当前位置: 仪器信息网 > 行业主题 > >

戊型肝炎病毒抗体国家

仪器信息网戊型肝炎病毒抗体国家专题为您提供2024年最新戊型肝炎病毒抗体国家价格报价、厂家品牌的相关信息, 包括戊型肝炎病毒抗体国家参数、型号等,不管是国产,还是进口品牌的戊型肝炎病毒抗体国家您都可以在这里找到。 除此之外,仪器信息网还免费为您整合戊型肝炎病毒抗体国家相关的耗材配件、试剂标物,还有戊型肝炎病毒抗体国家相关的最新资讯、资料,以及戊型肝炎病毒抗体国家相关的解决方案。

戊型肝炎病毒抗体国家相关的资讯

  • 厦大牵头研制!全球首个戊型肝炎病毒抗原尿液检测试剂盒获批上市!
    25日,记者从厦门大学国家传染病诊断试剂与疫苗工程技术研究中心获悉,近日,由厦门大学、中国食品药品检定研究院和万泰生物联合研制的戊型肝炎病毒抗原尿液检测试剂盒(胶体金法、荧光免疫层析法)获得国家药品监督管理局批准上市。该试剂为全球首个以尿液抗原为靶标的戊肝诊断试剂,填补了相关产品和技术空白,其临床评估结果显示检测准确度为98.58%,对全球戊肝患者的临床诊断与治疗管理具有重大意义。戊型肝炎病毒(hepatitis E virus,HEV)是全球范围内病毒性肝炎最主要的病原体之一。全球每年新发HEV感染2000万例,死亡44000例。在我国,戊肝是急性病毒性肝炎的首要病因,其发病人数正逐年上升。慢性肝病患者、孕妇、老年人是HEV感染的高危人群。慢乙肝患者重叠感染HEV后,与未重叠感染HEV的患者相比,肝衰竭发生风险升高至10.9倍,死亡风险升高至8.54倍。有报道显示孕妇特别是妊娠晚期孕妇,感染HEV后的病死率高达15%~25%,且死胎率、早产率高。老年人感染HEV容易导致重型肝炎,占比达14%。我国现阶段戊肝的临床诊断主要依赖HEV IgM抗体检测(《戊型病毒性肝炎诊疗规范》,2009),但仅依赖血清学检测指标难以判断是否为戊肝现症感染,因此亟需病原学检测方法。作为RNA病毒,HEV的核酸检测存在操作复杂、成本高、易污染等问题,因而未能大规模的推广和使用。HEV抗原检测虽然是更便捷的诊断手段,但此前的抗原试剂存在灵敏度不高、阳性周期短等问题。研究团队以尿液中pORF2抗原为靶标研制了全球首个HEV抗原尿液检测试剂盒,首次在全球范围内将临床肝炎的诊断与治疗指导由血液或者粪便靶标转移至尿液中。据介绍,尿液抗原检测为戊肝临床诊断提供了最有效的手段。同时其采样简便、安全无创、检测快速,将极大提高戊肝临床诊断可及性和诊断效率,尤其是在戊肝主要流行的非洲、东南亚等发展中地区。该试剂具有我国自主知识产权,在戊肝诊断方面实现了重要突破,为全球肝炎防治贡献了中国力量。据悉,该试剂近期将投入市场,未来将出现在医院、疾控中心等场所用于戊肝的快速精准诊断。
  • 科华生物内标定量法丙型肝炎病毒核酸测定试剂盒正式获批!
    2023年12月22日,科华生物自主最新研制的“丙型肝炎病毒核酸测定试剂盒(PCR-荧光探针法)”正式获得国家药监局批准上市,注册证编号:国械注准20233401994。你我身边的沉默者—丙型肝炎病毒绝大多数HCV感染者没有临床症状,甚至不知不觉中进展为肝硬化、肝细胞癌。据世界卫生组织估计,2015年全球有7100万慢性HCV感染者[1]。在我国一般人群HCV的感染率约为0.43%,我国约有1000万例慢性HCV感染者[2]。根据国家卫生健康委和国家疾病预防控制中心报告,从2002年开始,我国每年报告的HCV感染者数量逐年上升,至2012年及其后基本保持稳定,维持在每年20~22万例;从2002年至今,报告的总数不到300万例,也就是说仍有70%以上的HCV感染者并没有被发现。数据来源:中国疾病预防控制局全国法定传染病疫情概况2021年,我国九部委印发《消除丙肝公共卫生危害行动方案(2021-2030年)》,要求加大检测力度,提高检测发现率,实施抗体阳性者核酸检测全覆盖策略,不断降低丙肝流行率。医疗机构是目前我国发现HCV感染者和患者的主要场所。目前医疗机构所进行的胃肠镜等侵入性检查、手术以前以及在住院患者中全面开展包括抗-HCV在内的感染4项筛查(HBsAg、抗-HCV、抗-HIV和梅毒抗体),促进了丙型肝炎患者的发现。但是对检出抗-HCV阳性者,后续的丙型肝炎确诊和治疗的咨询和转诊严重不足,丧失了治疗机会。《中国丙型病毒性肝炎院内筛查管理流程》文件的制定可以加强医疗机构对检出抗-HCV阳性就诊者的咨询和转诊,促进慢性丙型肝炎患者的诊断和抗病毒治疗。丙型肝炎筛查、会诊和转诊流程图《丙型肝炎防治指南(2022年版)》建议在我国进行全员成年人抗体筛查,抗体阳性者全覆盖进行核酸检测。HCV RNA阳性患者,均应接受抗病毒治疗,并且在开始抗病毒治疗前、治疗4周、治疗结束时、结束后12周均应检测HCV RNA。抗病毒治疗终点为治疗结束后12周,采用敏感检测方法(检测下限≤15IU/mL)检测不到血清或血浆中的HCV RNA。高敏丙肝核酸检测整体智能解决方案丙型肝炎病毒核酸测定试剂盒(PCR-荧光探针法)全自动核酸提取仪GeneRotex96全自动核酸工作站PANA9600S全自动医用PCR分析系统Gentier 96E参考文献:[1]World Health Organization. Guidelines for the care and treatment of persons diagnosed with chronic hepatitis C virus infection[EB/OL]. Geneva:World Health Organization, 2018. https://www.who.int/hepatitis/publications/hepatitis-c-guidelines-2018/en/.[2]中华医学会肝病学分会,中华医学会感染病学分会. 丙型肝炎防治指南(2019版)[J]. 临床肝胆病杂志, 2019, 35(12): 2670-2686. DOI: 10.3969/j.issn.1001-5256.2019.12.008.[3]World Health Organization. Global health sector strategy on viral hepatitis 2016-2021[EB/OL]. Geneva: World HealthOrganization, 2016. https://www.who.int/hepatitis/strategy2016-2021/ghss-hep/en/.
  • A股:乙型“肝炎”病毒测定试剂盒获批上市,五家企业获将高增长?
    肝炎概念肝炎是由病原微生物,如寄生虫、病毒、毒素和药物以及自身免疫因素所导致肝细胞的各种炎症。其特征是肝细胞的变性、溶解、坏死和再生。由于肝脏是人体物质代谢中心,为维持生命的重要器官,它的机能状态关系着人体的健康,所以发生在肝脏的任何疾病,对人体有非常大的影响。肝炎分类肝炎分为病毒性肝炎、药物性肝炎、中毒性肝炎、酒精性肝炎、自身免疫性肝炎、非酒精性脂肪性肝炎等。肝炎治疗情况1.明确病因情况下:有临床表现和肝功能异常者,首先是要明确病因,如慢性乙型肝炎患者,符合条件者应该进行抗病毒治疗,药物性肝损伤应该停止用药,酒精性肝炎要戒酒等。2.病因不清楚的情况下:原因不明或病因无法去除者,只能对症处理,如用一些抗炎保肝药物。治疗一定要在医师的指导下进行,不要道听途说。一、方盛制药公司治疗乙型病毒性肝炎中药新药-益肝清毒颗粒临床试验研究项目属于“十二五”“重大新药创制”项目。企业医治乙型病毒性肝炎中药新药-益肝清毒颗粒临床试验研究项目属于“十二五”“重大新药创制”项目。二、华兰生物公司的重组乙型肝炎疫苗(汉逊酵母)和ACYW135群脑膜炎球菌多糖疫苗生产线已经发展工艺优化,优化结束后,会进一步增加生产效率,提高产品竞争力。企业是一家从事血液制品、疫苗、基因工程产品研发、生产和销售的国家高新技术企业。公司业务包括血液制品业务和疫苗制品业务,其中血液制品有11个品种(34个规格〉。三、拓新药业公司子公司新乡制药股份有限公司拥有规模化生产利巴韦林原料药的制备技术与生产能力。利巴韦林是一种非选择性核苷类广谱抗病毒药,对多种DNA和RNA病毒均有抑制作用,用于治疗流行性感冒、小儿腺病毒肺炎、病毒性肝炎、呼吸道合胞病毒感染、流行性出血热、带状疱疹等。十—月的节奏开始,经过一周深度研究,新选出一只中线翻备标的低位潜力黑马大妖,预期(125%),现在是最好低吸时机,想了解具体详情的朋友,寻找维灬兴灬号(cs5630x}复制发“收获”即可,技术上出现仙人指路,目前低位震荡,被游资与主力合力吸筹,形成单峰密集,随着资金的点火,爆发将一触即发四、热景生物北京热景生物技术股份有限公司是一家从事研发、生产和销售体外诊断仪器和试剂的生物高新技术企业的创新与产业化。热景生物的主要产品为体外诊断试剂及配套仪器,主要应用于肝癌肝炎、心脑血管疾病、炎症感染等临床领域和生物反恐、食品安全、疾控应急等公共安全领域。五、华森制药公司两类药物可治疗肝炎,包括注射用苦参素适用于慢性乙型肝炎的治疗;注射用甘草酸二铵适用于伴有丙氨酸氨基(ALT)升高的急、慢性病毒性肝炎。公司专注于中成药、化学药的研发、生产和销售。拥有片剂、颗粒剂、胶囊剂、软胶囊剂、散剂、粉针剂、冻干粉针剂、原料药、中药提取、小容量注射剂等11条生产线。特别声明:内容仅代表个人观点,不构成任何投资指导,据此买卖,盈亏自负,股市有风险,投资需谨慎!
  • 2845万!广州血液中心乙型肝炎病毒、丙型肝炎病毒、人类免疫缺陷病毒等采购项目
    一、项目基本情况项目编号:0835-240Z52800361项目名称:乙型肝炎病毒、丙型肝炎病毒、人类免疫缺陷病毒(1+2型)核酸检测试剂盒(TMA化学发光法)采购方式:公开招标预算金额:28,455,000.00元采购需求:合同包1(乙型肝炎病毒、丙型肝炎病毒、人类免疫缺陷病毒(1+2型)核酸检测试剂盒(TMA化学发光法)):合同包预算金额:28,455,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他医药品乙型肝炎病毒、丙型肝炎病毒、人类免疫缺陷病毒(1+2型)核酸检测试剂盒(TMA化学发光法)1(批)详见采购文件28,455,000.00-本合同包不接受联合体投标合同履行期限:签订合同生效后,按采购人要求15天内交货。累计结算金额达到采购包合同总价为止(合同结算总金额最高不得超过28455000元)。二、获取招标文件时间: 2024年03月22日 至 2024年03月29日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:广州血液中心地 址:广州市越秀区麓苑路31号联系方式:020-835942512.采购代理机构信息名 称:广东元正招标采购有限公司地 址:广东省广州市越秀区先烈中路102号华盛大厦北塔26楼2608联系方式:020-87258495-5163.项目联系方式项目联系人:杨小姐电 话:020-87258495-516
  • 222万!北大荒集团红兴隆医院乙型肝炎病毒表面抗原检测试剂盒等检验试剂采购项目
    项目编号:BDH202207048-1项目名称:北大荒集团红兴隆医院乙型肝炎病毒表面抗原检测试剂盒等检验试剂采购项目预算金额:222.0000000 万元(人民币)采购需求:购置乙型肝炎病毒表面抗原检测试剂盒(化学发光法)100盒,乙型肝炎病毒表面抗体检测试剂盒(化学发光法)100盒,乙型肝炎病毒e抗体检测试剂盒(化学发光法)100盒等,详见招标文件合同履行期限:合同签定后由医院通知具体送货时间,接到订货电话后,48小时内送货到使用科室。本项目( 不接受 )联合体投标。
  • 丙型肝炎病毒核酸测定试剂盒(PCR-荧光探针法)获批上市
    p   近日,国家药品监督管理局经审查,批准了北京纳捷诊断试剂有限公司研制的创新产品“丙型肝炎病毒核酸测定试剂盒(PCR-荧光探针法)”的注册。 /p p   该产品基于自主创新的一管法的PCR专利技术,用于体外定量测定血清样本中的丙型肝炎病毒(HCV)核酸(RNA)。 /p p   该产品适用于需要进行HCV感染检测的患者和接受抗病毒治疗的丙型肝炎患者。 /p p   国家药品监督管理局鼓励支持医疗器械产业创新发展,进一步做好创新医疗器械审查。食品药品监管部门将加强产品上市后质量监管,保障公众用械安全,确保医疗器械产业的健康有序发展。 /p p br/ /p
  • 甲型肝炎病毒全颗粒晶体结构被解析
    来自中国科学院生物物理研究所、牛津大学等单位的科学研究人员经过多年紧密合作于2014年10月19日在Nature杂志上在线发表题为Hepatitis A virus and the origins of picornaviruses的论文,详细阐述了甲型肝炎病毒的独有的结构特性、极强的稳定性、特殊的脱衣壳机制和进化关系。。HAV病毒属于小RNA病毒科肝炎病毒属,科学家对这一病毒的研究也已经持续了很长时间。此次,中国科学院生物物理研究所饶子和院士研究组与牛津大学 David Stuart 教授研究组、中国食品药品检定研究院王军志教授和胡忠玉教授以及北京科兴控股生物有限公司尹卫东和高强等专家共同合作,解析了HAV成熟病毒和空心病毒两种状态的全颗粒高分辨率的晶体结构,结果显示这两种病毒颗粒的结构具有很大的不同。在这一论文中,科学家第一次证明HAV成熟病毒具有衣壳蛋白vp4,而空心病毒颗粒含有的是未被剪切的衣壳蛋白vp0前体。与目前已经解析的小RNA病毒科成员三维结构比较,HAV病毒结构最大的不同在于其衣壳蛋白vp2的N端进行了180度偏移,转向了病毒二次轴处,增强了病毒五聚体与五聚体之间的相互作用力,部分解释HAV病毒具有的极强稳定性。HAV病毒这一独特的构象是在小RNA病毒科中第一次被发现,然而这一构象在昆虫病毒成员中却普遍存在。与昆虫病毒类似,HAV病毒也能够进行细胞之间的传递。这一系列相似的特性,不难想到HAV病毒与昆虫病毒之间的关系。基于全病毒衣壳蛋白三维结构开展的进化关系分析表明,HAV病毒不断进化时,逐渐脱离昆虫病毒方向,衍生出小RNA病毒的结构特征,在HAV病毒的基础上又逐渐进化出更多更高级的小RNA病毒成员。病毒入侵宿主细胞的第一步是与其功能性受体结合,而甲型肝炎病毒与其功能性受体TIM1的结合模式和脱衣壳机制与其它小RNA病毒成员不同。结构分析表明HAV病毒颗粒因较短的vp1 BC loop和vp2 EF loop,使其不具备肠道病毒典型的“峡谷”结构特征,也意味着HAV病毒的受体结合方式与之不同。同时,HAV病毒衣壳蛋白也没有典型的疏水口袋,自然也不含有口袋因子,这暗示着HAV病毒采用不同的脱衣壳机制。HAV病毒具有极强的稳定性,耐酸耐碱耐高温,能在绝大多数有机溶液中存活,在自然环境中可存活几个月之久。热稳定性实验结果表明HAV病毒能够在pH 1-10保持着极好的稳定性,在弱酸环境下,HAV病毒能够忍受的裂解温度可高达81摄氏度。该研究对于进一步解析HAV灭活病毒疫苗的免疫原性和保护机理具有重要意义,对于抗肝炎病毒药物的研发提供理论指导和新方向中文名称:人外核苷酸焦磷酸酶/磷酸二酯酶2(ENPP2)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Ectonucleotide 中文名称:人卵磷脂胆固醇脂酰转移酶(LCAT)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Lecithin Cholesterol Acyltransferase (LCAT) 中文名称:人白介素19(IL19)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Interleukin 19 (IL19) 中文名称:人C-型凝集素域家族3成员B(CLEC3B)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for C-Type Lectin Domain Family 3, Member B 中文名称:人神经元正五聚蛋白Ⅱ(NPTX2)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Neuronal Pentraxin II (NPTX2) 中文名称:人骨成型蛋白10(BMP10)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Bone Morphogenetic Protein 10 (BMP10) 中文名称:人自身免疫调节因子(AIRE)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Autoimmune Regulator (AIRE) 中文名称:人5羟色胺转运蛋白(SERT)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Serotonin Transporter (SERT) 中文名称:人补体成分9(C9)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Complement Component 9 (C9) 中文名称:人肾连蛋白(NPNT)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Nephronectin (NPNT) 中文名称:人白介素1受体辅助蛋白(IL1RAP)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Interleukin 1 Receptor Accessory Protein 中文名称:人髓细胞触发受体2(TREM2)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Triggering Receptor Expressed On Myeloid Cells 2 中文名称:人泛素羧基端酯酶L1(UCHL1)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Ubiquitin Carboxyl Terminal Hydrolase L1 (UCHL1) 中文名称:人HtrA丝氨酸肽酶1(HTRA1)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for HtrA Serine Peptidase 1 (HTRA1) 中文名称:人丝氨酸肽酶抑制因子Kazal型1(SPINK1)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Serine Peptidase Inhibitor Kazal Type 1 中文名称:人脯氨酰4-羟化酶α多肽Ⅲ(P4Hα3)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Prolyl-4-Hydroxylase Alpha Polypeptide III 中文名称:人干扰素γ诱导蛋白30(IFI30)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Interferon Gamma Inducible Protein 30 (IFI30) 中文名称:人轻肽神经丝蛋白(NEFL)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Neurofilament, Light Polypeptide (NEFL) 中文名称:人视黄醇结合蛋白1(RBP1)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Retinol Binding Protein 1, Cellular (RBP1) 中文名称:人转化生长因子β受体Ⅱ(TGFβR2)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Transforming Growth Factor Beta Receptor II 中文名称:人死骨片1(SQSTM1)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Sequestosome 1 (SQSTM1) 中文名称:人胃内因子(GIF)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Gastric Intrinsic Factor (GIF)
  • 国内首个!北大-亚辉龙联合研发出丁型肝炎检测试剂盒
    因为丁型肝炎核酸检测试剂,亚辉龙的名字再次登上了中国最顶尖专业杂志《中华检验医学杂志》!这一次的产品创新,是亚辉龙与北京大学庄辉院士科研团队的最新联合研究成果。5月14日,亚辉龙发布一篇题为《WHO最新指南|慢性乙肝患者的丁肝检测不容忽视》文章,透露出两个重要的内容:一是根据世界卫生组织(WHO)官网发布的最新指南,慢性乙型肝炎(HBsAg阳性)患者可通过使用血清学检测总抗-HDV抗体,然后使用核酸检测(NAT)来检测HDV RNA以及在抗HDV阳性患者的活动性(病毒血症)感染来诊断丁型肝炎;二是宣布北大与亚辉龙联合研发的抗HDV IgG抗体检测试剂盒和HDV RNA核酸定量试剂盒相关成果已申请专利,正在注册当中。作为国内领先的体外诊断行业企业,亚辉龙在自身免疫、生殖健康、糖尿病、感染性疾病、肝病、心血管等诊断领域具有突出优势。经过多年深耕与创新,亚辉龙已拥有全面肝病检测套餐,涵盖肝纤、自免肝、乙肝、丙肝、肝癌等领域诊断项目19项。加上此次的两种丁肝检测试剂盒,该公司肝病检测领域再次扩大。丁型肝炎病毒(HDV)是一种缺陷型RNA病毒,需依赖于HBV等嗜肝DNA病毒进行复制与包装。HDV是迄今为止已知感染人类最小的病毒,有8种基因型,核苷酸序列之间的差异高达40%,我国主要流行的是HDV‑1型。与HBV单独感染比较,慢性HBV/HDV重叠感染会更快、更易进展为肝硬化、肝失代偿和肝细胞癌等不良结局,对患者生命安全具有较大威胁。可以说,丁肝病毒与乙肝病毒关联密切,乙肝病毒患者会有迫切的需求进行HDV筛查。随着研究推进和认知加深,全球对HDV的重视程度不断提升。2024年3月,世界卫生组织(WHO)发布新版《慢性乙型肝炎病毒感染者的预防、诊断、护理和治疗指南》,首次新增两项关于丁肝病毒检测内容,包括对乙肝病毒表面抗原HBsAg阳性患者立即自动检测HBV DNA,以提高慢性乙肝的诊断率和治疗率;以及对HBsAg阳性的慢性乙肝患者和丁肝高危人群,特别是在丁肝高流行率地区,立即自动检测丁肝抗体,丁肝抗体阳性者立即自动检测丁肝病毒核酸。此前世界卫生大会也曾通过“到2030年消除病毒性肝炎公共卫生危害”的决议,HBV感染筛查是减少乙肝危害的关键措施之一。扩大筛查范围,提高诊断率和治疗率的必要性不断提升。而丁肝依托于乙肝,且发病更加严重,丁肝检测试剂的研发愈发刻不容缓。相关研究分析表明,全球HDV感染者约1200万-7200万之间,而只有得到更好的检测才能更加深入地推进相关治疗。与此同时,新批准药物布尔韦肽(BLV)治疗慢性丁型肝炎有较好的安全性和有效性,而有了治疗药物,那么相对应的HDV核酸检测也要被“提上日程”。随着BLV最近在欧洲获得批准,对抗体和核酸的实验室检测也有了更高的要求。近期,北大-亚辉龙感染性疾病分子诊断联合实验室联合北京大学肝炎试剂研究中心等多家科研单位和临床医院在《中华检验医学杂志》发表了《化学发光法丁型肝炎病毒IgG抗体检测试剂性能评价》、《国产丁型肝炎病毒核酸检测试剂的性能评估和初步临床应用》两项研究,对亚辉龙HDV相关产品的性能进行了详细报道。经过研究认证,抗HDV IgG试剂(化学发光法)对临床样本检测的特异度和正确率均为100%,表现出与商品化试剂一致的符合率,可用于HBsAg阳性样本中抗HDV IgG的筛查。同时,HDV RNA定量检测试剂具有灵敏度高、线性范围广、特异性强、精密度好的优点,与国外的商品化试剂性能接近,同时适用于8种基因型HDV的定量检测。两项检测试剂盒的研发对指导HDV感染的临床治疗具有重要意义。据了解,这也是亚辉龙即将推出的首款HDV分子诊断试剂,也意味着其产品平台即将加入一个新的领域。近年来,中国IVD行业发展非常迅速,在竞争进入白热化的现阶段,以亚辉龙为首的一批IVD企业清醒地意识到必须通过技术创新,大力发展产、学、研、用,才能更高效地完成体外诊断产品国产替代的目标。通过公开报道可以发现,亚辉龙非常重视研发,采用以自主研发为主、产学合作为辅的综合研发模式,充分整合公司内外部资源,形成系统化和规模化的研发机制。亚辉龙注重与高等院校、国内知名医疗机构及研究中心、国际体外诊断上下游企业等外部优质资源的合作,加强学术推广力度,为临床提供更加优质的服务,仅公开的就有中国科学院生物物理研究所阎锡蕴院士团队、香港中文大学(深圳)唐本忠院士团队、南方科技大学顾东风院士团队、深圳市第三人民医院卢洪洲院长团队等。丁肝检测试剂盒也正是亚辉龙与行业专家产学研最新进展成果。2021年10月,亚辉龙与北京大学庄辉院士沈弢教授科研团队合作建立北大-亚辉龙感染性疾病分子诊断联合实验室,旨在为创建全球一流的传染性病毒学检测及相关评价技术,以解决病毒性传染病。在HDV检测方面,双方合作研发了抗HDV IgG抗体检测试剂盒及HDV RNA核酸定量检测试剂盒,相关成果已申请专利。目前,亚辉龙的抗HDV IgG抗体检测试剂盒、HDV RNA核酸定量试剂盒已取得相关的检验合格证,正在积极申报注册证。
  • 多国出现不明原因儿童肝炎病例,或与新冠病毒有关?
    图片来源:中国新闻网近日,世卫组织发布公报说,目前已接到十几个国家至少169例不明病因儿童急性肝炎报告,至少74例病例中发现腺病毒。其中20例感染了新冠病毒,19例同时感染了新冠病毒和腺病毒。随着不明来源的急性肝炎病例在儿童群体间增加,目前已有1名儿童被报告死亡。据希腊《中希时报》报道,针对最近出现的不明原因儿童肝炎病例,希腊雅典比雷埃夫斯医生协会主席玛蒂娜帕戈尼呼吁严格遵守卫生措施,并表示肝炎是一种传染病,需要通过一定的手段来控制其传播。她表示肝炎暴发的原因仍在调查中,科学家目前认为它与一种腺病毒有关。患病的儿童大多数没有接种新冠疫苗,目前不支持有关新冠疫苗副作用的假设。图片来源:中国新闻网在对其危险性评估中,世卫指出,腺病毒目前被视为病因的一种假设,但这不能完全用来解释临床症状的严重性。其它影响因素如新冠大流行期间腺病毒传播水平降低,幼儿易感性增加,可能出现一种新型腺病毒,以及同时感染SARS-CoV-2等,也需进一步研究。
  • 丙型病毒性肝炎诊断标准 WS213-2008
    丙型病毒性肝炎诊断标准.doc
  • 中美科学家找到抗新型冠状病毒的抗体
    中美两个独立的研究团队 28 日报告说,他们发现了多株可以抑制新型冠状病毒(中东呼吸系统综合征冠状病毒)感染的中和抗体。这是国际上首次报告发现抗新型冠状病毒的中和抗体。中和抗体是免疫细胞分泌的一类蛋白,能在某些病毒侵入细胞之前与该病毒结合,阻止其黏附、感染细胞,相当于把病毒“中和”掉。清华大学张林琦教授和王新泉教授带领的团队在美国《科学-转化医学》上报告说,他们首先从分子水平上分析了新型冠状病毒与其人类受体蛋白 DPP4 之间的相互作用,然后利用正常人的非免疫抗体库,像“钓鱼”一样筛选出两株中和抗体 MERS-4 和 MERS-27 。这两株中和抗体经过验证,可以有效阻断新型冠状病毒与其细胞受体 DPP4 的相互结合。美国戴纳-法伯癌症研究所研究团队利用类似方法,鉴别出7株中和抗体,其中一株抗体 3B11 表现出了最高的中和活性,被认为最有医学应用潜力。这一成果发表在美国《国家科学院学报》(PNAS)上。对比两项研究,张林琦表示,他们发现的两个抗体具有明显的相互协同作用,即联合使用可以大大加强抗病毒效果,从而提高抗病毒的活性和广谱性,对可能变异的病毒保持高效抑制活性。而另一项研究还没有开展这方面的研究,联合使用的效果不详。张林琦表示,他们将尽快展开动物和人体试验,现已开始与中国医学科学院和香港大学的科学家讨论相应的试验方案。新型冠状病毒 2012 年 9 月在沙特被发现,它与非典病毒(SARS)同属冠状病毒。其感染者多会出现严重的呼吸系统问题并伴有急性肾衰竭。新型冠状病毒致死率目前超过 50%,远高于 10 年前 SARS 流行期间大约 10% 的致死率。人们对这种病毒仍知之甚少。
  • 中华人民共和国卫生行业标准丙型病毒性肝炎诊断及处理原则
    中华人民共和国卫生行业标准丙型病毒性肝炎诊断及处理原则.pdf
  • 全球突发不明原因儿童肝炎,该如何应对?
    近日,不明原因儿童急性肝炎在全球多国持续蔓延,引发关注。据世界卫生组织(WHO)称,全球已有20个国家报告了200多例病例。多名专家认为,这种不明原因肝炎或由腺病毒感染引发,但也不排除其他可能性。世界卫生组织近期调查显示,由于绝大部分不明原因急性肝炎患儿未接种新冠病毒疫苗,目前不支持和接种新冠病毒疫苗相关的假设。5月4日,由北京医学会医学病毒学分会、北京医学会肝病学分会主办、北大-圣湘生物分子医学联合实验室承办的“病因不明儿童急性重型肝炎专题研讨会”成功召开。二十余名专家从此次儿童急性重型肝炎病例的流行病学、病原学、临床诊断和治疗以及肝移植等多个方面进行了深入研讨。部分参会专家(图源网络)专家一致认为,尽管此次涉及多个国家的儿童急性重型肝炎病因不明,但基于大多数患儿未曾接种过新冠疫苗的事实,WHO已确认此次疫情与新冠疫苗接种无关。基于现在的有限临床信息和检测结果,腺病毒导致这些患儿急性肝炎的可能性较大,但不排除合并新冠病毒或其它病毒的可能性。因此,国际上应尽快收集和公开相关临床、流行病学和病毒学监测数据以及风险因素信息,以明确病因。5月5日,国家重大公共卫生事件医学中心、华中科技大学附属同济医院感染科和儿科团队在《中华医学杂志》在线发表论文《高度关注当前全球多国不明原因儿童严重急性肝炎的特征及发展动向》,介绍当前不明原因儿童肝炎概况和临床特征,同时对病原体是什么,病原体来自哪里,如何应对不明原因儿童肝炎集中发生等问题,从感染科和儿科临床医生的角度提出相应的思考和建议。5月7日,国家卫生健康委就不明原因儿童急性肝炎权威回应:目前我国尚未发现不明原因儿童急性肝炎,各级卫生健康行政部门和医疗机构正在密切关注和持续监测相关情况。有关情况如下:  1.我国是否有不明原因儿童急性肝炎病例出现?  答:目前,我国尚未发现相关病例,各级卫生健康行政部门和医疗机构正在密切关注和持续监测相关情况。  2.不明原因儿童急性肝炎有哪些表现?如何及时发现?  答:这种急性肝炎患儿的共性特征是:①年龄1月-16岁,大多在10岁以下;②出现黄疸、恶心、腹痛、乏力、嗜睡和胃肠道症状(包括腹泻和呕吐),大多数患儿无发热;③实验室肝生化检查转氨酶(AST或ALT)明显升高。  若孩子出现上述表现,家长应提高警惕,及时到医院就诊,建议查肝生化指标,并做血、尿液、粪便和呼吸道样本等相关病原学检测,以进一步确定孩子是否有急性肝炎及可能的病因。  3.儿童急性肝炎如何预防?  答:引起儿童急性肝炎的病因有多种,主要感染途径是经过消化道和血液。此次国外报告的不明原因儿童急性肝炎患者部分呈腺病毒检测阳性。当前,主要预防措施是避免儿童前往人多拥挤、空气不流通的公共场所,切断飞沫接触和粪口传播途径,保证儿童充足睡眠和营养,定期清洗儿童外出衣物和常接触物品,勤洗手、戴口罩、保持社交距离,如儿童出现黄疸、消化道症状等肝炎病症需及时就医。  当前,我国新冠肺炎疫情防控工作积累的经验以及群众健康防护意识的提升,对于不明原因儿童急性肝炎的预防有相当的益处。  4.不明原因儿童急性肝炎是否与接种新冠病毒疫苗有关?答:世界卫生组织近期调查显示,由于绝大部分不明原因急性肝炎患儿未接种新冠病毒疫苗,目前不支持和接种新冠病毒疫苗相关的假设。5月9日,针对全球多个国家相继报告不明原因的儿童急性重型肝炎病例,海关总署近日对全国海关口岸卫生检疫相关工作作出部署,防止疫情传入我国。对来自有病例报告的国家/地区的入境旅客,加强健康申报、体温监测、医学巡查等检疫查验工作,对主动申报或现场发现的有腹痛、腹泻、呕吐和黄疸等症状的旅客,特别是儿童,应按规定程序进行医学排查。经医学排查,对疑似患有不明原因儿童急性重型肝炎的旅客,应及时移交指定医疗机构进一步诊治,并做好后续追踪。
  • 重磅!新冠病毒广谱中和抗体研究最新成果!专家在线交流
    前不久,重庆医科大学金艾顺教授带领新冠病毒应急攻关团队发现了三个对新冠病毒多种突变株具有广谱中和活性的超强抗体,这项最新成果发表在了国际顶级期刊《Nature Communications》上。近两年来,新冠病毒变异株不断出现,已获得紧急使用授权抗体的中和能力正在显著降低。在这样的情况下,发现新的活性强的广谱新冠中和抗体,将对新冠病毒患者的治愈乃至最终战胜新冠疫情具有重要意义。为加强新冠广谱中和活性抗体研究学术、技术交流,分享研究进展,展示创新技术,助力抗击新冠疫情,仪器信息网特别举办“新冠病毒广谱中和活性超强抗体的发现”专题讲座,诚邀生命科学、医学等各界科技工作者参与,为疫情早日结束贡献科技力量。扫码或点击报名https://insevent.instrument.com.cn/t/Y7a【会议日程】【演讲嘉宾】 金艾顺 教授(重庆医科大学基础医学院微生物与免疫学系 主任 )金艾顺,教授,博士生导师,重庆医科大学基础医学院微生物与免疫学系主任、免疫教研室主任,肿瘤免疫基础与转化研究重庆市重点实验室主任。曾留学日本,攻读日本东京医科齿科大学分子肿瘤学并获得博士学位。2006-2014年期间,在日本富山大学医学研究部免疫学研究室兼日本SC World. Inc生物制药公司研究员,及日本学术振兴会特聘研究员(JSPS)(2011-2013)。长期从事抗体药物和T细胞受体T细胞治疗等相关免疫学技术开发,相关研究成果发表于Nature Medicine等系列高水平学术杂志上(2009,2013)。2017年被重庆市以高层次人才引进,聘为巴渝学者特聘教授,组建免疫学创新研究平台(2018年被市科技局认定为重庆市重点实验室),与企业合作开展肿瘤免疫治疗转化应用研究。获得重庆市学科学术带头人、重庆市第一届英才计划创新领军人才。2020年新冠病毒疫情爆发时期,带领科研团队投入新冠病毒中和抗体研发应急攻关项目。在短时间内攻克重重技术瓶颈,建立了高效快速筛选中和抗体技术平台,筛选得到多株新冠病毒及突变株的高效中和抗体。相关成果发表在Nature Communication、Frontiers in immunology、Frontiers Cell and Developmental Biology、Genes & Diseases等学术期刊共10余篇,相关成果申请15项专利,其中3项国际专利。张财辉先生 (赛多利斯 生物分析产品应用科学家)赛多利斯生物分析产品应用科学家,从事蛋白药物表达纯化以及结合活性分析工作近十年。有着丰富的分子互作和troubleshooting经验。曾协助国内多家医药企业建立了基于Octet平台的药物筛选和质量属性分析方法。
  • 新型生物传感器可快速检测新冠病毒蛋白和抗体
    目前,大多数医学实验室主要仰仗逆转录PCR(RT-PCR)技术来诊断新冠病毒感染。PCR技术可以放大病毒的遗传物质,使其可被检测出来。但这项技术需要专门的人员和设备,供应链短缺导致很多国家和地区的检测能力严重不足。为了在不需要基因扩增的情况下直接检测出患者样本内的新冠病毒,华盛顿大学医学院蛋白质设计研究所所长大卫贝克教授领导的研究小组利用计算机,设计出了一款生物传感器,可识别病毒表面的特定分子并与之结合,然后通过生化反应发光。抗体测试可以揭示某人此前是否感染过新冠病毒,科学家们用此来追踪新冠肺炎的传播情况,但这种测试也需要复杂的实验室设备。鉴于此,该研究团队还发明了另一款生物传感器,当与新冠病毒抗体混合时,这款传感器也会发光。而且,这款传感器不会对血液中的其他抗体——包括针对其他病毒的抗体产生反应,这对于避免假阳性非常重要。贝克说:“我们已经在实验室证明,这些新传感器可以轻而易举地检测到模拟鼻腔液或血清样本中的病毒蛋白或抗体,接下来,我们将证明它们是否能可靠地用于诊断环境。”研究小组还表示,除用于检测新冠病毒外,这些生物传感器还可用于检测其他人类蛋白,如Her2(某些乳腺癌的生物标志物和治疗靶点)和Bcl-2(在淋巴瘤和其他一些癌症中具有临床意义),以及针对乙肝的细菌毒素和抗体病毒等。
  • 科技部征集新冠病毒中和抗体应急项目,要求三个月内完成抗体评价
    p style=" text-align: justify text-indent: 2em " strong 仪器信息网讯 /strong 4月28日,科学技术部发布新型冠状病毒中和抗体产品研发应急项目申报指南的通知 span style=" text-indent: 2em " 。 /span span style=" text-align: center text-indent: 0em " & nbsp /span /p p style=" text-align: left text-indent: 0em " span style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/f2701a01-2920-47da-8e6d-6744997f1d4c.jpg" title=" 捕获.PNG" alt=" 捕获.PNG" / /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 0em text-align: center " /span /p p style=" text-align: justify text-indent: 2em " 中和抗体具备阻断病毒侵染目的细胞的潜力,在新冠病毒肺炎患者治疗过程中,康复期病人血浆治疗取得了较好的疗效,显示出中和抗体在新冠病毒肺炎治疗方面的潜力。单克隆抗体具有作用机制明确、易于大规模生产的优点,是新冠病毒治疗药物研究的重点方向。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 本指南旨在 /strong /span 面向社会广泛征集具有成熟临床前有效性和安全性研究基础、产业化转化成功率高、能快速进入临床研究的抗新冠病毒全人源单克隆中和抗体,包括全抗、抗体片段、双抗、抗体恒定区融合蛋白药物等,加快推动新冠病毒抗体药物临床评价,增强新冠病毒肺炎治疗和预防手段。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " 研发目的 /span /strong :开发中和作用高、体内外模型评价充分、产业化 成功率高的抗新冠病毒中和抗体,增强新冠病毒肺炎治疗和预防手段。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " 考核指标 /span /strong :抗体人源化程度高、与抗原的结合能力低于10nM、 建立抗体依赖增强作用评价模型、在P3条件下显示新冠活病毒阻断中和活性(EC50)低于10nM。完成申报临床试验所要求的药 学研究、非临床研究(包括一般药理学、药效、药代和安全性评价),以及制定科学规范的临床试验计划和方案。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " 时间节点 /span /strong :三个月内完成抗体评价,一年内获得临床受理文号。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 拟支持项目数 /strong /span :不超过5个。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 有关说明 /strong /span :团队具有较好的研究基础和较强的产业化能力, 鼓励产学研合作。 /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 18px " strong 新型冠状病毒中和抗体产品研发应急项目申报指南具体通知如下: /strong /span /p p style=" text-align: justify " 各有关单位: /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 根据国务院应对新型冠状病毒肺炎疫情联防联控机制科研攻关工作的总体部署,按照国家重点研发计划“公共安全风险防控与应急技术装备”重点专项组织管理的相关要求,现将新型冠状病毒感染的肺炎疫情防控应急项目申报指南予以发布。请根据指南要求组织项目申报工作。科技部将按照新冠肺炎疫情防控工作的特殊要求,遴选项目择优支持,会同药监局共同组织推进项目实施。有关事项通知如下。 /span /p p style=" text-align: justify text-indent: 2em " strong 一、项目要求 /strong /p p style=" text-align: justify text-indent: 2em " 1. 项目应聚焦新型冠状病毒中和抗体产品研发的应急需求,突出结果导向,明确研究目标和时间节点,集中力量攻关。 /p p style=" text-indent: 2em text-align: justify " 2. 项目研究涉及人体研究的,应按照规定通过伦理审查并签署知情同意书;涉及人类遗传资源采集、保藏、利用、对外提供等,应遵照《中华人民共和国人类遗传资源管理条例》相关规定执行;涉及实验动物和动物实验的,应遵守国家实验动物管理的法律、法规、技术标准及有关规定,使用合格实验动物,在合格设施内进行动物实验,保证实验过程合法,实验结果真实、有效,并通过实验动物福利和伦理审查。 /p p style=" text-indent: 2em text-align: justify " 3. 项目产生的科学数据应无条件按期递交到科技部指定的平台,对项目各个承担单位乃至今后面向所有的科技工作者和公众开放共享。 /p p style=" text-indent: 2em text-align: justify " strong 二、申报要求 /strong /p p style=" text-align: justify text-indent: 2em " 1. 申报单位根据指南支持方向的研究内容以项目形式组织申报,覆盖相应指南研究方向的全部考核指标,项目下不设课题。项目申报单位推荐1名科研人员作为项目负责人。 /p p style=" text-align: justify text-indent: 2em " 2. 项目牵头申报单位和项目参与单位应为中国大陆境内注册的科研院所、高等学校和企业等,具有独立法人资格。国家机关不得牵头或参与申报。 /p p style=" text-align: justify text-indent: 2em " 3. 项目牵头申报单位、项目参与单位以及项目团队成员诚信状况良好,无在惩戒执行期内的科研严重失信行为记录和相关社会领域信用“黑名单”记录。 /p p style=" text-align: justify text-indent: 2em " 4. 项目(课题)负责人应具有高级职称或博士学位,为该项目(课题)主体研究思路的提出者和实际主持研究的科技人员 对项目负责人无限项要求,无年龄等要求,只要有能力、有决心为打赢防疫防控阻击战贡献力量,均可参与申报。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 中央和地方各级国家机关的公务人员(包括行使科技计划管理职能的其他人员)不得申报项目(课题)。 /span /p p & nbsp & nbsp 5. 申报项目受理后,原则上不得更改申报单位和负责人。 /p p style=" text-align: justify text-indent: 2em " strong 三、申报方式 /strong /p p style=" text-align: justify text-indent: 2em " 1. 网上填报。请项目申报单位按要求通过国家科技管理信息系统公共服务平台将项目申报书进行网上填报,提交3000字左右的项目申报书。项目管理专业机构将以网上填报的项目申报书作为后续形式审查、项目评审的依据。项目申报书格式可在国家科技管理信息系统公共服务平台相关专栏下载。 /p p style=" text-align: justify text-indent: 2em " 项目申报单位网上填报申报书的受理时间为:2020年4月28日16:00至2020年5月8日16:00。 /p p style=" text-align: justify text-indent: 2em " 国家科技管理信息系统公共服务平台: /p p style=" text-align: justify text-indent: 2em " http://service.most.gov.cn /p p style=" text-align: justify text-indent: 2em " 技术咨询电话:010-58882999(中继线) /p p style=" text-align: justify text-indent: 2em " 技术咨询邮箱:program@istic.ac.cn /p p style=" text-align: justify text-indent: 2em " 2. 材料报送和业务咨询。请各申报单位于2020年5月8日前(以寄出时间为准),将加盖申报单位公章的申报书(纸质,一式2份),寄送至专业机构。项目申报书须通过国家科技管理信息系统直接生成打印。 /p p style=" text-align: justify text-indent: 2em " 寄送地址:北京市海淀区西四环中路16号4号楼中国生物技术发展中心,邮编:100039 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 咨询电话:010-88225047 /span /p p style=" text-align: right " 科技部& nbsp & nbsp /p p style=" text-align: right " 2020年4月27日 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 附件: /strong /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/202004/attachment/ae1d37f0-8d6f-4c4e-b66a-70568356dcde.pdf" title=" 新型冠状病毒中和抗体产品研发应急项目申报指南.pdf" style=" font-size: 12px color: rgb(0, 102, 204) " 新型冠状病毒中和抗体产品研发应急项目申报指南.pdf /a /p
  • Nature:广谱抗体再添抗疫新武器 北大团队破解新冠病毒演化趋势
    自新冠病毒奥密克戎变异株出现以来,其子代变异株井喷式涌现,并呈现出“趋同演化”的趋势,大量中和抗体药物和康复者血浆已经“被逃逸”,这给新冠疫情的防控带来了十分严峻的考验。“趋同演化”现象的形成机制以及演化终点亟需深入探究。北京大学生物医学前沿创新中心(BIOPIC)、北京昌平实验室曹云龙研究员/谢晓亮教授课题组联合中国食品药品检定研究院王佑春课题组于2022年12月19日在《自然》(Nature)杂志在线发表了题为“Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution”的研究论文,系统地探究了新冠病毒受体结合域(RBD)“趋同演化”的机制,并前瞻性地对病毒未来突变演化方向进行了预测,为广谱疫苗和抗体药物的设计与研发提供了宝贵的理论与数据支持。研究人员对不同免疫背景人群中分离得到的抗体进行了大规模中和测定和逃逸图谱表征,发现病毒趋同进化产生的变异株几乎逃逸了目前所有中和抗体药物、疫苗接种者或康复者血浆,包括BA.5突破感染者血浆。并且,由于“免疫印迹”现象的存在,奥密克戎亚型变体突破感染后产生的抗体多样性逐渐降低,特别是BA.5突破感染,这提示基于BA.5变异株研发的疫苗加强针不能对新出现变异株产生良好的交叉防感染保护效果。另外,研究者基于抗体的大规模中和测定和逃逸图谱表征的数据建立了一个计算模型,对病毒演化方向进行了合理预测。尽管这些新突变株,特别是其中的XBB、BQ.1.1和CH.1.1等支系具有前所未有的免疫逃逸能力,作者团队此前筛选出的广谱中和抗体药物组合SA55+SA58,特别是SA55,仍然强效中和所有主要突变株和未来短期内可能流行的突变株,且能同时具有治疗和预防作用,是目前唯一已知能够高效中和所有新突变株的、处于临床阶段的药物抗体,相关论文此前于12月初发表于知名生命科学期刊《细胞报道》(Cell Reports)。该抗体具有广谱中和能力强、将很难被未来变异株逃逸、半衰期长等特征,将特别适用于不适合接种疫苗的老年人、免疫缺陷人群等群体的防护。本研究最早于2022年9月16日在线发布于bioRxiv预印本平台,是世界首篇系统性研究新冠病毒“趋同演化”机制,预测病毒进化方向的研究论文,在国际学术界引起了广泛关注。病毒的持续突变演化使得多种较高增长优势的变异株陆续涌现,BA.2.3.20、BA.2.75.2及其支系,乃至最近出现的BQ.1.1和XBB等变异株相比于BA.5都具有更高的增长优势。尽管它们的进化过程各不相同,处于奥密克戎的不同支系,但其受体结合结构域(RBD)上的突变都集中于R346、K356、K444、V445、G446、N450、L452、N460、F486、F490、R493和S494等位点,呈现出“趋同演化”的趋势(图1)。图1 奥密克戎亚型变体RBD蛋白携带的突变中和测定的数据提示“趋同演化”产生的变异株具有极强的逃逸能力,绝大多数中和抗体药物都被以XBB为代表的变异株逃逸(图2),包括此前已初步进入国内市场的阿斯利康公司Evusheld(“恩适得”)预防抗体药物。由于此类新突变株的流行,美国FDA也取消了礼来公司Bebtelovimab(贝特洛韦单抗)的使用授权。唯一的例外是作者团队开发的SA55抗体,它是目前唯一对包括XBB和BQ.1.1等在内的所有突变株仍旧有效的进入临床阶段的抗体药物(图3)。图2 奥密克戎亚型对中和抗体药物的逃逸情况图3 广谱中和抗体SA55和SA58血浆中和数据也显示,XBB,CH.1.1和BQ.1.1.10(或BQ.1.18)等毒株不仅逃逸了三针灭活疫苗接种者的血浆,也几乎完全逃逸奥密克戎BA.1/BA.2/BA.5突破感染者的血浆样本,显示出极大的免疫逃逸能力(图4)。图4 奥密克戎亚型逃逸疫苗接种者与康复者血浆中和为了探究不同奥密克戎变异株呈现“趋同演化”现象的具体机制,团队从BA.1、BA.2或BA.5突破感染康复者体内富集了抗原特异性记忆B细胞,发现其中大部分记忆B细胞交叉结合新冠原始株和奥密克戎变异株,印证了之前作者团队报道的存在于奥密克戎突破感染中的“免疫印迹”现象。基于高通量深度突变扫描技术,团队对不同来源的3051个交叉结合新冠原始株与奥密克戎变异株的抗体进行了突变逃逸图谱测定与聚类分析(图5a),发现奥密克戎特别是BA.5变体突破感染刺激产生的有效中和抗体种类明显减少,产生的主要是E2.2、E3和F1等不竞争ACE2结合表位且中和能力较弱的抗体(图5b-d)。图5 奥密克戎亚型变异株突破感染刺激产生抗体的表位表征基于抗体逃逸图谱、抗体中和活性、RBD突变对于ACE2亲和力变化等数据,团队建立了一个模型,分别计算了BA.2和BA.5突破感染刺激产生抗体的突变逃逸图谱(图6a),结果显示,BA.5突破感染刺激产生抗体的突变逃逸位点显著减少,表明其结合表位多样性明显减少。这提示,免疫印迹现象使得奥密克戎变异株突破感染刺激产生中和抗体表位多样性降低,导致免疫压力集中,从而加速了病毒的趋同进化。在此基础上,研究者基于2022年8—9月真实世界的主流免疫状态,基于计算模型预测了BA.2.75和BA.5的进化趋势(图6b),这在随后趋同进化产生的新毒株中得到验证。图6 免疫印迹效应加速了抗体逃逸突变的趋同进化另外,研究人员基于BA.2.75和BA.5突变株的预测进化趋势,设计了携带不同RBD和NTD预测突变组合的假病毒(图7a),并测定了这些假病毒对不同中和抗体药物和血浆样本的中和情况及ACE2亲和力(图7b-g),结果显示,对BA.5或BA.2.75突变株最少引入5个突变就可以逃逸包括BA.5突破感染者在内的不同免疫状态下的几乎所有血浆样本。并且,合成的假病毒与之后真实世界流行的BQ.1.1支系、CH.1.1支系等高度相似,验证了预测模型的准确性。图7 趋同逃逸突变的累积能够几乎完全逃逸BA.1/BA.2/BA.5突破感染血浆的中和作用本研究揭示了“免疫印迹”造成的奥密克戎突破感染刺激产生抗体表位多样性降低,进而导致免疫压力集中化,促使新冠病毒RBD蛋白发生趋同演化的现象,这些积累趋同进化突变的病毒在获得极强突变逃逸能力的同时,也保持了较高ACE2亲和力。本研究中的预测方法为预测病毒突变演化趋势、开发广谱疫苗和抗体药物提供了参考资料,且具有扩展到其他体系的潜力。同时,研究结果也提示,基于BA.5突变株研发的疫苗对于其他变体的交叉保护效果很可能不够理想,进一步开发设计能够克服免疫印迹、激活广谱中和抗体的新型疫苗至关重要。而以SA55+SA58抗体组合为代表的广谱中和抗体既可以通过鼻喷给药方便快捷地在呼吸道建立短效预防,又可以通过注射实现感染初期的治疗和中长期预防,特别适用于保护高风险的医护人员以及不宜接种疫苗的免疫缺陷人群和老年人。SA55与SA58已经授权给科兴生物进一步开发,初步的单盲随机对照试验显示,喷雾吸入一次提供的即时保护可维持6—12小时,预防感染效率可达到80%以上,且成本较低,方便使用,目前正在进行更严谨的临床试验,预计将来可以大规模推广。北京昌平实验室、北京大学生物医学前沿创新中心曹云龙研究员,北京大学博士研究生简繁冲、王菁、宋玮良,中国食品药品检定研究院于原玲为Nature论文的共同第一作者。北京昌平实验室、北京大学生物医学前沿创新中心曹云龙研究员、谢晓亮教授、中国食品药品检定研究院王佑春研究员为Nature论文的共同通讯作者。北京昌平实验室、北京大学生物医学前沿创新中心曹云龙研究员,北京大学博士研究生简繁冲、张志莹、阿依江伊斯马衣,地坛医院郝晓花博士,北京协和医学院鲍琳琳研究员为Cell Reports论文的共同第一作者。北京昌平实验室、北京大学曹云龙研究员、谢晓亮教授、肖俊宇教授,北京协和医学院秦川教授,地坛医院金荣华院长为Cell Reports论文的共同通讯作者,北京大学、昌平实验室、动物所、中检院、科兴公司等单位的相关科研人员为共同作者。本系列研究得到科技部、昌平实验室基金、国家自然科学基金和北京市科技计划支持。参考文献[1] Cao, Y. et al. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature (2022).[2] Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature (2022).[3] Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature (2022).[4] Cao, Y. et al. Rational identification of potent and broad sarbecovirus-neutralizing antibody cocktails from SARS convalescents. Cell Rep. (2022)专家点评:清华大学医学院祁海教授:这一工作深入探究了构成当前新冠大流行的多个奥密克戎毒株对人类群体免疫的逃逸规律。曹云龙/谢晓亮联合团队发现,多个奥密克戎株亚型在受体结合蛋白上都显现出相同或类似的逃逸突变。这些突变,在保证病毒结合其受体的同时,躲避了之前中和抗体的抑制作用。这说明,人群序贯疫苗接种和自然感染所构建起的群体免疫,的确在阻断并降低既往毒株感染;同时,这种群体免疫的压力,也为未来病毒变异留下了越来越少的潜在逃逸路径。那么,我们是否可以根据已有的群体免疫状态和现有毒株的受体结合蛋白,来预测未来最有可能出现的逃逸突变呢?曹云龙/谢晓亮联合团队利用他们开发的一种高通量深度突变扫描(DMS)方法,分析、鉴定了BA5和BA2可能逃逸群体免疫的突变。非常重要的是,他们预测出来的突变,确实出现在了其它具有流行潜力的毒株上。曹云龙/谢晓亮联合团队这项研究所提供的这种预测能力,可以帮助我们更高效地设计广谱抗新冠疫苗,也会使我们更可能为所有潜在逃逸现有群体免疫的毒株准备好“特效药”。中国科学院生物物理所王祥喜研究员:新冠病毒一直在持续性进化,衍生出多种突变株;然而在奥密克戎出现之后,新冠病毒的演变速度明显加快。近半年来,就有BA.5、BF7、BA.2.75、BQ、XBB等近十种新突变株在一些国家成为主要流行突变株。这些新突变株往往其传染性和抗体逃逸能力都在增强。总体来讲,人类对新冠病毒的研究是被动地跟着病毒跑,一个新突变株出现后再去了解它的病毒特性,去探究新突变株对现有疫苗和药物的影响。如何前瞻性预测病毒演变的方向,提前预判未来一段时间内可能出现的突变株具有重要的战略意义。2022年12月19日,北京大学谢晓亮/曹云龙团队联合中检院王佑春团队在Nature上发表题为“Imprinted SARS-CoV-2 humoral immunity induces convergent OmicronRBD evolution”的研究论文,这是该团队继新冠中和抗体、新冠疫苗效果评估、追踪新突变株免疫逃逸特性后,又一系统性而创新性工作。该项研究有五点重要发现:1)从庞大的数据库中分析出近期有几十个新突变株其生长优势超越BA.5,且这些突变株有一定的共性,在某些特定位点携带相同或相似的突变,呈现趋同进化规律;2)这些新突变株展示出极强的抗体逃逸特性,基本逃逸国际上已批准上市的抗体药物;3)一个抗体对组合SA55/SA58(也是该团队的研究成果)依然高效中和这些新突变株;最后两点更精彩:4)从原始株感染康复者、BA.1/BA.2/BA.5突破感染者等不同免疫背景分离2000余株抗体,并绘制出不同免疫背景下抗体谱系特征。相对之前的免疫背景,BA.5突破感染者的主要中和抗体类别相对单一,非中和抗体比例提高,更容易滋生病毒变异去逃逸宿主免疫;5)利用高通量酵母展示技术精准绘制出抗体免疫逃逸图谱,与BA.2突破感染的免疫背景相比,BA.5突破感染中和抗体的免疫逃逸位点相对集中且大多出现在近期出现的突变株上。实验数据与真实世界监测结果高度一致。这一研究成果能够实现对未来一段时间内新突变株的精准预测,预先了解这些新突变株的病毒特性能够为科学精准防控留出宝贵的时间窗口。
  • 重大突破!中国科学家在新冠病毒抗体研发“发力”
    p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 2em " 我国科学家在新型冠状病毒抗体研究中取得重大突破,由中国工程院院士、军事科学院军事医学研究院研究员陈薇领衔的团队,发现了首个靶向刺突蛋白N端结构域的高效中和单克隆抗体。北京时间6月22日22:00,国际顶级学术期刊《科学》在线发表了该项研究结果。这也是陈薇团队研发的腺病毒载体重组新冠疫苗在全球率先进入Ⅱ期临床试验后,取得的又一项世界级科研成果。该论文第一作者为迟象阳、鄢仁鸿、张军;通讯作者为陈薇、周强、李建民。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 陈薇团队与西湖大学周强团队合作,使用冷冻电镜技术高精度解析了抗体与刺突蛋白的相互作用界面,为阐明其抗病毒机制提供了关键信息。该抗体单独使用时能发挥高水平的病毒中和作用,也可与针对受体结合域的抗体联用作为高效的“鸡尾酒”疗法。这为新冠肺炎的治疗提供了强效候选药物,也为靶向刺突蛋白N端结构域的药物和表位疫苗设计、新冠病毒作用机制研究,提供了崭新思路。 /span /p
  • “抗体药物研制国家重点实验室”落户华北制药
    日前,国家科技部公布了56家第二批企业国家重点实验室建设计划名单,华药集团抗体药物研制国家重点实验室位列其中。在抗体药物领域同时获批的还有上海张江生物技术有限公司。   抗体药物是现代生物制药的核心组成部分,以靶向性好、疗效高、副作用小等优点日益受到重视,凭借快速的市场增长率已成为当今国际生物技术药物发展的主流。我国在此领域与国际先进水平差距巨大,攻克以抗体药物为重点的重大疾病防治和新药创制的关键技术,被列为国家中长期科技发展的战略目标之一。建设抗体药物研制国家重点实验室的目的在于,通过建立起国际水平的抗体药物开发基地,开发出具有自主知识产权的抗体药物及其生产工艺,实现我国在抗体药物开发技术领域的跨越式发展,改变我国生物技术药物低水平重复的局面。   华北制药集团自1985年以来相继开发出基因工程乙肝疫苗、吉姆欣、吉赛欣、济脉欣等产品,并建成符合国际GMP标准的现代化模块式生物制药产业化基地金坦公司。近年又开发多个生物技术药物,其中重组人源抗狂犬病毒抗体是我国第一个具有自主知识产权的重组人源抗体,作为国家一类新药已获国家药监局临床批文 重组人血白蛋白也已进入临床申报并开始建设产业化基地。目前,华药已建成了较为完整的生物技术药物研发体系,并拥有按照国际标准建设的完整的生物技术药物质量控制及检测平台,为国内生物技术药物研发提供了与国际接轨的通道。
  • 钟南山:两种抗体试剂盒获批 有助鉴别流感和新冠病毒
    p   2月23日下午,广东支援湖北荆州各医疗分队、荆州市新冠肺炎定点收治机构召开广东省支援湖北荆州医疗队远程会诊,国家呼吸系统疾病临床医学研究中心主任、中国工程院院士钟南山等专家出席会议。 /p p   23日是钟南山首次与广东支援荆州医疗队远程视频会诊。他说,从目前数据来看,湖北疫情已出现转机,新增病例数绝对值已下降,广东医疗队到荆州后,对当地防治疫情工作起到很好作用,下一步的工作要主要集中在危重症患者治疗上。 /p p   在这次新冠肺炎病毒检测过程中,核酸检测是常用的检测方法。该方法拥有较强的稳定性,检测过程中与新型冠状病毒检测PCR试剂盒配套使用。其工作原理大致为:通过提取病人样本中的RNA,进行反转录聚合酶链反应(RT-PCR),通过扩增反应将样本中微量的病毒信息加以放大,最后以荧光的方式读取信号。如果PCR之后信号为阳性,则表明样本中存在病毒(已经感染),反之则说明没有感染。 /p p   除了上述普遍采用的核酸检测方法,2月23日下午,中国工程院院士钟南山在广州医科大学附属第一医院首次与广东对口支援湖北荆州医疗队进行远程会诊上宣布一则“好消息”,近日,国家获批了两个抗体试剂盒。与以往新冠肺炎检测试剂盒不同的是,这两种试剂盒均采用了胶体金法,可以在患者感染的第7天或发病的第3天检测出患者体内的lgM抗体,从而帮助患者进一步确诊。据了解,lgM是新型冠状病毒的抗体检测项目之一,此外还有IgG。IgM抗体阳性表示近期感染,IgG抗体阳性表示感染时间较长或既往感染。在远程会诊上,钟南山院士表示:“特别是对湖北而言,能够很快鉴别病人,作出一个很好的诊断。这样能够帮助我们很快地将正常人和病人分开。” /p p   据进一步了解,此次获得国家药品监督管理局应急审批通过的2个胶体金法抗体检测试剂其中之一来自于广州万孚生物技术股份有限公司。这款获批的新型冠状病毒(2019-nCoV)抗体检测试剂盒(胶体金法),用于体外定性检测人血清、血浆、静脉全血样本中新型冠状病毒(2019-nCoV)抗体,15分钟出结果,可用作对新型冠状病毒核酸检测阴性疑似病例的补充检测指标或疑似病例诊断中与核酸检测协同使用,另外还可以同时检测IgG和IgM抗体,满足了疫情期间现场快速检测的需求,进一步扩大了新型冠状病毒的检测方法和手段,为防抗疫情的早日胜利带来了希望。 /p
  • 新冠病毒预防药物新突破 鼻喷式中和抗体药实验证明可防奥密克戎感染
    喷一喷,有效预防新冠病毒感染。6日,重庆医科大学发布消息,由该校黄爱龙教授/金艾顺教授团队牵头的研究,发现了对新冠奥密克戎变异株具有强效中和活性的抗体58G6,并证明了滴鼻给药方式阻断奥密克戎变异株复制的有效性。相关论文近日发表于期刊《信号转导与靶向治疗》上。“新冠病毒每变异一次,全球众多科研机构研发的中和抗体就失效一批,特别是奥密克戎具有更多突变位点,原来有效的中和抗体幸存下来的也不多了。很幸运,我们筛选出的58G6中和抗体仍然保持有效中和活性。”金艾顺介绍,他们和武汉病毒研究所团队共同鉴定出的抗体58G6,单独使用就能对阿尔法、贝塔、伽马、德尔塔、奥密克戎等多种受关注的新冠病毒突变体的假病毒表现出强效中和能力,显示其具有广谱中和活性。研究人员通过滴鼻给药的方式,检验此抗体在仓鼠体内的中和效力。结果表明,很低浓度(2毫克/公斤)的58G6鼻腔给药,就可以有效预防仓鼠感染奥密克戎活病毒。目前在美国纽约发现的BA.2亚突变毒株BA.2.12.1以及在南非发现的BA.4和BA.5等变异株正快速蔓延。这3种变异株中,同样存在德尔塔的关键突变L452——正是该变异位点使德尔塔具有了传播优势。研究发现,58G6抗体对BA.1+L452R同样非常有效。黄爱龙介绍,目前由该校主导研发的新冠病毒中和抗体鼻喷药物(预防用)已经完成全部临床前研究资料的准备,近日已提交国家药监局新药评审中心。
  • Nature子刊|清华团队发现新冠病毒纳米抗体,对XBB等保持活性
    新冠疫情暴发以来,全球范围内已研发出多款针对SARS-CoV-2的中和抗体药物,通过严格的随机双盲对照临床试验,美国食品药品监督管理局已经授权多款治疗COVID-19的中和抗体药物的紧急使用。我国国家药品监督管理局也批准了由清华大学、深圳市第三人民医院和腾盛华创共同研发的Amubarvimab与Romlusevimab抗体鸡尾酒疗法,用于治疗轻型和普通型且伴有进展为重型高风险因素的成人和青少年,并在当前的临床救治过程中发挥着积极的作用。但随着COVID-19在全球范围内的大流行,新的变异株不断出现,尤其是传播性较原始株显著增强的Omicron多种突变株,对人民的健康和正常生活造成了很大影响。变异株在刺突蛋白(S)上所产生的重要突变位点导致疫苗和中和抗体活性降低或消失,对新一代疫苗和抗体药物的研发提出了更高和更迫切的要求。纳米抗体来自骆驼科等动物体内的重链抗体,是重链抗体中最小的完整功能结构。纳米抗体具有体积小、特异性强、稳定性强、易生产、穿透力强、免疫原性低等多种优势,使其更加容易识别常规抗体无法识别的抗体表位,加大了抗体的覆盖空间和结合能力,为新一代抗体药物的研发提供了更广阔和更独特的选择,具有广泛的临床应用前景。2022年12月27日,清华大学医学院张林琦教授、生命科学学院王新泉教授研究团队在《自然通讯》(Nature Communications)期刊在线发表题为“针对新冠病毒奥密克戎变异株及多种冠状病毒具有广谱中和能力和保护能力的纳米抗体”(Broadly neutralizing and protective nanobodies against SARS-CoV-2 Omicron subvariants BA.1, BA.2, and BA.4/5 and diverse sarbecoviruses)研究论文。该研究从免疫羊驼体内分离鉴定纳米抗体,对SARS-CoV-2多种变异株、SARS-CoV-1和其他主要sarbecovirus病毒具有广谱高效中和活性。其中代表性抗体3-2A2-4识别受体结合域RBD(Receptor binding domain)蛋白上高度保守的表位,保护K18-hACE2转基因小鼠免受Omicron和Delta活病毒感染,并对目前国内外出现的多种突变株BF.7,BQ.1.1和XBB等仍保持高效的中和活性,为研发新一代SARS-CoV-2纳米抗体药物提供了理想的候选。研究人员使用新冠病毒S蛋白和编码S蛋白的黑猩猩腺病毒载体疫苗等免疫羊驼,发现羊驼不仅产生了针对SARS-CoV-2病毒的中和抗体,而且产生了针对SARS-CoV-1病毒的中和抗体。通过酵母展示文库技术,研究者从免疫羊驼体内分离获得593个对SARS-CoV-2病毒具有结合能力的纳米抗体,其中124个对SARS-CoV-2病毒具中和能力,91个对SARS-CoV-1病毒具有交叉中和能力。研究人员挑选了其中32个具有高效交叉中和能力的纳米抗体开展了全面和深入的评估。通过表位竞争试验,这32个抗体被分为3组,其中第2和第3组中的大部分纳米抗体对14种SARS-CoV-2变异株(包括多种Omicron变异株)和5种sarbecovirus病毒保持了广谱中和能力。后续的初步实验结果显示,第3组的抗体对于最新出现的新冠病毒变异株BF.7、BQ.1和XBB等均保持活性。图1.鉴定获得的纳米抗体对SARS-CoV-2变异株和其他sarbecovirus具有广谱中和活性研究人员在具有较好广谱中和活性的前3组抗体中各选了一株代表性抗体,解析了与SARS-CoV-2或SARS-CoV-1RBD蛋白的高分辨率晶体结构,阐明其结合表位的分子结构和抗病毒机制。第3组的代表抗体3-2A2-4结合位点独特,位于RBD核心区的outer face和inner face交界底部,识别的表位氨基酸大多高度保守。其CDR3上F102和F103深入到了RBD N343糖链下的一个高度保守的疏水口袋中,形成了疏水相互作用,奠定了其广谱中和活性的结构基础。进一步的蛋白酶K、细胞染色实验与电镜结构解析表明该抗体结合SARS-CoV-2RBD后可将其固定在down的空间构象,影响S蛋白结合受体ACE2,从而阻碍病毒侵染细胞。图2. 3-2A2-4与SARS-CoV-2原始株RBD的结构解析为进一步研究纳米抗体3-2A2-4的体内保护效果,研究者利用K18-ACE2转基因小鼠模型进行了纳米抗体的预防保护实验。攻毒前一天通过腹腔注射10 mg/kg的3-2A2-4纳米抗体,24小时后通过鼻腔攻毒SARS-CoV-2 Omicron BA.1和Delta活病毒,对小鼠进行存活率和体重检测等。结果显示,3-2A2-4纳米抗体可以有效预防Omicron和Delta活病毒感染,防止和降低肺部组织感染,保护肺组织免于结构损伤和炎症反应,展示了优异的体内保护能力。图3.3-2A2-4在小鼠体内的预防保护综上,该研究从免疫羊驼体内分离获得上百个具有强中和能力的纳米抗体,并从中筛选出对目前所有SARS-CoV-2变异株(包括Omicron各亚株)以及5种其他sarbecovirus病毒具有强中和能力的纳米抗体。通过抗体抗原复合物晶体结构的解析,在受体结合域RBD蛋白表面发现多个高度保守的广谱中和表位,系统阐释了广谱中和能力的作用机制,确定了高度保守的抗原位点。其中,代表抗体3-2A2-4在K18-hACE2转基因小鼠模型中展示了对Omicron株和Delta株活病毒的预防保护能力,为研发下一代SARS-CoV-2纳米抗体药物提供了优秀的候选。论文链接:https://www.nature.com/articles/s41467-022-35642-2
  • 美疾控中心称老年人可能拥有H1N1病毒抗体
    新型H1N1流感目前正在全球多个地方流行,其最令人费解的一个特征在于,有别于其它的季节性流感,老年人较少出现严重的症状。 美国疾病防控中心(CDC)流感主任Nancy Cox近日在一次访谈中讨论了这一点。而CDC《发病率与死亡率周报》(Morbidity and Mortality Weekly Report)计划于5月20日或21日发布一份详细报告,称一些老年人体内拥有对新型H1N1病毒起作用的抗体。 老年人可能拥有抗体的原因之一或许是,他们对过去的猪流感毒株建立了抵抗力。在5月20日召开的一场记者招待会上,CDC流行病学家Daniel Jernigan提到,在1918年流感和1957年流感之间,一种H1N1病毒曾在美国传播,看起来使得一些人对新H1N1病毒具有了抗体反应,试管研究呈现出“交叉反应”(cross-reacts)。 不过Jernigan提醒说:“这并不是肯定说你有了保护作用,我们只能据此推断,某种程度上确实存在一定水平的保护效应,但是当下我们并没有很好的解释。”(科学网 梅进/编译)
  • 浅谈广谱抗病毒药物研发的普适性策略(二)
    上一期,主要介绍了抗病毒药物研究的共同靶标相关内容,本文将继续从抗病毒药物研究的共性环节、 抗病毒药物研究的通用策略方面进行阐述与探讨。2 抗病毒药物研究的共性环节2.1 靶向病毒膜融合过程 在包膜病毒的复制周期中,需要病毒和细胞膜融合才能进入细胞。病毒通过受体识别以及膜融合或内吞等步骤进入靶细胞是首要环节。 在该过程中, 介导病毒与细胞受体识别的病毒表面蛋白(surface protein,SP)的 受体结合亚基、介导膜融合的病毒 SP 跨膜亚基、细胞上的受体、切割 SP 所需 的宿主细胞蛋白酶等均是常见的抗病毒靶点[30]。CoV 是 I 型包膜病毒,位于包膜表面的 S 蛋白介导病毒入侵宿主细胞过程,包括受体结合及膜融合等步骤。在膜融合的过程中,形成六螺旋束(six-helix bundle,6-HB)是一个非常保守且关键的机制。目前发现感染人的冠状病毒(HCoV) 中,其 HR1 (heptad repeat- 1)三聚体与 HR2 (heptad repeat-2)作用的表面氨基 酸大都为保守的疏水性氨基酸,因此 HR1 是 CoV S 蛋白上非常保守的药物靶点[30]。2018 年,姜世勃与刘克良团队发现靶向病毒融合蛋白的α-螺旋脂肽具有广 谱抗 MERS-CoV(EC50 = 0.11 μmol L-1 ,CC50 100 μmol L- 1 )及甲型流感病 毒(influenza A virus,IAV)活性(H1N1 EC50 = 1.73 μmol L- 1,CC50 100 μmol L-1)[31] 。近日,复旦大学姜世勃/陆路团队与上海科技大学杨贝/Wilson 团队合作, 通过系统地筛选与结构修饰,发现了能够广谱抑制多种 HCoV 感染的多肽类融 合抑制剂 EK1 及脂肽 EK1C4,并揭示了其作用靶点与分子机制[32,33] 。该研究同时证明了 CoV 刺突蛋白的 HR1 区域是一个重要且保守的药物靶点, 为后续广谱抗 HCoVs 药物研发提供了思路。2.2 核酸复制 病毒进入靶细胞后, 病毒基因组 DNA/RNA 被释放到细胞中, 作 为模板指导病毒蛋白的合成。 RNA 病毒的基因组复制需要 RNA 依赖的 RNA 或 DNA 聚合酶(RNA-dependent RNA polymerase ,RdRp ;RNA-dependent DNA polymerase,RdDp),这类酶在人体中不存在且相对保守,成为抗病毒药物研发 的重要靶点。不同病毒聚合酶的结构和功能有许多相似之处,因此针对某一种病 毒聚合酶设计的抑制剂往往对其他病毒也有较好的抑制作用[34,35]。自从 1962 年世界第一个抗病毒药物碘苷被批准上市以来,全球已有众多抗病毒核苷类似物药物获批上市。 在病毒疫情暴发时, 核苷类药物往往成为人们的首选。 早在 2014 年西非暴发的大规模 EBOV 疫情中,部分核苷类似物药物在临床阶段均表现出一定的抗病毒活性——例如日本富山化学的新型抗流感药物法匹拉韦(favipiravir)以及瑞德西韦(remdesivir,图 3),特别是瑞德西韦目前已经完成 EBOV 的试验药物 III 期临床试验。随着研究的深入, 瑞德西韦被发现具有广谱抗病毒活性, 涵盖丝状病毒科病毒(EBOV 和马尔堡病毒等) 、沙粒病毒科病毒(拉沙病毒和胡宁病毒等)、 CoV 科病毒(SARS 、MERS 和猫科冠状病 毒等)和黄病毒科病毒(ZIKV 等) 等,因此也成为了治疗 SARS-CoV-2 的首个 小分子药物[36]。阿兹夫定(azvudine ,FNC,图 3)具有抑制 HIV 、丙型肝炎病毒(hepatitis C virus ,HCV)、肠道病毒 71 型等 RNA 病毒复制的功能,2021 年 7 月, 已在 中国上市用于治疗高病毒载量的成年 HIV- 1 感染者。此外, 阿兹夫定在新冠肺炎 临床研究中也取得显著效果[37]。瑞德西韦进入临床研究后,其抗病毒效果与预期有一定差距,原因可能是: 疾病的病程及动物模型与人体药动学差异、药物之间的相互作用和个体差异。 此 外, CoV 特有的“复制矫正”(proofreading)机制,即将掺入 RNA 产物链的核 苷药物“剔除”,进而逃逸核苷类抗病毒药物的抑制, 可能是此类抗病毒药物效 果不佳的一个重要原因[38]。近日,美国乔治亚州立大学的研究人员报道了一种抑制呼吸道合胞病毒 (respiratory syncytial virus,RSV)、相关 RNA 病毒和 SARS-CoV-2 的广谱抗病 毒核苷分子——4' -氟尿啶(4' -FlU,EIDD-2749,图3),它在细胞和分化良好的 人气道上皮中具有高选择性指数。RSV 和 SARS-CoV-2 体外 RdRp 聚合酶抑制显 示掺入后 i 或 i+3/4 位出现转录暂停。每日一次的口服治疗对 RSV 感染的小鼠或SARS-CoV-2 感染的雪貂非常有效[39]。EIDD- 1931(即NHC,图3),是一种核苷酸类似物。 NHC 上的肟形式模仿 尿苷, 与腺苷匹配, 而另一个互变异构体模仿胞苷, 与鸟苷匹配。它的原理是通 过给病毒 RNA 引入大量的突变,“瘫痪”病毒的基因组,进而导致遗传信 息大量错误使病毒无法存活[40-45]。目前仅有 NHC 及其衍生物能够躲避病毒复制 矫正机制的干扰。 在体外模型中,NHC 对 RSV、流感病毒、CHIKF、EBOV、委内瑞拉马脑炎病毒、东部马脑炎病毒、MERS-CoV、SARS-CoV 以及 SARS-CoV- 2(多数变异毒株)等具有广谱抗病毒活性,无明显细胞毒性[46-48];但在食蟹猕 猴中口服生物利用度较差。 EIDD-2801(molnupiravir,图 3)是 NHC 的异丙 酯前体药物,旨在改善 NHC 体内药代动力学以及在人类和非人类灵长类动物的 口服生物利用度。Molnupiravir 在雪貂和非人类灵长类动物中具有较好的口服 生物利用度。对感染流感病毒的雪貂进行 molnupiravir 口服治疗,可将大流行 流感和季节性甲型流感的病毒载量降低数个数量级, 并可减轻发热、呼吸道上皮 组织病变和炎症[39,49] 。Molnupiravir 使轻 中度新冠肺炎患者的住院率或死亡风险降低了约 50% 。2021 年 11 月 4 日, 英国药品和保健产品监管局(MHRA)已在英国批准 molnupiravir 上市,用于治疗重症和住院风险较高的轻至中度新冠肺炎成人患者( http:// www.21jingji.com/article/20211104/herald/f0b15254b2fcc17b70b26b839e32b1c6.html)。除了 molnupiravir 之外,法匹拉韦也可以掺入到病毒 RNA 链,诱发病毒的基因组突变, 并通过累积这种突变,导致病毒失活或失去感染能力[50]。总之, 靶向病毒最为保守的 RdRp 是一种开发广谱抗病毒药物非常有前景的策略。 目前处于临床研究阶段的多个新冠病毒 RdRp 抑制剂类药物结构差异较大,靶向 RdRp 影响病毒复制的机制也不尽相同,特别需要从结构生物学角度解析抑制剂与 RdRp 复合物结构,明确作用机制,为精准开发高效特异的、以 RdRp 为靶标的广谱抗病毒药物提供理论基础。2.3 核糖体移码 (ribosomal frameshifting) 在正常细胞内,核糖体(ribosome) 以 3 个碱基为单位(即密码子codon)由 5 到 3 端单向、连续地读取 mRNA 中的 遗传信息, 合成蛋白质[51]。由于体积的限制, 病毒的基因组通常较小, 所携带的 遗传信息较少。 包括 SARS-CoV-2 在内的各种 RNA 病毒在复制过程中会利用一 些特殊的机制调控病毒基因表达,扩展其所携带遗传信息的利用率, 其中一种常 用的机制是称为程序性“移码”的蛋白质合成重编码机制(programmed ribosomal frameshifting,PRF)[52-54]。即核糖体不遵循常规读取 3 个字母的步骤, 而是会漏 掉一两个 RNA 字母。核糖体发生的这种错位被称为“移码”,会导致核糖体错误读取遗传密码。例如, SARS-CoV-2 严重依赖其 RNA 折叠引起的“移码”来 合成蛋白[52-54]。理论上, 任何通过靶向 RNA 折叠来抑制“移码”的化合物都可能作为一种 治疗感染的药物。 “移码”现象在人类自身基因的表达中极为罕见, 因此靶向读 码框“移码”是一个可行的抗病毒策略。研究者通过运用荧光蛋白报告基因系统联合高通量筛选技术, 鉴定出了一个可以高效抑制读码框“移码”的小分子化合物美拉沙星(merafloxacin,图 4),它能在细胞水平(Vero E6 细胞)显著抑制 SARS-CoV-2 复制[55] 。美拉沙星抑制读码框“移码”的机制尚不清楚,可能直接作用于核糖体与病毒 RNA 的结合,或者抑制内源性调控蛋白。近期, Ahn 等[56]从9689 个小分子中发现了一种新型的呋喃[2,3-b]喹啉类化合物 KCB261770(图 4),它能够抑制 MERS-CoV 的“移码”和细胞水平 MERS-CoV 的复制。此外,该化合物还能抑制 SARS-CoV 和 SARS-CoV-2 的“移码”,具有广谱抗病毒活性。3 抗病毒药物研究的通用策略3.1 细胞纳米“海绵” SARS-CoV-2 的细胞结合和进入是由其刺突糖蛋白(S 蛋 白)介导的, S 蛋白不仅与人类血管紧张素转换酶 2(angiotensin convertingenzyme II,ACE2)受体结合, 还与肝素等糖胺聚糖结合。 近期研究发现细胞膜包被的纳 米颗粒(细胞纳米“海绵”)模拟宿主细胞,通过自然的细胞受体吸引和中和 SARS-CoV-2 ,可作为一种广谱抗病毒策略,还发现增加细胞纳米海绵表面肝素密度可以提高抗 SARS-CoV-2 作用[57]。3.2 抗体募集/杀死细胞 2009 年, 研究者设计了一种新的小分子 ARM-H,有可 能通过两种机制抑制 HIV:①通过招募抗体到 gp120 表达病毒颗粒和受感染的人 类细胞, 从而增强其吸收和人类免疫系统的破坏; ②通过结合病毒糖蛋白 gp120, 抑制其与人 CD4 结合和防止病毒进入。研究人员通过实验证明了 ARM-H 能够 同时结合 gp120 和抗 2,4-二硝基苯抗体(DNP ,存在于人血液中) [58]。抗体、 ARM-H 和 gp120 之间形成的三元复合物具有免疫活性,导致补体介导的表达 env 细胞的破坏。此外, ARM-H 可以阻止病毒进入人类 T 细胞, 因此应该能够通过两种相互强化的机制(抑制病毒进入和抗体介导的杀伤) 来抑制病毒复制。这些研究表明, 通过抗体招募的小分子具有可行的抗艾滋病毒活性, 并有可能启动 HIV 治疗的新范式。2020 年,Low 团队通过将神经氨酸酶抑制剂扎那米韦与高免疫原性半抗原2,4-二硝基苯(DNP)结合, 设计并合成了一种双功能小分子, DNP 专门针对游离病毒和病毒感染细胞的表面。该类分子抑制病毒释放的同时, 通过免疫介导清除游离病毒和病毒感染的细胞,对感染 100 倍 MLD50 病毒的小鼠进行鼻内或腹腔注射单剂量药物,可以根除 A 型和 B 型流感毒株的晚期感染[59]。近期研究发现, 抗生素分子 concanamycin A 可让免疫系统杀死被 HIV 感染的人体细胞[60]。DDX3 抑制剂可以让 HIV- 1 感染的细胞选择性死亡,进而耗竭病毒潜伏库[61] ,为根治艾滋病提供了新思路。3.3 多价结合——靶向病毒表面的非特异作用 细胞表面的糖链是细菌、病毒、 免疫细胞的接触点。病毒进入宿主细胞的过程涉及与不同细胞表面受体稳定但短 暂的多价相互作用。几种病毒的最初接触始于在细胞表面附着硫酸肝素蛋白聚糖, 最终导致病毒进入。已经开发出的广谱抗病毒药物如肝素或类肝素材料模拟细胞 表面糖负责最初的病毒附着, 如硫酸乙酰肝素(heparan sulfate)。高磺化金纳米 粒子具有广谱杀病毒性能。然而, 由于未知的清除机制和潜在的长期毒性是金纳 米颗粒成药性的不利因素。环糊精(cyclodextrins,CDs)是天然的葡萄糖衍生物, 具有一种刚性的环状结构,由α(1-4)连接的吡喃葡萄糖组成。磺化环糊精对HIV 具有可逆及特异的抑制活性。最近,英国曼彻斯特大学研究小组对天然葡萄糖衍生物环糊精进行磺化修饰 开发出了一种能够破坏病毒的外壳且对耐药性病毒也有效的新的广谱抗病毒分 子,其有望治疗 HSV 、RSV 、HCV 、HIV 和 ZIKV 等多种病毒感染[62]。基于多价相互作用的抗病毒药物,如柔性纳米凝胶,通过干扰病毒颗粒和阻 断与细胞受体的初始相互作用已经成为广谱抗病毒药物研究的有效策略。负电荷多硫酸盐可以结合 SARS-CoV-2 受体结合区域( receptor binding domain,RBD)上的正电荷斑块(patches),阻止病毒与宿主细胞相互作用进而 抑制感染。 与肝素相比, 合成的线型聚甘油硫酸酯(linear polyglycerol sulfate , 图 5)的抗病毒活性更高,且抗凝血活性较低[63]。巨大球状多价糖富勒烯、糖基化碳纳米管能抑制 EBOV、ZIKV 和 DENV 的 感染, 活性可达皮摩尔水平[64-66]。多价唾液化(sialylated)聚甘油对甲型流感毒 株(含耐药株)具有广谱抑制活性[67]。3.4 基于拓扑匹配的药物设计 IAV 颗粒表面均匀分布血凝素和神经氨酸酶。近 期,Nie 等[68]运用拓扑匹配(topology-matching design)的药物设计理念, 设计了 一种纳米颗粒抑制剂(纳米抑制剂, 图 6A), 它与 IAV 病毒粒子的纳米拓扑结 构匹配,对血凝素和神经氨酸酶具有多价抑制作用, 可以在细胞外中和病毒颗粒, 阻断其附着和进入宿主细胞。病毒复制显著减少了 6 个数量级, 即使在感染24 h 后使用, 仍能达到 99.999%以上的抑制作用。 2020 年, 该团队用类似的思路, 发现了与 IAV 表面空间匹配的尖峰纳米抑制剂(spiky nanoinhibitor,图 6B),峰 值在 5~10 nm 之间的纳米结构与病毒粒子的结合明显优于平滑的纳米粒子,获 得的红细胞膜(erythrocytemembrane,EM)包覆的纳米结构可以有效地阻止 IAV 病毒粒子与细胞的结合, 并抑制随后的感染。 EM 包覆的纳米结构在细胞无毒剂 量下降低了99.9%的病毒复制[69]。2021 年,该课题组运用拓扑匹配设计理念,基于宿主红细胞膜设计了与病 毒状球面相匹配的碗状纳米结构(“纳米碗”,heteromultivalent nanobowl,Hetero- MNB,图 6C),可作为广谱病毒进入抑制剂。与传统的同多价抑制剂不同, 该 类异多价抑制剂由于协同多价效应和拓扑匹配的形状,其半最大抑制浓度为 32.4 ± 13.7 μg mL- 1 。在不引起细胞毒性的剂量下,可减少99.99%的病毒传播。由 于在 SARS-CoV-2 的 S 蛋白上也发现了多个结合位点, 因此, 异多价纳米结构有 望为开发一种有效的预防 CoV 感染提供新思路[70]。3.5 靶向病毒核酸 病毒 RNA 会折叠成复杂的 RNA 结构,在病毒的生命过程调 控中起重要作用,为开发抗病毒疗法的靶标提供了新的机会。很多研究已经发现 多种病毒的非编码区 RNA 结构可以调控病毒的翻译、复制以及稳定性,它们通常在相关病毒中高度保守[71-73] 。例如,黄病毒中 5' UTR 和 3' UTR 之间的分子内 RNA-RNA 相互作用促进基因组环化并帮助协调复制;HCV 5' UTR 内部核糖体 进入位点的结构对于翻译至关重要;并且 ZIKV 和其他黄病毒的 3' UTR 中的多 假性结构已显示出使 RNA 外切核酸酶 Xrn1 失速,从而产生了亚基因组黄病毒 RNA,有助于病毒逃避细胞抗病毒过程[74,75]。需要指出的是,与蛋白质类药物靶标相比, RNA 结构的动态性与复杂性为药物筛选增加了困难, 往往需要借助于高通量筛选。例如, SARS-CoV-2 的 RNA基因组含有 15 个独立的 RNA 调节元件。 研究者通过基于 NMR 的片段筛选, 从含有 768 个小分子的片段库中发现了 SARS-CoV-2 的 RNA 配体[76]。近日,新加坡科学家使用多种 RNA 分子结构探测方法以及 RNA-RNA 相互作用分析技术, 解析了 SARS-CoV-2 基因组 RNA 的二级结构信息和病毒-宿主之间的 RNA 相互作用;同时发现在 SARS-CoV-2 基因组 RNA 上广泛存在 2' -O- 甲基化修饰, 推测可能有助于新冠病毒逃避宿主免疫攻击,揭示病毒逃避宿主免疫的潜在机制[77]。G- 四链体是由 G-quartet 层叠而形成的 DNA 或 RNA 四链构象, 是最重要的非典型核酸二级结构之一, 因其独特的构象、重要的基因功能和生物学意义而备受关注,是很有前途的药物靶点[78]。中国科学院长春应用化学研究所曲晓刚团队使用多种生物物理技术和分子生物学技术,发现 SARS-CoV-2 基因组中存在 G-四链体结构 RNA ,证实 SARS-CoV-2 中的富 G 序列(位于 SARS-CoV-2 核衣壳 磷酸化蛋白 N 编码序列区域)可以在活细胞中折叠成稳定的单分子 RNA G- 四 链体结构。该 G- 四链体 RNA 可以被 G- 四链体特异结合配体 PDP(图 7)等识别 并稳定,进而影响 G- 四链体 RNA 的生物功能。因此,该 G- 四链体可能是抗 SARS- CoV-2 药物新靶点[79]3.6 超分子配位化学 病毒基因组的未翻译区域(the untranslatedregions,UTR) 包含多种保守和动态结构,这些功能性的 RNA 结构对病毒复制至关重要,为广 谱抗病毒研发提供了药物靶点。 然而, 计算机对接筛选对于具有内在柔性特征的 RNA 结构仍存在较大挑战。 研究者将体外 RNA 分析与分子动力学模拟相结合, 构建 SARS-CoV-2 基因组 5' UTR 关键区域结构和动力学的3D 模型,进而确定了 圆柱形金属超分子螺旋([Ni2L3]4+ 、[Fe2L3]4+)对这种 RNA 结构的约束。这些纳 米尺寸的金属超分子螺旋分子可以与核酸结合,并且在细胞水平具有抗 SARS- CoV-2 等病毒复制作用[80,81]。3.7 核糖核酸酶靶向嵌合体 核糖核酸酶靶向嵌合体( ribonuclease targeting chimeras,RIBOTACs)是降解 RNA 的新策略, RIBOTACs 基于小分子选择性结 合 RNA(特别是形成复杂的二级和三级结构的RNA), 进而激活核糖核酸酶 L(ribonuclease L,RNase L)。RNase L 是一种在脊椎动物细胞中广泛表达、具有单链 RNA 内切活性的蛋白质。该技术已被用于靶向 SARS-CoV-2 的 RNA 基因组,抑制 RNA 的移码,并且募集细胞核糖核酸酶彻底杀死 SARS-CoV-2。该策略有望用于抗其他病毒药物研发[82]。3.8 反义核酸技术 反义核酸(antisense oligonucleotides)可以序列特异性地与靶 标 RNA 结合,实现高效的寻靶和抑制活性。近期,北京大学的研究人员构建了 一类靶向 SARS-CoV-2 包膜蛋白 RNA(E-RNA)和刺突蛋白 RNA(S-RNA)的 单链嵌合反义寡聚核苷酸, 通过在 2' 甲氧基修饰的反义核酸序列 5' 端缀合 RNase L 招募基团 2-5A,可实现有效的病毒 RNA 降解并抑制病毒增殖[83]3.9 核酸适配体技术 核酸适配体(nucleic acid aptamers)是一小段经体外筛选 得到的寡核苷酸序列(单链 DNA 或 RNA 分子),能与相应的配体进行高亲和 力和强特异性的结合[84] 。适配体已经在抗病毒药物开发方面 (含 SARS-CoV-2) 展现出巨大的潜力[85-87]。3.10 基于蛋白自组装的配体发现 动态组合化学( dynamic combinatorial chemistry,DCC)融合了组合化学和分子自组装过程两个领域的特点, 开辟了使 用相对较小的库组装很多的物质的途径, 而不必单独合成每一个物质。早在 2003 年,研究者通过基于点击化学的蛋白模板诱导片段组装, 发现了高活性的 HIV 蛋 白酶抑制剂[88]。2008 年,研究者通过动态连接筛选(dynamic link screening,DLS) 开发了一种潜在的抗 SARS 药物,其亲核片段通过与醛抑制剂的可逆反应将亲核 片段指向蛋白质的活性位点。它们的抑制作用可以通过与荧光酶底物的竞争检测 到。有了这一概念, 与活性位点特异性结合的低亲和力片段在功能酶分析中迅速 被识别出来[89]。2021 年,基于 Knoevenagel 反应的蛋白模板诱导片段组装策略用 于 Enterovirus D68 蛋白酶抑制剂的发现[90]。总之,动态组合化学在抗病毒药物 发现领域仍具有广阔的前景。参考文献,点击查看《浅谈广谱抗病毒药物研发的普适性策略(一)》文末。
  • 15分钟现场筛查!南开大学7天研制出新冠病毒抗体快速测试卡
    p    strong 仪器信息网讯 /strong 南开大学丁丹教授牵头,联合南方医科大学南方医院郑磊教授团队、华南理工大学唐本忠院士团队、深圳金准生物医学工程有限公司开展联合攻关,仅历时七天,成功研制出新冠病毒(2019-nCoV)IgM/IgG抗体快速测试卡,可在15分钟左右完成检测,具有操作简单、容易判读、灵敏度高等优势。该方法有望突破现有核酸检测方法对人员/场所的限制,缩短检测用时,提高便捷程度,推动诊断前移下移,实现疑似患者的快速诊断和密切接触人群的现场筛查。初步的临床试验结果显示,该检测卡在40例确诊新冠患者血液中成功检出抗体阳性30例(75%),其中IgM阳性16例(40%),IgG阳性28例(70%),在健康对照及非新冠疾病中均未检出。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/e65ed6c4-6847-4d4e-baac-f0a9adeba460.jpg" title=" 南开大学联合国内多家单位研发的新型冠状病毒诊断测试卡.jpg" alt=" 南开大学联合国内多家单位研发的新型冠状病毒诊断测试卡.jpg" / /p p style=" text-align: center " 南开大学联合国内多家单位研发的新型冠状病毒诊断测试卡 图自网络 /p p   新冠肺炎疫情发生以来,尽管普通实时定量荧光PCR核酸检测发挥了重要作用,但是,受操作繁琐、耗时长等限制,还不能满足当前快速增长的大量疑似患者、无症状感染者等排查诊断的检测需要。新型冠状病毒肺炎疫情发生后,南开大学充分发挥药物化学生物学国家重点实验室在化学生物学分子探针方面的学科优势,由重点实验室主任陈佺教授、庞代文教授领衔,迅速组织了一支包括化学学院、生命科学学院、细胞应答交叉科学中心相关专家在内的联合攻关团队。其中,南开大学生命科学学院丁丹教授团队牵头,联合南方医科大学南方医院郑磊教授团队、华南理工大学唐本忠院士团队、深圳金准生物医学工程有限公司开展联合攻关,成功研制出新冠病毒IgM/IgG抗体快速测试卡。抗体检测是病毒感染的重要诊断方法,因此,南开大学团队致力于研发新冠病毒IgM/IgG抗体快速测试卡。此次成功研制的检测卡具备测试快速(15分钟)、简便、容易判读等优势的同时,引入AIE DOTS/量子点高性能发光材料作为信号单元,大大提高了抗体检测的灵敏度。 /p p   据了解,自2019年12月武汉发现新型冠状病毒以来,南开大学积极响应国家号召,集合在生物、医药、大数据统计等学科的尖端力量,从疫苗与生物制剂研究、流行病模型预测等多个方面开展疫情防控科研攻关,目前进展顺利,有望尽快应用于疫情防控一线。 /p p br/ /p
  • AFM剖析类病毒颗粒以帮助抗击丙肝病毒
    丙肝病毒(hepatitis C virus,HCV)会导致慢性肝炎,甚至发展为癌症。针对丙肝病毒的疫苗尚未研发成功,而类病毒颗粒(Virus-Like Particle,VLP)因其无传染性的自我组装结构,成为了疫苗发开路线的潜力股之一。在这篇文献中,澳洲的研究者使用Cypher ES原子力显微镜,对四类丙肝类病毒颗粒进行了形貌表征和纳米力学测量,表征了它们的生物功能和纳米级机械性质等信息来研究HCV,提高这些纳米级颗粒的基础理解,是开发有效的丙型肝炎疫苗的基础工程。 实验目的与方案: 形貌扫描和机械性能表征都通过牛津仪器Cypher ES AFM,在缓冲液中进行,全程使用小振幅成像,以适应纳米级结构;此外,对每种类型的完整病毒样颗粒,研究者们测量了超过100条力曲线/每个颗粒。 Cypher ES具有特别设计的机械回路,实现了高空间分辨率、超低底噪声、以及精确的力控制及高灵敏度,可以对类病毒颗粒进行精准、无损的测量。同时,Cypher ES的封闭样品腔可以最大限度避免溶液的挥发,保持缓冲液的离子浓度、pH、以及温度恒定,进一步确保了测量的重复性和准确性。系统自带的软件简化了弹性模量的模型拟合与计算,大大方便了力曲线分析处理。 结果与分析: 在本文中,作者们使用了多种方法来探测和压片类病毒颗粒,包括原子力显微镜(AFM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等。这是第一次使用振幅调制(AM)-AFM和力谱对所有四种HCV VLPs(基因型1a,1b,2a和3a)进行形态和生物力学特征描述,揭示了这些粒子的表面形貌、粗糙度、电荷分布等特点。根据细胞进入实验测定,所有HCV VLPs都被认为是具有生物学功能,并且都装饰有类似于天然HCV的高甘露糖型N-连接糖,这是疫苗开发的基础。HCV颗粒是由核酸和蛋白质外壳组成的,类病毒颗粒的尺寸小于200nm,表面富含柔软的脂质。如图1所示,可以观察到HCV核心或包膜糖蛋白的一些结构组织细节,但就像袋子里的豆子一样。表面粗糙度的变化可能影响病毒与宿主细胞的相互作用,从而影响病毒进入细胞的能力。此外,电荷分布也可能影响病毒与宿主细胞膜的结合能力。因此,了解HCV粒子的表面特性对于研究病毒的传播机制、疫苗设计和抗病毒药物的开发具有重要意义。图1 上:展示了HCV病毒颗粒和VLPs的组装图解。将野生型HCV颗粒与VLPs中间截开,可以看到都具有E1/E2蛋白和脂质膜,但VLPs不含遗传物质。 下:通过AFM获得了不同表型的HCV的纳米尺度图像。VLP的几何特征以1b中的两个颗粒来突出显示。实验中观察到许多具有这种特征的颗粒,这里展示了表现出异质性、多形态表面形态的颗粒,以更准确地表示整个VLP制剂。标尺为50 nm。 对单个粒子进行原位形态成像和纳米机械性能测量,不仅指出不同基因型的粒子大小存在显著差异,而且所有基因型间的平均模量大小存在显著差异。如图2所示,VLPs的弹性模量在十几MPa的范围内,与其他报道的病毒或VLP相比,本文中的弹性模量相对较低;实际上这个结果与脂质体的模量类似,这可能是某些包膜病毒的特征。 图2 左:对测得的HCV VLP基因型进行粒度分析,统计直径分布。所有基因型都显示出大致正态分布,但尾部较长,代表有少量较大的颗粒。右:拟合压痕曲线测算弹性模量(E)。使用Hertz/Sneddon方法进行拟合的实验方案,为进行说明,测量了在硬云母表面上获得的数据(黑色线) 以及基因型1a的数据(蓝色圈)。最终得到了每个基因型的平均弹性模量。 总的来说,这篇文章为我们提供了关于丙型肝炎病毒类颗粒表面特性的详细信息,有助于我们更好地理解这一领域的现状和未来的研究方向。通过使用不同的探针和压力条件,研究人员可以更深入地了解这些粒子的表面特性,这对于理解病毒的传播方式、疫苗设计以及抗病毒药物的研发等方面具有重要意义。 引用:S. Collett, J. Torresi, L. Earnest-Silveira et al., Probing and pressing surfaces of hepatitis C virus-like particles.  J. Colloid Interface Sci.  45, 259 (2019). https://doi.org/10.1016/j.jcis.2019.03.022
  • cGMP制药洁净室整体解决方案:细胞治疗产品、单克隆抗体、疫苗以及口服固体抗病毒药物的生产
    目前,全球仍在继续竞相寻找抗击COVID-19 爆发流行的最有效策略。迫切需要有效的公共卫生干预措施和可靠的治疗手段来扭转这一激增趋势,与此同时也推动了多种用于改善患者预后的药物开发。感染早期进行治疗是最有希望的,在寻找早期重要的临床数据过程中,发现当前批准的药物有新的适应症(又称药物再利用)。基于这个情况,把早期治疗中,对人体安全有效的药物分子进行联合用药,用于各种筛选试验。据说这是一种具有成本效益的药物开发技术,相比新疗法可以更快地治疗新冠肺炎患者。人类与COVID-19的斗争仍在继续,从长远角度来看,接种新冠疫苗是最有效的预防手段,它有助于个体产生免疫力,在不良事件发生时使个人感染风险降到最低。疫苗是一种生物物质,在外来入侵物质(如病毒)刺激身体后做出应答并产生抗体。抗体是由免疫B细胞天然产生的蛋白质,其主要机制是通过与病毒部分特异性结合并阻止其进入细胞,从而免于感染或者控制感染发展为疾病。大多数获得批准的疫苗基本是通过皮下注射和肌肉注射这两种方式进行接种。通常,这些抗体在接种疫苗或感染后自然产生,但也可以在实验室中通过生物工程进行制备。实验室制备的抗体称为单克隆抗体 (mAb),其产生的方式主要通过静脉注射以及注射给药。尽管最近全球疫情有所改善,但许多国家仍面临着早期治疗需求无法满足的困境,早期检测对于避免产生重症病例和免于住院治疗具有重要意义。因此,随着治疗方法的不断研究,抗病毒的口服固体制剂 (OSD)出现并应用。第一个用于早期COVID-19治疗的抗病毒口服药物是由默克公司研发的莫努匹韦,临床数据表明,在治疗初期或病毒仍在复制的阶段,该药品具有很高的治疗疗效,这种药物会增加病毒RNA突变的频率并削弱病毒复制。COVID-19防治方法cGMP生产设施在药物开发和制造的所有阶段,必须遵守国际和国家法规,这保证了这些无菌产品在投放市场时的安全性和有效性。当前良好生产规范(cGMP)是一项由食品和药物管理局(FDA)、世界卫生组织 (WHO)、欧洲药品管理局(EMA)、药品检验联合检验计划(PIC/S)、治疗品管理局(TGA)和其他地方监管机构等执行的法规。这种正式的法规在充分实施后,可以避免造成污染、混淆、偏差、故障和错误,并确保药品符合其质量标准。根据FDA cGMP和无菌指南,有两个对无菌药品质量特别重要的清洁区域:• 关键区域该区域被视为关键区域,因为该区域内的已灭菌药品易受污染,且在后续过程中不能对其直接接触的容器进行灭菌。因此,必须对周围环境进行严格控制,以保持产品的完整性和无菌性。在该区域开展的活动包括灌装区域、产品密封操作之前和期间过程对无菌材料进行操作(例如,无菌传递、无菌材料添加等)。区域中气溶胶颗粒数目非常重要,因为它们可能通过作为微生物载体而对产品造成外来或生物污染。根据FDA的cGMP/无菌指南以及ISO 14644-1:2015,关键区域空气洁净等级为ISO 5级。ISO 14644-1规定,空气清洁度由每立方米允许的最大颗粒浓度进行分类。• 辅助清洁区域辅助清洁区域可以发挥多种功能。通常,这些区域是准备、操作或转移非无菌成分、产品配方、产品处理中需要的材料、设备、和容器的地方。辅助洁净区的空气洁净度分类取决于此处开展活动的性质。美国食品和药品监督管理局建议,在动态条件下,无菌处理附近的直接接触区域应符合ISO 7级(最低)动态标准。生产厂家也可以将该区域划分为ISO 6级或将整个无菌灌装室保持在ISO 5级的水平。而按照 ISO 8级空气清洁度等级分类的区域适用于非关键操作(例如,设备清洁等)。一个区域的ISO分类等级越高,运营成本就越高。由于增加了大量的HEPA和ULPA过滤器,风机和暖通空调的功耗也随之增加,以满足所需的空气洁净等级。符合cGMP的洁净室洁净室旨在为无菌和非无菌产品的加工提供高水平的清洁度,以确保产品的质量、安全性和加工工艺效率。根据操作要求,洁净室环境需要控制单位体积的空气中所含确定数量的颗粒。为了实现这一控制,高效空气过滤器(HEPA)和超高效空气过滤器(ULPA)被投入使用,其目的是用来捕获和限制进入洁净室的颗粒数量。此外,风速也需保持在一定水平[根据相关无菌操作指南,通常为0.45 m/s(90 fpm)±20%],以确保受控空间内每小时有足够数量的换气次数(ACPH)。上述条件将有助于降低污染风险,同时提供合适的环境来进行相关操作。还可以根据需要控制其他相关物理参数,例如温度、湿度、压缩空气参数、噪音和振动以及静电放电等。COVID-19的关键技术由于对 COVID-19 治疗的医疗需求很高,研究人员、制造商和定制研发生产(CDMO)将用以上4种方法重点研究如何提高新药能力。然而,这仍需要特定的专有技术来解决所涉及的复杂性和危险性问题。每个工艺步骤都需要调整设备以优化生产,从临床试验到生产和质量控制过程的监管过程中,需要选择符合cGMP的设备来获得优势。凭借大量的创新和完整的解决方案,Esco Pharma旨在提供符合国际认证GMP的技术,以期在未来制定出更有前景的战略解决方案。现在与Esco Pharma合作,即可为您提供高质量和极具性价比的cGMP洁净室整体解决方案。关于Esco PharmaEsco Pharma提供专业的整套制药核心设备、工艺流程解决方案和优质的服务,提高药品在研发和生产过程中每个过程的无菌水平,优化药品的无菌生产工艺,同时提高在操作过程中对产品的保护,有效地减低交叉污染的发生,提升公共职业健康水平和人类大健康水平。Esco Pharma提供优质定制化平台服务,帮助优化工艺流程使其符合国际职业健康和安全标准,并满足国际化药物、营养制剂、A**P药物、细胞治疗药物、基因治疗药物、疫苗以及药妆品等的研发和生产。 Esco Pharma拥有遍布全球和本地售后服务网点和办公室,配有专业的制药设备资深售后团队,设备备件本地化供应,可根据客户的需求快速反应,迅速为客户进行设备的维修和维护。
  • 历经8年,华东师范大学人工合成“抗病毒系统”
    随着全球气候变暖,未来全球将面临更多新发或再发病毒引发的传染病疫情。此前的埃博拉病毒、甲型H1N1流感、寨卡病毒、以及最近的新冠病毒肺炎(COVID-19)疫情,都对全球的经济、公共卫生安全、以及人类健康,产生了巨大冲击。除此类突发病毒外,长期潜伏于机体的病毒,如人类免疫缺陷病毒(HIV)、乙型肝炎病毒(HBV)、人乳头瘤病毒(HPV)以及单纯疱疹病毒1型(HSV-1)等,也因其高传染性和反复发作的特点,较难防治。因此,迫切需要建立针对病毒感染的广谱性抗病毒新策略。但是现有的病毒检测和清除策略均分开独立进行,尚未有集病毒检测和清除为一体的工程化系统。这促使我们设计开发针对病毒的闭环式基因线路,实现体内病毒检测清除一体化、自动化和智能化。历时8年研究,叶海峰课题组研究人员让《生化危机》电影中的病毒终结者ALICE成为现实。灵活、创新、模块化的抗病毒治疗新策略研究团队设计了一组集病毒检测清除于一体的闭环式人造免疫样系统ALICE。该系统成功模拟了人体的抗病毒免疫系统,能够自动感应和破坏入侵的病毒。该系统以感知外源核酸的STING蛋白为接头,连接人工搭建的信号反应网络,同步输出多重抗病毒功能模块(包含抗病毒细胞因子IFN-α和IFN-β、降解病毒核酸的CRISPR-Cas9、抗病毒中和抗体)。当病毒入侵时,ALICE系统能够自动感知,并同步输出抗病毒功能蛋白,发挥抗病毒效果。为了进一步探索ALICE系统的临床应用前景,研究团队选取由单纯疱疹病毒1型(HSV-1)感染引发的疱疹性角膜炎(HSK)小鼠模型,由腺相关病毒(AAV)载体递送ALICE系统至小鼠的眼角膜。实验结果显示:ALICE系统能够成功抑制小鼠角膜、三叉神经节以及大脑中的病毒载量;并且面对病毒的迭代感染,也能发挥良好的抗病毒效果。目前,临床上治疗HSV-1的常用方法是抗病毒药物,如阿昔洛韦(ACV)等核苷类似物,这类药物靶点单一,极易造成耐药毒株的出现。ALICE系统的出现无疑是给抗病毒治疗领域,提供了一种灵活、创新、模块化的抗病毒治疗新策略。能够灵活应用于特定的病原体防控需求模块化设计的闭环式ALICE系统,拥有可更换的检测模块、灵活布线的内源信号网络、多重的输出模块,经由不同的底盘细胞或AAV载体递送,能够灵活应用于特定的病原体防控需求。ALICE技术平台作为人造抗病毒免疫系统,可诱导干扰素表达释放发挥非特异性抗病毒免疫功能,或诱导中和抗体等发挥适应性免疫防御,增强机体的免疫防御体系。研究团队认为,本研究中的各类ALICE系统可作为示例模型,未来很容易适应特定免疫样细胞的设计开发,实现以哺乳动物为目标的潜在病原体的智能感应和清除。杰出校友团队与母校科研合作12月9日,国际知名期刊《自然通讯》刊登了华东师范大学叶海峰研究员团队和杜克-新加坡国立大学医学院王林发院士团队,历时8年在抗病毒免疫领域的最新研究成果“Engineering antiviral immune-like systems for autonomous virus detection and inhibition in mice”。据悉,华东师范大学叶海峰研究员和杜克-新加坡国立大学医学院王林发院士为该研究论文的共同通讯作者,华东师范大学博士后王义丹为该研究论文的第一作者。国际顶尖新发传染病领域专家、世界卫生组织顾问委员、华东师范大学校友及荣誉教授王林发院士长期与母校合作,已带出了一批青年教师正在从事相关领域的研究工作。该工作得到南京大学李尔广教授、同济大学王平教授、中科院武汉病毒研究所周鹏研究员及其团队、中科院武汉病毒研究所裴荣娟副研究员及其团队以及杜克-新加坡国立大学医学院王林发教授及其团队的大力支持。该工作也获得了国家自然科学基金国际合作项目、国家重点研发计划“合成生物学”重点专项、上海市科委等的资助。
  • 病原微生物来袭,Are you ready? ——显微技术发展助力科学家对抗病毒
    传染病(Infectious Diseases)是由各种病原体引起的能在人与人、动物与动物或人与动物之间相互传播的一类疾病。中国目前的法定报告传染病分为甲、乙、丙3类,共40种。此外,还包括国家卫生计生委决定列入乙类、丙类传染病管理的其他传染病和按照甲类管理开展应急监测报告的其他传染病。新型冠状病毒肺炎虽然纳入乙类传染病,但仍采取甲类管理措施。 中国法定传染病分类类别病种甲类鼠疫、霍乱乙类新型冠状病毒肺炎、布鲁氏菌病、艾滋病、狂犬病、结核病、百日咳、炭疽、病毒性肝炎、革登热、新生儿破伤风、流行性乙型脑炎、人感染H7N9禽流感、血吸虫病、钩端螺旋体病、梅毒、淋病、猩红热、流行性脊髓膜炎、伤寒和副伤寒、疟疾、流行性出血热、麻疹、人感染高致病性禽流感、脊髓灰质炎、传染性非典型肺炎丙类感染性腹泻病、丝虫病、麻风病、黑热病、包虫病、流行性和地方斑疹伤寒、急性出血性结膜炎、风疹、流行性腮腺炎、流行性感冒、手足口病其他寨卡病毒、鼻疽和类鼻疽、人兽共患病、基孔肯亚热、广州管圆线虫病、阿米巴性痢疾、人猪重症链球菌感染、德国肠出血性大肠杆菌O104感染、美洲锥虫病、诺如病毒急性肠炎、鄂口线虫病、西尼罗病毒、马尔堡出血热、拉沙热、黄热病、裂谷热、埃博拉出血热、中东呼吸综合征、埃可病毒11型数据来源:中国疾病预防控制中心数据来源:中国疾病预防控制中心引起这些传染病的病原体中微生物占绝大多数,包括病毒、衣原体、立克次体、支原体、细菌、螺旋体和真菌,另外一小部分是寄生虫。历史上,病毒引发的疫情在全球各地造成了恐慌和浩劫。流感、天花、麻疹和黄热病的影响持续了几个世纪,给经济造成巨大负担。21世纪多起高致病性、高传染性的人兽共患病暴发,包括非典型肺炎病毒(SARS-CoV)、埃博拉病毒、中东呼吸综合征冠状病毒(MERS-CoV)、尼帕病毒和年初爆发的2019新型冠状病毒(SARS-CoV-2)。 其中天花被认为是人类最具毁灭性的疾病之一。它在人群中的传播,可能是由动物宿主传播几千年之后,伴随着地区和大陆间的人口流动、贸易和战争才开始的。这种古老的疾病,至少可以追溯到公元前三世纪。从古至今,天花影响了过去社会的各个阶层,包括著名的顺治皇帝。自200多年前天花疫苗的研制,经过密集的疫苗接种后,该病在1980年被正式宣布消灭。 相似的,近期一项针对新冠病毒的系统发育分析在S蛋白进化角度显示,新冠病毒可能已经在人群中进化了至少7年。之前的研究证实,新冠病毒与蝙蝠冠状病毒(RaTG13)基因组相似度为96%,与穿山甲-CoV基因组相似度为90%。为了确定具体驱动其最近适应人类宿主的重要突变,研究人员重建了所有感染人类的病毒株的共同祖先Spike-RBD序列,称为N1,将与其最接近的动物病毒RaTG13的共同祖先标记为N0。N1与新冠参考序列中的Spike-RBD相同,而N0的Spike-RBD序列是唯一的,两者在4个位点上的变化将进化的新冠病毒Spike蛋白与和RaTG13的共同祖先区分开来,而这个祖先病毒至少在2013年就已经存在(其后代RaTG13在那一年被分离出来)。意外的是,N0变为N1降低了Spike-RBD与ACE2受体的亲和力,可是为什么最近才演变成重大公共卫生问题,这种潜在的流行又该如何被发现并预防?显微镜下观察到的病毒示意图目前条件下,对病毒暴发的长期控制需要使用疫苗,以提供免疫耐受和保护。流行病发生后,对特定疾病建立的免疫力可以限制传播并显著降低死亡率。过去,疫苗的接种大大减轻了世界各地传染病的负担,包括控制了脊髓灰质炎、破伤风、白喉和麻疹等疾病。大量的研究工作集中在改进已有疫苗和发现新疫苗,例如2006年的HPV疫苗。近年来,新冠病毒、寨卡病毒等严重感染的迅速蔓延突出了全球预防大流行病的迫切需求,这就需要极其迅速地研制和全面普及疫苗,以预防可能未知的病原体。并且抗生素耐药细菌的出现也需要新方法来预防感染。鉴于这些变化,确定新候选疫苗的现有方法已不足以保证大规模防护。 而治疗性抗体也在短期预防和被动免疫治疗中发挥出重要作用,通过中和病毒,杀伤感染细胞,调节免疫等机制达到治疗目的。其中,联合抗逆转录病毒疗法(cART)在控制HIV复制和传播方面的效果使其得到普遍推荐。 然而,快速治疗、高效预防、精准溯源等的研究,都需要以快速的鉴定并全面认识病原微生物为基石。 1884年,Robert Koch在肺结核研究中提出了科赫法则的雏形。同年,Friedrich Loffler将其发扬光大,写下了著名的分离、培养和接种三步法,作为确定病原体存在的条件。这一理论的本质是疾病本体论,即建立人类疾病动物模型具有实际意义。依据科赫法则鉴定传染病的病原体流程 100多年来,科赫法则一直指导着微生物学研究,以鉴定传染病的病原体,常常提供可靠的证据。后来这些法则被病毒学及分子医学方向的研究人员引用,将自己的研究与科赫的细菌学联系起来,演变为权威实践指南,证明微生物及后来的基因在疾病中的作用,是现代实验医学的起源。 20世纪随着显微技术的发展,人们开始对病毒形态学产生认识。30年代末电子显微镜的出现,标志着病毒学的另一项技术突破,其在病毒鉴别诊断、抗原的定位、病毒-宿主细胞互作以及病毒形态发生学的研究中扮演着重要角色,当然这些认识是以临床数据及光学显微镜和共聚焦显微镜为基础的。由于受到光学衍射的限制,普通显微镜分辨率只能达到200nm,而一般病毒的尺寸只有十几到200纳米(痘病毒达300nm),而电镜却以其高昂的价格让诸多病毒研究爱好者研究受限。超高分辨显微技术的出现,为观测精细结构提供了可能,因此在病毒研究中的应用越来越广泛。随着科学的进展,关于病毒的研究技术也不再仅限于传统的病毒分离与血清学,还包括后期出现的分子方法等等。超高分辨共聚焦显微镜广泛应用于现代病毒研究 时至今日,科学家对病毒研究热情不减。PebMed数据库中,病毒相关研究数量逐年走高,重点研究集中在疫苗、抗体、病毒作用机制等基础生命科学,同时包括临床诊断及流行病学研究等,但最大占比仍为病毒本身的研究。近日公布的国家自然科学基金数据显示,批复的新冠疫情专项课题共110项,总资金近亿元。国家对公共卫生服务与传染病防控投入逐年加大,热点研究背景有了宏观政策的加持,论文发表呈“井喷式”增长,研究结果不断推陈出新。数据来源:PebMed.gov(截止时间:2020年6月30日)写在最后的话:“如果有什么东西在未来几十年里可以杀掉上千万人,比较有可能是个高度传染的病毒,而不是战争。也不是导弹,而是微生物。一部分原因是我们在核威慑上投入了很大的精力和金钱,但在防止疫情的系统上却投资很少。我们还没有准备好预防下一场大疫情的发生。”——比尔盖茨 参考文献:1. http://www.chinacdc.cn/jkzt/crb/2. Medizinhist J . 2008 43(2):121-48.3. Volume 65, Issue 1, January 2018, Pages 6-74. Volume 42, April 2018, Pages 47-525. Microbiol Spectr. 2016 Aug 4(4)6. Viruses . 2020 Apr 20 12(4):4657. doi: https://doi.org/10.1101/2020.06.22.1657878. https://courses.lumenlearning.com/9. https://www.leica-microsystems.com.cn/cn/applications/life-science/
  • 上交大吕海涛课题组多维度刻画具有潜在临床对应性的实验性急慢性肝炎的功能代谢特征谱
    肝脏作为人体最主要的代谢和解毒器官,极易受到病毒、酒精、有毒物质、免疫缺陷及代谢过载(Metabolic overload)等因素的影响而导致急性肝炎的发生,而持续性的代谢紊乱则会推动病程进展为慢性肝炎、肝纤维化甚至不可逆的肝硬化或肝癌。目前,全球肝炎发病率正逐年递增,由于致病因素的复杂性,且缺乏对急慢性肝炎特征功能分子的精准认知,临床上对急慢性肝炎诊疗仍处于相对模糊状态,不做严格区分,常常不能实现最理想的防治。针对这一挑战,上交大吕海涛课题组的最新研究采用功能代谢组学研究策略(Functional metabolomics),其深度融合多组学方法和前沿生命分析方法,重点发现和表征能够用于急慢性肝炎精准区分的功能代谢物和相关代谢通路,以实现两种肝炎的精准功能表型区分与分子认知。本研究通过生命组学和前沿技术深度融合的功能代谢组学策略,获得如下创新发现,(1) 基于精准靶向质谱组学(靶向代谢组学和靶向脂质组学)构建实验性急慢性肝炎的专属特异性功能代谢特征谱,其具有革新肝炎分子诊断分型和未来治疗发现的潜力。(2) 研究发现,急性肝炎主要引起嘌呤循环和氨基酸代谢紊乱;慢性肝炎主要扰动胆汁酸代谢和特征脂代谢。(3)通过特征性脂代谢解析慢性肝炎的新功能机制,即多不饱和脂肪酸向单不饱和脂肪酸转化能力的增强可促进慢性肝炎的发展。(4)肝炎的发生会引起肠道菌群的组成和结构的改变,其中慢性肝炎的发生与肠道菌群代谢更为密切关联,即特异性P菌属和M菌属调控三酸酸循环功能代谢物的生物合成,促进慢性肝炎的发生。(5)功能基因关联分析与功能挖掘确证上述肝炎的功能代谢发现,且具有一定临床对应性(可及性临床样本与动物样本血清代谢组趋同类比分析),证明可以进一步基于本动物模型开展肝炎更深层次的功能代谢组学研究,其发现用于支持肝炎临床的创新诊疗与新药研发。基于上述发现,吕海涛课题组起草论文“Functional metabolomics revealed functional metabolic-characteristics of chronic hepatitis that is significantly differentiated from acute hepatitis in mice”已经被著名药理学杂志Pharmacological Research正式发表 上海交大2019级硕士研究生王天宇同学为论文第一作者;2018级博士研究生胡龙龙同学、2020级博士研究生刘京净同学、2021级硕士生夏慧玉同学、东方肝胆医院陆炯炯博士和SCIEX中国肖梦晴工程师参与合作发表。吕海涛课题组简介: 课题组一直致力于的基于靶向质谱策略的功能代谢组学创新理论与方法学研究,及其转化应用于中药源和微生物源功能天然产物对复杂疾病的治疗发现研究(肝胆胰循环、微生物代谢和功能天然产物新功能);同时专注于从变革分子角度,利用功能代谢组学策略系统挖掘已知代谢物的新功能和发现新功能代谢分子并注释其功能谱。吕海涛博士,上海交通大学系统生物医学研究院研究员/博士生导师, 英国皇家化学会会士(FRSC), 英国皇家生物学会会士(FRSB),TALENT-100和绿色通道引进高层次人才,Faculty Opinions (F1000 Prime)Faculty 专家, QUT校长特聘教授席,澳门科技大学兼职教授/博导,功能代谢组科学实验室主任, 上海院士专家工作站(专家级) 首席专家。主要研究方向:生命健康交叉应用驱动的下一代功能代谢组学研究(STORM和STORM+)。先后主持国家重点研发计划课题和国家自然科学基金等10多项课题;相关领域权威杂志发表SCI检索论文56篇,ESI高被引2篇,它引2000余次;共同主编Wiley英文著作章节1篇和中药专著作1部;国外著名大学和高水平学术会议邀请报告40多次。兼任中国生物物理学会代谢组学分会副秘书长,中国中西医结合学会分子生药学专委会常务委员,世中联中医药免疫学专委会常务理事;中国药理学会中药与天然药物专业委员会(青委会)常务理事;任Pharmacological Research (Q1 TOP) (Section)主编,曾任Phytomedicine (Q1 TOP)副主编,Proteomics编委,Acta Pharmaceutica Sinica B (Q1 TOP)青年编委;国家自然科学基金委、 澳大利亚NHMRC基金会和香港HMRF基金会评审专家, 澳门大学等Faculty Promotion评审专家;安捷伦科技全球竞争性ACT-UR奖获得者。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制