤等药用价值,在临床上常用于治疗妇科炎症、菌痢、肠炎、呼吸道和泌尿道感染以及眼结膜炎等症状[16,18-19]。PCl结构中含有1个季铵盐阳离子与氯离子(Cl?),其中Cl?是一类潜在的氢键受体,不仅空间位阻小,还具有良好的空间适应性和几何延展性,可以同时接纳多个氢键给体,与氨基、羧基、羟基等官能团可形成较强的电荷辅助氢键[20-21],利用含Cl?的PCl作为共晶形成物为药物共晶开发提供了新的思路。本课题组前期系统研究了PCl作为共形成物与外消旋橙皮素的药物共晶多晶型,2种共晶均存在O-HCl?氢键相互作用,对温度、湿度和光表现出很高的稳定性,共晶的形成降低了盐酸巴马汀的溶解度,提高了橙皮素的溶解度。同时,在纯水中实现了盐酸巴马汀的缓释和增强橙皮素的释放[22]。本实验基于Cl?与羟基之间易形成O-HCl?氢键作用,研究了白藜芦醇与PCl的共结晶。采用溶剂悬浮法成功制备了一种新的白藜芦醇-盐酸巴马汀共晶水合物(RES-2PClH2O),利用单晶X射线衍射、粉末X射线衍射和傅里叶红外光谱对其结构进行表征,并利用差示扫描量热、动态水蒸汽吸附、高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分析等对共晶水合物的稳定性、溶解度及溶出速率等进行了考察。 图片 1 仪器与材料 Smart Lab SE型粉末X射线衍射仪,日本理学公司;Super Nova CCD型单晶X射线衍射仪,美国安捷伦科技有限公司;DSC 214 Nevio型差示扫描量热仪、TG 209 F3型热重分析仪,德国耐驰仪器制造有限公司;Intrinsic Plus型动态水蒸汽吸附仪,英国Surface Measurement Systems公司;LC-20AD型高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url],日本岛津仪器有限公司;Nicolet iS 50型衰减全反射傅里叶红外光谱仪,美国赛默飞世尔科技公司;LHH-150SD型综合药品稳定性试验箱,上海一恒科学仪器有限公司;RC806ADK型溶出度测试仪,天津市天大天发科技有限公司;SHH-100GD-2型药品强光照射试验箱,重庆市永生实验仪器厂。 盐酸巴马汀三水合物(PCl3H2O)、白藜芦醇,质量分数均为97%,购自大连美仑生物技术有限公司;甲醇为色谱纯,购自上海泰坦科技股份有限公司;磷酸为色谱纯,购自上海阿拉丁试剂有限公司。其他试剂均为分析纯,购自国药集团药业股份有限公司。 2 方法与结果 2.1 样品的制备 2.1.1 白藜芦醇-盐酸巴马汀单晶的制备 取白藜芦醇(22.8 mg,0.1 mmol)与PCl3H2O(44.2 mg,0.1 mmol)混合均匀后加入20 mL甲醇溶液,加热搅拌至完全溶解后滤过。将溶液放于避光环境下缓慢蒸发,2~3 d后有橘红色块状晶体析出,即为白藜芦醇-盐酸巴马汀单晶。 2.1.2 RES-2PClH2O共晶水合物的制备 取白藜芦醇(114.0 mg,0.5 mmol)与盐酸巴马汀三水合物(442.0 mg,1 mmol)混合均匀后加入10 mL的甲醇溶液,在室温条件下密封搅拌48 h后滤过。将固体放于自然条件下干燥即可得到RES-2PClH2O共晶水合物。 2.2 固态表征 2.2.1 单晶X射线衍射(single crystal X-ray diffraction,SC-XRD) 利用Super Nova CCD单晶衍射仪测试待测样品,在100 K条件下收集晶体参数,入射光束为Cu-Kα射线(λ=0.154 184 nm),利用CrysAlisPro程序进行经验吸收校正[23]。采用SHELX程序对晶体结构进行直接法求解,通过全矩阵最小二乘方法对F2进行精修[24-25]。非氢原子在无约束位移参数下进行各向异性细化,氢原子则放置在合适的几何位置上。单晶结构解析表明,RES-2PClH2O为单斜晶系,P21/c空间群,在晶体结构中含有2个PCl分子、1个白藜芦醇分子与1个水分子。如图2所示,白藜芦醇结构中的3个酚羟基均参与了氢键的形成,其中2个酚羟基与2个Cl?形成O-HCl?氢键作用,而另1个酚羟基则与水分子形成O-HO氢键作用。水分子又同时与2个Cl?形成O-HCl?氢键作用。白藜芦醇分子、水分子与Cl?间通过上述的多种氢键作用相连接,形成了一维链状结构。形成的链与链间通过不同白藜芦醇分子间的C-HO作用相连接,进而形成二维层状结构(图3)。在分子间弱作用力下,层与层之进而形成堆积结构(图4)。RES-2PClH2O共晶水合物的晶体学数据见表1,共晶水合物中氢键的参数见表2。 图片 图片 图片 图片 2.2.2 粉末X射线衍射(powder X-ray diffraction,PXRD) 将待测样粉末均匀铺满样品槽后开始测量。入射光束为Cu-Kα射线,工作电压为40 kV,工作电流为15 mA,2θ范围取5°~45°,步长0.02°。如图5所示,RES-2PClH2O的PXRD谱图与白藜芦醇、PCl3H2O 2种原料药均不同,在10.6°、13.1°、14.0°、14.5°、16.2°、21.5°、26.7°、28.2°等处出现新的特征峰,且图谱中并未显现PCl3H2O在9.7°、17.8°等处的特征峰,表明所制备的产物形成了新的晶相。此外,RES-2PClH2O的PXRD图谱与其单晶结构的模拟图谱吻合较好,证实所制备的共晶水合物具有较高的纯度和均匀性。 图片 2.2.3 衰减全反射傅里叶变换红外光谱(attenuated total reflection fourier transform infrared spectroscopy,ATR-FTIR) 将待测样均匀铺于iD7 ATR附件上,扫描次数为32,分辨率为4 cm?1,波长范围为550~4 000 cm?1。如图6所示,RES-2PClH2O与PCl3H2O的图谱中均存在有水分子的伸缩振动峰,与单晶结构中存在的水分子相对应。在PCl3H2O中,水分子的伸缩振动峰为3 602~3 227 cm?1,而共晶水合物中水分子的伸缩振动峰为3 292 cm?1。在形成强分子间氢键时,-OH伸缩振动峰会发生红移(100~693 cm?1)[26-27]。白藜芦醇中-OH的伸缩振动峰在3 200 cm?1左右,而共晶水合物中-OH的伸缩振动峰显著红移至在3 002 cm?1,表明白藜芦醇和PCl3H2O分子间具有较强的氢键相互作用。同时,在形成共晶水合物后,白藜芦醇中-OH的弯曲振动峰从1 145 cm?1偏移至1 170 cm?1,归因于白藜芦醇上的-OH同PCl、水分子间均存在较强的氢键作用。 图片 2.2.4 差示扫描量热/热重分析(differential scanning calorimetry/thermal gravity analysis,DSC/ TGA) 称取适量白藜芦醇、PCl3H2O、RES- 2PClH2O分别放于铝制坩埚中,密封、扎孔后进行DSC测试。以同样的空坩埚作为参比,将其放置于仪器中预热、平衡至读数稳定后,将待测样品放于空坩埚中进行TGA测试,温度范围为30~300 ℃,升温速率10 K/min,通氮气作为保护气,体积流量为40 mL/min。如图7-a所示,白藜芦醇在268.1 ℃处有1个吸热熔融峰,PCl3H2O在204.2 ℃处出现吸热熔融峰。RES-2PClH2O在136℃附近存在1个宽的脱水吸热峰,在230.5 ℃附近存在熔融吸热峰。共晶水合物的熔点介于2个原料药之间,是不同于原料药的新晶型。由TGA图谱(图7-b)可知,白藜芦醇在30~150 ℃没有明显质量变化,PCl3H2O在105 ℃失重比为11.3%。相较于2原料药,RES-2PClH2O在136 ℃附近的失重比为2.8%,与其理论的失水质量比(2.8%)一致,进一步证实共晶水合物结构中存在1个水分子。 图片 2.3 物理稳定性研究 2.3.1 稳定性分析 根据《中国药典》2020年版药物稳定性试验,评价温度、湿度、光照等环境参数对所制备共晶水合物物理稳定性的影响。将RES- 2PClH2O分别储存于烘箱、湿稳定性箱及光稳定箱中,放置10 d后取出进行PXRD表征。如图8所示,在60 ℃,90%相对湿度(RH),或4 500 lx条件下储存10 d后,RES-2PClH2O的PXRD图谱保持不变,说明所制备共晶水合物在恶劣的储存条件下未发生晶型的变化,具有物理稳定性。 图片 2.3.2 动态水蒸汽吸附(dynamic vapor sorption,DVS)分析 称取适量待测样品置于动态水蒸气吸附仪中,设定温度为25 ℃,在体积流量为200 mL/min氮气下测量,模式选择为0~95%~0相对湿度吸附、脱附水蒸汽全循环,步长5%,平衡标准为粉体质量变化(dm/dt)≤0.002%/min。如图9-a所示,PCl3H2O吸湿量随着相对湿度增加而逐步增大。相比于PCl3H2O,白藜芦醇、RES-2PClH2O吸湿量基本不变,说明白藜芦醇可有效减少PCl3H2O吸湿量。根据局部放大图(图9-b),在95%相对湿度下,RES-2PClH2O共晶水合物吸湿量仅为0.16%,吸湿性极低。此外,共晶水合物的吸附与脱附曲线基本重合,表明在吸附过程中仅存在物理吸附水,共晶水合物未发生任何固态变化,具有良好的吸湿稳定性。 图片 2.4 体外溶出度研究 2.4.1 色谱条件 白藜芦醇、PCl的色谱分析采用Kristl等建立的方法[28]及《中国药典》2020年版一部黄藤素含量测定,并进行适当修改。色谱柱为中谱蓝XR-C18柱(150 mm×4.6 mm,5 μm),采用双波长模式,白藜芦醇的吸收波长306 nm,PCl的吸收波长345 nm,体积流量1 mL/min,进样量5 μL,柱温30 ℃,流动相为甲醇-0.2%磷酸水溶液(50∶50),洗脱方式为等度洗脱。 2.4.2 对照品储备液的制备 精密量取250 mg白藜芦醇置于50 mL量瓶中,甲醇定容,摇匀即得5 mg/mL白藜芦醇对照品储备液,同法制备5 mg/mL PCl3H2O对照品储备液。 2.4.3 线性关系考察 采用甲醇将“2.4.2”项下对照储备液分别稀释成5、10、20、50、100、200、500 μg/mL系列对照品溶液,按照“2.4.1”项下色谱条件测定各质量浓度(C)的峰面积(A)。方法学结果表明,PCl的线性回归方程为A=23 744 C+22 055,R2=1.000 0,结果表明PCl在10~500 μg/mL线性关系良好。白藜芦醇的线性回归方程为A=42 114 C?161.8,r=1.000 0,结果表明白藜芦醇在5~100 μg/mL线性关系良好。 2.4.4 供试品溶液的制备 精密量取5 mg RES-2PClH2O至50 mL量瓶中,甲醇定容,摇匀即得RES-2PClH2O供试品溶液。 2.4.5 专属性考察 取稀释后的对照品溶液、供试品溶液,分别按上述色谱条件进样,结果见图10,供试品溶液中白藜芦醇与PCl出峰时间与对照品溶液一致,分离度大于1.5,峰形良好,表明该色谱条件适用性良好。 图片 2.4.6 平衡溶解度实验 选用醋酸/醋酸盐缓冲液(pH 4.5)与纯水作为缓冲介质[15,29],称取过量待测样品加入少量介质溶液,得到过饱和溶液。37 ℃振荡48 h,取上层液0.45 μm滤膜滤过,纯水稀释后利用高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]测量其质量浓度,得到待测样品的饱和平衡溶解度,平行样为3组。实验结束后,收集未溶解的残留固体,室温干燥后进行PXRD表征。结果如表3所示,在纯水中,白藜芦醇的溶解度为(55.100±0.669)μg/mL,PCl3H2O的溶解度(24.130±0.670)mg/mL。与之相比较,白藜芦醇、PCl3H2O在pH 4.5缓冲液中的溶解度基本不变。值得注意的是,共晶水合物中白藜芦醇溶解度在2种介质中均显著提高,尤其在pH 4.5缓冲液中,共晶水合物中白藜芦醇溶解度提高约10倍。而共晶水合物中PCl溶解度在2种介质中均显著降低,在pH 4.5缓冲液中,溶解度降低到(1.760±0.015)mg/mL。上述结果均表明通过白藜芦醇与PCl形成共晶策略极大提高了白藜芦醇溶解度,同时降低了PCl溶解度。此外,溶解度测定后将未溶解的固体残渣收集后进行PXRD表征,图谱结果表明2种介质处理后的残渣与RES-2PClH2O的PXRD图谱基本吻合(图11),未发现明显的相变。 图片 图片 2.4.7 溶出速率评估 实验在RC806ADK溶出测试仪上进行,采用小杯桨法,桨转速为75 r/min,温度为37 ℃。选用醋酸/醋酸盐缓冲液(pH 4.5)与纯水作为溶出介质,溶出介质体积为250 mL。精密称取100 mg的RES-2PClH2O粉末,86.5 mg的PCl3H2O粉末以及22.3 mg的白藜芦醇粉末,待介质温度稳定后往介质投料。设置不同时间点进行取样,每次取样1 mL后随即补充1 mL缓冲液。所有样品溶液均过0.45 μm膜后,使用HPLC测量其质量浓度,平行样为3组。如图12-a可知,在2种介质中,白藜芦醇原料药释放缓慢,4 h后最大累积释放仅约45%;形成共晶水合物后,RES-2PClH2O中白藜芦醇在纯水与pH 4.5缓冲液中的溶出行为基本一致,溶出速率均增加,溶出释放量较白藜芦醇原料药显著提高,在1 h附近达到最大值,分别为82.26%与83.43%。与白藜芦醇溶出不同的是,PCl3H2O在2种介质中5 min内几乎完全溶解,共晶水合物中PCl的溶出速率较PCl3H2O有效减缓,1 h后达到最大累积释放量(图12-b)。 图片 综合上述溶出结果表明,相比于白藜芦醇原料药,通过与PCl3H2O形成共晶水合物,可有效促进白藜芦醇的溶出、同时延缓PCl的释放。 3 讨论 将水溶性较高的药物与难溶性药物形成药物-药物共晶,有利于平衡两者的溶解度[11]。利用水溶性较好的PCl[(24.13±0.67)mg/mL]与难溶性白藜芦醇[(55.100±0.669)μg/mL]通过分子间相互作用形成共晶,有望优化两者溶解度和溶出速率。本研究采用溶剂悬浮法成功制备了新的RES- 2PClH2O共晶水合物。RES-2PClH2O的PXRD图谱与其单晶结构的模拟图谱吻合较好,证实所制备的共晶水合物具有较高的纯度和均匀性。 DSC测试结果显示,RES-2PClH2O的熔点介于2个原料药之间,进一步证实该共晶水合物是不同于原料药的新晶型。通过单晶结构分析,该共晶水合物存在O-HCl?氢键作用且含有水分子。白藜芦醇上的2个羟基与2个Cl?形成O-HCl?氢键,而水分子通过O-HO与O-HCl?的氢键作用分别与白藜芦醇、PCl相连并形成一维链状结构。链与链间又通过C-HO作用形成二维层状结构,层与层之间通过分子间弱作用力进而形成堆积结构。 TGA表征结果显示,RES-2PClH2O实际失水质量与理论失水质量相一致,进一步证实该共晶水合物结构中存在1个水分子。ATR-FTIR显示,RES-2PClH2O中,水分子伸缩振动峰和白藜芦醇的-OH伸缩振动峰、弯曲振动峰均发生了明显偏移,表明白藜芦醇中的-OH与PCl、水分子间均存在较强的氢键作用,2原料药间发生了相互作用。 药物稳定性测试证实,RES-2PClH2O在高温、高湿或强光照射等恶劣条件下长期储存具有较好的物理稳定性,与非吸湿性白藜芦醇共结晶后,PCl的抗湿稳定性得到显著提高。为研究PCl对白藜芦醇溶解度影响,评估了共晶水合物在纯水与醋酸/醋酸钠缓冲液介质中的平衡溶解度,并与原料药溶解度对比分析。结果显示,可溶性PCl与不溶性白藜芦醇共结晶同时影响了2种药物的溶解性能。在所制备的共晶水合物中,白藜芦醇溶解度明显提高、PCl溶解度显著降低。 为探究RES-2PClH2O共晶水合物形成后白藜芦醇、PCl溶出速率变化,对比在纯水与pH 4.5缓冲液2种介质中共晶水合物与原料药的溶出速率。溶出结果表明PCl作为白藜芦醇共晶形成的共形成物,显著促进白藜芦醇的释放同时延缓PCl的释放。本研究阐明了PCl作为白藜芦醇药物共晶形成物的可行性,为利用共结晶技术开发白藜芦醇药物共晶提供新的借鉴。

  • 胺类盐酸盐如何进行气相色谱分析?

    胺类盐酸盐如何进行气相色谱分析?

    如题:最近有个胺类盐酸盐需要GC监控,试了一下饱和碳酸钠水溶液条件然后拿DCM萃出来检测,用的柱子原来是RTX-5,结果发现不止该化合物拖尾严重,其余杂质,原料等都拖尾严重,于是更换了色谱柱,手上除了RTX-5以外就只有WAX柱,RTX-1701的柱子,同规格的,后来选了RTX-1701,因为WAX柱子担心对其损伤太大,因此选择了1701,用该柱子定位了响应的化合物以及目标盐酸盐,所有化合物出峰都非常好,峰形对称,唯独目标化合物盐酸盐出峰很差,而且比RTX-5还要差。化合物结构如图:[img=,202,81]https://ng1.17img.cn/bbsfiles/images/2020/08/202008051729152242_37_3116636_3.jpg!w202x81.jpg[/img]化合物[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]检测图如图:两种峰形都是该化合物,不同时间段的反应样品。[img=,580,297]https://ng1.17img.cn/bbsfiles/images/2020/08/202008051725102303_8716_3116636_3.jpg!w580x297.jpg[/img][img=,504,261]https://ng1.17img.cn/bbsfiles/images/2020/08/202008051725136944_4475_3116636_3.jpg!w504x261.jpg[/img]不知道问题出在哪里,这个情况是色谱柱不适用?只能使用胺类柱吗?我搜了一下类似的帖子,发现有个楼主发了一个胺类盐酸盐的分析方法思路,用的是2%NaOH甲醇溶液破坏盐酸盐,且用氮气保护,原因是裸露的氨基容易被氧化然后用DB-1的色谱柱进样,峰形良好。我在思考是否可以用同方法配样,但是氢氧化钠在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中也是不能汽化的,这是否对色谱柱造成了影响,且碱性较大是否也会损坏柱子??

  • 【讨论】请教关于水合物的结构

    [size=4][color=#00008B]最近做硝酸盐水合物的XRD,发现本应含两个结晶水,得到的谱图是含六个结晶水的,有没有这种可能,因为有其他非水小分子存在,将两个结晶水的物质重新结晶成六个结晶"水"的结构。麻烦遇到相似情况的给我辅导一下,万分感激![/color][/size]

  • 盐酸盐类化合物的二维谱

    我在做谱的时候发现,一些盐酸盐类化合物氢谱和碳谱都挺好的,化合物纯度挺好,量也够,但做HSQC(或HMQC)和HMBC的时候,就很弱,有的相关点很难出来,想知道是何原因.

  • 在色谱检测时,以盐酸盐形式存在的化合物出的色谱峰是游离碱还是其盐酸盐?-有何原因?

    借用xuanleer的帖子提一下几个疑问:不知道从何说起,我们在做某些碱性化合物检测时,购买的标准品通常是盐酸盐、硫酸盐、草酸盐之类的,如下面的糠氨酸(二盐酸盐)以及莱克多巴胺盐酸盐、四环素盐酸盐等等,疑问:(1)想问下大家这类目标化合物在进(HPLC、GC)色谱分析时,(色谱峰)是以游离碱的形式(糠氨酸、莱克多巴胺、四环素)存在还是以游离碱盐酸盐的形式存在?(2)这类化合物不少选用酸性环境下进行HPLC/LC-MS分析,其原因是否是让目标化合物以游离碱的形式(糠氨酸、莱克多巴胺、四环素)存在? (3) 如果第(2)个问题是对的,哪进GC分析时得到色谱峰是以何种形式存在的?也是游离碱吗?欢迎各位老师专家解答啊!顺祝大家节日快乐!参考资料如下:糠氨酸的鉴定适用于《NYT 939-2005 复原乳的鉴定》,具体见附件。色谱柱:LAEQ-462572 CNW Athena C18-WP 液相色谱柱,4.6*250mm,5um流动相:A=0.1%三氟乙酸水溶液;B=0.1%三氟乙酸乙腈平衡:A:B=99:1梯度:0min:99%A/1%B,25min:79%A/21%B检测波长:280nm流速:1ml/min进样浓度:2ppm柱温:室温标准品:CDDD-SC494-10MG,糠氨酸(二盐酸盐),品牌 NeoMPS,现货供应。参考:http://bbs.instrument.com.cn/shtml/20120903/4223471/

  • 在色谱检测时,以盐酸盐形式存在的化合物出的色谱峰是游离碱还是其盐酸盐?-有何原因?

    借用xuanleer的帖子提一下几个疑问:不知道从何说起,我们在做某些碱性化合物检测时,购买的标准品通常是盐酸盐、硫酸盐、草酸盐之类的,如下面的糠氨酸(二盐酸盐)以及莱克多巴胺盐酸盐、四环素盐酸盐等等,疑问:(1)想问下大家这类目标化合物在进(HPLC、GC)色谱分析时,(色谱峰)是以游离碱的形式(糠氨酸、莱克多巴胺、四环素)存在还是以游离碱盐酸盐的形式存在?(2)这类化合物不少选用选型环境下进行HPLC/LC-MS分析,其原因是否是让目标化合物以游离碱的形式(糠氨酸、莱克多巴胺、四环素)存在? (3) 如果第(2)个问题是对的,哪进GC分析时得到色谱峰是以何种形式存在的?也是游离碱吗?欢迎各位老师专家解答啊!顺祝大家节日快乐!参考资料如下:糠氨酸的鉴定适用于《NYT 939-2005 复原乳的鉴定》,具体见附件。色谱柱:LAEQ-462572 CNW Athena C18-WP 液相色谱柱,4.6*250mm,5um流动相:A=0.1%三氟乙酸水溶液;B=0.1%三氟乙酸乙腈平衡:A:B=99:1梯度:0min:99%A/1%B,25min:79%A/21%B检测波长:280nm流速:1ml/min进样浓度:2ppm柱温:室温标准品:CDDD-SC494-10MG,糠氨酸(二盐酸盐),品牌 NeoMPS,现货供应。参考:http://bbs.instrument.com.cn/shtml/20120903/4223471/

  • 分离一甲胺盐酸盐和二甲胺盐酸盐

    [color=#444444]我有一个一甲胺盐酸盐和二甲胺盐酸盐的混合物,求怎么分离?我跑了最基本的液相色谱,发现分不开,用的水和甲醇做的流动相。 不知道还有什么办法可以分离的。求助各位了解色谱和分离的大神[/color]

  • 求助氨基乙腈盐酸盐

    求氨基乙腈盐酸盐的检测方法,请大家帮忙,最好有详细的分析步骤不胜感激氨基乙腈盐酸盐  中文名称:氨基乙腈盐酸盐   英文名称:Glycinonitrile hydrochloride   中文别名:盐酸胺腈;氨基乙腈盐酸盐;盐酸胺腈;氨基乙氰盐酸盐;甘氨基腈盐酸盐;氰基甲胺盐酸盐;氨基乙腈.盐酸盐   CAS RN:6011-14-9   EINECS号:227-865-9   分 子 式:C2H4N2·HCl;C2H5ClN2   分 子 量:92.53   风险术语:R22; R36/37/38;   安全术语:S26; S36/37/39;   物化性质:熔点:172 - 174   性状:具吸湿性   用途:用作医药中间体、有机合成原料

  • 标准物质用盐酸盐的疑问

    现在很多目标物买的标准品都是对应的盐酸盐,除了标品制备更稳定外,还出于什么目的?在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]中目标物和对应的盐酸盐为何保留时间无区别,另外如果在质谱中,盐酸盐的标品和目标物是否会有区别

  • 【求助】盐酸盐的吸收位置

    哪位大虾做过盐酸盐呢?它的吸收位置大概在哪里,我的样品是哌啶盐酸盐。感觉盐酸盐没有什么特征吸收,不象羧酸盐。不知道对不对,请教!!

  • 制备分离盐酸盐后

    请教各位高手,用制备液相分离盐酸盐,流动相中添加0.1%TFA,那么制备完成后得到的是盐酸盐,TFA盐,还是本体?多谢!

  • 关于盐酸盐换算的问题

    如题。最近的试验中的有效成分是盐酸盐,其杂质也是盐酸盐,但是有效成分与杂质的相对分子量不同。想请问在做方法学的时候,比如做校正因子和回收率的时候,需不需要把盐酸盐换算成不含盐酸盐的来计算?急急急!因为换算和不换算,算出来的校正因子不相同啊,回收率也不相同。另外还想请教一下,用外标法和加校正因子的自身对照法计算出的回收率不一致,有的杂质相差还特别大是怎么回事?急急!

  • 盐酸盐产品用色谱分析不好吗

    [color=#444444]我购买了一仲EDC,25952-53-8,是一种亚胺盐酸盐,因对其质量不信任,送去做了一个HPLC,测得含量只有83%,杂质峰是一条又粗又长,估算17%应该是合理的,找佚应商,供应商竞说盐酸盐化合物做液相做不准,要用电位滴定法才能测得准,现在有电位指示仪的佷少,测电位滴定法的极少,收费极昂贵..弄得我十分伤脑筋,因此,请敎各位大俠,盐酸盐产品必须要做电位滴定法才能测得准吗?那我HPLC上那个杂质峰难道是错觉?请各位大俠指教!万分感激[/color]

  • 3-(N-甲基正戊胺基)丙酸盐酸盐

    各位大哥大姐们 小弟现在在做 3-(N-甲基正戊胺基)丙酸盐酸盐 的有关物质 发现有Na离子干扰 用的柱子是阴离子交换色谱柱 但是在试验过程中发现 当离子强度比较低的时候 两者的分离度可以达到要求 但是主峰不出峰 离子强度高的时候 主峰出的较早 但是二者分离度达不到要求 机器是安捷伦1200 RID 检测器 流动相是 0.5ml甲酸-2000ml水 氨水调PH4.5-5.5 各位以前还有做过类似的情况啊 谢谢

  • 【绝对原创】某胺类盐酸盐的气相色谱分析方法(野路子)

    【绝对原创】某胺类盐酸盐的气相色谱分析方法(野路子)

    [color=#DC143C]所在地区:陕西西安,从事行业:药物研发分析,分析的物质名称:某胺类物质(涉密,具体名字省略)[/color][color=#00008B]方法名称:胺类盐酸盐[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析方法(自己研发) 企业标准[/color]前些日子,接到一个新项目,要对一个胺类盐酸盐进行纯度分析,该样品为科研新研发的项目,以前从未做过类似的工作,对我来说也是开天辟地了,觉得有点难度。首先拿到反应工艺,了解该物质的化学性质如下:盐酸盐,无紫外吸收,极性大,反相不保留 加上客户更看重GC结果,经过严重的思想斗争后认为做[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]比液相容易点(盐类物质在反相上不保留),着手准备!由于是做纯度,因此面积归一化法足够了,要求不高,无需校正,再说了,新研发的样品中未知杂质太多了,也无法一一校正!1.样品预处理 盐酸盐由于难以汽化无法直接进样分析,需要前处理,必须把盐酸破坏掉,把有机物提取出来,进样分析,相关的文献报道不是很多,自己摸索吧,做成了,皆大欢喜;失败了,也不是很丢人,毕竟对我来说是个尝试,大致思路出来了,做好实验前的准备工作很重要!1.1预处理过程参数的简单选择 (1) 用什么来破坏盐酸盐呢?碱!回答的很正确!备用选项:NaOH水溶液、NaOH的甲醇溶液、甲醇钠、氨水,考虑到水可能会对柱子的固定液有伤害,排除掉含水的三种,分别用NaOH的甲醇溶液、甲醇钠对样品进行处理,两者的破坏效果对分析结果的影响无明显差异,但是后者配制起来危险性较高(不知道有没有用过甲醇钠,用金属钠加到甲醇中,金属钠属于危险品,尽量少用),因此采用NaOH的甲醇溶液作为处理的溶液;由于NaOH在甲醇中的溶解度有限,因此选用的浓度是2%(m/m)。 (2)pH值对分析结果的影响 pH值过小的话,样品可能破坏的不完全,并且样品在低pH值时的稳定性也较差(相对高pH而言),pH值过高担心柱子耐受不了,经过一番实验发现pH值在9时分析结果较让人满意。 (3)样品破坏后的稳定性实验 样品从盐酸盐破坏为胺后在空气中的稳定性较差(容易被氧化,后来经过GC-MS确认是和空气中的氧气反应了),很难保证数据的精密度,因此预处理过程中要对样品进行通N2保护,使数据的精密度得到了保证。 样品经过破坏后,用0.45um滤膜滤掉盐类及部分不溶物,进样分析。2.色谱条件的选择 手头的仪器就是14C,2010,2014C了,这些都不重要,最重要的是选择柱子,能选的柱子包括DB-1,DB-17,DB-FFAP,Rtx-5Amine(新买的,专门做胺类物质的,5000多块大洋哦,蛮心疼的),检测器只有FID,没有优化的空间了;能进行选择的只有柱子了,FFAP一般是用来做挥发性脂肪酸的,这个是胺,大方向都不对,直接排除;DB-17柱子只有两根,怕弄坏了领导怪罪,排除;DB-1超多,随便找一个将要淘汰的先试试(由于样品有碱性,怕对柱子不好,不敢先用好柱子做),Rtx-5Amine胺基柱专门做胺类物质的,可以和DB-1做个对比,看哪个效果好,对比结果如图所示,胺基柱的优势是相当的明显,DB-1排除。经过简单优化后的色谱条件:仪 器:GC-2010分析柱:Rtx-5 Amine(30m*0.32mm*1um)载 气:He检测器:FID分流进样(SPL=30)温度参数设置:INJ 280度,DET 300度,COL 100度起,10度/min升温至280度,停留20min;DB-1做的结果:[img]http://ng1.17img.cn/bbsfiles/images/2009/06/200906111455_155052_1621482_3.jpg[/img]Rtx-5Amine做的结果:[img]http://ng1.17img.cn/bbsfiles/images/2009/06/200906111456_155053_1621482_3.jpg[/img]用到的装备:[img]http://ng1.17img.cn/bbsfiles/images/2009/06/200906111456_155054_1621482_3.jpg[/img]3.0小结 于如期完成了,说不上圆满,因为有些地方还不完善,比如预处理过程有点繁琐,稳定性也有优化的空间等。这个项目结束后,铺天盖地的胺类物质都送过来做GC,超级郁闷!道路还很漫长................当局者迷,旁观者清,请各位专家、版友积极指出方法中的不足和错误地方,作为当事人,不容易发现错误.................

  • 请教 甲胺盐酸盐含量的测定方法

    如题,因工作需求需要测定某成品中甲胺盐酸盐含量(含量很低,估计只有千分之几)的测定方法。经过文献调研,决定采用酸碱滴定的方法,首先拿较纯的甲胺盐酸盐(含量约90%),考虑到成品中该物质含量很低,所以将滴定液(氢氧化钠溶液)的浓度配的也很低,经标定后,氢氧化钠滴定标准溶液浓度为0.01mol/L。然后拿这个滴定液去滴定,分别采用了酚酞指示剂(变色范围8.0-10.0)和百里香酚酞指示剂(变色范围9.3-10.0)做指示剂,变色点都比化学计量点提前好多。本来计算着滴定液需要22ml的,实际滴3ml就会变色。。。。推测原因,是甲胺盐酸盐与氢氧化钠反应生成的甲胺,溶于水后呈碱性,使终点提前。然后,不知道怎么办了?换指示剂?还是怎么地?同样别人的参考文献是测甲氧胺盐酸盐的,同样的方法,用的是0.1mol/L的氢氧化钠滴定液和酚酞指示剂,文章表明该方法很好。。。为什么甲胺盐酸盐和甲氧胺盐酸盐差距会这么大呢?求高人指教!有没有其他的测量方法?多谢,拜托~

  • 【每日一贴】DL-肉碱盐酸盐

    【每日一贴】DL-肉碱盐酸盐

    【中文名称】DL-肉碱盐酸盐;盐酸肉毒碱【英文名称】DL-carnitine hydrochloride【结构或分子式】 http://ng1.17img.cn/bbsfiles/images/2012/02/201202261959_351172_1855403_3.jpg【毒性LD50(mg/kg)】 小鼠口服lD50为6.81g/kg体重,属相对无毒物。【性状】 针状结晶。【溶解情况】 易溶于水和热醇,不溶于丙酮和醚。【用途】 用于医药、食品行业和饲料添加剂。对革兰氏阴性菌及猪赤痢密虫螺旋原有较强的抗菌性。【制备或来源】 (1)由2-羟基-3-氯丙基三甲胺鱼氰化钠反应后,在酸性条件下水解而成。 (2)以双乙烯酮为原料,经合成而得。【消耗定额(t/t)】 2-羟基-3-氯丙基三甲胺 1.7 氰化钠 1.0【生产单位】略

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制