当前位置: 仪器信息网 > 行业主题 > >

小鼠胰岛素瘤胰岛细胞

仪器信息网小鼠胰岛素瘤胰岛细胞专题为您提供2024年最新小鼠胰岛素瘤胰岛细胞价格报价、厂家品牌的相关信息, 包括小鼠胰岛素瘤胰岛细胞参数、型号等,不管是国产,还是进口品牌的小鼠胰岛素瘤胰岛细胞您都可以在这里找到。 除此之外,仪器信息网还免费为您整合小鼠胰岛素瘤胰岛细胞相关的耗材配件、试剂标物,还有小鼠胰岛素瘤胰岛细胞相关的最新资讯、资料,以及小鼠胰岛素瘤胰岛细胞相关的解决方案。

小鼠胰岛素瘤胰岛细胞相关的仪器

  • 安捷伦Seahorse XFe24 细胞能量代谢分析仪简介:安捷伦Seahorse XFe24 分析仪在 24 孔板中检测活细胞的 OCR 和 ECAR。这些数值是线粒体呼吸和糖酵解的关键指标,可在系统水平了解培养细胞,胰岛和体外样品的细胞代谢功能。相关资料下载请点击:http://www.instrument.com.cn/netshow/SH104076/download.htm安捷伦Seahorse XFe24 细胞能量代谢分析仪特性:1、实时结果 — 该整合系统可在几分钟内报告代谢率,而无需样品提取或标记。Wave 软件可控制仪器,并实时执行速率测定以当日内提供测试结果。2、活细胞响应 — 实时检测底物,抑制剂和其他化合物的响应,其通过 4 加药口系统实现加药并自动混合,同时保持生理温度 (37 oC)。3、高灵敏度 — 可分析自定义 24 孔板中每孔仅 10000 个细胞。细胞数目需求根据细胞类型所不同;请参考细胞参考数据库了解详细信息。相比 96 孔系统,24 孔微孔板和系统可容纳更大和/或更多的代谢活性样品。4、拥有精密控温加热托盘,可维持 16-42 oC(室温以上 12-20 oC),因此兼容多种样品。5、采用 Seahorse XF24 胰岛捕获板可分析胰岛功能或其它流动样品6、采用 Seahorse XF 细胞线粒体压力测试检测线粒体功能7、采用 Seahorse XF 细胞能量表型测试可在一小时内生成一种代谢表型8、利用 Seahorse XF 糖酵解速率测试分析活细胞内的糖酵解速率9、采用 Seahorse XF 线粒体底物分析测试,快速检测细胞能量生成对线粒体底物的依赖性10、使用 Seahorse Wave 软件可轻松创建分析实验方案和分析数据仅限研究使用。不可用于诊断目的。
    留言咨询
  • 胰岛计数仪(ICC)可以用于抽样数量的分离出的胰岛细胞进行计数。ICC系统使用户在一分钟内多次可靠地定量胰岛当量。胰岛定量是基于临床胰岛移植协会的原则。利用软件可以得到颗粒的数量(IPN),胰岛当量(IEQ),也可以根据细胞面积把细胞按照大小分类。此外,用户还可以获得:覆盖面积,B指数,胰岛当量的大小分布的饼状图分布统计图比如大小分类的柱状图按一下按键后会自动生成一个Excel报告,软件可把图片存档用以示意,培训,以及确认。 特点:胰岛总面积尺寸测量样品自动检测,生成兴趣区域(ROI)用户优化兴趣区域(ROI)细胞自动检测,SNR扫过RGB范围后的阈值先进的自适应分区算法 三步过程获取:自动检测样本,生成兴趣区域拍照:快照,选择,分区,计数自动发生在8秒钟以内报告:自动生成一个 Excel报告全新的向导式界面 更多的指标和统计 自动生成报告 订购信息 货号名称包装价格ICC-03Biorep Automatic Islet Cell Counter全自动胰岛细胞计数仪1 台询价ICC-D2Islet Counter Dish细胞计数皿10/包询价关于 Biorep Biorep技术股份有限公司(Biorep Technologies Inc.)成立于1995年,是一家具有原创性的医疗设备生产商。产品开发目的是用来帮助医生进行胰岛分离和胰岛细胞的移植。目前,他们的产品包括人类因子工程学,用户界面设计,系统解决方案(包括机械,电气,软件),可用行测试,个性化定制和其他医疗器械。现已在美国和各地的糖尿病研究实验室得到了广泛的应用,Biorep公司一直在不断地努力设计出独特的工具用于加速以治疗为目的的糖尿病学研究。
    留言咨询
  • 胰岛Beta细胞电生理系统是一款可用于葡萄糖诱导的胰岛β细胞电活动信号检测和分析的设备,是糖尿病电生理研究的理想选择!该系统以微电极阵列(MEA)技术为基础,同步记录多个原代分离或干细胞来源的胰岛电活动信号,可满足急性记录或在培养箱内长期记录的实验要求。 胰岛β 细胞葡萄糖依赖性电振荡活动对科学家揭示其生理过程和相关病理机制具有十分重要的意义;而MEA技术的发展应用为阐明新药在糖尿病治疗中的作用机理提供了更大的可能,也助于科学家进一步揭示胰岛在糖尿病的发生发展过程中的病理生理学机制、发现更新的药物作用靶点。 产品特点及优势:• 非侵入性的记录方法使针对胰岛糖尿病的长期体外研究成为可能• 实验设置简易,可同时进行多通道的胰岛记录,是科研和工业实验室的理想选择• 与传统的侵入性方法(如膜片钳和细胞内电极记录)相比,简单快捷,大大的提高了实验效率• 对完整胰岛的电生理记录可用于药物研发、药物筛选、药物评价等方向• 模块化设计,配置灵活---可进行非侵入性的培养状态下的长期记录和急性记录产品技术参数:
    留言咨询
  • 胰岛计数皿 400-827-1665
    胰岛计数皿是专为Biorep胰岛细胞计数仪设计的。计数皿可提供足够的空间使样品细胞充分分散,以减小细胞聚集造成的计数误差;同时又让样品细胞足够紧凑,可获得目标区域的高分辨率图像。计数皿深可降低添加样品和样品染色时样品外溢的风险。 包装为10个一包。
    留言咨询
  • 胰岛运输器 400-827-1665
    胰岛运输器是用于空运胰岛细胞的装置,它模拟了培养箱的环境,使得整个飞行过程中细胞周围气体浓度保持恒定。材质:聚丙烯可以容纳Lifecell-Nexell袋子体积达到180ml
    留言咨询
  • 胰岛分离机 400-827-1665
    全自动胰岛分离系统可以应用于消化胰腺分离胰岛。其可以精确控制消化过程的搅拌,温度和流速,来确保分离得到有效的胰岛。整个过程都可以记录下来,并且可以个性定制消化过程。在分离胰岛的过程中,能节约大量工作量,并且具有标准化操作过程,高效获得有活性的胰岛。 我们所开发的Ricordi 胰岛分离机是通过自动化,监测胰腺消化来辅助胰岛分离步骤中的消化过程的。该机器可以精确调控小室的振荡,温度和流速。 通过先进的软件,并使用各种感应器来监测,确保整个分离过程的可控性和安全性。此外,这台机器还可以保存整个操作过程中的每一个参数在一段时间内的记录。 Riciodi 胰岛分离机使得研究人员不仅仅可以分析每一次消化过程,还可以优化整个操作过程,实现特定的操作步骤,使得整个消化过程重复性好,效率高。 Ricordi 胰岛分离机可以通过内置的数据采集和控制软件实现自动化操作。该软件安装在即用的电脑上,内置于机器中。通过使用触屏交互界面也可以手工来操作机器。 技术参数: RI-03, Ricordi Isolator with All Options操作模式手动或全自动压力感知范围0-300 mmHg(+/- 2 mmHg)流速范围0-300 mL/min (+/- 2 mL/min)垂直振荡频率0 to 160 cycles/min垂直震荡幅度0 to 110 mm (0 to 4.3”)旋转振荡频率0 to 66 cycles/min旋转震荡幅度0 to 360 度加热温度范围室温至50oC冷却温度范围0 oC至室温温度探针T型热电偶电源AC 220-240V +/-10%,60 Hz ,4A耗电量约960W操作温度5~40 oC操作湿度35~80% (无冷凝)尺寸74 cm×66 cm×2750px重量157 kg包装尺寸102 cm×122 cm×137 cm包装重量310.7 kg 包含配件灭菌Ricordi 小室×1,氮化硅球×1,灭菌温度探头×116号和17号未灭菌管未灭菌加热线圈未灭菌冷却线圈已安装数据获取和控制软件的笔记本电脑 Ricordi® Islet Isolator(目录号:RII)装箱清单包括: 货号描述数量RI-04Ricordi胰岛细胞分离机1RI4-TUBSET-WBRicordi细胞分离机管组(灭菌)1TC-02Biorep温度探头2**Country Specific**电源线 (115 or 230 VAC)1RI-04-UM使用手册1 MRC-CLAMP/ADTRicordi 小室夹&适配器Chamber Clamp & Adapter171285A1573/16” 艾伦扳手1 关于 Biorep Biorep技术股份有限公司(Biorep Technologies Inc.)成立于1995年,是一家具有原创性的医疗设备生产商。产品开发目的是用来帮助医生进行胰岛分离和胰岛细胞的移植。目前,他们的产品包括人类因子工程学,用户界面设计,系统解决方案(包括机械,电气,软件),可用行测试,个性化定制和其他医疗器械。现已在美国和世界各地的糖尿病研究实验室得到了广泛的应用,Biorep公司一直在不断地努力设计出独特的工具用于加速以治疗为目的的糖尿病学研究。
    留言咨询
  • STZ诱导糖尿病小鼠体脂比分析仪糖尿病是一种慢性疾病,其特点是相对或绝对胰岛素缺乏,导致高血糖。慢性高血糖可导致多种并发症,如神经病变、肾病和视网膜病变,并增加心血管疾病的风险。据世界卫生组织(WHO)数据,2030年之前糖尿病将成为全球第七大死亡原因。STZ (Streptozotocin) 是一种常用的化学物质,被广泛用于实验室研究中诱导糖尿病小鼠模型。通过注射STZ,可以损伤胰岛的β细胞,导致胰岛素分泌不足,从而模拟人类糖尿病的病理过程。STZ诱导糖尿病小鼠模型是一种常用的研究工具,可以帮助科学家们更好地理解糖尿病的发病机制和病程进展。STZ诱导糖尿病小鼠模型具有与人类糖尿病相似的病理生理特征,如高血糖、胰岛素抵抗和β细胞功能受损等。通过研究STZ诱导糖尿病小鼠模型,科学家们可以深入探讨糖尿病的治疗方法和潜在机制,而STZ诱导糖尿病小鼠体脂比对于糖尿病治疗的药物评价起到重要作用。STZ诱导糖尿病小鼠体脂比研究面临的问题?1、 老鼠个体差异性的影响,无法长期考察各种药物及外界因素、营养对动物体生理指标的影响。2、 如何得到活体老鼠测脂肪等体成分含量,传统的监测方法是宰杀后作组织形态学检查,部分基因模型昂贵且难建模,老鼠不舍得杀。3、 解剖分离不完全,无法分离皮下脂肪。STZ诱导糖尿病小鼠体脂比检测---QMR清醒小动物体成分技术QMR清醒小动物体成分技术在小动物清醒无束缚状态下快速、准确、定量的测量小动物的脂肪、瘦肉及体液含量,无需麻醉,直接进行测试,过程方便简洁,对小鼠或小动物无任何伤害,节约实验成本,可对单只小鼠或小动物进行长期跟踪研究,也通过MRI也可以实时观察体脂分布及沉积情况。通过长时间监测小动物的生理参数,考察各种药物、运动、外界因素及营养对动物体生理指标的影响。清醒小动物体成分分析仪主要用于与代谢有关的脂肪、瘦肉及体液等的成分的定量分析,协助实现药物有效部位(成分)的活性筛选,代谢性疾病的病因、病机等研究。QMR清醒小动物体成分技术可应用在药学、医学、公共卫生学、运动健康、动物科学、营养学等领域的学科研究,用于活体小动物的脂肪、瘦肉、体液的检测。STZ诱导糖尿病小鼠体脂比分析仪主要功能:快速,无损测量小鼠的肌肉、脂肪和体液含量。应用于代谢、内分泌、糖尿病和肥胖症等研究。检测方式:低场核磁共振测定法STZ诱导糖尿病小鼠体脂比分析仪主要技术指标:磁体技术:永磁体;探头线圈:小鼠体成分专用探头;无损测试:对操作者和实验动物无任何损伤(动物无需麻醉) 纽迈专用小鼠体成分分析软件;STZ诱导糖尿病小鼠体脂比分析仪产品优势:STZ诱导糖尿病小鼠体脂比分析仪是一款基于低场核磁共振技术,可测量活鼠体内脂肪、瘦肉、水分的含量的仪器。仪器通过定量磁共振技术与多元变量数学分析技术,实现清醒状态下活鼠的实时无损检测与持续监测,具有快速、精准、稳定、安全等优点。STZ诱导糖尿病小鼠体脂比分析仪性能特点:1、测试迅速:测试简单、快速、整个测试过程在1min内;2、样品无需预处理:样品无须麻醉,无须处死;3、测试结果:测试结果为脂肪含量,肌肉含量,可靠真实且稳定性高、重复性好;4、适用性: 活体大鼠、小鼠、兔子等小动物均可测量;
    留言咨询
  • 类器官串联培养系统(细胞反应器)--- HUMIMIC 类器官技术平台是一种微流控微生理系统平台,能够维持和培养微缩的等效器官,模拟其各自的全尺寸对应器官的生物学功能和生物的主要特征,如生物流体流动,机械和电耦合,生理组织与流体、组织与组织的比率。 类器官串联芯片培养系统包括控制单元和芯片,控制单元能够模拟人体内生理环境,包括温度、压力、真空度、微流道循环频率、时间等参数,芯片有不通的微流道设计,针对不同的器官可以单独设置提供相应的培养条件,提供精准的培养和分化环境。类器官串联芯片培养系统可提供不同类器官的串联共培养方案,避免单一类器官无法模拟人体复杂生理学条件下器官相互通讯交流的不足。通过类器官模拟人类器官组织的生理发育过程,应用于疾病模型、肿瘤发生、以及药物安全性、有效性、毒性、ADME等方面的评估,旨在减少和取代实验室动物测试,简化人体临床试验。 类器官是指在结构和功能上都类似来源器官或组织的模拟物,通过取特定器官的干细胞(iPS/ES),或者利用人的多能干细胞定向诱导分化,能获得微型的器官样的三维培养物,在体外模拟人体器官发育过程。 类器官,具有某一器官多种功能性细胞和组织形态结构的三维(3D)培养物,主要来源于人具有多项分化潜能的多能干细胞(包括人胚胎干细胞和人诱导多能干细胞iPSCs)或成体干细胞。人多能干细胞能分化为个体所有类型的细胞,在体外,经过诱导分化,模拟人体器官发育过程,能使人多能干细胞直接分化形成各种类器官;不同组织器官都存在内源组织干细胞,在维持各器官的功能形态发挥着重要作用。这些干细胞在体外一定的诱导条件下,可以自组织形成一个直径仅为几毫米的具有组织结构和多种功能细胞的三维培养物。器官芯片是获取两个或两个以上不同的类器官,并且放置在特定的培养芯片上进行共培养,能模拟人体的多个器官参与的生理学过程。 基于这一定义,可以发现类器官具备这样几个特征: 必须包含一种以上与来源器官相同的细胞类型; 应该表现出来源器官所特有的一些功能; 细胞的组织方式应当与来源器官相似。 类器官作为一个新兴的技术,在科学研究领域潜力巨大,包括发育生物学、疾病病理学、细胞生物学、再生机制、精准医疗以及药物毒性和药效试验。与传统2D细胞培养模式相比,3D培养的类器官包含多种细胞类型,能够形成具有功能的“微器官”,能更好地用于模拟器官组织的发生过程及生理病理状态,因而在基础研究以及临床诊疗方面具有广阔的应用前景。 类器官培养使研究人体发育提供了不受伦理限制的平台,为药物筛选提供了新的平台,也是对现有2D培养方法和动物模型系统的高信息量的互补 。 此外,类器官为获取更接近自然人体发育细胞用于细胞治疗成为可能。通过类器官繁殖的干细胞群取代受损或者患病的组织,类器官提供自体和同种异体细胞疗法的可行性,未来这一技术在再生医学领域也拥有巨大的潜力 。使用这项技术,采用CRISPR/Cas9能够纠正体外遗传异常并能够将健康的转基因细胞再次回输入患者体内,并在后期整合入组织内。在精准医学应用中,患者衍生的类器官也被证明为有价值的诊断工具。在进行治疗之前,采用从患者样本来源的类器官筛查患者体外药物反应,旨在为癌症和囊胞性纤维症患者的护理提供指导并预测治疗结果。随着类器官培养系统以及其实验开发技术的不断发展,类器官应用到了各大研究领域。 类器官可以模拟人体的内外环境和人体器官,帮助研究人员观测用药会对人体器官功能产生什么样的影响。在提倡精准医学和个体化治疗的时代,类器官研究比传统的二维细胞培养更具有针对性,并且可以区别不同癌症对于相同药物的反应。不仅如此,研究者还希望通过诱导多功能干细胞强大的再生潜能,体外生成新的器官或组织,然后移植入体内以替代损坏的组织器官。 类器官培养系统--- HUMIMIC的应用案例 类器官的应用举例---疾病模型 类器官的研究还可用于于疾病模型,如发育相关问题,遗传疾病,肿瘤癌症等。通过使用患者的iPSCs可建立有价值的疾病模型,并能在体外模拟重现病人疾病模型;同时,类器官的建立可以实现对药物药效和毒性进行更有效、更真实的检测。由于类器官可以直接由人类iPSCs直接培养生成,相比于动物模型很大程度上避免了因动物和人类细胞间的差异而导致的检测结果不一致。 类器官的应用举例---药效和毒理测试 可以从患者来源的健康和肿瘤组织样品中建立类器官。与此同时类器官培养物可用于药物筛选,这可将肿瘤的遗传背景与药物反应相关联。来自同一患者健康组织的类器官的建立提供了通过筛选选择性杀死肿瘤细胞而又不损害健康细胞的化合物来开发毒性较小的药物的机会。自我更新的肝细胞类器官培养物可用于测试潜在新药的肝毒性(临床试验中药物失败的原因之一)。在该实施例中,药物B似乎最适合于治疗患者,因为它特异性杀死肿瘤类器官并且不引起肝毒性。 类器官的应用举例---类器官“生物Bank”根据目前的研究进展,建立了活体类器官“生物bank”。其中,肿瘤来源的类器官在表型和基因上都与肿瘤相似。另外,肿瘤类类器官生物库使生理学相关的药物筛选成为可能。活体类器官生物库可用于确定类器官是否对个体患者的药物反应,具有预测价值。从结直肠癌患者的健康组织和肿瘤组织中提取的三维有机组织培养物被用于高通量药物筛选,以确定可能促进个性化治疗的基因药物相关性 类器官的应用举例---重演肿瘤形成 类器官的培养和建立,可用于研究肿瘤生成过程中的突变过程,比如说,通过从同一肿瘤的不同区域培养无性繁殖的类细胞器,可以用来研究肿瘤内部的异质性。来自不同健康器官的类器官的生长,然后对培养物进行全基因组测序,可以分析器官特异性突变谱。通过生长来自同一肿瘤不同区域的类器官,可以用于研究肿瘤内异质性。区域特异性突变谱可以通过类器官的全基因组测序来揭示。使用与上述相似的方法,可以利用类器官来研究特定化合物对健康细胞和肿瘤细胞突变谱的影响。 类器官培养系统--- HUMIMIC的成功培养的器官举例 肠类器官: HansClever 课题组证实单一的Lgr5 +干细胞能够在体外持续增殖并自组装形成隐窝-绒毛样的小肠上皮结构。进一步的研究结果显示,单个成人Lgr5 + 干细胞也能在体外成功扩增成结肠类器官,将这种功能性的结肠上皮移植到硫酸葡聚糖诱导的急性结肠炎小鼠模型中可以修复其受损的结肠上皮。这提示利用单一成人结肠干细胞体外扩增进行结肠干细胞治疗是可行的。有学者还应用人诱导型多能干细胞( induced pluripotent stem cells,iPSCs) 直接定向分化为小肠组织的方法明确了Wnt3a 蛋白和成纤维细胞生长因子4 是后肠特定分化所必需的物质,而且,这种iPSCs体外构建的人体肠道组织中存在的小肠干细胞,也具有小肠特有的吸收和分泌功能。这有助于未来人肠道疾病药物的设计研究,可大大提高了药物利用率。目前,已有学者构建了小鼠小肠3D 类器官来进行P-糖蛋白抑制剂的筛选,为P-糖蛋白介导的药物转运研究提供了强有力的工具。 肝类器官: 2013 年,Takebe 等将人多能干细胞来源的肝细胞、人间充质干细胞和人内皮细胞混合后在基质胶中培养,发现3 种细胞自组装成3D 化肝芽,将该肝芽移植到丙氧鸟苷诱导肝脏衰亡的TKNOG 小鼠体内后发现这种肝芽可以连接小鼠肠系膜血管,小鼠也出现了人类特有的药物代谢过程。这为肝脏器官发生的研究提供了有益尝试。大型哺乳动物的类器官再造工程也许能加速人类器官移植治疗和疾病致病机制研究的进展。2015 年,Nantasanti 等利用狗的肝脏干细胞构建了可分化为功能性肝细胞的肝类器官模型,能用于铜潴留症的治疗。猫被认为是非常适用于研究人类代谢性疾病的模型,所以利用猫的胆道组织构建肝类器官,可能是原发性肝胆疾病研究及药物筛选的有益工具,但至今也未见利用猫建立长期保持基因稳定的肝脏干/祖细胞培养体系的报道。 胰腺类器官: 有学者发现,当控制骨形态发生蛋白碱性成纤维细胞生长因子、激活素A 和Wnt3a 的表达水平或使用一些小分子化合物进行干预时,可以控制内胚层细胞向特定的方向分化,最终形成胰腺。目前,构建胰岛类器官的主要方法包括利用各种干祖细胞产生胰岛样细胞群和利用各种来源的胰腺细胞悬液或胰腺组织块自组装成拟胰岛体。2011 年,Saito 等将人iPSCs 和胚胎小鼠胰岛细胞体外共培养,最后形成能够产生胰岛素的不成熟细胞群,该细胞群由胰岛α 细胞包绕中央的β 细胞构成,这种结构和成年鼠胰岛相似,将其移植到链脲菌素诱导的高血糖小鼠模型中后发现小鼠血糖水平得到极大改善。而进一步的体内实验研究还需要关注如何规避免疫反应、促进再血管化、促进类器官分化发育等问题,在这方面,Sabek 等提出制备纳米腺体来促进胰岛发挥作用,这种纳米腺体是运用3D 打印技术制作可吸收聚合物胶囊包裹胰岛样细胞团形成的,这可能是未来胰岛类器官应用的一种思路。 脑类器官: 近来,谱系重编程技术为获取特异性种子细胞提供了新的途径。Lancaster 等通过加入不同生长因子的方法将人类胚胎干细胞( embryonic stem cell,ESC) 和iPSC 在神经培养基3D 培养出了与9 ~ 10周胚胎大脑类似的“类大脑”,此类迷你大脑具备人类大脑发育初期的一些主要区域,也出现了背侧皮层、腹侧前脑等可辨认的特征,但由于缺乏一些特定的特征,如小脑、海马状突起等,这些区域无法应用于干细胞模型。之后,该研究者利用小颅畸形患者的皮肤成纤维细胞诱导形成了患者特异性iPSC 细胞系,并应用后者构建了小颅畸形脑类器官模型,通过对照实验发现,正常ESC和该iPSCs 在类器官形成上并没有明显差异,但是后者形成的类器官中有大量未成熟的神经元分化,这为大脑发育紊乱类疾病的研究提供了一定的思路。2015年Kirwan 等应用人iPSC 体外构建了人大脑皮层神经网络,能够模拟人体内皮层网络的发育和功能,这表明可以在体外通过构建大脑类器官来进行人类前脑神经网络生理学机制的研究。 前列腺类器官: 2014 年,研究人员首次在实验室利用来自转移性前列腺癌患者的活检标本和去势抵抗性前列腺癌( castration-resistant prostate cancer,CRPC) 患者的循环肿瘤细胞成功培育出7 个前列腺癌类器官,这些前列腺癌类器官以及从中获得的肿瘤移植物的组织结构及基因突变谱与患者转移灶样本高度相似。Nicholson 等[21]也应用类器官培养技术成功在体外构建患者来源的异种移植物模型,相比于人源性肿瘤组织异种移植及基因工程鼠模型,这种新型的患者来源的类器官能更好地代表CRPC 等高级别前列腺癌,还能代表前列腺癌的庞大临床疾病谱,而这种疾病谱是目前仅有的前列腺癌细胞系无法代表的,因而在前列腺癌药物筛选和个体化治疗中展现出巨大的应用前景。 类器官串联培养系统--- HUMIMIC的技术方案:多器官串联培养,在没有病人的情况下测试病人类器官串联芯片培养系统包括控制单元和芯片,控制单元能够模拟人体内生理环境,包括温度、压力、真空度、微流道循环频率、时间等参数,芯片有不同的微流道设计,针对不同的器官可以单独设置提供相应的培养条件,提供精准的培养和分化环境。类器官串联芯片培养系统可提供不同类器官的串联共培养方案,避免单一类器官无法模拟人体复杂生理学条件下器官相互通讯交流的不足。通过类器官模拟人类器官组织的生理发育过程,应用于疾病模型、肿瘤发生、以及药物安全性、有效性、毒性、ADME等方面的评估,旨在减少和取代实验室动物测试,简化人体临床试验。 为获取更高相关与准确的测试结果,我们开发了人体器官模型的自动芯片测试:配备具有指示相关性的器官模型的芯片,以能够在接触生物体之前检测其安全性和有效性;最终为芯片配备患者自身相关病变器官的亚基,以评估整个个性化治疗的效果; 人体生理反应往往涉及更多介质循环和不同组织间相互作用,多器官芯片才能全面反映出机体器官功能的复杂性、完整性以及功能变化,一个相互作用的系统才能更好的模拟整个系统中器官和组织的不同功能。可提供不同类器官的串联培养解决方案,避免单一类器官无法模拟人体复杂生理学条件下器官相互通讯交流的不足。把多种不同器官和组织培养在芯片上,然后通过微通道连接起来,集成一个相互作用的系统,从而模拟人体中的不同功能器官的交流通讯和互相作用。TissUse专有的商用MOC技术支持的器官培养物的数量范围从单个器官培养到支持复杂器官相互作用研究的器官数量,包括单器官、二器官、三器官和四器官培养的商业化的平台。成功的案例包括:肝脏、肠、皮肤、血管系统、神经组织、心脏组织、软骨、胰腺、肾脏、毛囊、肺组织、脂肪组织、肿瘤模型和骨髓以及各自的多器官串联组合方案。德国TissUse公司专注于类器官培养系统研究22年,推出的HUMIMIC类器官串联芯片培养系统,得到FDA的推荐,可提供不同类器官的串联培养解决方案,避免单一类器官培养无法模拟人体器官相互通讯关联的缺陷,同时也提供相关的技术方案和后续方法试剂支持,属于国际上少有的“Multi-Organ-Chip” 和“Human-on-a-chip”的方案提供者。相关方案已被广泛应用于药物开发、化妆品、食品与营养和消费产品等多个领域. 类器官串联培养系统---HUMIMIC系统 一、专业化的硬件(控制单元) 主机(控制单元)是一个紧凑的台式设备,能够模拟人体内生理环境,包括温度、压力、真空度、微流道循环频率、时间等参数。7寸触摸显示器,控制面板可以在整个过程中对每个多器官芯片分别进行调节,无需外接电脑,软件操控友好;可以自主设置每个器官芯片的培养条件,包括温度、压力、真空度、微流道循环频率、时间等参数;可串联培养2个不同(或相同)、3个不同的、4个不同的类器官;3个连接拓展口,用于连接其他设备;同时操控高达8个Chip3 / Chip3 plus,4个Chip2 /Chip4或这些的组合; 二、类器官芯片芯片有不同的微流道设计,针对不同的器官可以单独设置提供相应的培养条件,提供精准的培养和分化环境;芯片的泵腔内的柔性膜通过连接的管道,受到压力或真空的作用,在微流道之中产生脉动体流;二联类器官芯片可以在一个芯片上串联培养2个不同(或相同)的类器官;三联类器官芯片可以在一个芯片上串联培养3个不同的类器官;四联类器官芯片可以在一个芯片上串联培养4个不同的类器官; 三、服务方案(细胞、试剂,诱导方案) 四、器官模型和串联培养技术 类器官串联培养系统---HUMIMIC的应用案例1、神经球和肝脏的串联共培养(柏林工业大学)-二联器官共培养的药物敏感性2015, Journal of Biotechnology, A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing目前用于药物开发的体外实验平台无法模拟人体器官的复杂性,而人类和实验室动物的系统差异巨大,因此现有的方案都不能准确预测药物的安全性和有效性。德国、葡萄牙和俄罗斯的研究团队通过TissUse GmbH公司的微流控多器官芯片(MOC)平台,测试毒物对多器官的作用,揭示了基于微流控的多器官串联共培养能够更好的模拟人体的生理学环境。在体外培养条件下,由于氧气和营养供应有限,类器官培养往往会随着时间的推移而去分化。然而微流控系统中通过持续灌注培养基,更好地控制环境条件,如清除分泌物和刺激因子,并且培养基以可控流速通过,以模拟血流产生的生物剪切应力,因此类器官培养物可以保持良好的生长状态。 双器官串联芯片(2-OC)能够串联共培养人的神经球(NT2细胞系)和肝脏类器官(肝HepaRG细胞和肝HHSteC细胞)。在持续两周的实验中,反复加入神经毒剂2,5-己二酮,引起神经球和肝脏的细胞凋亡。跟单器官培养相比,串联共培养对毒剂更敏感。因此,多器官串联共培养在临床研究中可以更准确地预测药物的安全性和有效性。推测这是因为一个类器官的凋亡信号导致了第二个类器官对药物反应的增强,这一推测得到了实验结果的支持,即串联共培养的敏感性增加主要发生在较低浓度药物中。 2、心脏肝脏骨骼皮肤的串联共培养(哥伦比亚大学)-四联器官共培养的复杂通讯模型哥伦比亚大学的科学家也开发了一种多器官串联芯片,建立了串联共培养心脏、肝脏、骨骼、皮肤的技术,发表于2022年的Nature Biomedical Engineering,中通过血液循环串联培养4个类器官,保持了各个类器官的表型,还研究了常见的抗癌药阿霉素对串联芯片中的类器官以及血管的影响。结果显示药物对串联共培养类器官的影响与临床研究结果非常相似,证明了多器官串联共培养能够成功的模拟人体中的药代动力学和药效学特征。“最值得注意的是,多器官串联芯片能够准确的预测出阿霉素的心脏毒性和心肌病,这意味着,临床医生可以减少阿霉素的治疗剂量,甚至让患者停止该治疗方案。“Gordana Vunjak-Novakovic, Department of Biomedical Engineering, Columbia University 3、胰岛和肝脏在芯片上的串联共培养(阿斯利康)-二联器官共培养的反馈通讯2017, Nature Scientific Reports, Functional coupling of human pancreatic islets and liver spheroids on-a-chip: Towards a novel human ex vivo type 2 diabetes model人类系统性疾病的发生过程都是通过破坏两个或多个器官的自我平衡和相互交流。研究疾病和药疗就需要复杂的多器官平台作为体外生理模型的工具,以确定新的药物靶点和治疗方法。2型糖尿病(T2DM)的发病率正在不断上升,并与多器官并发症相关联。由于胰岛素抵抗,胰岛通过增加分泌和增大胰岛体积来满足胰岛素不断增加的需求量。当胰岛无法适应机体要求时,血糖水平就会升高,并出现明显的2型糖尿病。由于胰岛素是肝脏代谢的关键调节因子,可以将生产葡萄糖的平衡转变为有利于葡萄糖的储存,因此胰岛素抵抗会导致糖稳态受损,从而导致2型糖尿病。过去已经报道了多种表征T2DM特征的动物模型,但是,从动物实验进行的研究往临床上转化的效果不佳。更重要的是,目前使用的药物,虽然能缓解糖尿病症状,但对疾病进一步发展的治疗效果有限。胰腺和肝脏是参与维持葡萄糖稳态的两个关键器官,为了模拟T2DM,阿斯利康(AstraZeneca)的科学家利用TissUse GmbH公司的微流控多器官芯片(MOC)平台,通过微流控通道相互连接,建立一个双器官串联芯片(2-OC)模型,实现芯片上胰腺和肝脏类器官的串联共培养,在体外模拟了胰腺和肝脏之间的交流通讯。 建立串联共培养类器官(胰岛+肝脏)和单独培养类器官(仅胰岛或肝脏),在培养基中连续培养15天,串联共培养显示出稳定、重复、循环的胰岛素水平。而胰岛单独培养的胰岛素水平不稳定,从第3天到第15天,降低了49%。胰岛与肝球体串联共培养中,胰岛可长期维持葡萄糖水平,刺激胰岛素分泌,而单独培养的胰岛,胰岛素分泌显著减少。胰岛分泌的胰岛素促进了肝球体对葡萄糖的利用,显示了串联共培养中类器官之间的功能性交流。在单独培养中的肝球体中,15天内循环葡萄糖浓度稳定维持在~11 mM。而与胰岛共培养时,肝球体的循环葡萄糖在48小时内降低到相当于人正常餐后的水平度,表明胰岛类器官分泌的胰岛素刺激了肝球体摄取葡萄糖。 4、肺肿瘤和皮肤在芯片上的串联共培养(拜耳)-抗体药物对肿瘤和正常器官的影响 针对EGFR抗体的药物在癌症治疗中被广泛应用。然而,抗癌药物的使用量与皮肤不良反应成正比相关,皮肤毒性是上皮生长因子受体(EGFR) 靶向治疗中最常见的副作用。但是对于后者的预测目前的方法均无法实现。双器官串联芯片(2-OC)模型,实现芯片上皮肤和肿瘤的共培养,用于模拟重复给药的剂量实验,同时还生成安全性和有效性的数据,可以在非常早的阶段检测到西妥昔单抗cetuximab对皮肤的几个关键副作用。这种体外分析能够在临床表现之前预评估毒性副作用,可以替代动物试验,有望成为评价EGFR抗体和其他肿瘤药物治疗指数的理想工具。 5、皮肤-肝脏在芯片上的串联共培养(拜尔斯道夫公司)—评估化妆品不同的给药途径d Science, Metal‐Specific Biomaterial Accumulation in Human Peri‐Implant Bone and Bone MarrowSchoon J, Hesse B, Rakow A, Ort MJ, Lagrange A, Jacobi D, Winter A, Huesker K, Reinke S, Cotte M,Tucoulou R, Marx U, Perka C, Duda GN, Geissler S
    留言咨询
  • 活鼠体组分分析仪AccuFat-1050是一款测量小鼠体脂的分析仪器, 基于低场时域磁共振(TD-NMR)原理,可测量活鼠体内脂肪、瘦肉、水分的含量。仪器通过定量磁共振技术与多元变量数学分析技术,实现清醒状态下活鼠的实时无损检测与持续监测,具有快速、准确、稳定、安全等优点。活鼠体组分分析仪产品特色- 紧凑式一体化设计:更小的整机尺寸,更轻的整机重量,占用空间小。- 智能化数据分析与处理软件:语音和图形提示功能,安全的实验数据管理,实验数据的即时分析与导出。- 独特的混合脉冲序列设计:优化脉冲序列参数,一次测量可同时获得样本的多个特征信息,检测精度高。- 测量过程安全可靠:活鼠清醒状态下检测,全程无压力,满足小鼠体内全组分(脂肪、瘦肉和水分)的定量分析,实现小鼠的全生命周期监测。活鼠体组分分析仪主要参数- 磁体类型:稀土永磁体- 磁场强度:0.235±0.005T (10±0.213MHz)- 标配探头:R50 (Φ50 mm)- 可测参数:脂肪瘦肉水分等- 单次测量时间:≤90s- 测量样品范围:5~80g,最佳5~60g活鼠体组分分析仪应用领域病理学研究:- 饮食诱发微生物群失调与肥胖- 肿瘤与代谢紊乱- 基因学与代谢病理-胰岛素抵抗、糖稳态、氧化代谢动物模型研究- 肥胖易感/抵抗鼠- 棕色脂肪少的鼠- 基因、蛋白敲除鼠- 肿瘤鼠营养学研究- 妊娠哺乳期饮食对后代肥胖诱发- 最佳代谢反应的蛋氨酸含量- 肠道微生物活性的作用- 钙(Ca)摄入量临床学研究- 心血管疾病食疗、药物治疗评价- 非酒精脂肪肝治疗方案- 代谢类疾病及并发症临床治疗- 热量摄入控制与临床预防应用实例抗生素阿奇霉素(AZI)抑制棕色/米色脂肪的功能,促进人类和啮齿动物的肥胖AZI通过抑制棕色和米色脂肪细胞的功能,破坏了能量稳态,并促进了肥胖。其中,AZI 降低了生热脂肪细胞的线粒体蛋白合成,增加了ROS水平,在体内外均可降低。我们发现人体脂肪中的AZI残留水平与BMI/体重呈正相关,这强调了AZI在肥胖流行中的重要性。-小鼠随机分为对照组和AZI组,AZI在饮用水中按安全剂量添加。与对照组(NCD)相比,AZI处理小鼠(NCD+AZI)表现出相似的代谢性能。在高脂饮食(HFD)下,观察到AZI组(HFD+AZI)与对照组(HFD)相比,体重和脂肪量增加,血糖和胰岛素耐量试验(GTT/ITT)表现更差,胰岛素敏感性受损。 此外,AZI处理的HFD小鼠的脂肪组织重量增加,脂肪细胞增大。-为探讨了NAC是否能减轻AZI对体内代谢参数的有害影响,小鼠在整个实验过程中都接受ABX治疗,以消除肠道微生物群对肥胖发展的影响,然后接受HFD方案,用AZI治疗,添加或不添加NAC在AZI处理的HFD小鼠中,补充NAC在很大程度上阻止了AZI诱导的体重和脂肪质量的增加。此外,NAC显著降低了小鼠的脂肪组织重量,且脂肪细胞变的更小。
    留言咨询
  • KinExA分子与细胞相互作用系统介绍一、KinExA的技术背景:Sapidyne Instruments Inc.于1995年在美国创立,产品基于独特的Kinetic Exclusion Assay(KinExA)专利技术。在公司成立早期,Xavier大学、美国陆军和环境保护局等研究单位采用KinExA技术开展了大量工作;经过数十年在生物制药领域、科研领域及环境监测领域的广泛应用,KinExA技术已成为顶级制药公司和生物技术公司以及许多大学、独立研究实验室和环境监测机构研究相互作用和生物活性物质检测的必备工具,并且已得到FDA和EMA认可。二、KinExA的技术原理:在反应溶液中当受体和配体达到平衡状态时,这时溶液中存在三种物质:受体、配体以及受体-配体复合物。KinExA技术通过包被受体或配体的珠子在极短时间内(0.5s,不影响反应平衡)捕获游离的配体或受体,再通过荧光标记的抗体检测游离的配体或受体的量。检测过程如下:三、KinExA与SPR的区别1、与SPR的区别:SPR在芯片表面固定一个分子,通过芯片表明与溶液间二维相互作用的物质量改变而实现SPR检测。这就带来了非常显著的缺点:固定在芯片上的生物分子可能不能维持其天然活性、质量迁移影响动力学分析(例如,流速会影响实验结果)、被检测分子有分子量下限限制、非常大的分子或者生物结构其分子量有上限限制、样品需要纯化及无法检测完整细胞。相反,KinExA分析三维水平及游离状态相互作用,不固定任何分子、不会对平衡带来影响、没有质量迁移的限制、可以检测未纯化样品和完整细胞;因此,极宽范围内的生物分子、生物结构及完整细胞均可灵活分析。2、与SPR技术对比:为了表征治疗性单克隆抗体候选分子,研究者采用不同类型芯片,从Biacore系统获得同一组单抗-抗原的53组数据,与KinExA实验数据对比发现,亲和力及动力学数据与所使用的芯片类型有关,带负电荷的CM5,CM4及CM1芯片对Biacore的动力学数据有不利的影响。为了验证这一假设,作者通过Biacore液相实验,KinExA平衡态滴定以及KinExA动力学实验,精确计算抗体与抗原的亲和力及动力学参数。结果表明随着芯片表面负电荷的降低,亲和力及动力学参数与液相实验所得的结果越接近。可能的原因:(1)带负电荷的葡聚糖芯片与抗体之间的空间位阻影响抗原的结合;(2)带负电荷的抗原与芯片表面的负电荷静电排斥。四、KinExA的应用:应用一、KinExA在CAR-T细胞治疗中的应用因多种因素的限制,自体CAR-T细胞治疗产品可能在应用于患者前未必能够进行全部项目的检定,所以工艺验证非常重要。工艺研究及验证必须结合工艺的实际情况设定相应的验证参数,CAR-T细胞产品工艺研究在不断发展,到目前为止,业界对何种工艺最好并未达成共识。因此,可以在产品研发过程及早期临床试验阶段开展不同程度的工艺验证研究,工艺验证完成后,应在关键工艺步骤设置关键过程控制参数及标准,以提高CAR-T细胞产品的生产一致性。CAR-T细胞治疗产品的质量控制研究及检测项目一般应包括:细胞数量及其存活率、细胞表型、CAR阳性率检测、生物学效力检测,无菌检测、支原体、热原/内毒素的检测、CAR-T细胞中病毒载体拷贝数及整合的检测等。如果能够检测CAR-T细胞与抗原分子的亲和力,以及CAR-T细胞上抗体的表达量,无疑会提升CAR-T细胞的质量控制标准。目前市面上除了KinExA技术外,没有其他特别有效的方式检测完整细胞与分子间的亲和力,更无从判断细胞上分子的表达量。KinExA技术可以检测细胞与分子间的亲和力,并且可以计算细胞上分子的表达量。其检测原理如下图,先将梯度稀释的细胞与恒定浓度的分子共同孵育达到平衡,离心之后收集上清液(此时上清液中只存在游离的分子),再通过已提前包被过的珠子捕获游离的分子,用荧光标签的抗体检测游离分子的量,通过检测器检测得到相应的数值后,利用KinExA系统软件进行数据分析。下图是国内某知名CAR-T公司通过KinExA技术检测CAR-T细胞与抗原分子间相互作用的结果。结果表明,CAR-T细胞与抗原的亲和力Kd为45.41pM,T细胞表面CAR的表达水平为1.368e+5,Kd与EL的95%置信区间均较窄,数据非常准确可信应用二、KinExA在高亲和力检测上应用对于抗肿瘤药市场,目前精准医疗最为成熟的领域还是以靶向药物为代表的抗肿瘤药物。由于单克隆抗体类抗癌药的副作用较小,且靶向性更好,因此,单抗药物仍将是引领抗肿瘤药物发展最为重要的领域。以PD-1为靶点的一类单抗药呈现出较高的亲和力,常规的相互作用检测系统例如SPR 、BLI、ITC等由于自身原理的限制均不能检测高亲和力(pM级别)。KinExA技术有别于常规的相互作用检测系统,能准确有效的检测高亲和力(fM级别)。下表是Pfizer, Rinat两家公司联合发表的KinExA高亲和力检测范围的文章。 Bee C., et al. 2012. Exploring the dynamic range of the kinetic exclusion assay in characterizing antigen-antibody interactions. PLOS ONE 7(4): e36261.五、案例分析案例一:完整细胞的相互作用检测背景:单克隆抗体XMetA是胰岛素受体(IR)变构部分的激动剂,其激活代谢Akt激酶信号通路,而对有丝分裂胞外信号调节激酶(ERK)信号通路几乎没有影响。为了研究这种选择性信号通路的性质,作者验证了XMetA对CHO细胞中IR,Akt和ERK的特异性磷酸化和活化的影响。目的:完整细胞亲和力检测。方法:研究者将表达短链型(IR-A)及长链型(IR-B)胰岛素受体的不同浓度CHO细胞分别与XMetA孵育,通过离心获得游离的XMetA,用KinExA仪器检测亲和力。另外,作者采取同样的策略,用KinExA仪器检测胰岛素与CHO细胞表面IR-A,IR-B的亲和力。结论:XMetA与IR-A亚型的亲和力为55±16pM,与IR-B亚型的亲和力为50±11pM。另外,在对照抗体组,胰岛素与IR-A亚型的亲和力为156±14pM;在XMetA组,胰岛素与IR-A亚型的亲和力为216±100pM;在对照抗体组,胰岛素与IR-B亚型的亲和力为221±28pM;在XMetA组,胰岛素与IR-B亚型的亲和力为277±112pM。数据同时说明, XMetA与IR亚型的结合与胰岛素无关。Bedinger, D., et al. 2015. Differential pathway coupling of activated insulin receptor drives signaling selectivity by XmetA, an allosteric partial agonist antibody. J Pharmacol Exp Ther 353(1):35-43.案例二:细胞与上清未纯化样品检测背景:单克隆抗体(mAb)在体内与膜蛋白间亲和力的可靠评估是肿瘤治疗的主要问题。在BV展示系统中,膜蛋白能以天然状态在病毒表面展示。目的:细胞与上清中未纯化样品亲和力检测。方法:研究者基于KinExA技术,结合杆状病毒(BV)膜蛋白展示系统,描述了一个简单而高度敏感的单克隆抗体评估方法。结论:在BV表面展示的肝癌抗原Robo1吸附到磁珠上(BV beads),其KD值(~10pM)与全细胞分析方法一致(R2=0.998),表明基于KinExA技术检测方法提供了针对细胞表面蛋白的单克隆抗体亲和力准确的评估。Kusano-Arai 0., et al. 2016. Kinetic exclusion assay of monoclonal antibody affinity to the membrane protein Roundabout 1 displayed on baculovirus. Anal Biochem.案例三:高亲和力检测背景:白细胞介素-1β(IL-1β)是炎症反应的有效介质,在许多淋巴细胞的分化中发挥调控作用。在一些炎症和自身免疫性疾病中,血清中IL-1β水平与疾病的发展和严重程度相关。 IL-1β在一些疾病中的机理已经被临床试验证实,并获得FDA的审批。目的:高亲和力检测与验证。方法:设计抗IL-1β抗体XOM052,SPR检测其与IL-1β的亲和力为≤4pM。另外实验采用Protein A捕获IL-1β抗体,解离10min,发现时间不足以使抗体抗原发生解离,将解离时间延长至4h,解离早期无法准确拟合,推测是由于IL-1β抗体从Protein A上解离对实验造成的影响。为了更精确的计算亲和力,作者改用KinExA,分析得到其亲和力为300fM。结论:KinExA技术对于高亲和力的检测具有无可替代的优势。Owyang A.M., et al. 2011. XOMA 052, a potent, high-affinity monoclonal antibody for the treatment of IL-1B-mediated diseases. mAbs 3(1): 49-60
    留言咨询
  • 小鼠体组分分析仪AccuFat-1050是一款测量小鼠体脂的分析仪器, 基于低场时域磁共振(TD-NMR)原理,可测量活鼠体内脂肪、瘦肉、水分的含量。仪器通过定量磁共振技术与多元变量数学分析技术,实现清醒状态下活鼠的实时无损检测与持续监测,具有快速、准确、稳定、安全等优点。小鼠体组分分析仪 产品特色- 紧凑式一体化设计:更小的整机尺寸,更轻的整机重量,占用空间小。- 智能化数据分析与处理软件:语音和图形提示功能,安全的实验数据管理,实验数据的即时分析与导出。- 独特的混合脉冲序列设计:优化脉冲序列参数,一次测量可同时获得样本的多个特征信息,检测精度高。- 测量过程安全可靠:活鼠清醒状态下检测,全程无压力,满足小鼠体内全组分(脂肪、瘦肉和水分)的定量分析,实现小鼠的全生命周期监测。小鼠体组分分析仪主要参数- 磁体类型:稀土永磁体- 磁场强度:0.235±0.005T (10±0.213MHz)- 标配探头:R50 (Φ50 mm)- 可测参数:脂肪瘦肉水分等-单次测量时间:≤90s- 测量样品范围:5~80g,最优5~60g小鼠体组分分析仪应用领域病理学研究:- 饮食诱发微生物群失调与肥胖- 肿瘤与代谢紊乱- 基因学与代谢病理- 胰岛素抵抗、糖稳态、氧化代谢动物模型研究- 肥胖易感/抵抗鼠- 棕色脂肪少的鼠- 基因、蛋白敲除鼠- 肿瘤鼠营养学研究- 妊娠哺乳期饮食对后代肥胖诱发- 最佳代谢反应的蛋氨酸含量- 肠道微生物活性的作用- 钙(Ca)摄入量临床学研究- 心血管疾病食疗、药物治疗评价- 非酒精脂肪肝治疗方案- 代谢类疾病及并发症临床治疗- 热量摄入控制与临床预防
    留言咨询
  • 流式、多参数细胞/组织/类器官代谢分析仪 德国cellasys提供的灌流式、多参数细胞/组织/类器官代谢分析仪-IMOLA,是一种基于生物芯片的微生理参数测量系统,对活细胞/组织/类器官的代谢和形态进行无标记实时监测,搭配自动化灌流系统进行换液或者加药,可以实现几天或几周的连续测量,研究药物对活细胞/组织/类器官的影响以及移除药物后的恢复和再生效应。 我们的细胞/组织/类器官代谢分析仪通过生物芯片技术,可以在体外直接研究活细胞或组织、器官在培养过程种的多个参数的变化,包括细胞外酸化(pH)、细胞呼吸(pO2、pCO2)和形态学(电阻)。整个测量过程无需标记、多通道平行进行、连续检测、实时记录。 细胞/组织/类器官代谢主要是指细胞从环境中摄取营养物质,消化吸收后排放出降解物或杂质。大多数碳水化合物,例如葡萄糖,都是细胞的营养物质。在有氧条件下,葡萄糖被细胞摄取后在胞浆内转变成丙酮酸,然后进入三羧酸循环代谢,最终变成二氧化碳并产生能量;在缺氧条件下,葡萄糖在细胞内代谢为乳酸以提供能量。总体而言,细胞代谢增强时,葡萄糖的消耗增加,酸性的代谢产物也相应增加,反之亦然。此外,外界环境因素对贴壁细胞的作用经常影响到细胞的粘附和融合度,而细胞的粘附状态是与细胞骨架的组织性和膜的完整性相关的,如果受到环境因素干扰,细胞则会改变其粘附方式,可能变圆或完全脱离基底。因此,监测这些参数就能很好的了解细胞/组织/类器官内的生理状态和代谢行为。 德国cellasys的细胞/组织/类器官代谢监测仪IMOLA -IVD非常适合与于监测细胞/组织/类器官代谢过程的各种生理学指标,包括产酸,产氧,贴壁电阻,温度。可以单独控制每一个样品的溶液,分别有6个独立的灌流泵来控制每个通道的灌流系统,保证每个通道的独立性,可以连续长时间监测6种细胞/组织/类器官的代谢情况。 德国cellasys的细胞/组织/类器官代谢监测仪,采用的是芯片技术,而不是市场上通用的光学检测技术,其检测灵敏度更高,检测时间更长,而且这两个产品都有密闭的灌流系统,可以适时更换溶液,适合长时间检测细胞/组织/类器官变化,以及观察外界条件(加药等)处理后的细胞再生等效应。? 多个传感器芯片并联平行工作? 非侵入式、实时无标记监测? pH值、O2消耗率、细胞外酸度、贴壁电阻四参数同时测量? 独特的灌流系统可实现随时换液 cellasys的6通道细胞/组织/类器官代谢分析仪相对优点主要在6通道每个孔都有独立灌流和换液的功能,比较适合做长时间的观测和再生医学,以及干细胞、组织、类器官等等。应用案例1. 毒理动力学: 监测培养的活细胞的活力是阐明化学物质的毒理动力学效应的关键。汞的毒性作用是通过纤维母细胞胞外酸化率来检测的,毒素被去除后,细胞恢复了。细胞类型:3T3成纤维细胞,贴壁细胞 10%十二烷基硫酸钠溶液(7次稀释)对成纤维细胞的毒性作用可以通过细胞阻抗(Z)来解释。细胞类型:L929成纤维细胞,贴壁细胞。 有了自动灌流系统,在活体类似的情况下,可以映射到体外实验。细胞外酸化率用于评估1%十二烷基硫酸钠溶液对HepG2肝球蛋白的毒性。细胞类型:Hep-G2肝癌球体细胞 表皮(RhE)是在保持临界气液界面的形成的,实时测量跨表皮细胞层电阻(TEER).细胞类型:人类表皮细胞(RhE), transwell细胞小室2. 药物开发 可以研究新药对细胞代谢和细胞形态的影响。测定了抗肿瘤药物牛蒡根素对PANC-1细胞系的影响,记录了实时生物电阻的变化。细胞类型:PANC-1人胰腺癌,贴壁细胞3. 环境监测 以藻类的代谢活性为指标来进行水质监测。本例显示了克氏小球藻在被苯嗪草酮污染后光合活性的降低,去除毒素后光合活性的恢复。细胞类型:chlorella kesslerialgae小球藻,悬浮细胞.4. 科学研究 胰岛,特别是产生胰岛素的beta细胞,可以在不同的营养供应条件下表现出不同的代谢活性。在再生医学研究中,beta细胞或胰岛的代谢测量可以反映其活力和功能能力。在该实验中,当暴露于相当于生理上低血糖和高血糖水平的葡萄糖浓度时,可检测到beta细胞系INS-1E的代谢活动出现明显区别变化,反应了不同条件下的胰岛素分泌。细胞类型:INS-1E,beta细胞系,贴壁细胞。 为了研究藻类生产生物燃料的潜力,可以在不同的环境条件下监测藻类的代谢活性。藻类在光照环境下,进行光合作用,产生氧气;当在黑暗的条件下,消耗更多的氧气。细胞类型:本地藻类,悬浮细胞.5. 个体医疗 为了在治疗前评估药物的有效性,可以测试药物对病人细胞的代谢学影响。6.食品安全 为了研究食品及添加剂的作用,可以监测细胞与添加剂之间的相互作用。工作原理 微生理测量法监测活细胞/组织/类器官的能量代谢活动。除了监测细胞/组织/类器官呼吸和细胞外酸化,细胞粘附和形态参数同样提供了很多关于生命活动的有价值的信息。我们的生物芯片集成了微型传感器来评估这些参数,确保了高灵敏度和稳定性,并且该方法是无需标记,并实时连续提供多个参数的数据。使用DALiA客户端3.1应用程序,可以对测量过程进行编程并记录数据。 IMOLA-IVD技术可以分析由自动化灌流系统之中的生物芯片所获取的代谢数据,数据来源于用新鲜的细胞/组织/类器官培养基或培养基的成分。细胞类型: 针对所有类型的细胞/组织/类器官培养物提供不同的合适的配件。对于特殊需要,还可以通过对生物芯片的涂层来提高培养效果。 悬浮细胞/贴壁细胞/球体/Transwell细胞培养小室
    留言咨询
  • 实时解构 3D 生物微观世界*THUNDER Imager Live Cell & 3D Cell Culture & 3D Assay——THUNDER Imager 可为您提供适用于先进 3D 细胞培养试验的解决方案,无论您想要研究的是干细胞、球状细胞团或是类器官。从以下优势中获益:高通量,可实现更好的统计和工作流程效率仪器使用简单,成像性能高优化的生理条件,获取有意义的结果THUNDER Imager 采用徕卡创新的 Computational Clearing 技术, 能够实时有效去除非焦平面的模糊信息,使 3D 样品在基于摄像头的荧光显微镜上依然能高质量地采图。系统的高度灵敏度可确保低光毒性和低淬灭,全面优化条件以实现更高的图像质量。*依据 ISO/IEC 2382:2015高通量,可实现更好的统计和工作流程效率为您的 3D 细胞培养试验实现自动化,高效研究新一代疾病模型。THUNDER 能助您对肺器官等大体积样品进行高速成像。此外,自动化还能在繁琐的实验中将用户的操作步骤减至最低。您将:在更短的时间内获得精确可靠的数据获得更高的通量获得更好的统计和结果叠加图像:培养的皮层神经元。绿色为 beta-III-微管蛋白;蓝色为细胞核。深度 21 μm 的 Z 轴层扫图像,包含 59 层扫描平面,使用 THUNDER Imager 3D Cell Culture 摄取。原始图像与使用 THUNDER Large Volume Computational Clearing 摄取的图像进行比较。样品特别感谢:德国马格德堡 (Magdeburg),FAN GmbH 公司。找到适合您的 THUNDER 成像系统无论您是寻找特别适合某个特定应用的专用高端成像系统,还是寻找用不同样本进行各类实验的多样化实验室解决方案,我们都可为您提供合适的产品。下面是一些展示 THUNDER 优势的精选应用示例:用 THUNDER 可靠量化整个小鼠视网膜视网膜成像的定量分析方法通常注重于提供视网膜形态和功能的综合描述。 视网膜异常以及转化临床应用都需要可靠的工作流程来重现转基因靶点筛选。 因此,形态学的重复成像需要能够持续重现准确结果的系统解决方案。 使用 THUNDER Imager 3D Assay,您可以清晰地观察形态以及可靠地计算细胞内部细节,例如视网膜中的单个细胞核分布。THUNDER Imager 3D Assay 可为您提供以下优势立即去除模糊,帮助您观察到更多细胞内部细节通过宽视场方法获得更大的可利用深度可靠量化可立即用于特定的工作流程分析THUNDER Imager 3D Assay 配置对照组瑞士成年小鼠全组织视网膜,显示 Iba1 + 小胶质细胞(Alexa Fluor® 488 绿色荧光染色)和 Brn3a + 视网膜神经节细胞(Alexa Fluor® 594 红色荧光染色)。 图片由西班牙 Murcia 大学的实验眼科学小组提供。使用 THUNDER Imager 3D Cell Culture 进行大脑类器官可视化成像作为新型模式系统,大脑类器官可用于研究人类大脑的发育和疾病。 这些自组装式三维细胞结构通常通过多重转基因标记物成像进行表征。 这些工作流程中的典型挑战是及时量化分子动力学,同时保持生理条件并在低信号水平下依然能达到样本深度。 因此,THUNDER Imager 3D Cell Culture 适合用于研究接近生理条件的类器官的发育,因为我们的 LED 光源有助于最大限度地减少光漂白。 此外,即使蛋白质信号水平低,也可以定时表达而无需改变样本载体。THUNDER Imager 3D Cell Culture 可为您提供以下优势可以观察塑料底培养皿中的样本,使您的工作流程更高效能够通过高量子效率(QE)相机检测分子的低信号采用宽视场方法和精确的定时 LED 照明,因此光漂白低,样本扰动小THUNDER Imager 3D Cell Culture 配置长时间活细胞延时成像中的低光毒性外植体细胞培养通常难以进行成像实验,因为它们需要稳定的细胞培养环境和低光毒性的成像条件。 美国弗吉尼亚大学 Laura Shankman 博士的外植体细胞培养成像实例显示了腹主动脉细胞如何在48小时内稳定成像。 THUNDER Imager Live Cell 为微创和活细胞准确成像实验提供完整的显微镜成像系统。 凭借快速的高量子效率相机选项、准确的载物台、可调 LED 光源、减少宽场图像中离焦模糊现象的计算清除技术(Computational Clearing)以及易于使用的 LAS X 软件进行自动成像和分析工作流程,可以高效地执行敏感的细胞培养实验。THUNDER Imager Live Cell 提供的优势可通过准确的活细胞成像实验跟踪细胞的快速运动低光毒性可确保敏感的活细胞培养,即使在长时间实验中也是如此加快活细胞成像工作流程,实现自动化定量和分析THUNDER Imager Live Cell 配置培养一周的腹主动脉外植体,在凝胶覆盖的#1.5腔室载玻片上48小时成像。 小鼠进行了平滑肌细胞特定表达的 tdtomato 的基因编码。 转录后,平滑肌细胞去除 tdtomato,并开始表达 eGFP。优化生理条件 - 最低曝光量对于 3D 细胞培养,遵循真正的生理学是获得有意义结果的首要条件。通常情况下,您希望通过优化实验条件,在细胞接近自然状态时对其进行研究,即尽可能实现最低光强和最短曝光时间。THUNDER Imager Live Cell 和 THUNDER Imager 3D Cell Culture 凭借高端 LED 源满足这些需求,该 LED 源具有针对激发光优化的小带宽。灵敏的高端 sCMOS 摄像头,拥有高达 82% 的量子效率,即使光线暗,曝光时间短,仍可传输重要的图像信息。为了进一步减少样品曝光,照明限制为实际记录时间。摄像头快门与高速 (切换时间 20 μs) Lumencor LED 光源同步,以最大程度减低光淬灭。THUNDER Imager Live Cell 和 THUNDER Imager 3D Cell Culture 以全电动 DMi8 显微镜、量子载物台、高度灵敏的 DFC9000 GTC 摄像头以及多谱线高光强的荧光 LED 光源为基础, 经过优化,可对 3D 细胞培养物进行快速精确的多位置、多通道成像。与活体流动保持一致速度来成像 – 细胞进程活体代谢过程极快,尤其对于单细胞维度而言。如今大多数的活细胞成像实验都是在高速成像系统上完成的。THUNDER Imager Live Cell 和 THUNDER Imager 3D Cell Culture 能够一次完成全帧摄取,让您体验到高度灵敏、基于 sCMOS 摄像头的荧光系统的强大实力。结合其高度灵敏性,THUNDER Imager Live Cell 和 THUNDER Imager 3D Cell Culture 可实现高达 90 帧/秒的数据摄取速度,助您观察到快速的细胞活动。即使深入较厚的 3D 细胞团,它也能快速摄取清晰的图像数据。得益于可快速切换的外部滤色片转盘 ( 27 ms),即使在多发射波长的实验过程中,您也能始终掌握快速成像过程。在观察活细胞培养物的同时保持适当的环境THUNDER Imager Live Cell 和 THUNDER Imager 3D Cell Culture 具有将您的细胞保持接近自然状态所需的一切功能。培养箱可为活细胞培养物确保理想的生理条件,例如,系统稳定性、湿度、温度以及二氧化碳水平 (pH 值)。凭借微型自动补水器,即使您正在进行长期实验,也可以使用水浸物镜执行多位置工作流程。水浸物镜具有更高的光收集性能,使摄取的细胞图像具有更高的对比度和分辨率。轻松驾驭间歇摄取多位置实验:追踪细胞变化THUNDER Imager Live Cell 和 THUNDER Imager 3D Cell Culture 为您的 3D 活细胞培养多位置实验兼顾速度与可靠性。例如,在追踪球状细胞团和类器官的成长和发育时,其速度和可靠性将助您获得理想的结果。得益于以下优势,使用 THUNDER Imager 可完成准确的间歇摄取多位置实验和细胞变化追踪:通过自适应调焦控制 (AFC) 实现可靠的 Z 轴偏移修正软件自动对焦,可补偿样品位置的变化以高达 20 nm 的重复精度实现可精准重现的 Z-定位 (闭环对焦)通过新的量子载物台,在更短的时间内获得更多数据信息。该载物台无抖动,可快速准确地移动到所有位置 (例如,10 个位置/秒),具有卓越的可重现性 ( ±0.25 μm)。可靠的日常数据摄取THUNDER Imager Live Cell 和 THUNDER Imager 3D Cell Culture 能够始终将焦点保持在活细胞上,实现可靠的图像数据摄取。由于漂移、形态变化或生长,活细胞成像通常十分棘手。漂移是由于振动、机械蠕变或温度波动导致的。漂移和细胞变化都会降低所摄取图像数据的可靠性,因为对焦是一个问题。但得益于自适应调焦控制 (AFC)、闭环对焦和软件自动对焦功能,THUNDER Imager Live Cell 和 THUNDER Imager 3D Cell Culture 能够为您的多孔实验可靠地保持聚焦。 发育中的斑马鱼胰腺THUNDER 3D Assay 成像系统能够清楚地识别发育中的斑马鱼胰腺内的 α(绿色荧光蛋白)细胞和 β (mCardinal-red)细胞。这个150层的Z轴层扫图像分别由蓝(Hoechst)、绿(GFP)、红(mCardinal)通道成像,全部影像在一分钟内完成。通过最大限度减少光漂白、提供高性能成像和高通量数据,可以维持样本内部的生理条件,从而提高工作流程的执行效率。图片由德国巴特瑙海姆的马克斯普朗克心肺研究所的 Radhan Ramadass 和 Yu Hsuan 提供成像以及操控细胞培养实验 使用 Infinity Scanner 时,将 THUNDER 的非侵入性成像与光操控、FRAP、FRET 或消融技术结合。 使用 Infinity Scanner 灵活的矢量激光扫描系统控制所研究的细胞或其外部环境。此处两个视频显示 MDCK 细胞在 THUNDER 即时计算清除(Computational Clearing)前后的 mx1-GFP 表达。 使用 THUNDER,mx1 蛋白表达更加易于识别,并可通过 Infinity Scanner 被消融。THUNDER Imager 3D Cell Culture 与 Infinity Scanner 结合可进行成像以及操控细胞培养实验。关于 Infinity Scanner 的更多信息清晰、快速地进行敏感样本成像将 THUNDER 的离焦模糊去除功能与 TIRF 的优势相结合。 对于细胞表面的动力学过程,全内反射荧光显微镜可提供出色的信号背景分离。此处两个视频显示用 GFP-GRINCH 表达人胰岛素原的 ins-1 细胞。 在细胞培养中加入 KCL 后,产生胰岛素的细胞去极化,可以观察到残留的胰岛素与细胞质膜融合。THUNDER Imager Live Cell 与 TIRF 相结合,能够以出色的清晰度、速度和成像参数控制对敏感的样本成像。关于 Infinity TIRF 的更多信息
    留言咨询
  • 产品简介:葡萄糖钳夹技术是一种定量检测胰岛素分泌和胰岛素抵抗的方法。葡萄糖钳夹技术首先由 Andres于1966年论述,被认为是现今葡萄糖稳态的测量技术。钳夹试验已经成为评估和鉴别β细胞对于胰岛素反应敏感性的“金标准”方法。高胰岛素—正葡萄糖钳夹技术是目前世界上公认评价机体胰岛素敏感性的金标准,已在基础及临床医学研究领域中得到广泛应用。整套智能化的葡萄糖钳夹实验系统,包括了微量注射泵,血管内埋植管路,不锈钢转镖,拴绳,3或4通道连接头,马甲,鼠笼,饮食饮水装置等。产品组成及特点:微电脑控制的微量注射泵,可以设置工作模式,多重方式编程,具有精度高,适用范围广等优势 转环支架采用弹性托盘天平设计,增加了对于快速移动动物的感应灵敏度,实现清醒动物的在体灌流,取样 转环的材质有塑料和不锈钢两种,双通道的不锈钢转环可以重复使用,侧边通道给药,中间通道采血 动静脉置管术使小鼠处于清醒可自由活动的生理状态,避免了麻醉及手术应激对小鼠葡萄糖代谢的影响 肝素化的 PE/PVC管路,可以有效的降低管路和药物之间的反应,减少动静脉置管术后感染及导管堵塞 PinPort连接头是用硅胶封闭的堵头,连接在采血管末端,实现快速、无菌采血,并且可以避免气泡进入血管 三通、四通连接头中心的液体流通部位采用惰性的PCTFE支撑,药物反应少,通道之间死体积少于3 LL 在体动静脉埋置管可以定制,有很强的通用性,管路长度可以满足手术的需求,经过Eto消毒处理 栓绳和马甲,主要是用来固定大小鼠,能实现一次置管,多次灌流采样的目的,实验结束后快速断开 大鼠的双通道马甲和小鼠的马甲结构一样,包含两个独立的port,采血的同时,实现给药或者其他干预。实验注意事项:以动物为研究对象的高胰岛素-正葡萄糖钳夹实验,除了可应用于研究以胰岛素抵抗为病理生理基础的相关疾病的动物模型,也可用于判断某些药物有无胰岛素增敏作用及其作用强度。微量保证实验的成功率,需要注意一下几点:使用戊巴比妥钠和水合氯醛麻醉时,实验动物会出现体温降低,呼吸不畅,呼吸频率不齐等影响葡萄糖代谢的情况,故在应用中应小心控制麻醉的剂量 避免感染。所有手术器械要高温消毒,PE导管、硅胶管用75%乙醇浸泡消毒,手术过程中尽量保持无菌,切口缠合前用含有青霉素的生理盐水大量冲洗手术部位 在实验中,特别是麻醉状态下,控制动物体温非常重要。体温与胰岛素敏感性密切相关 小鼠动脉置管内容易凝血,文献报道动脉插管内注入含300U肝素的 PVP10溶液,可降低动脉导管堵塞的发生率。
    留言咨询
  • 灌流式、多参数细胞/组织/类器官代谢分析仪—IMOLA 德国cellasys提供的灌流式、多参数细胞/组织/类器官代谢分析仪-IMOLA,是一种基于生物芯片的微生理参数测量系统,对活细胞/组织/类器官的代谢和形态进行无标记实时监测,搭配自动化灌流系统进行换液或者加药,可以实现几天或几周的连续测量,研究药物对活细胞/组织/类器官的影响以及移除药物后的恢复和再生效应。 我们的细胞/组织/类器官代谢分析仪通过生物芯片技术,可以在体外直接研究活细胞或组织、器官在培养过程种的多个参数的变化,包括细胞外酸化(pH)、细胞呼吸(pO2、pCO2)和形态学(电阻)。整个测量过程无需标记、多通道平行进行、连续检测、实时记录。 细胞/组织/类器官代谢主要是指细胞从环境中摄取营养物质,消化吸收后排放出降解物或杂质。大多数碳水化合物,例如葡萄糖,都是细胞的营养物质。在有氧条件下,葡萄糖被细胞摄取后在胞浆内转变成丙酮酸,然后进入三羧酸循环代谢,最终变成二氧化碳并产生能量;在缺氧条件下,葡萄糖在细胞内代谢为乳酸以提供能量。总体而言,细胞代谢增强时,葡萄糖的消耗增加,酸性的代谢产物也相应增加,反之亦然。此外,外界环境因素对贴壁细胞的作用经常影响到细胞的粘附和融合度,而细胞的粘附状态是与细胞骨架的组织性和膜的完整性相关的,如果受到环境因素干扰,细胞则会改变其粘附方式,可能变圆或完全脱离基底。因此,监测这些参数就能很好的了解细胞/组织/类器官内的生理状态和代谢行为。 德国cellasys的细胞/组织/类器官代谢监测仪IMOLA -IVD非常适合与于监测细胞/组织/类器官代谢过程的各种生理学指标,包括产酸,产氧,贴壁电阻,温度。可以单独控制每一个样品的溶液,分别有6个独立的灌流泵来控制每个通道的灌流系统,保证每个通道的独立性,可以连续长时间监测6种细胞/组织/类器官的代谢情况。 德国cellasys公司生产的灌流式、多参数、实时代谢监测的细胞/组织/类器官分析仪—IMOLA-IVD,是一种基于生物芯片的微生理参数测量系统,对活细胞/组织/类器官的代谢和形态进行无标记实时监测,搭配自动化灌流系统进行换液或者加药,可以实现几周的连续测量,研究药物对活细胞/组织/类器官的影响以及移除药物后的恢复和再生效应。通过生物芯片技术,可以培养大尺寸的组织器官(1cm大小)或者transwell小室培养的组织,以及商业化的组织和器官培养物。实时监测培养过程中活细胞/组织/类器官的多个参数的变化,包括细胞外酸化度(pH)、细胞O2消耗率(pO2、pCO2)、贴壁电阻(impedance)和培养基的温度。6个独立的模块可以单独控制每一个样品的溶液,分别有6个独立的灌流泵来控制每个通道的灌流系统,保证每个通道的独立性,可以连续长时间监测6种细胞、组织、类器官的生理活动和代谢情况。 细胞/组织/类器官分析仪—IMOLA-IVD,采用的是芯片技术,而不是通用的光学检测技术,其检测灵敏度更高,检测时间更长,而且这两个产品都有密闭的灌流系统,可以适时更换溶液,适合长时间检测细胞/组织/类器官的生理行为变化,以及观察外界条件(加药等)处理后的细胞/组织/类器官的再生等效应。 多个传感器芯片并联平行工作 非侵入式、实时无标记监测 细胞外酸化度(pH)、细胞O2消耗率(pO2、pCO2)、贴壁电阻和培养基的温度 独特的灌流系统可实现随时换液,可以实现几周的连续测量 可以培养大尺寸的组织器官(1cm大小)或者transwell小室培养的组织,以及商业化的组织和器官培养物 cellasys的6通道细胞/组织/类器官代谢分析仪相对优点主要在6通道每个孔都有独立灌流和换液的功能,比较适合做长时间的观测和再生医学,以及干细胞、组织、类器官等等。 工作原理 微生理测量法监测活细胞、组织、类器官的代谢活动。除了监测细胞呼吸和细胞外酸化,细胞粘附和形态参数同样提供了很多关于生命活动的有价值的信息。我们的生物芯片集成了微型传感器来评估这些参数,确保了高灵敏度和稳定性,并且该方法是无需标记,并实时连续提供多个参数的数据。使用DALiA客户端3.1应用程序,可以对测量过程进行编程并记录数据。 IMOLA-IVD技术可以分析由自动化灌流系统之中的生物芯片所获取的代谢数据,数据来源于用新鲜的细胞培养基或培养基的成分。 细胞类型: 针对所有类型的培养物提供不同的合适的配件; 对于特殊实验还可以通过对生物芯片的涂层来优化培养效果; 悬浮细胞、贴壁细胞、球体、Transwell细胞培养小室; 大尺寸的组织器官(1cm大小)或者transwell小室培养的组织、以及商业化的组织和器官培养物;应用案例1. 毒理动力学: 监测培养的活细胞的活力是阐明化学物质的毒理动力学效应的关键。汞的毒性作用是通过纤维母细胞胞外酸化率来检测的,毒素被去除后,细胞恢复了。细胞类型:3T3成纤维细胞,贴壁细胞 10%十二烷基硫酸钠溶液(7次稀释)对成纤维细胞的毒性作用可以通过细胞阻抗(Z)来解释。细胞类型:L929成纤维细胞,贴壁细胞。 有了自动灌流系统,在活体类似的情况下,可以映射到体外实验。细胞外酸化率用于评估1%十二烷基硫酸钠溶液对HepG2肝球蛋白的毒性。细胞类型:Hep-G2肝癌球体细胞 表皮(RhE)是在保持临界气液界面的形成的,实时测量跨表皮细胞层电阻(TEER).细胞类型:人类表皮细胞(RhE), transwell细胞小室2. 药物开发 可以研究新药对细胞代谢和细胞形态的影响。测定了抗肿瘤药物牛蒡根素对PANC-1细胞系的影响,记录了实时生物电阻的变化。细胞类型:PANC-1人胰腺癌,贴壁细胞3. 环境监测(细胞/组织/类器官) 以藻类的代谢活性为指标来进行水质监测。本例显示了克氏小球藻在被苯嗪草酮污染后光合活性的降低,去除毒素后光合活性的恢复。细胞类型:chlorella kesslerialgae小球藻,悬浮细胞。 4. 医学研究(细胞/组织/类器官) 为了在治疗前评估药物的有效性,可以测试药物对病人的细胞/组织/类器官的代谢学影响。胰岛,特别是产生胰岛素的beta细胞,可以在不同的营养供应条件下表现出不同的代谢活性。在该实验中,当暴露于相当于生理上低血糖和高血糖水平的葡萄糖浓度时,可检测到beta细胞系的代谢活动呈现出明显区别,反应了不同条件下的胰岛素分泌的不同。(Gln 谷氨酰胺;Glc葡萄糖)细胞类型:INS-1E,beta细胞系,贴壁细胞 Cisplatin(顺铂)是一种有效的抗癌药物,用于治疗多种实体瘤,如卵巢癌和肺癌等,并用于辅助治疗神经胶质瘤。Cisplatin与DNA的嘌呤碱基交联,干扰DNA的修复机制,引起DNA损伤,激活多条信号转导通路,包括ERK、p53、p73和MAPK,其中对激活凋亡影响最大,诱导细胞凋亡。细胞类型:MCF-7人乳腺癌细胞 5. 类器官监测 芯片上的类器官:通过自动气液界面监测皮肤类器官的细胞产酸率和跨膜电阻值Skin-on-a-Chip,Genes, 2018, 9, 114作为人体最大的器官,皮肤代表着人体内部和外部环境之间的结构学屏障,将体内器官与毒素、病原体隔离开来,并保护内部器官免受紫外线辐射。除了屏障功能,人体皮肤还执行人体的几个基本功能,如热调节、感觉和排泄。皮肤是人体抵御外部环境的影响的第一防护罩,新的化学物质的研究,如药物和毒素,分析和评估其对皮肤完整性的影响就是必不可少的。因此,人们开发了3D皮肤类器官模型来再现体内结构,培养出三维重建人表皮模型(reconstructed human epidermis,RhE),用于在制药、化妆品和环境研究中评估皮肤暴露于外源性物质后的毒性反应。通过IMOLA分析仪监测皮肤类器官模型的细胞产酸率(EAR,pH)和 细胞层的跨膜电阻值(impedance,TEER,[Z])。通过连续监测RhE细胞模型超过48小时的TEER和EAR数据表明, IMOLA分析仪可以长时间稳定培养芯片上的皮肤类器官,并监测整个代谢过程。 6. 类器官监测 芯片上的类器官:在Transwell上监测人体小肠类器官的跨膜电阻值Tissue-on-a-Chip, Frontiers in Bioengineering and Biotechnology, August 2020药物毒性的研究之中,重要的一点就是要肠道的吸收。临床前体内评估通常依靠小鼠或大鼠模型。然而动物模型不能完全准确地预测药物对于人体各个方面的效应。从结肠(大肠)癌中提取的Caco-2细胞广泛应用于体外药物吸收和毒性评估的。但是,细胞系和小肠组织的相关性有限,目前只能预测跨细胞(细胞内途径)渗透过程。此外,贴壁单层Caco-2缺乏细胞-细胞和细胞-细胞外基质的相互作用,不能模拟人小肠的多层复杂结构。为了克服这种生理相关性的不足,科学家开发了新的三维重建人体组织模型,在整合的气液界面(ALI)上培养三维小肠类器官—EpiIntestinal-FT。这个基于人体细胞的3D类器官整合了肠上皮细胞、Paneth细胞、M细胞、簇细胞和肠道干细胞以及人肠道成纤维细胞,可以用来表征肠道功能,包括屏障、代谢、炎症和毒性反应。通过三通道IMOLA分析仪,监测EpiIntestinal-FT的细胞层的跨膜电阻值(impedance,TEER,[Z])。整个测量过程是非侵入性的、实时的,并且周期性自动更新培养基。在电阻值测量中,培养小室的顶部分别注入培养基,PBS和2.0% SDS。该系统在三个通道中都有一个自动的ALI,可以一次在三个芯片上进行平行实验。 7. 类器官串联培养的监测 生物芯片上的多器官串联—多类器官代谢分析Label-free monitoring of whole cell vitality, 35th Annual International Conference of the IEEE EMBS, Osaka, Japan, 3 – 7 July, 2013, 1607-1610IMOLA-IVD是一种用于在线分析活细胞组织类器官的系统解决方案。它利用生物芯片BioChip-C直接监测活细胞组织类器官的代谢学参数和活细胞形态变化(生物阻抗)。样本无需标记,可以并行或串联,连续且实时进行数周监测。使用活细胞/组织/类器官作为样本在体外研究药物的毒性,以评估药物对活细胞/组织/类器官的作用和效应。该系统优势包括:多参数(代谢学和形态学测定)、长期连续、无需标记、高灵敏度以及优化的灌流系统(可进行实时连续换液,加药,去药等过程)。该系统的模块化结构设计,可通过灌流系统实现多器的官串联培养监测(图2)。模块1培养的是具有代谢活性的细胞类器官(如HepG2三维细胞球)。这些细胞将前体药物转化为活性药物后,被灌流系统传送到敏感反应的效应细胞类器官(模块2)中,实时监测其效果。为了得到更准确的结果,必须抑制各个传感器单元之间的电流干扰,减少试验的干扰,将外界的影响降到最低。为确保独立测量所有细胞电信号,我们对细胞呼吸进行了长期监测,并在23小时后向储液瓶中加入了SDS。结果显示模块2中的细胞受到影响的时间比模块1中的细胞晚了20分钟(见图3)。这是由于泵速以及模块1与模块2之间的连接导致的延迟。该系统的优势在于两种不同细胞或类器官可以完全独立监测,这是混合共培养无法实现的。若模块1中细胞代谢活性非常低,则可能无法在介质通过时积累足够的活性物质。对于这种特殊情况,可以使用由蠕动泵来控制和调节液体流动的速度和体积。发表的文献:ASSAYING PROLIFERATION CHARACTERISTICS OF CELLS CULTURED UNDER STATIC VERSUS PERIODIC CONDITIONSGilbert, D.F., Friedrich, O., Wiest, J. Methods in Molecular Biology, vol 2644. Humana, New York, NY, 2023. Systems engineering of microphysiometryJoachim Wiest, Organs-on-a-Chip, Volume 4, December 2022. CASE STUDIES EXEMPLIFYING THE TRANSITION TO ANIMAL COMPONENT-FREE CELL CULTUREWeber, T., Wiest, J., Oredsson, S. Alternatives to Laboratory Animals, 2022. PRACTICAL WORKSHOP ON REPLACING FETAL BOVINE SERUM (FBS) IN LIFE SCIENCE RESEARCH: FROM THEORY INTO PRACTICEEggert, S., Wiest, J., Rosolowski, J. and Weber, T. ALTEX – Alternatives to animal experimentation, 2022. SENSITIVITY AND PHOTOPERIODISM RESPONSE OF ALGAE-BASED BIOSENSOR USING RED AND BLUE LED SPECTRUMSUmar, L., Aswandi, F., Linda, TM., Wati, A., Setiadi, RN. AIP Conf. Proc. 2320, 050016, 2021. Tissue-on-a-Chip: Microphysiometry With Human 3D Models on Transwell InsertsChristian Schmidt, Jan Markus, Helena Kandarova and Joachim Wiest. Frontiers in Bioengineering and Biotechnology, August 2020. FOURIER ANALYSIS IN MICROPHYSIOMETRYWiest, J. In Advances in Medicine and Biology 136, Nova Science Publisher, Inc., 2019. Proliferation characteristics of cells cultured under periodic versus static conditionsGilbert, D.F., Mofrad, S.A., Friedrich, O., Wiest, J. Cytotechnology, 4. December 2018. Skin-on-a-Chip: Transepithelial Electrical Resistance and Extracellular Acidification Measurements through an Automated Air-Liquid InterfaceAlexander F.A., Eggert S., Wiest J. Genes, 9(2), 2018. MicrophysiometryBrischwein M., Wiest J. (2018). In: Bioanalytical Reviews. Springer, Berlin, Heidelberg, 6. February 2018. FETAL BOVINE SERUM (FBS): PAST – PRESENT – FUTUREvan der Valk, J. et al. ALTEX – Alternatives to animal experimentation. 35, 1, 99-118, 2018. A novel lab-on-a-chip platform for spheroid metabolism monitoring,Alexander F.A., Eggert S., Wiest J. Cytotechnology, 70/1, 375-386, 2018. 北京佰司特科技有限责任公司类器官串联芯片培养仪-HUMIMIC;细胞/组织/类器官代谢分析仪-IMOLA;光片显微镜-LSM-200;蛋白稳定性分析仪-PSA-16;单分子质量光度计-TwoMP;超高速视频级原子力显微镜-HS-AFM;全自动半导体式细胞计数仪-SOL COUNT;农药残留定量检测仪—BST-100;台式原子力显微镜-ACST-AFM;微纳加工点印仪-NLP2000DPN5000;
    留言咨询
  • 近些年,生物技术快速发展,干细胞再生医学在医美行业得到应用,干细胞能表达、合成,分泌多种生长因子及其受体(包括表皮生长因子、转化生长因子等在内的多种生长因子, 脑源性神经营养因子、胰岛素样生长因子、生长激素和肝细胞生长因子等),细胞因子(包括生白介素、肿瘤坏死因子和趋化因子等),调节肽(包括括钠尿肽、降钙素基因相关肽、局部肾素- 血管紧张素系统、内皮素和肾上腺髓质素等)及气体信号分子等多种生物活性因子。不同来源的成体干细胞所产生的生物活性因子谱相似,这些生物活性因子执行调节代谢、免疫、细胞分化、增殖、迁移、营养、存活、抗纤维化、抗凋亡和激活内源调节物质等功能。随着健康意识的提高,人们越来越关注如何“抗衰”的话题,因为衰老不仅带来容貌的改变和对心理的影响,还将影响人体器官和组织的功能。造成衰老的原因有多方面因素,包括熬夜、睡眠不足、心情抑郁、营养缺乏等等。衰老机体中几乎普遍存在的是组织结构的改变,不仅在微观和宏观层面均有明显表现,而且伴随着组织功能的损伤和对损伤的反应缺失。细胞是生物体结构和功能的基本单位,衰老细胞是机体器官衰老、整体衰老的结构基础,因此衰老细胞的再生成为抗衰老研究的主要方向。Beauty Cell智能细胞处理工作站由韩国恩博N-BIOTEK公司开发生产,其在医美行业工艺研发阶段被众多知名机构所采纳。采用Beauty Cell细胞处理工作站时,具有以下优势:1. 安全洁净:针对0.3μm颗粒可以实现99.99%的过滤效果,可直接提供Class 100(ISO5相当于A级)洁净度的操作环境,细胞处理更加安全,所有的内部气流皆流经高效过滤器。2. 层流设计类似于高级别生物安全柜,30%外排,70%风内部循环。3. 免维护导向控制电机,保持操作面端“风墙”,防止外界气流进入操作区域,有效降低样本污染风险。4. 紫外灯照射灭菌,荧光灯照明操作。5. 储物柜位于操作台下方,方便工具快速存取。6. 不锈钢台面方便清洁,减少腐蚀风险。7. 集成压力表显示,可用来识别高效过滤更换时间。8. 脚踏板开关可直接控制设备和内置离心机的开关9. 内置离心机,可通过离心力作用进行细胞样本、血液样本的分离工艺。10. 采用优质的变频电机驱动,功能强大,离心稳定。11. 设备外表面采用聚四氟乙烯涂层室,易于清洁和耐化学腐蚀。12. 微处理计算机调控,不平衡检测。13. 可集成振荡器,用于酶或试剂混合和加热样品。14. 采用BLDC磁感应电机稳定震荡,性能稳定,使用寿命长。15. 配有15和50mL支架平台,易于更换结构。技术参数:
    留言咨询
  • 岛津二手液相色谱仪 LC-2010岛津二手液相色谱仪 LC-2010由泵单元、四元低压梯度单元、脱气单元、柱温箱、紫外可见检测器、自动进样器、混合器构成。使用标准化配管构成一体化装置,提高了系统的可靠性。卓越的流量准确性、梯度浓度准确性、以及配管容量等机械误差的减低,使方法转换更为简单。岛津二手液相色谱仪 LC-2010介绍:通过高速进样及多样品处理大幅提高了分析效率的一体型HPLC。如果使用自动启动、停机功能、自动有效性功能,则可实现分析、管理自动化,进一步提高了生产效率。另外,图解式画面和魔块功能使操作更为便利。●输液部 微冲程串联双柱塞方式,可梯度洗脱(定压混合方式)●进样部 进样速度:15秒(10mL进样时)样品处理数:350(1mL小瓶)支持微量板(最多4枚)●柱温箱 模块加热方式●检测部 噪声:± 2.5×AU以下 线性:至2.5AU岛津二手液相色谱仪 LC-2010主要用途:A. 在食品分析中的应用1.食品营养成分分析:蛋白质、氨基酸、糖类、色素、维生素、香料、有机酸(邻苯二甲酸、柠檬酸、苹果酸等)、有机胺、矿物质等;2.食品添加剂分析:甜味剂、防腐剂、着色剂(合成色素如柠檬黄、苋菜红、靛蓝、胭脂红、日落黄、亮蓝等)、抗氧化剂等;3.食品污染物分析:霉菌毒素(黄曲霉毒素、黄杆菌毒素、大肠杆菌毒素等)、微量元素、多环芳烃等。B.在环境分析中的应用环芳烃(特别是稠环芳烃)、农药(如氨基甲酸脂类,反相色谱)残留等。C.在生命科学中的应用1. 低分子量物质,如氨基酸、有机酸、有机胺、类固醇、卟啉、糖类、维生素等的分离和测定。2. 高分子量物质,如多肽、核糖核酸、蛋白质和酶(各种胰岛素、激素、细胞色素、干扰素等)的纯化、分离和测定。D.在医学检验中的应用体液中代谢物测定;药代动力学研究;临床药物监测:1. 合成药物:抗生素、抗忧郁药物(冬眠灵、氯丙咪嗪、安定、利眠宁、苯巴比妥等)、黄胺类药等。2. 天然药物生物碱(吲哚碱、颠茄碱、鸦片碱、强心甙)等。E.在无机分析中的应用阳、阴离子的分析等。
    留言咨询
  • 类器官串联芯片培养系统--- HUMIMIC 类器官技术平台是一种微流控微生理系统平台,能够维持和培养微缩的等效器官,模拟其各自的全尺寸对应器官的生物学功能和生物的主要特征,如生物流体流动,机械和电耦合,生理组织与流体、组织与组织的比率。 类器官串联芯片培养系统包括控制单元和芯片,控制单元能够模拟人体内生理环境,包括温度、压力、真空度、微流道循环频率、时间等参数,芯片有不通的微流道设计,针对不同的器官可以单独设置提供相应的培养条件,提供精JIN准的培养和分化环境。类器官串联芯片培养系统可提供不同类器官的串联共培养方案,避免单一类器官无法模拟人体复杂生理学条件下器官相互通讯交流的不足。通过类器官模拟人类器官组织的生理发育过程,应用于疾病模型、肿瘤发生、以及药物安全性、有效性、毒性、ADME等方面的评估,旨在减少和取代实验室动物测试,简化人体临床试验。 类器官是指在结构和功能上都类似来源器官或组织的模拟物,通过取特定器官的干细胞(iPS/ES),或者利用人的多能干细胞定向诱导分化,能获得微型的器官样的三维培养物,在体外模拟人体器官发育过程。 类器官,具有某一器官多种功能性细胞和组织形态结构的三维(3D)培养物,主要来源于人具有多项分化潜能的多能干细胞(包括人胚胎干细胞和人诱导多能干细胞iPSCs)或成体干细胞。人多能干细胞能分化为个体所有类型的细胞,在体外,经过诱导分化,模拟人体器官发育过程,能使人多能干细胞直接分化形成各种类器官;不同组织器官都存在内源组织干细胞,在维持各器官的功能形态发挥着重要作用。这些干细胞在体外一定的诱导条件下,可以自组织形成一个直径仅为几毫米的具有组织结构和多种功能细胞的三维培养物。器官芯片是获取两个或两个以上不同的类器官,并且放置在特定的培养芯片上进行共培养,能模拟人体的多个器官参与的生理学过程。 与传统2D细胞培养模式相比,3D培养的类器官包含多种细胞类型,能够形成具有功能的“微器官”,能更好地用于模拟器官组织的发生过程及生理病理状态,因而在基础研究以及临床诊疗方面具有广阔的应用前景。 基于这一定义,可以发现类器官具备这样几个特征: * 必须包含一种以上与来源器官相同的细胞类型; * 应该表现出来源器官所特有的一些功能; * 细胞的组织方式应当与来源器官相似。 类器官作为一个新兴的技术,在科学研究领域潜力巨大,包括发育生物学、疾病病理学、细胞生物学、再生机制、精 准医疗以及药物毒性和药效试验。类器官培养使研究人体发育提供了不受伦理限制的平台,为药物筛选提供了新的平台,也是对现有2D培养方法和动物模型系统的高信息量的互补 。此外,类器官为获取更接近自然人体发育细胞用于细胞ZL成为可能。通过类器官繁殖的干细胞群取代受损或者患病的组织,类器官提供自体和同种异体细胞疗法的可行性,未来这一技术在再生医学领域也拥有巨大的潜力 。使用这项技术,采用CRISPR/Cas9能够纠正体外遗传异常并能够将健康的转基因细胞再次回输入患者体内,并在后期整合入组织内。在精 准医学应用中,患者衍生的类器官也被证明为有价值的诊断工具。在进行ZL之前,采用从患者样本来源的类器官筛查患者体外药物反应,旨在为癌症和囊胞性纤维症患者的护理提供指导并预测ZL结果。随着类器官培养系统以及其实验开发技术的不断发展,类器官应用到了各大研究领域。 类器官可以模拟人体的内外环境和人体器官,帮助研究人员观测用药会对人体器官功能产生什么样的影响。在提倡精 准医学和个体化ZL的时代,类器官研究比传统的二维细胞培养更具有针对性,并且可以区别不同癌症对于相同药物的反应。不仅如此,研究者还希望通过诱导多功能干细胞强大的再生潜能,体外生成新的器官或组织,然后移植入体内以替代损坏的组织器官。 类器官培养系统--- HUMIMIC的技术方案:在没有病人的情况下测试病人基于这一定义,可以发现类器官具备这样几个特征: 必须包含一种以上与来源器官相同的细胞类型; 应该表现出来源器官所特有的一些功能; 细胞的组织方式应当与来源器官相似。 类器官可以模拟人体的内外环境和人体器官,帮助研究人员观测用药会对人体器官功能产生什么样的影响。在提倡精JIN准医学和个体化治ZHI疗的时代,类器官研究比传统的二维细胞培养更具有针对性,并且可以区别不同癌症对于相同药物的反应。不仅如此,研究者还希望通过诱导多功能干细胞强大的再生潜能,体外生成新的器官或组织,然后移植入体内以替代损坏的组织器官。此外,类器官为获取更接近自然人体发育细胞用于细胞治ZHI疗成为可能。通过类器官繁殖的干细胞群取代受损或者患病的组织,类器官提供自体和同种异体细胞疗法的可行性,未来这一技术在再生医学领域也拥有巨大的潜力 。在精JIN准医学应用中,患者衍生的类器官也被证明为有价值的诊断工具。在进行治ZHI疗之前,采用从患者样本来源的类器官筛查患者体外药物反应,旨在为癌症和囊胞性纤维症患者的护理提供指导并预测治ZHI疗结果。随着类器官培养系统以及其实验开发技术的不断发展,类器官应用到了各大研究领域。 类器官培养的应用案例类器官的应用举例---疾病模型 类器官的研究还可用于于疾病模型,如发育相关问题,遗传疾病,肿瘤癌症等。通过使用患者的iPSCs可建立有价值的疾病模型,并能在体外模拟重现病人疾病模型;同时,类器官的建立可以实现对药物药效和毒性进行更有效、更真实的检测。由于类器官可以直接由人类iPSCs直接培养生成,相比于动物模型很大程度上避免了因动物和人类细胞间的差异而导致的检测结果不一致。 类器官的应用举例---药效和毒理测试可以从患者来源的健康和肿瘤组织样品中建立类器官。与此同时类器官培养物可用于药物筛选,这可将肿瘤的遗传背景与药物反应相关联。来自同一患者健康组织的类器官的建立提供了通过筛选选择性杀死肿瘤细胞而又不损害健康细胞的化合物来开发毒性较小的药物的机会。自我更新的肝细胞类器官培养物可用于测试潜在新药的肝毒性(临床试验中药物失败的原因之一)。在该实施例中,药物B似乎最适合于治ZHI疗患者,因为它特异性杀死肿瘤类器官并且不引起肝毒性。 类器官的应用举例---重演肿瘤形成类器官的培养和建立,可用于研究肿瘤生成过程中的突变过程,比如说,通过从同一肿瘤的不同区域培养无性繁殖的类细胞器,可以用来研究肿瘤内部的异质性。来自不同健康器官的类器官的生长,然后对培养物进行全基因组测序,可以分析器官特异性突变谱。通过生长来自同一肿瘤不同区域的类器官,可以用于研究肿瘤内异质性。区域特异性突变谱可以通过类器官的全基因组测序来揭示。使用与上述相似的方法,可以利用类器官来研究特定化合物对健康细胞和肿瘤细胞突变谱的影响。 类器官的应用举例---肿瘤患者个性化医疗有助于个性化治ZHI疗策略的设计,利用病变和正常的类器官来评估各种治ZHI疗方案。可以筛选多种活性药物和小化合物,设计更有效的用药方案。培养成熟的类器官还可以为器官再生和器官移植提供广泛的组织来源。对类器官进行基因操作来修复缺失的功能,并移植回到患者体内。 类器官的应用举例---类器官“生物Bank”根据目前的研究进展,建立了活体类器官“生物bank”。其中,肿瘤来源的类器官在表型和基因上都与肿瘤相似。另外,肿瘤类类器官生物库使生理学相关的药物筛选成为可能。活体类器官生物库可用于确定类器官是否对个体患者的药物反应,具有预测价值。 类器官串联培养系统--- HUMIMIC的技术方案:多器官串联培养,在没有病人的情况下测试病人类器官串联芯片培养系统包括控制单元和芯片,控制单元能够模拟人体内生理环境,包括温度、压力、真空度、微流道循环频率、时间等参数,芯片有不通的微流道设计,针对不同的器官可以单独设置提供相应的培养条件,提供精JIN准的培养和分化环境。类器官串联芯片培养系统可提供不同类器官的串联共培养方案,避免单一类器官无法模拟人体复杂生理学条件下器官相互通讯交流的不足。通过类器官模拟人类器官组织的生理发育过程,应用于疾病模型、肿瘤发生、以及药物安全性、有效性、毒性、ADME等方面的评估,旨在减少和取代实验室动物测试,简化人体临床试验。 为获取更高相关与准确的测试结果,我们开发了人体器官模型的自动芯片测试: 配备具有指示相关性的器官模型的芯片,以能够在接触生物体之前检测其安全性和有效性; 最ZUI终为芯片配备患者自身相关病变器官的亚基,以评估整个个性化治ZHI疗的效果; 人体生理反应往往涉及更多介质循环和不同组织间相互作用,多器官芯片才能全面反映出机体器官功能的复杂性、完整性以及功能变化,一个相互作用的系统才能更好的模拟整个系统中器官和组织的不同功能。可提供不同类器官的串联培养解决方案,避免单一类器官无法模拟人体复杂生理学条件下器官相互通讯交流的不足。把多种不同器官和组织培养在芯片上,然后通过微通道连接起来,集成一个相互作用的系统,从而模拟人体中的不同功能器官的交流通讯和互相作用。 TissUse专有的商用MOC技术支持的器官培养物的数量范围从单个器官培养到支持复杂器官相互作用研究的器官数量,包括单器官、二器官、三器官和四器官培养的商业化的平台。成功的案例包括:肝脏、肠、皮肤、血管系统、神经组织、心脏组织、软骨、胰XIAN、肾脏、毛囊、肺组织、脂肪组织、肿瘤模型和骨SUI以及各自的多器官串联组合方案。 德国TissUse公司专注于类器官培养系统研究22年,推出的HUMIMIC类器官串联芯片培养系统,得到FDA的推荐,可提供不同类器官的串联培养解决方案,避免单一类器官培养无法模拟人体器官相互通讯关联的缺陷,同时也提供相关的技术方案和后续方法试剂支持,属于国际上少有的“Multi-Organ-Chip” 和“Human-on-a-chip”的方案提供者。相关方案已被广泛应用于药物开发、化妆品、食品与营养和消费产品等多个领域. 类器官串联培养系统---HUMIMIC系统 一、专业化的硬件(控制单元) 主机(控制单元)是一个紧凑的台式设备,能够模拟人体内生理环境,包括温度、压力、真空度、微流道循环频率、时间等参数。芯片有不通的微流道设计,针对不同的器官可以单独设置提供相应的培养条件,提供精JIN准的培养和分化环境。7寸触摸显示器,控制面板可以在整个过程中对每个多器官芯片分别进行调节,无需外接电脑,软件操控友好;可以自主设置每个器官芯片的培养条件,包括温度、压力、真空度、微流道循环频率、时间等参数;可串联培养2个不同(或相同)、3个不同的、4个不同的类器官;3个连接拓展口,用于连接其他设备;同时操控高达8个Chip3 / Chip3 plus,4个Chip2 /Chip4或这些的组合; 二、类器官芯片芯片有不通的微流道设计,针对不同的器官可以单独设置提供相应的培养条件,提供精JIN准的培养和分化环境;芯片的泵腔内的柔性膜通过连接的管道,受到压力或真空的作用,在微流道之中产生脉动体流;二联类器官芯片可以在一个芯片上串联培养2个不同(或相同)的类器官;三联类器官芯片可以在一个芯片上串联培养3个不同的类器官;四联类器官芯片可以在一个芯片上串联培养4个不同的类器官; 三、服务方案(细胞、试剂,诱导方案) 四、器官模型和串联培养技术类器官串联培养系统---HUMIMIC的应用案例1、神经球和肝脏的串联共培养(柏林工业大学)-二联器官共培养的药物敏感性2015, Journal of Biotechnology, A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing目前用于药物开发的体外实验平台无法模拟人体器官的复杂性,而人类和实验室动物的系统差异巨大,因此现有的方案都不能准确预测药物的安全性和有效性。德国、葡萄牙和俄罗斯的研究团队通过TissUse GmbH公司的微流控多器官芯片(MOC)平台,测试毒物对多器官的作用,揭示了基于微流控的多器官串联共培养能够更好的模拟人体的生理学环境。在体外培养条件下,由于氧气和营养供应有限,类器官培养往往会随着时间的推移而去分化。然而微流控系统中通过持续灌注培养基,更好地控制环境条件,如清除分泌物和刺激因子,并且培养基以可控流速通过,以模拟血流产生的生物剪切应力,因此类器官培养物可以保持良好的生长状态。 双器官串联芯片(2-OC)能够串联共培养人的神经球(NT2细胞系)和肝脏类器官(肝HepaRG细胞和肝HHSteC细胞)。在持续两周的实验中,反复加入神经毒剂2,5-己二酮,引起神经球和肝脏的细胞凋亡。跟单器官培养相比,串联共培养对毒剂更敏感。因此,多器官串联共培养在临床研究中可以更准确地预测药物的安全性和有效性。推测这是因为一个类器官的凋亡信号导致了第二个类器官对药物反应的增强,这一推测得到了实验结果的支持,即串联共培养的敏感性增加主要发生在较低浓度药物中。 2、心脏肝脏骨骼皮肤的串联共培养(哥伦比亚大学)-四联器官共培养的复杂通讯模型哥伦比亚大学的科学家也开发了一种多器官串联芯片,建立了串联共培养心脏、肝脏、骨骼、皮肤的技术,发表于2022年的Nature Biomedical Engineering,中通过血液循环串联培养4个类器官,保持了各个类器官的表型,还研究了常见的抗ANTI癌药阿霉素对串联芯片中的类器官以及血管的影响。结果显示药物对串联共培养类器官的影响与临床研究结果非常相似,证明了多器官串联共培养能够成功的模拟人体中的药代动力学和药效学特征。“最值得注意的是,多器官串联芯片能够准确的预测出阿霉素的心脏毒性和心肌病,这意味着,临床医生可以减少阿霉素的治ZHI疗剂量,甚至让患者停止该治ZHI疗方案。“Gordana Vunjak-Novakovic, Department of Biomedical Engineering, Columbia University 3、胰岛和肝脏在芯片上的串联共培养(阿斯利康)-二联器官共培养的反馈通讯2017, Nature Scientific Reports, Functional coupling of human pancreatic islets and liver spheroids on-a-chip: Towards a novel human ex vivo type 2 diabetes model人类系统性疾病的发生过程都是通过破坏两个或多个器官的自我平衡和相互交流。研究疾病和药疗就需要复杂的多器官平台作为体外生理模型的工具,以确定新的药物靶点和治ZHI疗方法。2型糖尿病(T2DM)的发病率正在不断上升,并与多器官并发症相关联。由于胰岛素抵抗,胰岛通过增加分泌和增大胰岛体积来满足胰岛素不断增加的需求量。当胰岛无法适应机体要求时,血糖水平就会升高,并出现明显的2型糖尿病。由于胰岛素是肝脏代谢的关键调节因子,可以将生产葡萄糖的平衡转变为有利于葡萄糖的储存,因此胰岛素抵抗会导致糖稳态受损,从而导致2型糖尿病。过去已经报道了多种表征T2DM特征的动物模型,但是,从动物实验进行的研究往临床上转化的效果不佳。更重要的是,目前使用的药物,虽然能缓解糖尿病症状,但对疾病进一步发展的治ZHI疗的效果有限。胰XIAN腺和肝脏是参与维持葡萄糖稳态的两个关键器官,为了模拟T2DM,阿斯利康(AstraZeneca)的科学家利用TissUse GmbH公司的微流控多器官芯片(MOC)平台,通过微流控通道相互连接,建立一个双器官串联芯片(2-OC)模型,实现芯片上胰XIAN腺和肝脏类器官的串联共培养,在体外模拟了胰XIAN腺和肝脏之间的交流通讯。 建立串联共培养类器官(胰岛+肝脏)和单独培养类器官(仅胰岛或肝脏),在培养基中连续培养15天,串联共培养显示出稳定、重复、循环的胰岛素水平。而胰岛单独培养的胰岛素水平不稳定,从第3天到第15天,降低了49%。胰岛与肝球体串联共培养中,胰岛可长期维持葡萄糖水平,刺激胰岛素分泌,而单独培养的胰岛,胰岛素分泌显著减少。胰岛分泌的胰岛素促进了肝球体对葡萄糖的利用,显示了串联共培养中类器官之间的功能性的交流。在单独培养中的肝球体中,15天内循环葡萄糖浓度稳定维持在~11 mM。而与胰岛共培养时,肝球体的循环葡萄糖在48小时内降低到相当于人正常餐后的水平度,表明胰岛类器官分泌的胰岛素刺激了肝球体摄取葡萄糖。 4、肺肿瘤和皮肤在芯片上的串联共培养(拜耳)-抗体药物对肿瘤和正常器官的影响 针对EGFR抗体的药物在癌症治ZHI疗中被广泛应用。然而,抗ANTI癌药物的使用量与皮肤不良反应成正比相关,皮肤毒性是上皮生长因子受体(EGFR) 靶向治ZHI疗中最常见的副作用。但是对于后者的预测目前的方法均无法实现。双器官串联芯片(2-OC)模型,实现芯片上皮肤和肿瘤的共培养,用于模拟重复给药的剂量实验,同时还生成安全性和有效性的数据,可以在非常早的阶段检测到西妥昔单抗cetuximab对皮肤的几个关键副作用。这种体外分析能够在临床表现之前预评估毒性副作用,可以替代动物试验,有望成为评价EGFR抗体和其他肿瘤药物治ZHI疗指数的理想工具。 5、皮肤-肝脏在芯片上的串联共培养(拜尔斯道夫公司)—评估化妆品不同的给药途径一种独特的基于芯片的组织培养平台已经开发出来,使化妆品和药物对一套微型人体器官的影响测试成为可能。这种“人-片”平台旨在生成可复制的、高质量的人体物质安全性预测体外数据。被测物质进入表皮或在表皮内代谢,然后泵入肝脏并激活相应的CYPs。因此,在肝脏和皮肤的联合培养中,多器官芯片是一种有前途的体外方法,用于全身和局部剂量的化妆品和药物。 皮肤等效物的培养整合在一个系统中。芯片上的微泵使代谢运输和附加的生理剪切应力成为可能。肝脏和皮肤等效物存活10天,并显示紧密连接和特异性转运蛋白的表达。每天服用、维甲酸和倍他米松-21-戊酸,持续7天,以研究已知可被皮肤和肝脏代谢的化合物的作用。将表面敷于表皮的效果与直接敷于培养基的效果进行比较,分析对皮肤渗透和代谢的影响。对肝脏和皮肤等价物进行代谢酶、转运体、分化标记物的表达和活性分析。结果显示,在蛋白水平和mRNA水平上,根据不同物质处理,ⅰ、ⅱ期酶均有本构性和诱导性表达。因此,在肝脏和皮肤的联合培养中,多器官芯片是一种有前途的体外方法,用于全身和局部剂量的药物和化妆品。 6、肺类器官在芯片上的培养(菲莫国际)-空气环境对呼吸道的影响使用类人肺模型研究吸入气溶胶的沉积和吸附,从而使体外人体呼吸毒性的数据更加准确和可预测。目前的体外气溶胶暴露系统通常不能模拟这些特性,这可能导致在体外生物测试系统中交付非现实的、非人体相关的可吸入试验物质剂量。模拟和研究体外气溶胶暴露装置-吸入器可主动呼吸、操作医用吸入器,或吸吸烟草制品。此外,它可以填充从人类呼吸道不同区域分离的三维上皮细胞。包括口腔、支气管和肺泡细胞培养物的气溶胶传递和相容性的概念的研究,将其应用于测试系统,吸入产生的生理条件下,测试表现在人的呼吸道的方式。这种方法的优点是,它无需花费昂贵、耗时和具有科学挑战性的工作来确定体内提供的剂量,默认情况下,适用于任何测试烟草燃烧产生的气体和任何测试成分。
    留言咨询
  • CLAMP System 模块化钳夹试验系统 葡萄糖钳夹技术是目前公认的评价IR和胰岛β细胞功能的金标准方法。然而这项技术在手工操作时代对使用者的经验要求极高,而且繁琐的计算、数据记录和参数调整使得这项技术无法广泛应用。 CLAMP_System模块化葡萄糖钳夹试验平台是一种技术平台和工具。研究人员可以方便的在此技术平台基础上进行更深入的研究和探索,而不会过多的受到实验操作的困扰。同时这套系统可以随时进行手工干预操作,赋予此系统更高的安全性和开放性。毫无疑问,他在药物代谢动力学、新的治疗方案评估、胰岛素和其他激素的作用机制等方面的作用是无可替代的。可实时显示下列数据:以图形方式实时输出试验结果每个检测点的血糖浓度(带时间)该点的葡萄糖输注率该点总的葡萄糖输注的毫升数该点总的葡萄糖输注克数该点胰岛素的输注率该点总的胰岛素输注的毫单位数自动计算试验结果并以EXCEL方式输出报告单※实验数据轨迹记录(记录数据的调整,修改或删除)
    留言咨询
  • Aperio FL 可获得免疫荧光标记的组织切片和组织芯片的高品质全片图像。●● 通过使用Pinkel 滤镜配置,Aperio FL 可提供多达4种已认证的通道,可对图像进行精确分析●● 六位置滤镜筒转台和六位置滤镜转轮为您提供更大的灵活性Aperio FL 定义了多路复用功能,改善了组织切片和组织芯片标记物的可视化,提高效率并降低成本。●● 神经生物学研究(神经退行性疾病,如eAlzheimer’s,Parkinson’s,Huntington’s,以及多发硬化;脑成像研究等)●● 糖尿病研究(胰岛细胞生产胰岛素和胰高血糖素的产量,α和β细胞团,细胞增殖分析等)。●● 癌症研究(基因表达/蛋白质在细胞内的空间定位)。典型应用:●● 全切片荧光成像:组织切片和组织芯片,适用于多种癌症的生物标志物表达研究(乳腺、结肠、肝脏、胰腺、眼等);胰腺切片,适用于胰岛分析,α和β细胞团,α和β细胞增殖分析;脑组织切片,适用于淀粉样斑块分析,生物标志物表达研究。
    留言咨询
  • 小鼠细胞追踪成像分析仪细胞追踪技术是一种科学研究方法,用于观察和研究细胞在生物体内的动态行为。它主要依赖于特定的标记方法,使得研究人员能够在复杂的生物环境中准确地识别并追踪单个或多个细胞。细胞追踪技术在生物医学研究中具有广泛应用,包括肿瘤、神经科学、心血管疾病、免疫学等领域。通过追踪细胞的运动、增殖、分化和凋亡等过程,研究人员可以更深入地理解生物体的生命活动和疾病机制,从而为疾病的治疗和预防提供新的思路和方法。小鼠细胞追踪是一种利用特定技术来观察和研究小鼠体内细胞动态行为的方法。其中,一种常用的技术是荧光标记,通过将荧光蛋白基因插入到小鼠的基因组中,使小鼠细胞表达出红色的荧光信号,从而可以追踪和观察小鼠细胞的生长和分化情况。这种方法具有操作简单、灵敏度高、分辨率高等优点,并且可以通过不同颜色的荧光蛋白对不同的小鼠细胞进行区分和追踪。在小鼠细胞追踪中,研究人员可以观察细胞在体内的迁移、增殖、分化和凋亡等过程,从而了解细胞的命运和生物体的生命活动。此外,通过记录和分析不同时间点的荧光信号,可以追踪小鼠细胞的谱系发育和命运决定。这些数据有助于研究者更好地理解小鼠的生命活动和生理现象,为生物医学研究提供重要的参考。核磁共振(MRI)技术是一种非侵入性的成像技术,可用于小鼠细胞追踪。通过在小鼠体内注入氧化铁纳米颗粒,通过MRI技术检测,实现对特定细胞的追踪和成像。纽迈推出的小鼠细胞追踪成像分析仪是一款功能强大,无损伤性的成像分析仪,可以观察标记细胞在小鼠体内的分布、迁移和生长情况,了解细胞在体内的动态行为。这种技术具有非侵入性、高分辨率和高灵敏度等优点,可以实现对小鼠体内细胞的长期追踪和成像。小鼠细胞追踪成像分析仪技术指标:场强:1±0.05T ,共振频率约42MHz动物线圈:直径60mm小鼠细胞追踪成像分析仪适用范围:磁共振造影剂大、小鼠活体成像小鼠细胞追踪成像分析仪应用方向:肿瘤识别(脑、皮下、肝脏)肿瘤生长与治疗过程肥胖研究磁共振造影剂研究小鼠细胞追踪成像分析仪应用案例:
    留言咨询
  • SCIEX Triple Quad 7500 三重四级杆液相色谱质谱联用系统是所有SCIEX质谱系统中灵敏度高的产品。采用创新的技术,此系统可以定量发现您研究项目中遇到的非常复杂、粗糙样品中的极低水平的目标物,线性动态范围达到6个数据级的定量能力可以简化您的实验流程。 Turbo V离子源性能提升。SCIEX Triple Quad 7500三重四级杆液相色谱质谱联用系统配备OptiFlow Pro 离子源可提升检测复杂基质样本的能力。OptiFlow Pro离子源采用了E-Lens技术,可提高目标离子聚集到质谱检测器的传输效率。模块化的OptiFlow Pro离子源可快速实现从高流速到低流速的切换以及ESI和APCI的切换,且无需任何调整。D Jet离子导向技术提高了检测灵敏度。由于加大了锥孔的口径,更多的离子进入质谱系统,从而获得更准确的样本中目标物的特征信息。独特的离子导向设计可从电喷雾离子源(ESI)的喷雾流中保留和捕获更多的离子。 将您的现有实验流程转移到高灵敏度仪器上,效率迅速提高。创新技术使得仪器检测到更多、含量更低的化合物。SCIEX OS软件是下一代质谱的操作平台,此软件平台与SCIEX Triple Quad 7500三重四级杆液相色谱质谱联用系统配置,保留了传统软件的特点和功能,并以直观和组件方式呈现,可快速、准确、自信地浏览数据。 功能技术D JET 离子导向技术:捕获和保留更多ESI喷雾流中的离子。D Jet离子导向技术可聚焦富集目标离子,去除雾化气和中性干扰物。QTRAP ReadyQTRAP Ready系统可非常简便地升级成具有线性离子功能的QTRAP系统;QTRAP系统独特的功能如串联四极杆质谱常规的MRM定量模式再结合系统中的增加子离子扫描模式(EPI)、“杆-阱扫描”(MRM-IDA-EPI),可极大地提高定量定性结果的可靠性,还有MRM3模式能对复杂基质样品分析时,提高定量的信噪比和选择性。检测更低含量的定量水平。精确和耐用的离子路径设计,通过聚焦目标离子可连续获得稳定和重现的分析结果。离子源高流速和低流速模式可快速切换以满足实验需求。 OptiFlow Pro离子源引入新的模块化功能,融入了经典Turbo V离子源的可靠性和高效率设计。E LENS 技术您能从ESI电离模式中获取更多目标物离子,从而节省您宝贵且有限的样品。新一代OptiFlow Pro 离子源结合E Lens&trade 技术使得SCIEX Turbo V 离子源几何学的性能和效率进一步增强,通过聚焦ESI喷雾流使更多的离子传输到锥孔里。 Quad 7500 LC-MS/MS三重四级杆液相色谱质谱联用系统应用技术1 、生物基质中多肽/蛋白质制剂的定量分析对于新药研发来说至关重要。作为与传统的配体结合试验并行的分析技术,液质联用技术已经发展成为生物分析实验室中蛋白质定量检测的日常手段。与现今的LBAs技术相比,三重四极杆系统在检测小体积样品中的低浓度分析物方面的能力使其成为主要的分析手段。通过具有E Lens技术的OptiFlow Pro离子源和D Jet离子导向的整合,在生物基质中特征肽段定量检测时与以往产品相比,灵敏度平均提高了3倍。2、大鼠血浆中完整赖脯胰岛素超灵敏的定量方法胰岛素类似物是通过在天然胰岛素结构基础上进行改造,形成等效或增效血糖控制的胰岛素替代物。它们中的膳食胰岛素类似物,如赖脯胰岛素、阿斯巴甜胰岛素、格列嗪胰岛素,与人胰岛素相比更容易吸收、起效更迅速,因此研究此类胰岛素类似物的药代动力学和药效学属性至关重要。3、高通量靶向脂质组学方法实现广泛的脂质定量脂质组学中直接进样的鸟枪法是一种广泛使用的脂质组学分析方法。提出了一种靶向的脂质组学分析策略,该策略能够在脂质分子水平上对多种不同的脂质进行定量(~1900个分子种类)。该方法可以对不同脂类进行色谱分离,减少同分异构体的干扰,更加快速和特异的进行脂质筛选。4、人全血中法医类化合物的高灵敏度检测使用SCIEX Triple Quad 7500系统检测人全血中49种毒物的优化且灵敏的方法。SCIEX Triple Quad 7500系统的所有功能结合在一起,使得本研究中所检测的一系列毒物的灵敏度得到了大幅提高。5、提高靶向宿主细胞蛋白肽段定量分析灵敏度的策略靶向HCP定量分析流程的建立体现了SCIEX 7500系统的高灵敏度、高分析通量、高耐用性以及高复合分析能力信噪比平均提高4倍具有极其优异的灵敏度,其中2/3的目标蛋白为0.02-1 ppm。其余的为1-4.54 ppm在高确信度(每个蛋白4个检测通道)的情况下,所有48个蛋白质的定量用8min的液质联用分析方法完成6、促尿钠排泄肽类家族环肽类化合物LC-MRM定量灵敏度的提高环肽类化合物如今已成为重要药物。与之前报道方法相比,灵敏度有显著提高7、直接检测饮用水和瓶装水中农残和PPCPs的LC-MS/MS方法可以根据客户的实际需求进行化合物的扩充,也可以应用到其他低浓度痕量物质的测定工作流程中。创新的SCIEX 7500系统可以有效降低基质效应,提高灵敏度,这必将引领水行业进入一个新的分析时代。
    留言咨询
  • 大小鼠气管内干粉给药装置可输送定量的干粉到大鼠、小鼠气管内和肺内。干粉给药装置包括干粉雾化喷射头和注射器。主要特点:² 定量 QUANTIFIABLE:将定量的气溶胶给到动物肺部² 定时 TIMED:可以在一个或多个时间点进行给药² 有效 EFFECTIVE:气溶胶的吸收效果好,给药快速,效率高,操作方便² 方便 CONVENIENCE:维护简单,操作方便型号:YAN30012 液体气溶胶肺部给药型号:YAN30010 干粉气溶胶肺部给药n 大小鼠肺部、气管给给药产品的主要特点 快速、精确的直接进行气管内和肺部给药 可实现定量给药,气溶胶无浪费 不需加热、推进剂、超声波或压缩空气等,对药物物影响 手持式设计,操作非常方便 喷射头顶端圆滑的设计,保证安全、温和的插入气管内 不锈钢材质,可高温高压消毒灭菌,可重复使用n 大小鼠肺部、气管给给药产品的使用方法另外,可选配大小鼠气管插管喉镜、大小鼠气管插管工具包套装、大小鼠气管插管等工具,能更便捷的完成手术。大鼠、小鼠喉镜大小鼠气管插管工具包套装 气管插管平台(多种款式和型号可选)CG-02M型,适合做小鼠,外尺寸:20*15*20cm CG-02R型,适合做大鼠,外尺寸:22*21*28cm适用于大、小鼠的气管插管手术操作CG-04M型,小鼠型配合铁架台使用,多角度可调;型号:CG-06M多角度可调;大小鼠通用,尺寸约:20*15*15cm如需进行持续的气溶胶雾化给药,可以选用:动物全身暴露装置气溶胶雾化器能够产生稳定、细腻的气溶胶,给动物暴露实验或者细胞暴露实验提供稳定的雾化环境。气溶胶雾化器是全身暴露或者口鼻暴露的重要组成部分,可配合暴露箱或者暴露塔使用,将药物雾化后的气溶胶推送到暴露内,并持续雾化和维持暴露箱内一定的气溶胶浓度。我们可以提供Aerogen Pro雾化器和Aerogen Solo雾化器:设备采用钯合金振动网格技术,中心孔板直径5mm,均匀分布着1000个精密成形微孔,每秒振动128,000次,形成非常有利于沉淀入肺部沉积的气溶胶颗粒滴。型号:Aerogen Pro型号:Aerogen Solo产品主要优势: 无论短时程和长时程实验都能保证出色地输出持续一致; 雾化剂量小; 粒度分布和颗粒物体浓度具有高度的可重复性; 随时可填充药物,也可以加配注射泵自动添加药物; 抗腐蚀外壳设计,持久耐用; 高度集成化、体积小巧; 操作简单,无需复杂的培训工作;雾化头的主要参数: 小型:Volume Median Diameter(VMD) 雾化速率:0.1mL/min 颗粒尺寸:VMD (体积中值直径)介于2.5μm and 4.0μm 药物残余量:0.1mL 液体雾化气溶胶在科学研究、药物开发、质量检测中有很多应用;雾化器连接示意图:根据实验需求,您可能需要粉尘气溶胶发生器、动物暴露染毒箱:粉尘气溶胶发生器,可对液态药物进行雾化,产生稳定的气溶胶根据需要可以选择:小动物全身暴露箱可将药物、致敏原或其他混合物雾化为极细微的气溶悬浮颗粒送入置放动物的箱体中,动物按实验预定的时间曝露于其中,完成动物建模所需的致敏和激发过程;也可作为全身暴露系统对动物进行全身暴露;(玉研仪器公司,可以根据客户需求订做特殊气体的染毒箱,如:二氧化碳控制箱、二氧化#硫染毒箱、一氧化碳染毒箱、氧气浓度控制箱等,欢迎来电咨询)有多种尺寸和规格的暴露箱可供选择,还可根据需求进行订做: 注:实际容纳数量与动物的周龄和体重的不同而有所不同。根据药物特性,雾化和暴露装置最好在生物安全柜中使用。全身暴露系统的主要特点: 同时针对多只动物建模,节省时间,一致性好。 根据有关文献,以OVA致敏为例,雾化方式建模比腹部注射方式所需时间短。 一体化的控制仪同时具有定时器功能、雾化参数设定及0~5LPM偏流供风系统。 偏流供风可在较长时间的致敏过程中为箱体内的动物提供新鲜空气,并保持箱体内的温度湿度不会过高。 提供雾化颗粒直径2.5~4μm和4~6μm两种雾化头供选择。根据实验需要,还可以选择口鼻暴露式染毒方法:口鼻吸入式暴露系统的主要特点: 暴露迅速,浓度均匀,短时间内即可达到暴露浓度 只通过动物的鼻部呼吸接触到被测物质,有效防止动物的皮肤、口腔接触到被测物质 通过检测动物的胸扩运动,实时监测动物的呼吸频率和吸入量 采用双层塔结构设计,保证试样吸入浓度均匀 同时,容易调控试样浓度,对浓度变化反映迅速且死体积小,能够在短时间内达到浓度平衡。 可根据需要选择合适的配置,一次对多可同时暴露6-24个实验动物 有适合不同体重动物的固定器可供选择 气溶胶的流动方向可以调换 多种规格的气溶胶发生器和粉尘发生器可供选择 可加配颗粒监测装置 配置灵活、易扩展、拆装方便 管路、气路设计合理,密封性好,无外漏 外排气体经过多级过滤,能够有效避免污染 采用防腐材料,光滑平整、无死角,容易清洗口鼻暴露塔主要构造及抛面图: 结构紧凑,对浓度变化反映迅速,并且死体积小,能够在短时间内达到浓度均衡; 采用双层塔结构设计,每只动物的呼吸经由不同的呼吸路径,每只动物接触到的气溶胶浓度都一致; 暴露塔内气溶胶单向流动,确保每只动物接触的气溶胶没有被其他动物影响;不同型号的口部暴露塔:单层、双层、四层 根据动物数量选择合适的型号:每层6个通道,三种型号可分别对6只,12只,24只鼠进行暴露实验。适合不同体重的大鼠和小鼠固定器: 动物呼吸参数测量系统根据需要可以选配呼吸参数测量系统,用于对动物的各种呼吸参数进行检测和统计;测量参数:气溶胶累积量,呼吸频率,呼气峰值,吸气峰值,呼气时间,吸气时间,呼气最大流量,吸气最大流量,潮汐量,呼气末暂停,吸气末 暂停、分钟呼吸量等组配呼吸参数测量系统后的构造图:呼吸参数测量软件界面:请关注玉研仪器的更多相关产品。如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询
  • 美国 Instech 清醒动物自动给药系统清醒动物自动给药系统是美国Instech公司设备的主要应用之一,主要由灌流泵(pump)、转环(swivel)、栓绳(tether),体内植入管(catheter),给药管(Tubing),转环支架(swivel mount)等部分组成。灌流系统可选择单通道,或双通道。转镮可选不锈钢或塑料转镮,栓绳连接于可穿脱式马甲,或需要外科缝合的钮扣式外部池。功能特点:实现动物静脉长期,微量,稳定的给药动物清醒活动,无需麻醉一次手术后,可实现长期的间断性给药,无需重新手术动物在不灌流状态下,可群体饲养,无需单笼饲养通过优化设计,可以实现灌流给药和采血,采胆汁同时进行应用范围: 1.正葡萄糖钳夹试验 2.涵盖所有采血与给药实验 3.其他 葡萄糖钳夹技术是一种定量检测胰岛素分泌和胰岛素抵抗的方法,钳夹试验已经成为评估和鉴别β细胞对于胰岛素反应敏感性的“金标准”方法。 研究者通过血糖灌注使受试者血糖水平升高至125mg/dl(相当于7.0mmol/l)。通过控制葡萄糖灌注使血糖水平维持在较高水平,通过检测保持在高水平血糖情况下葡萄糖的灌注量,从而评价葡萄糖代谢率。高葡萄糖变量钳夹可以评价β细胞对葡萄糖的敏感性。1.Andres R, Swerdloff R, Pozefsky T, Coleman D. Manual feedback technique for control of glucose concentration. In: Skeggs LT Jr, ed. Automation in analytic chemistry. New York: Medaid, Inc. 1966, 486–501. 2.Linda von Wartburg, “What's a Glucose Clamp, Anyway?” Diabetes Health. Nov 7, 2007. 瑞典 CMA 120清醒动物活动装置CMA120清醒动物活动装置可以对小型实验动物在其清醒状态下进行长时间的微透析研究工作。包括:碗状的容器、平衡臂、转环、导管等部份。中空的铝合金材质,重量轻,动物受力小;转环由不锈钢和石英材料构成,体积小、耐压力强、不易漏。 瑞典 MAB RACS多通道小动物清醒活动装置产品简介: 瑞典RACS 系统是一个没有转环的多通道小动物活动系统,采用光学感应触动补偿技术,自动旋转基座,防止实验中动物的管路(电线/光纤等)缠绕打结。此系统可取代传统转环式的活动系统( 不会有转环堵塞漏液现象),对于活动动物中的微透析取样/行为学/生理学等科研实验有显著的帮助。 可以配合微透析取样实验同步进行,1、多点(头部,血管,皮下等)微透析取样﹔2,搭配自动采血装置(如Instech ABS2)使用 3、搭配使用于电线/光纤通道的实验。 产品参数: RACS规格参数: 原理:利用光学传感器触动,补偿基座旋转,达到防止实验中动物管路缠绕打结 通道数:1 — 8通道,或以上 适用尺寸:圆形碗直径10-27公分/方形笼尺寸范围10*10公分/27*46公分 平衡臂可调整长度及高度 可调整基座旋转速度 安静的基座转动 RACS II规格参数: 在原有的RACS 系统功能上增加内置1-4个传感计次器,对顺/逆时针进行计数显示﹐提供动物活动参考信息 伍经理:+86-180 7516 6076徐经理:+86-138 1744 2250
    留言咨询
  • 江苏麦格瑞电子科技有限公司(MAGMED)由国际磁共振仪器开发和应用领域多名科学家共同发起,是一家专业从事磁共振检测仪器设备的高科技公司。公司致力于医学领域、生命健康领域、工业领域的磁共振产品的研制开发、生产销售及磁共振技术理念的推广,为客户提供专业的一站式磁共振检测仪器设备的综合服务。 公司自成立以来,坚持自主创新,专注于核磁共振技术的推广及应用开发,具备强大的研发能力、完备的生产能力、高效的服务能力以及成熟的运营管理体系。 公司秉承“诚信、严谨、创新、感恩”的企业价值观,诚信对待每一位客户,严谨对待每一次客户反馈,积极探索磁共振应用创新,对每一位客户报以感恩之心,立志成为磁共振仪器行业及磁共振技术应用的专业供应商、服务商。 江苏麦格瑞电子科技有限公司(MAGMED)是一家新兴的高新技术创业型公司,公司核心团队自2016年开始投入运营低场时域核磁共振检测仪器项目,在2016-2018年,完成原始技术积累,并完成DEMO机的试制;2019年,正式向市场推出试用样机,仪器已先进稳定的性能、优异专业的售前售后技术服务,获得用户的高度认可及好评;2019年下半年正式向市场推出相应的仪器产品;2020年,为规范化、规模化运营该项目,成立江苏麦格瑞电子科技有限公司,推出MAGMED品牌低场时域核磁共振检测仪器。截至目前,公司已具备一定的客户基础及初步品牌影响力,主要用户包括高校、科研院所、医院、企业单位等。❖ 活鼠体脂分析仪产品简介活鼠体脂分析仪AccuFat-1050是一款测量小鼠体组分的分析仪器, 基于低场时域磁共振(TD-NMR)原理,可测量活鼠体内脂肪、瘦肉、水分的组分含量。仪器通过定量磁共振技术与多元变量数学分析技术,实现清醒状态下活鼠的实时无损检测与持续监测,具有快速、准确、稳定、安全等优点。❖ 活鼠体脂分析仪产品特色- 紧凑式一体化设计:更小的整机尺寸,更轻的整机重量,占用空间小。- 智能化数据分析与处理软件:语音和图形提示功能,安全的实验数据管理,实验数据的即时分析与导出。- 独特的混合脉冲序列设计:优化脉冲序列参数,一次测量可同时获得样本的多个特征信息,检测精度高。- 测量过程安全可靠:活鼠清醒状态下检测,全程无压力,满足小鼠体内全组分(脂肪、瘦肉和水分)的定量分析,实现小鼠的全生命周期监测。❖ 活鼠体脂分析仪主要参数- 磁体类型:稀土永磁体- 磁场强度:0.235±0.005T (10±0.213MHz)- 标配探头:R50 (Φ50 mm) - 测量样品范围:5~80g;最佳5~60g❖ 活鼠体脂分析仪应用领域病理学研究:- 饮食诱发微生物群失调与肥胖- 肿瘤与代谢紊乱- 基因学与代谢病理- 胰岛素抵抗、糖稳态、氧化代谢动物模型研究- 肥胖易感/抵抗鼠- 棕色脂肪少的鼠- 基因、蛋白敲除鼠- 肿瘤鼠营养学研究- 妊娠哺乳期饮食对后代肥胖诱发- 最佳代谢反应的蛋氨酸含量- 肠道微生物活性的作用- 钙(Ca)摄入量临床学研究- 心血管疾病食疗、药物治疗评价- 非酒精脂肪肝治疗方案- 代谢类疾病及并发症临床治疗- 热量摄入控制与临床预防
    留言咨询
  • Miltenyi细胞分离器autoMACS Pro 1. autoMACS Pro 分离器产品描述:使用 autoMACS Pro 分离器实现自动细胞分离,可快速、温和地分离任何细胞类型。细胞可以从PBMC、解离组织或直接从全血或骨髓中自动分离,这使其成为各种下游应用的选择,如流式细胞术、细胞培养测定或分子分析。通过真正的无人值守自动细胞分离,可实现且可重复且独立于用户的结果。autoMACS Pro在数千份同行评审的出版物中得到验证,是市面上醉值得的自动磁池分离仪器。特点:? 全自动化只需放置样品和试剂,选择您的设置,然后让 autoMACS Pro 分离器执行所有自动标记和磁细胞分离。? 灵活性从广泛的起始材料中立即分离靶细胞,包括全血,PBMC和来自解离组织的单细胞悬浮液。? 可操作性可重复使用的 autoMACS 色谱柱通过对几乎任何靶细胞进行正选择、去除或原封不动地分离来确保高纯度。? 标准化每次都以常规方式隔离免疫细胞,并确保准确的样品处理,同时减少用户差异和对操作员的风险。分离器规格:原则可以进行阳性和未触及的分离,以将靶细胞与PBMC,培养细胞和解离组织分离。此外,可以使用StraightFrom全血微珠直接从全血或骨髓中分离细胞。总共有400多种不同的微珠和隔离试剂盒可供选择,我们正在稳步扩大我们的产品组合。在自动分离后,可以获得标记细胞以及非标记细胞,并可用于各种下游应用,例如功能和分子测定,嵌合分析和流式细胞术。为了确保细胞的活力和完整性,细胞保持在Chill Racks中冷却。监测所有MACS微珠和隔离试剂盒的预设程序可确保准确的样品处理。传感器持续监控 autoMACS Pro、缓冲液位和色谱柱状态的状态。这确保了样品和操作员的醉佳仪器性能。自动化程度全自动尺寸不带 MiniSampler:605x343 毫米(宽 x 深)使用 MiniSampler:605x455 毫米(宽 x 深)高度:392.5-454 毫米(可调节触摸屏)它是一种台式仪器,可轻松安装在普通层流罩下。订单号130-092-545特性可重复使用的 autoMACS 色谱柱专为与 autoMACS Pro 分离机配合使用而设计,可提供高细胞纯度和回收率。该色谱柱与所有起始材料以及可用的微珠和隔离试剂盒兼容。可以安装一个或两个色谱柱,从而增加了高回收率或高纯度工艺的灵活性。安装后,色谱柱将成为封闭流体系统的一部分,确保您在处理危险样品时的安全。色谱柱的监控和注油由仪器软件自动管理。能力- 醉多 4 x 109总细胞数/样品- 醉多 2 x 108磁性标记的细胞/样品- 高达 15 毫升全血试剂相容性和起始材料分离策略:正分离MACS微粒子直全血微粒子MACSprep™ 嵌合和多发性骨髓瘤不受影响的分离MACS 分离试剂盒(例如 CD4 T 细胞分离试剂盒,human+;死细胞去除试剂盒)间接微珠例如抗生物素微珠起始材料:样品类型- 外周血单核细胞- 全血- 骨髓- 分离组织或肿瘤的单细胞悬液- 培养细胞(细胞系和原代细胞)物种- 人类- 老鼠- 鼠- 非人类灵长类动物- 使用间接 MicroBeads 可以实现任何其他功能样品数量- 6 个样品,5 mL 试管- 5 个样品,15 mL 试管- 3 个样品,50 mL 试管体积0.2 mL - 50 mL 样品体积,具体取决于所使用的微珠2. 多MACS™ Cell24 分离器Plus产品描述:MultiMACS Cell24 分离器 Plus 是一款半自动细胞分离器,可基于 MACS 微珠和 MACS 色谱柱实现磁性细胞分离。这是自动细胞分离的di一步,允许使用MACS技术进行并行多样本磁池分离。无论您是处理高样品量、大样品量还是单个样品,MultiMACS Cell24 分离机 Plus 的便捷设计都能根据您的要求提供升级和缩小的多功能性。该仪器设计用于从任何来源分离几乎任何细胞类型,从而提供可靠和标准化的结果。它与许多下游应用兼容,如流式细胞术、细胞培养测定或分子分析。特点:? 速度从大样本量(如白细胞皮脂或白细胞和高样本数(如小鼠样品)中同时分离细胞。? 可扩展性并行处理 1 到 24 个样品,以适应每个工作流程,包括使用 MultiMACS X 的少量或少量样品以及高通量应用。? 易用性所有MACS细胞分离策略的标准程序,以及指导您完成分离协议的分步说明。? 多面性与 LS、LD 和全血色谱柱以及 Multi-24 色谱柱模块兼容,可通过正向选择、去除或几乎所有目标细胞的原样分离实现高纯度分离。多MACS™ Cell24 分离器Plus规格:原则阳性或未触及的分离都可以使用MACS细胞分离试剂与MultiMACS Cell24分离器升级版结合使用。细胞可以从解离组织、单细胞悬浮液、PBMC或直接从血液制品中分离出来。StraightFrom 微珠与 MultiMACS Cell24 分离器 Plus 一起,可直接从全血、白血皮、LRSC 和白质病中分离出醉快的细胞而无需进行密度梯度离心。可以使用多-24色谱柱块进行分离,以同时分离多达24个小样品,或者通过分离一个大体积样品。或者,醉多可将 12 LS、LD 或全血柱与单色谱柱适配器结合使用。背景MultiMACS Cell24 分离器升级版包含一个 24 孔yong久磁体,可在色谱柱内感应出高梯度磁场。该场足够强大,可以在色谱柱中保留标记有少量MACS微珠的细胞。将色谱柱转移到MACS洗脱站的洗脱室后,磁标记的细胞可以通过小的真空脉冲从色谱柱中洗脱出来。触摸屏引导用户完成完整的分离过程。在细胞分离过程中,仪器将分离柱块移入和移出磁体,从而可以方便地并行处理多达24个样品。对于阳性馏分的洗脱,必须将单柱适配器中的柱块或单柱转移到洗脱室。真空驱动的洗脱站可确保对阳性选择的细胞进行温和的洗脱,从而获得出色的纯度和醉大的细胞活力。真空脉冲保证了每次运行中每个样品同时以相同的参数洗脱。细胞分离过程中的移液步骤可以在软件指导下手动执行,也可以使用MultiMACS X完全自动化。自动化程度半自动尺寸多MACS细胞24分离器尺寸(宽 x 深 x 高):230 毫米 x 435 毫米 x 230 毫米(9.1 英寸 x 17.1 英寸 x 9.1 英寸"),重量:11 千克MACS洗脱站尺寸(宽 x 深 x 高):114 毫米 x 265 毫米 x 233 毫米(4.5 英寸 x 10.4 英寸 x 9.2 英寸"),重量:4.6 千克订单号130-098-637柱选项:无论是采用阳性选择还是未触及的策略,平行分离速度很快,并提供可重复的结果,因为所有样品都经过相同的处理。 不同的色谱柱选项使您能够适应样品量、类型和分离策略。 Multi-24 Column Block 支持正选择和耗尽。 单色谱柱适配器与 LS、LD 或全血色谱柱兼容。 LS 色谱柱针对强磁性标记细胞的阳性选择和去除进行了优化。 LD 色谱柱针对耗尽和全血色谱柱进行了优化,用于直接从全血、骨髓和血沉棕黄层中分离细胞。名称 容量标记细胞(醉大磁标记细胞)容量总细胞(醉大总细胞或醉大血容量)Multi-24 Column Block高达 1×10?(每列)高达 1×109(每列)LS 色谱柱 醉多 1×108个醉多 1×109个LD 色谱柱醉多 1×108个醉多 5×108个全血柱NA高达 10 毫升 试剂相容性和起始材料分离策略:正分离MACS 微珠和微珠试剂盒Straight From 微珠MACSprep™ 微珠RElease 微珠试剂盒不受影响的分离MACS 分离试剂盒间接微珠例如抗生物素微珠起始材料:样品类型- 外周血单核细胞- 全血- 白膜层- 白细胞分离术样本- LRSC- 骨髓- 分离组织或肿瘤的单细胞悬液- 培养细胞(细胞系和原代细胞)物种- 人类- 老鼠- 鼠- 非人类灵长类动物- 使用间接微珠可以实现所有其他功能样品数量- 多达 24 个样品,带 Multi-24 柱模块- 使用单柱适配器醉多 12 个样品自动化功能:MultiMACS Cell24 分离器 Plus 是一款半自动台式仪器,可自动执行细胞洗脱步骤。移液步骤由用户执行。除此之外,MultiMACS Cell24 分离器 Plus 技术也是全自动 MultiMACS X 分离器的核心。MultiMACS X 是一款台式平台,结合了 MultiMACS Cell24 分离机 Plus 和集成液体处理系统的优点。完全自动化消除了用户手动操作的步骤,例如将样品转移到色谱柱上、洗涤步骤和缓冲液移液。3. MultiMACS™ X产品描述:MultiMACS™ X 是一款高通量细胞分离仪器,适用于需要全自动处理大量样品或大量样品的实验室。 它自主执行分离过程的所有必要步骤,包括样品稀释、标记、分离和分离组分的洗脱。 通过并行处理和完全自动化,以可重复和标准化的方式实现醉佳细胞分离——适合高通量常规细胞分离。特点:? 安心通过样品稀释、样品和缓冲液转移、磁标记、细胞分离和目标细胞洗脱的全自动化,您可以专注于其他重要任务。? 量身定制的解决方案每个协议都经过验证和优化,以适合您的实验室工作流程,以确保您的特定应用程序将根据您的需要顺利运行。? 标准化无论您有许多样本要并行处理还是大量血液样本,使用 24 孔磁体进行平行细胞隔离可确保以相同且可重复的方式处理每个样本。? 效率和精度高通量细胞处理需要以高纯度、回收率和细胞活力可靠地获得您感兴趣的细胞,以实现醉高的生产力和成本效率。MultiMACS™ X规格:原则MultiMACS X 分离机将真正的无人值守便利性与通量样品处理相结合。现在,您可以享受MultiMACS Cell24 分离机升级版和定制液体处理机的所有优势,实现精确的移液和样品转移。高样品数量或大样品量的并行处理确保了高度的标准化和再现性。背景MultiMACS X设计用于使用MACS细胞分离试剂(包括StraightFrom MicroBeads)精确执行任何阳性或未触及的分离。分离可以使用多-24 色谱柱块或 12 个或更少的 LS、LD 或全血色谱柱与 LHS 单色谱柱适配器结合使用。MultiMACS X包含一个yong久的24孔磁铁,可在柱内感应出高梯度磁场。该场足够强大,可以在色谱柱内保留标记有少量MACS微珠的细胞。MultiMACS X 冷藏架允许您将样品和试剂保存在 2–8 °C。 将色谱柱转移到MACS洗脱站X的洗脱室后,磁标记的细胞可以通过小的真空脉冲从色谱柱中洗脱出来。该仪器能够从您的手中去除额外的移液步骤,例如等分样品以进行进一步处理或标记细胞以进行流式细胞术分析。自动移液减少了操作员之间的可变性,节省了时间,并提高了操作员的安全性。文档通过使用手持式条码扫描器,MultiMACS X 可记录样品的条形码信息,并跟踪 MACS 微珠和隔离试剂盒的批号和有效期。在每次运行结束时,仪器会提供一份简短报告,详细说明运行是否已成功完成。该软件还可以集成到实验室信息管理系统(LIMS)中,以进行进一步的文档记录。自动化程度全自动尺寸(宽 × d × h)1,145 mm × 1,000 mm × 1,025 mm(从工作台开始,安全面板关闭)醉大外部尺寸(宽 × d × h) 1,393 mm × 1,285 mm × 1,469 mm(侧门打开,便于检修,中间位置为安全面板,高度包括用于一次性废料袋的支架)重量 188kg(415 磅)干重221kg(488 磅)运输重量订单号130-118-515柱选项:无论是遵循阳性选择还是未触及的策略,平行分离都很快,并且由于所有样品都经过相同的处理,因此可提供可重复的结果。不同的色谱柱选项使您能够适应样本数量、类型和分离策略。多-24 列块支持正选择和耗尽。它通过将 24 个色谱柱组合在一个单元中,实现高通量和大容量应用。它节省了时间,使处理样品数量或体积更加方便。LHS 单色谱柱适配器专为与单 MACS 色谱柱配合使用而设计,可让您一次性处理多达 12 个样品。它与LS,LD或全血柱兼容。LS 色谱柱针对正选择进行了优化,也可用于耗尽策略。LD 色谱柱针对耗竭进行了优化,而全血柱则针对直接从全血、骨髓和黄褐色外套中分离细胞进行了优化。单列适配器可帮助您在一次运行中仅处理少量样品时节省色谱柱成本。名称 容量标记细胞(醉大磁标记细胞)容量总细胞(醉大总细胞或醉大血容量)Multi-24 Column Block高达 1×10?(每列)高达 1×109(每列)LS 色谱柱 醉多 1×108个醉多 1×109个LD 色谱柱醉多 1×108个醉多 5×108个全血柱NA高达 10 毫升 试剂相容性和起始材料分离策略:正分离MACS 微珠和微珠试剂盒StraightFrom 微珠MACSprep™ 微珠不受影响的分离MACS 分离试剂盒间接微珠例如抗生物素微珠起始材料:样品类型- 外周血单核细胞- 全血- 白膜层- 白细胞分离术样本- LRSC- 骨髓- 分离组织或肿瘤的单细胞悬液- 培养细胞(细胞系和原代细胞)物种- 人类- 老鼠- 鼠- 非人类灵长类动物- 使用间接微珠可以实现所有其他功能样品数量- 多达 24 个样品,带 Multi-24 柱模块- 使用单柱适配器醉多 12 个样品4. gentleMACS™ 带加热器的Octo解离器产品描述:带加热器的 gentleMACS™ Octo 解离器是一款台式仪器,适用于多达 8 个样品的全自动标准化组织解离或均质化。配备八个独立的加热单元和众多优化且即用型的温和MACS程序,带加热器的gentleMACS Octo解离器为组织解离提供了全自动工作流程。此外,该仪器允许用户为几乎任何生物材料创建用户定义的程序。所有八个位置都可以独立操作。使用独特的C管或M管可以轻松且可重复地获得单细胞悬浮液或彻底的匀浆。这些一次性温和的MACS管允许在封闭和无菌系统中进行样品制备,提供高水平的用户安全性并醉大限度地减少交叉污染。应用:带加热器的温和MACS Octo解离器配备了多种程序,用于全自动组织解离成单细胞悬浮液,包括:ü 小鼠或人类肿瘤ü 小鼠或大鼠新生儿心脏ü 神经组织ü 小鼠脾脏、肺、固有层、表皮或肝脏ü 小鼠或大鼠骨骼肌以及更多
    留言咨询
  • 创新性的QuanlMAGE带来质谱成像的突破 成像速度快——成像速率300像素/秒,能更快得到成像结果分辨率高——空间分辨率优于10μm,能得到质量更好的图像重现性好——仪器硬件的创新性结合,能得到重现性更好的图像QuanTOF Ⅰ型和QuanTOF Ⅱ型仪器特点:高频率半导体激光器(5,000Hz),提高了质谱成像速度;激光光斑5~10μm可调(定制化可达1μm),实现空间分辨率优于10μm 靶板电场接地专利技术使质谱成像重现性更高;高频数据采集技术,使数据采集速率可达300 pixels/second 可对宽质量范围内的特定分子进行可视化位置确定;速度和空间同时聚焦技术,使线性模式在宽谱间达到高质量分辨率;前处理简单,无需任何标记物。 配套设备:冷冻切片机基质喷涂仪 聚集多种质谱技术,是创新性质谱影像系统 硬件系统一一提高影像分辨率高效数据分析和管理软件QuanIMAGE,可以对质谱得到的实验数据进行分类、优化和处理,来进行成像。强大的数据分析和图像处理软件平台,可以对成像图任意区域进行分析和比对。 质谱成像一肿瘤靶向用药位点定位 无需标记,可视化观察药物在组织中的分布情况 药物的组织分布信息对药物研发等环节具有重要作用,包括:药理、药代动力学、安全性评价、药物间相互作用以及药物的转运与代谢等。准确地了解药物在组织中的空间分布信息对药物研发非常重要,特别是对抗肿瘤药物等靶向性要求较高的药物。目前研究方法有:整体放射自显影和LC-MS联用技术,但都存在着同位素标记类似物耗时、费力、实用性差或者空间分布信息的缺失等问题。 质谱分子成像,无需任何标记;多点检测,不局限于特异的一种或者几种分子,同时对一些靶向和非靶向物质进行成像分析。因此,不仅可同时获取组织切片中多种分子的空间分布信息,还可以保持药物在组织上的空间分布特征,还可区分原药和药物代谢物,因此在新药研发中具有重要的应用价值。某药物注入小鼠脑部,对切片进行成像分析 将某药物注入小鼠脑部,做冷冻切片.空间分辨率10μm实验条件进行质谱成像,在特定的位置实现了药物( m/z 499)的可视化。 质谱成像——细胞分型单细胞水平蛋白标志物MALDI-TOF质谱成像 近年来,随着技术手段的提高,MALDI-TOF质谱成像的空间分辨率已经达到了单细胞水平,因而也开始被用于单细胞分析研究。通过免疫荧光标记检测仅可以看到胰岛素,而通过质谱成像选区不同种类蛋白可达到区分不同细胞目的。 上面案例展示了质谱成像在细胞分型方面有巨大潜力。肿瘤的发展是基于单个肿瘤细胞的自体扩增、随机突变以及自我筛选形成相对独立的亚群,这些亚群之间又互相影响成为密不可分的整体。运用质谱成像对肿瘤单细胞进行分型研究,提高了科研工作者对肿瘤细胞异质性和患者个体性的认识,揭示在整个肿瘤生态体系中,肿瘤细胞个体如何感知、回应并适应肿瘤微环境的,并且肿瘤细胞个体的异质性又是如何出现并最终影响肿瘤整体的命运发展。 质谱成像——肿瘤标志物肿瘤蛋白标志物MALDI-TOF质谱成像 作为个体化医疗的关键词之一,肿瘤标志物相关研究方兴未艾.质谱成像技术诞生,为发现肿瘤标志物的组织特异性提供了不可替代的技术手段。 QuanIMAGE系统可以同时提供高空间分辨率和高成像速度,为准确捕捉标志物提供了重要保障。癌变组织成像标志物分析初探通过HE染色技术可以看到癌变组织与间质差异,而通过癌变与间质质谱成像图谱比较证实了差异峰存在。 胃癌组织成像标志物分析初探 一机多用QuanGHb糖化血红蛋白定量质谱系统可定量 糖化血红蛋白定量检测,同时可检测变异血红蛋白效率高 一次可达96、 384等通量;一个样本30秒内即可完成检测结果准 质谱准确检测,抗干扰能力强成本低 测试成本低 QuanID微生物质谱系统快:10分钟内可自动化完成超过96个样本的检测准:超过500属、 45 00余种微生物数据库;二级库提高难分辨微生物准确度稳:新一代宽谱定量飞行时间质谱QuanTOF平台,保证微生物质谱高重现性省:终身免更换激光器;自动化流程,省时省力 QuanSNP核酸质谱系统高通量 单管可以完成多达 40重的检测,一次可检测96/384个样本高效率 15分钟完成96个样本检测,单日完成样本到结果输出高灵敏 fmol级别的物质即可检测低成本 单位点成本降低明显应用广 基因分型(SNP、 插入缺失和CNV) 、 甲基化分析、 实体肿瘤、 液体活检 *仅供科研使用
    留言咨询
  • 创新性的QuanlMAGE带来质谱成像的突破成像快速——成像速率300像素/秒,能更快得到成像结果分辨率高——空间分辨率优于10μm,能得到质量更好的图像重现性好——仪器硬件的创新性结合,能得到重现性更好的图像QuanTOF Ⅰ型和QuanTOF Ⅱ型仪器特点:高频率半导体激光器(5,000Hz)大大提高了质谱成像速度;激光光斑5~10μm可调(定制化可达1μm),实现空间分辨率优于10μm 靶板电场接地专利技术使质谱成像重现性更高;超高频数据采集技术,使数据采集速率可达300 pixels/second 可对宽质量范围内的特定分子进行可视化位置确定;速度和空间同时聚焦技术,使线性模式在宽谱间达到高质量分辨率;前处理简单,无需任何标记物。 配套设备:冷冻切片机基质喷涂仪 聚集多种质谱技术,是创新性质谱影像系统 硬件系统一一大大提高影像分辨率高效数据分析和管理软件QuanIMAGE,可以对质谱得到的实验数据进行分类、优化和处理,来进行成像。强大的数据分析和图像处理软件平台,可以对成像图任意区域进行分析和比对。 质谱成像一肿瘤靶向用药位点定位 无需标记,可视化观察药物在组织中的分布情况药物的组织分布信息对药物研发等环节具有重要作用,包括:药理、药代动力学、安全性评价、药物间相互作用以及药物的转运与代谢等。准确地了解药物在组织中的空间分布信息对药物研发非常重要,特别是对抗肿瘤药物等靶向性要求较高的药物。目前研究方法有:整体放射自显影和LC-MS联用技术,但都存在着同位素标记类似物耗时、费力、实用性差或者空间分布信息的缺失等问题。质谱分子成像,无需任何标记;多点检测,不局限于特异的一种或者几种分子,同时对一些靶向和非靶向物质进行成像分析。因此,不仅可同时获取组织切片中多种分子的空间分布信息,还可以保持药物在组织上的空间分布特征,还可区分原药和药物代谢物,因此在新药研发中具有重要的应用价值。某药物注入小鼠脑部,对切片进行成像分析 将某药物注入小鼠脑部,做冷冻切片.空间分辨率10μm实验条件进行质谱成像,在特定的位置实现了药物( m/z 499)的可视化。 质谱成像——细胞分型单细胞水平蛋白标志物MALDI-TOF质谱成像近年来,随着技术手段的提高,MALDI-TOF质谱成像的空间分辨率已经达到了单细胞水平,因而也开始被用于单细胞分析研究。通过免疫荧光标记检测仅可以看到胰岛素,而通过质谱成像选区不同种类蛋白可达到区分不同细胞目的。 上面案例展示了质谱成像在细胞分型方面有巨大潜力。肿瘤的发展是基于单个肿瘤细胞的自体扩增、随机突变以及自我筛选形成相对独立的亚群,这些亚群之间又互相影响成为密不可分的整体。运用质谱成像对肿瘤单细胞进行分型研究,能极大提高了科研工作者对肿瘤细胞异质性和患者个体性的认识,揭示在整个肿瘤生态体系中,肿瘤细胞个体如何感知、回应并适应肿瘤微环境的,并且肿瘤细胞个体的异质性又是如何出现并最终影响肿瘤整体的命运发展。 质谱成像——肿瘤标志物肿瘤蛋白标志物MALDI-TOF质谱成像 作为个体化医疗的关键词之一,肿瘤标志物相关研究方兴未艾.质谱成像技术诞生,为发现肿瘤标志物的组织特异性提供了不可替代的技术手段。 QuanIMAGE系统可以同时提供高空间分辨率和高成像速度,为准确捕捉标志物提供了重要保障。癌变组织成像标志物分析初探通过HE染色技术可以看到癌变组织与间质差异,而通过癌变与间质质谱成像图谱比较证实了差异峰存在。 胃癌组织成像标志物分析初探 一机多用QuanGHb糖化血红蛋白定量质谱系统可定量 糖化血红蛋白定量检测,同时可检测变异血红蛋白效率高 一次可达96、 384等通量;一个样本30秒内即可完成检测结果准 质谱准确检测,抗干扰能力强成本低 测试成本低 QuanID微生物质谱系统快:10分钟内可自动化完成超过96个样本的检测准:超过500属、 45 00余种微生物数据库;二级库提高难分辨微生物准确度稳:新一代宽谱定量飞行时间质谱QuanTOF平台,保证微生物质谱高重现性省:终身免更换激光器;自动化流程,省时省力 QuanSNP核酸质谱系统高通量 单管可以完成多达 40重的检测,一次可检测96/384个样本高效率 15分钟完成96个样本检测,单日完成样本到结果输出高灵敏 fmol级别的物质即可检测低成本 单位点成本降低明显应用广 基因分型(SNP、 插入缺失和CNV) 、 甲基化分析、 实体肿瘤、 液体活检 *仅供科研使用
    留言咨询
  • 单细胞可视化分选系统——isoPickisoPick是英国iotaSciences公司新推出的一款基于GRID专利技术(专利号:WO2019197373A1 )、高通量、高自动化的单细胞可视化分选系统。isoPick采用微射流技术,利用界面张力对细胞培养基(或干细胞涂层)进行重塑,在培养皿上雕刻出单独的细胞腔室GRID。isoPick可以在 6 厘米培养皿上创建 256 个单细胞腔室GRID阵列,并将细胞以纳升体积全自动地分配到各个 GRID 单细胞腔室中,通过isoPick的光学显微镜可以清楚地看到 GRID 室中的单细胞。基于GRID技术和光学成像信息,isoPick可以确保分选出的细胞100%为单细胞。设备特点- 全自动化流程- 操作简单,对细胞无损伤- 结果可追踪- 分离效率高达100%- 直接转移到PCR管或96孔板- 结构紧凑,体积小传统单细胞分离手段无法保证所得的样品内只有一个单细胞,有可能有多个细胞或细胞团,导致下游的实验出现误差。isoPick采用的GRID技术结合图像信息分析,结果可追踪,保证100%准确的单细胞分选。而且isoPick分选条件温和,可以显著提高分选单细胞的存活率。同时isoPick可将单细胞样品按照特定的体积直接转移到96孔板或PCR管中,无缝衔接单细胞下游应用,确保后续单细胞组学信息完整性。应用领域单细胞分选单细胞克隆单细胞组学100%准确的单细胞分选效率显著提升单细胞克隆的存活率(单克隆率)极大地简化单细胞组学步骤技术优势传统单细胞分选方法无法保证所得的样品中只有一个单细胞,而isoPick采用GRID单细胞腔室分离与光学信号验证相结合的分选技术,能够保证分选所得的单细胞样品中只有一个单细胞。isoPick可以高效分离hiPSCs单细胞,用于构建单克隆细胞系。isoPick对敏感单细胞处理温和,能够确保更高的单细胞存活率,达到更佳的克隆生长效果。isoPick可以将1.5~200 µ l的单细胞样品直接转移至PCR管带或96孔板中,无缝衔接后续单细胞测序scWGA流程,极大地简化单细胞组学步骤。单细胞分选前后的GRID细胞腔室包被不同基质的96孔板的单细胞hiPSC集落单细胞的WGA结果部分用户单位部分应用案例人类诱导多能干细胞(hiPSCs)的单细胞克隆人类诱导多能干细胞(hiPSCs)构建单克隆细胞系培养步骤繁琐,细胞对异常的处理和操作非常敏感,传统单细胞分选容易导致细胞和遗传毒性应激的积累,进而导致不良分化和多能性丧失。使用isoPick可以温和、自动地将人类诱导多能干细胞(hiPSCs)进行单细胞分选,以高效率培养hiPSCs单克隆细胞系,显著提高了细胞分离与克隆效率。K562细胞单细胞测序传统单细胞测序需对单细胞进行全基因组扩增(WGA),但传统单细胞WGA受限于如何获得单个细胞并转移到小体积的WGA反应中。使用isoPick自动将K562细胞拾取并转移至含3.5 µ l scWGA试剂的PCR管中,并无缝衔接scWGA反应。琼脂糖凝胶电泳结果显示(下图),单细胞WGA的DNA样本(+)中两种基因均被特异性扩增,而阴性对照(-)没有这两种扩增产物,符合预期。对人类诱导多能干细胞 (hiPSCs) Prime 编辑构建工程细胞系Prime 编辑可在 HEK3 基因座中高效精确插入三个核苷酸,用于构建工程细胞系hiPSCs。通过引入靶标特异性 pegRNA 来编辑单个或多个基因组位点,以进行精确有效的基因组编辑,促进疾病建模和功能遗传学研究。Prime 编辑使用与逆转录酶融合的 Cas9 切口酶,将 DNA 序列从“Prime 编辑”引导 RNA (pegRNA) 复制到特定基因座。通过Prime 编辑将多西环素诱导型 Prime Editor 蛋白 (PE2) 整合到 iPSC 细胞系的AAVS1 基因组,之后使用isoPick分选转入靶基因的hiPSCs细胞系,以确保细胞的单克隆性。(见上图)该研究使用isoPick来确保工程细胞系的单克隆性与准确性。 参考文献:Bharucha N, Ataam J A, Gavidia A A, et al. Generation of AAVS1 integrated doxycycline-inducible CRISPR-Prime Editor human induced pluripotent stem cell line[J]. Stem Cell Research, 2021, 57: 102610.胶质母细胞瘤(GBM)通过表观遗传免疫编辑获得骨髓相关转录程序以引发免疫逃逸研究人员通过将多形性胶质母细胞瘤干细胞 (GSC) 连续移植到免疫活性宿主中,发现 GSC 通过建立增强的免疫抑制肿瘤微环境来免疫逃逸。从机制上讲,GSC通过表观遗传免疫编辑过程引起,其在免疫攻击后强制执行 GSC 中稳定的转录和表观遗传变化。研究中使用Irf8敲除细胞系实验证明,Irf8的激活是细胞免疫逃逸的一个重要因素,且在体内可能通过IFNγ介导的激活发生。该研究使用isoPick构建Irf8克隆敲除系。参考文献:Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion[J]. Cell。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制