当前位置: 仪器信息网 > 行业主题 > >

非诺贝酸酰基葡糖苷酸

仪器信息网非诺贝酸酰基葡糖苷酸专题为您提供2024年最新非诺贝酸酰基葡糖苷酸价格报价、厂家品牌的相关信息, 包括非诺贝酸酰基葡糖苷酸参数、型号等,不管是国产,还是进口品牌的非诺贝酸酰基葡糖苷酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合非诺贝酸酰基葡糖苷酸相关的耗材配件、试剂标物,还有非诺贝酸酰基葡糖苷酸相关的最新资讯、资料,以及非诺贝酸酰基葡糖苷酸相关的解决方案。

非诺贝酸酰基葡糖苷酸相关的资讯

  • 糖苷酶抑制剂标准品哪里找?上海甄准生物
    糖苷酶抑制剂标准品哪里找?------上海甄准生物 糖苷酶抑制剂是一类含氮的拟糖类结构能抑制糖苷键形成的化合物。从结构上可分为两组:第一组氮原子在环上有野尻霉素(nojirimycin)、半乳糖苷酶抑素(galactostatin)、寡糖酶抑素(oligostatin)等。第二组氮原子在环外,如阿卡糖(acarbose),validoxylamine A、B,有效霉素A、B(海藻糖苷酶抑制剂)等,从抑制酶范围上看,它包括了部分&alpha -葡萄糖苷酶抑制剂、半乳糖酶抑制剂、唾液酸抑制剂、淀粉酶抑制剂。 上海甄准生物提供糖苷酶抑制剂标准品,为您检测分析提供强有力支持! 产品信息: 货号 品名 CAS No. B691000 N-Butyldeoxynojirimycin Hydrochloride 210110-90-0 C10H22ClNO4 10/100mg a-葡糖苷酶1和 HIV cytopathicity抑制剂 E915000 N-Ethyldeoxynojirimycin Hydrochloride 210241-65-9 C8H18ClNO4 10/100mg HIV cytopathicity抑制剂 C181150 N-5-Carboxypentyl-deoxymannojirimycin 104154-10-1 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化Man9 甘露糖苷酶 A187545 2,3-O-Acetyloxy-2&rsquo ,3&rsquo ,4&rsquo ,6,6&rsquo -penta-O-benzyl-4-O-D-glucopyranosyl N-Benzyloxycarbonylmoranoline (&alpha /&beta mixture)   C56H63NO13 10/100mg 4-O-&alpha -D-Glucopyranosylmoranoline 制备中间体 B690500 N-(n-Butyl)deoxygalactonojirimycin 141206-42-0 C10H21NO45/50mg a-D-半乳糖苷酶抑制剂 B690750 N-Butyldeoxymannojirimycin, Hydrochloride 355012-88-3 C10H22ClNO4 5/50mg a-D-甘露糖苷酶抑制剂 D236000 Deoxyfuconojirimycin, Hydrochloride 210174-73-5 C6H14ClNO3 10/100mg alpha-L-岩藻糖苷酶抑制剂 M166000 D-Manno-&gamma -lactam 62362-63-4 C6H11NO5 5/50mgalpha-甘露糖苷酶 ß - 葡糖苷酶抑制剂和 M165150 D-Mannojirimycin Bisulfite   C6H13NO7S 1/10mg alpha-甘露糖苷酶抑制剂 D455000 6,7-Dihydroxyswainsonine 144367-16-8 C8H15NO5 1/10mg a-甘露糖苷酶抑制剂 C665000 Conduritol B 25348-64-5 C6H10O4 25/250mg b-葡糖苷酶抑制剂 C666000 Conduritol B Epoxide 6090-95-5 C6H10O5 25/250mg b-葡糖苷酶抑制剂 A155250 2-Acetamido-2-deoxy-D-gluconhydroximo-1,5-lactone 1,3,4,6-tetraacetate 132152-77-3 C16H22N2O10 25/250mg glucosamidase抑制剂 D240000 Deoxymannojirimycin Hydrochloride 73465-43-7 C6H14ClNO4 10/100mg mammalian Golgi alpha- mannosidase 1 抑制剂 M297000 N-Methyldeoxynojirimycin69567-10-8 C7H15NO4 10/100mg N-连接糖蛋白高斯过程干扰剂 A158400 2-Acetamido-1,2-dideoxynojirimycin 105265-96-1 C8H16N2O4 1/10mg N-乙酰葡糖胺糖苷酶抑制剂 A157250 O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenylcarbamate 132489-69-1 C15H19N3O7 5/10/100mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 A157252 (Z)-O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenyl-d5-carbamate 1331383-16-4 C15H14D5N3O7 1/10mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 M334515 4-Methylumbelliferyl &alpha -D-Glucopyranoside 4&rsquo -O-C6-N-Hydroxysuccinimide Ester   C26H31NO12 25mg T2DM糖苷酶抑制剂 G450000 4-O-&alpha -D-Glucopyranosylmoranoline 80312-32-9 C12H23NO9 1/10mg &alpha -葡萄糖苷酶抑制剂 D231750 1-Deoxy-L-altronojirimycin Hydrochloride 355138-93-1 C6H14ClNO4 5/50mg &alpha -糖苷酶抑制剂 H942000 N-(2-Hydroxyethyl)-1-deoxy-L-altronojirimycin Hydrochloride Salt   C8H18ClNO5 0.5/5mg &alpha -糖苷酶抑制剂 H942015 N-(2-Hydroxyethyl)-1-deoxygalactonojirimycin Hydrochloride   C8H18ClNO5 1/10mg &alpha -糖苷酶抑制剂 H942030 N-(2-Hydroxyethyl)-1-deoxy-L-idonojirimycin Hydrochloride   C8H18ClNO55/50mg &alpha -糖苷酶抑制剂 T795200 3&rsquo ,4&rsquo ,7-Trihydroxyisoflavone 485-63-2 C15H10O5 200mg/2g &beta -半乳糖苷酶抑制剂 A158380 O-(2-Acetamido-2-deoxy-3,4,6-tri-o-acetyl-D-glucopyranosylidene)amino N-(4-nitrophenyl)carbamate 351421-19-7 C21H24N4O12 10/100mg 氨基葡萄糖苷酶抑制剂 M166505 Mannostatin A, 3,4-Carbamate 1,2-Cyclohexyl Ketal   C13H19NO4S 2.5/25mg 保护的Mannostatin A B682500 Bromoconduritol (Mixture of Isomers) 42014-74-4 C6H9O3Br 200mg 哺乳类 alpha-葡萄糖苷酶 2 抑制剂 K450000 Kifunensine 109944-15-2 C8H12N2O6 1/10mg 芳基甘露糖苷酶抑制剂 D239750 1-Deoxy-L-idonojirimycin Hydrochloride 210223-32-8 C6H14ClNO4 10/100mg 酵母葡糖a-苷酶类抑制剂S885000 Swainsonine 72741-87-8 C8H15NO3 1/10mg 可逆,活性部位直接抑制甘露糖苷酶抑制剂;Golgi a-甘露糖苷酶 II抑制剂 T295810 [1S-(1&alpha ,2&alpha ,8&beta ,8a&beta )]-2,3,8,8a-Tetrahydro-1,2,8-trihydroxy-5(1H)-indolizinone 149952-74-9 C8H11NO4 10/100mg 苦马豆素和衍生物合成中间体 N635000 Nojirimycin-1-Sulfonic Acid 114417-84-4 C6H13NO7S 10/100mg 葡糖苷酶类抑制剂 V094000(+)-Valienamine Hydrochloride 38231-86-6 C7H14ClNO4 1/10mg 葡糖苷酶抑制剂 D440000 2,5-Dideoxy-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 葡糖苷酶抑制剂 D494550 N-Dodecyldeoxynojirimycin 79206-22-7 C18H37NO4 10/100mg 葡糖苷酶整理剂 D479955 2,4-Dinitrophenyl 2-Deoxy-2-fluoro-&beta -D-glucopyranoside 111495-86-4 C12H13FN2O9 5/50mg 葡糖基氟化物,可以作为特定的机制为基础的糖苷酶抑制剂,未来可应用于合成和降解的低聚糖和多糖 A653270 2,5-Anhydro D-Mannose Oxime, Technical grade 127676-61-3 C6H11NO5 10/100mg 潜在的葡苷糖酶抑制剂C-(D-吡葡亚硝脲)乙胺和C-(D-glycofuranosyl)甲胺 D236500 1-Deoxygalactonojirimycin Hydrochloride 75172-81-5 C6H14ClNO4 10/100mg 强效的和有选择性的d半乳糖苷酶抑制剂 D236502 Deoxygalactonojirimycin-15N Hydrochloride   C6H14Cl15NO4 5/25mg 强效的和有选择性的d半乳糖苷酶抑制剂 B445000 (2S,5S)-Bishydroxymethyl-(3R,4R)-bishydroxypyrrolidine 105015-44-9 C6H13NO4 10/100mg 强有力的和特定的糖苷酶抑制剂 M166500 Mannostatin A, Hydrochloride 134235-13-5 C6H14ClNO3S 1/10mg 强有力的糖苷酶抑制剂,甘露糖苷酶抑制剂 A858000 N-(4-Azidosalicyl)-6-amido-6-deoxy-glucopyranose 86979-66-0 C13H16N4O7 1/10mg 人类红细胞单糖运输标签抑制剂 C185000 Castanospermine 79831-76-8 C8H15NO4 10/100mg 溶酶体 a-或者beta-葡糖苷酶. 葡糖苷酶1抑制剂和 beta-甘露糖苷酶抑制剂 D439980 1,4-Dideoxy-1,4-imino-D-mannitol, Hydrochloride 114976-76-0 C6H14ClNO4 5/50mg 糖蛋白甘露糖苷酶抑制剂 A608080 N-(12-Aminododecyl)deoxynojirimycin 885484-41-3 C12H26N2O4 5/50mg 糖苷酶亚氨基糖醇制备用试剂 I866350 1,2-O-Isopropylidene-alpha-D-xylo-pentodialdo-1,4-furanose 53167-11-6 C8H12O5 100mg/1g 糖苷酶抑制剂制备试剂 A648300 2,5-Anhydro-2,5-imino-D-glucitol 132295-44-4 C6H13NO4 10/100mg 糖水解酶类抑制剂 A648350 2,5-Anhydro-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 糖水解酶类抑制剂 M257000 3-Mercaptopicolinic Acid Hydrochloride 320386-54-7 C6H6ClNO2S 500mg/5g 糖质新生抑制剂 B286255 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin 138381-83-6 C21H23NO6 5/50mg 脱氧野尻霉素衍生物 B286260 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin Diacetate 153373-52-5 C25H27NO8 2.5/25mg 脱氧野尻霉素衍生物 D245000 Deoxynojirimycin 19130-96-2 C6H13NO4 10/100mg 脱氧野尻霉素抑制哺乳类葡糖苷酶1 A172200 N-Acetyl-2,3-dehydro-2-deoxyneuraminic Acid Sodium Salt 209977-53-7 C11H16NNaO8 10/100mg 细菌、动物和病毒抑制剂 C181200 N-5-Carboxypentyl-1-deoxynojirimycin 79206-51-2 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C181205 N-5-Carboxypentyl-1-deoxygalactonojirimycin 1240479-07-5 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C645000 Conduritol A 牛奶菜醇A 526-87-4 C6H10O4 1/10mg   C667000 Conduritol D牛奶菜醇D 4782-75-6 C6H10O4 10mg   I868875 1,2-Isopropylidene Swainsonine 85624-09-5 C11H19NO31/10mg   更多产品,更多优惠!请联系我们! 上海甄准生物科技有限公司 免费热线:400-002-3832
  • 离子色谱分析氨基糖苷类药物及在各国药典中的应用
    离子色谱自上世纪70年代开始经过近40多年的发展,已成为色谱分析领域中十分重要的分支,被广泛应用于无机阴阳离子、有机酸、糖醇类化合物、氨基酸、氨基糖苷类抗生素等,具有方便快速、灵敏度高、选择性好、可同时分析多种化合物、样品用量少等优点。离子色谱的检测器主要有电化学检测器与光学检测器,在药品控制领域,应用得最多的为电化学检测器,包括电导检测器和安培检测器。电导检测器主要用于测定无机阴阳离子与部分极性有机物如羧酸等。安培检测器又可分为直流安培检测器与积分安培(包括脉冲安培)检测器,其中积分安培检测器主要用于测定糖类、氨基酸类及氨基糖苷类抗生素等。氨基糖苷类抗生素具有相似的化学结构与理化性质,都是以碱性环己多元醇为苷元,与氨基糖缩合成苷,是临床应用较早的一类抗生素。氨基糖苷类抗生素根据其来源可分为发酵与半合成2种,其中发酵来源的主要有链霉素、新霉素、卡那霉素、巴龙霉素、妥布霉素、庆大霉素、核糖霉素及大观霉素等;半合成是以发酵来源的抗生素为前体,再进行结构改造而得到,主要有阿米卡星、奈替米星、异帕米星及我国自主研发的依替米星等,具有更强的抗菌活性、低耐药性及低毒性等。氨基糖苷类抗生素结构中无紫外吸收基团,难以采用常规的高效液相色谱-紫外检测器控制质量,目前国内常用的分析方法为高效液相色谱-蒸发光散射检测法(HPLC-ELSD)。由于其结构中含有多个氨基(-NH2)与羟基(-OH),在强碱性溶液中易解离成阴离子,在一定电压下,可在金电极表面发生氧化反应,实现脉冲安培检测,因此国外药典中多采用离子色谱法检测该类药物。本文概述了本实验室近十几年来采用离子色谱法分析氨基糖苷类抗生素的实例,并简述离子色谱法在各国药典中控制该类药物的应用与发展趋势。1. 硫酸阿米卡星、硫酸阿米卡星注射液与注射用硫酸阿米卡星有关物质1.1 色谱条件YMC ODS-Aq C18(4.6mm×250mm, 5µm)色谱柱,流动相为1L无二氧化碳的去离子水中加三氟乙酸20mL,五氟丙酸300μL,七氟丁酸300μL,50%(V/V)氢氧化钠溶液8mL,用50%(V/V)氢氧化钠溶液调节pH为3.3,加乙腈10mL;流速1.0 mLmin-1;柱后加碱2.1%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。1.2 结果硫酸阿米卡星与其杂质A、杂质B、杂质 C、杂质D、杂质E、杂质G、杂质H、杂质I均能分离,见图1。阿米卡星质量浓度在0.4985~9.969 µgmL-1范围内峰面积线性关系良好,阿米卡星峰检测限为2.0ng,定量限为5.0ng。供试品溶液中除辅料峰外,各杂质均以主成分自身对照法计算,其中杂质B校正因子为1.4,杂质C校正因子为1.3,杂质D校正因子为0.8,杂质E校正因子为1.2,杂质H校正因子为1.4,杂质I校正因子为0.6。结果8批次硫酸阿米卡星原料总杂质含量为1.2%~1.7%,77批次硫酸阿米卡星注射液总杂质含量为1.1%~2.3%,10批次注射用硫酸阿米卡星总杂质含量为1.2%~2.2%。1. 杂质I 2.杂质B 3.杂质G 4.杂质A 5.杂质C 6.杂质D 7.杂质E 8.杂质H图1 硫酸阿米卡星系统适用性色谱图中国药典2020年版(ChP2020)采用高效液相色谱紫外末端吸收法测定硫酸阿米卡星及其制剂的有关物质。英国药典2024年版(BP2024)与欧洲药典11.0版(EP11.0)均采用离子色谱法测定,流动相体系均为辛烷磺酸钠-无水硫酸钠-四氢呋喃,其中四氢呋喃是影响该方法测定的关键因素,同样纯度不同品牌、甚至同一品牌不同批号的的四氢呋喃都会影响该方法的重复性。此外,EP 11.0 与BP2024的方法还存在运行时间太长大于100min,三电位检测对金电极损耗较大,盐浓度较大对仪器损耗大等缺点。本实验室同样采用离子色谱法,用多氟烷酸体系代替辛烷磺酸钠体系,简化了流动相的配制,缩短了分析时间为35min,用四电位取代三电位保护了工作电极,检测的杂质数量与杂质总量均多于ChP2020的紫外末端吸收法,可用于硫酸阿米卡星及其制剂的有关物质控制。2. 硫酸庆大霉素注射液、硫酸庆大霉素片与硫酸庆大霉素颗粒2.1 色谱条件TSK-gel ODS-81Ts C18(4.6mm×250mm,5µm)色谱柱;流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4ml,用50%(V/V)氢氧化钠调节pH值至2.6)-乙腈(97:3);流速为1.0mLmin-1;柱后加碱为2%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(3mm),参比电极为Ag-AgCl复合电极,四电位检测:同前;柱温为35℃;进样量20µL。2.2 结果硫酸庆大霉素含有4个主组分,分别为C1、C1a、C2a、C2,还含有结构相似的小组分西索米星与小诺霉素。该方法可完全分离4个主组分,并可同时分离出22个有关物质。庆大霉素C1a、西索米星与小诺霉组分的检测限分别为5.3ng、3.5ng与8.0ng,定量限分别为17.8ng、11.6ng与26.7ng。ChP2020采用HPLC-ELSD法测定硫酸庆大霉素注射液的组分,而BP2024与EP11.0均采用离子色谱法测定硫酸庆大霉素原料的组分与有关物质,USP现行版采用离子色谱法测定其原料的组分,均未采用离子色谱法对硫酸庆大霉素注射液进行控制。本实验室对比了离子色谱法与HPLC-ELSD法同时测定硫酸庆大霉素注射液的有关物质,发现两种方法的分离效能相当,但采用离子色谱法时各组分的响应值随其电化学活性不同而差异明显,如西索米星的响应因子大于小诺霉素,在以西索米星为外标法进行有关物质测定时,结果小于HPLC-ELSD。 3 硫酸庆大霉素片组分与有关物质3.1 色谱条件Thermo AcclaimTMAmG C18(4.6mm×150mm, 3µm)色谱柱,流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4mL,用50%(V/V)氢氧化钠溶液调节pH至2.6)-乙腈(96.5:3.5),流速1.0mLmin-1,柱后溶液为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。3.2 结果该方法中庆大霉素C1、C1a、C2a、C2分别在1.328~132.8µgmL-1、1.606~160.6µgmL-1、7.378~737.8µgmL-1、1.276~127.6µgmL-1浓度范围内线性关系良好,回收率为98.2%~101.8%。有关物质测定中,西索米星在2.632~52.64µgmL-1、小诺霉素在2.006~25.07µgmL-1浓度范围内线性关系良好,西索米星检测限为0.01µg,小诺霉素检测限为0.02µg,各杂质与庆大霉素各组分均能完全分离,见图2。156批次中148批次的硫酸庆大霉素片各C组分的绝对含量分别为C1a为26.3%~37.1%,C2+ C2a为41.8%~49.3%,C1为16.5%~22.2%,4个组分总含量为90.6%~105.0%。148批次的有关物质为小诺霉素1.8%~2.8%,西索米星为未检出~1.5%,其他最大单杂为 0.3%~0.9%,其他总杂为1.2%~4.2%。发现其余8批次样品组分与有关物质均不符合规定,原因为企业采用不符合标准规定的原料所致。1-5,7-8.未知杂质 6. 西索米星 9.小诺霉素图2 硫酸庆大霉素片有关物质典型色谱图ChP2020采用微生物检定法控制其含量,未控制有关物质。BP2024、EP11.0与USP现行版均未收载该品种。本实验室在参考国外药典离子色谱法测定其原料的基础上建立了硫酸庆大霉素片组分与有关物质的方法。方法对乙腈的比例进行了调整,工作电位由四电位取代三电位,可有效的分离硫酸庆大霉素片各组分与各杂质。4.硫酸庆大霉素颗粒组分与有关物质 4.1 色谱条件YMC-Pack Pro C18 RS(4.6×250mm,5μm)色谱柱,流动相为1.6%三氟乙酸(含0.05%五氟丙酸,50%(V/V)氢氧化钠8ml,用50%(V/V)氢氧化钠溶液调节pH值至2.6)-乙腈(94:6),流速1.0 mLmin-1,柱后加碱为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。4.2 结果硫酸庆大霉素颗粒的辅料主要为蔗糖,含量较高,与主成分的比例约为200:1,出峰时间约为5min。采用硫酸庆大霉素片的方法测定颗粒时,蔗糖的拖尾峰会导致前15min的基线抬高,严重干扰颗粒有关物质的测定。因此本实验室在硫酸庆大霉素方法的基础上增加了三氟乙酸、五氟丙酸与乙腈的比例,成功解决了蔗糖对硫酸庆大霉素颗粒有关物质测定的干扰。该方法中庆大霉素C1、C1a、C2a、C2分别在5.264~131.6µgmL-1、5.032~125.8µgmL-1、5.595~139.9µgmL-1、3.410~85.24µgmL-1浓度范围内线性关系良好,回收率为98.7%~100.8%。有关物质测定中,西索米星在1.987~39.74µgmL-1、小诺霉素在2.045~51.13µgmL-1浓度范围内线性关系良好,西索米星检测限为0.003µg,小诺霉素检测限为0.01µg,各杂质与庆大霉素各组分均能完全分离,见图3。1-14,16-18-未知杂质;15-西索米星;19-小诺霉素图3 硫酸庆大霉素颗粒有关物质典型色谱图5.盐酸大观霉素与注射用盐酸大观霉素有关物质 5.1 色谱条件采用离子色谱法及HPLC-ELSD法同时分析注射用盐酸大观霉素的有关物质。两法色谱柱均为Apollo C18 (250mm× 4.6mm,5µm),流动相均为0.1molL-1三氟乙酸溶液,柱温均为30℃,进样量均为20µL。离子色谱检测:柱后加减为21g/L氢氧化钠溶液,流速0.5mlmin-1,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。ELSD检测:漂移管温度110℃,载气流速2.6Lmin-1,增益1。5.2 结果ChP2020采用HPLC-ELSD法控制其原料,BP2024与EP11.0采用离子色谱法控制其原料。注射用盐酸大观霉素为无菌原料直接分装,本实验室参考国外药典方法测定了盐酸大观霉素及其制剂的有关物质,并同时与HPLC-ELSD方法进行比较。结果两种方法检测出的有关物质种类和数量基本一致,但离子色谱灵敏度比ELSD高,离子色谱检测限为2.4ng,ELSD为72.8ng。两种方法测定的31批次注射用盐酸大观霉素,杂质D与杂质E结果基本一致,但杂质A、4R-双氢大观霉素及总杂质结果差异较大,原因为杂质A、4R-双氢大观霉素杂质在两种检测器上响应不一致。因此采用离子色谱测定时需对杂质A与4R-双氢大观霉素杂质进行校正因子计算,按校正因子计算后的有关物质结果两种方法基本一致。6.青霉胺与青霉胺片含量与有关物质6.1 色谱条件Dikma Spursil C18(4.6mm×250mm,5µm)色谱柱;流动相为5.3g无水磷酸二氢钠-0.25g己烷磺酸钠,加去离子水1L溶解后,用磷酸调节pH值为2.85,加乙腈9ml;流速为1.0mLmin-1;柱后加碱为21gL-1氢氧化钠溶液,流速为0.3mLmin-1;脉冲积分安培电化学检测器,工作电极为金电极(1mm),参比电极为Ag-AgCl复合电极,六电位检测(T1为0~0.04s,E1为0.13V;T2为0.05~0.21s,E2为0.33V;T3为0.22~0.46s,E3为0.55V;T4为0.47~0.56s,E4为0.33V;T5为0.57~0.58s,E5为-2.0V;T6为0.59~0.60s,E6为0.93~0.13V);柱温为30℃;进样量20µL。6.2 结果含量测定方面,青霉胺浓度在49.88~199.5µgmL-1范围内线性关系良好,回收率为98.4%~101.5%,31批次青霉胺片含量为97.6%~101.5%。有关物质测定方面,各杂质与主成分青霉胺均能完全分离(见图4),青霉胺浓度在3.118~49.88µgmL-1,青霉胺二硫化物杂质浓度在1.616~19.39µgmL-1范围内线性关系均良好,青霉胺与青霉胺二硫化物杂质的检测限均为0.02µg;青霉胺二硫化物结果为0.4%~0.8%,最大单杂为0.9%~2.9%,其他总杂为2.4%~7.3%。1. EDTA 2.辅料3~8.未知杂质 9.青霉胺10.青霉胺二硫化物图5 青霉胺片有关物质典型色谱图ChP2020采用电位滴定法测定其含量,USP现行版采用HPLC法测定其含量,二者均未控制其有关物质。青霉胺虽不属于氨基糖苷类抗生素,但其结构中含有多个氨基与羧基,无共轭双键,同样可以采用离子色谱法测定。离子色谱法测定该品种的关键点为检测电位的选择,直接采用糖四电位时主成分响应很弱,采用仪器自带的六电位时峰型严重拖尾,因此本实验室采用循环伏安法分别对青霉胺与杂质青霉胺二硫化物进行扫描,确定了最佳的六电位波形,解决了主成分严重拖尾的问题。讨论讨论1: 操作过程中遇到的问题与解决方法离子色谱电化学检测在操作过程中常存在背景信号较高、基线噪音较大,重复性差等问题,导致试验耗时耗力,进展缓慢。如硫酸阿米卡星及其制剂测定过程中会出现响应信号下降的现象,原因为流动相中的三氟乙酸可使金电极表面钝化,使用一段时间后需用水擦拭金电极。硫酸庆大霉素制剂测定过程中,出现了背景信号缓慢增加,基线噪音增大的情况,使用一段时间后需用硝酸冲洗管路或打磨电极。为解决该问题,本实验室与离子色谱工程师们查找问题与原因,耗时近3年,终于初步解决了上述问题。首先,所有涉及的容器、试剂与过滤装置均应单独使用,试剂均应为高纯度试剂。其次,对仪器的部分管路用聚醚醚酮材料的管线取代原白色塑料管线,降低管路的透氧性。再次,仪器使用前分别用1.5molL-1的硝酸溶液、2.4gL-1的EDTA溶液、乙腈与去离子水依次冲洗管路。接着,使用时分别对流动相、柱后碱液的水离线脱气15min,除去溶解在其中的氧气,脱气完成后再用氮气或氦气保护。使用时所有的管路须充满液体,防止氧气进入系统中导致重复性降低。最后,更换了进样阀。初步解决了重复性差的问题,但测定时仍需要在碱液中加入一定浓度的EDTA,降低金属离子的影响。虽然重复性差的问题初步得到解决,但背景信号较高,剂型噪音较大等问题在日常操作中还存在着,还需要继续磨合。讨论2:各国药典中离子色谱法分析氨基糖苷类药物的情况(1)中国药典ChP2005年版在“附录V D 高效液相色谱法”检测器下提到了电化学检测器。从2010年版开始在附录中单独列出了“离子色谱法”,对离子色谱的色谱柱、洗脱液、检测器、测定法均进行了详细说明。直到2015年版才首次将该法收录至正文中,涉及的品种为硫酸依替米星,检测项目为有关物质与含量,同时还设有第二法为HPLC-ELSD法,二者选其一。现行2020年版药典仍沿用2015年版方法测定硫酸依替米星。收载的氨基糖苷类药物主要都采用HPLC-ELSD法。硫酸依替米星是我国自主研发的一种半合成氨基糖苷类抗菌药物,也是ChP 2020年版唯一一个采用离子色谱法安培检测器控制的品种。有关物质方法与含量测定方法均一致,为采用C18色谱柱,以0.2molL-1三氟醋酸溶液[含0.05%五氟丙酸、1.5gL-1无水硫酸钠、0.8%(V/V)的50%氢氧化钠溶液、用50%氢氧化钠溶液调节pH值至3.5]-乙腈(96:4)为流动相,四电位检测,柱后加碱(50%氢氧化钠溶液1→25),柱后流速为0.5mLmin-1。(2)国外药典美国药典USP25-NF20首次采用高容量的三乙胺阴离子交换色谱柱,以氢氧化钠为淋洗液测定了阿米卡星(包括硫酸阿米卡星及阿米卡星注射液)、卡那霉素(包括硫酸卡那霉素、卡那霉素注射液及硫酸卡那霉素胶囊)的含量。随后,USP27-NF22开始采用耐强酸、强碱和高浓度盐的聚苯乙烯-二乙烯基苯共聚物填料色谱柱代替传统的阴离子交换柱,并首次用四电位取代三电位测定了硫酸链霉素原料、硫酸链霉素注射液及注射用硫酸链霉素的含量。随着离子色谱不断发展,USP37-NF32及之后的版本用十八烷基键合硅胶代替了聚苯乙烯-二乙烯基苯共聚物色谱柱,流动相以烷基化有机酸如三氟乙酸、五氟丙酸等作为离子对试剂测定庆大霉素原料的组分。该方法采用柱后加碱的模式,较美国药典常用的氢氧化钠淋洗液体系更能避免空气中二氧化碳的影响,分析系统更稳定。BP从2002年版、EP从4.0版开始收载了硫酸新霉素的离子色谱方法,方法采用柱后加减模式测定了硫酸新霉素原料的有关物质。随后,BP2003年版、EP5.0版及之后的版本陆续将离子色谱法应用于奈替米星、妥布霉素、庆大霉素、大观霉素及阿米卡星等品种。方法的共同特点为采用耐强酸碱的聚苯乙烯-二乙烯基苯柱或耐酸的C18柱,以烷基磺酸盐或三氟乙酸等离子对试剂作为流动相,与氨基糖苷类药物形成离子对增强其保留,再加入少量的有机改进剂改善分离,三电位检测。直到BP2007年版、EP6.0版开始陆续采用更为普及的辛烷基键合硅胶或十八烷基键合硅胶色谱柱测定了盐酸大观霉素、硫酸庆大霉素、阿米卡星与硫酸阿米卡星等。其中从BP2011年版、EP7.0版开始,硫酸庆大霉素有关物质与组分方法中,流动相由烷基磺酸盐体系变更为三氟乙酸-五氟丙酸体系,减少了流动相中的盐在金电极表面沉积并使检测信号更稳定。发展趋势与展望中国药典是药品研制、生产、经营、使用和监督管理等均应遵循的法定依据,是我国保证药品质量的法典。中国药典具有使用范围广,权威性强的特点,因此其收载的质量标准应具有操作性强、重现性好、耐用性好、成本适中等特点。目前中国药典中采用离子色谱安培检测法测定的品种仅硫酸依替米星一个,而国外药典多采用安培检测法测定氨基糖苷类药物。离子色谱安培检测法在中国药典中发展缓慢的原因主要有2点:一是国内外离子色谱仪的普及率不同。国内制药企业规模参差不齐,离子色谱仪价格较高,仅一些规模较大的企业采购了离子色谱仪;而国外制药企业规模通常较大,大多有条件购买价格昂贵的仪器。二是国内外离子色谱仪使用情况不同。国内使用离子色谱电导检测比较多,而国外电导检测与安培检测发展基本持平。由于离子色谱安培检测器在分析无紫外吸收或紫外吸收较弱的药物方面具有一定的优势,无需衍生化可直接检测,灵敏度高、选择性好,具有一定的发展前景。而且目前国产离子色谱仪蓬勃发展,日趋成熟与稳定,为今后离子色谱在药物分析方面提供了更多的技术支持和选择性。但相关离子色谱生产企业也需解决操作过程中仪器存在的一些问题,如提高仪器的重复性和易操作性,使离子色谱在今后的应用更加深入和广泛。本文作者:李茜,王立萍,刘英*(河南省药品医疗器械检验院,郑州,450018)作者简介:李茜,女,副主任药师 研究方向:抗生素质量分析与质量控制*通讯作者:刘英,女,主任药师 研究方向:抗生素质量分析与质量控制
  • 沃特世超高性能色谱柱应对氨基糖苷类抗生素药物分析监测难点
    氨基糖苷类抗生素分析难点: 氨基糖苷类抗生素是一类含有氨基糖苷键的抗生素,抗菌谱广,对需氧革兰阴性杆菌具有强大的抗菌活性,临床应用广泛。该类抗生素由氨基糖与碱性1,3-二氨基肌醇以苷键结合而成,1,3-二氨基肌醇为碱性多元环己醇结构,因此氨基糖苷类抗生素均具有碱性强,极性大的特性。目前大多数氨基糖苷类化合物的液相色谱检测时均使用了高比例的三氟乙酸作为流动相,当采用这些溶剂作为流动相时色谱工作者经常发现色谱柱柱效下降非常厉害,色谱峰重现性差,柱寿命短等方面问题。 2010年版《中国药典》方法摘录: 硫酸依替米星:0.2mol/L 三氟乙酸-甲醇 84:16 ;流速0.5mL/min 硫酸庆大霉素C组分: 0.2mol/L 三氟乙酸-甲醇 92:8 ;流速0.6mL/min 硫酸卡那霉素:0.2mol/L 三氟乙酸-甲醇 92:8 ;流速0.6mL/min 硫酸西索米星:0.3mol/L三氟乙酸-甲醇-乙腈 96:3:1;流速0.5mL/min 硫酸奈替米星有关物质:0.2mol/L 三氟乙酸-甲醇 84:16 ;流速0.5mL/min 沃特世公司解决方案: 沃特世(Waters® )公司第二代杂化颗粒XBridgeTM系列色谱柱产品,通过在硅胶颗粒合成过程中引入有机的亚乙基桥结构,使其具有行业领先的化学稳定性,pH范围1~12,同时提高了色谱柱产品的耐受性及机械强度,使用该系列色谱柱产品的可以帮您解决氨基糖苷类抗生素的色谱分析问题 利用沃特世XBridge C18 色谱柱分析硫酸庆大霉素C组分所得色谱图及检测结果:
  • 氨基糖苷类抗生素(AGs)方法包发布,攻克行业检测难题!
    我国每年约有30000儿童因药物性致聋陷入无声世界,其中因抗生素使用不当致聋占了约一半。近年研究还发现,我国药源性耳聋患者中50%与遗传因素有关,而且属“母系遗传”,有家族史的患者应禁用氨基糖苷类药物。 氨基糖苷类抗生素药因价格低廉、抗菌谱广等特点,也应用于兽用药杀菌以促进家畜生长。此类抗生素由2个或多个氨基糖基团通过糖苷和氨基环多醇键合而成,极性大,易溶于水,脂溶性差,人体和禽畜的胃肠道不易吸收,通过肌肉注射后大部分以原药经肾排泄,通过粪肥可能迁移至土壤及周围水体中,最终进入食物链,对动物和人体健康及生态系统构成潜在威胁。 氨基糖苷类抗生素药分析检测中的挑战由于此类化合物极性极大,常规色谱保留弱或无保留,无紫外吸收或紫外吸收弱,业内目前也没有特别成熟稳定且灵敏的检测方法。 Idea 1对于极性化合物的检测,一般会首先想到选用亲水作用液相色谱-HILIC,理论上亲水性越强的化合物,在Hilic柱上被保留的时间越长。市面上有两款Hilic柱在极性化合物的保留能力方面颇受广大科研工作者的青睐,但在进行氨基糖苷类抗生素化合物分析检测时,因基质残留大、稳定性差、重现性不好、灵敏度不高等原因而未受认可。 Idea 2另外一个思路是在流动相中添加七氟丁酸(HFBA)、三氟乙酸(TFA)等离子对试剂来增强极性化合物的保留,GBT21323-2007《动物组织中氨基糖苷类药物残留量的测定高效液相色谱-质谱/质谱法》中,使用100mM HFBA作为流动相,结合常规的C18柱,对这类化合物保留良好。但是,TFA、HFBA等离子对试剂,负离子响应极强,进到质谱中极易残留且不容易洗掉,极大地影响其他负离子化合物的检测灵敏度,质谱分析中是不建议使用离子对试剂的。另外,国标方法中,进样量大(30μL),基质效应明显,其检测的10种氨基糖类抗生素LOQ分别为50ppb、300ppb,灵敏度不高。 ??检测氨基糖苷,赛默飞有妙招!??赛默飞氨基糖苷类抗生素(AGs)检测方法包赛默飞采用Thermo Scientific™ Vanquish™ Binary Horizon液相系统与Thermo Scientific™ TSQ Fortis™ 三重四极杆质谱仪联用平台,通过在流动相中添加TFA和HFBA等离子对试剂,搭配Thermo Scientific™ Acclaim™ AmG C18 氨基糖苷类抗生素检测的专用柱(可耐pH范围0.5~10),来增强这些极性化合物的保留,再结合赛默飞离子色谱专利的电解再生膜抑制器技术,去掉TFA和HFBA离子,避免污染质谱。Vanquish™ Binary Horizon液相系统与TSQ Fortis™ 三重四极杆质谱仪联用平台 基于这样的理念和赛默飞独有的技术平台,成功建立了快速检测动物源食品中14种氨基糖苷类抗生素残留的方法(潮霉素、阿米卡星、安普霉素、巴龙霉素、卡那霉素、链霉素、奈替米星、庆大霉素、大观霉素、双氢链霉素、妥布霉素、新霉素、西索米星、依替米星)。Acclaim™ AmG C18 氨基糖苷类抗生素检测的专用柱 样品前处理方式与国标GBT21323-2007一致,21min内获得良好的分离(国标35 min),灵敏度满足国标要求,LOQ均≤20ppb(进样量5μL)且连续6针的RSD均<14%,连续进50针猪肉基质样品后,保留时间精密度和峰面积重复性良好,RTs偏差≤±0.03min,各化合物50ppb的峰面积重复性均<11%,本方案快速灵敏、可靠稳定。 电解再生膜抑制器 部分实验数据展示14种氨基糖苷类抗生素在21min内实现良好保留和分离。点击查看大图点击查看大图 抑制器原理小贴士在下图抑制器原理图中,两边是选择性透过膜,中间为流动相通道,通过电解水作用,在阴极产生OH?置换出流动相中的TFA?和HFBA?,直接从阳极排到废液。点击查看大图 参考文献徐媛,陈达,钟新林,徐牛生,LC-MSMS结合离子色谱电解再生膜抑制器技术快速检测动物源食品中14种氨基糖苷类抗生素残留 点击下载完整版【赛默飞氨基糖苷类抗生素方案】!
  • 成都生物所发明判断大豆异黄酮糖苷水解的方法
    近日,中科院成都生物所发明的“一种判断大豆异黄酮糖苷是否水解或水解程度的方法”获得国家发明专利授权。   大豆异黄酮是大豆等豆科植物生长过程中形成的一类次生代谢产物,具有多种生理功能。它不仅参与调节植物的生长活动,还能对人体发挥有益的生理调节作用。天然大豆异黄酮苷类的分子结构并不是活性发挥的最佳状态,普遍认为苷元才是活性发挥的最佳状态。然而,在大豆中,大豆异黄酮主要是以染料木黄酮、大豆苷和黄豆苷糖苷形式存在的,它们对应的苷元染料木素、大豆苷元和黄豆苷元的含量很少。为了得到生物活性高的大豆异黄酮苷元,在工业上大多以大豆豆饼或豆粕为底物,采用酸水解或微生物转化的方法将糖苷转化为苷元。此前,判断大豆异黄酮糖苷是否水解及水解程度,通常是通过水解前后苷元含量的变化来判断的,此方法过程相对比较繁琐。   成都生物所发明的该种方法,通过商品豆粕经乙醇提取、提取液抽滤除杂质、减压蒸馏浓缩至无乙醇得水相、以水相为底物进行水解、用乙酸乙酯从水解液中萃取大豆异黄酮苷元、萃取液减压浓缩、浓缩相进行薄层层析、在紫外灯下观察层析结果,以此判断大豆异黄酮糖苷是否水解或水解的程度。该方法具有快速、准确等优点,具有良好的应用前景。
  • 【飞诺美色谱】罕见遗传性疾病的救星——寡核苷酸药物
    新冠疫情促使mRNA技术快速发展的同时也使人们开始高度关注核酸药物这一领域。核酸药物包括反义核酸(ASO)、小干扰RNA(siRNA)、微小RNA(miRNA)、小激活RNA(saRNA)、信使RNA(mRNA)、适配体(aptamer)、核酶(ribozyme)、抗体核酸偶联药物(ARC)等,是基因治疗的一种形式。除mRNA药物外,其他几种核酸药物,基本上都是由100个以内的核糖核苷酸或脱氧核糖核苷酸单链或双链组成,所以也称为寡核苷酸药物。与mRNA药物编码产生目的蛋白不同的是,寡核苷酸药物主要是通过碱基互补配对原则与DNA、mRNA或者pre-mRNA配对,通过基因沉默、非编码RNA抑制、基因激活等一系列机制来调节基因表达。已上市寡核苷酸药物化学结构(Nature reviews drug discovery)寡核苷酸药物对比于小分子药物及蛋白药物,具有多方面的优势,首先可根据目标靶点设计碱基序列,靶点明确、特异性强;其次寡核苷酸药物从转录后水平进行治疗,可选择的靶点丰富,特别是能覆盖蛋白质不可成药的靶点以及开发由基因缺陷导致的遗传性疾病的相关靶点;另外寡核苷酸药物由于序列短,可采用化学合成方法,完成目标序列的装配,并结合生物学测试筛选有效序列,能够避免盲目开发,节省研发时间。但是寡核苷酸药物在研发中也面临着诸多挑战。寡核苷酸在细胞外稳定性低,易被核酸酶降解,加上分子量及负电荷的因素,难以进入细胞,因此在研发过程中,使其保持稳定的结构以及能够有效递送的传递载体是主要考虑的两个因素。寡核苷酸核酸分子的改造主要包括磷酸骨架,碱基以及糖环的修饰,在改造中需要考虑多个因素,包括稳定性、药代动力学、碱基配对的亲和力等,最重要的是能够保留被功能酶及功能蛋白所识别的功能。因此,在前期研发过程中,需要对寡核苷酸进行精确的结构表征及定量。丹纳赫生命科学旗下SCIEX 的高分辨质谱ZenoTOF&trade 7600系统具有一系列对寡核苷酸进行分析的方案,可进行寡核苷酸的分子量分析并进行杂质检测,可对寡核苷酸进行碱基序列鉴定。由于Zeno TOF 7600具有EAD和CID两种互补的碰撞模式,不但能产生丰富的离子碎片信息,还会保留完整的核酸低丰度修饰信息。寡核苷酸分子量及碱基序列的检测高分辨质谱ZenoTOF&trade 7600系统另外,高分辨质谱ZenoTOF&trade 7600系统还能实现对寡核苷酸的定量分析,线性范围可达 5 ng/mL – 10000 ng/mL,可以完成寡核苷酸药物在研发阶段的药代及多种代谢产物同时鉴定及定量分析。在研发阶段,对于采用同一种仪器进行鉴定及定量,可避免定量方法转移时造成的方法优化时间浪费,可帮助用户加快研发进度。艾杰尔-飞诺美寡核苷酸定量分析前处理试剂盒高分辨质谱对寡核苷酸进行定量分析在寡核苷酸药物种类中,反义寡核苷酸由于是单链,分子量小,递送较其他寡核苷酸容易,且反义寡核苷酸功能多样,可上调或下调基因表达,成为研发罕见遗传性疾病药物中最关注的种类。为了帮助研究人员开发这类针对罕见遗传性疾病患者的ASO疗法,FDA还发布了指导这类ASO疗法非临床检测的指南。在已上市的寡核苷酸药物中,大部分都是用于治疗罕见遗传性疾病的反义寡核苷酸药物,特别是杜氏型肌营养不良,已经上市了针对不同基因位点的四款产品。药品名治疗疾病药物种类上市时间Fomivirsen巨细胞病毒视网膜炎反义寡核苷酸1998.8(已退市)Pegaptanib年龄相关性黄斑变性核酸适配子2004.12Mipomersen纯合性家族性高胆固醇血症(hoFH)反义寡核苷酸2013.1(已退市)Defibrotide肝静脉闭塞反义寡核苷酸2016.3Eteplirsen杜氏型肌营养不良(DMD基因外显子51)反义寡核苷酸2016.9Nusinersen脊髓性肌萎缩症 (SMN2基因外显子7)反义寡核苷酸2016.12Patisiran遗传性甲状旁腺素淀粉样变性小干扰RNA2018.8Inotersen遗传性甲状旁腺素淀粉样变性反义寡核苷酸2018.10Waylivra家族性乳糜微粒血症综合征反义寡核苷酸2019.5Givosiran急性肝卟啉症小干扰RNA2019.11Golodirsen杜氏型肌营养不良(DMD基因外显子53)反义寡核苷酸2019.12Viltolarsen杜氏型肌营养不良(DMD基因外显子53)反义寡核苷酸2020Lumasiran原发性高草酸尿症I型小干扰RNA2020Inclisiran成人高胆固醇血症及混合性血脂异常小干扰RNA2020Casimersen杜氏型肌营养不良(DMD基因外显子45)反义寡核苷酸2021.2.25已上市的寡核苷酸药物(根据网上资料整理)由此可见,对罕见病的诊断也非常重要,很多罕见遗传病是由几十甚至上百种突变引起的,而且不同区域的患者可能存在不同的基因变异位点,NGS是现在进行高通量基因检测的重要手段。丹纳赫生命科学旗下Integrated DNA Technologies(IDT)公司(中文名称:埃德特)是全球领先的NGS试剂供应商,其外显子捕获产品Exome Research Panel V2特别适合进行遗传性疾病的全外显子组测序,助力遗传性疾病的诊断。V2由 415,115 条单独合成且经过质控检验的 xGen Lockdown 探针组成。探针组跨越人基因组的 34 Mb 目标区域(19,433 个基因),并且覆盖 39 Mb 的探针空间(即由探针覆盖的基因组区域)。探针是使用全新的“捕获感知”(capture-aware) 算法进行设计的,并进行了专有的脱靶分析,确保实现完整的设计覆盖度。探针组中的所有探针均严格按照 ISO 13485 标准进行生产。每条探针均经过质谱法和双定量测量检验,确保探针的质量及在探针库中具有适当的代表性。IDT Exome Research Panel试剂盒
  • 在线固定化糖苷酶实现糖基化表位的氢氘交换定位
    大家好,本周为大家分享一篇在Analytical Chemistry上发表的文章:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase[1],文章的通讯作者是来自弗罗里达大学的Patrick R. Griffin教授。  氢氘交换质谱(HDX-MS)是一种常用的抗体表位定位方法。在典型的HDX-MS实验中,目标蛋白在D2O缓冲液中孵育,使氢与氘在设定的时间内交换。随后通过添加低pH“猝灭”缓冲液,在低温(0 ̊C)并保持pH接近2.7的情况下猝灭氘代反应, 使得氘化酰胺氢的回交速率最低。蛋白质结构的不同特征可以影响氘交换速率,其贡献因素包括溶剂可及性和酰胺骨架的氢键。蛋白质被耐受低pH慢交换条件的蛋白酶消化,所得肽通过液相色谱联用质谱(LC-MS)分析。通过比较氘代肽段与未暴露于D2O的对照肽的同位素分布的m/z位移,用质谱法监测肽水平上的氘交换程度。  蛋白糖基化可导致HDX-MS中肽覆盖范围的减少,这是由于多糖对肽的异质修饰。为了获得可以通过质谱监测的确定的糖肽质量,在HDX-MS实验之前,必须首先通过专门的糖蛋白组学方法解决糖肽的结构。此外,糖基化氨基酸通常在每个位点被多个糖型修饰,这可能导致糖肽的质谱信号被稀释。聚糖酰胺基团也可能参与交换和影响氘摄取测量,这个问题很明显,特别是对于病毒刺突蛋白,它们已经进化到通过N-聚糖的广泛修饰来逃避免疫检测。在许多涉及SARS-CoV-2的HDX-MS研究中,特别是当快速结果至关重要时,糖基化位点从分析中被省略。SARS-CoV-2 RBD(受体结合区域)含有N331和N343两个N-聚糖,几个靶向RBD并且识别包括N343在内的表位的中和单抗(例如S309、SW186、SP1-77和C144)的对应信息在HDX-MS中均无法被识别。  酶解后去除氘代肽段上的N-聚糖是一种很有前途的方法,可以避免与糖基化相关的问题。最近发现了从PNGase A和PNGase H+到高活性的PNGase Dj和PNGase Rc,并应用于HDX的一系列有活性的耐酸酶。这些酶通常用于糖肽溶液中进行去糖基化。本文中作者将PNGase Dj固定在醛修饰的聚合物树脂上,并封装在HPLC保护柱中,该柱可直接并入典型的HDX平台。并应用该系统获得了S蛋白RBD的全序列覆盖,并显示了mAb S309的广泛作用位点,包括RBD的N343聚糖位点。  作者首先在大肠杆菌32中表达PNGase Dj,并将其固定在POROS树脂上,这是一种具有大表面积的聚合物树脂,HDX实验室通常使用这种树脂固定胃蛋白酶和其他蛋白酶。POROS 20 Al是一种醛修饰树脂,可以通过席夫碱形成和随后的氰硼氢化物还原与赖氨酸侧链偶联。虽然猪胃蛋白酶A通常固定在POROS树脂上,但它只含有1个赖氨酸,必须在pH 5.0固定,这低于偶联反应的最佳pH。作者认为含有7个赖氨酸且在中性pH下稳定的PNGase Dj可能更有效地与树脂偶联。在pH为6.5的条件下固定化树脂,洗涤后的树脂装入微孔保护柱中,然后PNGase Dj在树脂上的活性用酶解糖基化比色法测定。1 mg树脂对PNGase Dj的活性为0.79 μg [95% CI: 0.66, 0.92]。作者探究了不同的缓冲体系对于色谱柱活性的影响(图1)。固定化酶最容易受到胍HCl的抑制,并对还原剂TCEP表现出抗性。  图1. 固定化PNGase Dj的糖肽脱糖基化研究。(A)不同缓冲液中糖肽的去糖基化。x轴上的数字对应于去糖基化条件的列表。(B)在PNGase Dj处理的样品中,去糖基化肽的信号大大增强。(C)图中每对柱状图显示了chaotrope/TCEP注射后分别注射了参考缓冲液。(D)糖肽在50 mM NaH2PO4和25 mM TCEP中在12°C下的代表性EICs。强度根据每个地块进行缩放。  在确认PNGase Dj的活性后,作者评估了三种糖蛋白的去糖基化柱:HRP(horse radish peroxidase),牛胎蛋白A和AGP(α-1-acid glycoprotein)。由于糖肽的去糖基化速度比完整的蛋白质快,作者采用了双柱设置,蛋白质首先通过胃蛋白酶柱,然后进入去糖苷酶柱。为了简化设置,还使用了混合柱,其中单柱含有9:1的胃蛋白酶和PNGase Dj树脂混合物。与胃蛋白酶和PNGase Dj混合柱也可能促进蛋白质水解,去糖基化使胃蛋白酶进一步进入裂解位点。可以观察到N-聚糖位点的覆盖(图2),而这些位点在单独用胃蛋白酶消化时缺乏覆盖。用PNGase Dj处理的样品显示N-聚糖天冬酰胺脱酰胺,而单独用胃蛋白酶处理的样品未检测到脱酰胺肽。在所有情况下,PNGase Dj的加入提高了覆盖率,混合床的结果与双柱的结果相当。混合柱系统还显示末端靠近N-聚糖位点的肽,表明去糖基化可能允许胃蛋白酶在聚糖位点附近进一步切割。  图2. 糖蛋白AGP、胎蛋白A和HRP的LC - MS/MS肽覆盖。(A) AGP肽覆盖图。n -聚糖位点用箭头标记。(B)检测到的脱酰胺肽数。(C)每个糖蛋白序列的覆盖率百分比。  接下来,作者使用HDX-MS分析SARS-CoV-2 RBD序列与单克隆抗体的相互作用。S309是从先前感染SARS-CoV-1的患者的B细胞中分离出来的抗体,与SARSCoV-2交叉反应。S309与S三聚体之间的相互作用通过低温电子显微镜(cryo-EM)进行了表征,结果显示S309能够识别靠近N343聚糖的RBD上的一个表位,包括与聚糖本身的接触。作者用混合床胃蛋白酶/ PNGase Dj柱对RBD-Fc融合蛋白进行酶切,并与胃蛋白酶柱进行比较。发现混合柱可以完全覆盖RBD序列,而胃蛋白酶柱在N331和N343聚糖区域缺乏覆盖(图3)。  图3. 与单独使用胃蛋白酶相比,胃蛋白酶/PNGase Dj混合床的SARS-CoV-2 RBD肽覆盖率。多肽的Mascot ionscore≥20。胃蛋白酶消化在N331和N343聚糖附近没有覆盖。RBD-Fc蛋白的RBD区域如图所示。  随着RBD序列的全面覆盖,作者进行了差分HDX-MS实验,评估在存在和不存在S309的情况下RBD上的氘代情况。HDX-MS结果显示,在序列上的所有N-聚糖位点都检测到去糖基化肽,并且N343和N630两个位置都显示有多个重叠的去糖基化肽。S309的结合使得氘交换减少,这种保护作用最大程度的集中在N343聚糖周围,从残基338到350。ACE2受体结合基序(RBM,由438~506残基组成)边界上的434~441残基也有被保护效应。RBD以Fc融合蛋白的形式存在,但在Fc标签中没有观察到显著的HDX差异。这些结果与通过冷冻电镜鉴定的表位一致。该工作的作者鉴定出RBD残基337~344、356~361和440~444是S309的表位,此外,还观察到RBD的C端附近残基516~533的氘交换减少。虽然该序列不直接与S309相互作用,但RBD上的2个残基521~527与358~364广泛接触,这可能引起了S309结合后的变构变化。  总的来说,作者认为PNGase Dj固定在POROS树脂上提供了一种增加序列覆盖的直接方法,使得HDX-MS分析糖蛋白时,允许氢氘交换后去糖基化。这里采用的固定方法可能也适用于其他体系,例如PNGase Rc。此外,研究的结果显示,将PNGase Dj与胃蛋白酶混合使用的序列覆盖率要高于单独使用胃蛋白酶。PNGase Dj可以识别RBD中与S309结合的的糖基化表位,并且结果与冷冻电镜结构密切一致。  撰稿:李孟效  编辑:李惠琳  文章引用:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase  参考文献  1. O'Leary, T.R.R., Balasubramaniam, D., Hughes, K., et al. Hydrogen-deuterium exchange epitope mapping of glycosylated epitopes enabled by online immobilized glycosidase. Analytical Chemistry,2023.
  • 全国兽药残留专家委员会发布《水产品中氨基糖苷类药物残留量的测定 液相色谱-串联质谱法》等20项兽药残留标准征求意见稿
    各相关单位:依据《食品安全国家标准审评委员会章程》有关要求,我办组织起草了《水产品中氨基糖苷类药物残留量的测定 液相色谱-串联质谱法》等16项兽药残留国家标准、《食品安全国家标准 水产品中27种性激素残留量的测定 液相色谱-串联质谱法》(GB 31656.14-2022)等4项标准修改单,现公开向社会征求意见,请提出具体修改意见和理由,并通过电子邮件形式反馈。征询截止日期2024年5月15日。联系人:张玉洁电 话:010-62103930邮 箱:syclyny@163.com附 件:1.食品安全国家标准兽药残留标准征求意见表2.《水产品中氨基糖苷类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)》3.《水产品中苯甲酰脲类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)》4.《鱼可食性组织中水杨酸残留量的测定 液相色谱-串联质谱法(征求意见稿)》5.《河鲀、鳗鱼和烤鳗中18种β-受体激动剂残留量的测定 液相色谱-串联质谱法(征求意见稿)》6.《蜂产品中克百威残留量的测定 液相色谱-串联质谱法(征求意见稿)》7.《动物性食品中四环素类、磺胺类和喹诺酮类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)》8.《动物性食品中氨基糖苷类药物残留量的测定液相色谱-串联质谱法(征求意见稿)》9.《动物性食品中吩噻嗪类药物残留量测定 液相色谱-串联质谱法(征求意见稿)》10.《动物性食品中异丙嗪残留量的测定 液相色谱-串联质谱法(征求意见稿)》11.《动物性食品中碘醚柳胺残留量的测定 液相色谱-串联质谱法(征求意见稿)》12.《动物性食品中甲氧苄啶、二甲氧苄啶和二甲氧甲基苄啶残留量的测定 液相色谱-串联质谱法(征求意见稿)》13.《动物性食品中氮哌酮及其代谢物残留量的测定液相色谱-串联质谱法(征求意见稿)》14.《动物性食品中地克珠利和托曲珠利砜残留量的测定 高效液相色谱法(征求意见稿)》15.《动物性食品及尿液中同化激素类药物多残留的测定 液相色谱-串联质谱法(征求意见稿)》16.《奶及奶粉中吩噻嗪类药物残留量的测定 液相色谱-串联质谱法(征求意见稿)》17.《动物尿液中23种β-受体激动剂残留量的测定液相色谱-串联质谱法(征求意见稿)》18.《食品安全国家标准 水产品中27种性激素残留量的测定液相色谱 串联质谱法》(GB31656.14-2022)修改单19.《食品安全国家标准 动物性食品中拟除虫菊酯类药物残留量的测定 气相色谱-质谱法》(GB31658.8-2021)修改单20.《食品安全国家标准 动物性食品中氨基甲酸酯类杀虫剂残留量的测定 液相色谱-串联质谱法》(GB31658.10-2021)修改单21.《食品安全国家标准 动物性食品中β-受体激动剂残留量的测定 液相色谱-串联质谱法》(GB31658.22-2022)修改单
  • 中国诺贝尔奖!首届未来科学大奖揭晓
    今天(9月19日),备受社会关注的首届“未来科学大奖”在北京举行了新闻发布会,揭晓了首届获得现设“生命科学奖”和“物质科学奖”两个年度奖项的科学家名单。生命科学大奖由香港中文大学卢煜明教授获得,物质科学奖由清华大学薛其坤教授获得,获奖者将获得单项100万美元的奖金。或成为“中国诺贝尔奖”  未来科学大奖于2016年1月17日在北京正式成立,共设立“生命科学大奖”和“物质科学大奖”两个奖项,奖金各为100万美元。以表彰在这些领域对人类作出重大贡献的科学家,要求其获奖工作主要在中国大陆或港澳台地区完成,但不限国籍。获奖者可以是个人或者团队,原则上每个奖项不超过5名获奖者。  未来科学大奖设立的消息引发全社会的广泛关注,被期冀成为“中国的诺贝尔奖”。诺贝尔奖获得者、著名物理学家杨振宁先生也指出,“未来科学大奖是第一个延生于中国民间公益组织,由企业家群体发起成立的奖项,填补了中国民间权威科技奖项的空白 瑞典有诺贝尔奖,香港有邵逸夫奖,而未来科学大奖作为后起之秀将产生更加深远的影响。”后续将增加数学、计算机等奖项  未来科学大奖首期募集100%由中国人出资,生命科学捐赠人包括丁健、李彦宏、沈南鹏、和张磊。物质科学捐赠人有邓锋、吴鹰、徐小平,和吴亚军。未来论坛创始理事兼秘书长武红则透露,根据目前的奖金捐赠情况,第二届未来科学大奖已确定新增数学与计算机科学奖项,未来还将陆续扩大奖项范围,增加应用技术等奖项。  未来科学大奖科学委员会主要为大奖评选提供科学专业和学术支撑,由9人组成。第一任委员会包括两位数学家(夏志宏、田刚)、两位物理学家(丁洪、文小刚)、两位化学家(何川、谢小亮)、两位生物学家(饶毅、王晓东)和一位计算机学家(李凯)。2016年生命科学大奖获奖人:卢煜明  卢煜明(LO Yuk Ming Dennis),分子生物学临床应用专家,尤其致力于研究人体内血浆的DNA和RNA。现为香港中文大学李嘉诚健康科学研究所所长、李嘉诚医学讲座教授兼化学病理学讲座教授。  “生命科学奖”获奖者卢煜明基于孕妇外周血中存在胎儿DNA的发现,在无创产前胎儿基因检查方面做出了开拓性贡献。卢教授在1997年和1998年的工作中发现,母体血液中存在着胎儿的游离DNA。基于这些早期发现,卢教授展开了一系列前沿工作来研究这些胎儿游离DNA的特性,证明了使用胎儿游离DNA来诊断遗传性疾病的可行性和实际性,最终开创了利用第二代基因测序来检测唐氏综合症的新途径,并在90多个国家得到了应用。  获奖评语:  奖励他基于孕妇外周血中存在胎儿DNA的发现在无创产前胎儿基因检查方面做出的开拓性贡献。  主要贡献:  “生命科学奖”获奖者卢煜明基于孕妇外周血中存在胎儿DNA的发现,在无创产前胎儿基因检查方面做出了开拓性贡献。卢教授在1997年和1998年的工作中发现,母体血液中存在着胎儿的游离DNA。基于这些早期发现,卢教授展开了一系列前沿工作来研究这些胎儿游离DNA的特性,证明了使用胎儿游离DNA来诊断遗传性疾病的可行性和实际性,最终开创了利用第二代基因测序来检测唐氏综合症的新途径,并在90多个国家得到了应用。仅在中国,每年就有超过一百万孕妇接受这项测试。这种革命性的方法为全球无数孕妇提供了无创产前诊断。  孕妇产前诊断能避免胎儿遗传病的发生。例如,唐氏综合症,即21三体综合症是一种常见的遗传性疾病,病因在于胚胎染色体异常(多了一条21号染色体),导致体格发育迟缓及智力缺陷。孕妇产前检查可以诊断及避免唐氏综合征。然而,唐氏综合征及类似遗传性疾病的常规产前检查均需实施羊水穿刺后进行DNA分析,这种创伤性的检测会增加终止妊娠的风险.科学家们一直在致力于研发非侵入性产前诊断技术检测胎儿遗传异常。虽然胎儿有核细胞能够进入母亲的血液,但这些细胞数量稀少。卢教授在1997年和1998年的工作中发现母体血液中存在着胎儿的游离DNA 。基于这些早期发现,卢教授展开了一系列前沿工作来研究这些胎儿游离DNA的特性,证明了使用胎儿游离DNA来诊断遗传性疾病的可行性和实际性 ,卢教授的工作最终使得利用第二代基因测序来定量测量胎儿DNA的方法用于唐氏综合症检测。这种无创产前检测已用于90多个国家。仅在中国,每年就有超过一百万孕妇接受这项测试。这个革命性的方法为全球无数的孕妇提供了无创产前诊断。2016年物质科学大奖获奖人:薛其坤  薛其坤,1963年出生于山东临沂市。材料物理专家,中国科学院院士,清华大学副校长。2012年提出界面高温超导,2013年发现量子反常霍尔效应,开辟全新领域。曾入选万人计划首期杰出人才,2014年求是杰出科学家奖,和何梁何利科学与技术成就奖。发表SCI论文300余篇(包括3篇science、3篇nature physics、30篇Phys. Rev. Lett.、1篇PNAS、40余篇Phys. Rev. A/B、40余篇Appl. Phys. Lett.和4篇英文特邀综述文章或书章节),文章被引用3900多次(两篇代表性文章PRL94和PRL95分别被引用215次和126次)。  获奖评语:  奖励他在利用分子束外延技术发现量子反常霍尔效应和单层铁硒超导等新奇量子效应方面做出的开拓性工作。  主要贡献:  薛其坤利用分子束外延技术,在对奇特量子现象的研究中取得了突破性的发现。分子束外延生长是一种先进的薄膜生长方法,能在材料衬底上一层一层地生长单晶薄膜。他和合作者制备了多种高质量的单晶薄膜材料,这使他们首次发现量子反常霍尔效应和在钛酸锶衬底上的单层铁硒高温超导现象。这两个发现被许多研究小组重复出来,并在全世界范围内激发出更多的相关研究活动,有望进一步提升量子反常霍尔效应和界面超导的临界温度,从而具有更大的实用价值。  在一个通常的导电材料中,电流是线性正比于外加的电压,电压和电流的比值则是这个材料的电阻,这就是人们熟知的欧姆定律。欧姆定律同时也意味着电流的传输会产生热,产生的热量正比于电阻以及电流的平方。这正是人们为什么可以利用电流来产生有用的热,但这也是为什么电流会浪费无用的热甚至会产生有害的热,目前整个微电子产业都面临着发热的瓶颈问题。但是,在以下两个奇异的量子现象中 - 超导和量子霍尔效应,发热问题可以被完全避免,也就是说欧姆定律可以被完全违反。正是由于它们可能对人类社会带来巨大的应用前景,对这两种量子现象的研究成为过去几十年内凝聚态物理的热点研究领域。同时,这些研究经常是以跳跃的方式,极大丰富了人类的知识库,并不时地突破凝聚态物理的范畴。超导领域中获得的五项诺贝尔奖和量子霍尔效应领域中获得的两项诺贝尔奖就是很好的证明。  清华大学的薛其坤利用分子束外延技术,在对这两种量子现象的研究中取得了突破性的发现。分子束外延生长是一种先进的薄膜生长方法,能在材料衬底上一层一层地生长单晶薄膜。他和合作者制备了多种高质量的单晶薄膜材料,这使他们首次发现量子反常霍尔效应和在钛酸锶衬底上的单层铁硒高温超导现象。  量子霍尔效应是指强磁场下二维电子材料中出现的横向电导(电阻的倒数)量子化现象。它的另一个重要特征是纵向电阻消失:电子可以在材料的边缘上不发热地传导。量子反常霍尔效应是指由磁性极化电子代替外加磁场所产生的量子化的霍尔效应。由于磁性极化电子模拟出的外加磁场比现有实验室可达到的最强外加磁场高一百倍,量子反常霍尔效应被认为是未来室温量子器件的一种可能实现方法。虽然理论上人们认为这种效应完全可以存在,但真正实现量子反常霍尔效应在材料制备和原位测量上存在着巨大的挑战。2012年12月薛其坤领导的小组首次报道,利用分子束外延方法生长出铬掺杂(Bi,Sb)2Te3拓扑绝缘体的薄膜,并用该薄膜制备场效应器件,在极低温和零磁场条件下观察到霍尔电阻达到了量子化的数值即h/e2 约25.8千欧姆,标志着实验上首次实现量子反常霍尔效应。  超导现象是一种宏观量子现象,指的是当温度低于一个特定的临界温度(Tc)时,一些材料中出现的完全零电阻和理想抗磁的现象, 超导现象于1911年在水银中首次发现(Tc ~ 4K or -269摄氏度, 是非常低的温度)。1986年人们在一些铜氧化合物材料中发现了高很多的Tc(77 K,或高于液氮温度),2008年又在一些铁砷或铁硒材料发现了较高的的Tc(40 K)。2012年2月薛其坤领导的小组首次报道,利用分子束外延方法,在导电钛酸锶衬底上生长出的单层铁硒具有大幅提高的Tc(40 K,甚至可能超过77K),相比之下块材的铁硒Tc只有约10 K。这个发现完全出乎意料,因为很薄的薄膜材料一般会压制Tc,因此这个发现开辟了一种界面增强超导的新途径。  薛其坤做出的这两个发现被许多研究小组重复出来,并在全世界范围内激发出更多的相关研究活动,有望进一步提升量子反常霍尔效应和界面超导的临界温度,从而具有更大的实用价值。
  • 大连化物所开发出基于糖苷键的质谱可碎裂型交联剂
    近日,中国科学院大连化学物理研究所生物技术研究部生物分子高效分离与表征研究组研究员张丽华团队,研制了一种基于糖苷键的质谱可碎裂型交联剂,显著地提高了交联信息的检索通量和鉴定准确度,同时具有良好的两亲性和生物兼容性,实现了活细胞内蛋白质复合物原位交联和规模化精准解析。   作为生命活动的执行者,蛋白质通过相互作用形成复合物等形式行使其特定的生物学功能,其中,细胞内的限域效应、拥挤效应和细胞器微环境等对于维持蛋白质复合物结构和功能至关重要。化学交联技术(Chemical cross-linking mass spectrometry,CXMS),尤其是原位化学交联质谱技术(in-vivo CXMS)具有规模化分析蛋白复合物原位构象和相互作用界面的优势,已成为活细胞内蛋白质复合物解析的重要技术。然而,目前活细胞原位交联面临着细胞扰动大、交联肽段谱图复杂程度高等问题。因此,如何实现活细胞低扰动下的原位快速交联是蛋白质原位构象和相互作用精准解析的先决条件。   本工作基于糖分子的高生物兼容性和糖苷键的质谱可碎裂特征,将糖苷键引入到功能交联剂的骨架设计中,筛选并获得了高生物兼容性的海藻糖作为骨架分子,研制了质谱可碎裂型交联剂——海藻糖二琥珀酰亚胺酯(TDS)。该交联剂较目前已报道的可透膜型化学交联剂,展示了更优异的细胞活性维持能力,可在低扰动状态下实现细胞内蛋白质复合物的高效交联。在此基础上,低能量的糖苷键-高能量的肽键的质谱选择性碎裂模式,可将“工字形”的交联肽段数据分析降幂为常规交联剂片段修饰的线性肽段数据检索,降低了交联肽段谱图分析的复杂性,提高了交联肽段的鉴定效率与准确度。该团队从Hela细胞中鉴定到对应于3500对以上交联肽段的1453个蛋白质的构象以及843对蛋白质间的相互作用信息,实现了活细胞中蛋白质复合物的原位交联与规模化分析,为活细胞中蛋白质功能的调控提供了重要的技术支撑和关键的互作位点信息。   近年来,张丽华团队致力于原位化学交联质谱新技术研究,通过开发一系列新型多功能型化学交联剂,并系统建立深度覆盖的化学交联分析方法等,不断提升原位化学交联技术对于蛋白质复合物原位动态构象的深度捕获和精准分析能力。目前,该团队研制了多种类型的具有不同富集基团、正交反应活性基团的可透膜交联剂,并发展了相应的原位快速交联方法,低丰度交联位点的高效酶解和富集方法,以及基于化学交联距离约束的蛋白质原位构象和相互作用解析方法等,为蛋白质复合物功能状态下原位构象的规模化精准解析提供了关键技术支撑。   相关研究成果以A Glycosidic-Bond-Based Mass-Spectrometry-Cleavable Cross-linker Enables In vivo Cross-linking for Protein Complex Analysis为题,发表在《德国应用化学》上。研究工作得到国家重点研发计划、国家自然科学基金和中国科学院青年创新促进会等的支持。
  • “细数”诺贝尔奖中的科学仪器研发成果
    新闻专题:   2012年10月10日,随着诺贝尔化学奖的宣布,2012年诺贝尔奖与自然科学有关的奖项已经全部揭晓。诺贝尔奖自1901年首次颁发以来,已有数百位科学家因数百项研究成果获奖,那么在这么多研究成果中哪些与仪器相关?又有哪些研究成果最终使得某种仪器诞生?   笔者查阅了从1901-2012年历年的诺贝尔化学奖、物理学奖、生理学或医学奖获奖成果,以下摘录部分与仪器有关的诺贝尔奖。   1、1922年诺贝尔化学奖   阿斯顿 (Francis Willian Aston,英国),研究质谱法,发现整数规划。1925年,阿斯顿凭借自己发明的质谱仪,发现“质量亏损”现象。   2、1926年诺贝尔化学奖   斯维德伯格((Theodor Svedberg,瑞典),发明超离心机,用于分散体系的研究。   3、1952年诺贝尔化学奖   马丁 (Arcger Martin,英国)、辛格(Richard Synge,英国),发明分配色谱法,成为色谱法其中一大类别。   4、1953年诺贝尔物理学奖   泽尔尼克(Frits Zernike,荷兰),发明相衬显微镜。   5、1972 年诺贝尔化学奖   穆尔(Stanford Moore,美国)、斯坦 (William H.Stein,美国) 、安芬林 (Christian Borhmer Anfinsen,美国), 研制发明了氨基酸自动分析仪,利用该仪器解决了有关氨基酸、多肽、蛋白质等复杂的生物化学问题。   6、1979年诺贝尔生理学或医学奖   科马克 (Allan M. Cormack,美国)、蒙斯菲尔德(英国),发明X 射线断层扫描仪(CT扫描)。   7、1981年诺贝尔物理学奖   西格巴恩(Nicolaas Bloembergen,瑞典),开发高分辨率测量仪器以及对光电子和轻元素的定量分析 肖洛(Arthur L.Schawlow,美国),发明高分辨率的激光光谱仪。   8、1986年诺贝尔物理学奖   鲁斯卡(Ernst Ruska,德国),设计第一台透射电子显微镜 比尼格(德国)、罗雷尔(Heinrich Rohrer,瑞士),设计第一台扫描隧道电子显微镜。   9、1991年诺贝尔化学奖   恩斯特 (Richard R.Ernst,瑞士) ,发明了傅立叶变换核磁共振分光法和二维核磁共振技术,使核磁共振技术成为化学的基本和必要的工具。   10、2002年诺贝尔化学奖   芬恩(John Fenn,美国),田中耕一(日本),发明了对生物大分子的质谱分析法。其中芬恩发明了电喷雾离子源(ESI)、田中耕一发明了基质辅助激光解析电离源(MALDI)。
  • 2014年搞笑诺贝尔奖盘点:很轻松 很科学
    就在2014年诺贝尔奖评选结果揭晓之前,美国科学幽默杂志《不大可能的研究》颁发了今年的&ldquo 搞笑诺贝尔奖&rdquo 。这一奖项专门授予那些&ldquo 乍一看好笑,之后引人深思&rdquo 的研究工作,自然科学类的获奖者均为严肃的科学家、成果基本都发表在影响因子较高的科学杂志上,颁奖者和一些评委是真正的诺贝尔奖得主,还有&ldquo 搞笑诺贝尔奖&rdquo 的得主后来成了真正的诺贝尔奖获得者。   因为落到头上的一个苹果,牛顿发现了万有引力,推导出万有引力定律,成为人类认识自然的里程碑。不知道那时有没有人问牛顿:研究苹果为什么会掉到地上,究竟有什么用?   然而今天,研究基础科学的科学家们经常被问到这个问题。美国议员质疑美国自然科学基金会为什么要支持苍蝇如何在传送带上爬行的研究 在中国,有人嘲笑科学家研究石头剪子布怎样胜率高&hellip &hellip 其实,这些看似简单的问题背后,隐藏着自然的奥秘:苍蝇腿上的特殊结构或许将导致新材料的出现,猜拳则研究了在竞争环境中,人们面对不确定和不完备的信息时,如何进行决策。就如今年的搞笑诺贝尔奖,看似滑稽的标题下,是一个又一个严肃的科学问题。   科学,就是一场发现之旅,就是要找到我们习以为常的生活中隐藏的规律,而这些规律很可能会反过来改变我们的生活。从理论到实践,从基础研究到技术,是一个漫长的过程。没有耐心的简单实用主义,伤害的可能是人类的未来。   物理学奖   踩到香蕉皮时鞋底与香蕉皮间的摩擦力   ●获奖者:日本东京北里大学的马渕清资教授   ●研究内容:科学家们设置一系列传感器来测量在正常步速下的摩擦状况,然后看踩香蕉皮到底有多滑。此外,他们还测量了新鲜香蕉皮正放和反放时的不同效果,及其他一些水果皮的摩擦系数。   ●主要结果:香蕉皮内侧的细胞瞬间破裂后,挤压出多糖汁液。这是一种以囊泡多糖凝胶为主要成分的润滑液。这种润滑液非常有效,导致地面甚至比抹了润滑油的金属板还滑。   ●点评:这一成果正在应用到人类的活动关节的研究中。香蕉皮中的有机黏液在人体关节中也有发现。马渕清资说,这能够帮助设计出更好、更润滑的人工关节。   生物学奖   狗便溺时能感知磁场   ●获奖者:德国杜伊斯堡-埃森大学的希内克· 布尔达和捷克生命科学大学的弗拉斯蒂米尔· 哈特等   ●研究内容:科学家们在两年的时间里,研究了37个品种的70条狗在户外自由便溺时的位置。   ●主要结果:在地球磁场处于&ldquo 稳定&rdquo 的状态下,狗在便溺时会将身体与地球南北轴线对齐。但在太阳耀斑等地球磁场&ldquo 不稳定&rdquo 时,狗便溺的位置就变得随意了。   ●点评:这是首次清晰、简单地证实地球磁场的波动会影响哺乳动物的行为。这项研究迫使生物学家不得不重新认真考虑磁暴可能对生物带来的影响。   极地科学奖   驯鹿看到人类假装成北极熊会作何反应   ●获奖者:挪威奥斯陆大学的艾格利· 雷蒙和辛德· 奥菲斯托尔   ●研究内容:研究者总共实验了72次,其中67次以人类姿态,也就是全套深色登山服接近驯鹿 另外5次,研究者假扮成北极熊&ldquo 伏击&rdquo 驯鹿。   ●主要结果:当研究者以北极熊的样子接近斯瓦尔巴特群岛的驯鹿时,驯鹿的警戒、逃跑启动、逃跑距离分别是研究者以人类姿态靠近时的1.6倍、2.5倍和2.3倍。   ●点评:这是一项动物行为学和进化学的研究,研究者想搞清楚的是,相对安逸的环境是否能改变驯鹿千百年来形成的习性。   营养学奖   利用婴儿粪便里的细菌做香肠   ●获奖者:西班牙食品科学家拉奎尔· 卢比奥和安娜· 约弗雷等   ●研究内容:研究人员具体分析了43份来自于健康婴儿的粪便,从中分离出细菌并进行RNA测序,发现了109种乳酸菌,结果表明有3种乳酸菌可以制作香肠。   ●主要结果:食品微生物学家约弗雷说:&ldquo 对于那些不能进食奶制品的消费者来说,食用这种香肠能让他们摄入更多益生菌。&rdquo   ●点评:这是一项改变人体微生物群落的研究。人体微生物被称为人类第二基因组,与健康息息相关。其中,肠道菌群是人体微生物中最重要的组成部分之一。开发出适合的人体微生物干预或治疗方法,是科学家的目标之一。   心理学奖   &ldquo 夜猫子&rdquo 可能有&ldquo 黑暗三合一特征&rdquo   ●获奖者:英国利物浦霍普大学的艾米· 琼斯、明娜· 里昂,澳大利亚西悉尼大学的彼得· 乔纳森   ●研究内容:研究人员测试了263个男女大学生的人格特质和作息习惯,以检验经常熬夜的人是不是更易有&ldquo 黑暗三合一特征&rdquo &mdash &mdash 自恋、控制欲和心理变态。   ●主要结果:结果发现,晚睡晚起的大学生确实在这三个维度上得分比较高。但这并不意味着他们会在这些方面存在问题&mdash &mdash 他们的性格特质其实都还处于正常范围之内。科学家也坦陈,这个实验只测量了晚睡和早睡这一维度,不能排除其他未知维度的影响 而且在选择受试者上过于单一,因此这个答案并不是绝对的。   ●点评:科学家们一直想搞清楚究竟哪些因素会对人类心理状态产生影响,生物钟是其中之一。人类千百年来形成的日出而作、日落而息的规律是不是最合适的?改变会产生哪些影响?这一实验让我们在这个问题上前进了一步。   神经科学奖   为什么会在面包上看到耶稣的脸   ●获奖者:加拿大多伦多大学的李康教授等   ●研究内容:研究者向受试者展示完全随机的图像,并扫描他们大脑中负责面部识别的区域。研究者告诉受试者图像中隐藏着人脸或字母,但其实并没有。结果受试者声称在其中34%的图像中看到了人脸、在38%的图像中看到了字母。大脑扫描显示,这些受试者大脑中负责面部识别的区域确实有活动,也就是他们确实&ldquo 看&rdquo 到了。   ●主要结果:这再次证明了&ldquo 人脸空想性错视&rdquo 的存在,并表明大脑前额叶皮质和腹侧枕颞皮质均参与这一过程。当人们观察到类似人脸的特征时,这些神经元会活跃起来,将这些特征整合成一张脸&mdash &mdash 只要眼前出现一点&ldquo 可能是张脸&rdquo 的线索,我们都能将其补成一张人脸。   ●点评:在烤焦的面包片上看到了耶稣画像、在火星上看到了神秘人脸、在土豆片上看到了&ldquo 猫王&rdquo &hellip &hellip 这只是&ldquo 人脸空想性错视&rdquo 。李康说:&ldquo 你能看到什么脸取决于个人的期望和信仰。比如说佛教徒估计在面包上看不见耶稣,最多能看见佛祖。&rdquo 这一功能对人类有很大帮助&mdash &mdash 要知道,在社交活动中脸盲或者无法辨别出隐藏在昏暗中的脸,都可能使自己付出巨大的代价。   公共卫生奖   养猫人是否易患心理疾病   ●获奖者:捷克查尔斯大学的雅罗斯拉夫· 弗莱格尔等   ●研究内容:这是一项统计学调查研究结果。科学家发现,猫的粪便里含有一种狡猾的寄生虫&mdash &mdash 弓形虫。而弓形虫可能会引发人精神分裂、导致自杀和脑癌。除了获奖的捷克科学家,美国密歇根大学医学院的大卫· 汉诺威教授等人发现,在曾经被猫咬过的750名患者中,有高达41%的人患有抑郁症。美国马里兰州大学医学院调查了超过45000名丹麦女性,结果发现,感染弓形虫的女性的自杀概率比未感染女性高出1.5倍,而且随着体内弓形虫抗体的增加,自杀概率持续上升。   ●主要结果:暂时未能确定弓形虫导致女性企图自杀的机理,但发现两者之间确实存在关联,因此仍需要更深入的研究。   ●点评:很多科学家认为,精神疾病与脑部病变有关。那么是什么造成脑部病变,基因突变、环境变化,或是寄生虫?科学家们正在试图弄清楚其中的关联。   医学科学奖   用腌猪肉条止住流鼻血   ●获奖者:美国密歇根州立大学所属底特律医疗中心的伊安· 汉弗莱斯医生和印度的索娜尓· 萨莱娅医生   ●研究内容:一名患血小板无力症的4岁女孩流鼻血不止。在药物与紧急手术治疗均无效的情况下,医生以腌猪肉做成的3.5厘米长的&ldquo 鼻腔止血塞&rdquo ,成功地止住了鼻血。   ●主要结果:猪肉中有凝血因子,而腌制所用的高浓度盐可以在鼻子里吸收液体,并造成显著的黏膜水肿,进而使血管产生一种生理填塞现象达到止血的目的。但医生并不推荐使用这种方式治疗常规鼻出血,因为腌猪肉上难免存在细菌或者寄生虫,可能引发感染。   ●点评:这种止血方法可追溯到19世纪初,科学家解释了其中的科学依据。其实人类有很多有益的经验,比如用砒霜治疗白血病。但是这种经验并不精确,不知道是否具有普适性,又是什么导致了治疗中的个体差异。今天,我们从中找出规律,未来可能开发出更多更有效的治疗方法和药物。   艺术奖   名画是否会减少疼痛   ●获奖者:意大利科学家玛丽娜· 德· 托马索、米歇尔· 萨尔达罗和保罗· 利夫雷亚   ●研究内容:研究人员招募了12名男性和12名女性,让他们从达· 芬奇、毕加索和波提切利等艺术大师的300幅作品中,挑选出他们自己认为最丑陋和最美丽的作品。接下来,要求受试者盯着这些作品或看着一块白板,与此同时,朝受试者手上发射能够产生刺痛的短激光脉冲,并对痛感打分。   ●主要结果:结果显示观看美丽作品确实能够让疼痛感降低,这一点在脑部扫描中得到了印证。研究人员表示,疼痛能够被人们的想法所左右,&ldquo 包括注意力和情绪&rdquo 。不过,还没有证据显示丑陋的作品会让疼痛感加剧。   ●点评:这是一项非常有实用价值的研究。科研人员建议,医院的建设除了考虑功能外,也应该加入艺术美学的考虑,这样可以缓解病人的疼痛和焦虑。
  • 三人获诺贝尔化学奖 发明世界上最小机器
    5日,瑞典斯德哥尔摩,2016年诺贝尔化学奖在瑞典皇家科学院揭晓。  瑞典皇家科学院5日宣布,将2016年诺贝尔化学奖授予让-皮埃尔索瓦日、弗雷泽斯托达特、伯纳德费林加这三位科学家,以表彰他们在分子机器设计与合成领域的贡献。  让-皮埃尔索瓦日出生在法国,目前在法国斯特拉斯堡大学工作 弗雷泽斯托达特出生在英国,目前在美国西北大学工作 伯纳德费林加出生在荷兰,目前在荷兰格罗宁根大学工作。  分子机器是指在分子层面的微观尺度上设计开发出来的机器,在向其提供能量时可移动执行特定任务。诺贝尔奖评选委员会在声明中说,这三位获奖者发明了“世界上最小的机器”,将化学发展推向了一个新的维度。  近年来,三位诺奖得主的成果已经成为全世界科研人员开发分子机器的“工具箱”,开创了分子机器的发展道路。目前已有科学家在轮烷的基础上建造出一个可以抓取并连接氨基酸的分子机器人 还有研究人员将分子马达和长聚合物相连,形成复杂的网络,将光能储存在分子中,有望开发出新型电池及光控传感器。  费林加在现场电话连线时说,得奖消息令自己“很震惊”,同时感到荣幸。他表示,荣誉属于全体科研合作者,大家的共同努力才成就了如此骄人的成果。  费加林对其获奖成就解释说:“一旦在分子层面控制了运动,就为控制其他各种形式的运动提供了可能。这一研究成果为未来新材料的研发开启了广阔前景。”  今年诺贝尔化学奖奖金共800万瑞典克朗(约合93.33万美元),将由这三位获奖者平分。 据新华社  ■ 背景  诺贝尔化学奖  曾有171人获奖一人梅开二度  化学奖是众多诺贝尔奖中最重要的奖项之一,诺贝尔奖的发起人阿尔弗雷德诺贝尔本人就是一名化学家。诺贝尔的不少发明和成就,都是以化学知识为基础发展起来的。根据诺贝尔的遗愿,诺贝尔化学奖授予“在化学领域做出最重大发现或进展的人”。  受战争和“宁缺毋滥”影响 八年未颁发  诺贝尔化学奖由瑞典皇家科学院从1901年开始负责颁发,至今总共颁发了107次。期间只有1916、1917、1919、1924、1933、1940、1941和1942这八年没有颁发。  诺贝尔奖奖项空缺,除了受到两次世界大战影响之外,还受到了诺贝尔奖组委会“宁缺毋滥”的评奖理念的影响。  该奖项于每年12月10日,即阿尔弗雷德-诺贝尔逝世周年纪念日颁发。截至2015年,诺贝尔化学奖共有172位获奖者。其中英国生物化学家弗雷德里克-桑格在1958年和1980年两次获得诺贝尔奖,因此历史上获得诺贝尔奖的总共只有171人。  在被颁出的106次诺贝尔化学奖中,有63次被颁给了单独的个人,23次同时颁给两人,21次同时颁给三人,三人是诺奖单项获奖人数的上限。  与居里一家“有缘”母女和女婿均获奖  诺贝尔化学奖获奖者的平均年龄是58岁。迄今为止,最年轻的诺贝尔化学奖得主是法国科学家弗雷德里克约里奥。1935年获奖时约里奥只有35岁。值得一提的是,约里奥的妻子是居里夫人的长女伊伦居里。1935年夫妇二人因在合成新型放射性元素方面有突出贡献,而被同时授予诺贝尔化学奖。  美国化学家约翰芬恩2002年获得诺贝尔化学奖时已是85岁高龄,系最年迈获奖者。  此外,除了居里夫人的长女外,历史上还有3名女性获得过诺贝尔化学奖。其中,有2人是单独得奖:居里夫人1911年获奖,此前在1903年,她已经获得过诺贝尔物理学奖 1964年,英国生物化学家多萝西玛丽霍奇金因促进蛋白质晶体学发展而单独获奖。  最近一次获得诺贝尔奖的女性是以色列科学家阿达约纳特。2009年,她凭借在核糖体的结构和功能研究方面的突出贡献,与另外两人一同获奖。(宗和)  ■ 科普  “世界最小机器”是怎么设计出来的?  世界上存在小到只有千分之一头发丝粗细的机器吗?答案就是刚刚助力三位科学家摘得2016年诺贝尔化学奖的分子机器。  人类是如何用自己一双大手来制造出需要电子显微镜才能观察到的“世界最小机器”?这是一个关于科学家们如何将分子成功连接起来并设计出从微型电梯、微型发动机到分子肌肉的故事。  第一步,索瓦日成功合成了一种名为“索烃”的两个互扣的环状分子,而且这两个分子能够相对移动   第二步,斯托达特合成了“轮烷”,即将一个环状分子套在一个哑铃状的线形分子轴上,且环状分子能围绕这个轴上下移动,并成功实现了可以上升高度达0.7纳米的“分子电梯”和可以弯折黄金薄片的“分子肌肉”   第三步,费林加设计出了在构造上能向一个特定方向旋转的分子马达,这个马达可以让一个28微米长、比马达本身大1万倍的玻璃缸旋转起来。有了这三步,分子机器就可以动起来了。  评选委员会表示,就像19世纪30年代,当电动马达被发明出来时,科学家未曾想过它会在电气火车、洗衣机等被广泛运用。而分子机器正如当年的电动马达一样,未来很有可能将用于开发新材料、新型传感器和能量存储系统等。据新华社  ■ 身边人看诺奖  2016年诺贝尔化学奖公布后,针对三位获奖科学家在分子机器设计与合成领域的贡献,以及他们发明出的“世界上最小的机器”,记者询问了一些大学生和小学生,了解一下身边人对此有何看法。实习生 李晨晖  你认为“分子机器”是个什么样的存在?  清华化学系(大一):分子机器应该是和传统的机器没有很大差别,都是一种能源做功的机器,但分子机器的尺寸非常小,且与传统机器的功能用途有所不同。  北外英语系(大三):分子机器应该是一种在分子层面制作出来的超小型工具吧,这种机器有分子结构,有一定动力系统。  小学生(五年级):非常非常小,它最大的优点就是小,能够做很多大机器完成不了的事情。  你觉得机器最小能做到多小?  清华化学系(大一):分子机器可以做到纳米级别的大小,毕竟分子机器需要完成做功,所以还是需要一个比较大的分子才能具有机器的功能。  北外英语系(大三):机器即使做得再小也应该包含一些必要的结构。我知道的最小单位就是纳米了,分子机器也可以做到纳米级吧。  小学生(五年级):比芝麻还要小,比跳蚤还要小的,需要放在显微镜下才能看得到。  对于分子机器的未来用途,你有何猜想?  清华化学系(大一):分子机器与分子生物学和仿生学密不可分,如果化学能够实现分子机器的合成,将能够在医疗、生化研究等领域发挥重要作用。  北外英语系(大三):比如在医疗领域制造一种超分子的小车运送体内有用物质,在极其微小的空间里能够游刃有余地开展运输任务。  小学生(五年级):人的身体里有器官生病了,可以把这种小机器放进身体里去进行修复。
  • 2020年诺贝尔生理学或医学奖揭晓
    p style=" text-align: justify text-indent: 2em " 当地时间10月5日,在瑞典首都斯德哥尔摩卡罗琳医学院,诺贝尔奖委员会总秘书长托马斯· 佩尔曼宣布,2020年诺贝尔生理学或医学奖授予哈维· 阿尔特、迈克尔· 霍顿和查尔斯· M· 赖斯,以表彰他们在“发现丙型肝炎病毒”方面作出的贡献,三位获奖者将分享1000万瑞典克朗奖金(约合760万元人民币)。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/27b6b641-0912-4f3c-a4c3-daee5c4e492a.jpg" title=" 50628C94-7B2F-4B9C-AB3F-5A584435E530.jpeg" alt=" 50628C94-7B2F-4B9C-AB3F-5A584435E530.jpeg" / /p p style=" text-align: justify text-indent: 2em " script src=" https://p.bokecc.com/player?vid=22C6607C60C5E1209C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script 由Harvey J Alter与Michael Houhgton以及Charles M Rice获得这一奖项,以表彰他们在血源性肝炎的战争中做出了决定性的贡献,血源性肝炎是导致世界各地人们肝硬化和肝炎的主要全球性健康问题。Harvey J Alter与Michael Houhgton以及 Charles M Rice做出了开创性的发现,从而鉴定出一种新型病毒,即丙型肝炎病毒,丙型肝炎的发现揭示了甲型和乙型肝炎以外的慢性肝炎病例的病因,并使血液检测和新药成为可能,挽救了数百万人的生命。 /p p style=" text-align: justify text-indent: 2em " 丙型肝炎病毒(HCV)于1989年首次被发现,它影响着超过1亿7千万人,几乎有3%的世界人口对抗HCV抗体呈血清反应阳性,慢性感染发生在80-85%的急性感染中,可能导致肝硬化、肝衰竭、肝细胞癌(HCC)和死亡,HCV属于黄病毒科,具有具有正链单链RNA基因组,可编码3011个氨基酸的多蛋白,该多蛋白随后被病毒和细胞蛋白酶加工成三个结构蛋白(核心、E1和E2)和七个非结构蛋白(p7、NS2、NS3、NS4A、NS4B、NS5A和NS5B),尽管遗传多样性使HCV高度适应宿主免疫系统和抗病毒药物的挑战,但对HCV生物学的研究揭示了针对特定抗病毒疗法的新靶标(例如NS5B聚合酶和NS3蛋白酶),这为HCV感染者带来了新希望。 /p p style=" text-align: justify text-indent: 2em " 奖项公布后,网友纷纷点赞评论如下: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/86621580-4bc5-42fc-809f-abbafdba6805.jpg" title=" E5A5EE3C-78CA-43EC-9325-5D944A13729B.jpeg" alt=" E5A5EE3C-78CA-43EC-9325-5D944A13729B.jpeg" / /p p style=" text-align: justify text-indent: 2em " 据悉因新冠肺炎疫情,本次活动诺贝尔委员会对人数进行了严格控制,会场不超过30人。 br/ /p
  • 无需诺贝尔奖高贵仪器 普通显微镜也可看到纳米级物质
    我们用显微镜来观察细胞,因为显微镜可以让物体的影像变大。但如果把物体本身变大不就有相同效果?这种看似不科学的说法要如何办到?答案跟婴儿用的尿布有关。麻省理工学院神经工程师 Edward Boyden 研发一种称为&ldquo 扩展显微镜&rdquo (expansion microscopy) 的技术,让被观察的物体膨胀,生物学家甚至可以用普通显微镜看到分子等级的脑部细节。 与昂贵技术有相同效果 Boyden 的技术其实跟 2014 年诺贝尔化学奖三位得主的萤光显微技术可以做个对比。诺贝尔奖的显微镜技术突破了可见光最小波长 400 纳米的限制,对于距离只有 20 纳米的物体仍能清晰分辨,不过缺点是所需的仪器很昂贵,且面对有厚度的物体较不易观察,例如肿瘤细胞或是整个大脑。Boyden 的技术则可以观察立体的组织,例如脑部神经细胞之间突触间隙及间隙一端的突触钮 (synaptic bouton)。 Boyden 运用的是丙烯酸类聚合物。常见的尿布或卫生棉之所以具有锁水功能,其中便含有丙烯酸;丙烯酸还能留住蛋白质分子。在 Boyden 的技术下,首先要把萤光分子锁定在要观察的蛋白质上,然后开始注水,要观察的组织因为加入丙烯酸而膨胀了 91.125 倍(三维方向各自膨胀 4.5 倍)。因为组织膨胀,被萤光分子标记的蛋白质彼此距离也拉开,可以让用可见光进行观察的显微镜也能看见。Boyden 表示这项技术可以让原先距离在 60 纳米以上的分子被清楚观察。 物质膨胀但无太多质变 重要的是,组织中的细胞仍然保持完好状态,蛋白质的相对位置与方向没有太大的改变,如上图左是膨胀后的样子,与图右的原始状态比较改变不大。这项改变根据研究团队的估计,大约是 1% 至 4% 之间。 2014 年诺贝尔化学奖得主之一的 Stefan Hell 表示,这项技术很有趣也值得继续发展,他提到 1990 年代德国就有科学家有类似的点子,但看来 Boyden 的研究团队才是真正把构想实现的人。 (首图来源:Boyden, E., Chen, F. & Tillberg, P. / MIT / Courtesy of National Institutes of Health)
  • 2020年诺贝尔奖10月5日起陆续揭晓!让我们回顾下重要诺贝尔生理学或医学奖!
    div class=" span14" div class=" pl-10 pr-10 View-div" div class=" view-content t-35 news-view clearfix" p style=" text-align:center " span style=" font-size:16px " br/ /span /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 据诺贝尔奖官网消息, /span strong span style=" font-size:16px line-height:2 " 2020年诺贝尔奖将于10月5日至10月12日陆续揭晓 /span /strong span style=" font-size:16px line-height:2 " 。 /span /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 诺贝尔基金会首席执行官拉尔斯· 海肯斯滕日前表示,受新冠疫情影响,今年12月不再举行传统的诺贝尔奖颁奖典礼,将在斯德哥尔摩市政厅线上直播颁奖仪式。 /span /p p style=" text-align:justify " br/ /p div style=" text-align:center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/496a45bb-b0bd-4260-8548-a1c0f758762a.jpg" title=" 5f75f232d542d.png" alt=" 5f75f232d542d.png" / img src=" /Uploads/2020-10-01/5f75f232d542d.png" alt=" " width=" 400" height=" 141" title=" " align=" " / br/ /div p style=" text-align:center " span style=" font-size:14px color:#A0A0A0 line-height:2 " 图片来源:诺贝奖官网 /span /p p style=" text-align:justify " br/ /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 诺贝尔奖(瑞典语:Nobel priset,英语:Nobel Prize)是指根据诺贝尔 /span strong span style=" font-size:16px line-height:2 " 1895年 /span /strong span style=" font-size:16px line-height:2 " 的遗嘱而设立的五个奖项,包括:物理学奖、化学奖、和平奖、生理学或医学奖和文学奖,旨在表彰在物理学、化学、和平、生理学或医学以及文学上“对人类作出最大贡献”的人士;以及 /span strong span style=" font-size:16px line-height:2 " 瑞典中央银行1968年设立的诺贝尔经济学奖 /span /strong span style=" font-size:16px line-height:2 " ,用于表彰在经济学领域杰出贡献的人 /span sup span style=" font-size:16px line-height:2 " & nbsp [1-2]& nbsp /span /sup span style=" font-size:16px line-height:2 " & nbsp 。 /span /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 金秋10月,诺贝尔奖将至。从1901年开始颁发至今,已过百年。而且诺贝尔基金会主席Lars Heikensten 9月24日表示: /span strong span style=" font-size:16px line-height:2 " 今年的诺贝尔奖奖金将增加100万瑞典克朗至1000万瑞典克朗(约11万美元-110万美元) /span /strong span style=" font-size:16px line-height:2 " 。 /span /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 接下来让我们回顾下那些对人类有重要影响的诺贝尔生理学或医学奖: /span /p p style=" text-align:justify " span style=" font-size:16px " br/ /span /p p style=" text-align:justify " span style=" font-size:16px " span style=" line-height:2 " & nbsp & nbsp & nbsp /span strong span style=" line-height:2 " 2015年:青蒿素每年“拯救2亿人口”& nbsp /span /strong /span /p p style=" text-align:justify " strong span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 获奖人之一: /span /strong span style=" font-size:16px line-height:2 " 屠呦呦 /span /p p style=" text-align:justify " br/ /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 受中国典籍《肘后备急方》启发, /span strong span style=" font-size:16px line-height:2 " 屠呦呦成功提取出治疗恶性疟疾的青蒿素 /span /strong span style=" font-size:16px line-height:2 " ,被誉为“拯救2亿人口”的重大发现。 /span /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 青蒿素已被广泛 /span strong span style=" font-size:16px line-height:2 " 用于疟疾 /span /strong span style=" font-size:16px line-height:2 " 肆虐地区。仅在非洲,这就意味着每年超过10万人因此得救。 /span /p p style=" text-align:justify " br/ /p div style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp strong 2011年:树突状细胞在后天免疫系统中有重要作用 /strong /span /div p style=" text-align:justify " strong span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 获奖人: /span /strong span style=" font-size:16px line-height:2 " 朱尔· A· 奥夫曼和布鲁斯· 博伊特勒 /span /p p style=" text-align:justify " br/ /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 树突状细胞被发现,并且这是影响免疫的关键调节器。 /span /p p style=" text-align:justify " br/ /p div style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp strong & nbsp 2010年:试管婴儿助更多家庭尽享天伦 /strong /span /div p style=" text-align:justify " strong span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 获奖人: /span /strong span style=" font-size:16px line-height:2 " 罗伯特· 爱德华兹 /span /p p style=" text-align:justify " br/ /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 1978年7月25日, /span strong span style=" font-size:16px line-height:2 " “试管婴儿之父” /span /strong span style=" font-size:16px line-height:2 " ——英国生理学家罗伯特· 爱德华兹帮助世界上第一个试管婴儿来到人间。他发现了 /span strong span style=" font-size:16px line-height:2 " 人类受精的重要原理 /span /strong span style=" font-size:16px line-height:2 " ,成功实现人类卵细胞在体外受精。 /span /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 全世界大约有10%的夫妇遭受不育症的折磨,这一切都随着体外受精技术的问世而得到解决,每年数以百万计的家庭因此受益。 /span /p p style=" text-align:justify " br/ /p div style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp strong & nbsp 2008年:乳头状瘤病毒(HPV)是宫颈癌的病原体& amp HIV破坏了人体的免疫系统 /strong /span /div p style=" text-align:justify " strong span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 获奖人: /span /strong span style=" font-size:16px line-height:2 " 哈拉尔德· 楚尔· 豪森、弗朗索瓦丝· 巴尔· 西诺西和吕克· 蒙塔尼 /span /p p style=" text-align:justify " br/ /p p style=" text-align:justify " strong span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 人类乳头状瘤病毒 /span /strong span style=" font-size:16px line-height:2 " 对全球公共健康体系造成了很大的负担,全世界所有的癌症百分之五是因为人们持续感染这一病毒所致。人类乳头状瘤病毒是最常见的性病致病病毒,这影响了人类人口的百分之五十至八十。 /span /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 哈拉尔德· 楚尔· 豪森用了十多年时间终于发现某些类型的 /span strong span style=" font-size:16px line-height:2 " 乳头状瘤病毒(HPV)就是宫颈癌的病原体 /span /strong span style=" font-size:16px line-height:2 " ,这一发现 /span strong span style=" font-size:16px line-height:2 " 为开发出宫颈癌疫苗打下了基础 /span /strong span style=" font-size:16px line-height:2 " 。 /span /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 弗朗索瓦丝· 巴尔-西诺西和吕克· 蒙塔尼从淋巴结肿大的早期病人的淋巴细胞和晚期病人的血液中确定了病毒复制。他们根据形态、生物化学、免疫特性将这种反向病毒定为首个人类已知慢病毒。由于大量的病毒复制和对淋巴细胞的细胞破坏,HIV破坏了人体的免疫系统。 /span strong span style=" font-size:16px line-height:2 " 这一发现对于了解艾滋病的生物学和抗病毒治疗是一个前提。 /span /strong span style=" font-size:16px line-height:2 " 由于这一病毒已感染了全球百分之一的人口,这一成就具有非凡的意义。 /span /p p style=" text-align:justify " br/ /p div style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp strong & nbsp 2005年:幽门螺杆菌是胃病的罪魁祸首 /strong /span /div p style=" text-align:justify " strong span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 获奖人: /span /strong span style=" font-size:16px line-height:2 " 巴里· 马歇尔、罗宾· 沃伦 /span /p p style=" text-align:justify " span style=" font-size:16px " br/ /span /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 以前的学者普遍认为胃酸不可能让细菌存在,也一直未找到治疗胃病的根本方法。两位来自澳洲的科学家罗宾· 沃伦和巴里· 马歇尔证实, /span strong span style=" font-size:16px line-height:2 " 幽门螺杆菌导致了胃炎和胃溃疡。 /span /strong /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 溃疡病从原先难以治愈、反复发作的慢性病,变成一种短疗程抗生素和抑酸剂就可治愈的疾病。 /span /p p style=" text-align:justify " br/ /p div style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp strong & nbsp 2003年:核磁共振成像技术助力医学诊断 /strong /span /div p style=" text-align:justify " strong span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 获奖人: /span /strong span style=" font-size:16px line-height:2 " 彼得· 曼斯菲尔德、保罗· 劳特布尔 /span /p p style=" text-align:justify " span style=" font-size:16px " br/ /span /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 利用这种技术,可以诊断以前无法诊断的疾病,特别是脑和脊髓部位的病变;可以为患者需要手术的部位准确定位,特别是脑手术更离不开这种定位手段;可以更准确地跟踪患者体内的癌变情况,为更好地治疗癌症奠定基础。此外,由于使用这种技术时不直接接触被诊断者的身体,因而还可以减轻患者的痛苦。 /span /p p style=" text-align:justify " strong span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 核磁共振成像技术的最大优点 /span /strong span style=" font-size:16px line-height:2 " 是能够在对身体没有损害的前提下,快速地获得患者身体内部结构的高精确度立体图像。 /span /p p style=" text-align:justify " br/ /p div style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp strong 2000年:多巴胺本身就是一种神经递质 /strong /span /div p style=" text-align:justify " strong span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 获奖人: /span /strong span style=" font-size:16px line-height:2 " 阿尔维德· 卡尔森 /span /p p style=" text-align:justify " br/ /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 在此之前,科学家们普遍认为多巴胺只是另一种递质去甲肾上腺素的前体。卡尔森发明了一种高灵敏度的测定多巴胺的方法, /span strong span style=" font-size:16px line-height:2 " 发现多巴胺在大脑中的含量高于去甲肾上腺素 /span /strong span style=" font-size:16px line-height:2 " ,尤其集中于脑部基底核,而后者是控制运动机能的重要部位。 /span /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 他的研究成果使人们认识到帕金森症和精神分裂症的起因是由于病人的脑部缺乏多巴胺,并据此可以 /span strong span style=" font-size:16px line-height:2 " 研制出治疗这种疾病的有效药物 /span /strong span style=" font-size:16px line-height:2 " 。 /span /p p style=" text-align:justify " br/ /p div style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp strong & nbsp 1990年:第一例双胞胎成功器官移植开创人体器官移植先例 /strong /span /div p style=" text-align:justify " strong span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 获奖人: /span /strong span style=" font-size:16px line-height:2 " 约瑟夫· 默里、唐纳尔· 托马斯 /span /p p style=" text-align:justify " span style=" font-size:16px " br/ /span /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 1956年,唐纳尔· 托马斯成功地应用双胞胎间的骨髓移植治疗白血病。约瑟夫· 默里完成了第一例成功器官移植手术,该手术在双胞胎之间进行。 /span strong span style=" font-size:16px line-height:2 " 托马斯医生的贡献在于骨髓移植,而默里则为肾脏移植的开创者 /span /strong span style=" font-size:16px line-height:2 " 。 /span /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 肾脏移植的进展也带动了人体其他器官移植的进展,如肝、胰、心脏、肺脏等,其成功率也日益改善。而骨髓移植也为血液病患者带去福音! /span /p p style=" text-align:justify " br/ /p div style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp strong 1986年:“神经生长因子”和“表皮生长因子”被发现 /strong /span /div p style=" text-align:justify " strong span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 获奖人: /span /strong span style=" font-size:16px line-height:2 " 丽塔· 列维-蒙塔尔奇尼 /span /p p style=" text-align:justify " span style=" font-size:16px " br/ /span /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 20世纪50年代初发现动物在受伤以后会 /span strong span style=" font-size:16px line-height:2 " 用舌头去舔伤口,而伤口便很快会愈合 /span /strong span style=" font-size:16px line-height:2 " 。她从分析动物的这一行为入手,于1951年从小白鼠唾液中发现能促进动物皮肤表皮细胞生长发育的物质,和能促进神经细胞生长发育的物质—— /span strong span style=" font-size:16px line-height:2 " 神经生长基因(NGF) /span /strong span style=" font-size:16px line-height:2 " 。 /span /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 2012年4月22日, /span strong span style=" font-size:16px line-height:2 " 作为史上最长寿的诺贝尔奖获得者 /span /strong span style=" font-size:16px line-height:2 " ,丽塔· 莱维· 蒙塔尔奇尼度过了103岁的生日。据媒体披露, /span strong span style=" font-size:16px line-height:2 " 她的长寿秘诀也许在于她每天都喝一种不寻常的饮料 /span /strong span style=" font-size:16px line-height:2 " ,虽然它的剂量只有眼药水那么少。那是一定剂量的神经生长因子,而这正是蒙塔尔奇尼和美国搭档斯坦利· 科恩因于1951年6月在华盛顿大学的实验室中发现的科研成果。 /span /p p style=" text-align:justify " br/ /p div style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp strong & nbsp 1979年:X射线断层成像技术出现,可对人体轴向层析 /strong /span /div p style=" text-align:justify " strong span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 获奖人: /span /strong span style=" font-size:16px line-height:2 " 阿兰· 麦克莱德· 科马克、高弗雷· 豪斯费尔德 /span /p p style=" text-align:justify " br/ /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 70年代之前,人体软组织或不同密度的组织层的x射线成像一直是个问题。70年代初,他们建立起计算机化扫描的数学和物理学基础,发展了 /span strong span style=" font-size:16px line-height:2 " 计算机化轴向层析x射线摄影法(CAT) /span /strong span style=" font-size:16px line-height:2 " 这一新型诊断技术。 /span /p p style=" text-align:justify " br/ /p div style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp strong & nbsp 1945年:青霉素让人类不再恐惧细菌感染 /strong /span /div p style=" text-align:justify " strong span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 获奖人: /span /strong span style=" font-size:16px line-height:2 " 亚历山大· 弗莱明、恩斯特· 伯利斯· 钱恩、霍华德· 弗洛里 /span /p p style=" text-align:justify " br/ /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 曾经,人类对细菌感染束手无策,无数人因此丧命。直到青霉素被发现,人类才开始逐渐脱离被细菌感染支配的恐惧, /span strong span style=" font-size:16px line-height:2 " 平均寿命得以显著延长 /span /strong span style=" font-size:16px line-height:2 " 。在他们共同努力下,青霉素从实验室走向现实生活、造福人类。 /span /p p style=" text-align:justify " span style=" font-size:16px " br/ /span /p p style=" text-align:justify " span style=" font-size:16px " span style=" line-height:2 " & nbsp & nbsp strong & nbsp /strong /span span style=" line-height:2 " strong 1923年:胰岛素为糖尿病患者带来曙光 /strong /span /span /p p style=" text-align:justify " strong span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 获奖人: /span /strong span style=" font-size:16px line-height:2 " 弗雷德里克· 班廷、约翰· 麦克劳德 /span /p p style=" text-align:justify " span style=" font-size:16px " br/ /span /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 糖尿病是一种常见的内分泌代谢疾病,在二十世纪之前,糖尿病被看做不治之症。 /span /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " & nbsp & nbsp & nbsp 1922年夏天,班廷与麦克劳德从 /span strong span style=" font-size:16px line-height:2 " 狗的体内 /span /strong span style=" font-size:16px line-height:2 " 分离出消耗糖所需的活性物质,并把这种物质注入一条患有糖尿病、濒临死亡的狗, /span strong span style=" font-size:16px line-height:2 " 这条狗的病情很快就出现了好转 /span /strong span style=" font-size:16px line-height:2 " 。这种物质正是胰岛素。 /span /p p style=" text-align:justify " br/ /p p style=" text-align:justify " span style=" font-size:16px line-height:2 " 看完这么多的诺贝尔奖案例,诺贝尔奖得主对人类贡献巨大,也期待越来越多的诺贝尔奖出现! /span /p /div /div /div
  • 2011年诺贝尔化学奖揭晓
    北京时间10月5日下午5点45分,2011年诺贝尔化学奖揭晓,以色列科学家达尼埃尔谢赫特曼Daniel Shechtman获奖,获奖理由是“发现准晶体”。今年诺贝尔化学奖奖金共1000万瑞典克朗(约合146万美元),由谢赫特曼一人独享。   2011年诺贝尔生理学或医学奖揭晓   2011年诺贝尔物理学奖揭晓 达尼埃尔谢赫特曼(Daniel Shechtman)    非凡的原子“镶嵌”   在准晶体中,我们发现迷人的阿拉伯镶嵌艺术在原子水平的重现:规则但从不重复的模式。然而,准晶体构型的发现曾被认为是不可能的,因而Daniel Shechtman只得对已知的科学发起强烈的挑战。2011年诺贝尔化学奖已经从根本上改变了化学家如何想象固体物质。   1982年4月8日的早上,一幅违反自然定律的图像出现在Shechtman的电子显微镜中。在所有的固体物质中,原子被认为均匀地分布在晶体中,并周期性地进行重复。对于科学家来说,为了获得晶体,这种重复是必需的。   然而,Shechtman眼前出现的图像却显示,该晶体中的原子排列模式是无法重复的。这种模式曾被认为是不可能的,就像不可能单纯用六角形制造足球,因为同时需要五角形和六角形。他的发现引起了极大的争议。在为自己的发现辩护期间,他被要求离开了自己的研究小组。不过,他的坚持最终迫使科学家重新考虑他们对于物质属性的概念。   非周期性“镶嵌”,比如在西班牙阿尔罕布拉宫和伊朗Darb-i Imam神殿中发现的中世纪伊斯兰镶嵌艺术,帮助科学家理解了准晶体在原子水平的特征。在这些镶嵌中,比如准晶体,模式是规则的——它们遵循数学法则——但它们从不重复自己。   当科学家描述Shechtman的准晶体的时候,他们使用一个来自于数学和艺术的概念:黄金比例。这一数字在古希腊的时候就已经引起了数学家的兴趣,经常出现在几何学中。举个例子来说,在准晶体中,原子间不同距离之比同黄金分割相关。   跟随Shechtman的发现,科学家已经在实验室中制造了其它种类的准晶体,并从来源于俄罗斯一条河流中的矿石样本中发现了天然准晶体。一家瑞典公司也从某种形态的铁中发现了准晶体。科学家们目前正在实验于不同产品中使用准晶体,比如煎锅和柴油机。   Daniel Shechtman,以色列公民。1941年出生于以色列特拉维夫。1972年从以色列理工学院获得博士学位。以色列理工学院菲利普托拜厄斯讲席教授。   ■ 人物 谢赫特曼的发现是科学界最伟大的发现之一,勇敢挑战了当时的权威体系   ——美国化学协会主席纳西杰克逊   当我告诉人们,我发现了准晶体的时候,所有人都取笑我。   ——谢赫特曼   “那时,所有人都取笑我”   因为挑战当时的“常识”,谢赫特曼被斥“胡言乱语”、“伪科学家”   “胡言乱语”、“伪科学家”,当30年前谢赫特曼发现“准晶体”时,他面对的是来自主流科学界、权威人物的质疑和嘲笑,因为当时大多数人都认为,“准晶体”违背科学界常识。   “当我告诉人们,我发现了准晶体的时候,所有人都取笑我。”谢赫特曼在一份声明中说。1982年,41岁的谢赫特曼正在美国霍普金斯大学从事研究工作。   “的确,那时候的人们压根不会接受那种晶体的存在。”美国化学协会主席纳西杰克逊说,“因为他们认为这违反自然界‘规则’。”   因为这些“规则”被视为真理,胆敢“捋虎须”的谢赫特曼自然就备受排挤。   发现“准晶体”后,谢赫特曼花费了好几个月的时间,试图说服他的同事,但一切均徒劳,没人认同他的观点。不仅如此,他还被要求离开他所在的研究小组。无奈之下,谢赫特曼只有返回以色列,在那里,他的一个朋友愿意帮助他,将“准晶体”的有关研究成果公开发表。   最开始,这篇论文也没能逃脱被拒绝的命运,但在谢赫特曼和他朋友的艰苦努力下,1984年,论文终于得以发表,也立即在化学界引发轩然大波。一些化学界权威也站出来,公开质疑谢赫特曼的发现,其中包括著名的化学家、两届诺奖得主鲍林。   “他(鲍林)公开说:达尼埃尔谢赫特曼是在胡言乱语,没有什么准晶体,只有‘准科学家’。”谢赫特曼后来说。   近30年后,勇敢质疑“常识”的谢赫特曼终于获得全世界最权威的科学认可。“谢赫特曼的发现是科学界最伟大的发现之一,勇敢挑战了当时的权威体系。”纳西杰克逊说。   ■ 背景 固体家族“另类哥”   20世纪80年代初以前,科学界对固态物质的认识仅限于晶体与非晶体,而随着谢赫特曼的一次偶然发现,固体物质中一种“反常”的原子排列方式跳入科学家的眼界。从此,这种徘徊在晶体与非晶体之间的“另类”物质闯入了固体家族,并被命名为准晶体。   根据固态物质构成的原子排列规律,晶体内原子应呈现周期性对称有序排列,非晶体内原子呈无序排列。1982年4月8日,谢赫特曼在铝锰合金冷冻固化实验中首次观察到合金中的原子以一种非周期性的有序排列方式组合,具有这种原子排列方式的固体在当时理论下是不可能存在的。   由于原子排列不具周期性,准晶体材料硬度很高,同时具有一定弹性,不易损伤,使用寿命长。鉴于其“强化”特性,准晶体材料可应用于制造眼外科手术微细针头、刀刃等硬度较高的工具。此外,准晶体材料无黏着力并且导热性较差,其应用范围还包括制造不粘锅具、柴油发动机等,应用前景广阔。   附:诺贝尔奖网站官方公告   5 October 2011   The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry for 2011 to   Daniel Shechtman   Technion - Israel Institute of Technology, Haifa, Israel   "for the discovery of quasicrystals"   附录:近10年诺贝尔化学奖得主及其主要成就   2011年,以色列科学家达尼埃尔谢赫特曼因发现准晶体而获奖。准晶体是一种介于晶体和非晶体之间的固体,准晶体的发现不仅改变了人们对固体物质结构的原有认识,由此带来的相关研究成果也广泛应用于材料学、生物学等多种有助于人类生产、生活的领域。   2010年,美国科学家理查德赫克、日本科学家根岸荣一和铃木章因在有机合成领域中钯催化交叉偶联反应方面的卓越研究成果而获奖。这一成果广泛应用于制药、电子工业和先进材料等领域,可以使人类造出复杂的有机分子。   2009年,英国科学家文卡特拉曼拉马克里希南、美国科学家托马斯施泰茨和以色列科学家阿达约纳特因对“核糖体的结构和功能”研究的贡献而获奖。   2008年,日本科学家下村修、美国科学家马丁沙尔菲和美籍华裔科学家钱永健因在发现和研究绿色荧光蛋白方面作出贡献而获奖。   2007年,德国科学家格哈德埃特尔因在表面化学研究领域作出开拓性贡献而获奖。   2006年,美国科学家罗杰科恩伯格因在“真核转录的分子基础”研究领域作出贡献而获奖。   2005年,法国科学家伊夫肖万、美国科学家罗伯特格拉布和理查德施罗克因在烯烃复分解反应研究领域作出贡献而获奖。   2004年,以色列科学家阿龙切哈诺沃、阿夫拉姆赫什科和美国科学家欧文罗斯因发现泛素调节的蛋白质降解而获奖。   2003年,美国科学家彼得阿格雷和罗德里克麦金农因在细胞膜通道领域作出了开创性贡献而获奖。   2002年,美国科学家约翰芬恩、日本科学家田中耕一和瑞士科学家库尔特维特里希因发明了对生物大分子进行识别和结构分析的方法而获奖。
  • MCC售后服务无忧行动 ——走进天津阿克苏诺贝尔过氧化物有限公司
    阿克苏诺贝尔公司是1969年由阿库和KZO(Koninkijke Zout-Organon)这两家荷兰最大的化学制品公司合并而成,旗下的阿克苏诺贝尔过氧化物有限公司是世界上最大的过氧化物供应商,产品含盖了过氧化酮,过氧化碳酸酯,过氧化酯,过氧化酰,过氧化缩酮及氢过氧化物等各类过氧化物。在冬意初浓的10月25日~10月26日,瑞士万通MCC售后服务无忧行动走进了阿克苏诺贝尔过氧化物天津分公司,开启了两天的回访活动,让为用户提供优质服务的热情赶走冬天的这份寒冷。活动伊始,瑞士万通中国的应用工程师就用户长期以来对自动电位滴定仪和卡尔费休水分仪的原理、应用开发和电极的维护保养遇到的问题,做了详细的分析及讲解。为了加深用户对我们仪器的了解,瑞士万通的资深维修工程师现场讲解了仪器的维护保养知识,并深入了用户的每一个实验室,对在用的每一台仪器进行了专业的预防性维护保养服务,同时,解决用户日常工作中遇到的实际样品方法开发和仪器软硬件问题。活动的最后,用户对我们的服务给予了高度的评价,感谢我们长期以来对于他们实验工作的支持。同时,对未来的合作也提出了相应的期许。2018 MCC售后服务无忧行动,瑞士万通中国售后团队秉承为用户提供高质量服务的信念,针对用户在仪器日常使用和实验室管理中遇到的技术及应用问题举办的免费定制化用户培训、实验室仪器体检&保养及仪器合理化管理的活动。希望通过活动,能让用户的实验室管理工作更轻松。我们的活动还在继续,敬请期待~
  • 脂肪酸平衡:全民总动员
    “鱼、海洋或水产ω-3脂肪酸的摄入能显著降低亚洲人群Ⅱ型糖尿病的发病风险。”在于日前举行的2012年膳食脂肪酸国际学术研讨会上,浙江大学食品营养系教授李铎介绍了他的最新研究成果。   人体摄入的脂肪酸包括饱和与不饱和两种,饱和脂肪酸很容易摄入过量造成疾病 而不饱和脂肪酸比如ω-6、ω-3等人体不能自身合成,长期缺乏可能会增加一些疾病的发病风险,如糖尿病、高血脂等。   鉴于此,国际营养学会提出了每日膳食脂肪的比例,即饱和脂肪酸、多不饱和脂肪酸、单不饱和脂肪酸等于1∶1∶1。   然而,数据显示,中国居民膳食脂肪酸意识薄弱,摄取严重失衡,摄取量平均值均未达到上述标准。   深海鱼油购买力不足   近日,卫生部发布数据显示,我国现有超过2亿高血压患者、1.2亿肥胖患者、9700万糖尿病患者,共有近3亿慢性病患者,慢性病导致死亡已占我国总死亡人口的85%。   通常认为,吃鱼油补充的DHA、EPA就是ω-3脂肪酸,植物性的ω-3脂肪酸来源主要包括亚麻油、紫苏及海藻油。   据介绍,深海鱼中ω-3脂肪酸的含量明显高于内陆的淡水鱼,因此可以通过吃深海鱼或是服用深海鱼油胶囊来摄取。帝斯曼公司营养产品部的张卫国博士介绍,鱼油有四大方面功能:降甘油三酯、降血压、抗凝血和降低心率。   但业内人士透露,目前国产深海鱼油价格在100粒100~200多元左右。深海鱼油的原料多从国外进口,而后在国内生产包装 也有的在国内生产但是打着进口的旗号 纯进口的价格很贵,并不是很好销售。   “在北京三环以内的药店销售量还可以,一个月能销售出10~20瓶,而在郊区购买力就不行了。深海鱼油多是消费者自己服用或者送给老人,一般不作为礼品。”该业内人士表示。   但也有人吃深海鱼油后效果不明显。专家建议应该长期服用,在吃饭时服用鱼油效果比饭前或饭后都好,而且在连续服用2年后,才会出现心脏病死亡率降低的显著差异。   据专家介绍,不饱和脂肪酸的补充是有比例的,ω-6∶ω-3为4∶1较好,但也要取决于不同生理状况的人群,小孩、成年人与老人的补充是有差别的。   生物发酵可高效获取不饱和脂肪酸   南昌大学生命科学与食品工程学院副院长邓泽元教授在接受记者采访时表示,他们的一项预防动脉粥样硬化多不饱和脂肪酸胶囊研发项目,目前已申报了专利。   “虽然做药物胶囊的厂家很多,但真正科学合理、按照人体健康需要的营养配比,生产多不饱和脂肪酸胶囊剂的厂家并不多。”他说,“现在采用生物工程技术发酵来生产不饱和脂肪酸,一般工厂和科研院所合作来开发,在工艺上主要看厂家,基本都能达到国家相关法律法规的要求。”   谈到国内不饱和脂肪酸的生产,邓泽元表示,嘉吉烯王生物工程公司是全亚洲最大的生产花生四烯酸的厂家,沿海还有很多类似的厂家,有的生产质量会好一点。   “ω-3脂肪酸比较容易获得,除了深海鱼,目前也可从海藻中提取或是利用生物发酵工程技术使用真菌发酵提取。”邓泽元说,“ω-3脂肪酸易氧化,生产时为了防止氧化,会添加抗氧化剂如维生素E,或冲入氮气、低温环境生产。深海鱼油多是国外生产,而国内沿海企业也在生产。”   据相关文献介绍,用微生物发酵生产不饱和脂肪酸,克服了传统的从动植物体内获取过程中气候、产地和生产周期的限制,并具有生产周期短、培养简单和产品质量稳定等特点。   另外,美籍华人、哈佛大学脂肪酸研究中心主任康景轩博士以深入研究ω-3脂肪酸曾两度获得诺贝尔生理学或医学奖提名,他利用基因工程技术首次成功地克隆出世界上第一头能够自身合成鱼油脂肪的猪。   李铎解释,如果转基因食品解禁的话,人们未来就可以吃上与深海鱼肉成分相似的鸡牛羊肉了。   食用油科学摄取讲究多   中国居民每天都会摄入一定量的食用油,因此在食用油中添加不饱和脂肪酸是一个很好的想法。记者从中粮集团获悉,他们推出了福临门DHA藻油食用调和油等产品,其中DHA是ω-3脂肪酸的一种,对人的大脑发育、成长至关重要。   “随着居民生活水平的提高,这类高端、具有特殊营养功能的产品逐步受到老百姓的认可,销量正稳步提升。”中粮集团相关负责人表示。   据介绍,中粮营养健康研究院和中粮工程科技有限公司西安油脂科学研究设计院相关团队,都在从事不饱和脂肪酸的研究。   不过,有人质疑在炒菜时高温会破坏ω-3脂肪酸的营养。对此,西安油脂科学研究设计院相关研究显示,DHA含量相对较低时,在加热及烹调环境中DHA损失率会大大降低,在一般家庭烹调炒菜条件下,其损失率在5%以内,保留率超过95%,完全满足家庭营养需求,但不适宜反复煎炸。   邓泽元表示,这些添加成分的含量可以从产品的营养标签上获知,如果价格低,其含量应该很少。深海鱼油比较贵,如果添加到大众食用的油中,一般量都不高。   “当然有些特殊要求的产品,量可能更合理,添加深海鱼油到食用油中应该是好办法,也是企业宣传的卖点。”邓泽元说,“当温度达到150度以上,ω-3脂肪酸容易被破坏,一般在油中可添加抗氧化剂来减缓其氧化,当然抗氧化剂的添加量应该符合国家GB2760的要求。”   专家还指出,多种植物油交替食用可以避免长期单一食用某种油脂带来的营养失衡。比如富含不饱和脂肪酸的橄榄油和亚麻籽油、耐高温能力更强的花生油等。
  • 氨基糖苷类抗生素检测新方案 样本富集净化新选择——AGs免疫亲和柱!
    氨基糖苷类化合物(AGs)是由两个或两个以上氨基糖通过糖苷键与氨基环醇骨架连接而成的碱性低聚糖抗生素。这类抗生素包括:链霉素、新霉素、卡那霉素、庆大霉素、壮观霉素等。他们共同特点是水溶性好、性质稳定、抗菌谱较广,又因其价格低廉,在兽药领域应用广泛。AGs存在一定程度的耳毒性、肾毒性和神经肌肉阻滞作用。目前世界多个国家和组织建立了AGs在动物源食品中的相关限量标准,我国GB 31650-2019规定AGs在动物源食品中的限量如下所示:AGs检测方法及制约因素AGs分子中因富含氨基和羟基而呈强极性,其分子中缺少发色团和荧光团,反相色谱保留较差,因此动物源食品中 AGs的检测比其他抗生素更为复杂。目前 AGs的检测方法主要有免疫分析法、高效液相色谱-质谱/质谱法(HPLC-MS/MS)、液相色谱-串联质谱法(LC-MS-MS),其中免疫分析法方便快速更适合定性筛查检测,HPLC-MS/MS、LC-MS-MS定量准确、灵敏度高更适合确证检测。在乳及乳制品中,GB/T 22969-2008《奶粉和牛奶中链霉素、双氢链霉素和卡那霉素残留量》,虽然只规定了链霉素、双氢链霉素和卡那霉素3种氨基糖苷类药物残留量的高效液相色谱-串联质谱测定的确证方法,但GB 31650-2019《食品中兽药最大残留限量》中还规定了其他氨基糖苷类药物包含大观霉素、安普霉素、庆大霉素、新霉素等,这些项目也是实验室对乳及乳制品安全检测过程的必检项目。目前HPLC-MS/MS、LC-MS-MS方法可对多种AGs进行同时检测,但是一次性不能对多种氨基糖苷类药物富集净化是提高检测效率的主要制约因素之一!在动物组织中,GB/T 21323-2007《动物组织中氨基糖苷类药物残留量的测定 高效液相色谱-质谱/质谱法》规定了动物组织中大观霉素、潮霉素B、双氢链霉素、链霉素、丁胺卡那霉素、卡那霉素、安普霉素、妥布霉素、庆大霉素和新霉素10种氨基糖苷类药物残留量的高效液相色谱-串联质谱测定的确证方法。但此检测AGs的方法前处理过程使用C18富集净化,检测限仅为20-100μg/kg。美正氨基糖苷类免疫亲和柱美正通过多年的积累,开发出一种使用氨基糖苷类免疫亲和柱前处理的方法,解决了动物源性食品中氨基糖苷类抗生素检测过程中前处理富集净化的难点。使用氨基糖苷类免疫亲和柱的前处理方法,可以将动物源食品中11种氨基糖苷类抗生素进行一次性特异性富集净化,能够更好地消除基质干扰,既提高了前处理富集净化效率又提高了分析的准确度和灵敏度。药物种类壮观霉素潮霉素B双氢链霉素链霉素丁胺卡那霉素卡那霉素安普霉素妥布霉素庆大霉素新霉素巴龙霉素产品特点特异性强:免疫学原理,对样本中AGs选择性高、特异性结合能力强;操作简单:可穿透式柱塞,使用便捷;性能优异:AGs加标回收率80-120%,准确度高样本类型动物源性食品,包括乳制品、动物组织及水产品等。药物残留类免疫亲和柱免费试用!美正在药物残留检测领域有更多的前处理富集净化方法,值美正十五周年之际,意向用户可对我司药物残留类免疫亲和柱进行免费试用。
  • 2013年诺贝尔奖揭晓时间表发布
    据诺贝尔奖官网消息,2013年诺贝尔奖揭晓仪式将于10月7日起陆续举行。   今年诺贝尔奖各奖项的具体揭晓时间如下:   生理学或医学奖(The Nobel Prize in Physiology or Medicine)   不早于斯德哥尔摩时间10月 7 日 11 时 30 分(北京时间10月 7 日 17 时 30 分)、评定机构:卡罗林斯卡医学院。   物理学奖(The Nobel Prize in Physics)   不早于斯德哥尔摩时间 10月8 日 11 时 45 分(北京时间 10月8 日 17 时 45 分) 评定机构:瑞典皇家科学院。   化学奖(The Nobel Prize in Chemistry )   不早于斯德哥尔摩时间10月 9 日 11 时 45 分(北京时间10月 9 日 17 时 45 分) 评定机构:瑞典皇家科学院。   和平奖(The Nobel Peace Prize)   斯德哥尔摩时间 10月11 日 11 时(北京时间 10月11 日 17 时) 评定机构:挪威诺贝尔委员会。   经济学奖(The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel)   不早于斯德哥尔摩时间10月 14 日 13 时(北京时间 10月14 日 19 时) 评定机构:瑞典皇家科学院。   文学奖(The Nobel Prize in Literature)   按照传统,诺贝尔文学奖的公布(The Nobel Prize in Literature)日期未被确认。一般而言,文学奖的公布时间是在 10 月份的第一个星期四,有时定在第二个星期四。颁奖公告只公布最后通过的颁奖决定,以及相关赞辞 评定机构:瑞典文学院   在奖金数量方面,由于受到经济危机的影响,2012 年的诺奖奖金由 1000 万瑞典克朗缩水至 800 万瑞典克朗,今年奖金的具体数量则尚未公布。   迫不及待,今年诺贝尔奖将花落谁家?&mdash &mdash 预测诺贝尔奖&ldquo 风向标&rdquo 盘点   风向标1:拉斯克基础医学奖   拉斯克奖(Lasker Award),始自1946年的年度奖,奖励取得了重大医学科学贡献的在世医学研究者。拉斯克奖素有&ldquo 美国的诺贝尔奖&rdquo 之美誉,是美国最具声望的生物医学奖项,也是医学界仅次于诺贝尔奖的一项大奖,旨在表彰医学领域作出突出贡献的科学家、医生和公共服务人员。自1962年起,获此项医学奖的科学家中有半数以上在随后的数年里又获诺贝尔奖。拉斯克奖在医学界又被称作&ldquo 诺贝尔奖风向标&rdquo 。而且,获得基础医学研究奖后再获得诺贝尔奖的比例更高。截至2005年,超过300人次获得拉斯克奖,其中至少已有71人相继获得过诺贝尔奖。   风向标2:汤森路透引文桂冠   每年,汤森路透都会利用其研究解决方案Web of Knowledge中的数据,根据诺贝尔奖的生理或医学、物理、化学与经济分类,使用定量数据来分析和预测最有影响力的研究人员。根据其发表的研究成果的总被引频次,这些高影响力研究人员被授予汤森路透引文桂冠得主(Citation Laureates)称号,预示着他们可能成为今年或不久将来的诺贝尔奖得主。汤森路透是唯一采用定量数据预测年度诺贝尔奖得主的机构,自2002年起,共有26位引文桂冠奖得主赢得诺贝尔奖。   风向标3:沃尔夫医学奖   沃尔夫医学奖(Wolf Prize in Medicine),即以色列沃尔夫基金会(Wolf Foundation)颁授沃尔夫奖之一,奖励那些在医学,特别是基础医学方面有重大发现的科学家。许多得主也是诺贝尔医学奖得主。   风向标4:Google Pagerank   许多人指出,科学期刊用论文引用次数来排行科学家是不科学的,纽约布鲁克海文国家实验室的Sergei Maslov和波士顿大学的Sidney Redner认为Google的PageRank算法对论文的评判方式具有重要参考价值。从本质上说, PageRank由论文引用的数目(或指向一个网页的链接数目)统计所得 。一篇论文被引用的次数越多,其排名就越高。同时,其引用论文的重要性越高,相应其排名越高。   Maslov和Redner采用了该算法对美国物理学会1893年在期刊(如Physical Review Letters 物理评论快报)以来所发表353268篇论文进行排序,结果发现论文排名Top10的作者大多数是诺贝尔奖获得者(让人惊奇的是,位列第一位的作者Cabibbo没有获得诺贝尔奖。这应该是诺贝尔委员会对获得2008年诺贝尔物理学奖的Makoto Kobayashi 和Toshihide Maskawa基于Cabibbo的想法所做的重要工作更感兴趣所致。)所有这一切表明:挖掘该清单后面的排名可能是一个预测未来诺贝尔奖获奖者的好方法。   风向标5:盖尔德纳基金会国际奖   盖尔德纳国际奖是生物医学界最具声望的大奖,被誉为诺贝尔奖的预备奖,用于奖励在改善人类生活品质领域做出重大贡献的科学家。截至2007年,已有69位诺贝尔奖得主在此之前,获得盖尔德纳。盖尔德纳基金会于1957年由加拿大人詹姆斯&bull 阿瑟&bull 盖尔德创建,基金也来自他的个人捐赠。盖尔德纳国际奖是1971年为纪念胰岛素发现50周年而设立的,用于奖励医学领域实质性的重大成就。   风向标6:博彩赔率榜   各大博彩公司在诺奖揭晓前陆续开出盘口,随着开奖日期的临近,还会按照各种&ldquo 空穴来风&rdquo 不断调整赔率。由于诺奖入围名单严格保密,所以各大博彩公司的盘口成了开奖前媒体与业界的&ldquo 风向标&rdquo ,历史上,他们的盘口确有靠谱之时。   风向标7:知名博主   学术圈内一些知名学者预测诺贝尔奖也有个人心得,如北京大学生科院前院长饶毅曾于2002年10月6日(当年诺贝尔奖颁发的前几天)写下了《二十一项值得获诺贝尔生理学医学奖的工作》,列出了21项他认为应当获得诺贝尔奖的工作。7年过去了,除了2005年,每年都有被饶毅预测到的工作获奖。2008年10月5日,饶毅在科学网发表《美妙的生物荧光分子与好奇的生物化学家》,详细介绍了钱永健等人的工作,文章写得深入浅出,堪称科普杰作。3天后,诺贝尔奖委员会果然公布,2008年化学奖颁发给钱永健等人。   附:近十年诺贝尔生理或医学奖获奖研究领域(2002~2012)   近十年来,诺贝尔生理或医学奖获奖领域分别如下:   2012年:诱导多功能干细胞   日本京都大学Shinya Yamanaka(山中伸弥)与英国发育生物学家John Gurdon(约翰· 戈登)因在细胞核重新编程研究领域的杰出贡献,获得2012年诺贝尔生理学或医学奖。一直以来,人体干细胞都被认为是单向地从不成熟细胞发展为专门的成熟细胞,生长过程不可逆转。然而,格登和山中伸弥教授发现,成熟的、专门的细胞可以重新编程,成为未成熟的细胞,并进而发育成人体的所有组织。卡罗林斯卡医学院的新闻公报称,两位科学家的发现彻底改变了人们对细胞和器官生长的理解。教科书因之改写,新的研究领域被建立起来。通过对人体细胞的重新编程,科学家们创造了诊断和治疗疾病的新方法。   2011年:免疫系统激活的关键原理   本年度诺贝尔生理学或医学奖授予Bruce A. Beutler(布鲁斯· 比尤特勒), Jules A. Hoffmann an(朱尔斯-霍夫曼)和Ralph M. Steinman(拉尔夫· 斯坦曼). Bruce A. Beutler和Jules A. Hoffmann因为&ldquo 他们在先天免疫活化方面的发现&rdquo 而获此殊荣 另一半奖金给了Ralph M. Steinman,因为他发现了树突状细胞在过激免疫中的作用。&ldquo 今年的诺贝尔医学奖获得者发现了免疫活化的关键原理,这彻底改变了我们对于免疫系统的理解。&rdquo 诺贝尔官方称。   2010年:体外受精技术   被誉为&ldquo 试管婴儿之父&rdquo 的英国科学家RobertG.Edwards(罗伯特· 爱德华兹),因&ldquo 在试管受精技术方面的发展&rdquo 而被授予该奖项。诺贝尔奖评选委员会秘书长戈兰· 汉松说,爱德华兹创立的体外受精技术解决了一个重要的医学难题,即通过体外受精治疗多种不育症。   2009年:端粒和端粒酶是如何保护染色体   美国三位科学家伊丽莎白· 布莱克本(Elizabeth Blackburn)、卡罗尔-格雷德(Carol Greider)、杰克· 绍斯塔克(Jack Szostak)因发现了端粒和端粒酶保护染色体的机理被授予该奖项。卡罗林斯卡医学院方面称,这三人&ldquo 解决了生物学上的一个重大问题&rdquo ,即在细胞分裂时染色体如何进行完整复制,如何免于退化。其中奥秘全部蕴藏在端粒和端粒酶上。他们的发现提高了人们对于细胞的理解的深度,阐明了疾病机制,有助于未来新治疗方法的发展。   2008年:人乳头状瘤病毒(HPV)和人类免疫缺陷病毒(HIV)的发现   德国科学家哈拉尔德· 楚尔· 豪森(Harald zur Hausen)因发现人乳突淋瘤病毒引发子宫颈癌获此殊荣,两名法国科学家弗朗索瓦丝· 巴尔-西诺西(Francoise Barré -Sinoussi)和吕克· 蒙塔尼(Luc Montagnier)因发现人类免疫缺陷病毒获此殊荣。基于HPV的发现,人类研制出了两种能够预防女性第二常见癌症&mdash &mdash 宫颈癌的有效疫苗。   2007年:基因靶向技术   Mario R. Capecchi(马里奥· 卡佩基), Oliver Smithies(马奥利弗· 史密斯)和Martin J. Evans(马丁· 埃文斯)由于在胚胎干细胞和哺乳动物的DNA重组方面的开创性成绩而获奖。由于他们的发现,产生了一种名别&ldquo 小鼠中的基因打靶&rdquo 的技术。这项技术极其有用,目前已经被广泛应用在几乎所有生物医学领域&mdash &mdash 从基础研究到新疗法的研制。   2006年:核糖核酸(RNA)干扰机制   Andrew Z. Fire(安德鲁· 法尔),Craig C. Mello(克雷格· 梅洛)由于发现了一个有关控制基因信息流程的关键机制而获奖。瑞典卡罗林斯卡医学院宣布,Craig C.Fire安德鲁· 法尔和克雷格· 梅洛在基因技术的使用方面提供了&ldquo 令人激动的可能性&rdquo 。   2005年:幽门螺旋桿菌以及该细菌对消化性溃疡病的致病机理   Barry J. Marshall(巴里· 马歇尔)和J. Robin Warren(罗宾· 沃伦)因为发现了幽门螺杆菌以及它在胃肠道疾病中的作用而获奖。诺贝尔奖委员会在授奖词中说,由于两位科学家的发现,使得原本慢性的、经常无药可救的胃溃疡变成了只需抗生素和一些其他药物短期就可治愈的疾病。   2004年:气味受体和嗅觉系统的组织方式   inda B. bucks(琳达· 巴克)和Richard Alex(理查德· 阿克塞尔)由于在在气味受体和嗅觉系统组织方式研究中作出贡献而获奖。人类的嗅觉长期以来一直是一个非常神秘的领域。inda B. bucks和Richard Alex通过一系列开拓性的研究,澄清了人们的嗅觉系统是如何工作的。   2003年:核磁共振成像的研究   Paul C. Lauterbu(保罗· 劳特伯)和Sir Peter Mansfields(彼德· 曼斯菲尔德)因为发明了应用核磁共振成像技术显示人体复杂结构的技术而获奖。诺贝尔奖委员会说,这些发现导致了在临床诊断和医学研究上获得突破的核磁共振成像仪的出现,他们的成就是医学诊断和研究领域的重大成果。   2002年:器官发育和细胞程序性细胞死亡(细胞凋亡)的遗传调控机理   Sydney Brenner(悉尼· 布雷内), H. Robert Horvitz(罗伯特· 霍维茨)和John E. Sulston(约翰· 苏尔斯顿)因为发现器官发育和细胞程序性细胞死亡(细胞程序化凋亡)的遗传调控机理而获奖。诺贝尔奖委员会说,三名科学家的发现对于研究治疗癌症、艾滋病和中风等疾病有着重大作用。
  • 汤森路透发布2013年诺贝尔奖预测名单
    据日本通网站消息,汤森路透(Thomson Reuters)9月25日公布预测今年诺贝尔奖呼声较高的28名候选人名单,其中有3位是日本学者。   在医学· 生理学诺贝尔奖候选人方面,因在有关细胞&ldquo 自噬作用&rdquo 的研究中取得重要成果,东京工业大学特聘教授大隅良典和东京大学大学院教授水岛昇在列。物理学奖方面,利用铁研制出超导物质的东京工业大学教授、元素战略研究中心主任细野秀雄入选。   汤森路透每年都会根据论文被引用次数等进行分析,列出最有影响力的诺贝尔奖候选者名单,包括医学· 生理学、物理学、化学、经济学等4个领域。今年的诺贝尔奖各奖项,将于10月7日起陆续公布。   附:The 2013 Thomson Reuters Citation Laureates by Nobel Prize category are:   CHEMISTRY   A. Paul Alivisatos   Samsung Distinguished Professor of Nanoscience and Nanotechnology, and Professor of Chemistry and Materials Science and Engineering, and Director of Lawrence Berkeley National Laboratory   University of California, Berkeley   Berkeley, CA, USA   -and-   Chad A. Mirkin   George B. Rathmann Professor of Chemistry   Northwestern University   Evanston, IL, USA   -and-   Nadrian C. Seeman   Margaret and Herman Sokol Professor of Chemistry   New York University   New York, NY, USA   For contributions to DNA nanotechnology   Bruce N. Ames   Senior Scientist and Professor Emeritus, Biochemistry and Molecular Biology   Children&rsquo s Hospital Oakland Research Institute, Oakland, CA and University of California, Berkeley, Berkeley, CA, USA   For the invention of the Ames test of mutagenicity   M.G. Finn   Professor of Chemistry and Biochemistry   Georgia Institute of Technology   Atlanta, GA, USA   -and-   Valery V. Fokin   Associate Professor of Chemistry   The Scripps Research Institute   La Jolla, CA, USA   -and-   K. Barry Sharpless   W.M. Keck Professor of Chemistry   The Scripps Research Institute   La Jolla, CA, USA   Forthe development of modular click chemistry   PHYSICS   Franç ois Englert   Professor Emeritus and Distinguished Visiting Professor in Residence, Chapman Institute for Quantum Studies   Université Libre de Bruxelles, Brussels, Belgium and Chapman University, Orange, CA, USA   -and-   Peter W. Higgs   Professor Emeritus   University of Edinburgh   Edinburgh, Scotland, UK   For their prediction of the Brout-Englert-Higgs boson   Hideo Hosono   Professor, Materials and Structures Laboratory and Director of   Materials Research Center for Element Strategy   Tokyo Institute of Technology   Yokohama, Japan   For his discovery of iron-based superconductors   Geoffrey W. Marcy   Professor of Astronomy   University of California, Berkeley   Berkeley, CA, USA   -and-   Michel Mayor   Emeritus Professor   University of Geneva   Geneva, Switzerland   -and-   Didier Queloz   Professor   University of Cambridge, Cambridge, UK and University of Geneva, Geneva, Switzerland   For their discoveries of extrasolar planets   PHYSIOLOGY or MEDICINE   Adrian P. Bird   Buchanan Professor of Genetics   University of Edinburgh   Edinburgh, Scotland, UK   -and-   Howard Cedar   Edmond J. Safra Distinguished Professor Emeritus   Hebrew University of Jerusalem   Jerusalem, Israel   -and-   Aharon Razin   Professor of Biochemistry Emeritus   Hebrew University of Jerusalem   Jerusalem, Israel   For their fundamental discoveries concerning DNA methylationand gene expression   Daniel J. Klionsky   Alexander G. Ruthven Professor of Life Sciences   University of Michigan   Ann Arbor, MI, USA   -and-   Noboru Mizushima   Professor, Biochemistry and Molecular Biology   Graduate School and Faculty of Medicine   University of Tokyo   Tokyo Japan   -and-   Yoshinori Ohsumi   Professor, Frontier Research Center   Tokyo Institute of Technology   Yokohama, Japan   For elucidating the molecular mechanisms and physiological function of autophagy   Dennis J. Slamon   Professor, Chief, and Executive Vice Chair for Research   Department of Medicine, Hematology/Oncology and Director of Revlon/UCLA Women&rsquo s Cancer Research Program   University of California Los Angeles   Los Angeles, CA, USA   For his pioneering research identifying the HER-2/neu oncogene, leading to more effective cancer therapy   ECONOMICS   Joshua D. Angrist   Ford Professor of Economics   Massachusetts Institute of Technology   Cambridge, MA, USA   -and-   David E. Card   Class of 1950 Professor of Economics   University of California, Berkeley   Berkeley, CA, USA   -and-   Alan B. Krueger   Bendheim Professor of Economics   Princeton University   Princeton, NJ, USA   For their advancement of empirical microeconomics   Sir David F. Hendry   Professor of Economics   University of Oxford   Oxford, England, UK   -and-   M. Hashem Pesaran   John Elliot Distinguished Chair in Economics & Professor of Economics, and Emeritus Professor of Economics & Fellow of Trinity College, Cambridge   University of Southern California, Los Angeles, CA, USA and University of Cambridge, Cambridge, England, UK   -and-   Peter C.B. Phillips   Sterling Professor of Economics and Professor of Statistics   Yale University   New Haven, CT, USA   For their contributions to economic time-series, including modeling, testing and forecasting   Sam Peltzman   Ralph and Dorothy Keller Distinguished Service Professor of Economics Emeritus   University of Chicago Booth School of Business   Chicago, IL, USA   -and-   Richard A. Posner   Judge, United States Seventh Circuit Court of Appeals, and Senior Lecturer   University of Chicago Law School   Chicago, IL, USA   For extending economic theories of regulation
  • 2018年度“引文桂冠奖”,17位科学家进入其诺贝尔奖预测名单
    p style=" text-indent: 2em text-align: left " 2018年9月20日,为加速科学发现和创新提供高质量数据及分析服务的全球领导者科睿唯安(Clarivate Analytics)今天宣布了其2018年度“ 引文桂冠奖”得主,17位来自美国、欧盟和亚洲的科研精英入选。被誉为“诺奖风向标”的科睿唯安“引文桂冠奖”自2002年首度颁布至今,已有共46位该奖项得主荣膺诺贝尔奖。 /p p style=" text-indent: 2em text-align: left " 自2002年以来,科睿唯安的分析师们每年都会基于Web of Science平台上的论文和引文数据,遴选诺贝尔奖奖项所涉及的生理学或医学、物理学、化学及经济学领域中全球最具影响力的顶尖研究人员。基于其所发表研究成果被全球同行引用的频次和引文影响力,“引文桂冠奖”授予这些领域最具影响力的科学家和经济学家,这些人很有可能成为当年或未来的诺贝尔奖得主。获选科学家的研究成果的被引用频次通常排在全球前万分之一(0.01%),他们对科学发展作出了变革性的,甚至是革命性的的贡献。 /p p style=" text-indent: 2em text-align: left " 今年10月1日,诺贝尔奖委员会将投票选出最高荣誉的获得者。这一年度盛典每年都会引起全世界的猜想,而科睿唯安是全球唯一使用量化数据,对诺贝尔奖潜在获奖者进行年度预测的机构。迄今为止,已经有46位“引文桂冠奖”得主获得诺贝尔奖,其中27位在荣获“引文桂冠奖”之后的两年内即斩获诺奖。 /p p style=" text-indent: 2em text-align: left " 那些获得极高引用次数的论文(事实上,被引用频次达2000次或以上是极为少见的)的作者通常都是国家科学院成员,在大学或其它研究机构担任高级职务,或者在自身的研究领域荣获了多项国际殊荣。虽然同行评议仍是评定卓越研究的首要方法,但被引记录通常能够为同行评议提供重要的补充。 /p p style=" text-indent: 2em text-align: left " 今年的17位获奖者中,有11位来自世界领先的北美学术机构,其他6位来自英国、法国、德国、西班牙和日本,其中有两位女性。 /p p style=" text-indent: 2em text-align: left " 2018年度科睿唯安“引文桂冠奖”获奖名单& nbsp /p p br style=" text-indent: 2em text-align: left " / /p p style=" text-indent: 2em text-align: left " strong 生理学或医学领域 br style=" text-indent: 2em text-align: left " / /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/f833af03-b4db-44f3-8c7a-9c25b4315dca.jpg" title=" Napoleone-Ferrara-1.jpg" alt=" Napoleone-Ferrara-1.jpg" / /p p style=" text-indent: 2em text-align: left " Napoleone Ferrara 纳波莱奥内· 费拉 /p p style=" text-indent: 2em text-align: left " 美国加州大学圣地亚哥分校 /p p style=" text-indent: 2em text-align: left " 获奖原因:发现了血管内皮生长因子(VEGF),在健康组织和癌细胞中形成新血管的过程中,这一因子是血管生成的关键调节器。费拉的工作促进了癌症和其他疾病中用于抑制血管生长的药物的研发。 br style=" text-indent: 2em text-align: left " / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/d7f3fe3e-63d2-4bc2-9fad-4ddecc7527ae.jpg" title=" Minoru-Kanehisa.jpg" alt=" Minoru-Kanehisa.jpg" / /p p style=" text-indent: 2em text-align: left " Minoru Kanehisa 金久时 /p p style=" text-indent: 2em text-align: left " 日本京都大学 /p p style=" text-indent: 2em text-align: left " 获奖原因:主要因为对生物信息学的贡献,特别是对《京都基因与基因组百科全书》一书的完善与发展。这个参与基因表达的蛋白质通路数据库允许基因组学家和其他研究人员收集、比较和解释细胞过程的数据,例如那些构成疾病的数据。 br style=" text-indent: 2em text-align: left " / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/b94a331a-ea5c-4744-93fe-922a5dbe63ef.jpg" title=" Solomon-H-Snyder.jpg" alt=" Solomon-H-Snyder.jpg" / /p p style=" text-indent: 2em text-align: left " Solomon H. Snyder 所罗门· 斯奈德 /p p style=" text-indent: 2em text-align: left " 美国马里兰州巴尔的摩市约翰霍普金斯大学 /p p style=" text-indent: 2em text-align: left " 获奖原因:识别了许多神经递质和精神药物的受体,包括与鸦片制剂相关的脑受体。他的研究已经应用于许多常见处方药的开发,如用于止痛药物。 br style=" text-indent: 2em text-align: left " / br style=" text-indent: 2em text-align: left " / /p p style=" text-indent: 2em text-align: left " strong 物理学领域 br style=" text-indent: 2em text-align: left " / /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/37b0f903-fb02-4ddc-bdaa-b1f4f0a56249.jpg" title=" David-Awschalom.jpg" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/17d956e8-df1b-4bce-99a0-0fc164a182e3.jpg" title=" Arthur-C.-Gossard.jpg" / /p p style=" text-indent: 2em text-align: left " David Awschalom 大卫· 奥沙隆 /p p style=" text-indent: 2em text-align: left " 美国伊利诺伊州芝加哥大学 /p p style=" text-indent: 2em text-align: left " - 以及- /p p style=" text-indent: 2em text-align: left " Arthur C. Gossard 阿瑟 C· 戈萨德 /p p style=" text-indent: 2em text-align: left " 美国加州大学圣巴巴拉分校 /p p style=" text-indent: 2em text-align: left " 获奖原因:观测半导体中的自旋霍尔效应。这项对电子在磁场影响下如何表现的研究有望在许多领域得到应用,包括量子计算。 br style=" text-indent: 2em text-align: left " / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/0a4b5516-d431-4ae6-8ca8-c406d0892d69.jpg" title=" Sandra-M-Faber.jpg" alt=" Sandra-M-Faber.jpg" / /p p style=" text-indent: 2em text-align: left " Sandra M. Faber 桑德拉 M· 法伯尔 /p p style=" text-indent: 2em text-align: left " 美国加州大学圣克鲁斯分校 /p p style=" text-indent: 2em text-align: left " 获奖原因:研究出确定星系的年龄、大小和距离的开创性方法以及对宇宙学的其他贡献,包括对“冷暗物质”的研究,该物质被认为是宇宙“丢失”的物质。 br style=" text-indent: 2em text-align: left " / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/2aaf08e0-2925-442d-80f7-cac3805e5134.jpg" title=" Yury-Gogotsi.jpg" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/01c4d55d-bbfb-44dd-adf0-236b3cfd28d9.jpg" title=" Rodney-S-Ruoff.jpg" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/18966155-d006-46f0-9e4e-990b0f1c8b3a.jpg" title=" Patrice-Simon.jpg" alt=" Patrice-Simon.jpg" / /p p style=" text-indent: 2em text-align: left " Yury Gogotsi 尤里· 高果其 /p p style=" text-indent: 2em text-align: left " 美国宾夕法尼亚州费城德雷塞尔大学 /p p style=" text-indent: 2em text-align: left " - 以及 –& nbsp /p p style=" text-indent: 2em text-align: left " Rodney S. Ruoff 罗德尼 S· 劳夫 /p p style=" text-indent: 2em text-align: left " 韩国(国立)蔚山科学技术院,韩国基础科学研究所(IBS)多维碳材料中心(CMCM) /p p style=" text-indent: 2em text-align: left " - 以及 –& nbsp /p p style=" text-indent: 2em text-align: left " Patrice Simon 特里斯· 西蒙 /p p style=" text-indent: 2em text-align: left " 法国图卢兹的保罗萨巴蒂尔大学 /p p style=" text-indent: 2em text-align: left " 获奖原因:其发现推动了对碳基材料的理解和发展,包括电容储能和对超级电容器的运行机制的了解。 br style=" text-indent: 2em text-align: left " / br style=" text-indent: 2em text-align: left " / /p p style=" text-indent: 2em text-align: left " strong 化学领域 br style=" text-indent: 2em text-align: left " / /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/6824c033-c788-45a2-9b84-81baaccf322c.jpg" title=" John-E-Bercaw.jpg" alt=" John-E-Bercaw.jpg" / /p p style=" text-indent: 2em text-align: left " Eric N. Jacobsen 埃里克 N.雅克布森 /p p style=" text-indent: 2em text-align: left " 美国马萨诸塞州剑桥 哈佛大学 /p p style=" text-indent: 2em text-align: left " 获奖原因:对有机合成催化反应的贡献,特别是对雅各布森环氧化反应的发展。 br style=" text-indent: 2em text-align: left " / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/290464bd-b416-4dfc-b13b-3b868efc89c9.jpg" title=" George-M-Sheldrick.jpg" alt=" George-M-Sheldrick.jpg" / /p p style=" text-indent: 2em text-align: left " George M. Sheldrick 乔治 M· 谢尔德里克 /p p style=" text-indent: 2em text-align: left " 德国哥廷根大学 /p p style=" text-indent: 2em text-align: left " 获奖原因:通过引入和维护计算机程序SHELX系统,在结构晶体学方面产生了巨大影响。 br style=" text-indent: 2em text-align: left " / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/e202aaac-8e3f-4e78-87f8-34ee4188768e.jpg" title=" JoAnne-Stubbe.jpg" alt=" JoAnne-Stubbe.jpg" / /p p style=" text-indent: 2em text-align: left " JoAnne Stubbe 乔安妮· 斯塔布 /p p style=" text-indent: 2em text-align: left " 美国马萨诸塞州剑桥 麻省理工学院 /p p style=" text-indent: 2em text-align: left " 获奖原因:发现核糖核苷酸还原酶可通过自由基机制将核糖核苷酸转化为脱氧核苷酸。这些脱氧核糖核苷酸继而成为DNA合成和修复的基础。 br style=" text-indent: 2em text-align: left " / br style=" text-indent: 2em text-align: left " / /p p style=" text-indent: 2em text-align: left " strong 经济学领域 br style=" text-indent: 2em text-align: left " / /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/99dbfce6-8265-40a3-8040-881665282d14.jpg" title=" Manuel-Arellano.jpg" alt=" Manuel-Arellano.jpg" / /p p style=" text-align:center" strong img src=" https://img1.17img.cn/17img/images/201809/uepic/5021fa64-2e03-49f5-baca-5b873987d7ef.jpg" title=" Stephen-R-Bond.jpg" alt=" Stephen-R-Bond.jpg" / /strong /p p style=" text-indent: 2em text-align: left " Manuel Arellano 曼努埃尔· 阿雷拉诺 /p p style=" text-indent: 2em text-align: left " 西班牙马德里货币金融研究中心(CEMFI) /p p style=" text-indent: 2em text-align: left " - 以及 –& nbsp /p p style=" text-indent: 2em text-align: left " Stephen R. Bond斯蒂芬 R· 邦德 /p p style=" text-indent: 2em text-align: left " 英国牛津大学 /p p style=" text-indent: 2em text-align: left " 获奖原因:在面板数据分析,尤其是Arellano-Bond 估计方面作出了贡献。该方法利用面板数据中的时间模式来估计对政策或其他变量变化的经济响应,同时对永久性的未观察到的混淆变量进行控制。 br style=" text-indent: 2em text-align: left " / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/47704c4a-1b38-4285-9c35-ba11f227a28f.jpg" title=" Wesley-M-Cohen.jpg" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/1d13b0e2-a782-4d59-89fc-10fce887c4d2.jpg" title=" Daniel-A-Levinthal.jpg" / /p p style=" text-indent: 2em text-align: left " Wesley M. Cohen 韦斯利 M· 科恩 /p p style=" text-indent: 2em text-align: left " 美国北卡罗来纳州达勒姆杜克大学 /p p style=" text-indent: 2em text-align: left " - 以及 –& nbsp /p p style=" text-indent: 2em text-align: left " Daniel A. Levinthal 丹尼尔 A· 利文索尔 /p p style=" text-indent: 2em text-align: left " 美国宾夕法尼亚州大学 /p p style=" text-indent: 2em text-align: left " 获奖原因:吸收能力(即企业评价、吸收和应用外部知识的能力)概念的引入和发展,及其对促进人们了解企业、行业和国家的创新表现所做的贡献。 br style=" text-indent: 2em text-align: left " / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/2fc7f7d4-cc5b-4d22-ad04-22f65f48508c.jpg" title=" David-M-Kreps.jpg" alt=" David-M-Kreps.jpg" / /p p style=" text-indent: 2em text-align: left " David M. Kreps 大卫 M· 克雷普斯 /p p style=" text-indent: 2em text-align: left " 美国加利福尼亚州斯坦福大学 /p p style=" text-indent: 2em text-align: left " 获奖原因:对动态经济现象的贡献,包括选择理论、金融学、博弈论和组织理论。 /p p br style=" text-indent: 2em text-align: left " / /p
  • 第31届搞笑诺贝尔奖揭晓,“无聊的知识”又双叒叕增加了!
    搞笑诺贝尔奖(IgNobelPrizes)是对诺贝尔奖的有趣模仿。其名称来自Ignoble(不名誉的)和NobelPrize(诺贝尔奖)的结合。受疫情影响,当地时间2021年9月9日,第31届搞笑诺贝尔奖典礼在线上举行。研究猫喋喋不休、电影观众散发的化合物以及空运犀牛的最佳方法等的科学家们获得了最高荣誉,你没看错,这一届搞笑诺贝尔奖和往常一样荒谬。今年获得“搞笑诺贝尔奖”的无厘头研究有哪些呢?让我们一睹为快。生物学奖:“喵星人”的语言竟有这么多?来自瑞典隆德大学的生物学家苏珊娜肖茨对“喵星人”的语言进行了研究。图片来源:《印度快报》网站苏珊娜肖茨发现猫咪能发出十几种不同的声音:咕噜声、唧唧声、颤抖声、颤音、尖锐声、喃喃自语、喵喵声、呻吟、吱吱声、嘶嘶声、嚎叫声、咆哮声… … 通过对名为唐娜、洛基和涂布等猫的观察,从2011年到2016年,她撰写了五篇相关研究论文。研究表明,咕噜声和喵喵声是最常见的猫叫声。而且,猫会根据环境发出不同的声音,例如通过窗户观察鸟类或觅食时。生态奖:被嚼过的口香糖也有大学问!对一些人来说,街上一块被咀嚼过的口香糖简直是令人作呕的垃圾;而对于西班牙巴伦西亚大学的莱拉萨塔里等人来说,这就是一个科学宝库。他们使用基因分析技术研究了大街上被丢弃的口香糖上保留和生长的细菌,以及“废弃的口香糖菌群”是如何随着时间的推移而变化的。这些丢弃的口香糖分别来自法国、希腊、新加坡、西班牙和土耳其。这项研究发表在《科学报告》杂志上。他们也因此获得了生态奖。研究小组分析了扔到世界各地人行道上的口香糖,发现几周后就会出现多种细菌菌株,并会保留持续三个月以上。研究人员写道:“我们的发现对很多学科都有影响,包括取证、传染病控制或废弃口香糖残留物的生物修复。”化学奖:电影内容也影响观众散发的气味?德国马克斯普朗克研究所的一个团队获得了搞笑诺贝尔化学奖,他们测量了电影院内观众在看电影时释放的挥发性有机化合物(VOC),想看看这些散发出来的物质是否与电影中的脏话、暴力、性、吸毒以及反社会行为有关。研究发现,观众的脉搏和呼吸频率一致增加时,特殊的传感器可以检测到二氧化碳和数百种其他VOCs的相应上升,这种效果在悬疑和喜剧电影中最为强烈,而恐怖电影中的异戊二烯水平差异很大。据了解,研究人员想证明,我们可以利用VOC测量值作为电影评级的工具。如果能在影片试映期间监测电影院的气味,以便更客观地衡量电影内容对观众的影响,这或许确实是个不错的想法。经济学奖:领导人越胖,国家越腐败蒙彼利埃商学院经济学教授帕夫洛布拉瓦茨基试图提出了一种更可量化的评估腐败的方法:领导人的体重指数 (BMI)。他利用测试计算机视觉/机器学习是否可以使用面部识别来确定一个人的 BMI。他选择了来自 15 个前苏联国家的政治领导人面孔的 299 张样本图像,“因为腐败被认为是该地区的一个重大问题。” 然后对这些样本进行计算机视觉算法,以获得每个政治家的 BMI 估计值。他发现数据集中的大多数政客都有相当高的 BMI:96 人的BMI 在 35 到 40 之间,而 13 人严重肥胖(BMI大于 40)。只有 10 人的 BMI 处于正常范围内,而且没有人体重过轻。此外,当把这些数据与这 15 个国家的腐败指标进行比较时,他发现两者之间存在高度相关性。例如,波罗的海国家(爱沙尼亚、立陶宛和拉脱维亚)和格鲁吉亚被认为是最不腐败的,其政治领导人的 BMI 中值最低。医学奖:“爱的力量”——改善鼻塞还有这种操作?德国海尔布隆SLK诊所的教授塞姆布卢特和他的同事获得了医学奖,因为其研究表明,性高潮是一种有效的鼻腔减充血剂。与服用减充血药物相比,性高潮发生后,鼻腔呼吸明显改善,而且其清除鼻窦的效果持续了一个多小时。尽管布卢特承认他并没有从每个人那里获得确凿的数据。目前还不完全清楚鼻塞被疏通的机制,但布卢特认为有很多因素在起作用。他说:“我认为这是随性高潮而来的兴奋、体育锻炼和荷尔蒙变化的混合体所导致的。”和平奖:男性长胡须,不只为了好看图中分别是搞笑诺贝尔和平奖获得者大卫凯利、史蒂文纳尔韦和伊森贝塞里斯。图片来源:美国犹他大学网站美国犹他大学的伊桑贝塞里斯等人合著的一篇论文称,人类男性进化出胡须是为了防止面部遭到拳击。由于这一惊人的假设,该团队被授予搞笑诺贝尔和平奖。在这项研究过程中,没有人真的被一拳打脸;取而代之的是,将重物落到包裹在羊皮中的骨状纤维环氧树脂复合材料上。这项研究的结果表明,头发确实能够显著降低钝器撞击的冲击力,并吸收能量。如果人类的面部毛发也是如此,那么留胡子可能有助于保护面部骨骼的脆弱区域免受破坏性打击,比如下巴。据推测,浓密的胡须还可以减少面部皮肤和肌肉的损伤、撕裂和挫伤。物理学奖/动力学奖:为什么行人(不)会经常发生碰撞?费德里科托斯基教授和大学研究员亚历山德罗科贝塔凭借对埃因霍芬火车站500万名乘客的步行行为的分析,获得了所谓的搞笑诺贝尔奖。图片来源:荷兰埃因霍芬理工大学网站没错,今年两项搞笑诺贝尔奖——物理学奖和动力学奖都是与行人有关的。荷兰埃因霍芬理工大学的亚历山德罗科贝塔和他的同事因为进行了实验而获得了物理学奖,他们的实验目的是“了解为什么行人不会相撞”,搞笑诺贝尔奖的组织者说,这项实验旨在了解为什么行人不会经常与其他行人相撞。而另一项发表在《科学进展》杂志上的研究获得了动力学奖,该研究解释了为什么行人有时会发生碰撞?昆虫学奖:消灭潜艇上的小强!昆虫学奖颁给了一组美国海军研究人员,他们研究了消灭潜艇上蟑螂的最佳方法,那就是使用高效有机磷杀虫剂。这项研究可以追溯到1971年,因此,获得搞笑诺贝尔奖永远不会太晚。运输学奖:勇敢犀牛,不怕困难!研究人员研究了空运犀牛的最佳方法。图片来源:英国BBC网站搞笑诺贝尔运输学奖颁给了美国康奈尔大学的罗宾雷德克里夫等人,他们通过评估多种运输濒危黑犀牛的方法获得了这一奖项。这些犀牛正受到偷猎者的威胁,它们需要被重新安置,以防止过度近亲繁殖。运输打了镇静剂的犀牛的理想方式是用直升机把它们抬起来,而且还要求它们倒挂。研究团队担心犀牛在倒立时可能会出现呼吸和心血管问题,所以他们研究了12头犀牛在倒立被吊起来时的身体反应。事实证明,犀牛们“应付得很好”,而且运输被打镇静剂后颠倒的犀牛还很酷!图片来源:gigazine.net网站以上就是获得今年搞笑诺贝尔奖各个奖项的有趣研究。事实上,自1991年,搞笑诺贝尔奖已经走过30个年头了,它尊重好奇和“富有想象力”的发现,设立初衷的是为了表彰那些让人忍俊不禁后又发人深省的研究。有些事情看似好笑又无趣,但正是因为有了科学家们的钻研精神,我们才能在“废物”背后看到“宝物”,在“无用”深处挖掘“有用”,这些研究也或许正是某一伟大未来科学研究成果的垫脚石,因此,每一个奖项也都应该被尊重。看完搞笑诺贝尔奖以后,是不是对科学多了一度热爱呢?
  • 杨振宁:1957年诺贝尔物理学奖获得者
    杨振宁,出生于安徽省合肥县(今肥西县),著名美籍华裔科学家、诺贝尔物理学奖获得者。其于1954年提出的规范场理论,于70年代发展为统合与了解基本粒子强、弱、电磁等三种相互作用力的基础 1957年由于与李政道提出的“弱相互作用中宇称不守恒”观念被实验证明而共同获得诺贝尔物理学奖 此外曾在统计物理、凝聚态物理、量子场论、数学物理等领域做出多项贡献。   杨振宁历任普林斯顿高等研究所教授、纽约州立大学石溪分校爱因斯坦讲座教授和理论物理研究所所长 又自1986年起,出任香港中文大学博文讲座教授 1995年应聘担任国立华侨大学名誉教授 1997年出任清华大学高等研究中心荣誉主任 1999年自石溪分校荣休,同年出任清华大学教授,2003年底回北京定居 并曾先后获得中国科学院、美国国家科学院、英国皇家学会、俄罗斯科学院、台湾中央研究院、教廷宗座科学院(罗马教皇学院)以及多个欧洲和拉丁美洲科学院的院士荣衔,以及多家大学的荣誉博士学位 现任广东东莞理工学院名誉院长。   主要成就   杨振宁对物理学的贡献范围很广,包括粒子物理学、统计力学和凝聚态物理学等。   除了同李政道一起发现宇称不守恒之外,杨振宁还率先与米尔斯(R.L.Mills)提出了“杨-米尔斯规范场”,与巴克斯特(R.Baxter)创立了“杨振宁-巴克斯方程”。   宇称不守恒理论:他与李政道提出基础粒子间的弱核力并没有镜像对称的特性,违反了当时物理家的认知。该理论后得吴健雄的实验验证。   杨—米尔斯理论:他与罗拔米尔斯(RobertMills)提出的理论,是粒子物理学的标准模型的基础理论。   对理论结构和唯象分析他都有多方面的贡献。他的工作有特殊的风格:独立性与创建性强,眼光深远。   美国物理学家、诺贝尔奖获得者赛格瑞(E.Segre)推崇杨振宁是“全世界几十年来可以算为全才的三个理论物理学家之一”。
  • 【行业应用】赛默飞发布在线衍生-气质联用法分析检测PM2.5中的正构烷酸、甾醇、左旋葡聚糖
    赛默飞世尔科技(以下简称:赛默飞)近日发布了检测PM2.5中的正构烷酸、甾醇、左旋葡聚糖的解决方案。 中国环境监测总站为规范全国环境空气颗粒物来源解析的监测技术,发布了《环境空气颗粒物源解析监测技术方法指南(试行)》,其中就包含正构烷酸、甾醇类、左旋葡聚糖类化合物分析方法。通过检测这类化合物的含量,来确认污染物的来源,以期更好地控制污染。其中正构烷酸被认为是植物燃烧的示踪物。甾醇类化合物主要来源于厨房油烟,可作为餐饮源的示踪物。左旋葡聚糖为纤维素热降解产物,可作为生物质燃烧的示踪物。 但正构烷酸、甾醇类以及左旋葡聚糖类化合物极性大,挥发性较差,需要通过衍生的方法来改善极性及挥发性。本方法参考《环境空气颗粒物源解析监测技术方法指南(试行)》,采用加速溶剂萃取提取后,采用在线衍生-气质联用法测定PM2.5中的正构烷酸、甾醇类、左旋葡聚糖。该方法省去了离线手动衍生的烦扰,前处理更简单快速、自动化程度更高。本实验采用赛默飞Triplus RSH 三合一自动样品前处理平台结合Thermo ScientificTM ISQTM系列四极杆 GC-MS 系统分析PM2.5中的正构烷酸、甾醇、左旋葡聚糖,样品通过Triplus RSH在线自动衍生通过气质进行定量分析,前处理简单快速、自动化程度高,结果重复性好。 更多产品信息,请查看:Thermo ScientificTM ISQTM 系列四极杆 GC-MS 系统www.thermoscientific.cn/product/isq-series-single-quadrupole-gc-ms-systems.html 应用方法下载:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/GCMS/documents/Determination-of-normal-fatty-acid-sterol-levoglucosan-in-PM2.5-by-online-derivation-GC-MS.pdf---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
  • 专家解读2015年诺贝尔化学奖
    p   北京时间10月7日下午,瑞典皇家科学院将今年的“诺贝尔化学奖”颁发给了三位科学家,以表彰他们对于DNA修复的机理研究。获奖者分别是来自瑞典的托马斯.林达尔(Tomas Lindahl)与美国的保罗.莫德里(Paul Modrich)和土耳其的阿齐兹.桑贾尔(Aziz Sancar)。 /p p   其中,托马斯.林达尔是中国科学院海外特聘研究员。 /p p   诺奖委员会称,三位科学家从分子水平上揭示了细胞如何修复损伤的DNA以及如何保护遗传信息,为我们了解活体细胞是如何工作提供了最基本的认识,有助于新癌症疗法的开发。 /p p strong   对探索生命本质意义重大 /strong /p p   DNA双螺旋结构被发现后,人们一度认为DNA是固定不变的结构。上世纪七、八十年代,从斯德哥尔摩卡罗琳斯卡医学院获得医学博士学位的托马斯.林达尔发现,DNA并不像人们想象中的那样稳定,而是会在紫外线、自由基及其他外部条件影响下发生损伤。但是,DNA的特殊性在于,它是细胞中唯一可以在受损后被修复的分子。正是由于一系列的分子机制持续监视DNA,并及时“修修补补”,我们体内的遗传物质才免于崩溃瓦解,生命体相的对稳定状态才得以维持。 /p p   中科院北京基因组所研究员杨运桂告诉《中国科学报》记者,“修复”机制确保了维持生命存在的遗传物质DNA的稳定性,这一机制是维持生命体健康的根本。“可以说,托马斯首先发现了DNA损伤的现象以及修复的机制,都是生命最本质的科学问题。”杨运桂指出。 /p p   研究陆续发现,生命体的衰老、癌症和许多重大疾病都和基因组不稳定有关。在北京师范大学生命科学学院教授牛登科看来,深入研究DNA的损伤和修复机理对了解相关疾病的起源、降低某些遗传病的发病率、降低DNA的损伤率和突变率至关重要。“未来,甚至有望为遗传病人进行定向的基因治疗。”牛登科告诉《中国科学报》记者。 /p p   北京大学生命科学学院教授孔道春也表示,在应用方面,DNA修复还将有助于基因检查,可能突破对癌症的早期诊断和预防的难题。 /p p strong   三种路径奠定基础 /strong /p p   “从重要性来讲,与DNA修复的研究早就该获奖了。”孔道春,诺奖桂冠姗姗来迟的原因,可能是因为在这个领域做出过重要贡献的科研人员实在太多。 /p p   孔道春向《中国科学报》记者解释,上述三位获奖者分别发现了三种不同DNA损伤的修复路径:碱基脱落、碱基错配以及嘧啶二聚体,并且最早发现了参与各损伤修复的酶。这三种路径的发现,奠定了当今DNA修复领域研究的基础。 /p p   “他们三人不仅做出了开创性的研究,在后续的机理研究中也长期走在世界前沿。”孔道春评价。 /p p   例如,除了DNA损伤和修复现象外,托马斯还发现了多种DNA碱基切除修复和核苷酸切除修复重要基因,及这些修复基因的缺陷与人类疾病包括“着色性干皮病”、系统性红斑狼疮等关联。这些成果打开了DNA修复研究领域的大门。 /p p   在牛登科看来,与发现DNA双螺旋分子的沃森和克里克不同,这几位科学家也许并没有一篇划时代的论文,他们获奖,凭借的是数十年如一日,在特定领域里做着领先于世界的研究。“每一篇论文都保持着较高的质量。” /p p    strong DNA修复在中国 /strong /p p   2005年,杨运桂来到英国癌症研究署从事博士后工作,他的导师便是皇家科学院院士托马斯.林达尔博士,成为托马斯的关门弟子。杨运桂向《中国科学报》记者表示,托马斯不仅是一位名符其实的好学术导师,还是一位杰出的科学管理者。他领导卡莱尔学院(Clare Hall)研究所一共招收了不到20位独立研究员,就产生了10多名英国皇家科学院院士、两位诺奖获得者,包括2001年获得诺贝尔生理与医学奖的蒂姆.亨特(Tim Hunt)。 /p p   在杨运桂看来,托马斯不仅在科学上非常严谨,还很关心学生生活的方方面面。“他知道我带着全家在英国工作,特地为我涨工资。”2008年,杨运桂结束了在托马斯实验室的博士后生涯。托马斯告诉他,“我支持你回中国发展,为中国的生命科学基础研究贡献你的力量。” /p p   不久后,杨运桂入选中科院“百人计划”,来到北京基因组研究所建立了自己的实验室。“从当初建立实验室到如今的一些科学研究方向和细节,托马斯一直站在我身后,支持着我。”杨运桂对导师的支持表示由衷的感谢。 /p p   孔道春与保罗.莫德里师出同门,虽然他入学时莫德里早已离开,但他对这位前辈的治学严谨也深有耳闻。孔道春说:“他们都具备对科学的洞察力和预见性,更善于把握科研的发展方向,总是知道什么问题最重要、最值得研究。” /p p   目前为止,托马斯三次来到中国进行学术交流和指导。最近一次在2014年,他来到中国参加第四届DNA损伤应答与人类疾病国际研讨会时,曾向与会者表高度评价了中国学者在该领域中取得的进步。 /p p   “国内的学者正在这个生命科学的前沿领域中开展越来越多的原创性研究。”杨运桂说,他回国时,国内只有不超过20个研究组开展与DNA修复领域直接相关的研究,如今不少于80余个研究组参与了这个重要前沿基础领域的研究。 /p
  • 诺贝尔科学奖花开中国起码还要10年
    2013年的诺贝尔生理学或医学奖授予了美国耶鲁大学的詹姆斯&bull 罗斯曼、美国加州大学伯克利分校兰迪&bull 谢克曼及德国的托马斯&bull 苏德霍夫,因为他们解释了细胞是如何组织自身的转运系统的。   汤森路透公司此前曾预测有三项研究,即细胞死亡方式自噬、脱氧核糖核酸甲基化和HER-2/neu原癌基因方面的研究的若干科学家可能获得今年贝尔生理学或医学奖。但是,此次一项都没有预测成功。但汤森路透却成功预测对了今年的物理奖,弗朗索瓦&bull 恩格勒和彼得&bull 希格斯因预测希格斯玻色子存在而获2013年诺贝尔物理学奖。即便是今年的诺贝尔生理学或医学奖得主,汤森路透也在2009年就预测罗斯曼和谢克曼将会获奖,只是漏下了苏德霍夫。如此看来,没有人能否认汤森路透预测的某种准确性,而且在2002年-2012年该公司预测的183名可能获奖的候选人中,一语中的人共有27,算得上是神算。   与此同时,也有中国的预测。9月29日,南京工业大学校长、中科院院士黄维在迎接该校6900名本科新生的开学典礼上做了一个长远的惊人预测:&ldquo 十年之后的中国,像诺贝尔奖这样的国际性重要指标,在中国大地出现应该将会成为常态,而不是个案。在文学奖之后,自然科学和生命科学方面的奖项将陆续被中国人斩获,没有任何悬念&hellip &hellip &rdquo   黄维的这番表述如果不是志壮山河,也应当是气冲云霄。但是,这样的预测能否成为现实或至少有一部分成为现实,是判断科学预测或未来学与说大话或乌鸦嘴之间一个明确的界线。尽管证明诺贝尔奖可以在未来10年成为中国常态的证据与汤森路透的预测根据有相似点,即根据发表论文后的引用数来预测,但是,汤森路透更重要的依据是,确认哪些研究是重要的基础研究和发现,然后再确定该研究和发现的最重要贡献者。   然而,黄维的根据并非如此。黄维把诺贝尔奖当作未来中国的家常便饭的证据有两个。一是中国科技人员的论文发表量和引用数,二是中国的科研水平和研发投入达到世界一流。   黄维称,中国科技人员发表国际论文总量居世界第二位,被引用次数排世界第六位,引用次数高的国际论文数量排世界第五位。不过,事实是,中国科学技术信息研究所发布的2013年度中国科技论文统计结果表明,2012年中国作者为第一作者的论文共16.47万篇,其中被引用次数高于世界均值的&ldquo 表现不俗&rdquo 论文只占了近三成。而且,在平均数上面,中国每篇国际科技论文平均被引用6.92次,低于世界平均10.69的数字。   至于中国的科研水平,当然有接近甚至超过国际水平的研究,但是,这些研究是什么,数量有多少,并不能获得确认。而且,即便是中国的一些研究处于对国际高水平的跟踪到并行发展水平,也未必能获得诺贝尔奖的青睐,因为诺贝尔奖选择的是第一,或者是奠基性的研究。   当然,中国的研发投入之大也是不容否认。2012年中国科技经费投入统计表明,全社会研究与试验发展(R&D)经费投入首次突破万亿元人民币大关,R&D经费投入总量位居世界第三。然而,科研成果的确是没有钱是不行的,但并非是有钱就行。因为,钱在科研中不是第一位的,而是从属的。   科研的第一位是创新、实干和苦干,以及需要时间和经验的积累。更令人遗憾的是,中国目前投入的科研经费大部分并未用在刀刃上。中国科协一项调查显示,中国的科研资金用于项目本身仅占40%左右,60%都用于开会、出差等。大部分科研经费都不用在正经的科研上,能指望科研出现什么突破性和开创性的成果?   尽管有人批评诺贝尔奖有倾向性,或者事实上诺贝尔奖也表现出了某种并不公正的现象,但从诺贝尔奖的统计学分析来看,诺贝尔奖无论对于哪个国家都是大餐,而非家常便饭,就连获得诺贝尔奖最多的美国也不可能把诺贝尔奖当作家常便饭,而只是当作通过艰辛劳作,绞尽脑汁的创造后可以烹调和享用的大餐。   从1901年到2012年的112年间,美国获得诺贝尔奖有298人,堪称世界之冠。排名在2-4名的分别是,英国,获奖总人为84 德国,获奖总人为66 法国,总获奖人数为33。即便以获得奖数最多的美国而言,在112年间,也不过每年有不到3人获奖,对于他们,也只能算是大餐,而非家常便饭。没有充分的准备和有份量的成果,不仅无法吃到诺贝尔奖这份大餐,更不可能把该奖当作家常便饭来享用。   再从获奖的时间来看,一项重要的科研成果要获得诺贝尔奖一般需要三四十年的时间,甚至更长,原因是,科研成果需要重复检验。例如,高锟从1966年提出光纤通信理论到2009年获奖,至少经历了40年时间。但是,也有获奖较快的,如日本的山中伸弥在2006年证实了诱导多能干细胞,在2012年就获得诺贝尔生理学或医学奖。但是,山中伸弥只是获奖者之一,而且诺贝尔奖评委会认为,山中伸弥不过是重新验证并深化了同为获奖者的英国人戈登在1962的发现,即已经定性定型的细胞是可以逆转的。   所以,即便10年后中国人的科研成果如雨后春笋般地出现,也需要时间来验证,到底是真还是假,是重大还是一般。要在那时就能把获得诺贝尔奖当做常态,实在有些勉为其难。   也许,黄维先生的预测要高于汤森路透,所以我们不妨期待和见证,中国人是否在10年之后拿诺贝尔奖如家常便饭。
  • 重磅!2023年诺贝尔生理学或医学奖揭晓|你不知道的冷知识
    10月2日,瑞典卡罗琳医学院宣布,将诺贝尔生理学或医学奖授予Katalin Karikó、Drew Weissman,以表彰他们在核苷碱基修饰方面的发现,这些发现使得针对COVID-19的有效mRNA疫苗得以开发。他们将平均分享1100万瑞典克朗的奖金。诺贝尔官网表示,这两位诺贝尔奖获得者的发现对于在2020年初开始的新冠肺炎大流行期间开发有效的mRNA疫苗至关重要。通过他们的突破性发现,从根本上改变了人们对信使核糖核酸如何与免疫系统相互作用的理解,获奖者为疫苗开发的空前速度做出了贡献。卡塔琳卡里科 (Katalin Karikó) 1955 年出生于匈牙利索尔诺克。她于1982年在塞格德大学获得博士学位,并在塞格德的匈牙利科学院从事博士后研究直至1985年。随后,她在费城坦普尔大学和贝塞斯达健康科学大学进行博士后研究。1989年,她被任命为宾夕法尼亚大学助理教授,并一直任职到2013年。之后,她成为BioNTech RNA Pharmaceuticals的副总裁,后来又担任高级副总裁。自2021年起,她一直担任塞格德大学教授和宾夕法尼亚大学佩雷尔曼医学院兼职教授。德鲁魏斯曼 (Drew Weissman) 1959 年出生于美国马萨诸塞州列克星敦。1987年,他在波士顿大学获得医学博士、博士学位。他在哈佛医学院贝斯以色列女执事医疗中心接受临床培训,并在美国国立卫生研究院进行博士后研究。1997年,魏斯曼在宾夕法尼亚大学佩雷尔曼医学院成立了他的研究小组。他是罗伯茨家族疫苗研究教授和宾夕法尼亚大学RNA创新研究所所长。近三年诺贝尔生理学或医学奖获奖者盘点2022年,瑞典遗传学家斯万特帕博(Svante Pbo)获得诺贝尔生理学或医学奖,因为他关于已灭绝人类基因组和人类演化的发现揭示了所有现存人类与已灭绝古人类之间的基因差异,并建立了古基因组学这一崭新的科学领域。2021年,美国生理学家戴维朱利叶斯(David Julius)和美国分子生物学家、神经学家阿登帕塔普蒂安(Ardem Patapoutian)共享诺贝尔生理学或医学奖,因为他们发现了温度和触觉感受器。2020年,美国病毒学家哈维奥尔特(Harvey J. Alter)、英国生物学家迈克尔霍顿(Michael Houghton)和美国病毒学家查尔斯赖斯(Charles M. Rice)共享诺贝尔生理学或医学奖,因为他们发现了丙型肝炎(Hepatitis C)病毒。关于诺贝尔生理学或医学奖!你知道吗?获奖者破百自1901年以来,共颁发了114项诺贝尔生理学或医学奖。巾帼不让须眉获奖者到目前为止,已有13名女性获得了医学奖。最“萌”年龄差,获奖者32岁的弗雷德里克G班廷是有史以来最年轻的医学奖获得者,他因发现胰岛素而获1923年医学奖。1966年,佩顿劳斯因发现肿瘤诱导病毒而获得医学奖,87岁是他有史以来最年长的医学奖获得者的年龄。上阵父子兵!获奖者在诺贝尔奖的百年历史中,已经出现了7对父子获得过诺贝尔奖,他们分别是:父亲亨利布拉格和儿子劳伦斯布拉格(共同获得1915年诺贝尔物理学奖);父亲约瑟夫汤姆逊(1906年获得诺贝尔物理学奖)和儿子乔治汤姆逊(1937年获得诺贝尔物理学奖);父亲奥伊勒凯尔平(1929年获得诺贝尔化学奖)和儿子乌尔夫奥伊勒(1970年获得诺贝尔生理学或医学奖);父亲尼尔斯玻尔(1922年获得诺贝尔物理学奖)和儿子阿格玻尔(1975年获得诺贝尔物理学奖);父亲曼内西格巴恩(1924年获得诺贝尔物理学奖)和儿子凯西格巴恩(1981年获得诺贝尔物理学奖);父亲亚瑟科恩伯格(1959年获得诺贝尔医学和生理学奖)和儿子罗杰科恩伯格(2006年获得诺贝尔化学奖)父亲苏恩伯格斯特龙(1982年获得诺贝尔生理学或医学奖)和儿子斯万特帕博(2022年获得诺贝尔生理学或医学奖)
  • 2017年“搞笑诺贝尔奖”揭晓了!
    p   据国外媒体报道,在今年的“搞笑诺贝尔奖”颁奖典礼上,又有多位科学家凭借出人意料的研究成果获得了不同奖项。 /p p   今年是第27个第一届“搞笑诺贝尔奖”——每年的颁奖典礼都是“第一届”。作为对诺贝尔奖的有趣模仿,搞笑诺贝尔奖由科学幽默杂志《不可思议研究年报》(Annals of Improbable Research)主办,于每年九月在哈佛大学桑德斯剧场举行颁奖仪式,授予“乍一看好笑,后又引人深思”的十项科学领域成就。 /p p   今年获奖情况如下: /p p    strong span style=" color: rgb(0, 112, 192) " 物理学奖——一只猫能否同时处于固体和液体状态? /span /strong /p p   今年的物理学奖就颁给了法国研究人员马克-安托万 法尔丹2014年关于“一只猫可否同时处于固体状态和液体状态”的研究。据悉,其灵感来自互联网上猫咪们塞进玻璃杯、水桶和水槽中的照片。 /p p    span style=" color: rgb(0, 112, 192) " strong 和平奖——定期演奏迪吉里杜管可以帮助治疗睡眠呼吸暂停及打鼾。 /strong /span /p p   对于那些与打鼾者共同生活的人来说,米洛· 普汉的搞笑诺贝尔奖成果可谓一大福音。这位瑞士科学家发现,演奏迪吉里杜管——澳大利亚原住民的一种管状乐器——能够发出一种深沉的、富有节奏感的嗡嗡声,能够帮助缓解睡眠呼吸暂停。 /p p   米洛· 普汉是苏黎世大学流行病学、生物统计与预防系的主任,他在观察了一位中度睡眠呼吸暂停患者演奏迪吉里杜管之后确信,这种乐器能对病情缓解有所帮助。他招募了一些会演奏塑料迪吉里杜管——长度大约为130厘米——的志愿者,对此展开研究。“定期演奏迪吉里杜管能够减少中度阻塞性睡眠呼吸暂停患者在白天的睡意,并缓解打鼾现象,同时改善他们伴侣的睡眠质量,”普汉在论文中总结道。 /p p   为什么这种方法能够奏效?普汉认为,演奏迪吉里杜管可以帮助人们学会有规律地呼吸(演奏技巧在于从嘴里吹气的同时通过鼻子吸气),并增强呼吸时所用咽喉肌肉的力量。 /p p    span style=" color: rgb(0, 112, 192) " strong 经济学奖——触摸活鳄鱼如何影响一个人的赌博意愿? /strong /span /p p   本次搞笑诺贝尔奖的经济学奖归属两位澳大利亚人,他们发现,如果你想要控制自己的赌博损失,那就不要在走进赌场之前与鳄鱼近距离接触。马修· 洛克罗夫(Matthew Rockloff)是澳大利亚中央昆士兰大学人口研究实验室的负责人,他和研究助理南希· 格里尔(Nancy Greer)用一条体长约为1米的湾鳄——嘴巴用胶带绑着——猛戳准备去赌博的人的手臂,然后观察接下来会发生什么。 /p p   与危险爬行动物“亲密”接触所产生的兴奋感,会促使赌博者“赌上更多的赌注,而这又意味着更长的赌博时间,导致更大的损失,”洛克罗夫说道。与许多获得搞笑诺贝尔奖的研究一样,洛克罗夫的发现乍看之下有些愚蠢,但实际却有着充足的应用依据。 /p p   “这是第一个关于情绪刺激对赌博选择影响的研究,很显然,这将有助于解决一个非常严肃的行为和精神健康问题,”洛克罗夫说道。在得知获得搞笑诺贝尔奖之后,洛克罗夫感到非常幸运,他这样来描述自己的好运:“我必须努力克制自己,一定不能把这种运气用在一台老虎机上。” /p p    span style=" color: rgb(0, 112, 192) " strong 解剖学奖——为什么老人的耳朵大? /strong /span /p p   “这是个奇怪的荣誉,但我感到非常激动,” 解剖学奖得主、英国医师詹姆斯· 希思科特说道。他的研究成果是关于耳朵的大小,于1995年发表在久负盛名的《英国医学期刊》(British Medical Journal)上。 /p p   该研究的灵感来自希思科特和其他几位全科医师的讨论。当希思科特提问道“老人的耳朵为什么那么大”时,同事中有半数同意他的观察,另一半则觉得非常可笑。在研究中,希思科特测量了超过200名患者的耳朵长度,发现老年男性不仅长着大耳朵,而且耳朵在30岁之后每十年就能生长大约2毫米。女性的耳朵也会随着年龄增长而变大,但她们的耳朵一开始较小,跟男性的耳朵比起来不那么显眼。而且,可能男性衰老时通常有头发变少的趋势,因而大耳朵更容易被人注意到。“耳朵的测量真的有些神奇,”希思科特说道。 /p p    span style=" color: rgb(0, 112, 192) " strong 生物学奖——在一种洞穴昆虫身上发现雌性长着雄性生殖器官,而雄性长着雌性生殖器官的现象。 /strong /span /p p   搞笑诺贝尔生物学奖授予Kazunori等四人。在一种洞穴昆虫身上,研究者发现雌性长丁丁雄性长妹妹的现象。研究者在洞穴中持续偷窥虫类性生活,惊奇地发现母虫子长着小弟弟。他们的这项研究可以说颠覆了常识,这个敬业的团队无法到场,于是在洞穴里录了获奖感言。  /p p    span style=" color: rgb(0, 112, 192) " strong 营养学奖——吸血蝙蝠食谱中的人血研究。 /strong /span /p p   搞笑诺贝尔营养学奖授予Enrico Bernard等三人。这个团队在毛腿吸血蝙蝠的粪便里发现了与人血有关的基因片段。主办方本打算在现场放两只蝙蝠助助兴,但是蝙蝠突然就失踪了了,因此他们大力呼吁捡到的观众要物归原主。获奖团队也通过视频表达了他们的喜悦。 /p p    span style=" color: rgb(0, 112, 192) " strong 医学奖——通过脑部扫描技术评估人对某种芝士的厌恶程度。 /strong /span /p p   搞笑诺贝尔医学奖授予Jean-Pierre Royet等五人。这是第一项有关讨厌奶酪的脑部研究。在这项研究中,研究团队利用脑部成像技术观察人们在闻到不同种类的奶酪时大脑的变化,发现基底神经节才是人们恨意的源泉。 /p p   除此之外,还包括流体力学奖——人手里拿着咖啡倒着走时,咖啡具有什么样的流体力学特性?认知学奖——许多同卵双胞胎其实分不清自己和自己的双胞胎兄弟或姐妹。产科学奖——发育中的人类胎儿对母亲阴道里播放的音乐更加敏感等有趣的研究! /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制