当前位置: 仪器信息网 > 行业主题 > >

结晶紫三水合物标准品

仪器信息网结晶紫三水合物标准品专题为您提供2024年最新结晶紫三水合物标准品价格报价、厂家品牌的相关信息, 包括结晶紫三水合物标准品参数、型号等,不管是国产,还是进口品牌的结晶紫三水合物标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合结晶紫三水合物标准品相关的耗材配件、试剂标物,还有结晶紫三水合物标准品相关的最新资讯、资料,以及结晶紫三水合物标准品相关的解决方案。

结晶紫三水合物标准品相关的资讯

  • 泰安市纺织服装产业链商会(协会)下达《氢水合物 氢气含量的测定 气相色谱法》等7项团体标准计划项目
    各单位:经有关单位申报,泰安市纺织服装产业链商会(协会)标准化技术委员会通过初审、立项评审等程序,对《氢水合物水溶液 氢气含量的测定 气相色谱法》等7项TGIC团体标准计划项目予以立项。请各项目牵头单位按照《泰安市纺织服装产业链商会(协会)团体标准管理办法》的有关规定认真组织落实,并做好以下工作:一、成立标准起草工作组,制定工作计划,确保项目按期完成。二、加强调查研究和试验验证,试验方法要至少3家实验室比对,确保方法科学合理。征求意见稿送秘书处前,应先征求业内专家意见,并将专家意见汇总后一并报秘书处。三、请各项目牵头单位指定一名联系人(姓名、单位、手机、微信)报秘书处邮箱:zkgcbwh@163.com,并与秘书处保持密切沟通。欢迎与此批团标计划项目相关的企事业单位或个人参与标准编制工作。如有意向请联系秘书处,秘书处将根据填报情况进行协调和确定。关于下达《氢水合物 氢气含量的测定 气相色谱法》等 7项团体标准计划项目的通知.pdf
  • 科技部批准建设天然气水合物等企业国家重点实验室
    p style=" text-align: center " strong 科技部关于批准建设天然气水合物、认知智能2个企业国家重点实验室的通知 /strong /p p style=" text-align: center " 国科发基〔2017〕386号 /p p   国务院国有资产监督管理委员会、安徽省科技厅: /p p   企业国家重点实验室是国家创新体系的重要组成部分,主要任务是面向战略性新兴产业和行业发展需求,以提升企业自主创新能力和核心竞争力为目标,开展基础和应用基础研究及共性关键技术研发,研究制定国际标准、国家和行业标准,聚集和培养优秀人才,引领和带动行业技术进步。 /p p   为进一步完善企业国家重点实验室布局,科技部启动天然气水合物、认知智能企业国家重点实验室的建设工作。根据专家评审结果,经研究,现决定批准建设“天然气水合物国家重点实验室”、“认知智能国家重点实验室”2个实验室(名单见附件)。 /p p   请你们抓紧组织实验室依托单位编制《企业国家重点实验室建设与运行实施方案(2018 2022年)》 按照《依托企业建设国家重点实验室管理暂行办法》(国科发基〔2012〕716号)的规定和要求,落实有关政策和建设经费,组织相关单位凝练实验室发展目标、明确主要研究方向和重点、组织科研队伍、引进和培养优秀人才、完善和提升实验研究条件、建立“开放、流动、联合、竞争”的运行机制,做好企业国家重点实验室建设与运行管理工作。 /p p   特此通知。 /p p   附件:批准建设的企业国家重点实验室名单 /p p style=" text-align: right " 科 技 部 /p p   附件 /p p style=" text-align: center " strong 批准建设的企业国家重点实验室名单 /strong /p p style=" text-align: center " img title=" 001.png" src=" http://img1.17img.cn/17img/images/201712/insimg/e5e38231-dfe9-46f0-838b-820c434027ca.jpg" / /p p & nbsp /p
  • 中科院水合物中心与美国家实验室合作研究
    中科院网站报道:应美国Lawrence Berkeley国家实验室的邀请,中科院可再生能源与天然气水合物重点实验室博士李刚和苏正于8月2日起程到美国Lawrence Berkeley国家实验室地球科学部开展为期三个月的合作研究,并于11月1日顺利返回广州。   在美期间,李刚和苏正与该实验室George Moridis教授和Keni Zhang博士合作开展了南海北部陆坡天然气水合物开采潜力数值模拟研究,同时进行了深入的学术交流活动。此次合作研究是前期双方达成共识的基础上开展合作研究和交流的第一步。李刚和苏正采用美国Lawrence Berkeley国家实验室开发的TOUGH+Hydrate数值模拟软件分别对2007年成功取样的南海北部神狐海域SH2站位和SH7站位海底天然气水合物藏进行了开采潜力的数值模拟研究。数值模拟过程中主要采用降压法和注热法相结合的开采方法,对垂直井和水平井开采海底天然气水合物的异同进行了比较,根据现有的海底水合物实地数据对井口产气产水速率进行了评价,并对海底沉积物的渗透率、水合物饱和度、海底温压条件以及盖层情况进行了参数敏感性分析,比较全面地评价了神狐海域天然气水合物藏的开采前景。合作研究期间,两人分别完成了题为Evaluation of Gas Production Potential from Marine Gas Hydrate Deposits in the Shenhu Area of the South China Sea: Depressurization and Thermal Stimulation Methods和Numerical Investigation of Gas Production Strategy for the Hydrate Deposits in the Shenhu area的学术论文。   合作结束后,重点实验室副主任吴能友和George Moridis教授就未来双方进一步合作的方式、方向和内容进行深入讨论。
  • 广州能源所用原位拉曼测量技术揭示气体水合物中气体分子特性 | 前沿用户报道
    供稿:周雪冰成果简介中国科学院广州能源研究所天然气水合物重点实验室近期发布最新研究成果,利用高压原位拉曼测量技术成功获得了多种水合物形成/分解过程的原位拉曼图,揭示了气体水合物中气体分子的吸附和扩散特性。相关成果已在Energy Fuels, J. Phys. Chem. C, Chemical Engineering Journal, scientific reports等期刊上发表。背景介绍气体水合物是在一定压力和温度条件下在气-水混合物中自然形成的冰状固体化合物。在气体水合物晶体中,水分子依靠氢键相互结合在一起形成笼状晶格,而气体分子作为客体分子分布在晶格中并对水其稳定作用。例如,天然气水合物是人们在自然环境中发现的一类常见的笼状水合物,在科学和工业领域有着广泛的创新应用,有研究者就利用在海洋下形成的气体水合物来封存烟气中的二氧化碳。图1 气体水合物的三种主要的晶体结构。结构I(sI),通常由较小的客体分子(0.4–0.55nm)形成,是地球上最丰富的天然气水合物结构;结构II(sII),通常由较大的客体分子(0.6–0.7nm)和结构H(sH)形成,通常需要小分子和大客体分子形成。气体水合物的水合物热力学和动力学特性会直接受两种因素的影响:水合物中的气体种类、气体对水合物笼型结构的占有率。这也是气体水合物表征的重点。然而,由于晶体生长的环境条件比较苛刻,常规测量手段难以对上述表征重点直接观测。拉曼光谱能够根据气体水合物中客体分子的拉曼光谱特征峰和特征峰的峰面积来确定气体水合物的晶体结构,以及定量计算不同笼型结构中气体的孔穴占有率。近年来,耐低温高压的拉曼辅助测量装置的研发成功,水合物原位测量技术得以应用,这为研究气体水合物的形成/分解/置换等晶体结构的动力学行为提供了重要的研究途径。图文导读广州能源所天然气水合物重点实验室采用共聚焦拉曼光谱仪和原位拉曼光谱测量装置对甲烷、二氧化碳及其混合气体水合物的形成、分解和置换过程进行了测量和分析。实验中使用HORIBA LabRAM HR拉曼光谱仪,配备有开放式显微镜系统和高精度三维自动平台及Linkam BSC型冷热台,冷热台采用液氮冷却。图2 原位拉曼光谱测量装置1. 纯CO2、烟气和沼气中水合物的形成过程在271.6K温度下,以2800~3800cm-1的水分子拉曼特征峰为参考,对水合物相中气体的拉曼峰进行了表征和归一化。结果表明,水合物的形成过程首先是不饱和水合物核的形成,然后是气体持续吸附。在三种水合物形成过程中均发现,水合物核中的CO2浓度仅为对应饱和状态时的23-33%。在烟气合成水合物过程中,N2水合物相中的浓度在晶核形成时就达到饱和状态。在沼气合成水合物过程中,CH4和CO2分子会发生竞争吸附,而N2分子在水合物形成过程中几乎不发生演化。研究认为N2和CO2等小分子在水合物晶核形成过程中更为活跃,而CO2分子则在随后的气体吸附过程中发生优先吸附。[1]图3 271.6K下通过原位拉曼测量方法观察到的CO2、N2和CH4的特征峰图4 纯CO2水合物生长过程中的原位拉曼光谱。(a)CO2分子在水合物和气相中的拉曼特征峰 (b)水分子的拉曼特征峰2. CO2-CH4置换过程在273.2~281.2 K温度范围内对气态CO2置换CH4的过程进行了多尺度研究,并根据测量结果对基于气体扩散理论的水合物置换动力学模型进行了修正。原位拉曼测量发现,水合物大笼和小笼中的CH4连续下降,没有显著波动,这表明CH4的置换反应并非先分解再生成的过程。800小时的测量结果表明,置换过程首先是快速表面反应,随后是缓慢的气体扩散。温度的升高能有效提高水合物相的气体交换速率,增强水合物相的气体扩散。修正后的水合物置换反应动力学模型揭示了水分子的迁移率是限制了置换反应速率的主要因素。[2]图5 置换过程中CH4在水合物大笼和小笼中的比例变化图6 CO2置换水合物中CH4的原位拉曼光谱图7 水合物CO2-CH4置换反应机理示意图3. CH4-CO2混合气体水合物的分解过程对CH4-CO2混合气体水合物的分解过程进行了原位拉曼光谱测量并与纯CH4和纯CO2水合物的熔融过程进行了对比分析。研究结果发现,混合CH4-CO2水合物的晶体结构为Ⅰ型结构,且不随气体浓度的改变而发生变化。分解过程中,气体在水合物大笼和小笼中的特征峰强均会下降,同时峰面积之比始终保持稳定,表明水合物晶体以晶胞为单位解离。水合物晶体的分解时间具有随机性,与水合物粒子的多晶性质一致。有趣的是,在含有CH4的水合物中,水合物相中CH4和CO2的拉曼特征峰在水合物分解过程中出现了短暂的连续上升,表明位于样品颗粒内部的水合物发生了气体迁移扩散,这种现象的产生可以归因于水合物在样品颗粒内部的部分分解和“自保护”效应。[3]图8 CH4-CO2混合气体水合物在253K常压环境下分解过程的原位拉曼光谱图9 CH4(大笼: 2906cm-1)和CO2的在水合物中的特征峰(1383cm-1)随水合物分解的变化曲线。根据时间零点拉曼峰的强度,峰被归一化。总结展望拉曼光谱与表面增强拉曼光谱都是是非常强大的分析手段,凭借快速获取样品表面光谱信息的能力,拉曼测量技术在天然气水合物等矿物学领域颇受青睐。据了解,在接下来的研究中,天然气水合物重点实验室将应用原位拉曼测量技术对天然气水合物在多孔介质和添加剂等复杂环境中的反应动力学过程展开研究,以进一步揭示它的形成/分解/置换过程的动力学机理。中国科学院天然气水合物重点实验室简介中国科学院天然气水合物重点实验室是国内天然气水合物研究的重要基地。重点研究天然气水合物的物理化学性质、生长动力学、生成/分解过程等相关基础问题以及水合物开采、天然气固态储运、天然气水合物管道抑制、二氧化碳捕集与封存。联系作者周雪冰 Phone: 15002016003仪器推荐工欲善其事,必先利其器。本实验中全程使用了HORIBA LabRAM HR拉曼光谱仪进行原位拉曼光谱测量。作为升级版,LabRAM HR Evolution 高分辨拉曼光谱仪在保留了LabRAM HR所有性能的同时,实现了高度自动化。配备科研级正置/ 倒置显微镜,可实现UV-VIS-NIR 全光谱范围拉曼检测。焦长达到800mm,具有超高的光谱分辨率和空间分辨率。LabRAM HR Evolution 高分辨拉曼光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息[1] Zhou, X., Zang, X., Long, Z. et al. Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide. Sci Rep 11, 9197 (2021). 文章链接:https://doi.org/10.1038/s41598-021-88531-x[2] Xuebing Zhou, Fuhua Lin, and Deqing Liang. Multiscale Analysis on CH4–CO2 Swapping Phenomenon Occurred in Hydrates. The Journal of Physical Chemistry C 2016 120 (45), 25668-25677. 文章链接:https://pubs.acs.org/doi/10.1021/acs.jpcc.6b07444[3] Xuebing Zhou, Zhen Long, Shuai Liang et al. 1. In Situ Raman Analysis on the Dissociation Behavior of Mixed CH4–CO2 Hydrates. Energy & Fuels 2016 30 (2), 1279-1286. 文章链接:https://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b02119[4] Xuebing Zhou, Deqing Liang, Enhanced performance on CO2 adsorption and release induced by structural transition that occurred in TBAB26H2O hydrates, Chemical Engineering Journal, Volume 378, 2019, 122128, ISSN 1385-8947,文章链接:https://www.sciencedirect.com/science/article/pii/S1385894719315220?via%3Dihub
  • Picarro | 基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永
    青藏高原是地球上海拔最高的高原,被称为“世界屋脊”、“第三极”。青藏高原光照和地热资源充足。高原上冻土广布,植被多为天然草原。它扮演着重要的生态角色,影响着全球气候变化。这个区域的碳循环系统尤其引人注目。图片来源于网络,如有侵权请联系删除随着全球气候变暖,青藏高原的永冻层正在消融,导致大量的甲烷和其他温室气体被释放到大气中,从而影响了全球气候变化的速度。这种现象对人类社会和生态系统都产生了深远的影响,今天想向大家介绍的文章,正好与此相关。基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永冻层湿地甲烷排放的影响湿地甲烷排放是全球收支中最大的自然来源,在推动21世纪气候变化方面发挥着日益重要的作用。多年冻土区碳库是受气候变化影响的大型储层,对气候变暖具有正反馈作用。在与气候相关的时间尺度上,融化的永久冻土中的甲烷排放是温室气体收支的关键。因此,多年冻土区湿地甲烷排放过程与湿地碳循环密切相关,对理解气候反馈、减缓全球变暖具有重要意义。青藏高原是地球上最大的高海拔永久冻土区,储存了大量的土壤有机碳和天然气水合物中的热生烃。湿地甲烷排放源识别是了解青藏高原湿地甲烷排放和碳循环过程与机制的重要问题。基于此,来自中国地质调查局的研究团队于2017年测量青藏高原木里永冻层近地表和天然气水合层钻井(DK-8)的CH4和CO2排放量及其碳同位素组成(Picarro G2201-i碳同位素分析仪)。并计算CH4和CO2碳同位素分馏( Ԑ C:δ13CCO2- δ13CCH4)。旨在为木里多年冻土湿地甲烷排放的重要来源-天然气水合物释放提供新的证据,揭示天然气水合物释放对湿地甲烷季节性排放的影响,进一步揭示钻井等人为活动对青藏高原多年冻土湿地甲烷排放的影响。研究区域位置【结果】DK-8中CH4含量、δ13CCH4 及Ԑ C土壤层中CH4含量、δ13CCH4 及Ԑ C【结论】热成因天然气水合物分解是湿地甲烷排放重要的源季节性湿地甲烷排放受人类钻井活动的影响天然气水合物释放的甲烷特征:【δ13CCH4】 -25.9±1.4‰~-26.5±0.5‰,【Ԑ C】-25.3‰~ -32.1‰δ13CCH4和Ԑ C值可以区分复杂环境中的热成因和微生物成因甲烷秋冬季节以热成因甲烷为主导,春夏季节微生物成因甲烷贡献较大随着天然气水合物资源的进一步探索和开采,天然气水合物分解对永冻层湿地甲烷排放的影响会更显著
  • 梅特勒托利多联合天津大学国家医药结晶工程研究中心共同举办“2012中国工业结晶
    2012中国工业结晶科学与技术研讨会将于2012年7月27-30在黄山召开,会议的主题是&ldquo 工业结晶技术及其产业化应用的现状与未来发展&rdquo ,会议宗旨在于研讨医药、食品、化工、材料等领域的工业结晶科学与工程技术方面的最新进展,推进相关产业的技术升级,加强学术界与工业界之间的联系与交流。 本次研讨会由天津大学(国家工业结晶技术研究推广中心-国家医药结晶工程研究中心)和全国医药技术市场协会主办,梅特勒-托利多公司协办,会议将邀请包括美国FDA、国家医药食品主管部门、国内外学术界和企业界等专家作会议报告,共同探讨我国工业结晶技术及其产业化应用的现状和未来发展思路。 国际工业结晶专家王静康院士担任本次会议主席,会议语言为中文。 一、会议研讨内容 1、工业结晶科学与技术基础研究(结晶热力学、结晶动力学、功能化学品多晶型行为及构效关系、晶体产品分子组装规律、晶体产品形态表征等) 2、工业结晶过程分析与模拟(反应结晶、溶析结晶、冷却结晶等典型结晶过程分析,耦合结晶过程分析,结晶过程关键影响因素分析与工艺优化,结晶过程在线监控分析技术,结晶过程信息化控制等) 3、工业结晶过程设计与放大(反应结晶、溶析结晶、冷却结晶等典型结晶过程设计与放大,间歇与连续结晶过程设计与放大,过程集成与耦合技术,计算流体力学在工业结晶装置放大与设计中的应用等) 4、新型工业结晶技术在医药、食品、化工、材料等领域中的应用(药物晶型优化,盐、共晶、溶剂化合物和水合物制备,物理场协同结晶过程强化,手性拆分,高通量筛选以及纳米结晶技术等) 5、质量源于设计在制药工业结晶中的应用与发展 二、会议安排 1、邀请工业结晶领域的专家代表报告工业结晶技术领域的研究进展、应用专题等共性课题,并安排多种形式的会议交流; 2、邀请美国FDA以及国家医药食品主管部门等专家作特邀报告。 3、天津大学结晶中心研究人员与企业技术人员现场讨论有关工业结晶中存在的实际问题; 4、研讨会报告论文以及会议研讨成果编入&ldquo 2012中国工业结晶科学与技术研讨会论文集&rdquo 。 三、会议时间、地点及费用 1、时间:7月27号报到,28号~30号正式会议,其中安排一天会议交流或培训; 2、地点:黄山(香茗国际会议中心酒店); 3、会议费:1200元/人,包括餐饮费、会务费、资料费等;住宿费自理。 四、注意事项 1、会议期间无其它补助; 2、请参会人员务必尽早确定人数和房间数,并请在联系方式中注明邮箱地址和联系电话,方便会务组安排好住宿。 3. 有关研讨会情况,请浏览天津大学结晶中心网站http://www.srcict.com 五、会务联系人: 徐敏 Celline Xu 单位:梅特勒-托利多国际中国(上海)有限公司 地址:上海市桂平路589号 邮编:200233 电话:(021)64850435转1100 13524692289 E-mail:Min1.Xu@mt.com
  • 华嘉公司将与晶云药物合作举办药物晶型研究与药物固态表征专题技术培训
    瑞士华嘉公司与晶云药物科技有限公司于3月24-25日在苏州联合举办的&ldquo 药物晶型研究与药物固态表征专题培训&rdquo 。 药物晶型研究和药物固态表征在制药业具有举足轻重的意义。一方面,不同晶型的同一药物,在稳定性,溶解度,和生物利用度等生物化学性质方面可能会有显著差异,从而影响药物的疗效。如果没有很好的评估选择最佳的药物晶型进行研发,可能会在临床后期产生晶型的变化,从而导致药物上市的延期而产生巨大的经济损失。由于药物晶型研究的重要性,美国药监局(FDA)对该领域的研发提出了明确要求,在IND和NDA中都要求对药物多晶型现象提供相应的研究数据。对于仿制药公司来说,如何研发出药物的新晶型从而能够打破原创药公司对晶型的专利保护,提早将仿制药推向市场,是近年来一个至关重要的问题,将直接影响到仿制药和原料药公司的市场和国际竞争力。另一方面,能否对药物进行正确的固态表征从而理解药物的固态性质(包括晶型稳定型,晶体表象,粒径分布,比表面积,无定形药物分散剂的稳定型,制剂溶出曲线,原料药和辅料的相容性,手性化合物的纯度等),将直接影响到原料药和制剂的研发和生产工艺,从而影响到药品的质量和销售价格。 药物晶型研究与药物的固态表征在欧美制药界已经是比较成熟并深受重视的领域,但在国内制药界尚属起步阶段。 晶云药物核心技术团队在药物晶型研究和药物固态表征领域拥有数十年的丰富经验,曾被邀请为许多全球和国内的制药公司提供该领域的专业技术咨询和培训。为了满足更多药物公司在该领域的技术需求,让更多的研发人员理解药物晶型研究和药物固态表征的原理和应用,并和同行沟通,更好的了解该领域的研发进展和发展趋势,晶云药物特决定在苏州举办此次为期2天的技术培训。培训的所有费用由晶云承担(除交通住宿外)。 培训课程: l 课程一 题目: 多晶型的控制和认知在原料药的工艺研发中的作用(3小时) 内容:  Ø 多晶型的控制和认知的重要性 Ø 无水多晶型体 i. 构建相图和解析相图 ii. 如何寻找最佳晶型(稳定和亚稳态晶型) iii. 如何有效的确定多晶型混合物中各种晶型的含量或比例 iv. 亚稳态晶型在制药业中的应用条件 v. 多晶型体在原料药上应用 Ø 水合物和溶剂合物 i. 识别和表征水合物及溶剂合物 ii. 水合物和溶剂合物在原料药中的应用及如何保存 iii. 针对水合物和溶剂合物的干燥工艺 Ø 药物多晶型的基本筛选流程 Ø 药物多晶型的稳定性及其热动力学研究 Ø 怎样生产并保持你所需要的晶型 Ø 实例分析 i. 混合晶型系统 ii. 在药品保存中形成了新的水合物/溶剂合物 iii. 如何放大不稳定的晶型的生产工艺 iv. 如何应对临床后期出现的晶型转化 主讲人: 陈敏华博士 l 课程二 题目: 药物多晶型的知识产权和法规(1小时) 内容: Ø 何时和为何要保护多晶型的知识产权 Ø 多晶型体的新药申批(NDA)需要什么信息及怎样填写新药申批 Ø 食品和药物管理局(以美国为例)对多晶型的要求及标准 Ø 如何开发仿制药的多晶型 主讲人:陈敏华博士 l 课程三 题目: 盐类药物的研究(45分钟) 内容:  Ø 什么是盐类药物 Ø 为什么要开发盐类药物 Ø 如何形成盐类药物 主讲人: 张炎锋博士 l 课程四 题目: 药物共晶体(45分钟) 内容: Ø 什么是共晶体 Ø 共晶体药物在制药中的基本应用 Ø 共晶体的稳定性 Ø 如何筛选药物共晶体及其放大工艺 Ø 在制药产业中形成共晶体的现象及其产生的影响 主讲人: 张炎锋博士 l 课程五 题目: 原料药的主要表征手段及对药物研发的重要性(2.5小时) 内容:  Ø 粉末衍射(XRPD) Ø 拉曼光谱 Ø 动态气相吸附(DVS) Ø 比表面积分析 (SA) Ø 表观密度 Ø pKa值的确定 Ø 测量LogD/LogP Ø 差示扫描量热仪及调制差示扫描量热仪 (DSC and MDSC) Ø 热重量分析仪(TGA) Ø 单晶衍射仪(SCXRD) Ø 偏振光显微镜 Ø 固态核磁共振(SSNMR) 主讲人: 陈敏华博士,张炎锋博士和张海禄博士 l 课程六题目: 手性药物的结晶拆分(1小时) 内容: Ø 手性药物结晶拆分的原理及工艺研发的流程和策略 Ø 手性药物结晶拆分在原料药生长中的重要性 Ø 实例分析: 对于不同种类的对映异构体系统(Conglomerate, Racemic compound, Solid solution)和非对映异构体(Diastereomer)进行手性拆分的不同策略的成功应用 Ø 手性分子结晶拆分的发展近况 主讲人: 陈敏华博士 培训安排: 时间:2011年3月24日-25日 地点:苏州工业园区仁爱路158号中国人民大学国际学院(苏州研究院)敬斋 注册报到地点:中国人民大学国际学院(苏州研究院)敬斋 学员人数:20-50人 日程安排: 日 期 时 间 活动内容 3月24号上午 8:00-9:00 注册报到 (含早餐) 9:00-9:20 欢迎致词 9:20-11:00 课程一 11:00-11:15 茶点休息 11:15-12:30 继续课程一 12:30-13:30 午餐 3月24号下午 13:30-15:00 课程二+课程三 15:00-15:20 茶点休息 15:20-16:20 课程三+课程四 16:20-17:30 讨论 17:30---- 自由社交和招待宴会3月25号上午 8:30-10:00 课程五 10:00-10:20 茶点休息 10:20-11:20 继续课程五 11:20-12:20 课程六 12:20-12:30 合影 12:30-13:30 午餐及自由活动 3月25号下午 13:30-17:30 参观晶云技术平台,了解各种仪器的实际操作和应用-理论结合实际 天气:苏州3月底天气凉爽,气候宜人,是一年中旅游的最佳时节,平均最低气温 12.2 ℃,平均最高气温 21.0 ℃。 华嘉客户报名方式(附回执): 电话:4008210778 传真:021-33678466 邮件:helen.jiang@dksh.com 回执单 姓名 性别 人数 单位名称 详细地址 邮政编码 电话 传真 E-mail 留言: 备注:请尽快E-mail 或传真(021-33678466)确认 联系人: 姜丹 公司地址:上海市虹梅路1801号A区凯科国际大厦2208室 邮政编码:200233 电话:4008210778 ;传真:021-33678466 电子邮箱:helen.jiang@dksh.com
  • 中国科学家利用自主显微镜首次揭示水合离子微观结构
    center img style=" width: 285px height: 300px " title=" " alt=" " src=" http://upload.jxntv.cn/2018/0515/1526343227397.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 285" / /center p   钠离子水合物的亚分子级分辨成像。从左至右,依次为五种离子水合物的原子结构图、扫描隧道显微镜图、原子力显微镜图和原子力成像模拟图。图像尺寸:1.5 nm × 1.5 nm。 /p center img style=" width: 402px height: 300px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img002.21cnimg.com/photos/album/20180515/m600/35DDA1DE9EDE6FF980557BE1E5589178.jpeg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 402" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥(右)在回答记者提问。新华社记者 金立旺 摄 /p p   5月14日电,北京大学和中国科学院的一支联合研究团队日前利用自主研发的高精度显微镜,首次获得水合离子的原子级图像,并发现其输运的“幻数效应”,未来在离子电池、海水淡化以及生命科学相关领域等将有重要应用前景。该成果于北京时间14日由国际顶级学术期刊《自然》在线发表。 /p p   水是人类熟悉但并不真正了解的一种物质。水与溶解其中的离子结合在一起形成团簇,称为水合离子,盐的溶解、大气污染、生命体内的离子转移等都与水合离子有关。19世纪末科学家就开始相关研究,但由于缺乏原子尺度的实验手段以及精准可靠的计算模拟方法,水合离子的微观结构和动力学一直是学术界争论的焦点。 /p p   中科院院士、北京大学讲席教授王恩哥与北京大学物理学院教授江颖带领课题组,在实验中首次获得了单个的水合离子,随后通过高精度扫描探针显微镜,得到其原子级分辨图像。这是一百多年来人类首次直接“看到”水合离子的原子级图像。 /p p   “观测到了最小的原子——氢原子,几乎已经达到极限,可以对原子核与电子的量子效应同时进行精确描述。”王恩哥说。 /p p   经过高精度观测,中国科学家还发现了水合离子的“幻数效应”,即包含3个水分子的钠离子水合物在表面上具有异常高的扩散能力。江颖介绍,该研究结果意味着,可以选择性增强或减弱某种离子的输运能力,在离子电池、防腐蚀、电化学反应、海水淡化、生物离子通道等应用领域具有重要的潜在意义。 /p p   “比如,可以通过对离子电池的电极材料进行界面调控,借助‘幻数效应’提高离子的传输速率,从而缩短充电时间和增大电池功率。”江颖说。 /p p   strong  1.研发显微镜核心部件和方法,达到原子水平观测的极限 /strong /p p   这项工作的突破之一,是在国际上首次得到了水合钠离子的原子级分辨图像。中国科学院院士、北京大学讲席教授王恩哥说:“这可能就是原子水平观测的极限了。” /p p   为了得到这幅图像,科学家们面临着两个挑战:第一步,如何人工制备单个离子水合物?制作离子水合物非常容易——把盐倒入水中溶解就可以了——但它们相互聚集、相互影响,水合结构也在不断变化,要得到适合扫描探针显微镜研究的单个离子水合物是一件非常困难的事。 /p p   第二步,如何给离子水合物拍个原子级照片?实验制备出单个离子水合物团簇后,接下来需要通过高分辨成像弄清楚其几何吸附构型,也就是给它们拍个“原子照片”——由于离子水合物属于弱键合体系,比水分子团簇更加脆弱,因此针尖很容易扰动离子水合物,从而无法得到稳定的图像。 /p p   科学家们在之前研究的基础上,对扫描探针显微镜做了改造,自主研制了关键核心设备。这一研究的主要完成人、北京大学物理学院教授江颖介绍,为了制备单个离子水合物,他们基于扫描隧道显微镜发展了一套独特的离子操控技术,以制备单个离子水合物。江颖说:“首先用非常尖锐的金属针尖在氯化钠薄膜表面吸取一个氯离子,这样便得到氯离子修饰的针尖和氯离子缺陷。然后用氯离子针尖将一个水分子拉入到氯离子缺陷中,再将针尖靠近缺陷最近邻的钠离子,水平拉动钠离子,将钠离子拔出吸附在针尖上。最后用带有钠离子的针尖扫描水分子,从而使钠离子脱离针尖,与水分子形成含有一个水分子的钠离子水合物。通过拖动其他水分子与此水合物结合,即可依次制备含有不同水分子数目的钠离子水合物。” /p p   为得到离子水合物的“原子照片”,并保证不对其产生扰动,研究人员发展了基于一氧化碳针尖修饰的非侵扰式原子力显微镜成像技术,可依靠极其微弱的高阶静电力扫描成像。江颖给记者展示了图片:“这是国际上首次在实空间得到离子水合物的原子层次图像,从图中可以看到,不仅水分子和离子的吸附位置可以精确确定,就连水分子取向的微小变化都可以直接识别。” /p p    strong 2.离子水合物的幻数效应有什么用 /strong /p p   江颖介绍,为了进一步研究离子水合物的动力学输运性质,研究人员利用带电的针尖作为电极,通过非弹性电子激发控制单个水合离子在氯化钠表面上的定向输运,发现了一种有趣的幻数效应:包含有特定数目水分子的钠离子水合物具有异常高的扩散能力,迁移率比其他水合物要高1~2个量级,甚至远高于体相离子的迁移率。 /p p   结合第一性原理计算和经典分子动力学模拟,他们发现这种幻数效应来源于离子水合物与表面晶格的对称性匹配程度。具体来说,包含1、2、4、5个水分子的离子水合物总能通过调整找到与氯化钠衬底的四方对称性晶格匹配的结构,因此与衬底束缚很紧,不容易运动 而含有3个水分子的离子水合物,却很难与之匹配,因此会在表面形成很多亚稳态结构,再加上水分子很容易围绕钠离子集体旋转,使得离子水合物的扩散势垒大大降低,迁移率显著提高。 /p p   江颖说:“我们可能都给孩子玩过按照空洞填积木的游戏,这个实验有点类似。氯化钠衬底就是预留好不同几何形状空洞的底板,而离子水合物就是这些积木,它周围结合的水分子数目决定了积木的几何形状。我们发现,包含1、2、4、5个水分子的水合物总能在底板上找到对应的空洞稳定下来,但含有3个水分子的离子水合物却没有合适的地方,只能浮在表面不停运动。” /p p   有评论认为,这一发现会在很多领域得到应用,“会马上引起理论和应用表面科学领域的广泛兴趣”“为在纳米尺度控制表面上的水合离子输运提供了新的途径,并可以拓展到其他水合体系”。 /p p   江颖举了几个例子。比如生物离子通道的研究,“我们知道,人类的嗅觉、味觉、触觉等是靠生物离子通道来实现的。离子在这些通道中的输运速度非常高,而且在离子的筛选上有很强的特定性,从来不会乱套。过去我们认为这种高速度和特定性主要是由离子通道的大小决定的,但我们的研究结果对这个认知提出了挑战。生物离子通道的内壁结构有很多微观细节,或许是因为细节的不同,导致了不同的幻数效应,才出现了离子输运的选择性和高效性。”再比如离子电池的研究,“我们可以通过对电极材料表面的调控和裁剪,提高离子的传输速度,实现缩短充电时间、提升电池功率等目标。” /p p   王恩哥表示,这一研究是理论与实验相结合的范例,是科学家们在一个方向上持续不断研究的结果,“我们将在这个方向上持续努力下去,也希望其他学者参与进来,让我们对水、对水合物体系有更深入的了解”。 /p p   strong  3.水合离子变得可以操控,能为我们带来什么? /strong /p p   据了解,这项研究工作得到了《自然》杂志三个不同领域审稿人的一致好评和欣赏。他们认为,该工作“会马上引起理论和应用表面科学领域的广泛兴趣”,“为在纳米尺度控制表面上的水合离子输运提供了新的途径并可以拓展到其他水合体系”。 /p p   王恩哥院士介绍,“该项研究的结果表明,我们可以通过改变材料表面的对称性和周期性,来实现选择性增强或减弱某种离子输运能力的目的。这对很多相关的应用领域都具有重要的潜在意义。” /p p   比如可以研发出新型的离子电池。江颖告诉记者,现在我们所使用的锂离子电池,其电解液一般是由大分子聚合物组成,而基于这项最新的研究,将有可能开发出一种基于水合锂离子的新型电池。“这种电池将大大提高离子的传输速率,从而缩短充电时间和增大电池功率,更加环保、成本也将大幅降低。” /p p   另外,这项成果还为防腐蚀、电化学反应、海水淡化、生物离子通道等前沿领域的研究开辟了一条新的途径。同时,由该工作发展出的高精度实验技术未来还有望应用到更多更广泛的水合物体系。 /p center img style=" width: 450px height: 292px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img001.21cnimg.com/photos/album/20180515/m600/54A9FE512CB7D9448952615F391BE431.jpeg" height=" 292" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,中科院院士、北京大学讲席教授王恩哥在介绍研究成果。新华社记者 金立旺 摄 /p center img style=" width: 450px height: 338px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img003.21cnimg.com/photos/album/20180515/m600/EAAEBB34B6CC5E08C49B2CBB7DE0F7A0.jpeg" height=" 338" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥在回答记者提问。新华社记者 金立旺 摄 /p center img alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img003.21cnimg.com/photos/album/20180515/m600/A35A5DB342D4F1E05F79EE99F887BD42.jpeg" height=" 600" width=" 439" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖在介绍研究成果。新华社记者 金立旺 摄 /p
  • 335项国家标准批准发布,农林牧渔与食品领域有哪些?
    近日,2024年第17号国家标准公告发布,国家市场监督管理总局(国家标准化管理委员会)批准《化学试剂 三水合乙酸钠(乙酸钠)》等335项国家标准。这次国家标准的批准发布涉及农林牧渔与食品领域的有13项,仪器信息网整理如下:335项国家标准清单中农林牧渔与食品领域标准序号标准编号标准名称代替标准号实施日期34GB/T 15688-2024动植物油脂 不溶性杂质含量的测定GB/T 15688-20082025/3/176GB/T 24304-2024动植物油脂 茴香胺值的测定GB/T 24304-20092025/3/1215GB/T 44336-2024素肉制品术语与分类2024/8/23217GB/T 44338-2024橘小实蝇检疫处理技术要求2025/3/1218GB/T 44339-2024大宗粮食收储信息管理技术通则2025/3/1219GB/T 44340-2024粮食储藏 玉米安全储藏技术规范2025/3/1220GB/T 44341-2024肥料中总硫含量的测定 高温燃烧法2025/3/1221GB/T 44342-2024苏铁叶枯病菌检疫鉴定方法2025/3/1222GB/T 44343-2024土壤质量 土壤中22种元素的测定 酸溶-电感耦合等离子体质谱法2024/12/1240GB/T 44368-2024进口冷链食品追溯 追溯系统数据交换应用规范2025/3/1310GB/T 44446-2024生产过程质量控制 质量追溯系统2025/3/1330GB/Z 44313-2024生物技术 生物样本保藏 用于研究和开发用途的植物生物样本保藏要求2024/8/23334GB/Z 44383-2024检测方法开发 物质选择指南2024/12/1附件:关于批准发布《化学试剂 三水合乙酸钠(乙酸钠)》公告 (2024【17】号).pdf 信息来源:https://www.sac.gov.cn/xw/tzgg/art/2024/art_8d842bf080f94d75ad0d87f4ec079180.html
  • 使用功率补偿型DSC对药物多晶型进行高分辨表征
    前言物质在结晶时由于受各种因素影响,使分子内或分子间键合方式发生改变,致使分子或原子在晶格空间排列不同,形成不同的晶体结构。同一物质具有两种或两种以上的空间排列和晶胞参数,形成多种晶型的现象称为多晶现象(polymorphism)。许多结晶药物都存在多晶型现象,同一药物的不同晶型在外观、溶解度、熔点、溶出度、生物有效性等方面可能会有显著不同,从而影响药物的稳定性、生物利用度及疗效,此现象在口服固体制剂方面表现得尤为明显。药物多晶型现象是影响药品质量与临床疗效的重要因素之一。因此,对存在多晶型的药物进行研发以及审评时,应对其晶型分析予以特别关注。多晶型药物中的不同晶型的热力学稳定性不同,不稳定晶型的熔融温度可能显著低于热力学稳定的晶型;而一种晶型熔融后可能结晶形成另一种更稳定的晶型。对于很多药物材料来说,多晶型现象的存在是非常重要的,因为在服用药物后,它们对血液循环中有效成分的摄取,以及药物保质期等方面会产生重大影响。同一药物的某种晶型可能比其它晶型更易溶解或摄取,其释放时间也会有所不同,并可以通过一定类型和水平的特定多晶型来进行控制。另外,某些晶型的储存期可能更长;随着时间的变化,易于溶解的晶型可能转变为不易溶解的晶型,从而导致药物活性的改变。中国药典通则《9015药品晶型研究及晶型质量控制指导原则》中明确说明,当固体药物存在多晶型现象,且不同晶型状态对药品的有效性、安全性或对质量可产生影响时,应对原料药物、固体制剂、半固体制剂、混悬剂等中的药物晶型物质状态进行定性或定量控制。在“药品晶型质量控制方法”一节中,明确晶型种类相对鉴别方法为粉末X射线衍生 (PXRD)、红外光谱 (IR)、拉曼光谱 (Raman)、差式扫描量热 (DSC)、热重 (TG)、毛细管熔点 (MP)、光学显微 (LM)、偏光显微 (LM) 和固体核共振 (ssNMR) 等9种方法。其中,TG方法中新增的热重与质谱联用 (TG-MS) 可以实现不同晶型药品在持续加热过程中的失重量和失重成分以及结晶溶剂和其它可挥发性成分的定性、定量分析。中国药典通则《0981结晶性检查法》规定固态药物的结晶性检查可采用偏光显微镜法、粉末X射线衍射法和差示扫描量热法 (DSC)。其中新增的DSC法可实现对晶态物质的尖锐状吸热峰或非晶态物质的弥散状 (或无吸热峰) 特征进行结晶性检查。当相同化合物的不同晶型固体物质状态吸热峰位置存在差异时,亦可采用DSC法进行晶型种类鉴别。DSC 测量的是加热、冷却或等温条件下样品吸收和释放的热流信号。《化学仿制药晶型研究技术指导原则》(试行)结合我国仿制药晶型研究的现状并参考国外监管机构相关指导原则起草制定,阐明仿制药晶型研究过程中的关注点,涉及的晶型包括无水物、水合物、溶剂合物和无定型等。指导原则明确了可使用热分析法 (如DSC和TG) 和光谱法 (如IR和Raman) 作为药物晶型表征方法和晶型确证方法;晶型控制参照《中国药典》相关通则 (《9015药品晶型研究及晶型质量控制指导原则》和《0981结晶性检查法》) 对晶型进行定性和/或定量分析。珀金埃尔默DSC 8500采用独一无二的功率补偿型设计,测量真实的热流信号。相互独立的轻质双炉体设计,使得 DSC 8500既可以提供药物多晶型测定所需要的极高灵敏度,又可以提供非常卓越的信号分辨率。同时,由于功率补偿型DSC的小炉体设计,提供了快速升降温的可能,从而可以在测试中通过快速升温,抑制低温晶型熔融后的重结晶,进而得到真实的各晶型比例。珀金埃尔默DSC产品,除了在药物晶型研究上的优势,在药物分析与研究方面,还具有如下优势:1灵敏度高,可灵敏检测蛋白变性的微量放热;2量热准确度高,特别适合药品纯度检测;3专利的调制技术,可研究晶型的可逆和不可逆转变;4铂金炉体,特别适用于药物的易分解特性;DSC 8500差式扫描量热仪极高的灵敏度,可以检测很弱的晶型转变过程或者含量很低的晶型成分卓越的分辨率,可以更好地分离多种晶型的熔融峰最快的加热和冷却速率 (最高可达750°C/min)使用铂面电阻测温技术 (PRT) 测量样品温度,准确性和重现性优于热电偶非常稳定的基线性能具备StepScan DSC技术,可以直接分离可逆与不可逆的热过程或热转变最大程度遵从21 CFR Part 11法规实验1某药物材料DSC测试测试条件升温速率:3℃min-1/10℃min-1;样品质量:~3mg;样品盘:标准卷边铝盘;吹扫气;高纯氮气;温度范围:90℃~170℃实验2卡马西平多晶型DSC测试图5 不同升温速率下卡马西平DSC测试结果
  • 独家新品| 5项食品补充检验方法标准物质新鲜出炉!
    近日,市场监管总局2022年第4号公告发布了5项食品补充检验方法,分别为《食品中爱德万甜的测定》《柑橘和苹果中顺丁烯二酸松香酯等5种化合物的测定》《饮料中香豆素类化合物的检测》《豆制品中碱性嫩黄等11种工业染料的测定》《甘蔗及甘蔗汁中3-硝基丙酸的测定》。《食品中爱德万甜的测定》规定了食品中爱德万甜的两种测定方法,第一法为高效液相色谱—串联质谱法,适用于饮料、酒类、焙烤食品、可可制品、巧克力和巧克力制品以及糖果、发酵乳和风味发酵乳、果冻、冷冻饮品、蛋制品、复合调味料中爱德万甜的测定。第二法为高效液相色谱—荧光检测法,适用于加工水果(水果干类、水果罐头、果酱、果泥、蜜 饯凉果等)中爱德万甜的测定。《柑橘和苹果中顺丁烯二酸松香酯等5种化合物的测定》规定使用液相色谱-串联质谱测定柑橘类水果、苹果中顺丁烯二酸松香酯、油酰一乙醇胺、油酰二乙醇胺、三乙醇胺油酸皂、癸氧喹酯。《饮料中香豆素类化合物的检测》规定饮料中香豆素、7-甲氧基香豆素、二氢香豆素、7-甲基香豆素、7-乙氧基-4-甲基香豆素、醋硝香豆素、环香豆素、3,3' -羰基双(7-二乙胺香豆素)等8种香豆素类化合物应采用高效液相色谱-串联法进行检测。《豆制品中碱性嫩黄等11种工业染料的测定》也同样规定豆腐、豆皮、腐竹、油豆皮、油豆腐等豆制品中的分散橙11、分散橙1、分散橙3、分散橙37、分散黄3、二甲基黄、二乙基黄、碱性橙22、碱性橙21、碱性嫩黄、苏丹橙G的测定方法为高效液相色谱—串联质谱法。《甘蔗及甘蔗汁中3-硝基丙酸的测定》规定了甘蔗及甘蔗汁中3-硝基丙酸高效液相色谱法的测定方法。并补充当样品中检出3-硝基丙酸时,可用高效液相色谱—串联质谱联用法进行确证。日常监管和案件查办中发现食品中出现非食品原料或在食品中添加其他风险物质时,食品补充检验方法可以作为食品安全标准的重要补充,可以用于对食品的抽样检验、食品安全案件调查处理和食品安全事故处置。阿尔塔科技有限公司与制标单位密切合作,成功研制出食品安全风险物质标准品,解决了标准制定过程中没有标准物质可用、无法准确定性定量的技术难题,协助制标单位构建准确可靠、技术先进的食品检验方法体系,为食品抽样检验、案件调查处理和食品安全事故处置等监管工作提供强有力的技术支撑。5项食品补充检验方法相关标准物质现货上架:标准号产品号产品名称包装规格BJS 2022011ST5115W爱德万甜一水合物10mgBJS 2022021ST159625油酰二乙醇胺10mg1ST159626三乙醇胺单油酸酯10mg1ST5710癸氧喹酯10mg1ST159624N-油酰乙醇胺10mg1ST160461松香酸马来酰酐10mgBJS 2022031ST45260-100A乙腈中8种香豆素混标溶液100μg/mL, 1mLBJS 2022041ST50977-100M甲醇中11种色素混标溶液100μg/mL, 1mLBJS 2022051ST9132-100W水中β-硝基丙酸溶液100μg/mL, 1mL
  • 如海光电┠拉曼光谱法为药物晶型的鉴别“添柴”助力
    了解固体药物的晶型有多重要?简单回答,合适的药物晶型能够提高药物的生物活性、API的热力学稳定性、制剂的稳定性,且利于制剂成型,故其重要性,不言而喻。近年来,固体药物晶型专利授权门槛的提高,也能看出国家知识产权局对于药物晶型领域新颖性、创新性研发越来越重视,所以如何才能搞明白在研药物的晶型呢?下面小编列出了目前检测固体药物晶型的常用方法,一起来看看吧。检测方法原理优点缺点XRD通过X射线衍射分析晶体结构能精确计算晶体间距无定型结构难以用XRD进行评估DSC通过晶体的吸热/放热反应分析晶体的稳定性和熔点能观察晶体的属性无法定义晶体的结构红外吸收光谱利用物质对红外光区的电磁辐射的选择性吸收来进行结构分析。能提供丰富的结构信息研磨可能会导致药物晶型的改变Raman通过分析受激光辐射产生的散射光来分析化学结构样品制备简单,没有特殊要求难以通过Raman分析晶体的jue对结构近几年,由于拉曼光谱指纹图谱的特性,利用拉曼光谱法来识别固体药物不同晶型的研究和应用层出不穷。近日,我们利用如海光电的高性能便携式拉曼光谱仪Raman11510成功地区分了包括谷氨酸、氯霉素、阿立哌唑在内的固体药物的不同晶型,充分展示了拉曼光谱法在鉴别不同药物晶型应用场景中的发展前景。Raman11510Raman11510是一款具备专业水平的便携式拉曼光谱检测系统,内置高性能红外增强型光纤光谱仪,提高了800nm的近红外波段的信号灵敏度,使得785 nm拉曼光谱的信号得到显著增强。在面对需要高灵敏度的研究场景,如晶型鉴别、蛋白质研究时,能够捕获到细微的拉曼信号。不同晶型的固体药物仅仅有晶型上的区别,而物质组成没有区别,其差异非常小,但我们使用Raman11510便携式拉曼光谱仪的检测结果表明,这种细微的差异在拉曼光谱的“火眼金睛”下还是无可遁形。不同晶型固体药物的拉曼谱图如下图所示,在谱图中我们标出了较为显著的光谱差异部分。图1:谷氨酸α晶型和β晶型的拉曼光谱图图2:氯霉素A、B两种晶型的拉曼光谱图图 3:阿立哌唑A、B、D三种晶型的拉曼光谱图2019年11月至2019年12月期间我们进行了多次药物晶型拉曼光谱的测定的实验。实验数据表明,谷氨酸、氯霉素、阿立哌唑不同晶型的单晶在每次测定所得拉曼光谱图中的主要散射峰的形状、位置、强度及其差别均明显可辨。由此也说明了拉曼光谱法具有良好的准确性、重现性和耐用性,从而可以为原料药成品的晶型分析,结晶过程中离线与在线原位监测控制等过程分析技术的建模提供依据。随着拉曼光谱法在药物分析研究中的不断深入,可以说目前在药物分析领域,拉曼光谱技术是一项未来极具发展潜力的药物分析方法。拉曼光谱法最早被美国药典(USP)收载为通用分析方法,随后又被《欧洲药典》和《英国药典》等收载为药物晶型检测方法。值得关注的是,2010年版的《中国药典》将拉曼光谱法作为指导原则收载,2015年版修订为理化分析通则方法,2020版又再次对拉曼光谱法部分进行修订,这无疑会大大推动拉曼光谱法在药品全生命过程中的应用发展。国家药典委员会官网截图:药典摘文:现代拉曼光谱仪使用简单,分析速度快(几秒到几分钟),性能可靠。因此,拉曼光谱与其他分析技术联用比其他光谱联用技术从某种意义上说更加简便(可以使用单变量和多变量方法以及校准)。拉曼光谱既适合于化学鉴别和固体性质如晶型转变的快速和非破坏性检测,也能够用于假药检测和质量控制,例如:化学分析:原料药活性成分,辅料的鉴别和定量;物理分析:固态(如多晶和水合物)和晶型的鉴别和量;过程分析:生物和化学反应,合成、结晶、制粒、混合、干燥、冻干、压片、装填胶囊和包衣。在《中国药典》2020修订版中介绍了拉曼光谱的很多优势,而手持式拉曼光谱仪能更好的诠释这些优势:如海光电的蓝牙手持式拉曼光谱仪将光谱仪器、采集分析软件、光谱数据管控三个核心功能有机结合,实现了设备管理、用户管理以及数据管理分层级管理,为现场检测提供了方便、有效的工具。《中国药典》zui新修订版中还增加了低波数包括太赫兹光区的拉曼光谱对于鉴定、表征药品有重要意义的表述,如海光电的低波数拉曼光谱仪EVA3000-LW能够检测到66—200cm-1波数范围内显著的拉曼光谱,在药物分析和晶型鉴别领域有巨大的应用潜力。相信未来拉曼光谱定能成为制药行业中药物研发与生产过程中最有力的工具之一!
  • 瀚蓝(佛山三水)生物环保技术有限公司445.00万元采购气体流量计
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 佛山市三水绿色环保项目热控仪表成套 广东省-佛山市-三水区 状态:公告 更新时间: 2023-08-29 招标文件: 附件1 附件2 公告信息 招标项目名称 佛山市三水绿色环保项目标段(包)名称 佛山市三水绿色环保项目热控仪表成套 公告性质 正常公告 公告内容 1.招标条件 佛山市三水绿色环保项目 已由 佛山市三水区发展和改革局 以 佛山市三水区发展和改革局关于佛山市三水绿色环保项目核准的批复(三发改核准[2022]1号) 批准(备案)建设,招标人为 瀚蓝(佛山三水)生物环保技术有限公司 ,建设资金来自 自筹资金 。 本项目 佛山市三水绿色环保项目热控仪表成套 的招标范围、招标人式、招标组织形式已由佛山市政务服务数据管理局 以佛山市政务服务数据管理局关于核准佛山市三水绿色环保项目招标事项的批复(佛政数监管核〔2022〕28号)核准,已具备招标条件,现进行公开招标。 2.工程概况与招标范围 2.1 供货地点:佛山市三水区芦苞镇西河村白泥坑垃圾卫生填埋场 2.2 项目规模:本项目建设总处理规模为1800吨/日,配置2*900t/d机械炉排焚烧线(包括烟气净化系统及辅助系统等),配置1*50MW中温超高压炉外再热凝汽式汽轮发电机组。 2.3招标控制价(最高投标限价):4450000.00(元) 2.4 本招标工程共分 1 个标段,各标段招标内容、规模和招标控制价: 佛山市三水绿色环保项目热控仪表成套,招标内容为:本次成套采购范围包括但不限于锅炉汽水管道系统、汽轮发电机组、除氧器系统、泵房等全项目范围内(主要包括压力和差压变送器、风、汽、水流量测量装置、热电偶、热电阻、各类液位计、氧化锆、仪表阀门、配电柜、就地测量仪表等)的热工仪表,具体供货内容以详细设备清单为准,技术规范要求详见技术需求书。招标控制价:人民币4450000.00元。 2.5 承包方式:固定总价包干,按招标文件要求包供货期、包料、包运输、包质量、包人员费用、包检验检测、包税费、包质量保修等其他承包本项目一切可预见及不可预见的费用。 2.6 交货时间:签订合同后45天开始交货,2个月内全部交货完毕,招标方有权根据项目实际进度调整交货时间(提前交货或者延后交货),如果招标方需要调整交货时间的,将提前7日通知中标人具体交货时间,中标人在签订合同时已经预见该等风险并且同意无条件响应招标方要求的交货时间,并且不得以此为由要求涨价或要求其他赔偿(包括但不限于:仓储费、人工费等)。 2.7 交货地点:本项目工地现场。 3.资格审查方式 本工程采用“资格后审”的方式确定合格投标人。 4.投标人资格要求 投标人应具备承担本项目的资质条件、能力和信誉,具体要求如下: 4.1 法人资格 投标人应具有独立法人资格并依法取得营业执照,营业执照处于有效期。 4.2 对投标人企业的资质要求 4.2.1投标人须提供有效的ISO系列质量管理体系认证证书。 4.2.2 本工程 不接受 联合体投标。 4.2.3投标人须按照《佛山市发展和改革局等六部门关于规范招投标市场秩序、遏制弄虚作假等违规行为的意见》的要求签署《诚信投标承诺书》,由法定代表人签字并盖单位公章。 4.3 对投标人企业的信誉要求 4.3.1 没有处于被责令停业,财产被接管、冻结,破产状态。(此处所指的“冻结”,是指被“冻结”的财产影响到投标人或潜在投标人的履约能力。其中财产被全部冻结的,应当不具备投标资格;财产被部分冻结但不影响投标人对本项目履约能力的,具备投标资格)。 4.3.2 没有受到取消投标资格的行政处罚。(此处所指的“处罚”,是指依据《中华人民共和国行政处罚法》作出的有关取消投标资格的行政处罚,且该行政处罚信息已按照行政执法公示制度公开,除此之外,其他以通知、通报等形式或依据规范性文件对投标人投标资格作出的限制,不属于此处所指的“处罚”范畴)。 4.3.3 在最近三年内没有骗取中标和严重违约及重大工程质量问题或重大安全生产事故。(此处“骗取中标”是指依据《中华人民共和国行政处罚法》所作出的《行政处罚决定书》中所认定的违法行为;“严重违约及重大工程质量问题或重大安全生产事故”则以司法、仲裁机构等出具的生效文件予以认定,其中的“重大”工程质量问题或“重大”安全生产事故,是指生效文件认定的“重大”事故等级达到《生产安全事故报告和调查处理条例》的标准;“最近三年”是指该项目招标公告发出之日起往前顺推三年,以《行政处罚决定书》或司法、仲裁机构等出具的生效文件的落款时间为准)。 4.3.4 根据佛山市中级人民法院《启用执行联动机制决定书》和《协助执行通知书》的要求,投标人若为名单上的失信被执行人,不得参加本项目投标。 4.3.5 根据《佛山市发展和改革局等8部门关于在公共资源交易事项中进行信用信息查询和实施联合奖惩的通知》(佛发改信用〔2019〕1号),对被佛山市公共信用信息管理系统列入失信名单的投标人,不得参加投标。 4.4 投标人近三年(自本项目招标公告发出之日起往前顺推)至少具有1个合同金额不少于356万元的热控仪表成套合同供货业绩。相关证明材料须包括合同协议书(需提供合同关键页、盖章页的复印件并加盖公章)等,如前述证明材料不能清晰反映有关特征和必要信息的,还须提供该项业绩的业主证明并须附有业主方的联系人及联系电话。 5.招标文件、图纸等资料的获取 5.1 凡有意参加投标者,可于2023年8月29日至投标截止时间前登录佛山市公共资源交易信息化综合平台下载招标文件、图纸等资料。具体操作方法请浏览“佛山市公共资源交易网”网站“交易指南”中的工程交易栏目。网址:http://ggzy.foshan.gov.cn,业务咨询电话:0757-83990765、0757-83991581。 5.2 招标文件一经在佛山市公共资源交易网发布,视作已发放给所有投标人,各投标人应及时下载电子版招标文件及图纸(供下载的招标文件有PDF和WORD版本时,若有不一致,以招标人盖章的PDF版本招标文件为准)。否则所造成的一切后果由投标人自负。 6.投标保证金 6.1 本工程要求投标人提交 8 万元的投标保证金。 6.2 投标人可自行选择采用现金或投标担保的形式提交投标保证金。 7.投标文件的递交 7.1 投标文件递交的截止时间 7.1.1 投标文件递交的截止时间:2023年9月19日09时30分。 7.1.2 开标时间:2023年9月19日09时30分。 7.1.3 递交投标文件起止时间与开标时间是否有变化,请密切留意澄清(答疑)、补充、修改等文件中的相关信息。 7.2 投标文件递交地址:投标人应于投标截止时间前将投标文件密封送达佛山市公共资源交易中心三水分中心指定开标室(地址:佛山市三水区西南街道同福路 10 号区行政服务中心大院 2 号楼)。 8.发布公告的媒介(适用于公开招标) 本次招标公告同时在 三水区人民政府门户网站 以及广东省招标投标监管网、佛山市公共资源交易网发布。公告内容和时间不一致时,以佛山市公共资源交易网发布的为准。 9.其他 9.1递交投标文件的投标人少于 3 个的,招标人应当依法重新招标。 9.2参与投标的法定代表人或授权代理人须具有交易员资格。 9.3本次招标采用的评定标办法是 评定分离办法 。 10.联系方式 招标人:瀚蓝(佛山三水)生物环保技术有限公司 招标代理机构:广东省汇智项目管理咨询有限公司 地 址:佛山市三水区芦苞镇西河村“白泥坑”(土名)(住所申报) 地址:佛山市三水区云东海街道驿北路5号云东海碧桂广场一区2座207 邮编:528100 邮编:528100联系人:潘小姐 联系人:卢先生 电话:0757—87216218 电话:0757-87710881 传真:/ 传真:/ 电子邮件:/ 电子邮件:gdshz2018@163.com 相关附件 定稿-佛山市三水绿色环保项目热控仪表成套招标文件稿8.28.pdf 招标公告.pdf × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:气体流量计 开标时间:2023-09-19 09:30 预算金额:445.00万元 采购单位:瀚蓝(佛山三水)生物环保技术有限公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:广东省汇智项目管理咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 佛山市三水绿色环保项目热控仪表成套 广东省-佛山市-三水区 状态:公告 更新时间: 2023-08-29 招标文件: 附件1 附件2 公告信息 招标项目名称 佛山市三水绿色环保项目标段(包)名称 佛山市三水绿色环保项目热控仪表成套 公告性质 正常公告 公告内容 1.招标条件 佛山市三水绿色环保项目 已由 佛山市三水区发展和改革局 以 佛山市三水区发展和改革局关于佛山市三水绿色环保项目核准的批复(三发改核准[2022]1号) 批准(备案)建设,招标人为 瀚蓝(佛山三水)生物环保技术有限公司 ,建设资金来自 自筹资金 。 本项目 佛山市三水绿色环保项目热控仪表成套 的招标范围、招标人式、招标组织形式已由佛山市政务服务数据管理局 以佛山市政务服务数据管理局关于核准佛山市三水绿色环保项目招标事项的批复(佛政数监管核〔2022〕28号)核准,已具备招标条件,现进行公开招标。 2.工程概况与招标范围 2.1 供货地点:佛山市三水区芦苞镇西河村白泥坑垃圾卫生填埋场 2.2 项目规模:本项目建设总处理规模为1800吨/日,配置2*900t/d机械炉排焚烧线(包括烟气净化系统及辅助系统等),配置1*50MW中温超高压炉外再热凝汽式汽轮发电机组。 2.3招标控制价(最高投标限价):4450000.00(元) 2.4 本招标工程共分 1 个标段,各标段招标内容、规模和招标控制价: 佛山市三水绿色环保项目热控仪表成套,招标内容为:本次成套采购范围包括但不限于锅炉汽水管道系统、汽轮发电机组、除氧器系统、泵房等全项目范围内(主要包括压力和差压变送器、风、汽、水流量测量装置、热电偶、热电阻、各类液位计、氧化锆、仪表阀门、配电柜、就地测量仪表等)的热工仪表,具体供货内容以详细设备清单为准,技术规范要求详见技术需求书。招标控制价:人民币4450000.00元。 2.5 承包方式:固定总价包干,按招标文件要求包供货期、包料、包运输、包质量、包人员费用、包检验检测、包税费、包质量保修等其他承包本项目一切可预见及不可预见的费用。 2.6 交货时间:签订合同后45天开始交货,2个月内全部交货完毕,招标方有权根据项目实际进度调整交货时间(提前交货或者延后交货),如果招标方需要调整交货时间的,将提前7日通知中标人具体交货时间,中标人在签订合同时已经预见该等风险并且同意无条件响应招标方要求的交货时间,并且不得以此为由要求涨价或要求其他赔偿(包括但不限于:仓储费、人工费等)。 2.7 交货地点:本项目工地现场。 3.资格审查方式 本工程采用“资格后审”的方式确定合格投标人。 4.投标人资格要求 投标人应具备承担本项目的资质条件、能力和信誉,具体要求如下: 4.1 法人资格 投标人应具有独立法人资格并依法取得营业执照,营业执照处于有效期。 4.2 对投标人企业的资质要求 4.2.1投标人须提供有效的ISO系列质量管理体系认证证书。 4.2.2 本工程 不接受 联合体投标。 4.2.3投标人须按照《佛山市发展和改革局等六部门关于规范招投标市场秩序、遏制弄虚作假等违规行为的意见》的要求签署《诚信投标承诺书》,由法定代表人签字并盖单位公章。 4.3 对投标人企业的信誉要求 4.3.1 没有处于被责令停业,财产被接管、冻结,破产状态。(此处所指的“冻结”,是指被“冻结”的财产影响到投标人或潜在投标人的履约能力。其中财产被全部冻结的,应当不具备投标资格;财产被部分冻结但不影响投标人对本项目履约能力的,具备投标资格)。 4.3.2 没有受到取消投标资格的行政处罚。(此处所指的“处罚”,是指依据《中华人民共和国行政处罚法》作出的有关取消投标资格的行政处罚,且该行政处罚信息已按照行政执法公示制度公开,除此之外,其他以通知、通报等形式或依据规范性文件对投标人投标资格作出的限制,不属于此处所指的“处罚”范畴)。 4.3.3 在最近三年内没有骗取中标和严重违约及重大工程质量问题或重大安全生产事故。(此处“骗取中标”是指依据《中华人民共和国行政处罚法》所作出的《行政处罚决定书》中所认定的违法行为;“严重违约及重大工程质量问题或重大安全生产事故”则以司法、仲裁机构等出具的生效文件予以认定,其中的“重大”工程质量问题或“重大”安全生产事故,是指生效文件认定的“重大”事故等级达到《生产安全事故报告和调查处理条例》的标准;“最近三年”是指该项目招标公告发出之日起往前顺推三年,以《行政处罚决定书》或司法、仲裁机构等出具的生效文件的落款时间为准)。 4.3.4 根据佛山市中级人民法院《启用执行联动机制决定书》和《协助执行通知书》的要求,投标人若为名单上的失信被执行人,不得参加本项目投标。 4.3.5 根据《佛山市发展和改革局等8部门关于在公共资源交易事项中进行信用信息查询和实施联合奖惩的通知》(佛发改信用〔2019〕1号),对被佛山市公共信用信息管理系统列入失信名单的投标人,不得参加投标。 4.4 投标人近三年(自本项目招标公告发出之日起往前顺推)至少具有1个合同金额不少于356万元的热控仪表成套合同供货业绩。相关证明材料须包括合同协议书(需提供合同关键页、盖章页的复印件并加盖公章)等,如前述证明材料不能清晰反映有关特征和必要信息的,还须提供该项业绩的业主证明并须附有业主方的联系人及联系电话。 5.招标文件、图纸等资料的获取 5.1 凡有意参加投标者,可于2023年8月29日至投标截止时间前登录佛山市公共资源交易信息化综合平台下载招标文件、图纸等资料。具体操作方法请浏览“佛山市公共资源交易网”网站“交易指南”中的工程交易栏目。网址:http://ggzy.foshan.gov.cn,业务咨询电话:0757-83990765、0757-83991581。 5.2 招标文件一经在佛山市公共资源交易网发布,视作已发放给所有投标人,各投标人应及时下载电子版招标文件及图纸(供下载的招标文件有PDF和WORD版本时,若有不一致,以招标人盖章的PDF版本招标文件为准)。否则所造成的一切后果由投标人自负。 6.投标保证金 6.1 本工程要求投标人提交 8 万元的投标保证金。 6.2 投标人可自行选择采用现金或投标担保的形式提交投标保证金。 7.投标文件的递交 7.1 投标文件递交的截止时间 7.1.1 投标文件递交的截止时间:2023年9月19日09时30分。 7.1.2 开标时间:2023年9月19日09时30分。 7.1.3 递交投标文件起止时间与开标时间是否有变化,请密切留意澄清(答疑)、补充、修改等文件中的相关信息。 7.2 投标文件递交地址:投标人应于投标截止时间前将投标文件密封送达佛山市公共资源交易中心三水分中心指定开标室(地址:佛山市三水区西南街道同福路 10 号区行政服务中心大院 2 号楼)。 8.发布公告的媒介(适用于公开招标) 本次招标公告同时在 三水区人民政府门户网站 以及广东省招标投标监管网、佛山市公共资源交易网发布。公告内容和时间不一致时,以佛山市公共资源交易网发布的为准。 9.其他 9.1递交投标文件的投标人少于 3 个的,招标人应当依法重新招标。 9.2参与投标的法定代表人或授权代理人须具有交易员资格。 9.3本次招标采用的评定标办法是 评定分离办法 。 10.联系方式 招标人:瀚蓝(佛山三水)生物环保技术有限公司 招标代理机构:广东省汇智项目管理咨询有限公司 地 址:佛山市三水区芦苞镇西河村“白泥坑”(土名)(住所申报) 地址:佛山市三水区云东海街道驿北路5号云东海碧桂广场一区2座207 邮编:528100 邮编:528100 联系人:潘小姐 联系人:卢先生 电话:0757—87216218 电话:0757-87710881 传真:/ 传真:/ 电子邮件:/ 电子邮件:gdshz2018@163.com 相关附件 定稿-佛山市三水绿色环保项目热控仪表成套招标文件稿8.28.pdf 招标公告.pdf
  • ​质谱技术助力我国科学家在月壤中首次发现分子水!
    从中国科学院物理研究所获悉,中国科学院物理研究所/北京凝聚态物理国家研究中心研究员陈小龙、副研究员金士锋、博士研究生郝木难等,联合北京科技大学副教授郭中楠、天津大学工程师殷博昊、中国科学院青海盐湖研究所研究员马云麒、郑州大学工程师邓丽君等,在嫦娥五号带回的月球样本中,发现了月球上一种富含水分子和铵的未知矿物晶体——ULM-1。这标志着科学家首次在月壤中发现了分子水,揭示了水分子和铵在月球上的真实存在形式。该研究成果近日在学术期刊《自然-天文学》(Nature Astronomy)在线发表。月球上是否存在水,对于月球演化研究和资源开发至关重要。对1969年至1972年采集的阿波罗样品的研究表明,月壤中未发现任何含水矿物。此后,月球不含水成为月球科学的基本假设,这对认识月球火山演化、月地起源等问题产生了重要影响。1994年,研究人员通过克莱门汀探测器对月球两极进行观测,提出极区永久阴影区的月壤中可能存在水冰。2009年,月船一号搭载的月球矿物绘图光谱仪发现,月球表面存在太阳风导致的羟基和/或水分子信号。同年,月球观测和传感卫星以2.5公里/秒的速度撞击了月球永久阴影区,而对撞击尘埃的遥感测量显示了水的信号。近年来,遥感数据表明月球光照区有水分子存在的迹象。针对当年采集的阿波罗月球样品,科学家运用高灵敏度的表征技术,在部分玻璃和矿物中发现了百万分之一量级的“水”(H+、OH-或H2O),但没有水分子存在的确凿证据。富含水分子和铵的未知矿物晶体——ULM-1和成分组成我国嫦娥5号采集的月壤样品属于最年轻的玄武岩,是迄今为止纬度最高的月球样品,为月球水的研究提供了新机遇。我国科研人员开展的这项研究基于单晶衍射和化学分析发现,这些月球水和铵以一种成分为(NH4,K,Cs,Rb)MgCl36H2O的水合矿物形式出现。该矿物分子式中含有多达六个结晶水,水分子在样品中的质量比高达41%。红外光谱和拉曼光谱上均可以清晰地观察到源于水分子和铵的特征振动峰。晶体的电荷密度可以清晰地看到水分子中的氢。ULM-1的晶体结构和组成与地球上近年来发现的一种稀有火山口矿物相似。地球上,该矿物是由热玄武岩与富含水和氨的火山气体相互作用形成。这为月球上的水和氨的来源提供了新线索。ULM-1是如何被发现的?中国科学院物理研究所/北京凝聚态物理国家研究中心副研究员金士锋说,科研人员在1.5克细如尘埃的月壤中筛选了数千个晶体颗粒,绝大多数是已知矿物。ULM-1晶粒大小和月壤里大部分颗粒大小差不多,直径仅有零点几毫米。科研人员在挑选样品时发现, ULM-1质地非常软且外观透明,猜测其中含有水。研究基于单晶衍射和化学分析发现,这些月球水和铵以一种成分为NH4MgCl36H2O的水合矿物形式出现。该矿物分子式中含有多达六个结晶水,水分子在样品中的质量比高达41%。红外光谱和拉曼光谱上均可以清晰地观察到源于水分子和铵的特征振动峰。晶体的电荷密度可以清晰地看到水分子中的氢。ULM-1的晶体结构和组成与地球上近年来发现的一种稀有火山口矿物相似。地球上,该矿物是由热玄武岩与富含水和氨的火山气体相互作用形成。这为月球上的水和氨的来源提供了新线索。“我们认为,ULM-1是月火山喷发的产物,其中的水是月球本身的水。”金士锋说,目前认为月球“水”的来源主要有几种可能:一是太阳风粒子与月表物质相互作用产生的羟基物质;二是撞击月球的彗星或陨石带来的水和含羟基物质;三是月球原生水。科研人员推测,几十亿年前,月球火山喷发时,喷出的水蒸气、氨、氯化氢等气体和月壤反应,形成了ULM-1。为了确保这一发现的准确性,该研究进行了严格的化学和氯同位素分析。纳米二次离子质谱数据表明,该矿物的Cl同位素组成和地球矿物显著不同,与月球上的矿物相符。研究人员对该矿物化学成分和形成条件进行分析,进一步排除了地球污染或火箭尾气作为这种水合物的来源。该六水矿物的存在为月球火山气体的组成给出了重要的约束。热力学分析显示,当时月球火山气体中水的含量下限与目前地球中最为干燥的伦盖火山相当。这揭示了复杂的月球火山脱气历史,对探讨月球的演化过程具有重要意义。这种水合矿物的发现揭示了月球上水分子可能存在的一种形式——水合盐。与易挥发的水冰不同,这种水合物在月球高维度地区(嫦娥5号采样点)非常稳定。这意味着,即使在广阔的月球阳光照射区,也可能存在这种稳定的水合盐。这为未来月球资源的开发和利用提供了新的可能性。
  • 助力“三水”统筹共治|先河环保推出碧水云-水环境综合解决方案
    助力“三水”统筹共治|先河环保推出碧水云-水环境综合解决方案“十四五”是以党的十九届五中全会精神为引领,助力建设2035年美丽水生态环境、实现“清水绿岸、鱼翔浅底”伟大目标的第一个五年规划,将对水生态环境保护目标要求、实现路径、管理体系等进行科学规划。先河环保以助力十四五规划落地为己任,推动以“水环境、水资源、水生态”为重点的“三水”统筹共治,构建“碧水云-水环境综合解决方案”,协助各级实现有河有水、有雨有草、人水和谐的美好愿景。坚持系统观念,明确“三水”统筹治理路径,促进水生态系统整体恢复。先河环保提出的“碧水云”以改善水生态环境质量为核心,统筹水资源、水生态和水环境,系统推进水质断面、河流水系、入河排污口、污染源、生物多样性、生境状况、水资源多维关联分析,诊断识别各单元的污染特征及成因,优化水环境污染防治措施,结合精细化的环境监管,辅助管理部门构建科学有效的水域综合监管体系,达到“人水和谐”的环境目标。 碧水云智慧决策平台 三水共治、系统分析系统掌握区域水环境、水资源、水生态概况,各市县区断面水质排名,数据同期对比分析,识别不同时期主要污染物,便于资源调配、精细管理。、 源头监控、视频智能识别对污水处理厂、排污企业、尾矿、船舶等全过程精细化管控,实现污染源总量控制与减排。入河排污口、河流汇入口、面源污染监测监控,结合智能监控识别,精准锁源。 多模块预警 、助力决策以监测数据为基础,水环境数值模型为手段,进行临界值预警、数值变差预警、沿程预警、水质波动预警、水流量预警等,及早判断水污染事件影响,为决策者提供决策依据。多源数据融合、精准锁源集成水质、水文、污染源、人口分布、工业分布、用地类型等数据,采用大数据算法及模型,污染源解析,挖掘污染排放与水体水质规律,识别污染区域,锁定重点对象,打通“岸上—水里”影响关系。碧水云技术服务驻场服务团队与政府部门联合办公,实时监控系统数据,及时发现异常情况后进行指挥调度,确保系统正常稳定运行。 河道巡查,推进政府网格化监管体系的建设和完善提供污染源巡查服务,向政府及时交办污染事件,辅助政府执法管理。无人机高光谱水质解析服务对重点断面、河流汇入口、排污口进行无人机高光谱反演解析。驻场服务团队集成水文、水质、地形、土地利用等数据,采用大数据、SWMM、EFDC等模型,分析污染来源,提出断面达标方案。应用实例自贡市水网格化监测系统及大数据平台服务该项目涉及饮用水源地预警监测网络,县区间主要跨界、生态补偿断面监测网络,主要支流入河口断面监测网络组成的三级水环境污染监测网络,自贡境内的30余条河流,流域面积总共约4300平方公里,河道总长约730公里,实现了覆盖自贡市全境主要河流水系断面的网格化精准监测、监管和预警预报。咨询服务平台服务中山水环境大数据分析平台创新“一张网、一中心、一张图、N应用”的顶层设计,打造一个集数据存储、管理、交换、预警、服务等功能于一体的水环境综合管理平台,从监测预警、综合监管、决策分析、考核评估、信息发布五个方面强化河涌水质全过程闭环式监管,有效持续改善河涌水质,为打赢水污染防治攻坚战提供信息化支撑。生态兴则文明兴。人民依水而居,文化依水而生,环境依水而美。长江、黄河、大运河等大江大河流淌着中华文明的深远与辉煌。生态环保任重道远,水生态环境保护工作必将在美丽中国建设和中华民族伟大复兴新征程中发挥重大作用。先河环保将继续全力以赴,推进改善水生态环境质量,确保为城市生态建设和环境保护展现新的作为、贡献更大力量。
  • 广东省化妆品科学技术研究会立项《一种含结晶型表面活性剂的洗涤用品微生物检验方法》等三项团体标准
    按照国家标准化管理委员会及民政部《团体标准管理规定》以及《广东省化妆品科学技术研究会团体标准管理办法》相关规定,由相关单位申请立项的《一种含结晶型表面活性剂的洗涤用品微生物检验方法》、《适合中国人肤质的素颜霜产品》、《素颜霜持妆、防水、防汗》三项团体标准,经研究会标委会评审符合立项条件,现批准立项。请参编单位严格把控标准质量,保证标准的科学性,严谨性,实用性,并按计划完成标准编制的相关工作。 如有单位或者个人对标准项目有任何建议或要求,请与广东省化妆品科学技术研究会联系。欢迎相关单位参与团体标准的起草制订工作。 联系人:林芝联系电话:18520226299邮箱:3126145286@qq.com地址:广州市天河区东莞庄路110号赛宝科技园E栋104室
  • 达安基因三水研发“食药卫士”
    达元食品安全技术公司拟生产的试剂仅两分钟即可检测饮用水是否安全。南方日报记者喻淑琴摄   南方日报讯(记者/喻淑琴通讯员/黄猛高王鑫谭伟健)广东省首家高校上市公司———中山大学达安基因股份有限公司,继2008年把医疗检测项目落户三水工业园区并投产后,又于昨日,在该园区开建国内最大的食品药品安全研发生产基地,并把达元食品安全项目作为该基地首个动工项目。   广州达元食品安全技术有限公司是中山大学达安基因股份有限公司与广州三元科技有限公司共同投资创建。   昨日奠基的达安三水科技园达元食品安全项目,总用地面积4万平方米,总建筑面积40650平方米,总投资2亿元。全部建成投产后年产值将超过5亿元,成为国内最大的食品药品安全研发生产基地。   奠基仪式上,佛山市委常委、常务副市长冼瑞伦和三水区区长卢立湃表示,“该项目的建成,将在一定程度上推动三水和佛山健康产业的发展。”   据了解,达元食品安全项目分三期建设,一期建设16500平方米,预计2011年初可建成并正式投产。届时,达元公司将把在广州的食品安全相关仪器、试剂的研发全部转移至三水。
  • 三水农产品质检中心将正式运行
    记者从三水区农业局了解到,该区新建的农产品质量安全检测中心已投入预运行近一个月,目前工作人员正在接受相关检测仪器的操作培训。待培训完成,该中心将立即投入正式运作,力争从源头上保障食品安全。该中心接受居民或者企事业单位的相关检测需求。   据悉,该中心使用面积400多平方米,投资300多万元。预运行期间,中心工作人员每天都会从市场抽取60个至100个样本进行检测,随后保留样品,并把检测结果上传到佛山市相关网站。检测项目包括瘦肉精、农药残留等10大类,每年检测的样品将超过10万份。   中心负责人表示,中心计划将检测的重心下移到各镇街的农产品生产基地。“在农产品即将上市之前,进行质量安全检测,并对上市前一段时期内的生产进行规范要求和技术指导,包括不准过多使用某种农药等,真正做到从源头上保障食品安全。”据悉,从下月开始,中心将建立相关的制度,要求各质检站定期采集基地样品。
  • 三水两气!国家连发多项生态环境标准
    为贯彻《中华人民共和国环境保护法》等法律法规,防治环境污染,改善生态环境质量,规范和指导相关行业的健康发展,国家近日连发多项国家生态环境标准。据了解,该系列标准将从2023年5月1日起实施。包括:一、《氮肥工业废水治理工程技术规范》(HJ 1277-2023)该标准规定了氮肥工业废水治理工程设计、施工、验收和运行维护的技术要求,适用于氮肥工业废水治理工程,作为氮肥工业建设项目可行性研究、设计、施工、安装、调试、验收、运行和维护管理的参考依据。该标准要求,要建设地下水水质监测井进行监测,防止土壤及地下水受到污染;对已有调查、监测和现场检查表明存在土壤污染风险的,需按照相关规定进行土壤污染状况调查。二、《陶瓷工业废水治理工程技术规范》(HJ 1278-2023)该标准规定了陶瓷工业废水治理工程的设计、施工、验收和运行维护等技术要求,适用于建筑陶瓷、卫生陶瓷、日用及陈设艺术瓷和特种陶瓷工业废水治理工程,可作为陶瓷工业项目环境保护设施设计、施工、验收及运行管理的参考依据。该标准要求,要建设地下水水质监测井进行监测,防止土壤及地下水受到污染;对已有调查、监测和现场检查表明存在土壤污染风险的,需按照相关规定进行土壤污染状况调查。三、《钛白粉工业废水治理工程技术规范》(HJ 1279-2023)该标准规定了钛白粉工业废水治理工程的设计、施工、验收和运行维护技术要求,适用于钛白粉工业废水治理设施新建、改建和扩建工程的设计、施工、验收及运行全过程,可作为钛白粉工业废水治理工程项目的环境保护设施设计与施工、验收及建成后运行与环境管理的参考依据。该标准要求,钛白粉工业废水治理工程应配套建设预防二次污染的技术措施;对废水治理设施应当采取防渗漏等措施,并建设地下水水质监测井进行监测,防止土壤及地下水受到污染;对已有调查、监测和现场检查表明存在土壤污染风险的,需按照相关规定进行土壤污染状况调查。污泥的处理处置应遵守GB 18599 要求。厂界环境噪声治理应符合 GB 12348 的要求。四、《炼焦化学工业废气治理工程技术规范》(HJ 1280-2023)该标准规定了炼焦化学工业废气治理工程的设计、施工、验收和运行维护的技术要求,适用于炼焦化学工业生产过程中备煤、炼焦、熄焦、焦处理、煤气净化、焦化废水处理等工序废气治理工程的建设和运行管理,可作为建设项目环境保护设施的工程咨询、设计、施工、验收及建成后运行与管理的参考依据。炼焦化学工业的大气污染物排放分为有组织排放和无组织排放,主要污染物有颗粒物、二氧化硫、苯并芘、氮氧化物、硫化氢、氨和各种烃类等。该标准要求,焦化企业应规范排污口建设,在焦炉装煤及推(出)焦除尘地面站烟囱、焦炉机侧炉门除尘地面站烟囱、干熄焦除尘地面站烟囱、焦炉烟囱、锅炉烟囱等有组织排放口应按照有关规定设置污染物排放自动监测装置,并与环境保护主管部门联网。有关自动监测,该标准要求,废气治理系统应配置完善的自动监测、报警和联锁控制系统,实现智能化、数字化控制,并根据需要与生产工艺进行必要的联锁。五、《玻璃工业废气治理工程技术规范》(HJ 1281-2023)该标准规定了玻璃工业废气治理工程的设计、施工、验收和运行维护的技术要求,适用于平板玻璃制造的废气治理工程,可作为工程咨询、环境保护设施设计与施工、建设项目竣工环境保护验收及建成后运行管理的参考依据。熔化工序产生的窑炉烟气中主要大气污染物包括颗粒物、NOx、SO2及少量的氯化氢(HCl)和氟化物、重金属及其化合物。该标准要求,玻璃制造企业应按照环境监测的相关规定开展自行监测,重点排污单位应安装大气污染物自动监控设备并与生态环境部门联网。按照《排污口规范化整治技术要求(试行)》设置规范化排污口,设置符合 GB 15562.1 要求的废气排放口(源)标志。
  • 制药界晶型专家共襄盛举,赛默飞世尔科技赞助晶云药物第二届晶型专题培训
    由苏州晶云药物科技有限公司主办的第二届药物晶型专题技术培训于2011年9月16日在上海张江药谷圆满闭幕,本次培训共吸引了来自全国各地80多家制药企业近200名科研和管理人员参加。 药物晶型一直是国际制药业关注和致力研究的重点问题。近年来,随着我国药品审评机构对药品注册管理的进一步完善,国内制药业逐渐认识到药物晶型研究的重要性和我们与国际制药界之间的差距。为了进一步提高国内制药业对药物晶型研究的认识,解决当前药物研发过程中出现的困难和问题,共同推进国内制药行业整体水平的提高及促进行业内深入广泛的交流,晶云药物今年3月成功举办了国内首届药物晶型专题培训,收到业界同仁一致好评。应广大药界客户的要求,经过一段时间的精心筹备,晶云药物9月在上海张江药谷再次举办培训。 晶云药物为此次培训精心设计了一系列适合制药界晶型药物研究者学习和讨论的课程。本次培训的内容涵盖了药物多晶型研究,药品质量研究工作中晶型问题,水合物晶型,无定形药物,药物共晶,药物结晶工艺的开发和优化,结晶工艺应用于手性药物分子的提纯和优化,固态核磁共振在药物晶型研究中的应用等一系列关于药物晶型研发方面的精彩报告。 作为此次会议的赞助商,赛默飞世尔科技分子光谱拉曼产品经理张衍亮博士应邀做了DXR显微拉曼光谱仪在药物晶型研究方面的技术与应用。凭借不断创新傅立叶红外与拉曼光谱仪发展名闻于世的基础,赛默飞世尔推出的最新一代 DXR激光拉曼光谱仪用于高速筛选多晶形物和重结晶研究。其优异光机电自动化设计使拉曼光谱仪具有高度智能自动化,并且仪器设计超级稳定,彻底解决了拉曼光谱使用难问题。任何人都可以自行更换激光器及光栅, 并且任何人都可以非常容易进行激光光路与拉曼信号的准直,而无需打开光谱仪。 本次培训也特别邀请到了国家药检所,上海市、浙江省和苏州市药检所以及国内知名科研院校的十几位晶型研究领域的专家和领导。在大家的共同参与和互动下,培训效果显著,两天的培训还安排了专家讨论,由药监所,研究院,高校和制药企业的晶型研究和结晶工艺开发专家共同参与讨论,和学员一起对中国药物晶型研究的现状和未来,挑战和前景展开了热烈的讨论。专家们就学员们关心的热点问题,包括如何提高中国仿制药质量,缩小与国外原研药之间的差别,如何培养中国药物晶型研究的后备人才等发表了自己的看法。专家们一致认为,培养药物固态研发和药物结晶工艺专业人才任重而道远,需要通过药监所,研究院,高校和制药企业的各种形式的紧密合作来共同推动。晶云首席执行官陈敏华博士表示,晶云正考虑在一些高校设立药物晶型研究和药物结晶工艺开发的奖学金,以鼓励更多的优秀学生参与药物晶型的研究工作,不断提高中国制药界固态药物研发的整体实力。晶云将会为这些优秀学生提供实习和工作机会,并为这些学生开放其处于世界先进水平的的药物晶型研究和结晶工艺开发技术平台。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们致力于帮助我们的客户使世界更健康、更清洁、更安全。公司年销售额接近 110 亿美元,拥有员工约37000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业。借助于Thermo Scientific 和 Fisher Scientific 两个首要品牌,我们将持续技术创新与最便捷的采购方案相结合,为我们的客户、股东和员工创造价值。我们的产品和服务有助于加速科学探索的步伐,帮助客户解决在分析领域所遇到的各种挑战,无论是复杂的研究项目还是常规检测或工业现场应用。欲了解更多信息,请浏览公司网站: www.thermofisher.com。 关于晶云药物(www.crystalpharmatech.com) 晶云药物科技有限公司是中国首家专注于药物晶型研究的公司,为全球各制药公司提供药物晶型研究和药物固态研发领域的专业技术服务。公司总部设立在苏州工业园区生物纳米园,在美国新泽西州设有分部。领导团队由中美科学家及管理人员共同组成,用国际化的先进理念领导和管理公司。核心团队成员过去在美国默克,美国百时美施贵宝以及罗氏等全球领先的制药公司直接负责和从事药物晶型研究和药物固态研发,共积累了在该领域40多年的研发和管理经验,曾共同负责和管理过超过200个药物分子的晶型研究,拥有40多项药物晶型专利,在各类国际学术期刊发表过100多篇论文。研发团队成员晶型研究经验丰富,技术力量雄厚,其中海外博士约占30%,硕士占50%,学士占20%。团队利用掌握的核心技术开发出中国在药物晶型研究及药物固态研发领域的首个高新技术平台,并通过该平台为全球各制药公司提供该领域的高级技术研发服务。公司拥有享有自主知识产权的高新技术和高新仪器,不仅保证技术平台填补了国内在该领域的空白,而且使其处于国际领先地位。公司的业务集中在以药物的固态信息为中心的专业领域,包括原料药及其中间体的盐类,共晶和多晶的筛选和评估,原料药和制剂的专业表征和评估,药物结晶工艺的优化和放大,临床前药物制剂的研发,以及上述相关领域内自主知识产权技术和产品的开发,高级技术咨询及其培训等。凭借晶云团队丰富的经验,高质量和高效率的专业服务,自2010年成立以来已经与全球四十多家制药企业建立合作关系,成为其在药物晶型研究和药物固态研发领域的紧密合作伙伴。随着晶云的不断发展,晶云将会一如既往秉持客户至上的服务理念,力求为越来越多的客户提供始终领先于科技前沿的高级技术服务。
  • 【药物一致性评价热潮】10种热门品种!
    参比制剂是指用于仿制药质量和疗效一致性评价的对照药品,通常为被仿制的对象,如原研药品或国际公认的同种药物。参比制剂应为处方工艺合理、质量稳定、疗效确切的药品。 随着药物一致性趋势不断的越演越烈,一些热门的药物也开始被各大医疗企业争相进行检测审核,cato归纳了近期一致性参比制剂备案前10品种的杂质列表 。 第一种:通用名:克拉霉素英文名:Clarithromycin主成分化学名:6-O-甲基红霉素主成分结构式:(CHP2015)主成分分子式:C38H69NO13主成分分子量:747.96主成分cas登记号:81103-11-9 品种简介:克拉霉素是红霉素的衍生物,为半合成抗生素。20世纪80年代初由日本大正公司开发成功,并以商品名Clarith注册。尔后,大正公司首先将其技术转让给美国雅培公司生产 1990年在爱尔兰、意大利上市。1991年在日本获批上市。1991年10月获FDA批准上市,商品名Biaxin,1993年以Klacid在中国香港上市,在欧洲和亚洲的商品名为克拉仙,已在全球50多个国家上市,市场用量稳步增长,并在临床中发挥了重要作用。克拉霉素剂型主要为片剂、颗粒剂或混悬剂,目前生产的剂型还有分散片、缓释片、注射剂和复方制剂。目前为WHO和多个国家的基本药物。第二种:通用名:阿莫西林英文名:amoxicillin主成分化学名:(2S,5R,6R)-3,3-二甲基-6-[(R)-(-)-2-氨基-2-(4-羟基苯基)乙酰氨基]-7-氧代-4-硫杂-1-氮杂双环[3. 2. 0]庚烷-2-甲酸三水合物 主成分分子式:C16H19N3O5S?3H2O主成分分子量:419.46主成分cas登记号:61336-70-7 品种简介:阿莫西林是青霉素类半合成抗生素,原研公司为葛兰素史克公司,最早于1972年上市,商品名为AMOXIL。 第三种:通用名:头孢拉定英文名:Cefradine主成分化学名:先锋瑞丁、头孢拉丁、头孢握定、头孢雷定、己环胺菌素、头孢环己烯、环己烯胺头孢菌素、环烯头孢菌素。主成分分子式:C16H19N3O4S主成分分子量:349.40主成分cas登记号:38821-53-3 品种简介:头孢拉定属于头孢菌素类抗菌药物,且为第一代头孢菌素,对不产青霉素酶和产青霉素酶金葡菌、凝固酶阴性葡萄球菌、A组溶血性链球菌、肺炎链球菌和草绿色链球菌等革兰阳性球菌的部分菌株具良好抗菌作用。厌氧革兰阳性菌对本品多敏感,脆弱拟杆菌对本品呈现耐药。耐甲氧西林葡萄球菌属、肠球菌属对本品耐药。本品对革兰阳性菌与革兰阴性菌的作用与头孢氨苄相似。本品对淋球菌有一定作用,对产酶淋球菌也具活性;对流感嗜血杆菌的活性较差。第四种:通用名:头孢氨苄英文名:Cephalexin主成分化学名:头孢菌素Ⅳ、先锋霉素Ⅳ、头孢力新、苯甘孢霉素、西保力、头孢立新主成分分子式:C16H17N3O4S主成分分子量:347.39主成分cas登记号:15686-71-2 品种简介:头孢氨苄,抗生素\β-内酰胺类\头孢菌素类。它能抑制细胞壁的合成,使细胞内容物膨胀至破裂溶解,杀死细菌。 第五种:通用名:氨氯地平英文名:Amlodipine主成分化学名:3-乙基-5-甲基-2-(2-氨乙氧甲基)-4-(2-氯苯基)-1,4-二氢-6-甲基-3,5-吡啶二羧酸酯苯磺酸盐主成分分子式:C20H25N2O5ClC6H6O3S主成分分子量:567.1主成分cas登记号:111470-99-6 品种简介:氨氯地平,钙离子拮抗药,可用于治疗各种类型高血压(单独或与其他药物合并使用)和心绞痛,尤其自发性心绞痛(单独或与其他药物合并使用)。氨氯地平的作用是通过松弛在动脉壁的平滑肌,降低总外周阻力从而降低血压;在心绞痛时,氨氯地平增加血液流向心肌。本品对肾脏有一定的保护作用。其制剂有苯磺酸氨氯地平片、甲磺酸氨氯地平片、马来酸左旋氨氯地平片等。 第六种:通用名:二甲双胍英文名:METFORMIN HYDROCHLORIDE TABLETS主成分分子式:C4H11N5?HCL主成分分子量:165.63主成分CAS号:1115-70-4 品种简介:二甲双胍为目前应用最广泛的糖尿病一线用药。该化合物最早于1922年开发,后期由Jean Sterne医师重新开发并于1957年在法国上市用于治疗2型糖尿病,1958年在英国上市,1972年在加拿大上市,并最终于1994年获得FDA批准,1995年上市。申请机构为施贵宝。二甲双胍口服制剂有速释片、缓释片、口服溶液,其中速释片有250mg、500mg、850mg、1g。缓释片规格为500mg、750mg、1g。我国国产上市的二甲双胍片以250mg为主。原研本地化的产品有中美上海施贵宝公司的格华止片,规格有500mg、850mg。国内有山德士(中国)制药有限公司的二甲双胍片上市,规格为250mg。进口二甲双胍片有 Alphapharm Pty Limited的迪化唐锭片上市,规格为250mg。 第七种:通用名:布洛芬英文名:Ibuprofen主成分化学名:2-(-4-异丁基苯基)丙酸;异丁苯丙酸,异丁洛芬,芬必得,α-甲基-4-(2-甲基丙基)苯乙酸主成分分子式:C13H18O2主成分cas登记号:15687-27-1 品种简介:布洛芬是世界卫生组织、美国FDA唯一共同推荐的儿童退烧药,是公认的儿童首选抗炎药。布洛芬具有抗炎、镇痛、解热作用。治疗风湿和类风湿关节炎的疗效稍逊于乙酰水杨酸和保泰松。适用于治疗风湿性关节炎、类风湿性关节炎、骨关节炎、强直性脊椎炎和神经炎等。 第八种:通用名:奥美拉唑
  • 科技部公布《甲型H1N1流感科研进展摘要》
    科技部5月19日公布《甲型H1N1流感科研进展摘要》,以下为《摘要》全文: 一、病毒和检测 1. 5月6日,加拿大完成对3个甲型H1N1流感病毒样本的基因测序工作,这是世界上首次完成对这种新病毒的基因测序,将为研制疫苗打下基础。 2. 5月7日,我国军事医学科学院军事兽医研究所研制出甲型H1N1流感病毒检测芯片,这种基因芯片可同时对12个样品进行快速、灵敏、特异性检测,能够检测的项目包括1-16种亚型甲型流感病毒、当前流行的甲型H1N1流感病毒、以及H1、H3、H5、H7、H9等亚型流感病毒,5小时内便可获得检测结果。 3. 目前,美国食品药品管理局(FDA)批准法国一家新的流感疫苗生产厂投产,该厂不仅生产季节性流感疫苗,必要时还可用来生产甲型H1N1流感疫苗。 另外,甲型H1N1流感疫苗有望被纳入WHO疫苗计划。法国流感病毒参照中心主任利纳表示,鉴于甲型H1N1流感病毒正在世界各地扩散,针对它的疫苗有望被纳入WHO疫苗计划。利纳表示,WHO每年都会根据当年的情况,预测出季节流感病毒的种类,并针对病毒的特性决定生产何种疫苗。 二、疫苗研发方面 在疫苗研发方面,美国已启动识别出甲型流感病毒毒株疫苗项目。美国国家过敏症和传染病研究所主任福奇表示,分离出病毒毒株后,疫苗研发进入培育种子病毒阶段。种子病毒可用于临床试验的疫苗开发。但他警告,当前科学界对甲型流感的了解尚处在非常初步的阶段,这种病毒会造成什么影响目前还很难讲。 WHO专家小组将于5月14日开会,就是否建议药厂全力以赴生产甲型H1N1流感疫苗提出建议,并将把讨论结果呈交WHO 总干事,由其宣布WHO 的决定。 三、预防方面 我国中医药管理局给出5套中医方案预防甲型流感,主要针对成人和儿童。专家委员会成员刘清泉表示,在甲型H1N1 疫苗没有研发出来的情况下,中医经典的预防方法可以借鉴,但不建议大量服用药物。 四、病毒检测和病原学研究 我国研制的病毒检测试剂盒香港验证成功,三小时内获得结果。由达安基因股份有限公司与广州华生达救援生物技术有限公司协作研制出的新发人甲型(H1N1)流感病毒核酸检测试剂盒和通用型甲型流感病毒核酸检测试剂盒在香港大学成功获得验证。病例验证结果表明,上述两种试剂盒具有良好的特异性和灵敏性,并能够在三个小时的时间内获得结果。 五、药物研制 我国自主研发抗病毒一类新药正开展Ⅱ期临床试验。国家食品药品监督管理局近日指出,中国自主研发的注射剂“帕拉米韦三水合物”为抗病毒一类新药,2008 年6月被SDA批准进行临床试验。目前已完成了I期临床试验,正在开展Ⅱ期临床试验。此外,国际公认流感治疗药物“达菲”在中国上市。我国两家企业(广东东阳光药业公司和上海制药集团)已被授权生产“达菲”。 另外,我国国家食品药品监督管理局已经做好启动抗流感药物特别审批准备。目前,国家食品药品监督管理局紧密跟踪抗流感药物生产和研发情况,根据疫情变化情况以及世界卫生组织(WHO)对甲型流感警戒级别的调整变化情况,依法进行特殊审批和特别审批程序预案的制定,做好应急药品和医疗器械生产和进口审批准备工作。
  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • 上海甄准生物进口品牌贵金属催化剂现货促销了!
    上海甄准生物进口品牌贵金属催化剂现货促销了! 上海甄准生物科技有限公司是一家专业经营标准物质、标准品、化学试剂及相关技术服务创新型高科技企业,坐落于人才荟萃的上海张江高科技园区。 自公司成立以来,一直以"客户满意"为公司核心价值观,产品主要应用于制药、生物、食品、环境、材料和农业等领域。凭借世界一流的产品和服务,甄准生物与广大客户建立了长期稳定的战略合作关系,被众多企业和科研机构认定为&ldquo 指定供应商&rdquo ,得到了政府部门的关怀和有力支持。本着始终拥有的创业激情和服务热忱,甄准生物已成长为我国重要的标准物质和标准品领域集成服务的领导者、中国最大的标准物质/标准品供应商之一。 甄准生物集后发优势与众多国际一流品牌合作,并陆续成为他们在中国区的总代理或者一级代理,现合作的优质供应商有:美国AccuStandard、APSC、MPBio、Sigma-Aldrich、NIST,爱尔兰Reagecon、Megazyme,英国LGC、Ultra,Iduron、日本和光(WAKO)、Shodex,德国Dr.E、PSS 等。同时,还提供美国USP标准物质、欧洲药典标准物质EDQM、加拿大TRC标准物质等。 现货产品: 品名 Item CAS # Purity 规格 产地 (1,5-环辛二烯)氯铑(I)二聚体 Chloro(1,5-cyclooctadiene)rhodium(I), dimer 12092-47-6 98% 500mg USA氯化铑(III) 水合物 Rhodium(III) chloride hydrate 20765-98-4 38% Rh 1g GB窗体顶端 窗体底端 三氯化钌 水合物 Ruthenium(III) chloride hydrate 14898-67-0 Reagent Plus 5g USA 1,3,5-三氮杂-7-磷杂金刚烷 1,3,5-Triaza-7-phosphaadamantane 53597-69-6 97% 2g USA 三苯基膦氯化铑 Wilkinson' s catalyst14694-95-2 Metal Content 11.10% 5g Germany 更多产品,更多优惠!请联系我们! 上海甄准生物科技有限公司 免费热线:400-002-3832
  • 所见即所测!当拉曼光谱仪遇上混凝土水合过程!
    当拉曼光谱技术遇上混凝土的水合过程,会发生什么?麻省理工学院的这一研究成果,给你惊喜!拉曼光谱需要将高强度激光照射到材料上,并测量其被构成材料的分子散射时的强度和波长,来创建出一幅特殊的图像。由于不同的分子和分子键,都具有各自独特的散射“指纹”,因而这项技术也可用于制作有关创建材料内部分子结构和动态化学反应的图像。有关报告指出,混凝土中使用的水泥,占据了全球二氧化碳排放总量的8%左右,已经与大多数国家产生的排放量不相上下,降低碳排放是当今时代及未来的发展趋势。今年两会上,“碳达峰”、“碳中和”被首次写入政府工作报告。“碳达峰”是指我国承诺2030年前,二氧化碳的排放不再增长,达到峰值之后逐步降低。“碳中和”是指通过各种节能减排的形式,抵消自身产生的二氧化碳排放量,实现二氧化碳“零排放”。随着对水泥化学性质的深入了解,科学家们就能够改进生产流程或配方成分,从而让混凝土产生更少的排放,或者添加其它能够主动吸收二氧化碳的成分。为达成这一目标,麻省理工学院使用了显微拉曼光谱技术,来仔细观察混凝土在水合期间发生的特定化学反应的动态过程。研究期间,MIT科学家们使用这套装置观察了一个放置在水下的普通混凝土样品,并努力模拟了真实世界的环境条件。该团队总结道:通常情况下,混凝土的水合过程,是从硅酸盐水合产物的无序相开始的,之后它会渗透到整个材料并产生结晶。此前,科学家们只能研究具有平均体积特征、或某个时间节点的混凝土水合快照。但在拉曼光谱仪新技术的加持下,他们几乎可以连续地观察所有变化,并提升了他们的时间和空间尺度上的图像分辨率。如上图所示,水合作用期间,白色的硅酸三钙(alite)形成了蓝色的水合硅酸钙(CSH)与红色的硅酸盐(portlandite)。剩余绿色部分为二钙硅酸盐(belite),而黄色部分则是方解石(calcite)。
  • 水产品中孔雀石绿和结晶紫的岛津LCMSMS检测方案
    孔雀石绿是一种带有金属光泽的绿色结晶体,又名碱性绿、严基块绿、孔雀绿,其既是杀真菌剂,又是染料,易溶于水,溶液呈蓝绿色;溶于甲醇、乙醇和戊醇。长期以来,渔民都用它来预防鱼的水霉病、鳃霉病、小瓜虫病等,而且为了使鳞受损的鱼延长生命,在运输过程中和存放池内,也常使用孔雀石绿。科研结果表明,孔雀石绿在鱼内残留时间很长,且其具有高毒素、高残留和致癌、致畸、致突变等副作用,鉴于此,许多国家均将孔雀石绿列为水产养殖禁用药物。我国于2002年5月也将孔雀石绿列入《动物食品禁用的兽药及其化合物清单》中。但是,因为其价格便宜,而且其治疗水霉病等的功效是其他药物所&ldquo 不能替代&rdquo 的,所以利益的驱动使得孔雀石绿并没有退出渔业市场。本方案依据国标《GB/T 19857-2005 水产品中孔雀石绿和结晶紫残留的测定》,使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8030联用快速测定了水产品中孔雀石绿和结晶紫。 本方案为快速测定水产品中孔雀石绿、隐色孔雀石绿、结晶紫和隐色结晶紫的方法。样品经提取后,用超高效液相色谱LC-30A分离,三重四极杆质谱仪LCMS-8030进行内标法定量分析。样品在2分钟内得到快速分离和检测。孔雀石绿和隐色孔雀石绿在0.5~200 &mu g/L,结晶紫在0.5~500 &mu g/L,隐色结晶紫在0.1~200 &mu g/L浓度范围内线性良好,标准曲线的相关系数均在0.999以上;对1 &mu g/L、50 &mu g/L和200 &mu g/L混合标准溶液进行精密度实验,连续6次进样保留时间和峰面积相对标准偏差分别在2.925%和0.160%之下,系统精密度良好;方法定量限为0.1 &mu g/kg,优于国标《GB/T 19857-2005 水产品中孔雀石绿和结晶紫残留的测定》中0.5 &mu g/kg的要求。 了解详情,请点击&ldquo 超高效液相色谱三重四极杆质谱联用法测定水产品中的孔雀石绿和结晶紫&rdquo 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 过程工程所采用原位电镜技术洞悉反应-扩散调控下银颗粒的动态结晶过程
    p style=" text-align: justify text-indent: 2em " 近日,中国科学院过程工程研究所采用原位扫描电镜技术观察银颗粒结晶过程,揭示了动态浓度场对材料结构生长过程的调控规律,建立了材料表界面介科学研究的方法,为材料结构定向合成提供了理论指导,相关研究工作发表在Research。 /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px color: rgb(127, 127, 127) " (DOI:10.34133/2020/4370817) /span /p p style=" text-align: justify text-indent: 2em " 材料结构具有多样性和复杂性,针对特定功能的材料结构定向合成和规模化制备是一个挑战性问题。受反应和传递过程影响,在材料生长界面前端存在着动态微环境(界面浓度场或温度场等),动态微环境与材料生长界面的实时影响和交互调控是传统结晶理论预测的盲区。 /p p style=" text-align: justify text-indent: 2em " 过程工程所研究员韩永生团队长期开展材料表界面介科学研究,提出了表界面浓度场是材料结构生长过程的关键控制机制,通过反应速率和传质速率调控界面浓度场,合成了不同形貌的纳米颗粒,验证了界面浓度场对材料结构的调控作用,发展了基于反应-传质调控的材料结构定向合成方法。 /p p style=" text-align: justify text-indent: 2em " 在此基础上,研究团队采用原位电镜研究了动态浓度场对材料结构的实时调控作用。在扫描电镜中引入原位液体池,当电子束扫描样品时激发水分子产生还原性物质(水合电子)和氧化性物质(羟基自由基)等,采用有限元模拟方法,量化还原态水合电子和氧化态羟基自由基的浓度,并将浓度场的实时变化与材料结构生长过程进行关联,发现反应物质浓度的时空动态变化导致银颗粒的可逆变化,验证了动态浓度场对材料结构生长过程的调控作用。 /p p style=" text-align: justify text-indent: 2em " 据研究人员介绍,材料的生长表面及其周围的动态浓度场共同构成了材料表界面的介尺度结构,这种介尺度结构不但存在于材料生长过程,也存在于多相反应过程中,对反应的选择性和效率具有重要影响。因此揭示材料表界面介尺度结构的控制机制和稳定性条件,是材料定向合成和反应定向调控的关键,有望成为材料科学研究的前沿。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 该研究得到国家自然科学基金委“多相反应过程中的介尺度机制及调控重大研究计划”培育项目和集成项目以及多相复杂系统国家重点实验室项目支持。 /span /p p style=" text-align: justify text-indent: 2em " a href=" https://spj.sciencemag.org/research/2020/4370817/" target=" _self" strong span style=" text-indent: 2em color: rgb(0, 112, 192) " 文章链接 /span /strong /a /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/2ad4ea5f-09ac-4850-b62d-9b94dc360531.jpg" title=" 银颗粒的动态可逆结晶过程.jpg" alt=" 银颗粒的动态可逆结晶过程.jpg" / /p p style=" text-indent: 0em text-align: center " strong 银颗粒的动态可逆结晶过程 /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/740ed6e2-3437-4bc5-90a0-140ed5104c2a.jpg" title=" 采用原位扫描电镜观察了银颗粒的动态结晶过程,揭示了动态浓度场对材料结构的实时调控作用.jpg" alt=" 采用原位扫描电镜观察了银颗粒的动态结晶过程,揭示了动态浓度场对材料结构的实时调控作用.jpg" / /p p style=" text-align: center " strong 采用原位扫描电镜观察了银颗粒的动态结晶过程,揭示了动态浓度场对材料结构的实时调控作用 /strong /p
  • 青海“可燃冰”如何发现?意义媲美大庆油田
    可燃冰   近日,青藏高原发现“可燃冰”的消息备受各方关注。这种“冰与火”奇妙结合的新型能源,是如何被发现的?为何在海拔高、自然环境严酷的青藏高原得以发现?它的发现经历了怎样的艰辛和曲折?又将带给人们怎样的希望和梦想?记者对此进行了深入的采访。   能源危机下的“新希望”   2009年6月,在海拔4000多米的祁连山南缘,一簇火苗的燃烧,成为一个足以令亿万国人为之沸腾的消息:地质工作者在此成功钻获“可燃冰”样品,我国成为世界上第一个在中低纬度冻土区发现“可燃冰”的国家。   “可燃冰”,又叫“可燃水”、“气冰”、“固体瓦斯”,学名叫天然气水合物。它外表像冰,却遇火即燃,比人们平时使用的天然气更为纯净,使用方便、清洁无污染,是一种名副其实的绿色能源,全球公认的尚未开发的最大新型能源。   “可燃冰”在世界范围内分布广,资源量大。据科学家预测,“可燃冰”储量是现有天然气、煤炭、石油全球储量的两倍,是常规天然气的50倍。有科学家估计,海底“可燃冰”的储量够人类使用1000年。   据推算,目前已经发现的石油储备量还可用40年,天然气还可用70年,煤炭还可用190年,也正是如此,“后石油时代”用什么作为能源成了各国致力研究和勘探的问题。“可燃冰”的发现让陷入能源危机的人类看到了希望。   早在19世纪30年代,“可燃冰”即进入人类视野。1965年,苏联首次在西西伯利亚永久冻土带发现“可燃冰”矿藏,并引起多国科学家关注。率先开始勘测研究的是日本,如今,已拥有7口钻井,属于领先水平。美国则从2000年起将“可燃冰”作为政府项目,与各大学和私营公司合作,进行勘测和实地研究。据称到目前为止,美国政府已花费超过1500万美元。另外,加拿大、印度、韩国、挪威等国也纷纷开始投入勘探项目。   目前,世界上已经有30多个国家和地区开展“可燃冰”的研究勘探。我国于2002年同时启动海域和陆域“可燃冰”的研究和勘探,于2007年在南海发现了“可燃冰”。   据介绍,我国“可燃冰”的资源潜力为803.44亿吨油当量,仅占全球资源量的0.4%。接近于我国常规石油资源量,约是我国常规天然气的2倍。   “不放过任何一个地质信息”   事实上,“可燃冰”在我国陆域的“现身”可以追溯到40多年前,但由于种种原因,这种神奇能源在过去很长时间里与人们擦肩而过。   青海省木里地区地势高耸,群山连绵。这里海拔4100米左右,高寒缺氧、气候恶劣,然而却蕴藏着丰富的煤炭资源。据了解,有多家地勘单位自上世纪60年代以来在这一带冻土区从事勘查时,就多次发现不明气体,但均未做进一步研究。   据“可燃冰”项目负责人之一——中国煤炭地质总局青海煤炭地质105队队长、总工程师、教授级高工文怀军介绍,这一带“可燃冰”的发现最早可以追溯到2004年。这年11月,105队在这里进行煤炭勘查时,钻孔内开始涌出不明气体,点火燃烧,由于气体涌出量很大,影响到钻探施工,迫使这个钻孔因未见到可采煤层而报废。   但是地质人员并没有放过这一现象,那一瞬间,“可燃冰”这一名词在他们脑海中如灵光闪过。他们采集了这种气体进行分析,对涌气的孔段做了详实的记录,积累了可靠的原始地质资料。   地质工作者思考的是:这种气体和过去多次遇到的煤层气是否一样?抑或,它是一种新的尚不了解的物质?或者,它就是传说中的“可燃冰”?!他们期待着再次与这种神秘气体的相遇。   2006年5月,105队再次在这一地区进行煤炭勘查,又发现类似不明气体。地质人员细心观察发现,这种气体的涌出孔段不在煤层中,可以确定不是煤层气。那么它是什么呢?他们采样化验发现,这次发现气体的成分与前次大致接近。   之后,105队请中国地质科学院勘探技术研究所张永勤、中国科学院矿产资源研究所祝有海等权威专家就上述情况进行了交流、探讨,大家一致认为,该地区可能存在“可燃冰”。   2008年开始,105队与中国地质科学院资源所、勘探所共同合作开展《青藏高原冻土带天然气水合物调查评价》项目。11月5日,首次发现含天然气水合物岩心段,这一成果得到了国内外专家的学术认定。   在此基础上,国土资源部2009年又部署了一批钻探实验井,6月再次钻获“可燃冰”实物样品,经当今世界上最先进的激光拉曼光谱仪检测,显示出标准的“可燃冰”特征光谱曲线。此后施工中均发现“可燃冰”。   从2004年发现疑似“可燃冰”,到2006年基本确定“可燃冰”的存在,再通过2008—2009年的工作,经钻探取得样品,通过测试证实了在高海拔冻土区存在“可燃冰”的事实。   文怀军分析说:木里地区“可燃冰”是煤层气的水合物。其成矿机理大致是:煤层气向上溢散,而上面有冻土层的覆盖,在高压、低温的条件下二者形成“可燃冰”。它的成分除了甲烷,还有少量乙烷、丙烷等气体,是一种“新型可燃冰”,非常值得研究。   “可燃冰”在青海的发现,为我国增加了一个重要的新矿种,对我国战略能源意义重大。更有专家认为,“可燃冰”的发现可媲美当年发现大庆油田。   国土资源部总工程师张洪涛初略估算,我国陆域“可燃冰”远景资源量至少有350亿吨油当量,可供中国使用近90年,而青海省的储量约占其中的1/4。   克服高原极端天气条件   “在一定意义上,正是每一个地质工作人员在每一次的勘查中都坚持了‘对任何地质信息不放过’的认真工作态度,为‘可燃冰’发现奠定了基础。这一点来说,‘105队’木里项目组全体地质工作人员功不可没。”   文怀军感慨地说:“‘可燃冰’项目之所以能取得重大突破,不仅是各级领导、各个部门关心支持的结果,更是项目组成员及各协作单位团结拼搏、共同努力的结果,是集体智慧的结晶。”   自2003年以来,105队一直奋战在木里地区,克服了高寒缺氧、气候条件极端恶劣且装备落后、缺少后勤保障、生产条件差的不利因素。白天在风雪交加中紧张的卸车、立塔,晚间围着火炉卧雪观天,苦等黎明,头痛、胸闷、气短、腿肿各种高山反应对他们已成家常便饭……   凭着战胜一切困难的信心和勇气,这些高原地勘人不仅战胜了自然,也战胜了自我,被誉为“特别能吃苦、特别能战斗,特别能团结、特别能忍耐、特别能奉献”的“高原铁军”。   说起这个,105队的当家人——队长文怀军有一肚子的苦水:“七八月都下雪,把帐篷都压塌了。”但就是在这样艰苦的生产、生活条件下,来自各地的科学家、专业技术人员和施工人员,齐心协力、不辱使命,用“小米加步枪”的干法,仅用较少的资金投入,成功实现了我国陆域“可燃冰”的重大发现,是一个典型的投入少、产出大的项目。   据了解,105队1950年建队,1965年从吉林省成建制调入青海。他们提交的各类煤炭资源储量高达38亿吨,占青海已探明储量的74%。长期的地质工作,使他们积累了大量的基础地质资料,掌握了该地区的地层沉积和构造规律,同时培养了一批具有专业水平的各类技术人员,为“可燃冰”的重大发现提供了技术资料和队伍等多方面的保障。   青藏高原蕴藏神奇宝藏   青海之所以成为我国陆域“可燃冰”的首个“现身地”,与这里独特的地理地貌环境有密切关系。   首先,青海有着面积广、厚度较大的冻土带资源,为“可燃冰”的存在提供了地质条件。   其次,青海木里有着丰富的煤炭资源,为“可燃冰”的形成提供了可能的资源条件。   第三,青海木里的交通条件和后勤保障措施是我国大面积冻土带地区中条件较好的,这为“可燃冰”发现提供了有力支持。   文怀军说,青海木里煤田含“可燃冰”岩层段埋藏浅,只有130-300多米,这为“可燃冰”开采带来很大有利条件。并且这里的冻土层较薄,只有80-120米,也为将来的工程和科研带来极大便利。“‘可燃冰’的开发有望在这里取得突破。”   “不过,这将是一个比较漫长的过程。”文怀军说,因为“可燃冰”开采面临的环保问题较为严峻,需要研究探索如何既能开发利用,又不伤害环境。特别是在生态脆弱的青藏高原。   神奇的大自然,蕴藏着奥秘无限,等待着人类的科学探索。探索无限,人类的希望也无限。
  • 海关总署:多次检出禁用药物暂停台湾石斑鱼输入,水产品中孔雀石绿和结晶紫如何测定?
    海关总署:暂停台湾石斑鱼输往大陆去年以来,大陆海关多次从台湾地区输大陆石斑鱼中检出孔雀石绿、结晶紫禁用药物,还检出土霉素超标。为防范风险,保护消费者身体健康和生命安全,依据大陆相关法律法规和标准,海关总署决定自2022年6月13日起暂停台湾地区石斑鱼输入大陆。水产品中孔雀石绿和结晶紫孔雀石绿是有毒的三苯甲烷类化合物,既是染料,也是杀真菌、杀细菌、杀寄生虫的药物,长期超量使用可致癌,无公害水产养殖领域国家明令禁止添加却屡禁不止。孔雀石绿的检测可参照国标《GB19857-2005水产品中孔雀石绿和结晶紫残留的测定》和《GB20361-2006水产品中孔雀石绿和结晶紫残留的测定高效液相色谱荧光检测法》。其中GB19857-2005采用液质方法对孔雀石绿和结晶紫含量分别进行测定,加入内标进行内标矫正。GB20361-2006法中加入硼氢化钾将孔雀石绿和结晶紫的活泼双键还原,分别形成隐形孔雀石绿和隐性结晶紫,最后再以荧光检测二者的总量。孔雀石绿结构中的双键属于活泼的反应位点,常常容易发生氧化或者去甲基化,导致测试孔雀石绿比较困难。图-1. 孔雀石绿和结晶紫的结构式及相互转化本方法参考了上述方案的两种国标的前处理过程,采用不加入还原剂对样品进行前处理,加入内标物质后采用中性氧化铝固相萃取柱净化目标物,洗脱目标物后浓缩经液相色谱-质谱/质谱联用检测4种目标化合物。仪器与耗材1.仪器睿科Fotector Plus高通量全自动固相萃取仪睿科AP 300 全自动液体样品处理工作站睿科AH 50全自动均质器睿科Auto EVA 80 高通量全自动平行浓缩仪高效液相色谱 (HPLC) Agilent 1260质谱检测器 (MS) Agilent 64102.耗材中性氧化铝固相萃取柱 (1g/3 mL)3.试剂甲醇(HPLC);乙腈(HPLC);水;5 mmol/L乙酸铵缓冲溶液:称取0.385g 无水乙酸铵溶解于1000mL 水中,冰乙酸调pH到4.5;体积分数为5%的乙酸铵甲醇溶液:量取5 mL乙酸铵缓冲溶液(5 mol/L)用甲醇定容至100 mL。标准曲线配制将1.0 µg/mL的混合标准储备液和0.1 µg/mL的混合内标储备液取出,于室温平衡后用AP 300 全自动液体样品处理工作站配成浓度为0.5、1.0、2.0、5.0、10.0 µg/L的标准工作曲线。实验步骤1.样品制备鲜活水产品称取5.0g已捣碎的样品于50 mL离心管中,加入200 μL混合内标标准溶液(100 ppb),加入11 mL乙腈,用AH 50全自动均质器以10000 r/min的速度匀浆提取30 s并洗涤刀头, 4000 r/min离心5min,上清液转移至25 mL试管中;残渣加入乙腈后再提取一次,合并上清液至25 mL试管中,用乙睛定容至25.0 ml,摇匀备用。2.样品净化移取5.0 mL上述的样品溶液加至已活化的中性氧化铝柱,5mL乙腈洗涤样品瓶,收集全部流出液,用EVA 80全自动氮吹浓缩仪在40 ℃条件下浓缩至约1 mL,用乙腈准确定容至1.0 mL,再加入1 mL乙酸铵溶液(5 mmol/L)震荡混匀,经滤膜过滤后供液相色谱-质谱/质谱测定。具体的固相萃取方法见图-2。固相萃取条件图-2.Fotector Plus固相萃取方法3.液质检测条件4.MRM参数Ps: 孔雀石绿和结晶紫采用D5-MG内标,隐性结晶紫和隐性孔雀石绿采用D5-LMG内标。结果与讨论为了验证该方法的回收率,本实验向鲈鱼样品(5 g)中加入上述4种化合物标准品(20 μL, 1 mg/L)和2种氘代孔雀石绿和氘代隐性孔雀石绿(200 μL, 0.1 mg/L)作为内标进行加标回收验证(n=3)。数据如表-2所示:四种目标化合物的加标回收率均在90-110%之间,RSD值控制在6%以内。说明该方法能够很好地运用于水产品样品中孔雀石绿和结晶紫的检测。表-2. 鲜活水产品的加标回收率及RSD值(2 μg/kg)总结本文采用高效液相色谱-串联质谱法进行定性和定量测定,前处理过程使用Fotector Plus高通量全自动固相萃取仪进行净化,准确性和平行性均满足实验要求;从活化到上样、洗脱一步到位,一天最多能够处理180个样品,操作方便快捷,效率高。AP 300全自动液体样品处理工作站能够实现标准曲线制备、样品添加和分液等液体样品处理功能,无需人员值守,程序化运行有效避免人为误差,提高精密性的同时极大地减轻工作量,保护实验人员的身体健康。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制