当前位置: 仪器信息网 > 行业主题 > >

紫菜中砷铅镉成分分析

仪器信息网紫菜中砷铅镉成分分析专题为您提供2024年最新紫菜中砷铅镉成分分析价格报价、厂家品牌的相关信息, 包括紫菜中砷铅镉成分分析参数、型号等,不管是国产,还是进口品牌的紫菜中砷铅镉成分分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合紫菜中砷铅镉成分分析相关的耗材配件、试剂标物,还有紫菜中砷铅镉成分分析相关的最新资讯、资料,以及紫菜中砷铅镉成分分析相关的解决方案。

紫菜中砷铅镉成分分析相关的资讯

  • 探讨:材料成分分析技术与应用
    成分分析是材料研究中的一个必要项,可以帮助科研工作者了解材料的组成和性质,并对材料的改性和升级提供重要的理论依据。常用的分析方法有光谱、色谱、质谱等。为帮助广大科研工作者了解前沿表征与分析检测技术,解决材料表征与分析检测难题,开展表征与检测相关工作,仪器信息网将于2023年12月18-21日举办第五届材料表征与分析检测技术网络会议,特别设置成分分析专场,邀请多位专家学者围绕材料成分分析技术与应用展开分享。部分报告预告如下(按报告时间排序):上海交通大学分析测试中心研究员 朱邦尚《红外光谱分析制样技术漫谈》点击报名听会朱邦尚,博士,研究员,博士生导师,在上海交通大学分析测试中心/化学化工学院从事科研和教学工作,研究方向:生物材料和纳米生物医药,主要从事纳米生物材料在药物、生物医学领域的应用研究。仪器分析领域:光谱分析,主要涉及红外光谱、拉曼光谱、荧光光谱、紫外-可见-近红外光谱和圆二色光谱等。曾主持和参加10多项国家和省部级科研项目。在高水平的学术期刊Biomaterials、Biomacromolecules、Polymer Chemistry、Carbon和Macromolecules等杂志发表70多篇研究论文,他引5000多次。担任国家自然科学基金项目评审专家、教育部学位论文评审专家、上海市科委项目评审专家、仪器设备评审专家以及高级职称评审专家;同时,应邀参与Biomaterials、Carbon等国际一流学术期刊的论文审稿。报告摘要:红外光谱分析样品用量少、分析速度快、图谱直观,有成熟、完备的IR谱库支撑数据或谱图分析;同时,红外光谱仪价格相对便宜。所以,在物质定性分析或分子结构鉴定过程中,红外光谱备受青睐分析手段。然而,要想做出一张高质量的谱图,客观、准确、有效地反映样品的分子结构和化学成分特征,避免伪峰或假峰,必须要用正确的样品制备方法和选择合适的检测模式,样品制备是红外光谱分析的关键环节,“样品制不好,神仙做不了”。由于测试样品成分及来源复杂多变,不同类型样品所适用的方法不同。本报告结合20多年来的实践经验,就红外光谱分析样品制备主要手段:压片法、糊状法、薄膜法(溶剂溶解成膜法、热压法制膜)、液体池法(液体测试、液膜测试)、气体池法等;不同红外检测模式:透射、反射、ATR、显微IR、纳米IR等给予充分地介绍,对于制样和测试过程中常出现的问题进行分析讨论, 供广大红外光谱和仪器分析工作者参考。江西理工大学分析测试中心教授 吴伟明《材料的成分分析探讨》点击报名听会吴伟明,江西理工大学分析与测试中心副主任与技术负责人,教授,全国稀土标准化技术委员会委员,中国稀土学会理化检验专业委员会委员。从事分析测定和应用化学方面的研究三十余年。主要从事电子精细化学品研制、再生金属的分离提取以及相关分析检测技术研究,特别是在有色金属冶金分析方面的检测领域。起草编制国家标准制定二项和参与制定国家和行业标准数项。主持和参加省部级和企业科研项目数项,获专利发明2项,发表学术论文二十余篇。报告摘要:材料的成分分析探讨:1.材料的成分 ;2.材料成分分析;3.高纯物质检测利器--电感耦合等离子串联质谱仪(ICP-MS/MS)。沃特世大中华区T&LS部门材料科学市场经理 李欣蔚《应对材料分析挑战的色谱质谱及信息化技术应用》点击报名听会李欣蔚,从事分析领域近15年,2011年进入沃特世以来,负责相关领域的色谱、质谱应用方案支持,帮助客户实现检测效率最大化;对接最新国际材料领域检测方案、推进全国化工行业高端客户合作、熟知细分行业材料分析思路;推动开发应对产业难题的解决方案,基于不同材料类型、不同应用领域、不同产业链需求制定定制化方案指导。报告摘要:分析检测可以助力材料研发、品质把控和溯源,但同时有机材料的分析过程中会遇到各种各样的挑战。无论是溶解难题、复杂样品拆分难题、如何数据挖掘解析的困难、以及对于效率和多种类样品分析的需要,沃特世提供创新性的、多样化、多角度分析的色谱质谱解决方案。 在本次报告中将分享沃特世超高效聚合物色谱APC、多样化的质谱进样手段、以及最新的Pattern Targeting Application软件表征应用案例和技巧。中国航发北京航空材料研究院高级工程师 高颂《高精度检测方法在高温合金化学成分分析中的应用》点击报名听会高颂,中国航发北京航空材料研究院,高级工程师;航空工业分析化学鉴委会委员和授课教师,冶金分析杂志理事会委员。多年来一直从事金属材料化学成分分析方法研究与航空试验室金属材料分析测试管理工作。主编航空用钛合金、铝合金、高温合金检测标准国军标、航业标准十余项,航发标准项十余项。授权发明专利2项,技术秘密3项,发表论文30余篇,出版专著2项,科技成果三等奖2项。近年来在辉光质谱法检测高温合金痕量元素、高分辨质谱法检测高温合金痕量元素方面成果显著,编写了系列分析方法标准多项。报告摘要:无。北京市科学技术研究院分析测试所(北京市理化分析测试中心)副所长/研究员 高峡《高分子材料老化降解成分捕获与分析测试技术》点击报名听会高峡,复旦大学材料物理与化学专业博士,先后工作于中国科学院化学研究所高分子物理与化学国家重点实验室和工程塑料院重点实验室,现任职于北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)副所长,有机材料检测技术与质量评价北京市重点实验室主任。承担国家、省部级科研项目 20余项、获批发明专利6项,立项或颁布国家标准7项、行业或团体标准10余项,主编或参编著作4部,发表学术论文百余篇,科研成果获省、部级行业科学技术奖二等奖2项、三等奖3项。兼任全国塑料制品标准化技术委员会委员、全国纳米技术标准化技术委员会委员、中国材料与试验标准化委员会微塑料及其环保试验技术标准化委员会副主任委员和秘书长等。报告摘要:重点介绍实验室自制高分子材料老化降解成分收集装置和老化产物分析测试技术,以及“微塑料”检测标准化进展情况。参会指南1、进入第五届材料表征与分析检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/icmc2023/)进行报名。扫描下方二维码,进入会议官网报名2、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • 吐温成分分析好帮手——岛津吐温成分分析系统
    吐温Tween(聚山梨酯polysorbate),是由脱水山梨醇与环氧乙烷加成聚合,再与脂肪酸酯化后形成的聚合物,通常为混合物。吐温是一种非离子型表面活性剂,广泛用作乳化剂和油类物质增溶剂,通常被认为是无毒、无刺激材料。它对亲脂性药物有较好的助溶作用,常被用作注射剂及口服液的增溶剂或乳化剂,是一种常用的药物制剂辅料。近些年来,在临床应用中,出现了一些副作用和不良反应的报道,如过敏、溶血等。研究表明,这些副作用的产生与吐温的纯度有关。吐温传统检测方法专属性不足,其他检测方法如色谱分离搭配高分辨质谱及软件,整个系统的采购成本较高,并且对实验操作人员的知识水平和技术要求也较高。 岛津台式机MALDI系列 由岛津中国创新中心开发的“吐温成分分析工作站”软件,可搭配岛津台式机MALDI系列使用,吐温成分分析系统性价比更优,且操作简单,对工作人员的知识储备和实验技能要求不高,非常适合吐温成分分析。 MALDI吐温成分分析系统特点准确以MALDI-TOF质谱数据为基础,内嵌药典相关48种(1920个)化合物信息,包括脱水山梨醇、异脱水山梨醇及聚乙二醇的单酯化物和多酯化物等。通过大量样本迭代验证,可保证数据结果准确可靠。 高效包括相似性比较、组分鉴定及聚类分析三大功能,界面友好、操作简单。每个样本只需5~10分钟即可得到定性及定量测试结果,满足各级别用户需求。 可扩展软件内嵌标准谱库并支持自建库功能,可由用户自行添加目标数据信息,以满足本部门数据趋势化分析、质量稳定性内控等定制化检测需求。 无缝连接与岛津台式机MALDI-TOF系列无缝连接。岛津台式机MALDI系列具有200Hz长寿命固态激光器,特有防污染技术宽口径离子光学技术,TrueClean自动源清洁功能,配备基于紫外激光器的源清洁功能,可自动快速实现源自清洁。使仪器长期使用中源的污染风险降得更低。进样速度快,静音(55dB)。 应用示例 01相似性比对能够实现谱图之间的相似性比对,为不同批次产品的质控提供帮助。02成分鉴定内嵌多种聚山梨酯类化合物的成分信息,能快速自动识别主成分及各类杂质成分,并给出各成分的相对含量。03聚类分析对不同类别的聚山梨酯类化合物或未知混合物等进行聚类分析。本文内容非商业广告,仅供专业人士参考。
  • 岛津大气中PM2.5物质成分分析仪器(1)
    近来,雾霾天气频袭中国,在相关大气污染报道中,不断出现PM2.5一词。这是指在悬浮粒子状物质中粒径小于2.5&mu m的微小粒子,容易深入肺部,可对健康造成严重影响。 日本已于2009年9月设定了微小粒子状物质(PM2.5)的环境标准,在2010年3月31日修订的「基于大气污染防止法第22条规定的与大气污染状况持续监控相关的事务处理标准」中,规定按照国家指针实施PM2.5的成分分析。2011年7月29日,日本环境省分布了新的「PM2.5成分分析指针」。 在此介绍2010年9月1日日本环境省指示的用于PM2.5成分分析的各分析仪器。并介绍使用岛津分析装置分析PM2.5成分的应用实例。用于PM2.5成分分析的仪器例摘自2010年9月1日日本环境省事务联络「关于微小粒子状物质成分分析相关的基础信息」测定成分分析仪器前处理装置等对应的岛津公司产品多环芳烃类(PAH)GCMS或HPLC提取 超声波提取装置 索氏提取装置浓缩 氮气浓缩装置旋转蒸发器Kuderuna-Danisshu浓缩装置 离心分离 离心分离装置GCMS-QP2010 Ultra Prominence Nexera 左旋葡聚糖GCMS提取、浓缩如上 衍生化 恒温槽 GCMS-QP2010 Ultra水溶性有机碳(WSOC)TOC超声波提取装置TOC-L离子成分备注1)离子色谱仪超声波提取装置HIC-SP/NS无机元素成分备注2)(X射线荧光法)EDX&mdash EDX-720无机元素成分备注2)(ICP-MS法)ICP-MS压力分解装置加热板ICPM-8500 备注1)离子成分 硫酸根离子,硝酸根离子,氯离子,钠离子,钾离子,钙离子,镁离子,铵离子备注2)无机元素成分 钠,铝,钾,钙,钪,钛,钒,铬,锰,铁,钴,镍,铜,锌,砷,硒,铷,钼,锑,铯,钡,镧,铈,钐,铪,钨,钽,钍,铅,等 根据目的元素,也可以选择原子吸收法或ICP-AES法。「出自日本环境省暂定手册(2007年)」备注3)关于采样  采样器的分粒装置规定使用50%分粒径为2.5&mu m± 0.2&mu m、具有按20%分粒径对80%分粒径之比规定的斜率为1.5以下的性能的分粒装置。 分粒装置例:美国联邦标准法(Federal Reference Method:FRM)所认定的装置 GCMS测定例 分析条件分析仪器:GCMS-QP2010 Ultra色谱柱:Rtx-35(长30m 0.32mmID df=0.25&mu m)进样模式:无分流气化室温度:300℃柱温箱温度:90℃(2分)&rarr (5℃/2分)&rarr 320℃(12分) 载气控制:氦气(线速度恒定 43.7cm/秒)高压进样:150KPa(1.5分)接口温度:300℃离子源温度:230℃测定模式:扫描质量范围:m/z45-450事件事件:0.3秒 GCMS-QP2010 Ultra的特长 高灵敏度高灵敏度离子源提供高传输效率的离子光学系统,并实现离子源盒中温度的均一化。高速扫描通过新开发的ASSP&trade 专利技术,具备高速数据采集及处理能力,在扫描速度提高的同时(大于10,000 u/sec)不牺牲灵敏度。Scan/SIM同时扫描 (FASST)FAAST(Scan/SIM同时扫描)是一项数据采集技术,能够使用户在一次分析中同时获得Scan数据及SIM数据。ASSP&trade 使这项技术的配合使用使得其性能得以提升:在不损失灵敏度的前提下将SIM的驻留时间缩短了5倍,从而使用户监测到更多的SIM通道。Easy sTopEasy sTop功能使用户无需释放质谱真空便可以进行进样口维护,从而使停机时间最短化。双柱MS系统(可选)GCMS-QP2010 Ultra能够容许两根窄口径毛细管柱同时与质谱仪连接。这意味着用户无需更换色谱柱即可应对不同应用需求。生态模式生态模式使仪器可以在待机模式时节约电量并减少载气消耗。离子色谱仪分析离子成分例双流路分析系统的特长 在2010年9月1日日本环境省事务联络的附件1《用于成分分析的分析仪器例》中指示如果使用2台仪器用于阳离子、阴离子分析,则分析效率高。岛津的双流路分析系统高效组合了离子用高灵敏度抑制器法和阳离子用非抑制器法,避免了由流动相置换、色谱柱更换造成的污染。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 手持金属成分分析仪在金属回收与交易中的应用
    为了减少资源浪费和环境污染,也为了更高效地进行金属回收与交易,现场实时检测金属元素的含量尤为关键。便携式金属元素分析仪的出现,为金属回收与交易提供了便利与准确性。金属品质检测:手持金属成分分析仪可以实时检测回收的金属材料中的元素含量,快速获得样品的成分信息。  2.交易价值评估:通过快速获得样品的成分信息,可以对金属品质进行有效的评估,帮助决定是否进行回收和交易。这有助于确保公平、合理的交易,避免潜在的不当交易。  3.资源利用优化:便携式金属元素分析仪有助于优化资源利用。通过检测废旧金属或废品中的元素含量,可以确定其再利用的潜力。这有助于选择合适的回收和再加工方式,提高资源循环利用的效率。  4.估算金属成分:手持金属成分分析仪能够通过测试样本,快速计算出不同成分比例的金属含量,便于回收商对回收金属的价值做出准确的估算,同时也有助于制定合理的金属价值购买策略。  手持金属成分分析仪以其快速分析、准确性和便捷性,有助于优化资源利用,提高交易的可靠性和效率。  赢洲科技作为仪景通一级品牌代理商,拥有完整的售前售后服务体系,如有仪器购买或维修需求,可联系赢洲科技为您提供原装零部件替换、维修。
  • 岛津大气中PM2.5物质成分分析仪器(2)
    近来,雾霾天气频袭中国,在相关大气污染报道中,不断出现PM2.5一词。这是指在悬浮粒子状物质中粒径小于2.5&mu m的微小粒子,容易深入肺部,可对健康造成严重影响。 日本已于2009年9月设定了微小粒子状物质(PM2.5)的环境标准,在2010年3月31日修订的「基于大气污染防止法第22条规定的与大气污染状况持续监控相关的事务处理标准」中,规定按照国家指针实施PM2.5的成分分析。2011年7月29日,日本环境省分布了新的「PM2.5成分分析指针」。 继昨日介绍之后,在此继续介绍使用岛津分析装置分析PM2.5成分的应用实例。 ICP-MS分析无机元素成分例 介绍使用ICP-MS定量城市大气粉尘标准物质(NIST SRM1648)的实例。前处理采用微波分解装置分解样品,制成硝酸溶液后进行测定。下表表示大气粉尘标准物质的定量结果。结果与保证值非常一致。ICPM-8500的特长实现高灵敏度、多元素的同时分析具有ppt水平的高灵敏度,并且实现多元素的同时分析。 采用等离子微炬管,降低了氩气消耗量采用微炬管,使氩气消耗量减半,并且,可以高灵敏度同时分析从微量到高浓度的样品。 台式装置,维护简便通过使用自动进样器AS-9和自动稀释装置ADU-1(选配件),可以实现自动分析。 X射线荧光装置(EDX)分析无机元素成分例EDX-720的特长 简便操作,全自动测定实现设定工作的自动化,初学者也可完成高精度的测定。 无需前处理,直接测定滤纸如果使用能量色散型X射线荧光分析装置,则可以无化学前处理地对捕集在滤纸上的PM2.5物质进行元素分析。 可以高灵敏度地分析宽范围的元素 TOC仪(燃烧催化氧化/NDIR检测方式)分析水溶性有机物例 作为WSOC(水溶性有机碳)的主成分二羧酸的代表例,以下表示草酸分析的结果。在配制样品的纯水中含有大约0.02mg/L的TOC杂质,因此,各草酸水溶液的TOC值偏高,但都能够以3%以下的变动系数CV值进行定量。分析条件 装置:TOC-LCPH催化剂:高灵敏度催化剂进样量:500&mu L测定项目:TOC(经过酸化通气处理的TOC)工作曲线:0-3mgC/L邻苯二甲酸氢钾水溶液样品:特级试剂草酸2mgC/L、1mgC/L、0.2mgC/L水溶液 草酸水溶液的TOC测定结果样品名TOC值(mgC/L)n=3的CV值2mgC/L草酸水溶液2.0130.95%1mgC/L草酸水溶液1.0171.11%0.2mgC/L草酸水溶液0.2232.06% TOC-L的特长 宽测量范围4&mu g/L~30000mg/L,适用于从超纯净水到高污染水(TOC-LCSH/CPH)的一切物质。采用680℃燃烧催化氧化方式,高效率地测定所有有机成分。具备检测限为4µ g/L的高灵敏度检测能力,对应广泛领域的样品。省空间省能源设计与本公司以往装置相比,电力消耗降低36%,装置幅宽缩短约20%。丰富的型号与选配件・ 备有方便处理测定数据的PC型号和简单操作的单机型号・ 安装选配件可以测定从固体样品到气体样品・ 安装TN单元可以测定总氮关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 直播预告!第四届材料表征与分析检测技术网络会议之成分分析分会场
    仪器信息网讯 材料表征与检测技术,是关于材料的成分、结构、微观形貌与缺陷等的分析、测试技术及其有关理论基础的科学。是研究物质的微观状态与宏观性能之间关系的一种手段,是材料科学与工程的重要组成部分,是材料科学研究、相关产品质量控制的重要基础。仪器信息网将于2022年12月14-15日举办“第四届材料表征与分析检测技术网络会议(iCMC 2022)”,两天的会议将分设成分分析、表面与界面分析、结构形貌分析、热性能四个专场,邀请材料科学领域相关检测技术研究与应用专家、知名科学仪器企业技术代表,以线上分享报告、在线与网友交流互动形式,针对材料科学相关表征及分析检测技术进行探讨。为同行搭建公益学习互动平台,增进学术交流。为回馈线上参会网的支持,增进会议线上交流互动,会务组决定在会议期间增设多轮抽奖环节,欢迎大家报名参会。会议报名链接:https://www.instrument.com.cn/webinar/meetings/icmc2022/成分分析主题专场会议日程:报告时间报告题目报告人专场一:成分分析(12月14日上午)09:00--09:30锂电池中的磁共振华东师范大学研究员 胡炳文09:30--10:00沃特世材料分析中的色谱质谱技术特点、发展和应用沃特世科技(上海)有限公司材料科学市场部高级应用工程师 李欣蔚10:00--10:30固体核磁共振研究MOF缺陷结构浙江大学教授 孔学谦10:30--11:00物理吸附仪和化学吸附仪在催化领域的应用北京精微高博仪器有限公司市场部经理 牛宇鑫11:00--11:30X射线荧光光谱在高温合金成分检测中的应用钢研纳克检测技术股份有限公司主任 孙晓飞直播抽奖:钢研纳克三合一数据充电线15个11:30--12:00激光质谱用于材料中元素的分析厦门大学教授 杭纬12:00--12:30X射线荧光分析法测定水泥及原料中重金属中国国检测试控股集团股份有限公司中央研究院总工/教授级高工 刘玉兵直播抽奖:小蜜蜂吉祥物玩偶5个嘉宾介绍:华东师范大学研究员 胡炳文胡炳文,1999–2006年就读于复旦大学,2006–2009年就读于法国里尔第一大学法国超高场核磁共振研究中心,从事核磁共振新方法的开发。回国转型开拓电池体系和顺磁共振技术,从事核磁共振、顺磁共振的新方法新技术的开发及其在锂离子电池体系里的应用研究。发表文章150余篇,曾在2014/2021全国波谱学学术会议做大会报告。现任华东师范大学上海市磁共振重点实验室副主任、物理与电子科学学院副院长,曾获国家自然基金委优秀青年基金支持。【摘要】 我们开发了一种原位顺磁共振EPR成像方法,可以得到锂在集流体上的沉积分布。我们研究了锂枝晶的沉积,发现锂枝晶在局部的聚集。在此基础上,我们研究存在FEC和不存在FEC时的EPR成像,发现FEC电解液的存在可以使得Li的沉积更加均匀,我们还发现不同的电解液体系里Sand容量并不同;此外开发了微分谱技术证实了Li枝晶生长为尖端生长。 以P2-Na0.66Li0.22Mn0.78O2为基准体系,首次利用EPR技术揭露了氧化物正极材料的体相中“被圈闭”的分子O2(trapped molecular O2)的生成;此外,EPR和NMR联用也证明类过氧阴离子(O2)n-在充电过程先于分子O2生成,并在4.5 V完全充电态与分子O2共同存在。还研究了不同的富锂体系,发现相对于传统的O3相,O2相在高电压下并不能抑制O2的生成,而O2的生成导致系统的不稳定。 最后我们将讨论如何使用NMR和XPS区分LGPS-LCO体系里的空间电荷层和副反应层。沃特世科技(上海)有限公司材料科学市场部高级应用工程师 李欣蔚2011年加入Waters,有十几年的色谱、质谱行业经验,负责相关领域的色谱、质谱应用方案支持,帮助客户实现检测效率最大化;对接最新国际材料领域检测方案、推进全国化工行业高端客户合作、熟知细分行业材料分析思路;推动开发应对产业难题的解决方案,基于不同材料类型、不同应用领域、不同产业链需求制定定制化方案指导。【摘要】 材料的分析检测不单单对分析方法稳定性、信息化有要求,也同时需要解决很多挑战,例如难溶化合物、聚合物和小分子多组分配方,痕量杂质、复杂的反应过程分析流程等等。在此次的报告中,将分享液相/合相色谱、质谱平台特点和适用性,展示材料成分分析中应用的扩展技术和案例,多样化的解决方案组合,为各种挑战的应对提供新的思路。浙江大学教授 孔学谦孔学谦,浙江大学化学系博士生导师。2005年获中国科学技术大学学士学位;2010年获爱荷华州立大学博士学位;2010-2013年,在劳伦斯伯克利国家实验室做博士后。2013-2014年,受聘于HGST公司材料实验室担任高级工程师。2014年9月加入浙江大学化学系。在Science、Nature、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Adv. Mater.、Nano Lett.等杂志发表论文60多篇。【摘要】 金属框架材料(MOF)中的缺陷对其性质有关键影响。但是缺陷的化学结构复杂,且空间分布无序,难以通过常规方法表征。通过运用特殊的固体核磁共振技术,可以揭示MOF缺陷分子级图像。这些固体核磁方法可以通过直接观测——分辨缺陷位吸附分子的动力学状态;也可以通过间接观测——探究缺陷的孔径大小和空间分布。在某些体系中,固体核磁还能观测到关联缺陷的一维分布。这些固体核磁的分析表征,为利用MOF缺陷实现特殊功能,提供了关键指导。北京精微高博仪器有限公司市场部经理 牛宇鑫北京精微高博仪器有限公司市场经理,主要负责精微高博市场推广工作。【摘要】 本次报告将从催化剂制备、催化剂表征与催化剂评价等多个角度,介绍物理吸附仪和化学吸附仪在此方向上的具体应用。从而更好的利用物理吸附仪表征催化剂材料的基本物性。通过化学吸附仪详细评价催化剂的性能与反应机理。钢研纳克检测技术股份有限公司主任 孙晓飞孙晓飞,博士,高级工程师,钢研纳克检测技术股份有限公司/国家钢铁材料测试中心化学分析室主任,SAC/TC 183/SC 5全国钢标委钢铁及合金化学成分分委会委员,ISO/TC 17/SC 1国际钢标准化委员会钢铁化学成分测试分技术委员会工作组专家,CSTM中国材料与试验团体标准委员会委员,《冶金分析》编委。主要从事金属材料固体分析技术的研发,以及实验室质量控制及相关标准制修订。主持或参与修订国家、行业及团体标准10多项,参与国家及省部级科研课题5项,发表SCI及核心论文20余篇。【摘要】 高温合金是指在600℃以上高温下有较高的强度与一定的断裂韧性、良好的弹塑性、抗氧化、抗腐蚀、抗疲劳性能等的一类合金,广泛应用于航空发动机、汽车发动机、燃气轮机、核电、石油化工等领域。随着材料研究的深入发展,添加不同的合金元素对高温合金各项性能具有影响较大,各元素的准确定值尤其关键。常见的定值方法有传统的滴定法、重量法、电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法等。X射线荧光光谱法一种常用的多组分测定的方法,具有测定时间短、精度高、便于操作等优点,在冶金行业应用广泛。本文通过优化合适的测量条件、选择多种标准样品、确定仪器的最佳测量参数、元素重叠校正、减少共存元素干扰,建立高温合金中Si、Mn、Cr、Mo、Ni、Fe、Co、Ni、Al、Zr、Nb、W、Ta、Hf、Cu等元素的工作曲线,对线外标准样品、内控样、能力验证样品的分析结果发现,方法精密度及正确度能满足检测要求。该方法准确度、精密度高,完全能够满足铁基、镍基、钴基高温合金材料的化学成分测试的需要,已应用于合金材料的成品复验及生产过程中的控制检验。厦门大学教授 杭纬厦门大学南强特聘教授,主要研究方向:分析仪器的研究和发展,包括质谱仪器的研制、信号检测新技术的开发、离子源及其接口技术的研究、其他分析仪器与质谱分析法的联用新技术;分析仪器的应用,包括以质谱为核心的各种分析仪器在生物、医药、环境、材料、冶金、矿产、安检和商检等领域的应用。在Sci. Adv., Angew. Chem. Int. Ed., ACS Nano, Anal. Chem.等期刊发表SCI论文160余篇。主持国家自然科学基金国家重大科研仪器研制项目、面上项目和国家863计划等课题以及美国能源部、国土安全部、疾病防治与预防中心资助课题。【摘要】 目前为人们所接受的固体样品的直接分析质谱方法为激光溅射电感耦合等离子体质谱法(LA-ICPMS)、辉光放电质谱法(GDMS)和二次离子质谱法(SIMS)。它们的谱图中存在着大量干扰峰,对待测元素造成严重干扰;由于等离子体质谱的温度不够高, 不同元素的相对灵敏因子存在显著差异,必需使用大量标准样品进行校准。而匹配的标准样品难以获得是这些方法中存在的另一个主要困难,一方面购置固体标准样品十分昂贵,另一方面寻找与样品相同基体的标样十分困难,而寻找相同基体,并含有所测的元素,其含量又适中的标样更是难上加难。虽然有着前面所提到的固体表面直接分析质谱仪器的存在,但目前绝大部分的固体样品仍然是使用强酸溶解消化,再以液体的方式进行分析,无法进行固体表面原位的定性定量分析,耗费大量的人力、物力与财力。这种状况表明,目前国内外仍然缺乏对固体表面的直接定性定量的分析方法。发展有效的固体样品的直接分析方法已经势在必行。与LA-ICPMS、GDMS和SIMS技术相比,高功率激光密度激光溅射/电离质谱(LA/LI-MS)具有相当大的优势。在高功率激光密度作用时,样品表面被辐射的微区被加热,并产生爆炸式的原子化效果。所产生的等离子体可将几乎所有原子电离。在固体表面直接分析方面优势巨大。理想情况下,只需使用某一元素的峰高(峰面积)除以谱图中所有谱线峰高(峰面积)的总和,即可得到该元素在样品中的组份含量,所以无需使用标准样品。本报告将报道该技术的最新研究进展。会议报名:https://www.instrument.com.cn/webinar/meetings/icmc2022/
  • 锂电行业专家深度剖析:十大成分分析仪器技术全攻略
    在安全性与高能量密度双重目标追求下,锂电检测技术的发展与深入应用愈发凸显其重要意义。仪器信息网自2019年举办首届“锂离子电池检测技术与应用”网络会议以来,该年度系列会议累计吸引超8000业内人士报名参会,参会人员广泛涵盖了从锂电上游原材料/设备、中游电池系统、下游应用等锂电产业环节。2024年5月28-31日,仪器信息网将联合国联汽车动力电池研究院有限责任公司举办第六届“锂离子电池检测技术与应用”网络会议,按主要检测技术、热点应用分设六个专场,邀请锂电检测领域研究应用专家、相关仪器技术专家等,以网络在线报告交流的形式,针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望、锂电回收等进行探讨,为锂电检测应用端与仪器设备供应端搭建交流平台,为我国锂电产业市场健康快速发展助力。5月28日全天,锂电成分分析技术主题专场,12位锂电科研与仪器技术专家将分别为大家介绍色谱、质谱、原子光谱、拉曼光谱、核磁共振、分子光谱、元素分析、电子顺磁共振技术、电化学仪器技术、X射线荧光光谱、ICP-OES和ICP-MS等主流成分分析技术在锂电产业中的最新应用与进展。一、 主办单位仪器信息网国联汽车动力电池研究院有限责任公司二、 会议时间2024年5月28日-31日三、 参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.co m .cn/webinar/meetings/ldc2024/ 四、 锂电成分分析技术专场(注:以最终日程为准)05月28日 锂电成分分析技术专场报告时间报告题目报告嘉宾09:30德国耶拿超高分辨率高耐受性助力锂电行业高质量发展陈瑛娜德国耶拿分析仪器有限公司 应用工程师10:00PerkinElmer ICP-MS在锂电行业元素分析的解决方案梁少霞珀金埃尔默企业管理(上海)有限公司 高级技术支持10:30HORIBA技术在锂电成分分析中的应用研究代琳心HORIBA(中国) 拉曼应用工程师11:00电子顺磁共振(EPR)技术在锂离子电池研究中的应用方勇布鲁克(北京)科技有限公司 EPR应用工程师11:15核磁共振(NMR)在锂离子电池分析中的应用任萍萍布鲁克(北京)科技有限公司 核磁共振应用专员11:30单波长X射线荧光光谱仪与全息基本参数法对锂电池材料(含Li元素)的快速准确定量刘晓静安科慧生 应用工程师14:00耐高压金属有机框架电解质的结构调控与性能研究董盼盼西南交通大学 特聘副研究员14:30锂电池材料检测解决方案文桦钢研纳克检测技术股份有限公司 产品经理15:00赛默飞原子光谱技术助力新能源材料元素分析贺静芳赛默飞世尔科技(中国)有限公司 高级应用工程师15:30锂电池元素分析挑战与安捷伦解决方案尹红军安捷伦科技(中国)有限公司 AE - 应用工程师16:00雷磁锂电成分分析解决方案李新颖上海仪电科学仪器股份有限公司 产品应用16:30X射线荧光光谱仪在锂电材料分析中的应用刘建红岛津企业管理(中国)有限公司 应用工程师 应用工程师五、 嘉宾简介及报告摘要(按分享顺序)陈瑛娜 德国耶拿分析仪器有限公司 应用工程师【简介】毕业于浙江海洋大学,食品工程硕士,发表SCI文章2篇,中文期刊6篇,发明专利10项。长期专注金属与总有机碳等分析技术的方法开发与技术支持工作,主要负责光谱类及总有机碳仪器实验方法优化和新行业新领域的应用拓展工作,有丰富的应用研发经验。【摘要】锂电池分析中经常存在痕量杂质元素测试时光谱干扰严重、主含量和杂质元素需采用不同仪器测试、基体复杂、维护频率高等问题,给分析人员带来很大的挑战,德国耶拿0.003nm超高分辨率使常见的光谱干扰问题迎刃而解;双向观测+Plus功能,高低浓度元素一次进样即可完成;耐盐性高达85g/L的multi N/C 总有机碳分析仪,使原料品质控制更得心应手。梁少霞 珀金埃尔默企业管理(上海)有限公司 高级技术支持【简介】毕业于中山大学化学与工程学院,现任珀金埃尔默原子光谱高级技术支持,有多年原子光谱(AAS/ICP-OES/ICP-MS)应用开发经验,熟悉锂电池材料中元素定量的分析难点及应用解决方案。【摘要】结合锂电池材料前处理的要点,讲解电感耦合等离子体质谱仪(ICP-MS)测定锂电池正极材料、原材料、磁性异物、负极材料、常用有机溶剂和电解液元素以及颗粒异物的难点和注意事项,为锂电池材料中元素分析提供充足的解决方案。代琳心 HORIBA(中国) 拉曼应用工程师【简介】毕业于中国林业科学研究院,硕士期间在Industrial Crops and Products 、International Journal of Biological Macromolecules、Coatings期刊发表论文。现任HORIBA科学仪器事业部拉曼应用工程师,为用户提供各领域的应用解决方案。【摘要】拉曼光谱、X射线荧光分析以及激光粒度分析等多项技术是研究锂电池相关材料结构性质的重要内容。本报告将介绍HORIBA技术,在锂电池研发、质控中不同材料成分分析的相关应用案例以及解决方案。方勇 布鲁克(北京)科技有限公司 EPR应用工程师【简介】方勇博士毕业于南京大学化学化工学院,博士期间主要从事具有新颖结构及性质的(元素)有机双自由基物种的合成及表征,并负责课题组内一台布鲁克 EMXplus 电子顺磁共振波谱仪的常规测试、简单维护及谱图解析。2020年年底博士毕业以后,随即加入布鲁克担任EPR应用工程师一职,目前主要致力于向具有不同行业基础和学术背景的顺磁用户推广EPR的多方面应用,同时针对用户各异的研究需求协助提出基于顺磁共振的高效解决方案,助力于他们的研究工作和生产活动。【摘要】对于工作状态下的锂离子电池而言,锂化-脱锂过程中金属锂的微结构改变,富锂金属氧化物正极材料本身的结构缺陷或过渡金属离子的变价、涉及自由基中间体的寄生化学反应等,都适于利用EPR技术来进行表征及机理推定,以助于电池的性能评估和优化,本次报告将援引一些相关的研究实例来展示EPR技术在锂离子电池研究领域的应用。任萍萍 布鲁克(北京)科技有限公司 核磁共振应用专员【简介】任萍萍,博士,布鲁克核磁共振应用专员。毕业于中国科学院武汉磁共振中心,在核磁共振和分析化学领域发表SCI十余篇,参编2019年科学出版社出版的分析检测类教材一部。【摘要】核磁共振与生俱来的定性定量属性,使得它成为锂离子电池分析的强大工具,可应用于快速的卤水定量检测、电解液降解产物和机理研究、锂离子扩散速率测量、电极浆料的分散性和相稳定性分析,常用的分析核包括1H、7Li、19F、31P、11B、23Na等。此外,原位固体检测探头可实时观测锂电池中的电化学过程,还可研究枝晶和死锂的形成机制。刘晓静 安科慧生 应用工程师【简介】毕业于天津大学化学专业硕士学位,现就职北京安科慧生科技有限公司应用市场部经理。精通元素分析方法开发、XRF与基本参数法理论研究、数值分析 参与国家、行业等标准制订5项;国内外核心期刊发表论文7篇。【摘要】单波长X射线荧光光谱仪与全息基本参数法对锂电池材料(含Li元素)的快速准确定量董盼盼西南交通大学 特聘副研究员【简介】董盼盼,西南交通大学前沿科学研究院特聘副研究员,博士及博后在美国Washington State University完成,主要从事先进功能复合材料在储能领域的基础与应用研究,具体包括:高比能锂金属电池电极与电解液、复合固态电解质、金属有机框架准固态电解质等方向。迄今为止,在Adv. Mater.(1), Energy Stor. Mater.(2), Nano Energy(1)等国际知名期刊发表论文20余篇,美国专利申请1项,PCT国际专利申请1项,中国授权专利2项,主持中央高校基本科研业务费科技创新项目。现为中国化学会会员,受邀担任Adv. Mater., ACS Nano等国际知名SCI期刊审稿人。文桦 钢研纳克检测技术股份有限公司 产品经理【简介】目前为钢研纳克ICP-OES产品经理,一直从事光谱质谱的元素分析的应用和市场开发工作,擅长多种化学成分分析技术,在材料和环境等领域的ICP-OES和ICP-MS应用研究上有丰富的经验。贺静芳 赛默飞世尔科技(中国)有限公司 高级应用工程师【简介】赛默飞世尔科技(中国)有限公司原子光谱团队高级应用工程师,2013年加入赛默飞,负责AA/ICPOES/ICPMS仪器及应用研究,具有十多年锂电池行业各类样品原子光谱仪器分析经验。【摘要】新能源行业近年来迎来爆发式增长,新能源材料的原材料、研发、生产、以及环保排放都离不开元素分析。本次报告将围绕使用赛默飞ICPOES/ICPMS技术以及IC-ICPMS联用技术对新能源材料进行主成分和杂质元素分析,以及元素形态分析,旨在为新能源行业提供最有力的分析工具。尹红军 安捷伦科技(中国)有限公司 AE - 应用工程师【简介】尹红军,硕士研究生,毕业于成都理工大学应用化学专业。安捷伦公司资深应用工程师,负责电感耦合等离子体质谱仪ICP-MS,电感耦合等离子体发射光谱仪ICP-OES,原子吸收光谱仪AAS的方法开发和技术支持。十五年的原子光谱应用支持工作,擅长石化、环境、锂电池、材料行业样品的样品测试和仪器的方法开发研究。【摘要】针对锂电材料无机元素检测的难点,例如主含量元素、碱金属、电解液和未知样品元素分析等难点,安捷伦将会提供完善的应对方法与解决方案,助力客户在锂电材料元素分析中实现高效快速的分析。李新颖 上海仪电科学仪器股份有限公司 产品应用【简介】李新颖,博士,任上海仪电科学仪器股份有限公司技术支持,多年的分析实验室经验,熟悉实验室各类设备操作、检测标准和相关应用,致力于实验室设备的技术支持和应用方法开发。【摘要】根据锂电行业上下游不同的测量需求,报告包括电池原料分析,正极材料分析,负极材料分析,电解液分析。刘建红 岛津企业管理(中国)有限公司 应用工程师【简介】岛津公司分析中心应用工程师,2007年加入岛津企业管理(中国)有限公司,长期从事EDX应用支持工作,在EDX应用于珠宝分析中积累了丰富的使用经验。【摘要】磷酸铁锂电池和三元电池仍为当前动力电池的主流,电池材料中的组成元素是电池的基本构成要素,是研发和生产过程的控制指标之一。X射线荧光光谱仪具有前处理简单、分析速度快、分析过程无损、运行成本低、分析结果准确度高、稳定性好的优点。本报告介绍了岛津EDX在磷酸铁锂、三元正极材料中主次元素含量分析的案例。六、 会议联系1. 会议内容:杨编辑 15311451191(同微信) yanglz@instrument.com.cn2. 会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 中南大学化学成分分析中心通过CMA计量认证复评审
    4月24-25日,由湖南省质量技术监督局认评处杨敏处长、张立梅副处长带队,长沙市质量技术监督局刘尹丹处长、长沙市环境监测站易建平站长、省国土资源厅曹建高工等组成的评审专家组,对中南大学化学成分分析中心进行了综合评审。  在听取中心关于质量管理体系建立及运行情况的汇报后,专家组参观了中心相关实验室,审阅了质量管理体系文件,抽查了近两年来的质量运行记录和相关技术档案资料,并进行了现场盲样测试,对中心授权签字人的进行了技术培训和考核,在各项综合考核基础上,认为化学成分分析中心以中南大学化学实验教学中心(国家示范实验教学中心)为依托,经过4年多的建设,软、硬件条件已经符合CMA认证标准,组织管理机构健全,质量管理体系完善,分析检测设施齐备,技术力量雄厚,可以通过CMA认证复评审(含扩项)。  相关资料链接:  中南大学化学成分分析中心的前身是中南矿冶学院分析室,成立于1957年6月,迄今已有50余年的历史。2000年中南大学成立后,该中心由中南大学化学化工院负责管理。为更好地开展对外分析检测服务工作,分析中心所有的分析仪器通过了湖南省计量研究院的计量检定。分析中心对外出具的分析报告具有社会公信力。中心现有分析技术人员15人,拥有气质联用分析仪、高效液相色谱仪、气相色谱仪、分子荧光光谱仪等近千万元的各类分析仪器设备。资质范围涵盖资源、土壤、环境(水质、大气、噪声等)金属材料、化工产品中常见元素的分析检测服务。分析中心具有样品加工的能力,也可提供分析技术人员的技能培训、分析实验室的筹备与建设、分析方法的改进、新的分析方法的研究等与分析相关的技术服务。
  • 中药研究系列专题——中药有效成分分析
    中药中的有效成分是中药发挥药效作用的物质基础,认识和研究这些成分是实现中药现代化的关键所在。成分分析是一项复杂而困难的工作,岛津的色谱系统提供了充分的灵活性、分离度,同时易于操作使用。这些技术能够可靠地描述中药中多组分的特征,适用于研究和质量控制。 Nexera LC-40超高效液相色谱仪★ 可靠性最大化,停机时间最小化 ★ 远程监控以及实验室一体化管理 ★ 快速、可靠的流动相自动配置 ★ 双进样模式支持样品同时分析 应用案例 Nexera LC-40用于银杏叶提取物指纹图谱分析 指纹图谱分析是中药分析领域进行宏观监测的有效措施,它可以全面地反映中药中所含的化学成分种类、数量以及相互间比例关系,从而有效表征其内在质量。银杏叶提取物由于成分较多,采用常规液相分析耗时较长,因此目前也普遍采用指纹图谱的研究方式。 采用Nexera LC-40高效液相色谱系统建立银杏叶提取物指纹图谱的测定方法,供试品和银杏叶对照提取物中17个主色谱峰能够在较短的分析时间内获得良好的分离效果,且全峰相似度在0.927以上。 参照物芦丁色谱峰 银杏叶对照提取物指纹图谱 供试品和对照提取物指纹图谱相似度比较(S1:对照品 S2:供试品) Nexera-e全二维液相色谱仪 全二维液相色谱法是针对复杂样品的一种新分离方法,Nexera-e全二维液相色谱仪联合两个独立的分离系统,极大地扩大了色谱的应用范围、增加峰容量。使用Nexera-e 对中药中的天然产物等复杂样品进行分析,可以从中得到新的发现,并对待测中药有更深入的理解。 ★ 基于超高效液相色谱的超快速全二维分离★ 不同的分离条件的组合实现更高的分离度 应用案例 Nexera-e全二维液相色谱测定葛根汤 葛根汤主要由葛根、麻黄、甘草和芍药等中药材组成,其中包含的麻黄碱、甘草酸和肉桂酸对抑制各类感冒症状非常有效。在生药的质量管理和研究过程中,需要同时识别药物中存在的多种成分,使用全二维液相色谱仪Nexera-e可以对复杂的中医方剂成分进行高度分离。二维自动梯度功能可以为全二维色谱带来良好的峰形,通过对甘草酸进行定量分析,保留时间和峰面积均能获得出色的重复性。 有无自动梯度功能时的葛根汤全二维分离对比(红箭头所指为甘草酸) 甘草酸标准曲线(R2=0.9998) 定量分析5次甘草酸的重复性
  • 走进奥林巴斯进口成分分析仪,感受雄厚的科研力量
    进口成分分析仪作为一种分析技术,可以为人们提供有关晶体材料的结构和相ID的信息,如今已广泛应用在地质勘探、矿业开采、油气录井、制药、学术研究、太空探索等多个行业。而奥林巴斯新一代进口成分分析仪TERRA II和BTX III,在继承前代优点的基础上更加灵活方便,可以为主要和次要分组提供快速、可靠的实时矿物学和相分析,切实将XRD技术实践到我们工业生产领域。  奥林巴斯迭代升级后的TERRA II和BTX III移动进口成分分析仪新增小型样品托架设置。看似小改变,实则大变样。这个样品托架是来自NASA的专利技术,轻便好操作,可以实现让样品腔内的所有颗粒物实现对流,以确保数据几乎不受取向效应影响。尤其是适用于野外作业的TERRA II进口成分分析仪,地质工作者使用随附取样套件,就可以轻松获得样品,制备仅需15毫克样品,取样便利,极大地提升工作效率。  与此同时,硬件与软件同步更新,改进后的X射线探测器与性能强大的SwiftMin软件实现“组合双打”,使得BTX III进口成分分析仪的灵敏度、分析速度都得到极大提升,用户可以轻而易举获得准确可靠的分析结果。  据了解,从制备15毫克样品,按下“开始”采集按钮进行样本分析开始,通过连接无线设备,如手提电脑、平板电脑或者智能手机,奥林巴斯BTX III进口成分分析仪通过具备的SwiftMin软件,实时查看衍射图案,对结果进行编辑,并据此制作衍射图案报告,让各项数据得到直观体现。不仅如此,实验室管理员可以通过密码保护的方式,输入预设模式,实现在一段预设时间后自动传输数据,被检样品的各种成分、校准及分析信息都可以被及时保存与分享。  正因为预设模式的存在,简化重复性的分析过程和用户培训,甚至可以放宽对操作人员的水平要求,让实验室管理员得到有效的分析信息,节省时间,实现高效工作。  目前赢洲科技推荐的奥林巴斯BTX III进口成分分析仪已实现多类型使用场景,快速完成矿物识别,比如方解石是一种会降低燃煤电厂中原材料燃烧效率的矿物,需要对煤中的方解石进行定量分析,以此提升燃烧效率,并减少碳量排放 对尾矿进行重新分析,可以帮助用户判断工厂的操作性,或对以往项目进行评价 甚至在制药行业实现快速辨别不合格药品,或是进行制药业的矿物辨别等等。  长期以来,奥林巴斯致力于为工业科学领域提供解决方案,以满足用户高性能高智能的产品需求,经过长期的发展,升级后的TERRA II和BTX III进口成分分析仪也让更多人了解到奥林巴斯的工业科技实力,并对其未来的发展充满期待,期待成分分析仪技术将应用到更多有需求的领域与行业。
  • 铝蚀刻液成分分析—磷酸、硝酸、醋酸有多少?
    -----铝蚀刻液成分分析—磷酸、硝酸、醋酸有多少?一、背景介绍蚀刻是将材料使用化学反应或物理撞击作用而移除的技术。最早可用来制造铜版、锌版等印刷凹凸版,也广泛地被使用于仪器镶板,铭牌等的加工;经过不断改良和工艺设备发展,亦可以用于航空、机械、化学工业中电子薄片零件精密蚀刻产品的加工,特别在半导体制程上,蚀刻更是不可或缺的技术。铝是半导体工艺中最主要的导体材料。它具有低电阻、易于淀积和刻蚀等优点。铝蚀刻液主要成分是磷酸、硝酸、醋酸及水,其中磷酸、硝酸、醋酸及水的组成比例会影响到蚀刻的速率,故需要对这种混酸溶液的成分进行分析。 二、测试原理1、硝酸:在样品中加入适量乙醇做溶剂,用四丁基氢氧化铵(TBAOH)滴定至终点,即可计算硝酸的含量。TBAOH+HNO3 → NO3-+TBN++H2O2、醋酸和磷酸:在样品中加入适量饱和氯化钠溶液做溶剂,用氢氧化钠溶液做滴定剂,出现两个滴定终点。第|一个终点是H3PO4和HNO3被耗尽时的终点,第二个终点是H2PO4-和HAc被耗尽时的终点,根据已知的硝酸含量,即可计算出磷酸及醋酸的含量。H3PO4+HNO3+2OH- → NO3-+ H2PO4-+ 2H2OH2PO4-+HAc+2 OH- → Ac-+ HPO42-+ 2H2O 三、混酸分析方法(1)硝酸含量测试:在滴定杯内加入50mL无水乙醇,准确称取一定质量的样品置于滴定杯内,用 0.01mol/L TBAOH溶液做滴定剂进行电位滴定,终点电位突跃设置为20mV/mL。图1 硝酸含量滴定曲线图2 醋酸和磷酸含量滴定曲线 (2)醋酸和磷酸含量测试:在滴定杯内加入50mL饱和氯化钠溶液。准确称取一定质量的样品置于滴定杯内,用0.5mol/L氢氧化钠溶液做滴定剂进行电位滴定,终点电位突跃设置为100mV/mL。 四、注意事项1、TBAOH标定时需要使用纯水做邻苯二钾酸氢钾的溶剂,而使用TBAOH测定硝酸时必须使用无水乙醇做溶剂,不要在滴定杯内加入水,否则不会出现显著的滴定终点。2、使用氢氧化钠测定醋酸和磷酸时,需使用饱和氯化钠溶液做溶剂,若使用纯水做溶剂会出现假终点。 五、仪器推荐ZDJ-5B型自动滴定仪 ● 7寸彩色触摸电容屏,导航式操作● 支持电位滴定● 实时显示测试方法、滴定曲线和测量结果● 可定义计算公式,直接显示计算结果● 支持滴定剂管理功能● 支持pH的标定、测量功能● 支持USB、RS232连接PC,双向通讯● 可直接连接自动进样器实现批量样品的自动测量
  • 专题约稿|赛默飞锂电成分分析解决方案及市场展望
    p style="margin-top:auto margin-bottom: auto text-align:center"span style="color: rgb(255, 0, 0) font-size: 18px "istrong专题约稿|/strong/i/spanstrongispan style="font-size:18px color:red"赛默飞锂电成分分析解决方案及市场展望/span/i/strong/pp style="text-align: center "ispan style="color: rgb(127, 127, 127) "——“锂电检测技术系列——成分分析技术”专题征文/span/i/pp style="text-align: center "ispan style="color: rgb(127, 127, 127) "(作者:赛默飞世尔科技)/span/i/pp  电池材料关心的结构、动力学等性能,均与电池材料的组成与微结构密切相关,对电池的综合性能有复杂的影响。每一项性能可能与材料的多种性质有关,每一类性质也可能影响多项性能,具体问题需要具体分析,没有特别统一的规律,这给电池的研究带来了很大的挑战。准确和全面的理解锂电池材料的构效关系需要综合运用多种检测技术。/pp  strong仪器信息网/strong:请介绍贵公司在锂电成分分析技术方面的仪器产品或仪器产品组合?/pp  strong赛默飞/strong:赛默飞作为全球科学服务领域的领导者,可以为锂电检测提供最全面的产品组合和解决方案,如a href="https://www.instrument.com.cn/netshow/sh100244/C244127.htm" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "Thermo ScientificTM iCAP 7000 Plus 系列/span/aICP-OES,a href="https://www.instrument.com.cn/netshow/sh100244/Product-C0-5138-0-1.htm" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "离子色谱(IC)/span/a 、离子色谱质谱联用(IC-MS)、a href="https://www.instrument.com.cn/netshow/sh100244/C283211.htm" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "ISQ7000系列气相色谱质谱联用(GC-MS)/span/a 等。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/3c16bd47-f3b9-4101-9da1-6bd1a48b367a.jpg" title="1.jpg" alt="1.jpg" style="width: 300px height: 302px " width="300" vspace="0" height="302" border="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "赛默飞锂电成分分析部分仪器组合/span/pp  strong仪器信息网/strong:请介绍贵公司针对锂电成分分析领域可以提供哪些解决方案?有哪些优势?/pp  strong赛默飞/strong:Thermo ScientificTM iCAP 7000 Plus 系列 ICP-OES、IC、IC-MS、ISQ7000 GC-MS系列等可助力分析锂电材料中的金属、离子、有机电解质等。a href="https://www.instrument.com.cn/netshow/sh100244/solution-S25-1.htm" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "【方案链接】/span/a/pp  Thermo ScientificTM iCAP 7000 Plus系列ICP-OES可以实现元素周期表中70多种元素的定性及精确定量分析,一次进样就可以实现多元素的测定,该产品在产品设计上关注细节,确保结果长期稳定,分析速度快。可最大化保证您在锂电材料中各种金属元素的高效、准确分析。/pp  Thermo Scientific™ Dionex™ 离子色谱 (IC) 系列专为离子与极性化合物分析而精心打造,40 多年来,赛默飞世尔科技始终作为离子色谱的领导者,您可以放心选择我们的离子色谱系统、耗材、服务和支持,获得最佳结果。离子色谱质谱联用更能实现复杂基质中离子与极性化合物的高选择性和高灵敏度分析,特别适合锂电中受干扰严重的各种离子分析。/pp  Thermo ScientificTM ISQTM 7000 GC-MS 单四极杆系统,拥有高稳定性和卓越灵敏度,满足客户最具挑战性的分析需求。对于锂电,ISQTM 7000 GC-MS轻松满足电解液成分中有机物分析需求,并可以按照您所要求的性能水平不断持续运行,大幅提高实验室效率及生产力。/pp  strong仪器信息网/strong:贵公司对锂电检测市场的看法及市场拓展计划?/pp  strong赛默飞/strong:近年来,随着国家政策对新能源汽车等行业的大力支持,锂电产业必定会蓬勃发展,并渗透到更多的领域。且随着全球锂电池设备市场逐渐向中国转移,中国也将成为最大的锂电应用市场之一。而锂电行业的安全直接关系到消费者的安全,一旦安全出现问题,对生产企业影响巨大。因此,随着市场的发展,对锂电的安全性和可靠性都提出了更高的要求。据此,锂电检测领域也必将迎来新的发展机遇。/pp  赛默飞在锂电行业具备多种产品组合的解决方案,我们也非常期待将各种解决方案及时准确地传递给广大锂电检测工作者。因此我们在市场拓展方面已经计划将我们的行业解决方案及时发布在我们的官方网站,且积极参与行业研讨会以及线下各种市场活动,期待相关检测人员可以及时获得我们的解决方案,为锂电检测行业助一臂之力。/ppstrongspan style="color: rgb(255, 255, 255) "  /span/strongstrongspan style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "附:关于锂电系列专题约稿/span/strongbr//pp  近十年间,在能源技术变革以及新兴科技的带动下,全球锂离子电池产量进入飞速增长期,根据公开数据,预计2018年全球锂电池增速维稳,产量达155.82GWH,市场规模达2313.26亿元。中国是锂电池重要的生产国之一,2018年预计全国锂电池产量达121亿只,增速22.86%。/pp  锂离子电池产业的蓬勃发展,也为锂离子电池检测领域带来新的机遇。随着锂离子电池基础科学研究仪器水平不断提升,几乎各类先进科学仪器都逐渐在锂离子电池的研究中出现,且针对锂离子电池的研究、制造也开发了许多锂电行业专用的仪器设备。/pp  为促进中国锂电检测产业健康发展,仪器信息网结合锂离子电池检测项目品类,将从2018年12月起策划组织系列锂电检测系列专题报道,为专家、仪器设备商、用户搭建在线网上展示及交流平台。span style="color: rgb(0, 176, 240) "锂电检测系列专题内容征集进行中:/spana href="https://www.instrument.com.cn/news/20181204/476436.shtml" target="_blank" style="color: rgb(255, 255, 255) background-color: rgb(192, 0, 0) text-decoration: underline "span style="color: rgb(255, 255, 255) background-color: rgb(192, 0, 0) "【征集申报链接】/span/a /ptable cellspacing="0" cellpadding="0" border="0" align="center"tbodytr class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px word-break: break-all " width="53"p style="text-align:center"strongspan style="font-family: 宋体"系列序号/span/strong/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="359"p style="text-align:center"strongspan style="font-family: 宋体"锂电检测技术系列专题主题/span/strong/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="126"p style="text-align:center"strongspan style="font-family: 宋体"专题上线时间/span/strong/p/td/trtrtd style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="53"p style="text-align:center"span1/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="359"p style="text-align:center"锂电检测技术系列——电性能检测技术/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px word-break: break-all " width="126"p style="text-align:center"span2019/span年span1/span月span style="color: rgb(0, 176, 240) "【/spana href="https://www.instrument.com.cn/zt/lidian1" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "链接】/span/a/p/td/trtrtd style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="53"p style="text-align:center"span2/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="359"p style="text-align:center"锂电检测技术系列——成分分析技术/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="126"p style="text-align:center"span2019/span年span3/span月/p/td/trtrtd style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="53"p style="text-align:center"span3/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="359"p style="text-align:center"锂电检测技术系列——形貌分析技术/p/tdtd rowspan="4" style="border:solid windowtext 1px border-left:none padding:0 0 0 0"p style="text-align:center"span2019/span年/p/td/trtrtd style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="53"p style="text-align:center"span4/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="359"p style="text-align:center"锂电检测技术系列——晶体结构分析技术/p/td/trtrtd style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="53"p style="text-align:center"span5/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="359"p style="text-align:center"锂电检测技术系列——spanX/span射线光电子能谱分析技术/p/td/trtrtd style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="53"p style="text-align:center"span6/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px word-break: break-all " width="359"p style="text-align:center"锂电检测技术系列——安全性和可靠性分析仪器及设备/p/td/tr/tbody/tablepbr//p
  • 驼奶分析仪-一款用于驼奶成分分析的仪器设备2024实时更新
    型号推荐:驼奶分析仪-一款用于驼奶成分分析的仪器设备2024实时更新,驼奶作为一种珍贵的营养品,其品质与成分分析对消费者和生产商都至关重要。驼奶分析仪作为现代科技的杰出应用,为驼奶的成分分析提供了极大的便利和准确性。 一、驼奶分析仪的功能与特点 驼奶分析仪是一款用于驼奶成分分析的仪器设备。它采用先进的检测技术,能够全面分析驼奶中的营养成分、微生物含量以及可能存在的有害物质。这些检测数据不仅有助于消费者了解驼奶的品质和营养价值,还能为生产企业提供科学依据,指导生产过程中的质量控制。 二、驼奶分析仪在成分分析中的帮助 驼奶分析仪能够快速、准确地测量驼奶中的各种营养成分,如脂肪、蛋白质、糖等。通过实时监测驼奶的各项指标,企业可以及时发现生产过程中的问题,并采取相应措施进行调整。这不仅可以确保驼奶的品质稳定,还能提高生产效率和降低生产成本。 三、驼奶分析仪的广泛用途 驼奶分析仪不仅适用于驼奶生产企业,也适用于科研机构、质量检测部门等。在科研机构中,驼奶分析仪可以用于驼奶营养价值的深入研究;在质量检测部门中,驼奶分析仪可以确保驼奶产品的质量和安全。 四、主要特点1、Android智能系统,使用更加简便快捷 2、7寸触摸屏,操作交互体验更好 3、外观设计精致,内部管路精简 4、样品需求量少,检测重复性好,电量消耗低 5、采用两套蠕动泵进样清洗 6、适用于多样品连续进样检测,提高检测效率 7、全自动清洗防止奶垢残留,维护简便快捷无需化学试剂 8、内置热敏打印机,可灵活编辑打印检测报告 驼奶分析仪凭借其先进的功能和广泛的应用,为驼奶的成分分析提供了有力的支持。它不仅能够提高驼奶产品的质量和安全性,还能推动驼奶产业的健康发展。
  • 解决方案 | 禾信全二维气质联用仪,探索香精成分分析新方向
    近年来,随着人们生活水平的提高和对物质文化的追求,国民经济中科技含量高、配套性强、与其他行业关联度高的香精香料工业得到了迅猛的发展,日用香精的使用也越来越广泛。面对日益激烈的市场竞争,为占据更多的市场份额,各大香精企业竞相推出新品种、新原料、新技术,提出科学配方,不断打造日用香精新亮点。香精成分检测分析的难点香精样品成分复杂,组分种类高达数千种,且浓度范围较宽,化学性质、组成结构也各不相同,检测分析工作非常困难。传统GCMS方法受限于峰容量不足,香精成分全组分分析需要同时使用三套不同柱系统:非极性(如DB-5, DB-1)、极性(如Wax)和中等极性(如DB-17),同时需要进行3套柱系统数据分析,工作量大且会检出多种重合组分,为分析测试人员带来极大困扰,已经成为行业公认的检测分析痛点。解决方案广州禾信仪器股份有限公司(股票代码:688622)全二维气相色谱飞行时间质谱联用仪GGT 0620,搭载新型固态热调制技术,将两根不同固定相的色谱柱串联,峰容量大,灵敏度高,可实现香精样品中全组分的近正交分离,定性能力强,检测效果显著优于常规的三套柱系统,已经成为香精组分检测、工艺优化、真假鉴别等方面的高新质谱检测技术。图1是采用禾信GGT 0620分析A香精公司香精样品的局部谱图。可知:图1:某香精样品难分析组分分离结果图(同分异构体和理化性质相似的化合物)GGT 0620分离度较好,可将莪术呋醚酮、香柏酮、兰桉醇、喇叭茶醇、α毕橙茄醇等理化性质相似的化合物在二维色谱上完全分离,这在一维GCMS上是难以实现的。此外,由于GGT 0620具有极窄的色谱峰宽,因此检测灵敏度高,是常规一维GCMS的10倍以上;GGT 0620数据处理软件中具有简单易操作的数据自动检索定性功能,可大大减少香精组分分析的工作量。分析一个未知香精样品组分,GGT 0620相比一维GCMS节省一半以上分析时间,效率大大提高。图2是采用禾信GGT 0620对B香精公司混合香精样品的成分溯源结果。可知:图2:某香精样品配方成分溯源结果(1)GGT 0620可进行全组分成分分析,从而确定不同的单体香精及混合香精的化学组成;(2)GGT 0620具有自主开发的溯源算法,它可以结合特征组分进行分析,能快速、准确地获得混合香精中单体香精的占比,出具准确的分析结果。随着中国经济的发展和人们生活水平的提高,我国香精香料需求双向增长,香精香料企业将面临更大的挑战,因此,“高效、安全、环保”的香精分析技术是香精企业占据市场的核心竞争力。禾信全二维气相色谱飞行时间质谱联用仪 GGT 0620分离度好,灵敏度高,分析速度快,在复杂香精样品分析方面具有独特优势,将不断参与到各香精香料企业的生产开发过程,助力中国香精行业的快速发展。
  • 全自动啤酒分析仪、全自动啤酒分析测定仪、啤酒分析仪、啤酒成分分析仪促销3个月
    全自动啤酒分析仪、全自动啤酒分析测定仪、啤酒分析仪、啤酒成分分析仪促销3个月啤酒分析仪、全自动啤酒分析仪、啤酒成分分析仪、进口啤酒分析仪、全自动啤酒分析仪为了感谢广大客户对德国Funke Gerber全自动啤酒分析仪产品质量的肯定,现对Fermento型全自动啤酒分析仪现实促销优惠出售,欢迎新老客户前来选购。活动时间2014年8月1号-2014年11月1号啤酒分析仪介绍:Fermento啤酒分析仪是在实践中深受好评的新一代全自动啤酒分析仪。这款彻底改良后的仪器突出的特点是不锈钢外壳明显变小,同时配备了带有五个按键、操作方便的大型显示屏,两分钟之内就能同时完成酒精度、真正浓度、外观浓度、原麦汁浓度和密度的检测,测量精度达0.01%。啤酒样品仅需预先除气,全部测量结果可通过显示器、打印机以及一个串行口输出(RS232)。 仪器的校准采用一种已知内容物含量的参比啤酒进行,该仪器能够存储20种参比啤酒(例如:皮尔森啤酒、麦芽啤酒和强烈啤酒等)的数据,您仅需将各种参比啤酒的指标输入仪器,所有内容物质(酒精、原麦汁浓度和浸出物等)的校准便可一步完成。全自动啤酒分析仪技术参数测量范围 酒精: 0 - 15 %原麦汁浓度:0 - 20 %真正浓度: 0 - 10 %外观浓度: 0 - 10 %密度: 0.95 - 1.05g/cm3测量时间 2分钟左右(包括进样)样品体积 每次测量约12 - 20 ml左右脱过气的啤酒样品处理速度:快速模式可达100个每小时,精确模式为60个每小时样品量:10ml 全自动啤酒分析仪界面: 仪器带有一个打印机平行接口,可以连接标准打印机。在标准配置中也已经包含了一个打印机,另外仪器还带有RS232接口。电源:230/115V ,50/60HZ,180W尺寸:30x24x33 cm (W x H x D)啤酒分析仪重量:大约5kg联系人:张先生 地址: 南京市秦淮区刘家岗84号[210006] 电话: 025-87163873 18913964277 传 真: 025-87163873 Email:suhua1985@126.com 公司网址:http://mingao.instrument.com.cn
  • 福斯发布乳成分分析仪新品!
    p style="line-height: 1.75em text-indent: 2em "strongspan style="font-family: 宋体, SimSun text-indent: 2em "仪器信息网讯/span/strongspan style="font-family: 宋体, SimSun text-indent: 2em " 近日,福斯发布全新的MilkoScan™ FT3乳成分分析仪,该款产品是福斯基于乳品行业超过40年行业经验,为乳制品分析提供的一全新智能方法,span style="font-family: 宋体, SimSun text-indent: 2em color: rgb(54, 96, 146) "strong采用傅里叶变换红外光谱技术(FTIR),符合AOAC分析化学家协会IDF国际乳品联合会标准认证/strong/span,同时具有更广泛的适用性及高度稳定性。/span/pp style="line-height: 1.75em text-indent: 2em "br//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/4223ace8-32da-4eae-9ec8-d9b175d839f4.jpg" title="fusi.jpg" alt="fusi.jpg"//pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "新品特点:/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "strongspan style="font-family: 宋体, SimSun "广泛的适用性。无需样品前处理,粘稠酸奶直接检测/span/strong/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "独特的智能流路系统能够处理各种形态的样品,根据每个样品的特性进行自动适应调整。几乎可直接检测市面上所有乳制品,粘稠样品无需前处理,直接检测。/span/pp style="line-height: 1.75em text-indent: 2em "strongspan style="font-family: 宋体, SimSun "优异的稳定性与传递性。极低的台间差,降低80%定标调整工作/span/strong/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "基于专利技术的自动标准化功能,消除仪器漂移和变化,保证定标稳定,使产品质量始终如一。极高的稳定性保障了每台机器间的性能高度一致,实现定标在不同MilkoScan™ FT3间准确传递。只需调整中央主机定标,将调整定标传递到网络中其他MilkoScan™ FT3即可,大大降低工作量和运营成本。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun text-indent: 2em " /span/pp style="line-height: 1.75em text-indent: 2em "strongspan style="font-family: 宋体, SimSun "产品应用:/span/strong/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "-原料奶分级,按质论价,掺假筛查/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "-生产过程中的质量标准化与优化控制/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "-集团化质量管理与控制/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "-成品质量监测/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun " /span/pp style="line-height: 1.75em text-indent: 2em "strongspan style="font-family: 宋体, SimSun "关于福斯/span/strong/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "福斯公司成立于1956年,致力于为农业、食品、医药、和化工产品的加工和日常质量控制提供快速、可靠和专业的分析解决方案。经过60多年的发展,福斯集团已经成为世界上最大的食品、乳制品及农业领域分析仪器(包括在线分析仪器)提供商之一。今天,全球约85%的牛奶生产,80%的谷物交易都在使用福斯提供的分析仪器。公司的产品技术涉及中红外、近红外、流式细胞、图像分析及湿化学分析等。/span/ppbr//p
  • 乳制品中营养成分分析专题网络研讨会成功召开
    p  近几年来,随着经济的发展和人们生活水平的提高,人们对食物的要求已不是简单的填饱肚子,而是更多的关注食品的营养和安全,而乳制品除含有高质量蛋白质、脂肪、碳水化合物外,还含有大量维生素和矿物质,现在已分析出它有一百多种成分,被公认为迄今为止的一种比较理想的食品。因此乳和乳制品已成为人们非常喜爱的日常食品之一。/pp  同时,市场上频繁出现劣质奶粉、勾兑羊奶、毒奶粉等恶性事件,乳品安全问题由此受到了全民的广泛关注,继2008年三鹿奶粉事件之后的2011年12月,大众熟知的蒙牛液态乳被爆污染黄曲霉毒素M1,当这些具有较高公信度的品牌乳制品都出现问题的时候,人们不禁要问上一句,这世上还有放心奶吗?/pp  11月4日, “乳制品中营养成分分析”专场网络研讨会在仪器信息网网络讲堂举办,本届主题研讨会我们邀请了浙江省疾病预防控制中心的任一平、中国检验检疫科学院张凤霞以及沃特世、赛默飞、安捷伦的资深应用工程师从不同角度做了精彩的报告。/pp  浙江省疾病预防控制中心的任一平老师从假奶粉导致大头娃娃、假蛋白三聚氰胺、雅培配方奶粉在香港事件等引入并阐述了酶解-串联质谱法的7个关键点。/pp  中国检验检疫科学院张凤霞老师分别从乳制品相关国家标准介绍、AOAC SPIFAN方法状态、核苷酸检测方法介绍三个方面进行了详细的阐述。/pp  本次研讨会吸引了165名来自乳制品相关领域的用户参会,参会用户的疑问都得到了相应的解答,以下为部分用户提问问题:/pp  1. 国产品牌牛奶和国外品牌的牛奶营养成分和质量有差异吗?/pp  2. 特异肽段的检测对液相条件有没有要求,比如会不会有进样瓶吸附和管路吸附的问题?/pp  3. 乳铁蛋白这个国标方法,预计什么时候可以颁布实施?/pp  4. 试剂盒的批间和批内的重复性怎么样?试剂盒的价格贵不贵?br//pp  strong特别鸣谢以下厂商支持:/strong/pp  沃特世科技(上海)有限公司/pp  安捷伦科技有限公司/pp  赛默飞世尔科技(中国)有限公司/pp  日立高新技术公司br//pp  在本次研讨会直播的过程中,若您错过报告内容,请您点击如下地址链接,浏览视频也可听精彩的报告:/pp  a href="http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1698"http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1698/abr/br//pp  网络讲堂作为科学分析仪器行业的百家讲堂,近期安排其他议题主题研讨会内容如下,根据您的时间尽早报名参与:br/br//pp   a href="http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1707"珠宝玉石鉴定检测技术网络主题研讨会/a 11月11日 14:00/pp   a href="http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1734"样品前处理和制备技术网络主题研讨会/a 11月25日 9:30br/br//pp  您在浏览网络讲堂过程中,遇到问题欢迎随时咨询 010-51654077-8123,微信号:378891527/pp /p
  • 岛津应用:基于FTIR和(EDX)的变色和着色成分分析
    近年来,商品的微少变色可能导致客户投诉,因而需要迅速查明变色的原因。由于变色原因有各种各样,进行识别并非易事。变色及着色的成分含量为微量时,一般萃取后进行分析。此次我们灵活运用了FTIR和EDX的特长,无需预处理即可直接进行测定,进而对其成分进行了识别。在变色分析中,使用FTIR可快速分析源于有机物的变色,而使用EDX则可快速分析源于无机物的变色。在着色材料分析中,FTIR可对主成分进行有效地测定,EDX则可对颜料进行有效地识别。综上所述,组合使用FTIR和EDX可进行非破坏性分析,有助于对变色和着色的成分进行快速分析。本文向您介绍组合使用FTIR和EDX,从有机物和无机物两个方面对变色及着色原因进行分析的示例。 了解详情,敬请点击《使用红外光谱仪(FTIR)和荧光X 射线分析装置(EDX)对变色和着色成分进行分析》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 中石化研制世界首台高性能单体包裹体成分分析仪
    中国石化石油勘探开发研究院研制成功世界上第一台高性能单体包裹体成分分析仪,建立具有国际领先水平的单体油气包裹体剥蚀成分分析新技术。  据介绍,该技术突破性地实现了不改变单个包裹体内原始油气组成下的有机成分提取和分析。利用该分析仪,我国首次实现对塔河油田不同期次单体油气包裹体的成分分析,为塔河油田奥陶系油藏油气充注过程、油气成藏期次提供了可靠证据。同时,建立的一系列油气包裹体分析新技术方法所获得的分析数据及地球化学信息,已有效应用于塔河油田、普光气田、胜利油田等油气源对比、油气运移以及成藏过程研究,也为南方海相天然气勘探、我国碳酸盐岩油气成藏理论和勘探实践提供了科学依据。
  • 质谱分析有“大招” 一个指纹让“瘾君子”分分钟现形
    p  最近,来自萨里大学的研究人员与荷兰法医研究所、智能指纹研究机构共同合作,开发出一种检测手段,能够快速精准检测出各手指上残留的卡因及代谢物,同时识别出指纹主人的身份。如果这个测试在不久的将来被广泛应用于可卡因以及其他非法药物的检测,那么传统的尿液、血液或唾液药物检测将有可能遭到淘汰。/pp  strong有效性达99%/strong/pp  此项研究中,研究人员使用了一种名为纸喷雾质谱分析(paper spray mass spectrometry)的技术进行代谢指纹分析,用以辨别受试者是否服用过可卡因等其他非法药物。这项突破性的研究日前发表在Clinical Chemistry期刊上。/pp  研究人员选择了一批接受戒毒康复治疗的患者,从他们身上采集了指纹以及唾液,并设置非吸毒者作为对照组。试验中,气相色谱-质谱(GS-MS)技术用来检测病人唾液中是否含有可卡因和苯唑啉 相应地,解析电喷雾电离(DESI)和基质辅助激光解吸电离(MALDI)用来对患者进行代谢指纹分析,检测其中可卡因、苯甲酰爱康宁(BZE)和甲基爱康宁(EME)成分。/pp  研究将两种检测结果进行对比,发现二者之间具有良好的相关性。研究作者之一Catia Costa博士透露其有效性能够达到99%。可卡因服用者代谢过程中会分泌出微量的BZE和EME,这些化合物会出现在他们的指纹残留物中,即便洗过手也能被检测到。/pp  “纸喷雾质谱分析(paper spray mass spectrometry)正在法医学领域里流行起来,不仅因为它非凡的敏感度,而且建立这样的测试系统也很容易,也能节省实验时间。”他解释说。/pp  美国国家统计局2015-2016年的数据显示,16 至59岁的美国成年人每12人中就有1人使用非法药物(总人数接近270万)。在同一时间段内,超过8500人因毒品和药物滥用所致的精神和行为紊乱而寻求医疗帮助。/pp  在医疗和戒毒治疗之外,行政执法、法律案件处理等方面的日常工作也频繁需要进行药物滥用检测。就采集指纹而言,目前的做法只能说明某人是否有过毒品接触,但不能确认他是否服用过毒品。而采集人体体液(如尿液,唾液,血液)的药物检测,中间的不仅存在样本掺假和污染的风险,样本处理者本身还可能受到生物危害。/pp  strong优势明显/strong/pp  将代谢指纹分析与现有的药物测试方法相对比,前者的优势会更加明显。首席研究作者Melanie Bailey博士概括这种检测手段为“卫生、实时、无创,分分钟提供可靠性结果”,他说:“把这种检测手段引入市场将是我们工作中一个真正的突破。”Bailey博士坦言他们已经开始考虑如何把检测时长缩短,只需花费30秒就能从样本中获得受试者的身份以及药物使用情况。/pp  代谢指纹检测快速、可靠且无创的优点使它有很大优势成为未来药物测试的“首选”。这种快速且无创的测试在意义和应用上都是相当广阔的。指纹检测可能会给行政执法、法律案件处理和戒毒治疗中的日常药物测试带来革命性改变,不必再由专门受训人员进行每日采血,尿检所涉及的隐私担忧也会就此消除。与体液检测相关的生物危害,连同样本存放和处置问题都迎刃而解,即便遇到不在场测试的情况也不成问题。/pp  “这项令人兴奋的研究清晰指出指纹在简化药物筛查过程中所起的重要作用,肯定了指纹的诊断基质价值,对我们同步进行的便携式、即时性诊断的研发也是一种补充。”智能指纹(Intelligent Fingerprinting)的首席执行官Jerry Walker博士总结道。/p
  • 烯烃中常量和微量组分分析,中心切割一招搞定
    导读烯烃是人类社会经济和生产生活的重要原料之一,它是含有碳碳双键的一类碳氢化合物,通过聚合反应能形成具有各种特性与牌号的功能高分子材料,经过再加工成型为众所熟知的塑料器具、管材、人造纤维、合成橡胶等,满足并丰富人们多彩的物质生活需求。烯烃中不仅有常量组分,还有微量物质,它们共同影响着最终加工成型材料的特性。烯烃中乙烯、丙烯,一直被誉为石油化工的基石,如今,乙烯被视为定义化工产业水平的关键指标,丙烯则被称为化工产业链延伸的重要基础原料。我国现有⼄烯产能约4200万吨/年,丙烯产能约5000万吨/年,预计到“十四五”末,国内⼄烯产能将达到6500万吨/年,丙烯产能将达到7200万吨/年。市场需求带动烯烃的增长动力持续强劲,对于高品质烯烃质量的要求也更加严格。常见的乙烯、丙烯和丁烯等烯烃主要源于能源化工生产,不同厂家烯烃的生产工艺路线各异,既有石油催化裂化和裂解产生,也能从煤基合成气进行制备,组成比较复杂,往往含有大量烷烃、烯烃,同时还存在微量的杂质如极性的含氧化合物等。这些杂质不仅增加了烯烃聚合加工过程的氢耗和催化剂损耗,也影响了聚合烯烃的等级与品质。常规的气相色谱方法需要多次进样并更换不同色谱柱才能完成烯烃中的主要成分和各种杂质分析。有没有一种简便方法,一次进样就能实现烯烃中常量组分和微量物质的分析呢?答案是肯定的。想要“一招搞定”,实现如此复杂样品的高效率分离,就不得不提“先进流路技术”。先进流路技术——实现复杂组成的高效分离先进流路技术是什么?岛津公司的先进流路技术(Advanced Flow Technology,简称AFT)是采用新型流路控制技术的毛细管分析系统,可以高精度地将目标成分从复杂的原始样品中分离出来,实现高分离度并提高分析工作效率。它主要分为四种方式:反吹,检测器分流,检测器切换和中心切割。岛津先进流路技术软件界面主要特点和应用场景各控制方式的主要特点和应用场景示例如下。表1. 先进流路技术的控制方式特点与应用场景示例中心切割——简单实用的二维色谱分离中心切割是二维气相色谱常用的一种操作方式,通过无阀自动气体控制实现在设定时间段被分离物质切换流向,从第一根色谱柱一维模式进入第二根色谱柱二维模式分离。与全二维气相色谱中需要将所有一维分析组分再通过第二维分离的方式相比,采用中心切割后,可以根据需要选择一维色谱中难以分离的组分进入二维色谱继续分离,其他组分则在一维色谱中被分析检测。目前在能源化工分析领域已有很多标准方法都采用了中心切割二维色谱方法,常见的列于下表。对于烯烃分析,现在仍通过不同的方法去分别检测其中的含氧化合物和烃组成,影响分析效率,中心切割的方法有望在未来烯烃分析工作中大放光彩。表2. 国内外采用中心切割二维色谱方法的部分标准应用案例分享——烯烃的中心切割色谱分离• 仪器GC-2010Pro气相色谱仪• 分析条件进样方式:高压液体阀,0.2μL内置定量环;六通进样阀,500μL定量环进样口温度:150℃;分流比:3:1;FID检测器温度:200℃柱温程序:60℃(3min)→15℃/min→150℃(2min)→15℃/min→170℃(6min)色谱柱:Lowox 10m×0.53mm×10μm(1st柱);PLOT Al2O3/S50m×0.53mm×15μm(2nd柱);Rtx-1 1.8m×0.32mm×5μm(平衡柱)• 典型二维色谱图中心切割二维气相色谱法通过特殊的接口,两种分离机理不同的色谱柱串接在一起,将第一根色谱柱难分离的部分转移到第二根色谱柱做进一步分离分析。图1. 烯烃中常量和微量组分分析色谱图• 重复性和检出限采用中心切割技术,对烯烃样品连续进样6次,计算各组分的重复性和检出限(S/N=3),结果显示该方法对含氧化合物的检出限1 ppm,重复性RSD0.4%;烃类检出限0.4 ppm,重复性RSD0.5%。结语“十四五”期间我国烯烃产能持续攀升,尤其是高品质烯烃新工艺与新产品的开发水平不断提高,将对化工行业高质量发展起到积极促进作用。岛津先进流路控制的中心切割二维色谱可以有效应对愈加严格的烯烃质量控制,一招搞定烯烃中复杂常量和微量化合物组成分析,提高质量分析能力和工作效率。本文内容非商业广告,仅供专业人士参考。
  • 2020版《中国药典》| 中药黄芪中铅、镉、铜、砷、汞五种元素的测定解决方案
    本实验参考方法《中国药典》2020版,2321铅、镉、砷、汞、铜、测定法中电感耦合等离子体质谱法。简要介绍了使用睿科集团股份有限公司iMD系列微波消解仪对中药(黄芪)样品进行消解,并用电感耦合等离子体质谱仪(ICP-MS)对中药(黄芪)中铅、镉、铜、砷、汞五种元素进行检测的一套解决方案。划重点01仪器、试剂1仪器睿科 iMD系列 微波消解仪PE nexion2000电感耦合等离子体质谱仪(ICP-MS)2试剂单元素标准储备液:ρ=100 mg/L~1000 mg/L 标准储备溶液,可购买市售有证标准物质,在有效期内。多元素混合标准储备液:ρ=10.0 mg/L。用硝酸溶液(0.5mol/L)稀释单元素标准储备液配制。亦可购买市售有证标准物质,在有效期内。多元素混合标准储备液ρ=100 mg/L:国家标准多元素储备溶液,在有效期内。或采用单元素标准储备液进行配置:国家标准单元素储备溶液,在有效期内内标标准溶液,含有6Li,45Sc、74Ge、89Y、103Rh、115In 、185Re、209Bi等内标元素。国标标准元素储备溶液,在有效期内。硝酸(优级纯)3标准曲线工作配制标准系列浓度见下表。内标可直接加入到标准系列中,也可通过蠕动泵在线加入。内标应选择试样中不含有的元素,或浓度远大于试样本身含量的元素。划重点02样品前处理 1 选用GBW10028(GSB-19)生物成分分析标准物质黄芪进行实验 2 取约0.5g,精密称定,置于微波消解罐中,加硝酸8mL(如果反应剧烈,放置至反应停止)全自动微波消解仪 3 加完酸后的样品置于赶酸仪上100℃预消解30 min,取下稍冷 4 装配消解罐,将消解罐放入微波消解仪炉腔中,按照下表的升温程序进行微波消解微波消解仪升温程序iMD系列微波消解仪条件(升温程序)如下: 5 消解完全后,消解液冷却至60℃以下,取出消解罐,放冷。将消解罐置于赶酸仪上100℃-120℃赶酸30 min-1h 6 赶酸完成后,将消解液转入50 mL量瓶中,用少量水洗涤消解罐3次,洗液合并于量瓶中,加入金单元素标准溶液(1μg/ mL) 200μL,用水稀释至刻度,摇匀,即得(如有少量沉淀,必要时可离心分取上清液) 7 除不加金单元素标准溶液外,同法制备试剂空白溶液划重点03仪器条件不同型号仪器的最佳测试条件不同,可根据仪器使用说明书设置。仪器参考条件使用和同时检测的质量数以及对应内标物划重点04实验结果黄芪标准物质测定结果GBW10028(GSB-19)生物成分分析标准物质黄芪的标准值,测定值见下表。表.GSB-19 标准值标准物质测定值划重点05结论通过微波消解-电感耦合等离子体质谱(ICP-MS)法检测中药(黄芪)中的铅、镉、铜砷、汞五种元素,测量结果均在标准物质证书范围内(除汞外,汞元素靠近标准值),RSD均小于3%。在微波消解-电感耦合等离子体质谱(ICP-MS)法检测中药(黄芪)中铅、镉、铜、砷、汞五种金属元素的实验中,睿科iMD系列微波消解仪能够高效、稳定地达到实验的要求,可以在提供领域范围内的良好应用。温馨提示如需观看完整解决方案,可至小程序“睿科学堂”-“最新课程”中查看,长按扫描下方二维码,即刻进入小程序:如您需要产品资料,产品报价,或申请仪器试用,可长按/扫描下方二维码,留下您的信息,我们会在第一时间与您联系!
  • 镜头聚焦!更便捷 更安全|纽迈清醒小动物体成分分析仪PRO版新品首发!
    2023年9月6日,第二十届北京分析测试学术报告会暨展览会(BECIA 2023)在中国国际展览中心(顺义馆)隆重开幕。千余位资深专家、723家仪器企业、万余人参会观展,共聚行业盛会!纽迈分析作为一家深耕低场核磁领域20年的国产品牌,已多次参加北京分析测试展,本次展会于E3馆E3076展台展示了多款产品,其中包括MesoMR系列、PQ001系列、MacroMR系列等,其中新品首发的QMR06-060H/090H-PRO清醒小动物体成分分析仪更是吸引了众多观展嘉宾、行业媒体及业界同行的关注。QMR清醒小动物体成分技术在小动物清醒无束缚状态下快速、准确、定量的测量小动物的脂肪、瘦肉及体液含量,无需麻醉,直接进行测试,过程方便简洁,对小鼠或小动物无任何伤害,节约实验成本,可对单只小鼠或小动物进行长期跟踪研究,也通过MRI也可以实时观察体脂分布及沉积情况。通过长时间监测小动物的生理参数,考察各种药物、运动、外界因素及营养对动物体生理指标的影响。清醒小动物体成分分析仪主要用于与代谢有关的脂肪、瘦肉及体液等的成分的定量分析,协助实现药物有效部位(成分)的活性筛选,代谢性疾病的病因、病机等研究。新品PRO版 全新升级只为满足您的需求点击查看新品介绍视频BECIA 2023是全球分析科学与生化技术的博览盛会,汇聚了来自世界各地的专业人士和领军企业,为分享分析检测技术、产品、经验和创新提供了宝贵的机会。纽迈分析作为国产低场核磁领域的佼佼者,借此机会展示了在生命科学、能源岩土、食品农业等领域的创新成就,同时也收获了来自行业及客户的认可和赞誉。在未来的发展中,纽迈分析将继续面向世界前沿、面向市场需求,不断推出更加优质的产品和服务,为推动国产低场磁共振行业的发展做出更大的贡献。
  • 元素形态分析及其必要性
    1.元素形态  元素的形态是指某一元素以不同的同位素组成、不同的电子组态或价态以及不同的分子结构等存在的特定形式。元素形态又分为物理形态和化学形态,其中物理形态是指元素在样品中的物理状态如溶解态、胶体和颗粒状等 化学形态是指元素以某种离子或分子的形式存在,其中包括元素的价态、结合态、聚合态及其结构等。一般意义上所说的元素形态泛指化学形态,元素形态不同于元素价态,同一元素的相同价态可能有多种形态,如价态为五的砷元素,其元素形态可分为无机态和多种有机态的砷形态。不同元素的主要常见形态如表1所示:表1 不同元素的主要常见形态元素名称元素形态As三价无机砷(As(III)),五价无机砷(As(V)),一甲基砷(MMA(V)),二甲基砷(DMA(V)),砷甜菜碱(AsB), 砷胆碱(AsC),砷糖(AsS)等Hg无机汞(Hg(II)), 一甲基汞(MeHg(I)),二甲基汞((Me)2Hg)Cr三价铬(Cr(III)), 六价铬(Cr(VI))Se四价硒(Se(IV)),六价硒(Se(VI)),硒代胱氨酸(SeCys),硒代蛋氨酸(SeMet),硒多糖,硒多肽,硒蛋白等Pb二价铅(Pb(II)), 三甲基铅(TriML), 四乙基铅(TetrEL)等Sn二丁基锡(DBT), 三丁基锡(TBT)等  元素的不同存在形态决定了其在环境和生命过程中表现出不同的行为 不同的元素形态由于具有不同的物理化学性质和生物活性,在环境和生命科学领域发挥着不同的作用。元素总量或者浓度的相关信息已经不能满足环境和生命科学研究的需要,有时候甚至会给出一些错误的信息。  甲基汞的毒性要远高于无机汞,并且具有极强的生物亲和力,同时无机汞易于在生物体内富集并转化为甲基汞。人们首次认识到甲基汞的危害是在1955年,在日本的Minamata,因孕妇食用遭受甲基汞污染的鱼类,造成22名新生儿严重的脑损伤。在1971-1972年,伊拉克发生了大面积的甲基汞中毒事件,其原因在于当地人食用了经过甲基汞处理过的小麦做成的面粉。  Cr(III)是维持生物体内葡萄糖平衡以及脂肪蛋白质代谢的必需元素之一,而Cr(VI)却对生物体具有很大的毒性和致癌作用,原因在于其更强的氧化性和化学活性及迁移性 砷是一种有毒元素,但是不同形态砷的毒性却差别比较大,一般无机态砷毒性比较大,三价砷的毒性要大于五价砷 而有机态的砷中,甲基砷的毒性要强于其他的有机态砷,砷甜菜碱、砷胆碱和砷糖等则基本上没有毒性 对汞、锡和铅等重金属元素来说,有机态的化合物的毒性要远远高于无机态。作为人体必须的元素,铁仅仅是在二价时才能被生物体吸收和利用,食品中的总铁并不能代表可吸收利用的有效铁 硒是人体必需的元素,但是吸收过量时会导致硒中毒,不同形态硒的生物可利用性和毒性也差别较大 铝的毒性也和其形态密切相关,自由态的铝离子、水化羟基化合物Al(OH)2+和Al(OH)2+等是致毒形态,多核羟基铝也具有一定的毒性,而铝的氟配合物以及有机态配合物则基本无毒。  根据传统分析方法所提供的元素总量的信息已经不能对某一元素的毒性、生物效应以及对环境的影响做出科学的评价,为此,分析工作者必须提供元素的不同存在形态的相关信息。元素形态具有多样性、易变性、迁移性等不同于常规分析对象的特点,因此其分析方法也成为一个崭新的研究领域,即“元素形态分析”。  2.元素形态分析  元素形态分析是分析科学领域中一个极其重要的研究方向,IUPAC将其定义为定量测定样品中一个或多个化学形态的过程。Lobinski将其定义为确定某一元素在样品中不同化学形态分布的过程 Caroli指出,形态分析为识别和定量检测对人体健康和环境有危害的不同形态的无机分析物 Hieftje则将获得相关目标分析物原子的氧化态、键合特征、电荷态及原子缔合体的过程定义为形态分析 Welz则认为所谓元素形态分析是指测定特定条件下不同化合物的氧化态或可溶态的过程。曾有人根据Tessier连续萃取法将土壤中元素形态分为可交换态、碳酸盐结合态、铁-锰氧化物结合态、有机物结合态和残渣态等五种,但这并不是严格意义上的形态分析,这一萃取过程并不能提供涉及分子结构和电荷状态的元素形态的详细信息。  在20世纪70年代末至80年代初,Van Loon和Suzuki分别在权威期刊Anal. Chem.和Anal. Biochem.上发表了元素形态分析领域的开创性的工作,将广大的分析工作者的研究重点转移至元素形态分析技术的开发上来。经过二十多年的发展,元素形态分析已经成为分析科学领域的一个重要分支,随着这一技术的不断发展,已经为环境科学、生命科学、临床医学、营养学、毒理学、农业科学等领域提供了越来越多的有用信息。  3.元素形态分析的技术特点  元素形态分析技术主要由样品采集、样品制备、分离/富集、定性/定量、分析报告等五部分组成。在整个形态分析过程中,样品制备过程是形态分析的关键环节,需要注意保持待测元素形态,同时避免污染,这使得样品制备过程较常规总量分析更加复杂和困难。因此,对操作人员提出了更高的要求,同时延长了前处理时间。此外,由于元素的某一形态,仅仅是元素总量的一部分,甚至是极少的一部分,因此对分析方法的灵敏度提出了更高的要求,只有高灵敏的检测技术才能满足元素形态分析的要求。此外,用于元素形态分析的标准物质和标准参考物还需要倚赖进口,在一定程度上影响了形态分析技术的推广。  4.元素形态分析方法  由于一种元素存在几种甚至是几十种元素形态,因此分析方法已不同于传统的总量分析。在前处理方法上需要保持元素的现有形态,因此也不能沿用传统的酸消解方法 在测定方法上,形态分析也远不同于传统的总量分析,对方法的检出能力和稳定性提出了更高的要求。  早期的形态分析方法一般采用差减法进行测定,通过控制某些测量条件,实现总量和某些元素形态的测量,然后通过差减的方法得到其它元素形态的含量信息。如通过测量总砷和三价砷,二者相减即可得到五价砷的浓度 如通过四价硒和总硒的测量,即可测得六价硒的含量。差减法相对比较简单,整个分析过程对实验条件的要求不高,但是该方法仅仅适用于元素形态较少的条件,且操作较为繁琐。  元素形态分析的通用方法是先对元素的各种形态/组态进行有效分离,然后再进行检测。近年来,人们在追求元素形态分析方法的高灵敏度、高选择性的同时,也一直在致力于提高分析过程的效率,缩短分析过程的时间,力图实现整个分析过程的自动化。传统的元素形态分析方法将元素形态的分离与测定分别进行,使得操作过程变得比较繁琐,同时在操作过程中可能会造成样品的损失以及元素形态的变化,对最终的测定结果产生比较大的影响。联用技术将高效的分离技术与高灵敏的检测技术有机结合,元素形态经过分离后通过在线“接口”直接进入检测器进行检测,这样灵敏度、准确度和分析过程的效率都得到很大提高。  5.HPLC-ICPMS联用  自1983年第一台商品仪器问世以来,ICP-MS经过近20多年的发展,已经成为各行业用于元素分析和同位素分析最有力工具,具有极低的检出限(10-15~10-12量级)和极宽的线性范围(8~9个数量级)以及极强的多元素快速检测能力。由于检测的是质量/电荷比(m/z),不存在光谱分析中的光谱干扰问题,但存在同量异位素、多原子分子离子以及多电荷离子的干扰问题,如40Ar35Cl干扰75As、40Ar40Ar干扰80Se、36Ar18O干扰54Fe的测定。  HPLC-ICP-MS联用技术已经成为分析化学中最热门的研究领域之一,已经被认为是目前最有效和最有发展前景的形态分析技术,已经得到了较为广泛的应用。但是ICP-MS对色谱分离中所普遍使用的高盐组分和高含量有机组分,如甲醇、乙腈等承受能力有限,大大限制了其在与色谱联用中的应用。此外,ICP-MS昂贵的价格、对操作人员的较高要求以及极高的运行和维护成本限制了ICP-MS在元素形态分析领域的广泛应用。中国经济相对不发达的现状,决定了HPLC-ICP-MS不可能在中国进行普及和推广。  6.HPLC-VG-AFS联用  原子荧光光谱仪是具有中国特色的分析仪器,它具有分析灵敏度高、线性范围宽、仪器结构简单、成本低廉、易于维护、光谱干扰及化学干扰少等独特优点。对于As、Hg、Se、Pb等元素的特征谱线均处于原子荧光最佳的检测波长范围,在采用了高效的蒸气发生进样技术后,具有其他分析手段无可比拟的检出能力,可以获得与电感耦合等离子体质谱(ICP-MS)相当的检出限和灵敏度。VG-AFS与色谱的联用技术的研究已经开展30多年,但由于缺乏理想的商品化仪器,一直没有太大的发展。随着近年来国内原子荧光技术的不断发展和完善,在各项性能上都得到了很大提高,已经具备了与色谱联用的条件。如果将原子荧光的高效检出能力与色谱的高效分离技术完美结合,就可以实现As、Hg、Se等元素的形态分析。  原子荧光采用的蒸气发生进样技术能够使待测组分与基体有效分离,因此具有极强的耐高盐组分和有机组分的能力,能够和任意的色谱分离条件相匹配。此外原子荧光还具有成本低廉和操作简单等优点,使得HPLC-VG-AFS联用技术应用于元素形态分析具有极大的发展前景,易于在各个行业推广和使用。  7.元素形态分析的必要性  砷作为常见的有毒有害元素,一直倍受人们关注。砷摄入过多可引起急性中毒,长期低剂量暴露可引起慢性砷中毒,诱发各种皮肤病并可导致肝肾功能受损,甚至导致癌症。砷的毒性与砷的赋存形态密切相关,不同形态的砷毒性相差甚远。在主要的砷化物中,亚砷酸盐和砷酸盐毒性大,而MMA和DMA毒性小, AsB和AsC则被认为没有毒性。亚砷酸盐、砷酸盐、MMA、DMA、AsB、AsC和AsS对实验小鼠的半数致死量(LD50)分别为14、20、700~1800、700~2600、10000、6500、8000mg/kg。GB 2762-2005《食品中污染物限量》中规定贝类及虾蟹类水产品(鲜重)的无机砷限量标准为0.5mg/Kg, 干重的限量标准为1 mg/Kg,。GB/T5009.11-2003提供了食品中总砷和无机砷的测量方法,为有毒的无机砷检测提供了技术手段。  近年来, 国内质检机构一直依据GB/T5009.11-2003来检测食品中的无机砷。继广西检出大量紫菜中无机砷超标以来, 国家工商局又报道了44.9%的紫菜、海带中无机砷超标,甚至引发了紫菜、海带能否安全食用的讨论。紫菜属海生植物型食品,其中砷主要是以AsS的形式存在,几乎不含无机砷。2004年在香港媒体上报道多次的鱼罐头事件,香港消费者委员会测试了市面上的48款吞拿鱼、沙甸鱼等鱼类罐头,发现当中的17种砷含量超标,引起规模超过5亿元的内地鱼罐头产业近年来一直不景气。  实际情况是,国内绝大多数海产品并未超标,只是目前的检测方法存在问题。我们以海带、紫菜类植物性海产品为例,加以详细说明。植物性海产品中,砷主要以砷糖(AsS)的形式存在,此外还含有少量的二甲基砷酸(DMA)。如果依照GB5009.11-2003的样品前处理方法,采用6mol/L的盐酸进行提取,则植物性海产品中的AsS会部分分解,转化为DMA,如图1所示。标准中所采用的原子荧光检测方法,是以蒸气发生化学反应作为基础的,其检测过程如下:  (1) 样品中的五价砷在进样前,首先被还原剂还原成三价无机砷   (2) 然后在进样后和KBH4反应,生成AsH3和H2   (3) AsH3经过气液分离后,在氩气和氢气的携带下,进入原子化器   (4) AsH3最终在Ar-H火焰中解离,生成砷原子。  (5) 砷原子受到特征谱线的辐照,其外层电子受到激发,跃迁至较高能级,在其返回至基态时,发出共振荧光   (6) 共振荧光被检测器所接收,经过前置放大后,转化为电信号,输出至控制软件中,进行定量计算。  由于DMA也会和KBH4反应,生成气态的As(CH3)2H, 而As(CH3)2H也会在Ar-H火焰中解离,生成砷原子,所以GB5009.11-2003的样品前处理方法造成的AsS分解所产生的DMA以及样品中原有的DMA均会被以无机砷的形式检出,得到“假阳性”的分析结果。因此,检出的大规模海带、紫菜中无机砷超标的结果是错误的,究其原因,主要在于其前处理方法使得以无毒有机砷存在的AsS被当成无机砷被检出。  对于GB5009.11-2003的标准方法,存在两个问题:  (1)样品前处理问题  6mol/L的盐酸使得紫菜、海带类样品中的AsS部分分解,其方法值得商榷。  (2) 检测方法的问题  由于采用蒸气发生-原子荧光检测方法,样品中的有机砷,如DMA和MMA也会生成氢化物,被误认为是无机砷被检出。因此,该方法对无机砷检测而言,不是特异性检测方法,部分有机砷形态也会同时干扰测量,造成结果偏高的现象。  因此,针对上述两个问题,只能采用高效液相色谱-原子荧光联用的方式加以解决,将所测量的砷形态经过色谱分离后,再检测,就不会存在上述问题。  北京金索坤公司生产的形态分析原子荧光光谱仪,是金索坤公司多年技术研究成果,专门针对元素形态分析需求设计的高端产品,内置了在线消解装置,配备了液相泵,并采用索坤的连续进样技术和液相泵无缝对接,实现对柱后流出液实时监测,连续采集数据,大大提高了形态分析原子荧光光谱仪的准确度。  不仅是形态分析原子荧光光谱仪,北京金索坤公司的SK系列原子荧光光谱仪还有预留联用接口,可与任何型号的液相色谱仪无缝对接,进行形态分析,更是以其卓越的稳定性和可以检测多种元素深受广大用户的青睐,索坤公司成功研制出新一代的原子荧光,其在保持了传统原子荧光设备的技术优点外,更具备了三大主要特点:  ▲超高重复性指标  ▲多达18种的测试元素  ▲简便快捷的操作  实现以上三大特点,归功于2大核心技术彻底由理论化为生产,两大核心技术:  2010年11月通告的发明专利《连续流动进样氢化物发生系统》(专利号:ZL.200610113008.4)  《小火焰法原子化技术在无色散原子荧光上的应用》(专利号:03134241.8)  索坤公司经过了无数次的试验和研发改进,以及配套的十多个实用新型专利,才得以将原子荧光技术-中国为数不多的具有自主知识产权的分析仪器-更新换代,且填补了国际空白,为国家的仪器发展事业增砖添瓦!  应用了换代技术的产品性能,重复性将比现在的优越一倍,具体的数据正在提交权威机构检测中。索坤公司的新世代原子荧光光谱仪,分为三大产品系列:  ▲企业系列---为企业量身定做,超高性价比:  SK-830 │SK-2003A │SK-2003AZ  ▲质检系列---更多的可检测元素及强大功能:  SK-盛析│SK-锐析│SK-2002B│SK-2003│SK-2003AZ  ▲科研系列---全面的重金属检测及形态分析:  SK-博析│ SK-典越
  • 中科院沈阳自动化所孙兰香LIBS团队:元素成分LIBS在线分析
    p style="line-height: 1.5em text-align: justify "span style="line-height: 1.5em " strong span style="line-height: 1.5em font-size: 20px "一、 中国科学院沈阳自动化研究所孙兰香团队风采/span/strong/span/pp style="line-height: 1.5em text-align: justify "  中国科学院沈阳自动化研究所LIBS团队由孙兰香研究员领衔,初创于2007年,目前有研究员1名,副研究员3名,助理研究员5名,在读博士研究生2名,硕士研究生5名,已毕业博士2名,硕士4名。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/7ca3c0e3-bae9-492c-a528-4f2108fb8e9a.jpg" title="微信图片_20181229105023.jpg" alt="微信图片_20181229105023.jpg" width="300" height="343" border="0" vspace="0" style="width: 300px height: 343px "//pp style="line-height: 1.5em text-align: justify "  针对工业生产成分检测的需求,本团队致力于金属冶炼、选矿等行业的元素成分在线分析的研究,经过十多年的机理研究及研发产品迭代,攻克了冶金工业现场高温、多粉尘恶劣环境等多种问题,研发出多款适用于冶金、选矿、金属回收等多种领域的LIBS在线检测产品。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/92d4f39e-cb8b-45cd-a584-a73609326b2a.jpg" title="孙兰香团队.jpg" alt="孙兰香团队.jpg" width="600" height="276" border="0" vspace="0" style="width: 600px height: 276px "//pp style="text-align: center "中国科学院沈阳自动化研究所LIBS团队/pp style="line-height: 1.5em text-align: justify "  span style="font-size: 20px "strong二、 中国科学院沈阳自动化研究所孙兰香团队LIBS相关研究成果及研究最新进展/strong/span/pp style="line-height: 1.5em text-align: justify "span style="font-size: 20px "  span style="font-size: 20px color: rgb(255, 0, 0) "strong钢铁行业/strong/spanspan style="font-size: 20px color: rgb(31, 73, 125) "strong/strongstrong/strong/span/span/pp style="line-height: 1.5em text-align: justify "  从东北老工业基地的特点及需求出发,团队首先以钢铁行业为切入点,从2007年立项研究,到2010年初代样机通过工厂试验,2014年二代样机成功实现工厂示范应用,已经研制成可适用于钢铁冶炼在线成分分析仪,并国际上首次实现了40吨级钢包的钢水成分在线测量。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/4321aa08-1dc2-4838-b093-aa0c0876da30.jpg" title="1.png" alt="1.png"//pp style="line-height: 1.5em text-align: center "  图1 钢铁冶炼LIBS分析仪一代(左)、二代(右)/pp style="line-height: 1.5em text-align: justify "  span style="font-size: 20px color: rgb(255, 0, 0) "strong有色行业/strong/span/pp style="line-height: 1.5em text-align: justify "  为了拓展LIBS的应用领域,结合团队的研究方向,研发出可适用于有色行业冶炼生产的原型样机,并经过产品迭代,目前已经形成性能完备的适合铝合金、铜合金生产过程在线成分检测的LIBS在线成分分析仪(SIA-LIBSmelt),为国内首款液态铝合金及铜合金成分在线分析设备。并在辽宁忠旺、天津立中合金、大连亚明、贵阳铝镁设计院等多家企业中得到应用验证。/pp style="line-height: 1.5em text-align: justify "strong/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/616a1dc9-f164-473f-a489-c66b61f2b16b.jpg" title="2.png" alt="2.png"//pp style="line-height: 1.5em text-align: center "  span style="font-size: 14px "图2 液态金属分析仪应用现场(A 辽宁忠旺、 B 天津立中合金、 C 大连亚明、 D贵阳铝镁设计院)/span/pp style="line-height: 1.5em text-align: justify "  span style="color: rgb(255, 0, 0) font-size: 20px "strong选矿行业/strong/span/pp style="line-height: 1.5em text-align: justify "  进一步向金属冶炼的上游领域拓展应用,团队又研发出基于LIBS技术适用于选矿过程的在线元素成分分析仪(SIA-LIBSlurry),仪器目前已经在云南磷化集团的选矿厂进行示范应用。该仪器通过更换外挂箱可同时满足液体、固体的分析需求,部分固体元素的检出限可达到1ppm。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/7e115a1d-978f-49c1-912c-41449bc3125f.jpg" title="3_副本.png" alt="3_副本.png"//pp style="line-height: 1.5em text-align: center "  图3 矿浆LIBS在线成分分析仪及现场应用br//pp style="line-height: 1.5em text-align: justify " span style="color: rgb(255, 0, 0) font-size: 20px "strong 金属分选及识别/strong/span/pp style="line-height: 1.5em text-align: justify "  为了节能、环保及节约成本,废旧金属的回收再利用会在未来金属生产过程中占据越来越多的比重,团队针对行业的未来发展趋势,研发出全自动废旧金属分拣系统(SIA-LIBSorting),可以实现40件/秒的分拣速度,分拣准确率可以达到95%以上。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/113be7e6-bd3c-47e9-9a72-96fd190344ab.jpg" title="4.jpg" alt="4.jpg"//pp style="line-height: 1.5em text-align: center "  span style="color: rgb(0, 0, 0) "图4 LIBS废旧金属智能分选装备/span/pp style="line-height: 1.5em text-align: justify "  span style="color: rgb(255, 0, 0) font-size: 20px "strong便携式LIBS分析仪/strong/span/pp style="line-height: 1.5em text-align: justify "  针对物体辨别等通用领域,团队研发出便携式LIBS分析仪(SIA-LIBSport),可以适用于金属及其牌号的识别、岩石种类鉴别等多种应用领域。LIBSport包括手持测量探头和手提箱,手持部分重量小于1.5千克,方便人手长时间抓握。LIBSport内嵌多种金属牌号库,可定性判别钢、铜、铝、钨、钛、钴、铅等大类物质,可定量分析不锈钢、低合金钢、铝合金、铜合金等常见金属,并且可以根据客户需求添加。/pp style="line-height: 1.5em text-align: justify "  LIBSport分析仪相比单纯手持式LIBS系统具有更高的激光功率,可以适用于更广泛的分析样品。LIBSport对于碳钢中的碳也有较好的分析能力,不需要氩气便可实现0.1%以上碳含量的半定量分析,能判别大部分碳钢的牌号。LIBSport加载Win 10系统,提供部分科研级服务,方便用户拓展应用。/pp style="line-height: 1.5em text-align: justify "br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/68c94e2a-618c-41c0-a912-f5623ce8ae9d.jpg" style="width: 300px height: 222px " title="5.jpg" width="300" height="222" border="0" vspace="0" alt="5.jpg"/img src="https://img1.17img.cn/17img/images/201812/uepic/d3e7fc40-d446-4d8a-9f12-0a7722a1f2ce.jpg" title="6.png" width="176" height="200" border="0" vspace="0" alt="6.png" style="width: 176px height: 200px "//pp style="line-height: 1.5em text-align: center "  图5 便携式LIBS分析仪br//pp style="line-height: 1.5em text-align: justify "  span style="font-size: 20px color: rgb(0, 0, 0) "strong三、 中国科学院沈阳自动化研究所孙兰香团队代表性论文/strong/span/pp style="line-height: 1.5em text-align: left "  1. Wei WANG, Lanxiang SUN, Peng ZHANG, Liming ZHENG, Lifeng QI, Wei DONG, A method of laser focusing control in micro-laser-induced breakdown spectroscopy, Plasma Sci. Technol. 21 (2019) 034004/pp style="line-height: 1.5em text-align: left "  2. Peng Zhang, Lanxiang Sun*, Haibin Yu, Peng Zeng, Lifeng Qi, and Yong Xin, An Image Auxiliary Method for Quantitative Analysis of Laser-Induced Breakdown Spectroscopy, Analytical Chemistry, 2018, 90(7): 4686-4694./pp style="line-height: 1.5em text-align: left "  3. Lanxiang Sun*, Haibin Yu, Zhibo Cong, Hui Lu, Bin Cao, Peng Zeng, Wei Dong, Yang Li. Applications of laser-induced breakdown spectroscopy in the aluminum electrolysis industry, Spectrochimica Acta Part B: Atomic Spectroscopy. 2018,142:29-36/pp style="line-height: 1.5em text-align: left "  4. 孙兰香, 汪为, 田雪咏, 张鹏, 齐立峰, 郑黎明, 激光诱导击穿光谱微区分析的研究应用进展, 分析化学, 2018, 46(10):1518-1527./pp style="line-height: 1.5em text-align: left "  5. 周中寒 田雪咏 孙兰香 张鹏 郭志卫 齐立峰. Fiber-LIBS技术结合SVM鉴定铝合金牌号, 激光与光电子学进展, 2018,55(6):1-7./pp style="line-height: 1.5em text-align: left "  6. 辛勇, 李洋, 李伟, 刘学, 李菁菁, 杨志家, 于海斌, 孙兰香. 基于LIBS技术在线监测熔融铝水中的元素成分, 光子学报, 2018, 47(8):1-8. (EI)/pp style="line-height: 1.5em text-align: left "  7. P. Zhang, L. X. Sun*, H. B. Yu, P. Zeng, L. F. Qi, and Y. Xin. An intensity correction method combined with plasma position information for Laser-Induced Breakdown Spectroscopy, Journal of Analytical Atomic Spectrometry, 2017, 32(12): 2371 - 2377/pp style="line-height: 1.5em text-align: left "  8. 孔海洋,孙兰香*,胡静涛,张鹏. 激光诱导击穿光谱定量化标定谱线自动选择方法, 光谱学与光谱分析, 2016, 36(5): 1451-1457/pp style="line-height: 1.5em text-align: left "  9. 辛勇, 孙兰香*, 杨志家, 李洋, 丛智博, 齐立峰, 张鹏, 曾鹏. 基于一种远程双脉冲激光诱导击穿光谱系统原位分析钢样成分, 光谱学与光谱分析, 2016, 36(7): 2255-2259/pp style="line-height: 1.5em text-align: left "  10. Yong Xin, Lan-Xiang Sun*, Zhi-Jia Yang, Peng Zeng, Zhi-Bo Cong, Li-Feng Qi. In Situ Analysis of Magnesium Alloy using a Standoff and Double-Pulse Laser-Induced Breakdown Spectroscopy System, Frontiers of Physics, 2016, 11(5): 115207/pp style="line-height: 1.5em text-align: left "  11. Lanxiang Sun*, Haibin Yu, Zhibo Cong, Yong Xin, Yang Li, Lifeng Qi. In situ analysis of steel melt by double-pulse laser-induced breakdown spectroscopy with a Cassegrain telescope, Spectrochimica Acta Part B: Atomic Spectroscopy. 2015,112:40-48/pp style="line-height: 1.5em text-align: left "  12. Bo Zhang, Lanxiang Sun*, Haibin Yu, et.al. A method for improving wavelet threshold denoising in Laser-induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy. 2015, 107: 32-44/pp style="line-height: 1.5em text-align: left "  13. QI Lifeng, SUN Lanxiang*, XIN Yong, CONG Zhibo, LI Yang, YU Haibin. Application of Stand-off Double-Pulse Laser-Induced Breakdown Spectroscopy on Elemental Analysis of Magnesium Alloy, PLASMA SCIENCE & TECHNOLOGY, 2015 , 17(8): 676-681/pp style="line-height: 1.5em text-align: left "  14. KONG Haiyang, SUN Lanxiang*, HU Jingtao, XIN Yong, CONG Zhibo. A comparative study of two data reduction methods for steel classification based on LIBS, PLASMA SCIENCE & TECHNOLOGY, 2015, 17(11): 964-970/pp style="line-height: 1.5em text-align: left "  15. 孙兰香*,辛勇,丛智博,李洋,齐立峰. 通过二次回归正交设计对激光诱导击穿光谱实验参数优化建模, 光学学报, 2014, 34(5): 53003/pp style="line-height: 1.5em text-align: left "  16. 丛智博,孙兰香*,辛勇,李洋,齐立峰,杨志家. 基于激光诱导击穿光谱的合金钢组分偏最小二乘定量分析,光谱学与光谱分析,2014, 33(2): 1-6/pp style="line-height: 1.5em text-align: left "  17. Haiyang Kong, Lanxiang Sun*, Jingtao Hu, Yong Xin, Zhibo Cong. Quantitative Analysis of Steels Using PLS with Three Data Reduction Methods Based on LIBS. Advanced Materials Research, 2014, 997: 578-582./pp style="line-height: 1.5em text-align: left "  18. Bo Zhang, Lanxiang Sun*, Haibin Yu, Yong Xin and Zhibo Cong. Wavelet denoising method for Laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 2013,28, 1884-1893./pp style="line-height: 1.5em text-align: left "  19. Bo Zhang, Haibin Yu, Lanxiang Sun*, Yong Xin, and Zhibo Cong. A Method for Resolving Overlapped Peaks in Laser-Induced Breakdown Spectroscopy (LIBS), Applied Spectroscopy, 2013, 67(9): 1087-1097./pp style="line-height: 1.5em text-align: left "  20. Lanxiang Sun*, Zhibo Cong, Yong Xin, et al. Reducing Quantitative Fluctuation of Laser-Induced Breakdown Spectroscopy by Kalman Filtering, Applied Mechanics and Materials, 2013, 333-335: 243-247/pp style="line-height: 1.5em text-align: left "  21. 孙兰香, 于海斌等. 基于激光诱导击穿光谱的钢液成分在线监视, 中国激光, 2011, 38(9):0915002/pp style="line-height: 1.5em text-align: left "  22. 孙兰香, 于海斌等. 利用LIBS技术在线半定量分析液态钢成分, 仪器仪表学报, 2011, 32(11): 2602-2608/pp style="line-height: 1.5em text-align: left "  23. 孙兰香, 于海斌等. 激光诱导击穿光谱技术结合神经网络定量分析钢中的Mn和Si, 光学学报, 2010, 30(9): 2757-2765/pp style="line-height: 1.5em text-align: left "  24. 孙兰香, 于海斌等. 采用激光诱导击穿光谱技术测定合金钢中锰和硅的含量, 光谱学与光谱分析, 2010, 30(12): 3186-3190/pp style="line-height: 1.5em text-align: left "  25. Sun lanxiang, YU haibin. Automatic Estimation of Varying Continuum Background Emission in Laser-Induced Breakdown Spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, 2009,64(3):278-287/pp style="line-height: 1.5em text-align: left "  26. Sun lanxiang, YU haibin. Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method, Talanta,2009,79(2):388-395/pp style="line-height: 1.5em text-align: left "  27. 孙兰香, 于海斌等. 利用激光诱导击穿光谱对铝合金成分进行多元素同时定量分析, 光谱学与光谱分析, 2009, 29(12): 3375-3378/pp style="line-height: 1.5em text-align: left "  28. 孙兰香, 于海斌等. 激光诱导击穿光谱在物质成分定量分析方面的实验研究进展, 仪器仪表学报, 2008, 29(10): 2235-2240/ppbr//p
  • Biopharma冻干教学:浅谈冻干产品的水分分析
    当我们通过不断的实验得到了一个兼顾效率、稳定性、经济性的冻干工艺后,冻干机会很尽责地为我们带来有漂亮外观的冻干产品,不过这也代表着,作为研发人员我们的工作还没有结束——对于得到的冻干产品,我们有必要去对其做进一步的研究,以分析样品在保存中的稳定性。 一般而言,需要做的分析主要分为三个类别:残留水分分析、热分析和机械性能分析。在这里我们对这三种分析分别一个简单的介绍。★在本次的文章中我们给大家带来的是关于残留水分分析的内容。传统的水分分析法冻干产品中的水分含量会直接影响该样品的玻璃态转化(glass transition)。玻璃态转化在宏观上会影响材料的软化,从而会影响产品的长期稳定性(long term stability)和产品的最高储存温度。同时,控制产品中的水分,追求水分含量的均一性,对于质量控制有重要的意义,同时有益于后续的文件工作。传统的水分分析法主要有:1、卡尔费休滴定法(Karl Fisher coulometric titration, KF)2、 热重分析法(Thermo-gravimetric analysis, TGA)3、同时还有最近较为新式无损测试方法:近红外分析法(Near infrared,NIR)4、调频光谱法(Frequency modulation spectroscopy,FMS)卡尔费休滴定法卡尔费休法是测定物质水分的各类化学方法中,最为准确的方法,被视为许多物质中水分测定的标准方法。其中又分为:1、直接注射法(Direct Injection) 图1:直接注射法直接注射法又称为经典卡尔费休滴定法。该方法需要预先配置或购买商用卡尔费休滴定液,将冻干样品全部溶解于该滴定液中后,注射进仪器里。按照计算水分方法的不同,又分为库伦法和容量法,通过电量或者是滴定液的消耗量,即可算出水分的含量。2、基于烘箱的卡尔费休滴定(Oven-based KF titration) 当冻干样品不能够溶解于滴定液,或者会与滴定液发生化学反应时,使用基于烘箱的KF滴定法是一个更好的选择。将样品称重到小瓶中并用隔垫盖封闭。当放置在烘箱中时,水会蒸发,用分子筛干燥的载气(通常是空气或氮气)将释放的水输送到滴定池中,在那里进行水含量的测定。水与样品基质分离,避免了副反应和污染。烘箱的温度根据样品的温度稳定性来选择。热重分析法热重分析法(TGA)是在规定程序控制变化的温度范围内,测量被分析样品的重量相关量(如质量、固体残留量或残留率等)随温度或时间的变化关系。 一般认为,在100-120℃左右失去结晶水和结合水。在这个温度范围内进行测试,样品支架下部连接的高精度天平随时感知到样品当前的重量,并将数据传送到计算机,由计算机画出样品重量对温度/时间的曲线。当样品发生重量变化时,会在TG曲线上体现为失重(或增重)台阶,由此可以得知该失/增重过程所发生的温度区域,并定量计算失/增重比例。建议此方法与KF滴定法连用,以确保重量变化一定是由水分造成的。近红外分析法 近红外光谱分析是利用近红外光谱区包含丰富的物质信息,用于有机物质定性定量的一种分析方法。近红外分析技术作为绿色分析的典范,具有分析速度快、穿透力强、样品在分析时基本不需要处理、不破坏分析样品、无污染、可同时检测多种成分、适用于在线和现场分析等优势,已被广泛应用于农产品、食品、纺织品、烟草和化妆品等领域。将样品的反射辐射与相同波长的标准参考物进行比较,可迅速地完成残留水分的分析。但该方法需要进行校准工作,一旦校准完成,近红外是一个非常具有效率的分析方法。调频光谱法将FMS仪器的近红外激光调谐到1382nm处——水蒸气的选定振动跃迁的内部吸收频率,FMS就可以测量样品瓶内部顶空蒸汽压力,创建水分预测模型。吸收的激光量与水蒸气的浓度成正比,再基于与卡尔费休的相关性,小瓶水蒸气压(mbar)可用于测定冻干饼的水分含量。 FMS测量代表反应性水,或换言之水活度测量,可以探讨水的各种存在形式。同时与 NIR相比,FMS在1%水分以下的精度会更值得信赖。想要了解更多请关注德祥公众号与莱奥德创。 LYO INNOVATION莱奥德创冻干科技,赋能创新Lyo technology enables innovation 关于莱奥德创:上海莱奥德创生物科技有限公司由德祥科技有限公司创办,专注于提供先进的冻干设备应用和制剂开发相关服务。德祥科技有限公司服务冻干行业十余年,在涉及冷冻干燥领域的工艺开发/工艺优化/商业化等各方面拥有丰富的经验,迄今为止已为500+客户提供冻干设备及相关服务。客户产品类型涵盖:蛋白、抗体、ADC、疫苗、核酸、多肽、脂质体、IVD、食品等领域。依托与合作伙伴美国SP Scientific和英国Biopharma Group的紧密合作,掌握领先的冻干理念与技术,使用先进的冻干设备和软件致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。Our Mission :莱奥德创冻干工场专注于提供先进的冻干设备应用和制剂开发相关服务,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。Our Vision :做冻干工艺的创新者,为生物医药开发提供*制剂产品解决方案。
  • GPT-Li在锂电池原位产气量和气体组分分析中的应用
    锂离子电池在首次充电过程中,电解液与负极材料发生反应在表面形成固体电解质界面膜(SEI,Solid Electrolyte Interface),并伴随产气,如氢气、二氧化碳、甲烷等。该过程属于正常产气,被称为化成阶段。当锂电池在过充放电过程时,也会异常产气,导致电池形变、封装破损、内部接触不良,从而引起安全事故。因此,准确掌握电池的产气量大小、深入了解产气规律,有助于优化电池材料体系和电解液,对电池制作工艺优化至关重要。以往,对于从软包锂电池中提取气体样本一直是一项具有挑战性的工作。传统的方法是用一根锋利的针穿透软包电池,这样可以一次性测量气体,但在此过程中会破坏软包电池。而且,这种方法不适合与多种时间、不同电压或充电状态(SoC)相关的测量,也不允许连续监测电池内部的产气过程。因此,该传统方法存在的问题是测试具有破坏性,不能用于非侵入和重复气体取样。它也没有提供一种从软包电池中提取永久性气体而不损坏它的方法。为了克服这些限制,德国明斯特大学(University of Münster)的Jan-Patrick组于2020年引入了一种气体采样端口(GSP,Gas Sampling Port)用于从锂离子软包电池中原位采集产气(DOI 10.1149/1945-7111/ab8409)。GSP是一种基于聚丙烯(PP)的套管系统,它被热封到袋箔的内层。它允许非破坏性和重复气体采样,而不会显着影响袋状电池的电化学性能。通过引入GSP,研究人员能够对软包电池内形成的气体进行原位分析。这使他们能够在不损害电池完整性的情况下研究气体的产量和组成。关于产气量的测定,作者仍然采用的是传统的“阿基米德法”。这种方法的基本原理是将软包电池悬挂于流体中,如MilliQ水中。由于软包电池受到的液体浮力会对小型薄膜测压传感器施加一个力,则传感器中应变片的变形会导致电阻变化形成电信号,然后再转化为力数据。通过阿基米德浮力公式,其产生的浮力与同体积排开的液体的重量相等,即可换算出软包电池的产气量。但此方法为间接计算产气量,操作装置较为复杂、误差较大、精度不足、重复性不足。且此方法仅能用于软包电池的产气量测量,不具有兼容方形电池、圆柱电池的广泛性。GPT-Li原位锂电池产气量测定仪采用GMC(Gas Metering Cell)超微量气体流量测量专利技术,其原理为直接将锂电池产气引入GMC测量模块,当气体流过特殊设计的流道中的惰性液体时,会产生均匀的气泡并计数累计产气量。该技术的直接测量精度可达约30 μL,且支持连续或非连续气流的测量。将该技术结合不同的接口,可实时在线连续原位监测软包、方形、圆柱等各种类型电池的产气行为,并得到如产气量、产气速率等数据。同时,GMC测量模块可直接与GC、DEMS等气体组分分析设备串联,用于进一步的气体组分分析。相较于传统的排水法(基于阿基米德浮力定律)、集气法(基于理想气体状态方程),GPT-Li可实现直接动态监测气体的微量体积变化并与气体成分分析设备进行联动分析,有助于锂电池材料研发和电芯产气机理的分析研究。
  • 美法科学家交付火星化学成分分析仪
    美国洛斯阿拉莫斯国家实验室表示,美、法两国科学家合作研究小组9月21日将研制的、名为“ChemCam”的仪器交付给了喷气推进实验室。该仪器将安装在计划于2011年发射的火星探测车“好奇”(Curiosity)上,其作用是帮助人们了解火星上的化学元素。  据悉,未来新的火星探测车抵达火星表面开始工作时,“ChemCam”仪器带有的激光器会向距离火星探测车7米处的目标发射激光,并利用激光诱导分解光谱(laser-induced breakdown spectroscopy)技术检测被激光照射目标物质所含的化学成分或元素。  具体分析过程是,首先用激光束轰击分析目标,轰击点仅为针头大小。在激光的作用下,被轰击的物质发生蒸发。随即利用光谱分析仪捕捉和分析蒸发物质发出的闪光。由于原子在激光作用下转变成电离原子时将发出光波,而不同的原子在电离时发出的光波波长不同,因此“ChemCam”可以通过将观察到的光波波长与自身携带的原子光谱数据库的数据进行比较,从而推断出被轰击目标物质中所含的原子或元素。  研究人员表示,即使岩石目标被灰尘遮盖也难不倒“ChemCam”分析仪,因为它可以先用激光清理掉灰尘或其他覆盖物,再对岩石样品进行分析。洛斯阿拉莫斯国家实验室“ChemCam”仪器研制负责人罗杰维恩斯说,他们汇集了众多的新理念才将该仪器变为现实。  “ChemCam”仪器法国参与人员负责人斯尔维斯特莫瑞斯认为,该仪器如同地质化学观察仪,将为人们提供有关火星的组成成分数据,以了解它过去、现在或将来是否适于居住。同时该仪器还将帮助火星探测车控制组选择最有价值的目标,供探测车上的其他仪器进行研究。未来,美、法联合研究小组将共同操控“ChemCam”在火星上的元素分析活动,并解释获得的数据。  “好奇”火星探测车是迄今为止针对火星探测最大且能力最强的机器人。它采用核动力驱动,自身重量超过了900公斤,尺寸大小如同小汽车。搭载它进入火星大气层的太空舱的大小甚至超过了当年搭载3名宇航员的“阿波罗”登月舱。包括“ChemCam”在内,“好奇”探测车上所要携带的仪器总数为10台。其他的仪器能够帮助人们了解火星矿产、嗅出有机物质、观察气象和辐射环境、钻探火星岩石(深度为数厘米)。根据原定计划,“好奇”探测车将于2011年11月从佛罗里达航天中心发射,2012年8月抵达火星。
  • 聚焦中子活化分析技术,助力工业物料成分在线检测——访朱良漪奖获得者兰州大学黑大千
    2022年1月,中国仪器仪表学会分析仪器分会十届三次理事会及“朱良漪分析仪器创新奖”颁奖在京举行。经过10位专家的会评,2021年“朱良漪分析仪器创新奖”最终评选出“创新成果奖”3项,“青年创新奖”4名。仪器信息网同中国仪器仪表学会分析仪器分会对“朱良漪创新奖”获奖人员进行了联合采访,本期的采访对象是“青年创新奖”获得者兰州大学核科学与技术学院研究员黑大千。兰州大学核科学与技术学院 黑大千研究员主要成果:研制的中子活化分析设备的性能指标经多方测试能够满足实际应用中的需求,在研发的过程中形成了中子活化分析设备的发明专利和分析方法的软件著作权,并在煤炭和水泥等相关行业得到了实际应用和示范验证,取得了一定的社会经济效益。仪器信息网:首先恭喜您获得“2021年朱良漪分析仪器创新奖”,请向广大网友介绍一下您自己,以及您所在的单位?黑大千:各位网友好!感谢仪器信息网的采访。我是兰州大学核科学与技术学院的黑大千。目前我在主要开展核技术应用及核分析技术领域系统性研究工作,涵盖基础研究、方法学研究、应用基础研究、技术拓展等核分析技术的全链条式科研创新工作。具体研究内容包括:瞬发伽马射线中子活化分析(PGNAA)技术、核素识别与定量分析技术、中子/伽马新型探测技术、X射线分析技术、核电子学技术等。仪器信息网:请介绍您进入分析仪器领域的机缘?您在分析仪器的研制和产业化方面开展了哪些工作,取得了怎样的创新成果?黑大千:我能有幸进入分析仪器领域还要感谢国家科技部在十二五期间组织的国家重大科学仪器设备开发专项,2013年,在我的导师陈达院士、贾文宝教授的带领下,我们团队牵头获批了项目“工业物料成分实时在线检测仪器的开发和应用”,在项目执行期间,我和项目团队中的年轻人得到了充分的锻炼,从仪器硬件的优化设计,到仪器分析方法的创新突破,再到标准样品的设计优化,直至最后仪器总装、示范工程建立,我们经历了完整的分析仪器开发流程,并与分析仪器的研究与开发深深结缘。在研究工作方面,我的主要研究工作可以大致分为两个方面:1. “穷理以致其知” --- 核分析技术基础研究:从核分析技术的基本物理过程出发,探索测量信号与被测量信息间的物理机制模型建立、影响因素探索等。并在此基础上,形成全新分析方法、构建相应数据库、发展仪器设计方法并形成信息分析、系统设计软件与程序。2. “反躬以践其实” --- 仪器开发、应用研究及技术拓展:基于基础研究成果,开发了多种基于PGNAA技术的在线成分分析系统及危化品检测系统,完成了多个基于PGNAA技术的工业物料成分分析系统的示范工程建设。在基础研究取得突破性进展的基础上,进一步拓宽相关研究领域与应用。以需求为导向拓展在技术发展中的关键核心技术、并行技术、应用中的辐射防护问题等研究。包括:瞬发伽马射线中子活化成像PGAI技术研究、中子探测与能谱测量研究、X射线通讯与关键部件开发、XRT技术开发与应用、X荧光分析技术的开发与应用、中子辐射防护技术,辐射防护材料的开发等。 主持包括国家重点研发计划项目、国家重大科学仪器设备开发专项任务、国家自然科学基金、国防技术基础项目子课题、国家质量基础条件平台项目子课题等国家级项目在内的各类科研项目20余项,以第一或通讯作者身份发表SCI收录论文40余篇,以第一完成人身份获得授权发明专利10余项。仪器信息网:您所研制的仪器成果解决了哪些实际问题,仪器的主要用户有哪些,成果的市场前景如何?黑大千:在工业物料领域,如煤炭、水泥、矿石成分分析应用中,可利用在线分析技术,实现全过程的实时成分测量、分析,对对生产企业质量信息化管理、多角度质量数据分析、动态掌握质量状况等方面具有明显的促进作用,可有效提高企业产品质量控制能力。此外,在节能降耗、提升生产效能等方面具有良好的前景。工业物料成分分析系统在违禁品检测系统开发方面,面向不同使用场景,基于建立的信噪比优化评价方法,设计开发了一系列违禁品检测系统,包括:NIQAS(Nuclide Identification and Quantitative Analysis System)危化品识别检测系统、EPDS(Explosion-Proof Detection integrated System)防爆检测一体化系统、行李箱高爆炸药检测系统、掩埋爆炸物检测系统等4类危险品检测系统。这一系列的检测系统将有望满足战争遗留弹药武器的识别与指导分类;机场、高铁站等公共场所的疑似爆炸物处置过程中的检测;公众区域内行李箱中隐式爆炸物检测等一系列公共安全需求。上述成果均具有明确的市场需求以及较好的市场前景,目前部分产品已经启动产业化进程。危险品核素识别与定量分析系统仪器信息网:对于此次获奖您有何感受?您认为“朱良漪分析仪器创新奖”将给青年人带来怎样的影响?黑大千:非常感谢中国仪器仪表学会分析仪器分会以及各位评审专家对我和团队工作的认可。分析仪器的开发与研制具有鲜明的技术特点,这个行业是一个高度交叉的领域,既需要具备扎实的理论基础,也需要极强的动手能力。分析仪器开发工作者是具备“科学家”的头脑以及“工程师”的动手能力的“发明家”,需要直接分析需求、而面对需求、解决需求,厘清其间错综复杂的关系,抽丝剥茧的找出关键问题和解决方案。我们作为行业的后辈,需要向朱良漪先生等“大家”学习的地方还有很多。世界局势错综复杂,在百年未有之大变局中,自主创新是解决人民日益增长的美好生活需要和不平衡不充分的发展之间的矛盾的重要手段。“朱良漪分析仪器创新奖”为从事分析仪器研究工作的青年人提供了前进的方向和动力,将有利于激发青年人创新热情和报国之志。仪器信息网:后续您还将开展哪些创新工作?黑大千:在2021年12月,我有幸牵头获批了国家科技部重点研发计划青年科学家项目。该项目将以战略矿产资源“铀”的开采与富集过程的元素成分分析作为应用研究对象,面向地浸采铀工艺中各环节的溶液、树脂中的元素成分在线分析需求,开发基于瞬发伽马射线中子活化分析(PGNAA)技术的多元素在线分析的新方法及新设备,满足浸出、萃取、吸附等工艺环节中对溶液、树脂塔中各类元素含量实时在线检测的现实需求,为实现工艺过程规律分析、元素富集状态、过程动态调控等提供实时数据支持,并为信息化、智能化矿山的建立与资源开采提供全新在线分析技术与仪器设备。因此,未来一段时间的工作中,我和我所在的团队将聚焦将PGNAA技术的应用领域进行拓展,面向国家重大战略需求和经济主战场开发更多更有价值的分析仪器。关于“朱良漪分析仪器创新奖”朱良漪,原机械部国家仪表总局副局长、中国仪器仪表学会分析仪器分会名誉理事长,是仪器仪表和自动化控制领域最早的开拓者,影响中国仪器仪表和自动化控制行业发展的奠基人。为纪念朱良漪先生矢志不渝推动我国分析仪器事业发展的精神,以及激发企业及广大科技工作者积极投身于分析仪器的创新工作中,由中国仪器仪表学会设置、中国仪器仪表学会分析仪器分会承办执行“朱良漪分析仪器创新奖”,共分为“创新成果奖”和“青年创新奖”两个奖项。“朱良漪分析仪器创新奖”的设立不只是对朱老的怀念与敬意,更是对分析仪器创新精神的坚守与传承。自2017年举办至今,“朱良漪分析仪器创新奖”已成功颁发五届,先后有15项分析仪器创新成果、18位青年创新科学家获奖。
  • 院士团队|同时蒸馏萃取结合GC-MS分析酿酒五粮原料蒸煮香气成分分析
    中国白酒风味独特、历史悠久,是我国居民日常生活的重要组成部分。根据生产原料和工艺的不同,中国白酒按香型可分为浓香型、酱香型、清香型和米香型等12 种代表香型。浓香型白酒以绵甜柔和、谐调爽净、余味悠长的特点,深受广大消费者喜爱,且在白酒市场占有率最高。蒸馏萃取(SDE)是一种将水蒸气蒸馏与溶剂萃取相结合,将挥发性成分的提取与溶剂萃取相结合,通过少量溶剂提取大量样品的浓缩方法,具有操作简便且重复性好的优点,是一种分析粮食蒸煮香气有效的前处理方法。北京工商大学,酿酒分子工程中国轻工业重点实验室,北京市食品风味化学重点实验室的廖鹏飞、孙金沅*等采取SDE对蒸酒所用的5 种单粮和混粮中的香气成分进行提取,并结合气相色谱-质谱(GC-MS)对其进行分析;另外,结合香气提取稀释分析(AEDA)和香气活性值(OAV)对混合粮食蒸煮香气中关键香气化合物进行分析,从而确定影响粮香的关键化合物。01 5 种单粮挥发性化合物定性结果如图1所示,高粱蒸煮香气中检测到的挥发性化合物种类数量最多,有108 种;除了酯类和萜烯类外,鉴定到的其余类别的化合物数量均是5 种单粮中最多的。由于高粱是古井贡白酒酿酒原料中比例最高的粮食,可能将更多的粮食香气带入白酒中,丰富白酒粮香。GC-MS结果表明,高粱蒸煮香气中,己酸乙酯、正己醇、己醛等化合物的相对峰面积较大,证明这些化合物相对含量较大。玉米中共检测出93 种挥发性化合物;其中,萜烯类化合物种类显著高于其他单粮,有9 种,芳樟醇是其中相对含量最高的化合物。糯米和大米中检测出的挥发性化合物最少,均为66 种,二者种类相似,重合率为83.3%,且鉴定出的挥发性化合物在其他单粮中均可检出。高粱中检测到其他粮食中没有的挥发性化合物种类最多,有27 种,而玉米和小麦中分别有18 种和12 种。02 混合粮食原料挥发性化合物定性结果由图2可知,在不同极性色谱柱下均检出较多的烷烃类、醛类、酮类和酯类化合物;醇类化合物和芳香类化合物在极性柱条件下检出效果优于非极性柱,分别检出11 种和15 种;酸类化合物在极性柱条件下检出效果更好,检出7 种。烷烃类化合物和醛类化合物在检出数量和相对峰面积两个方面均明显高于其他类别化合物,是组成混合粮食蒸煮香气中最重要的两类化合物。03混合粮食原料中香气活性成分的筛选由表1可知,成功定性的29 种香气化合物中,通过极性柱鉴定出26 种,FD因子≥9的香气化合物有16 种,分别是乳酸乙酯(81,奶油香)、苄硫醇(81,大蒜味)、(E,E)-2,4-癸二烯醛(81,青草香、脂肪味)、4-乙基愈创木酚(81,烟熏、坚果香)、己酸乙酯(27,水果香)、辛酸乙酯(27,果香)、(E)-2-壬烯醛(27,青草、脂肪味)、(E,Z)-2,6-壬二烯醛(27,黄瓜香、脂肪味)、香叶基丙酮(27,叶子、花香)、十八醛(27,奶油香)、(E)-2-辛烯醛(9,青草香、脂肪味)、正庚醇(9,青草香)、(E)-2-癸烯醛(9,腊味、脂肪味)、(E,E)-2,4-壬二烯醛(9,脂肪味、青草香)、正己酸(9,脂肪味)、棕榈酸甲酯(9,油脂味、蜡味),同时除己酸乙酯、十八醛和(E)-2-癸烯醛外均有较高的嗅闻强度。通过非极性柱鉴定出11 种香气化合物,FD因子≥9的香气化合物有7 种,分别为苄硫醇(81,大蒜味)、(E)-2-壬烯醛(81,青草香、脂肪味)、正己醇(27,树脂、植物味)、苯乙醛(27,花香)、4-乙基愈创木酚(9,烟熏、坚果香)、辛醛(9,青椒味)、香草醛(9,蜡质味),除4-乙基愈创木酚外均具有较高的嗅闻强度。未能定性的3 个香气区间的感官描述词分别为绿茶、山楂和土豆。04 混合粮食原料中香气化合物的确定 如表2所示,本实验所得到的标准曲线R2均不低于0.99,表明该曲线具有良好的线性关系;LOD均低于0.909 mg/L,表示仪器灵敏度满足实验的需要;回收率均在80%~120%之间,表明所用定量方法可行。采用上述标准曲线对混合粮食以及5 种单粮中重要的香气化合物进行定量,并根据文献中化合物香气阈值,计算不同原料蒸煮样品中化合物的OAV,如表3所示。不同香气化合物的OAV在不同粮食样品中存在一定差异。混合粮食蒸煮香气中,苄硫醇、(E,E)-2,4-壬二烯醛和(E)-2-壬烯醛等17 种化合物的OAV≥1,被认为是混合粮食蒸煮香气中的关键香气化合物,如图3所示。 05 结论结果表明,5 种单粮中共鉴定出153 种化合物;高粱、小麦、玉米、糯米、大米中分别鉴定出108、93、93、66、66 种化合物,其中鉴定出较多数量的醛类、醇类、酮类、芳香类、酯类等化合物。采用双柱定性,在混合粮食样品中共鉴定出140 种化合物。采用气相色谱-嗅闻-质谱联用法在混合粮食样品中共鉴定出29 种香气活性化合物,结合香气提取稀释分析和香气活性值评价不同化合物对粮食蒸煮整体风味的影响。经计算,苄硫醇、(E,E)-2,4-癸二烯醛、(E)-2-壬烯醛、壬醛、己醛、辛醛、(E)-2-辛烯醛、(E,Z)-2,6-壬二烯醛、正庚醇、(E)-2-癸烯醛、(E,E)-2,4-壬二烯醛、苯乙醛、4-乙基愈创木酚、己酸乙酯、香叶基丙酮、辛酸乙酯、香草醛17 种化合物的香气活性值不低于1,被认为是对粮香有贡献的重要风味化合物,其中苄硫醇和(E,Z)-2,6-壬二烯醛首次在蒸煮粮食香气中被鉴定。原文链接:https://www.spkx.net.cn/CN/10.7506/spkx1002-6630-20220609-091
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制