当前位置: 仪器信息网 > 行业主题 > >

二碳酸二叔丁酯标准品

仪器信息网二碳酸二叔丁酯标准品专题为您提供2024年最新二碳酸二叔丁酯标准品价格报价、厂家品牌的相关信息, 包括二碳酸二叔丁酯标准品参数、型号等,不管是国产,还是进口品牌的二碳酸二叔丁酯标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二碳酸二叔丁酯标准品相关的耗材配件、试剂标物,还有二碳酸二叔丁酯标准品相关的最新资讯、资料,以及二碳酸二叔丁酯标准品相关的解决方案。

二碳酸二叔丁酯标准品相关的资讯

  • 五大问题困扰我国碳酸二甲酯行业
    到2010年10月底,全国碳酸二甲酯(DMC)的实际产能已经达到23.6万吨,明年有望达到49万吨。中国石油和化工杂志社副总编辑杨扬在第七届全国有机碳酸酯技术开发与应用研讨会上,披露上述数据。作为一个持续关注、跟踪报道碳酸二甲酯行业将近10年的记者,杨扬对整个行业有着独到的见解和认识。   据杨扬介绍,前些年,由于DMC生产能力较小,产品供不应求。一些企业因此上马几套数万吨级酯交换法碳酸二甲酯装置。这些装置投产后,对国际、国内市场产生较大影响,供应量充足,从金融危机以来价格基本稳定在5000—6000元/吨左右。预计以后的价格只会越来越低。   经过长时间的实地调研、考察与采访,杨扬认为目前我国DMC行业存在着如下制约行业发展的全局性、战略性的问题。缺乏统一的行业管理 缺乏行业性的合作、协作与沟通的机制和渠道 缺乏行业的领军企业和企业家,没有形成一致对外的合力 缺乏DMC新兴应用领域的相关标准和知识产权保护制度 缺乏共同开拓与培养市场的意识与机制。同时全行业长期受制于环氧丙烷等上游原料供应,没有市场和原料供应的话语权。   为推进中国DMC产业健康发展,杨扬建议上项目时选择适合本企业的工艺路线,就近主要原料或产品销售市场选择厂址。建议重新组建全国DMC行业协作组,完善运行机制与管理办法。通过各种渠道向政府主管部门呼吁和反映行业存在的问题,给予政策、税收、科研专项等等方面的支持。   本次研讨会11月4日在北京召开,由中国化工报社、中国碳酸二甲酯行业协作组联合主办。
  • 湖北省市场监督管理局下达《土壤中碳酸氢根的测定 混合指示剂酸碱滴定法》等地方标准制修订项目计划(第二批)
    各市、州、直管市、神农架林区市场监管局,省直有关部门,各专业标准化技术组织,各有关单位:根据《中华人民共和国标准化法》和《湖北省地方标准管理办法》有关规定,统筹推进农业、工业、服务业和社会事业等领域地方标准体系建设,重点围绕《省人民政府关于贯彻落实〈国家标准化发展纲要〉的实施意见》提出的标准化十项工程、七项行动,经行业部门审查推荐、标准化主管部门形式审查、政策性审查、专业技术审查、公示等程序,确定《非洲猪瘟现场流行病学调查技术规范》等187项制定项目和《蓝莓优质高效生产技术规程 第1部分:标准化建园》等13项修订项目列入2023年湖北省地方标准制修订项目计划(第二批)。各有关单位接此通知后,应及时组织相关技术人员组成标准起草工作组,按照《标准化工作导则》(GB/T 1)、《标准化工作指南》(GB/T 20000)、《标准编写规则》(GB/T 20001)和《标准中特定内容的起草》(GB/T 20002)等国家标准和有关规定,抓紧研究编写,确保按期高质量完成项目计划。现就有关事项通知如下:一、确保标准适用性。标准研制中,应充分吸收科学技术和实践的先进成果,对标准涉及的各个要素、方法、过程、指标进行全面分析论证或实验验证,做到认真推敲,准确表达。应认真研究政策法规,研究国际标准和国外先进标准,全面考虑经济效益、市场贸易、生态环境、消费者权益等因素,注意与相关标准协调一致,坚持标准目的性、功能性和可验证原则,保证标准科学、适用、有效。二、坚持公开和协调一致原则。标准是利益相关方协调一致的产物,公开、公平、公正是标准制修订的基本原则。要在充分调查研究、综合分析、试验验证的基础上,广泛征求标准所涉及的管理、生产、经销、使用、科研、检验等单位及高等院校、学术团体和相关专家的意见。产品和服务类标准,要重视吸收消费者代表的意见。定向征求意见对象应不少于15日,网上公开征求意见时间不少于30日,可在标准归口单位、主要起草单位门户网站,或者湖北省标准化综合信息服务平台向社会公开征求意见。征求意见时,应附地方标准征求意见稿、《地方标准征求意见表》等材料和表格,征求到的各种修改意见,均应列入征求意见汇总处理表。所有地方标准制修订项目信息均应录入湖北省标准化综合信息服务平台(网址:http://scjg.hubei.gov.cn/xxfw/),并根据项目进度,及时填报相关信息。三、严格技术审查程序。为切实加强标准评审工作管理,有效保证评审工作的科学性、严肃性,湖北省地方标准在组织技术审查之前,主要起草单位向归口单位提交标准评审申请函,与标准送审稿、编制说明、征求意见汇总表等材料,经归口单位审核同意后,报送省市场监管局标准化处组织技术审查。四、注重标准实施推广。标准化工作的根本目的在于通过标准实施推广,提高经济社会发展的秩序和效益。标准编写全过程,应充分考虑方便贯彻实施的问题,保证条文的可操作性。在标准编制说明中,应对标准实施推广的前景预测展望,并简要提出标准贯彻实施的方法建议,以便标准发布后,归口单位及主管部门、行业更好地推动标准宣贯,增强实施效果。地方标准制修订政策咨询:省市场监管局标准化处,027-87811019。湖北省标准化综合信息服务平台技术咨询:省标准技术审评中心,027-88226022。附件:1.2023年度湖北省地方标准制定项目计划表(第二批)2.2023年度湖北省地方标准修订项目计划表(第二批)湖北省市场监督管理局2023年12月8日附件:附件.doc相关标准如下:标准名称制修订五倍子蜂蜜生产技术规范制定土壤中碳酸氢根的测定 混合指示剂酸碱滴定法制定农产品质量安全检测机构管理要求 第4部分:实验室废弃物管理制定农产品质量安全检测机构管理要求 第5部分:农产品快速检测室管理制定香菇生产技术规程 第3部分:秋栽香菇集中制棒分散出菇制定香菇生产技术规程第4部分:固体菌种制定抹茶生产技术规程 第1部分:茶树栽培管理制定抹茶生产技术规程 第2部分:加工技术制定农业生态产品生产技术规程 第1部分:通则制定农业生态产品生产技术规程 第2部分:植物类制定农业生态产品生产技术规程 第3部分:畜禽类制定农业生态产品生产技术规程 第4部分:水产类制定农业生态产品生产技术规程 第5部分:加工类制定松花菜生产技术规程制定地理标志产品 涨渡湖黄颡鱼制定地理标志产品 红安苕制定地理标志产品 红安大布制定地理标志产品 永河皮子制定食品安全抽样检验数据质量评价规范制定食品安全抽检样品处置工作规范制定蜂产品生产企业食品安全风险排查防控作业指南制定即时零售经营管理规范制定食用农产品快速检测质量控制规范制定生鲜食品照明光源使用规范制定湖北省餐饮服务鼠害防制指南制定
  • 碳酸二乙酯新工艺研制成功
    中国石油大学(华东)化学化工学院孙兰义教授课题组日前开发出一种生产碳酸二乙酯的工艺方法及设备。   该项技术是将反应精馏过程应用于隔壁塔中,在一个反应精馏隔壁塔内同时完成酯交换反应、碳酸二乙酯产品分离等任务。反应精馏隔壁塔流程与常规反应精馏流程相比,省去了两个精馏塔、一个冷凝器与两个再沸器,因此可有效降低能耗和设备投资。产品碳酸二乙酯质量分数达到99.5%,碳酸二甲酯转化率达到99%,选择性达到99%,而能耗则比常规反应精馏流程减少20%~50%。
  • 迎难而上!碳酸钙粉体标样制定工作正式启动
    p style=" text-align: justify text-indent: 2em " strong 仪器信息网讯 /strong 2019年10月17日,碳酸钙粉体标样启动仪式于IPB2019的“三新”峰会期间隆重举行。仪式由广东省建筑材料行业协会碳酸钙镁分会秘书长刘平主持,马尔文帕纳科中国区总经理梁东,新帕泰克中国区首席代表耿建芳,珠海欧美克销售总监吴汉平、售后服务经理黄俊峰,江西广源化工有限责任公司研发中心主任张晓明等参与了启动仪式的座谈。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/d3554021-ef86-469d-822a-bc9cef8e8882.jpg" title=" IMG_4564.JPG" alt=" IMG_4564.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 广东省建筑材料行业协会碳酸钙镁分会秘书长刘平 /strong /p p style=" text-align: justify text-indent: 2em " 粉体的标样至关重要,本次会议拟正式启动制定工作的《碳酸钙粉体标样》由广东省建筑材料行业协会碳酸钙镁分会、中山大学化学学院作为主制单位,目前的参制单位除了上述的马尔文帕纳科、珠海欧美克、新帕泰克、江西广源外,还有广西汇宾钙业有限责任公司、江西奥特科技(集团)有限公司、耐驰(上海)机械仪器有限公司、东莞市五全机械有限公司等。 /p p style=" text-align: justify text-indent: 2em " 我国的碳酸钙行业一直存在着方法混乱、标准不统一等不足,有鉴于此,广东省建筑材料行业协会碳酸钙镁分会此前已完成纳米碳酸钙和重质碳酸钙的团体标准的制定,并且已经对外公示。为了进一步推动碳酸钙行业高质量、规范化地发展,拟于近日正式启动《碳酸钙粉体标样》的制定工作。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 822px " src=" https://img1.17img.cn/17img/images/201910/uepic/bce859bd-2208-4c44-8916-314ed2f84cf3.jpg" title=" initpintu_副本.jpg" alt=" initpintu_副本.jpg" width=" 600" height=" 822" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 座谈中,几位专家就碳酸钙标样制定的重要性、上下游一致性、供需点、切入点等问题进行了深入探讨,并对标养制定过程中可能遇到的困难与需求展开交流,并给予了建设性建议。 /p p style=" text-align: justify text-indent: 2em " 刘平强调,基于目前中国碳酸钙行业管理、申报机制的繁复性、碳酸钙原料来源及加工检测设备的复杂性,碳酸钙粉体标样的制定工作难度很大。但是难度大重要性更大,主制单位将在上下游企业和高等院校等多方资源的大力支持下,坚定地致力于实现这一目标,为满足时下国内碳酸钙精细化发展的需要,为我国的碳酸钙行业的前进与发展做出贡献。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 324px " src=" https://img1.17img.cn/17img/images/201910/uepic/0e5e9d10-0d5a-4862-8606-e58d4159fa86.jpg" title=" IMG_4597_看图王(1).JPG" alt=" IMG_4597_看图王(1).JPG" width=" 600" height=" 324" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 随着参会专家合影的定格,碳酸钙粉体标样制定工作正式启动。据了解,标样制定组将于2019年11月中旬召开第一次研讨会议。后续也将继续招纳碳酸钙产业链上的重要企业参与到标样的制作工作中来,群策群力,促进工作的全方位考量和全面落实。 /p
  • 欧盟科学家在非聚碳酸酯婴儿奶瓶中发现BPA
    2012年2月16日消息,欧盟委员会联合研究中心(JRC)公布了一项针对塑料婴儿奶瓶释放化学物质的监测研究的最终结果。研究结果发现,在一个由聚酰胺制成的产品中发现了双酚A(BPA)的存在。   研究人员对277种从欧盟和美国市场购买的婴儿奶瓶的化学品迁移进行了测试。这些奶瓶由替代BPA的非聚碳酸酯材料制成,自2011年3月1日塑料BPA禁令生效后开始使用,材料包括聚酰胺、聚苯醚砜、聚丙烯和硅。   结果表明,总体上来说所有奶瓶都会释放低含量的化学物质,这与11月发布的初步研究结果比较相似。然而,其中一款标签为“无BPA”的聚酰胺奶瓶中检测到了BPA。此外,聚丙烯和硅有机树脂制成的奶瓶中也发现会释放几种未包含在肯定列表中的化学物质,甚至有几种不允许在此类产品中使用,如邻苯二甲酸盐。   研究人员得出的结论为,该结果应在未来关于塑料婴儿奶瓶的风险评估中再次进行考虑,同时建议官方食品控制实验室对目前使用的替代材料进行强化测试,并告知风险管理的结果。
  • 关于“颗粒技术 电池级碳酸锂”标准草案征求意见的通知
    p style=" text-align: center " strong 关于“颗粒技术 电池级碳酸锂”标准草案征求意见的通知 /strong /p p strong br/ /strong /p p strong 各位专家:您好 ! /strong /p p style=" text-indent: 2em " 中国颗粒学会团体标准项目 “颗粒技术 电池级碳酸锂”标准草案起草工作现已完成。按照《中国颗粒学会团体标准管理办法》的有关规定,现向社会以及相关行业公开征求意见,请填写《意见反馈表》,并于 2018 年 7 月 1 日前将《意见反馈表》以电子邮件的形式反馈给联系人或秘书处。如没有意见也请复函说明,逾期未复函,将按无异议处理。 /p p style=" text-indent: 2em " 感谢您对我们工作的支持! /p p style=" text-indent: 2em " br/ /p p 联系方式: /p p 单位: 北大先行科技产业有限公司 /p p 联系人:姜晓瑞 /p p E-mail: jiangxiaorui@pulead.com.cn /p p 联系电话:18911969028 /p p br/ /p p 单位:秘书处 /p p 联系人:李兆军 /p p E-mail:zjli@ipe.ac.cn /p p 联系电话:010-62521688 /p p br/ /p p br/ /p p style=" text-align: right " span style=" text-align: right " /span 中国颗粒学会 /p p style=" text-align: right " 二〇一八年四月二十六日 /p p style=" line-height: 16px " br/ /p p style=" line-height: 16px " br/ /p p style=" line-height: 16px " strong 附件: /strong /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201804/ueattachment/0533338b-9dd8-421c-9aa1-2fcec9f51341.doc" 颗粒技术 电池级碳酸锂产品团体标准(征求意见稿).doc /a /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201804/ueattachment/0d0e274a-7e94-47b4-a6e0-ebf165a01d84.docx" 意见汇总处理表.docx /a /p
  • 乌氏法测聚碳酸酯PC的粘数和相对粘度
    聚碳酸酯(polycarbonate),又称PC塑料;是指分子链中含有碳酸酯基的高分子聚合物,根据酯基的结构可分为脂肪族、芳香族、脂肪族-芳香族等多种类型。其中由于脂肪族和脂肪族-芳香族聚碳酸酯的机械性能较低,从而限制了其在工程塑料方面的应用,仅有芳香族聚碳酸酯获得了工业化生产,是世界五大工程塑料之一。聚碳酸酯在形态上表现为一种无定形,无味、无臭、无毒透明的热塑性塑料聚合物,具有优良的机械,热及电综合性能,尤其是耐冲击,韧性好,蠕变小,制品尺寸稳定,可在- 60~120℃下长期使用。目前聚碳酸酯主要应用于汽车工业和电子、电器工业三大领域之中,并且随着汽车和电子等工业的发展,呈现出日益增长的产量需求和愈发严格的质量要求。在聚碳酸酯(PC)纯料和共混物以及有或者未添加其他填料的混合物的黏度测试分析方面,国标GB/T 1632.4-2020中规定了测定聚碳酸酯稀溶液中粘数(也称为比浓黏度)和相对黏度的方法。杭州卓祥科技有限公司研发生产的IV6000系列全自动乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器等一整套黏度测量设备作为测试仪器,测试流程如下。1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV6000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV6000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表和外推分析等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV6000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥过程的自动化,告别粘度管是耗材的时代。
  • 全自动乌氏黏度计在PPC(聚碳酸亚丙酯)材料中的应用
    聚碳酸亚丙酯(PPC),又称为聚甲基乙撑碳酸酯,它是以二氧化碳和环氧丙烷为原料合成的一种无定形聚合物,被广泛应用于弹性体、涂料、合成革等领域,是一种完全可降解的环保型塑料。聚碳酸亚丙酯(PPC)材料性能优异,分子链段柔软、易分解、生物相容性好、气体的透过性低,可很好的应用于包装材料,阻水材料和阻氧材料等领域之中,例如一次性食品包装材料、一次性餐具材料、可降解发泡材料等。同时聚碳酸亚丙酯(PPC)材料以工业废气二氧化碳作为原料,避免了传统塑料行业产品对环境的二次污染,在一定程度上也是对日益枯竭石油资源的一种补充。全自动乌氏黏度计是聚碳酸亚丙酯(PPC)材料质量检测中的常用仪器,常用于检测聚碳酸亚丙酯(PPC)材料的特性粘度值。IV2000系列全自动乌氏黏度计具有操作方便,分子量适用范围广泛,数据重复性良好等优点,所以成为聚碳酸亚丙酯(PPC)材料等高分子材料化验分析中的常用实验仪器,为聚碳酸亚丙酯(PPC)材料的研发及生产提供更精准的实验数值参照。以杭州卓祥科技有限公司的IV2000系列自动乌氏黏度计、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV2000系列全自动特性粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列全自动特性粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • “好的仪器,用在刀刃上!”——Topsizer在纳米碳酸钙测试中的应用
    纳米碳酸钙又称超微细碳酸钙,是碳酸钙行业中的高端明星产品,其应用最成熟的行业是塑料工业,主要应用于塑料制品,可改善塑料母料的流变性,提高其成型性。另外,纳米碳酸钙用于油墨产品中体现出了优异的分散性、透明性和极好的光泽、及优异的油墨吸收性、高干燥性等优点。还有涂料、日化、造纸等行业,对纳米碳酸钙的应用需求也迅速发展。纳米碳酸钙的粒度检测,不但需要科学的检测方案(针对团聚的有效处理),更需要性能优异、分辨能力出众的高端激光粒度仪。近年来,欧美克仪器在纳米碳酸钙客户中,积累了连州凯恩斯、江西九峰、湖北科迈、湖北凯龙等行业典型客户,靠得就是Topsizer型激光粒度仪在检测亚微米、纳米颗粒的表现以及一套行之有效的检测方案。纳米碳酸钙的生产过程中,碳化后的碳酸钙浆料,在经过脱水、烘干、活化等工序后形成最终碳酸钙粉体产品,其粒径分布将影响后续其在塑料、橡胶、油墨等产业的填加量和最终产品性能,因此,粒径分布是纳米碳酸钙生产企业十分关注的,作为产品质控的一个重要参数。其中,在纳米碳酸钙的生产中,通过加入适当的分散改性剂进行改性,增强了碳酸钙粉的分散性、减少团聚,在许多应用领域展现了更好的使用性能,在纳米碳酸钙的生产中,改性几乎成了标准的选择,不同改性剂种类和用量和改性工艺所生产产品质量各有异同,如何通过检测纳米碳酸钙在不同分散条件下的粒径分布情况,以协助调整碳化沉淀工艺并预测产品的应用效果,是近年来热议的课题。欧美克仪器深耕碳酸钙行业二十余载的岁月里,欧美克的仪器质量和品牌口碑,不断得到行业客户们的一致认可,行业仪器占有率高。Topsizer激光粒度分析仪采用国际先进的红蓝双光源设计,红光主光源为进口氦-氖激光器,波长0.6328μm,并有蓝光辅助半导体光源,波长0.466μm,弥补了常规设计散射光角度的盲区,极大地提高了对纳米级颗粒及少量大颗粒的分辨力。其具有量程宽(0.02-2000微米)、重复性好、精度高、测试结果真实、自动化程度高等诸多优点,是纳米碳酸钙粒度检测的不二之选。Topsizer型激光粒度仪(湿法)纳米碳酸钙的检测方案与检测重钙、一般轻钙的主要区别是颗粒团聚的处理,若以检测一般改性轻钙的方法(制样时使用十二烷基苯磺酸钠SDBS作为分散试剂,外置超声10分钟),纳米碳酸钙的原生颗粒很难被分散出来,得出的结果是团聚后的二次粒径,如图:测试结果基本是稳定的,但粒径分布只有普通重钙的级别,在进样器开始内置超声后,部分团聚体逐步解聚,测试结果如下:由于纳米钙的改性程度要远远超越一般的轻钙、重钙,采用一般的分散剂(如六偏磷酸钠、-SDBS、酒精等),难以达到充分的分散效果以了解样品一次粒径情况(或接近一次粒径的稳定结果)。欧美克仪器测试人员,经过多年的探索和不断尝试,最终选着了一种含有OM7超细轻钙专用分散剂的复配分散剂对样品进行前处理,并伴随超声处理,结果如下:测试结果有明显的改善,但仍未符合纳米碳酸钙的粒径预期。纳米碳酸钙属于超细粉体,不易分散彻底,因此在加入分散解聚剂后以传统进样器内置超声外,同时进行了细胞粉碎机的大功率的超声分散15分钟,以纯净水作为测量介质,并以“通用模式”进行粒度分析,结果如下:针对于该广西某公司生产的纳米碳酸钙样品,仍然有部分的硬团聚体的存在,导致结果出现了第二个大颗粒小峰,但结果的稳定性和粒径分布是基本符合预期的。采用同样的测试方案,同样的Topsizer型激光粒度仪,我司在早两年测试某进口的纳米碳酸钙样品,其结果是完全符合纳米碳酸钙的粒径分布要求的,如下。在我司多年来接触的一般国产纳米碳酸钙中,或多或少是会出来粒度分布的“双峰”状态,D90大概在1-2微米间,这主要可能是在生产工艺中,碳化或活化没有完全做好,导致大量硬团聚体的产生,影响了整体粒径分布。这些硬团聚体在使用中难以被分散开,会影响纳米钙的使用性能,因此,对于硬团聚体含量的检测,是纳米碳酸钙产品质量控管的关键所在,同时对于激光粒度仪的检测性能也是较为苛刻的要求。对纳米碳酸钙的粒度测试,到底是将其彻底分散到最小粒径的结果可靠,还是选择与下游生产的分散程度相近地分散样品,进行二次粒径粒度分布测试更可靠,一直是一个有争论的问题。但如果要对纳米碳酸钙生产工艺进行监控,就需要更关注生产流程中碳化沉淀的一次粒径情况。同时通过对硬团聚体二次粒径的严格控制,以使最终产品能满足高端行业(如油墨等)的应用要求。技术进步,以人为本,欧美克仪器的检测技术和应用开发,是和碳酸钙行业同步发展、偕同并进的。欧美克仪器专业服务于客户纳米碳酸钙的检测需求,为客户生产出优质的纳米碳酸钙产品保驾护航!参考文献1. 沈兴志、吴瑾. 轻钙、活性钙、纳米钙产品激光粒度测试分析探讨.2. 纳米碳酸钙.百度百科.
  • 赫施曼助力干粉灭火剂中碳酸氢钠的检测
    普通干粉灭火剂主要由活性灭火组分、疏水成分、惰性填料组成,其中灭火组分是干粉灭火剂的核心。如碳酸氢钠干粉灭火剂中起到灭火作用的物质是碳酸氢钠,它适用于易燃、可燃液体、气体及带电设备的初起火灾。根据GB4066-2017,检测干粉灭火剂中碳酸氢钠含量的方法原理为:将干粉灭火剂试样破坏硅膜后,加热蒸馏水溶解过滤,取其滤液,分别以甲酚红-百里酚蓝和溴甲酚绿-甲基红为指示液,用盐酸标准溶液滴定。一、试验用试剂1.丙酮:分析纯;2.三级水:符合GB/T6682的规定;3.溴甲酚绿乙醇溶液(0.1%);4.甲基红乙醇溶液(0.2%);5.溴甲酚绿-甲基红混合指示剂:将溴甲酚绿乙醇溶液(0.1%)与甲基红乙醇溶液(0.2%)按3:1体积比混合,摇匀;6.甲酚红钠盐水溶液(0.1%);7.百里酚蓝钠盐水溶液(0.1%);8.甲酚红-百里酚蓝混合指示剂:将甲酚红钠盐水溶液(0.1%)与百里酚蓝钠盐水溶液(0.1%)按1:3体积比混合,摇匀;9.盐酸标准滴定溶液:用盐酸(符合GB/T622的规定)配制浓度约为0.1mol/L的水溶液。二、试验步骤1.制备待测溶液:称取干粉灭火剂试样2g,精确至0.0002g,置于100mL烧杯中,用瓶口分液器加3~4mL丙酮并不断搅拌;待丙酮挥发后,加入少量热三级水60℃~70℃溶解过滤,用约250mL三级水洗涤不溶物,将滤液和洗涤液均收集在500mL容量瓶中,用三级水稀释至500mL,摇匀,即为待测溶液A。2.移取50mL溶液A于250mL锥形瓶中,用赫施曼光能滴定器加5滴甲酚红-百里酚蓝混合指示剂,用盐酸标准溶液经过赫施曼opus电子滴定器滴定至试验溶液的颜色由紫色变为黄色,读取消耗盐酸标准溶液的体积V1。3.再加入10滴溴甲酚绿-甲基红混合指示剂,用盐酸标准溶液经过opus电子滴定器滴定至试验溶液的颜色由绿色变为暗红色。4.煮沸2min,溶液颜色变回绿色,冷却至室温。用盐酸标准溶液经过opus电子滴定器继续滴定至暗红色为终点,读取消耗盐酸标准溶液的体积V2。三、计算碳酸氢钠含量式中:m—试样质量,单位为g;c—盐酸标准滴定溶液实际浓度,单位为摩尔每升(mol/L);V1—第一次滴定所消耗盐酸标准滴定溶液的体积,单位为毫升(mL);V2—滴定所消耗盐酸标准滴定溶液的总体积,单位为毫升(mL)。取差值不超过0.2%的两次试验结果的平均值作为测定结果。滴定法一般使用的是玻璃滴定管,对试验人员的技术水平、实操经验和耐心的要求较高,有灌液慢、控速难,读数乱(不同人次、位置的凹液面读数可能出现偏差)三大痛点。赫施曼的光能滴定器上转滚轮即可抽取并存储滴定液,下转滚轮进行滴定,转得越快滴得越快。数值是直接从屏幕上读取,不看凹液面、无视线误差,按清零键后就可进行下一个滴定。自带太阳能板,无需电池。赫施曼opus电子滴定器可通过触摸屏进行灌液、预滴定、快速滴定和半滴滴定,10mL规格的分辨率为小数点后三位(1μL),可屏幕直接读数、连接电脑输出数据,解决了常规玻璃滴定管灌液慢、控速难,读数乱的三大痛点,可提高工作效率、降低目视误差,无需大量实操经验,降低了培训成本和人员个体差异,所得数据也更加准确、稳定。
  • MOCON应用 | 碳酸饮料的货架期保障
    碳酸饮料(汽水)类产品是指在一定条件下充入二氧化碳气体的饮料。碳酸饮料随着运输周期和温度影响等因素,如何在长货架期内保证气体稳定不影响口感,饮料瓶的阻隔性和密封性成为关键。“碳酸饮料货架期测试方案但随着节能减排,轻量化的环保需求出现,新的瓶装材料的阻隔性首先要接受严苛的挑战。如何帮助饮料企业在新挑战中既满足生产又能够准确地预估产品的货架期,提高消费者的满意度?mocon的permatran-c 4/30是用于阻隔膜和包装的新一代co2tr测试系统。它非常适合用于空瓶和预装csd瓶测试预估产品货架期,整个测试过程简单易操作,缩短了测试周期,可重复性的结果帮助企业降本增效,实现可持续生产。空瓶co₂tr测试测试空瓶子或容器有助于评估阻隔性能,特别是在包装研发设计阶段和qa/qc过程中。• 用环氧树脂将瓶子的开口密封在箔片上,固化后将组装好的样品安装到测试舱盒上• 使用packrack通过铜管将组装好的样品/舱盒连接到permatran-c 4/30• 封装co2tr测试都应选择advanced-test• 对于系统泄漏基线检查,应通过铜环进行测试,或在使用空白箔无样品的情况下测试舱盒左:空瓶co2tr测试,右:预充瓶co2tr测试空包装或预装碳酸饮料瓶的co₂tr 测试预装碳酸饮料瓶需要一个capture vessel cartridge,它提供四种可选的封装尺寸。• 按照制造商的规格预先用碳酸水填充瓶子。• 将预填充的包装放入测试舱中并密封• 通过packrack将密封舱盒连接到permatran-c 4/30的载气管线• 不需要单独的测试气体供应• 封装co2tr测试都应选择advanced-test• 对于系统泄漏基线检查,应使用空的舱盒进行测试二氧化碳透过率测试仪permatran-c 4/30map气体分析用于气调包装质量控制的便携式气体分析仪使用dansensor® checkpoint 3使您能快速轻松地检查任何形状大小气调包装中o2和co2的含量。手持式气体分析仪易于使用,数据处理速度很快,陶瓷传感器在同类产品中提供最高的准确性,使包装过程更加可靠。这是改善map质量控制的有效方法。• 无需pc软件,易于使用• 新型固态陶瓷氧气传感器,传感器寿命大于3年• 3.5英寸彩色触摸屏• 通过wifi采集/传输数据• 气体流量警报• 强大的数据存储能力• 无须每日20.9%空气校准• 锂电池,充电一次可进行2000次测试map气体分析仪dansensor® checkpoint 3co₂tr货架期计算表格mocon针对co2tr提供货架期计算表格,以快速估计给定加压碳酸饮料瓶的保质期。输入参数即可获得碳酸饮料瓶的估计货架期。• 瓶初始气体体积(gvi):这应该是测试时的气体体积• 过期的瓶装气体容量(gve):这是保质期结束时的气体容量• 瓶子的初始体积(以cc为单位)• 瓶co2tr(cc/天为单位):通过permatran-c 4/30获得的co2tr联系mocon获取co2tr货架期计算表格
  • ​抗体-抗原相互作用研究进展:利用焦碳酸二乙酯共价标记-质谱法进行表位定位
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Epitope Mapping with Diethylpyrocarbonate Covalent Labeling-Mass Spectrometry,该文章的通讯作者是美国马萨诸塞大学的Richard W. Vachet1。基于单克隆抗体 (mAb) 的疗法之所以成功,是因为抗体与其抗原之间的高特异性和亲和力。表位识别涉及确定 mAb 识别的抗原残基,对于了解结合机制和帮助设计未来的治疗方法至关重要。识别抗原中的结合残基和特异性结合所必需的抗原高阶结构 (HOS) 的特征对于理解结合机制至关重要。在研究完整的抗体-抗原复合物时,质谱 (MS) 已成为一种很有前途的表位定位工具;MS仅需要低样本量,不受分子量的限制,并且比核磁共振或X晶体衍射提供更高的分辨率。目前已经开发了各种用于抗原-抗体相互作用的 MS 工具,其中,共价标记质谱(CL/MS) 已成为一种有前途的补充技术,可以提供残留水平的分辨率并且具有相对较高的通量,通常不会像 HDX-MS 那样遭受标记损失,并且根据试剂的不同,样品制备很简单,不需要专门的设备。焦碳酸二乙酯(DEPC)是一种很有前途的CL试剂,它可以标记许多亲核残基,包括赖氨酸、组氨酸、丝氨酸、苏氨酸、酪氨酸和 N 端,可以标记平均蛋白质中约 30% 的残基。组氨酸和赖氨酸残基的标记程度与其溶剂可及表面积(SASA)相关,而丝氨酸、苏氨酸和酪氨酸的标记对其微环境敏感,特别是附近疏水残基的存在。此外,DEPC 标记在很大程度上不受毫秒时间尺度上发生的蛋白质动力学的影响。本文为了评估 DEPC-CL/MS 用于研究抗体-抗原相互作用,选择肿瘤坏死因子-α(TNFα)作为模型系统,研究了三种具有不同的表位并在不同程度上稳定TNFα的mAb——阿达木单抗、英夫利昔单抗和戈利木单抗结合TNFα的相互作用。至于具体试剂制备、DEPC-蛋白质反应、蛋白质消化条件、LC-MS 和 MS/MS 参数以及数据分析等详细信息请点击“阅读原文”进一步了解。1、抗体-抗原复合物的 DEPC-CL/MS考虑因素TNFα 是一种含有157个残基的蛋白质,具有35个DEPC可修饰残基。单独标记TNFα 表明其中34个残基可以被修饰,从而提供足够的结构覆盖信息。DEPC-CL/MS 实验通常比较游离蛋白与复合蛋白的标记,以确定结合位点。然而,对于抗体-抗原系统,直接比较游离TNFα与TNFα/mAb复合物较困难,因为抗体增加了过多的可标记残基数量,所以需要含有非结合mAb利妥昔单抗的溶液中的 TNFα 进行对照,从而提供了一种校正由抗体存在而引起的任何标记变化的方法。该对照试验表明,在利妥昔单抗存在时,TNFα中标记的残基较少(34),这表明当存在额外的蛋白质时,某些残基的标记水平降至检测限以下。用利妥昔单抗(即对照)结合TNFα与用另外三种mAb结合TNFα的比较揭示了标记残基的可能发生的三种不同变化(图1)。第一种,有些残留物的标记程度没有显着变化,表明它们的微环境或 DEPC 可及性没有变化。第二种,由于溶剂可及性的增加,引起特别是组氨酸和赖氨酸残基标记的增加;或微环境的变化,引起特别是丝氨酸、苏氨酸和酪氨酸残基标记的增加(由于DEPC局部浓度增加,可接近的丝氨酸、苏氨酸和酪氨酸残基周围的疏⽔性更强的微环境导致这些弱亲核残基反应性更⼴泛)。第三种,由于溶剂暴露的损失或疏⽔性更低的微环境,引起残基标记减少。图1. TNFα与mAb复合后标记程度可能的变化情况。TNFα三聚体以灰色表示;抗体以黄色表示;标记用绿色星号表示,星号的大小与标记程度成正比。分别显示了(A)标记程度没有变化、(B)标记程度增加和(C)标记程度减小的结果。2、与阿达⽊单抗复合的TNFα的DEPC-CL/MS阿达⽊单抗在所研究的mAb中具有最⼤的表位,该表位由TNFα同源三聚体的两个亚基组成(图2A、B)。该表位包含11个可修饰残基,其中8个在对照或存在阿达⽊单抗的情况下被标记。其余三个,His78、His73和Lys65,在利妥昔单抗或阿达⽊单抗条件下均未标记,因为它们埋在TNFα三聚体中。图2. 与阿达木单抗复合的TNFα的结构和DEPC标记结果。(A) 阿达木单抗与TNFα三聚体的复合物,阿达木单抗在三聚体凹槽中与TNFα三聚体的两个单体结合。(B)与TNFα 三聚体复合的阿达木单抗Fab的表面结构表示(PDB ID: 3WD5)。(C)使用和不使用阿达木单抗的TNFα中表位残基的DEPC标记程度。(D)使用和不使用阿达木单抗的TNFα中非表位残基的DEPC标记程度。(E)在阿达木单抗结合后标记减少(蓝色)的表位残基映射到TNFα 三聚体上。阿达木单抗以黄色显示,TNFα三聚体以灰色显示。(F)与阿达木单抗结合后标记增加(红色)的表位残基映射到TNFα三聚体上。在比较利妥昔单抗对照和阿达木单抗时,八个表位残基的标记程度发生了变化(图2C)。八个残基中有五个标记减少,包括Tyr141、Lys112、Lys90、Thr72和Ser71,因为在阿达木单抗结合后被埋藏(图2 E);其中大多数这些残基的标记是完全被阻止的。剩余三个表位残基(Thr77、Ser81和Ser147)在阿达木单抗结合时被标记,但在对照中它们没有被标记(图2F)。Thr77标记的增加可能是由于阿达木单抗重链上靠近Trp53的疏水性微环境增加所致(图3A)。虽然 Ser81 不与阿达木单抗接触,但它被认为是表位的一部分,因为它靠近与mAb结合的Lys90和Glu135(图3B)。Ser147也被标记,可能是由于结合时更加疏水的环境(图3C)。总体而言,TNFα 表位中所有可修饰残基都会发生 DEPC 标记变化,但表位边缘的Thr和Ser残基实际上会增加标记,这些违反直觉的变化反映了 DEPC 标记对这些弱亲核残基的疏水微环境的独特敏感性。图3.阿达木单抗结合时TNFα残基的代表性结构变化。(A)Thr77的微环境由于其靠近阿达木单抗中的Trp53而增加疏水性。(B)Ser81被表位残基Lys90和Glu135掩埋,但在阿达木单抗结合时部分暴露,导致其DEPC反应性增加。(C)在未结合的TNFα中,Ser147完全暴露于溶剂中,然而在阿达木单抗的存在下,Ser147位于更疏水的微环境中。(D)Ser86的微环境在结合状态(灰色)下变得不那么疏水,因为它与Tyr87的接近度降低。(E)Thr89和Thr105由于靠近阿达木单抗而增加标记。(F)Ser9、Tyr151、Tyr119、Tyr56 和 Ser99 的标记范围都有所增加,这些残基十分靠近三聚体界面。在表位之外,标记了21个残基,其中大部分 (11/21) 的标记程度没有变化,表明它们在SASA或微环境中没有发生显着变化。残基Ser86标记程度降低(图2D),是因为其在阿达木单抗结合后重新定位,周围的疏水口袋很可能发生变化(图3D),导致标记减少。表位外的九个残基增加了标记程度。这些残基中的大多数 (7/9) 是丝氨酸、苏氨酸或酪氨酸,其 DEPC 反应性对微环境变化非常敏感。其余两个残基 Thr89 和 Thr105 在利妥昔单抗对照中未标记,但在阿达木单抗结合后,它们的微环境变得更加疏水,可能是由于它们与表位非常接近,所以它们的标记程度增加(图3E )。Ser9、Tyr56、Tyr119 和 Tyr151 的标记增加可能是因为它们面向 TNFα 中的三聚体界面(图3F),在阿达木单抗结合时发生的三聚体的稳定化可能会改变这些残基的微环境,从而增加它们的标记程度。其中两个残基Tyr56、Tyr151在利妥昔单抗对照中完全未标记,并在复合物中被标记,使其行为类似于表位边缘的Ser和Thr残基。标记程度增加的另外两个非表位残基是His15和Lys128,然而,阿达木单抗与TNFα三聚体的Fab的晶体结构并未表明His15或Lys128的SASA变大;阿达木单抗/TNFα 在实验浓度下形成的大于3:1的高阶复合物的复杂变化可能可以解释标记的增加。此外,作者还对英夫利昔单抗复合物中TNFα和与戈利木单抗复合的TNFα进行了DEPC-CL/MS分析。综上所述,本实验使用结合TNFα的三种治疗性mAb,证明 DEPC-CL/MS 可以揭示有关表位的准确信息以及远离表位的细微结构变化。为了获得可靠的结果,需要涉及非结合mAb的对照实验来解释由mAb中存在大量可修饰残基引起的额外标记变化。研究结果表明,表位中的组氨酸和赖氨酸残基在标记中显着减少,而在表位内或表位边缘的弱亲核性丝氨酸、苏氨酸和酪氨酸残基由于附近疏水微环境的产生而发生标记程度的增加。大多数远离表位的残基在标记程度上不会发生任何显着变化;确实发生变化的残留物主要分为三类:第一类包括不属于表位但与表位非常接近的残基,因此由于部分掩埋而导致标记程度发生变化;第二类,TNFα三聚体界面上的残基会发生标记变化,这些变化反映了抗体结合后三聚体稳定化引起的结构变化;第三类主要包括弱亲核性残基由于抗体结合时发生的 HOS 变化而在微环境中发生标记增加或减少,并反映在这些残基周围产生或多或少的疏水环境,这是 结构变化或形成具有大mAb/TNFα化学计量的复合物的结果。总而言之,DEPC 标记可以提供有关抗体-抗原表位的信息,并且具有很好的表位定位潜力,也可用于快速筛选潜在的治疗性抗体或生物等效性研究。参考文献:1、Tremblay CY, Kirsch ZJ, Vachet RW. Epitope Mapping with Diethylpyrocarbonate Covalent Labeling-Mass Spectrometry. Anal Chem. 2022 Jan 18 94(2):1052-1059.阅读原文:https://pubs.acs.org/doi/10.1021/acs.analchem.1c04038
  • 年产500吨聚碳酸酯中试技术研发成功
    我国自主研发成功“年产500吨聚碳酸酯中试研发技术” 总体技术达国际先进水平 近日,从“铜城”白银传来好消息,由中国兵器集团甘肃银光聚银公司和中科院长春应用化学研究所联合开发的“年产500吨聚碳酸酯中试研发技术”获得成功,该成果填补了国内一步光气界面法聚碳酸酯生产技术的空白,打破了国外的技术壁垒。产品的主要技术性能达到国际先进水平,形成具有完全自主知识产权的工艺技术,来自国内该领域的专家给予了高度评价。 聚碳酸酯是一种性能优异的工程塑料,广泛应用于航天、汽车、电气、电子和国防领域。我国是全球聚碳酸酯市场需求增长最快的国家,由于关键技术工艺一直为少数发达国家垄断,国内尚没有形成自主知识产权的生产技术和工业规模的生产装置,长期依赖进口造成了极不协调的供需矛盾。 甘肃银光聚银化工有限公司是西部重要的聚氨酯原料基地,拥有国内最大的TDI生产线。聚碳酸酯项目是甘肃省政府和中科院科技合作的结晶,在取得工艺技术路线、合成反应条件、产品理化性能等小试成果的基础上,由中国兵器工业集团公司、中科院、甘肃省和白银市科技部门及企业共同投资2100多万元,经过两年的攻关,建成年产500吨聚碳酸酯中试装置,在工艺、设备、材料等方面进行了大量的试验研究,2008年10月生产出合格产品。 据该项目组长、聚银公司总工程师马建军介绍,聚碳酸酯中试研发,攻克了树脂反应和后处理等关键技术瓶颈,获得了一系列工程化数据,为开发万吨级聚碳酸酯工艺软件包奠定了基础,加快了产业化大生产进程。 更多阅读 年产500吨聚碳酸酯装置可行性报告通过评审
  • LSST-01正压法泄漏与密封强度测试仪在碳酸饮料与非碳酸饮料瓶盖检测中的应用差异
    LSST-01正压法泄漏与密封强度测试仪是一种专业的设备,用于检测饮料瓶盖的密封性能。这种测试仪通过模拟瓶盖在实际使用过程中可能遇到的各种压力条件,来评估其密封性能是否符合标准。对于碳酸饮料和非碳酸饮料,由于其内部压力和化学成分的差异,检测时的压力设定可能会有所不同。碳酸饮料与非碳酸饮料的区别:内部压力:碳酸饮料含有溶解的二氧化碳,在密封状态下会产生较高的内部压力。非碳酸饮料通常不含或含少量气体,因此其内部压力较低。化学成分:碳酸饮料中的酸性物质可能会对瓶盖材料产生腐蚀作用,而非碳酸饮料的化学成分通常较为温和。检测时的考虑因素:压力设定:碳酸饮料的测试可能需要更高的压力设定,以模拟其在储存和运输过程中可能遇到的高压环境。密封性能:碳酸饮料的瓶盖需要具备更强的密封性能,以防止气体泄漏和保持产品的碳酸化状态。材料兼容性:测试时还需考虑瓶盖材料与饮料成分的兼容性,确保长时间接触不会影响密封性能。LSST-01测试仪的应用:正压检测:LSST-01测试仪能够通过正压法检测瓶盖的密封性能,确保在设定的压力下无泄漏发生。强度测试:除了泄漏检测,该设备还能测试瓶盖的抗压力,评估其在高压力下的密封强度。模拟环境:可以模拟不同的温度和湿度条件,以评估瓶盖在不同环境下的密封性能。结论:虽然LSST-01正压法泄漏与密封强度测试仪可以用于检测碳酸饮料和非碳酸饮料的瓶盖密封性能,但由于两者在内部压力和化学成分上的差异,检测时的压力设定和测试条件可能会有所不同。碳酸饮料的瓶盖通常需要更高的密封性能和更强的抗压力,因此在进行测试时需要特别考虑这些因素,以确保瓶盖能够满足产品的质量和安全要求。
  • 446项行业标准及72行业标准样品报批公示,涉及光谱、质谱、电镜等检测方法
    根据行业标准制修订计划,相关标准化技术组织已完成《电池用二氧化钛》等73项化工行业标准、《氧化石墨烯粉体定性分析 傅里叶变换红外光谱法》等118项冶金行业标准、《动力锂电池用铝壳》等137项有色金属行业标准、《黄金行业数字化车间 通用要求》1项黄金行业标准、《耐碱玻璃纤维网布》等54项建材行业标准、《烧结2:17型钐钴永磁材料》1项稀土行业标准、《船舶行业企业工作场所照明管理规定》等3项船舶行业标准、《风味食用盐》等48项轻工行业标准、《一次性蒸汽眼罩》等10项纺织行业标准、《热收缩标签》1项包装行业标准的制修订工作及《钢中碳硫标准样品4#》等72项冶金行业标准样品的研制工作。在以上标准及标准样品发布之前,为进一步听取社会各界意见,现予以公示,截止日期2024年7月24日。以上标准报批稿请登录“标准网”(www.bzw.com.cn)“行业标准报批公示”栏目阅览,并反馈意见。公示时间:2024年6月25日—2024年7月24日工业和信息化部科技司 2024年6月25日446项行业标准名称及主要内容等一览表序号标准编号标准名称标准主要内容代替标准化工行业1 HG/T 6294-2024电池用二氧化钛本文件规定了电池用二氧化钛的要求、试验方法、检验规则、标志、标签和随行文件、包装、运输和贮存本文件适用于电池用二氧化钛2 HG/T 6314-2024抗氧剂 1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯(1330)本文件规定了抗氧剂1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯的技术要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以2,6-二叔丁基苯酚、均三甲苯为原料合成抗氧剂1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯的质量控制3 HG/T 6315-2024抗氧剂 三乙二醇醚-二(3-叔丁基-4-羟基-5-甲基苯基)丙酸酯(245)本文件规定了抗氧剂三乙二醇醚-二(3-叔丁基-4-羟基-5-甲基苯基)丙酸酯的技术要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以2-叔丁基-6-甲基苯酚、二缩三乙二醇为原料合成抗氧剂 三乙二醇醚-二(3-叔丁基-4-羟基-5-甲基苯基)丙酸酯的质量控制4 HG/T 6316-2024电池用氢氧化钾本文件规定了电池用氢氧化钾的分类、要求、试验方法、检验规则、标志、标签和随行文件、包装、运输和贮存本文件适用于精制氯化钾经离子膜法电解所得的电池用氢氧化钾5 HG/T 6317-2024硅铝基蜂窝支撑填料本文件规定了硅铝基蜂窝支撑填料的产品分类、要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于硅铝基蜂窝支撑填料6 HG/T 6318-2024碱式硫酸镁晶须本文件规定了碱式硫酸镁晶须的要求、试验方法、检验规则、标志及随行文件、包装、运输和贮存本文件适用于碱式硫酸镁晶须7 HG/T 6319-2024工业氢碘酸本文件规定了工业氢碘酸的要求、试验方法、检验规则、标志、标签和随行文件以及包装、运输和贮存本文件适用于工业氢碘酸8 HG/T 6320-2024硝酸羟胺水溶液本文件规定了硝酸羟胺水溶液的要求、试验方法、检验规则、标志、标签和随行文件、包装、运输和贮存本文件适用于硝酸羟胺水溶液9 HG/T 6322-2024超薄压敏胶粘带本文件规定了超薄压敏胶粘带的产品分类、技术要求、检验规则及标志、包装、运输和贮存,描述了相应试验方法本文件适用于以聚对苯二甲酸乙二醇酯为基材的超薄压敏胶粘带10 HG/T 2902-2024模塑用聚四氟乙烯树脂本文件规定了模塑用聚四氟乙烯树脂的技术要求,描述了相应的取样、试样制备、试验方法,规定了标志、包装、运输和贮存等,给出了术语、定义和便于技术规定的产品分类本文件适用于悬浮聚合法生产的模塑用聚四氟乙烯树脂HG/T 2902-199711 HG/T 3028-2024糊状挤出用聚四氟乙烯树脂本文件规定了糊状挤出用聚四氟乙烯树脂的术语和定义、要求、试验方法、检验规则、标志、包装、贮存和运输本文件适用于分散法聚合生产的糊状挤出用聚四氟乙烯树脂本文件不适用于含有着色剂、填充剂的聚四氟乙烯树脂HG/T 3028-199912 HG/T 2903-2024模塑用细颗粒聚四氟乙烯树脂本文件规定了模塑用细颗粒聚四氟乙烯树脂的术语和定义、要求、试验方法、检验规则、标志、包装、贮存和运输本文件适用于悬浮聚合法生产并经粉碎制得的白色粉状聚四氟乙烯树脂HG/T 2903-199713 HG/T 2904-2024聚全氟乙丙烯树脂本文件规定了聚全氟乙丙烯树脂的分类、要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于由四氟乙烯和六氟丙烯为主要原料制得的聚全氟乙丙烯树脂HG/T 2904-199714 HG/T 2017-2024普通运动鞋本文件规定了普通运动鞋的术语和定义、要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于热硫化工艺生产的,供一般体育锻炼穿用的胶鞋HG/T 2017-201115 HG/T 3085-2024橡塑冷粘鞋本文件规定了橡塑冷粘鞋的术语和定义、要求、试验方法、检验规则以及标志、包装、运输和贮存本文件适用于鞋底以橡塑并用或热塑性弹性体、聚氨酯等为主要材料,鞋面以合成或天然材料为主要材料,以冷粘工艺生产的一般穿用的鞋HG/T 3085-201116 HG/T 3086-2024橡塑凉、拖鞋本文件规定了橡塑凉、拖鞋的术语和定义、分类、要求、试验方法、检验规则及标志、包装、运输、贮存本文件适用于以合成或天然材料为帮带材料,橡塑并用体、热塑性弹性体和浇注型聚氨酯等为鞋底材料,以冷粘、组装、注射成型等工艺生产的一般穿用的橡塑凉、拖鞋HG/T 3086-201117 HG/T 6296-2024N-氰基乙亚胺酸乙酯本文件规定了N-氰基乙亚胺酸乙酯的要求、试验方法、检验规则及标志、包装、运输和贮存本文件适用于以乙醇、乙腈、干燥氯化氢和单氰胺为主要原料生产的N-氰基乙亚胺酸乙酯18 HG/T 6297-2024氯甲酸甲酯本文件规定了氯甲酸甲酯的要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以光气(三光气)、甲醇为原料生产的氯甲酸甲酯19 HG/T 6298-2024β-丙氨酸本文件规定了β-丙氨酸的技术要求、试验方法、检验规则、标识、包装、运输和贮存本文件适用于以丙烯酸或L-天门冬氨酸为原料,经酶法生产的β-丙氨酸20 HG/T 6299-2024三氟化硼四氢呋喃络合物本文件规定了三氟化硼四氢呋喃络合物的技术要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以硼酸、氟化氢、四氢呋喃为主要原料制得的三氟化硼四氢呋喃络合物21HG/T 3752-20246-硝基-1,2-重氮氧基萘-4-磺酸本文件规定了6-硝基-1,2-重氮氧基萘-4-磺酸的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于6-硝基-1,2-重氮氧基萘-4-磺酸产品的质量控制HG/T 3752-201422 HG/T 2667-2024C.I.分散红60(分散红FB 200%)本文件规定了C.I.分散红60(分散红FB 200%)产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于C.I.分散红60(分散红FB 200%)的产品质量控制HG/T 2667-201423 HG/T 4023-2024C.I.分散蓝60(分散翠蓝S-GL)本文件规定了C.I.分散蓝60(分散翠蓝S-GL)产品的要求、采样、试验方法、检验规则以及标志、标签、包装、运输和贮存本文件适用于C.I.分散蓝60(分散翠蓝S-GL)的产品质量控制HG/T 4023-201424 HG/T 3901-2024分散蓝EX-SF 300%本文件规定了分散蓝EX-SF 300%产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于分散蓝EX-SF 300%的产品质量控制HG/T 3901-201425 HG/T 3405-2024C.I.酸性黄17(酸性嫩黄2G)本文件规定了C.I.酸性黄17(酸性嫩黄2G)产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于C.I.酸性黄17(酸性嫩黄2G)的产品质量控制HG/T 3405-201026 HG/T 3415-2024红色基B(2-甲氧基-4-硝基苯胺)本文件规定了红色基B(2-甲氧基-4-硝基苯胺)产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于红色基B(2-甲氧基-4-硝基苯胺)的产品质量控制HG/T 3415-201027 HG/T 6300-2024工业用亚麻油酸本文件规定了工业用亚麻油酸的分类、技术要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以亚麻籽油为原料,采用水解、蒸馏脱色工艺制得的工业用亚麻油酸28 HG/T 6301-20244,4'-二氨基二苯醚本文件规定了4,4'-二氨基二苯醚的分类、技术要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于由4,4'-二硝基二苯醚加氢还原,经直接升华或升华后重结晶制得的4,4'-二氨基二苯醚29 HG/T 6302-20244-溴-4'-苯基-二苯胺本文件规定了4-溴-4'-苯基-二苯胺的技术要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以苯胺、4-溴联苯、N-溴代丁二酰亚胺为主要原料制得的4-溴-4'-苯基-二苯胺30 HG/T 6303-2024C.I.分散黄246本文件规定了C.I.分散黄246产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于C.I.分散黄246的产品质量控制31 HG/T 6304-2024C.I.分散蓝366本文件规定了C.I.分散蓝366产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于C.I.分散蓝366的产品质量控制32 HG/T 6305-2024C.I.分散蓝367本文件规定了C.I.分散蓝367产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于C.I.分散蓝367的产品质量控制33 HG/T 6306-2024邻硝基苯甲醚本文件规定了邻硝基苯甲醚的要求、安全信息、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于邻硝基苯甲醚产品的质量控制34 HG/T 6307-2024分散宝蓝ADD-2 200%本文件规定了分散宝蓝ADD-2 200%产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于分散宝蓝ADD-2 200%的产品质量控制35 HG/T 6308-2024数码喷墨色浆 C.I.酸性黄79本文件规定了数码喷墨色浆 C.I.酸性黄79产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于数码喷墨色浆 C.I.酸性黄79的产品质量控制36 HG/T 3704-2024氟塑料衬里阀门通用技术条件本文件规定了化工用氟塑料衬里阀门的材料、设计、标记、要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以聚四氟乙烯(PTFE)、聚全氟乙丙烯(FEP)、可熔性聚四氟乙烯(PFA)、乙烯-四氟乙烯共聚物(ETFE)热塑性塑料为衬里层的衬里阀门HG/T 3704-200337 HG/T 2437-2024塑料衬里复合钢管和管件通用技术条件本文件规定了化工流体输送用塑料衬里复合钢管和管件的原材料、设计、标记、要求、试验方法、检验规则及标志、包装、运输和贮存本文件适用于以聚四氟乙烯(PTFE)、可熔性聚四氟乙烯(PFA)、乙烯-四氟乙烯共聚物(ETFE)、聚全氟乙丙烯(FEP)、聚偏氟乙烯(PVDF)、聚氯乙烯(PVC)、聚丙烯(PP)、聚乙烯(PE)热塑性塑料为内衬层的化工流体输送用塑料衬里复合钢管和管件HG/T 2437-200638 HG/T 4088-2024塑料衬里设备 通用技术条件本文件规定了化工用塑料衬里设备的术语和定义、原材料、设计、制造、要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以聚四氟乙烯(PTFE)、可熔性聚四氟乙烯(PFA)、乙烯-四氟乙烯共聚物(ETFE)、聚全氟乙丙烯(FEP)、聚偏氟乙烯(PVDF)、聚氯乙烯(PVC)、聚丙烯(PP)、聚乙烯(PE)、聚烯烃(PO)为内衬层的化工用热塑性塑料衬里设备HG/T 4088-200939 HG/T 6323-2024两片罐上色胶辊本文件规定了两片罐上色胶辊的标记、产品结构、要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于两片罐曲面印刷系统中两片罐上色胶辊的生产、检验与使用40 HG/T 6324-2024高纯工业品 无水氟化氢本文件规定了高纯工业品无水氟化氢的要求、试验方法、检验规则、标志、标签和随行文件、包装、运输和贮存本文件适用于高纯工业品无水氟化氢41 HG/T 6325-2024高纯工业品 碘本文件规定了高纯工业品碘的要求、试验方法、检验规则、标志、标签和随性文件、包装、运输和贮存本文件适用于磷矿伴生碘经提纯生产或高温焚烧熔融精制法生产的高纯工业品碘42 HG/T 4131-2024工业硅酸钾本文件规定了工业硅酸钾的分类和编码、要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于工业硅酸钾HG/T 4131-201043 HG/T 2963-2024工业六氰合铁酸四钾(黄血盐钾)本文件规定了工业六氰合铁酸四钾(黄血盐钾)的要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于工业六氰合铁酸四钾(黄血盐钾)HG/T 2963-200944 HG/T 4120-2024工业氢氧化钙本文件规定了工业氢氧化钙的要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于工业氢氧化钙HG/T 4120-200945 HG/T 2828-2024工业碳酸氢钾本文件规定了工业碳酸氢钾的要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于离子交换法生产的工业碳酸氢钾HG/T 2828-201046 HG/T 4205-2024工业氧化钙本文件规定了工业氧化钙的要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于工业氧化钙HG/T 4205-201147 HG/T 6326-2024化妆品用硫酸锌本文件规定了化妆品用硫酸锌的要求、试验方法、检验规则、标志和随行文件以及包装、运输和贮存本文件适用于以硫酸和氧化锌(或氢氧化锌)为原料,或由闪锌矿经焙烧后硫酸浸取、精制而得的化妆品用硫酸锌48 HG/T 6327-2024化妆品用碳酸钠本文件规定了化妆品用碳酸钠的要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于以工业盐、天然碱或工业碳酸钠为原料,由氨碱法、联碱法或其他方法制得的化妆品用碳酸钠49 HG/T 4201.1-2024稳定二氧化锆 第1部分:钇稳定二氧化锆本文件规定了钇稳定二氧化锆的要求、分型、试验方法、检验规则、标志、标签和随行文件、包装、运输和贮存本文件适用于钇稳定二氧化锆HG/T 4201.1-201150 HG/T 4513-2024工业硅酸镁本文件规定了工业硅酸镁的分型、要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于可溶性镁盐与碱土金属硅酸盐合成的工业硅酸镁HG/T 4513-201351 HG/T 3607-2024工业氢氧化镁本文件规定了工业氢氧化镁的分类、要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于工业氢氧化镁HG/T 3607-2007序号标准号标准名称有效期研 制 单 位冶金行业
  • 治理塑料污染,碳酸钙如何乘借“可降解塑料”的东风?
    近日,国家发展改革委、生态环境部、工业和信息化部、住房城乡建设部、农业农村部、商务部、文化和旅游部、市场监管总局、供销合作总社等9部门联合印发《关于扎实推进塑料污染治理工作的通知》,明确禁限不可降解塑料袋、一次性塑料餐具、一次性塑料吸管等一次性塑料制品的政策边界和执行要求,对疫情防控等突发事件期间用于应急保障的一次性塑料制品予以豁免。相比2008年“限塑令”主要是针对于流通使用环节,这次的“禁塑令”不仅聚焦于使用环节,也关注到了生产、流通、使用、回收、处置的全过程。在政策方面,“禁塑令”没有不顾实际情况搞“一刀切”,指出用于盛装散装生鲜食品、熟食、面食等商品的塑料预包装袋、连卷袋、保鲜袋等,不在禁止之列 “禁塑令”扩大到“餐饮打包外卖服务以及各类展会活动”。从技术角度看,环保替代塑料吸管有多种选择,而可降解塑料抗摔性、耐热性、防腐性等方面的提升空间是另一个问题。这也意味着我国可降解塑料将迎来发展机遇。到2030年,预计我国可降解塑料需求量可到428万吨,市场规模可达855亿元。2020年底“禁塑令”工作目标从材料与环保协调发展角度看, 使用源于自然并可回归于自然的无机矿物作为填料部分取代高分子材料生产塑料制品是目前的可行方案之一。近年研究表明,碳酸钙等无机粉体材料在制造环境友好塑料材料方面发挥了重要作用。实现了提高塑料制品尺寸的稳定性、提高塑料制品的硬度和刚性、改善塑料加工性能、提高塑料制品的耐热性、改进塑料的散光性、降低塑料制品成本等多重优势。碳酸钙有利于塑料材料的降解,聚乙烯(PE)薄膜中有碳酸钙粉末时,在填埋后碳酸钙有可能与CO2和H2O反应,生成溶于水的Ca(HCO3)2而离开薄膜。留下的微孔,将增大聚乙烯塑料接触周围空气和微生物的面积,从而有利于进一步降解。同时,填加碳酸钙有利于PE焚烧。燃烧时,塑料溶化容易形成黏壁现象,无机粉体加入能够使得这一问题得到极大改善。在PE塑料材料中添加了大量碳酸钙,其效果不仅体现在塑料材料的减量上,且焚烧时可减少对大气污染,减少尾气中有害气体的排放量, 特别是与焚烧热氧降解剂配合使用,对遏止二恶英产生有十分重要意义。近几年日本等国开发了可焚烧PE塑料薄膜袋用来作为盛放焚烧垃圾发电专用袋。随着中国禁塑行动的进行,超细重质碳酸钙、轻质碳酸钙和纳米碳酸钙由于价格相对低廉,又可促进塑料降解,环境友好,在可降解塑料中的添加比例会越来越大,市场前景会越来越广阔。广西贺州是全国的重钙粉体生产基地和人造岗石生产基地,被授予中国“重钙之都”和“岗石之都”称号。目前,贺州市年产重质碳酸钙粉体达800万吨,产品市场占有量达到60%以上。广西贺州也是珠海欧美克仪器用户最集中的区域之一,在深耕非矿行业二十余载的岁月里,欧美克的仪器质量和品牌口碑不断得到贺州“钙帮”老板们一致认可。Topsizer 激光粒度分析仪碳酸钙根据品种不同有多种不同的粒径和不同的表面涂层特性。欧美克Topsizer激光粒度仪应用于测试碳酸钙微粉,在短短几分钟的时间内就可以完成覆盖从纳米到毫米级别范围的测量。可以实现生产过程中以及最终产品的质量中对碳酸钙的粒度的监测和控制。其次,通过优化的产品设计,Topsizer可以为客户提供高准确性、高重复性和高重现性的数据。图3和表2显示了同一GCC(立磨)样品分成三等份样品的重复性结果,由同一台Topsizer仪器测量。图4和表3显示了三台不同的Topsizer仪器所测量的同一批次的重复性粒度分布。图3:方法重复性:同一台Topsizer仪器测量同一批GCC中三种不同样品的粒度分布表2:同一台Topziser仪器测量同一批GCC的三等份试样的粒度分布图4:系统重现性:用三台不同的Topsizer仪器测量同一批GCC的粒度分布表3:用三台不同的Topsizer仪器测量同一批GCC的粒径分布最重要的是,激光粒度仪测试过程比较简单,很容易掌握测试方法,对测试人员的要求不高,从样品制备到测试可以在几分钟内完成质控把关。随着后疫情时期的经济反弹,广大碳酸钙企业在这一难得机遇面前,可以通过增加碳酸钙与塑料的亲合性的活化处理及采用粒度仪进行良好的粒径控制,开发出可降解塑料用高填充比例高制品性能的碳酸钙专用产品,提高碳酸钙产品附加值,促进碳酸钙产业的发展。欧美克仪器也在仪器性能和日常维护上为广大碳酸钙企业提供及时全面的技术支持,例如针对行业集中区域客户的免费上门回访维护等系列售后增值服务活动(点击文字了解相关活动),以及多场碳酸钙行业专场直播课程等。扫描二维码报名专题直播课始终坚持“以客户为中心”的服务宗旨,欧美克作为国内最著名的颗粒测量仪器制造商、高新技术企业及广东省工程技术研究中心,始终致力于粉体行业粒度检测与控制技术的不断提高,为客户提供先进的物超所值的粒度测量仪器,服务及整体解决方案,为粉体行业创新发展提供强有力的支撑!参考资料:1. 欧美克仪器.《碳酸钙的激光衍射粒度分析报告》2. 腾讯新闻.《从“纸上谈兵”到“落地有声” “禁塑令”要突破两大难点》;3. 矿材网.《后疫情下,中国禁塑行动为碳酸钙行业带来大机遇!》
  • 科研人员研发出聚碳酸酯转化为肥料的循环系统
    日本东京工业大学、东京大学和京都大学科研人员组成的研究团队研发出聚碳酸酯(PC,又称PC塑料)转化为肥料的循环系统,证实以植物为原料制备的聚碳酸酯经氨水分解后可转化为促进植物生长的肥料。此项研究成果近期发表于英国化学期刊《GREEN CHEMISTRY》,题为:Plastics to Fertilizers: Chemical Recycling of a Bio-based Polycarbonate as a Fertilizer Source。  异山梨醇(Isosorbide,ISB)可由糖等生物质资源制备,经化学反应可形成异山梨醇基聚碳酸酯(PIC)。为证实循环系统,研究人员以ISB为原料合成PIC,随后在PIC中加入氨水进行氨解,观察溶液的外观变化。随着时间增加,溶液由不均匀的白色溶液逐渐变得均匀,并在24小时后变为完全均匀的溶液。通过对氨解产生的尿素和分解生成物进行分析,研究人员发现PIC最终完全分解为尿素和ISB。在室温下,分解需要24小时,研究人员通过调整氨水的浓度和反应温度,寻找最佳反应条件,成功在6小时以内实现完全分解。  研究人员运用分解生成物(ISB和尿素的混合物)进行拟南芥的培育实验,结果显示PIC分解产生的尿素可起到肥料的作用。分解生成物中,尿素与ISB的比例为0.7:1,与尿素和ISB1:1混合相比,更能促进拟南芥的生长。  此项研究证实了植物来源的聚碳酸酯转化为肥料促进植物生长的循环系统,有助于解决废弃塑料问题和粮食短缺问题,推动可持续发展。   原文链接:  https://www.jst.go.jp/pr/announce/20211028/index.html
  • 知名烧烤店钢签被曝重金属超标,哪些标准保障食品接触材料安全?
    8月11日,知名打假人王海在其社交平台上发布了多条视频,称淄博三十年老店牧羊村烧烤使用非食品级不锈钢签,经检测确认重金属超标,不符合食品安全标准。其出示的检测报告显示,不符合GB4806.9-2016不锈钢相应的技术要求。判定依据为GB4806.9-2016《食品安全国家标准 食品接触用金属材料及制品》不锈钢。8月13日,记者联系到牧羊村烧烤店,工作人员杨先生介绍,8月11日,王海已经到店反映了情况,市场监督管理局也到店进行了取样,并送到第三方进行检测。11日当天,他们把原先使用的不锈钢签全部处理掉,并采购了304食品级不锈钢制成的钢签。食品接触材料是指将要与食品直接、间接或可能接触的材料。目前常见的食品接触材料包含塑料、金属、玻璃、陶瓷、纸等材质。并且各个不同的国家中,对于食品接触材料的检测要求和标准是不一样的,比如美国需要符合FDA、欧盟需要符合EU1935/2004/EC、德国符合LFGB、法国符合DGCCRF、日本符合JFSL370、韩国KFDA、中国GB4806标准等。今天小编着重讲解下中国GB4806食品接触材料检测标准。GB4806标准是在2016年发布的,并且在2017年正式实施,只要跟食品会有可能接触的产品,就必须要符合食品级GB4806标准要求,属于强制性要求。 GB4806管控范围1.聚乙烯PE:有塑料包装袋、包装盒、保鲜膜、塑料膜袋等。2.聚对苯二甲乙二醇酯PET:矿泉水、碳酸饮料、此类产品有一定的存放条件。3.高密度聚乙烯HDPE:豆浆机、牛奶瓶、果汁饮料、微波炉用餐具等4. 聚苯乙烯PS:泡面盒、快餐盒、材质不能装有酸性碱性食物。5.陶瓷/搪瓷:常见的有茶杯、碗、盘子、茶壶、罐子、等。6.玻璃:保温水杯、杯子、罐头瓶子等。7.不锈钢/金属:保温水杯、刀叉、勺子、炒锅、锅铲、不锈钢筷子等。8.硅胶/橡胶:儿童奶嘴、奶瓶等硅胶制品。9.纸类/纸板:主要针对包装盒、比如蛋糕盒、糖果盒、巧克力包装纸等等。10.涂料/图层:此类常见的有水杯(即带颜色的水杯的那个颜色涂层)、儿童碗、儿童勺子等等。产品标准要求测试方法检测项目是否强制性及注意事项奶嘴GB 4806.2-2015GB 4806.2感官是GB 31604.8蒸发残渣是GB 31604.2高锰酸钾消耗量是GB 31604.9重金属是GB/T 5009.64锌是GB 28482-20122,6-二叔丁基对甲苯酚迁移量特定产品中测定2,2'-亚甲基双(4-乙基-6-叔丁基苯酚)迁移量GB 28482-2012N-亚硝胺和N-亚硝胺可能物释放量特定产品中测定GB 28482-2012挥发性物质仅适用于硅橡胶奶嘴搪瓷制品GB 4806.3-2016GB 4806.3感官是GB 31604.34铅是镉是陶瓷制品GB 4806.4-2016GB 4806.4感官是GB 31604.34铅是镉是玻璃制品GB 4806.5-2016GB 4806.5感官是GB 31604.34铅是镉是塑料材料及制品GB 4806.7-2016GB 4806.7感官是GB 31604.2高锰酸钾消耗量是GB 31604.8总迁移量是GB 31604.9重金属是GB 31604.7脱色实验仅适用于添加了着色剂的产品纸和纸板材料及制品GB 4806.8-2022GB 4806.8感官是GB 31604.34&49铅是GB 31604.38&49砷是GB 31604.48甲醛是GB 31604.47荧光性物质是GB 31604.2高锰酸钾消耗量是GB 31604.8总迁移量是GB 31604.9重金属仅适用于接触水性食品金属及制品GB 4806.9-2016GB 4806.9感官是GB 31604.34&49铅是GB 31604.38&49砷是GB 31604.24&49镉是GB 31604.25&49铬仅适用于不锈钢锅GB 31604.33&49镍仅适用于不锈钢锅涂料及涂层GB 4806.10-2016GB 4806.10感官是GB 31604.2高锰酸钾消耗量是GB 31604.8总迁移量是GB 31604.9重金属是橡胶材料及制品GB 4806.11-2016GB 4806.11感官是GB 31604.2高锰酸钾消耗量是GB 31604.8总迁移量是GB 31604.9重金属是
  • 一文了解领先的意大利西姆沉淀碳酸钙生产工艺
    p style=" text-indent: 2em " span style=" font-family: 宋体 line-height: 1.75em text-indent: 28px " 沉淀碳酸钙是将石灰石等原料煅烧生成石灰和二氧化碳,再加水消化生成石灰乳,然后再通入二氧化碳碳化石灰乳生成碳酸钙沉淀,根据用途可进行碳酸钙粒子表面改性处理,最后经脱水、干燥粉碎而制得。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_422477_newsimg_news.png" style=" border: 0px margin-left: -3em !important " / br/ /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 沉淀碳酸钙是重要的无机粉体填料之一,用途十分广泛。据了解目前中国已经发展成为世界沉淀碳酸钙第一大生产与消费国,但是就生产而言,与国外同行业相比差距仍然较大。如企业规模普遍较小,设备陈旧、水平低、产品品种单一、质量差等问题都急需解决。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 意大利西姆作为领先的沉淀碳酸钙生产工艺设计制造工程公司,其提供的技术、工艺和设备具有一定的先进性,对国内企业的生产具有一定的借鉴作用。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 意大利西姆介绍 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 1967年,意大利西姆诞生于欧洲第二个工业大省——意大利贝加莫,贝加莫是一个具有悠久历史和生产石灰、水泥和磨细碳酸盐的地区。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " & nbsp /span img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_459162_newsimg_news.gif" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 西姆最初供应单轴石灰窑,三阶段水合物和包装机等,随后通过扩大其技术范围,继续引进回转窑等设备。目前已成为世界著名的提供石灰工业有关技术、设备与工程的工程公司。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 西姆在世界 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 西姆主要业务包括双筒蓄能活性石灰窑,干式消石灰生产装置,PCC工厂建造等。截止2017年10月,西姆足迹遍及5大洲60个国家,共229个石灰窑、169个水化设备?? /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 全球西姆业务分布图 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " & nbsp /span img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_490464_newsimg_news.png" width=" 400" height=" 300" border=" 0" vspace=" 0" title=" " alt=" " style=" border: 0px margin-left: -3em !important width: 400px height: 300px " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 各地区西姆设备分布图 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_568358_newsimg_news.jpg" width=" 400" height=" 300" style=" border: 0px margin-left: -3em !important " / br/ /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 229个石灰窑: /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " 北美国+欧洲94个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " 南美国+中欧/东欧23个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " AFTRIC+中东27个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " 亚洲+大洋洲85个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong style=" line-height: 1.75em " 169个水化设备: /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " 北美国+欧洲103个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " 南美国+中欧/东欧30个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " AFTRIC+中东16个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " 亚洲+大洋洲20个 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 西姆沉淀碳酸钙工艺 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 西姆沉淀碳酸钙生产线 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " & nbsp /span img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_578396_newsimg_news.png" width=" 557" height=" 472" style=" border: 0px margin-left: -3em !important width: 557px height: 472px " / /p ol class=" list-paddingleft-2" style=" padding: 0px list-style-position: initial list-style-image: initial font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal " li p style=" padding: 0px margin-top: 0px margin-bottom: 0px line-height: 1.75em " span style=" font-size: 16px " 石灰煅烧 /span /p /li /ol p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 西姆石灰的煅烧采用全自动双筒蓄能气烧石灰窑,燃烧介质为天然气或煤气,体积分数在25%左右,入窑石灰石块度小,可降低石灰石的损耗,并可以生产高活性的轻烧石灰石,(相比国内机制窑活性300 ml(4NHCl))蓄能窑的活性可达370ml(4NHCl)。高活性石灰对消化工序与碳化工序设计运行有直接影响,机理上对 PCC 粒子晶型确定,成核,晶体成长,以及粒径分布有积极作用。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 2.石灰消化 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " PCC生产中,西姆采用的三级消化技术,厢式连续搅拌消化机,消化能力大,出渣量小,设备占地面积小,Ca(OH)2浓度是浓度 8-16%。消化后过旋液分离器和振动筛,采用二级制冷,一级采用工艺水制冷入口温度74° C ,出口温度34° C;二级冷冻水制冷入口温度34° C,出口温度调到25° C以下。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 3.碳化工艺 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 西姆的碳化示意图 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " & nbsp /span img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_757857_newsimg_news.png" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 西姆的碳化采用两级碳化工艺。一级碳化为大气液比连续碳化塔,碳化过程连续进料,以便快速形成晶核。也称为晶核预成器。Ca(OH)2和CO2进行连续碳化反应。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 二级碳化采用了大容积、搅拌式鼓泡碳化方式,调整pH在7以下。能够提供20、27、40、57m3等4个规格的碳化器。碳化器采用双叶轮搅拌器,碳化反应时间为60-90分钟一塔。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 造纸微米钙和橡塑纳米钙的碳化 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_779250_newsimg_news.png" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 4.包覆工艺 /span /p ul class=" list-paddingleft-2" style=" padding: 0px list-style-position: initial list-style-image: initial font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal " li p style=" padding: 0px margin-top: 0px margin-bottom: 0px line-height: 1.75em " span style=" font-size: 16px " ?皂化 /span /p /li /ul p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 皂化采用30立方的皂化釜,硬脂酸与氢氧化钠高温皂化形成硬脂酸钠,皂化温度控制在80-85℃。 /span /p ul class=" list-paddingleft-2" style=" padding: 0px list-style-position: initial list-style-image: initial font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal " li p style=" padding: 0px margin-top: 0px margin-bottom: 0px line-height: 1.75em " span style=" font-size: 16px " ?活化 /span /p /li /ul p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 活化采用体积50m3,直径3.5m的活化釜,高温、高转速、高剪切搅拌活化,温度控制在80-85℃。加入皂化液后,搅拌2小时进行包覆,与碳酸钙表面结合。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 5.干燥粉碎 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 一般的沉淀碳酸钙产品不需要粉碎可以直接包装,如果认为细粉含量低,仍有团聚,可以另外加解聚装置,采用日本细川公司生产的针形磨,进一步粉碎降低团聚体和吸油值。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 对于纳米碳酸钙来说,其干燥被国内专家称为国内 PCC 技术的“瓶颈”。西姆的技术采用英国阿碎得(ATRITOR)干燥粉磨机,同时完成轻质碳酸钙PCC生产中的干燥和解聚工序,是生产高等级超细钙和纳米轻质碳酸钙的重要设备。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " & nbsp /span img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_789796_newsimg_news.png" width=" 509" height=" 295" style=" border: 0px margin-left: -3em !important width: 509px height: 295px " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " strong 西姆产品特点与指标 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em " span style=" font-size: 16px " 平均粒径尺寸(20-70nm);比表面积(70-18 m2/g);形状规则,粒径分布小;表面包覆硬脂酸,用量1.9-4%,纯度高。 /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 西姆的SC纳米碳酸钙指标 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px line-height: 25px text-indent: 28px white-space: normal text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_823374_newsimg_news.png" style=" border: 0px margin-left: -3em !important " / /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " span style=" font-size: 16px " strong 西姆的造纸钙指标 /strong /span /p p style=" padding: 0px margin-top: 0px margin-bottom: 0px font-family: 宋体 font-size: 14px text-indent: 28px white-space: normal line-height: 1.75em text-align: center " img src=" http://news.cnpowder.com.cn/img/daily/2018/05/07/082005_839392_newsimg_news.png" style=" border: 0px margin-left: -3em !important " / /p
  • 国家药监局关于发布消肿片中松香酸检查项和复方龙胆碳酸氢钠片中土大黄苷检查项2项补充检验方法的公告
    根据《中华人民共和国药品管理法》及其实施条例的有关规定,《消肿片中松香酸检查项补充检验方法》《复方龙胆碳酸氢钠片中土大黄苷检查项补充检验方法》经国家药品监督管理局批准,现予发布。特此公告。附件1消肿片中松香酸检查项补充检验方法(BJY 202111)【检查】松香酸照高效液相色谱法(中国药典2020年版通则0512)测定。色谱条件与系统适用性试验以十八烷基硅烷键合硅胶为填充剂;以乙腈-0.1%甲酸(70:30)为流动相;检测波长为241nm。理论板数按松香酸峰计算应不低于3000。对照溶液的制备(临用新制)取松香酸对照试剂适量,精密称定,加乙醇制成每1ml含2µg的溶液,作为对照试剂溶液。另取11-羰基-β-乙酰乳香酸对照品适量,精密称定,加乙醇制成每1ml含2µg的溶液,作为参照溶液。供试品溶液的制备取本品10片,研细,取0.2g,精密称定,精密加入乙醇20ml,称定重量,超声处理20分钟,放冷,再称定重量,用乙醇补足减失的重量,摇匀,滤过,取续滤液,即得。测定法分别精密吸取供试品溶液、对照试剂溶液与参照溶液各10µl,注入液相色谱仪,记录色谱图。结果判断供试品色谱中,在与松香酸对照试剂溶液色谱峰保留时间相应的位置上不得出现相同的色谱峰。若出现保留时间相同的色谱峰,采用二极管阵列检测器比较相应色谱峰的紫外-可见吸收光谱,吸收光谱应不同(松香酸对照试剂色谱峰在241nm显示最大吸收);若吸收光谱相同,且该色谱峰的峰面积值大于11-羰基-β-乙酰乳香酸参照溶液色谱峰的峰面积值,则视为阳性检出。备注:必要时,可采用高效液相色谱-质谱联用方法进行验证。起草单位:连云港市食品药品检验检测中心复核单位:江苏省食品药品监督检验研究院广州市药品检验所附件2复方龙胆碳酸氢钠片中土大黄苷检查项补充检验方法(BJY 202112)【检查】土大黄苷(1)取本品细粉适量,约相当于大黄原生药0.1g,加甲醇10ml,超声处理20分钟,滤过,取滤液1ml,加甲醇至10ml,作为供试品溶液。另取土大黄苷对照品,加甲醇制成每1ml含10μg的溶液,作为对照品溶液(临用新制)。照薄层色谱法(中国药典2020年版通则0502)试验,吸取对照品溶液与供试品溶液各5μl,分别点于同一聚酰胺薄膜上,以甲苯甲酸乙酯丙酮甲醇甲酸(30:5:5:20:0.1)为展开剂展开,取出,晾干,置紫外光灯(365nm)下检视。供试品色谱中,在与对照品色谱相应的位置上,不得显相同的亮蓝色荧光斑点。(2)照高效液相色谱法(中国药典2020年版通则0512)测定。色谱条件与系统适用性试验 以十八烷基硅烷键合硅胶为填充剂;以乙腈-水(20:80)为流动相;二极管阵列检测器,检测波长为328nm,柱温30℃。理论板数按土大黄苷色谱峰计算应不低于3000,土大黄苷峰与相邻峰之间的分离度应符合要求。对照品溶液的制备(临用新制) 取土大黄苷对照品适量,精密称定,加甲醇制成每1ml含60μg的溶液,即得。供试品溶液的制备 取本品20片,研细,取约相当于大黄原生药0.1g,精密称定,精密加入甲醇25ml,称定重量,超声处理60分钟,放冷,再称定重量,用甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。测定法 分别精密量取供试品溶液和对照品溶液各10μl,注入液相色谱仪,记录色谱图。结果判定 供试品色谱中,在与土大黄苷对照品色谱峰保留时间相应的位置上应不得出现相同的色谱峰。若出现保留时间相同的色谱峰,则采用二极管阵列检测器比较相应色谱峰的紫外-可见吸收光谱,吸收光谱应不同(土大黄苷对照品色谱峰在219nm和325nm波长处有最大吸收);若吸收光谱相同,则视为阳性检出。备注:必要时可采用高效液相色谱-质谱联用方法进行验证。起草单位:青海省药品检验检测院复核单位:甘肃省药品检验研究院陕西省食品药品检验研究院
  • 国标委下发2016第二批国标制修订计划 又一批检测标准将出台
    9月20日,国家标准化管理委员会下达2016年第二批国家标准制修订计划(见附件)。本批计划共计224项,其中制定183项,修订41项 推荐性标准223项,指导性技术文件1项。  在这224项标准中,有数十条涉及仪器检测,包括质谱、高效液相色谱-质谱联用法、高效液相色谱法、电感耦合等离子体原子发射光谱、X射线衍射、扫描电镜等检测方法,仪器信息网摘取部分供参考。 计划编号 项目名称 标准性质 制修订 主管部门 归口单位 20161229-T-608纺织品 消臭性能的测定 第3部分:气相色谱法推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161231-T-608纺织品 1,2-二氯乙烷、氯乙醇和氯乙酸的测定推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161232-T-608纺织品 苯并三唑类物质的测定推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161233-T-608纺织品 定量化学分析 氨纶与某些其他纤维的混合物推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161234-T-608纺织品 过滤性能 最易穿透粒径的测定推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161237-T-608纺织品 消臭性能的测定 第1部分:通则推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161238-T-608纺织品 抗真菌性能的测定 第2部分:平皿计数法推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161240-T-608纺织品 抗真菌性能的测定 第1部分:荧光法推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161323-T-606肥料中植物生长调节剂的测定 高效液相色谱法推荐制定中国石油和化学工业联合会全国肥料和土壤调理剂标准化技术委员会20160920-T-609超薄玻璃硬度和断裂韧性试验方法-显微维氏硬度压痕法推荐制定中国建筑材料联合会全国工业玻璃和特种玻璃标准化技术委员会20161327-T-606光学功能薄膜 聚对苯二甲酸乙二醇酯(PET)薄膜 萃取值测定方法推荐制定中国石油和化学工业联合会全国光学功能薄膜材料标准化技术委员会20161295-T-469粒度分析 液体重力沉降法 第4部分:天平法推荐制定国家标准化管理委员会全国颗粒表征与分检及筛网标准化技术委员会20161283-T-469喷气燃料中芳烃总量的测定 气相色谱法推荐制定国家标准化管理委员会全国石油产品和润滑剂标准化技术委员会20161284-T-469汽车手动变速箱同步器用润滑剂摩擦磨损性能测定 SRV试验机法推荐制定国家标准化管理委员会全国石油产品和润滑剂标准化技术委员会20161285-T-469石油和液体石油产品 储罐中液位和温度自动测量法 第2部分:油船舱中的液位测量推荐制定国家标准化管理委员会全国石油产品和润滑剂标准化技术委员会20161303-T-607玩具产品 聚碳酸酯和聚砜材料中双酚A迁移量的测定 高效液相色谱-质谱联用法推荐制定中国轻工业联合会全国玩具标准化技术委员会20161310-T-606硫化橡胶 样品和试样的制备 化学试验推荐修订中国石油和化学工业联合会全国橡胶与橡胶制品标准化技术委员会20161314-T-606炭黑 第26部分:炭黑原料油中碳含量的测定推荐制定中国石油和化学工业联合会全国橡胶与橡胶制品标准化技术委员会20161315-T-606橡胶配合剂 沉淀水合二氧化硅 电感耦合等离子体原子发射光谱仪测定重金属含量推荐制定中国石油和化学工业联合会全国橡胶与橡胶制品标准化技术委员会20161316-T-606炭黑 第25部分:碳含量的测定推荐制定中国石油和化学工业联合会全国橡胶与橡胶制品标准化技术委员会20161346-T-306同位素组成质谱分析方法通则推荐制定科学技术部全国仪器分析测试标准化技术委员会20161347-T-306水中锶同位素丰度比的测定推荐制定科学技术部全国仪器分析测试标准化技术委员会20161348-T-306晶体材料X射线衍射仪旋转定向测定方法推荐制定科学技术部全国仪器分析测试标准化技术委员会20161361-T-334琥珀鉴定分类推荐制定国土资源部全国珠宝玉石标准化技术委员会20161363-T-334珠宝玉石 鉴定推荐修订国土资源部全国珠宝玉石标准化技术委员会20161226-T-608化学纤维 微观形貌及直径的测定 扫描电镜法推荐制定中国纺织工业联合会中国纺织工业联合会20161227-T-608化学纤维 热分解温度试验方法推荐制定中国纺织工业联合会中国纺织工业联合会20161228-T-608化学纤维 二氧化钛含量试验方法推荐制定中国纺织工业联合会中国纺织工业联合会
  • 海关总署发布《工业脂肪酸及其盐和酯中脂肪酸组成的测定》等8项海关行业标准
    根据《中华人民共和国海关行业标准管理办法(试行)》(海关总署令第140号公布,根据海关总署令第235号修改),海关总署发布《工业脂肪酸及其盐和酯中脂肪酸组成的测定》等8项海关行业标准(标准目录见附件)。本批标准自2024年1月1日起实施。以上发布标准的文本可通过中国技术性贸易措施网站(http://www.tbtsps.cn)标准栏目查阅。特此公告。附件:海关行业标准编号名称表.doc海关总署2023年12月11日公告正文下载链接:海关总署关于发布《工业脂肪酸及其盐和酯中脂肪酸组成的测定》等8项海关行业标准的公告.doc海关总署关于发布《工业脂肪酸及其盐和酯中脂肪酸组成的测定》等8项海关行业标准的公告.pdf相关标准如下:海关标准编号海关标准名称批准日期实施日期HS/T 74-2023《工业脂肪酸及其盐和酯的测定》2023-12-112024-01-01HS/T 76-2023《碳酸钙粉体属性的验证方法》2023-12-112024-01-01HS/T 77-2023《钙基钠基膨润土的鉴别》2023-12-112024-01-01HS/T 81-2023《脱皮花生检测方法》2023-12-112024-01-01
  • 欧美克仪器亮相2021年第七届国际碳酸钙产业博览会
    11月5日,以“聚焦精品碳酸钙产业促进工业高质量发展”为主题的2021年第七届国际碳酸钙产业博览会暨碳酸钙研发高端学术论坛在南宁开幕。本届会议邀请了中国科学院、中国地质大学、中国冶金地质总局、中国煤炭地质总局等权威机构领导嘉宾到场,共115家来自广东、四川、山东、江苏、福建、安徽、广西等地的企业带来了橡胶塑料、新型建材、密封材料等碳酸钙产业链上高附加值产品参展。作为国内颗粒测量仪器制造商,珠海欧美克仪器有限公司携LS-609全自动型激光粒度仪应邀参加了本次会议,展望行业高质量发展,助力广西精品碳酸钙产业集群“把脉问诊”。随着广西人民政府印发《广西战略性新兴产业发展“十四五”规划》和《广西战略性新兴产业发展三年行动方案(2021—2023年)》,将重点发展精品碳酸钙等先进新材料,建设碳酸钙产业创新平台。纳米碳酸钙作为碳酸钙行业的转型产品,也成为现场讨论的主要议题。纳米碳酸钙也称为超微细碳酸钙,其粒度介于0.01-0.1μm之间。纳米碳酸钙粒子超细化,其晶体结构和表面电子结构发生变化,与普通碳酸钙相比,具有优良的小尺寸效应、量子尺寸效应、宏观量子效应、表面效应等,被广泛应用在塑料、橡胶、胶粘剂、涂料、油墨、造纸、建材、化妆品等产品的制造领域,可以改善和提高产品的综合性能。纳米碳酸钙的粒径分布成为生产企业产品质控的一个重要参数。珠海欧美克仪器有限公司成立以来,一直服务于碳酸钙行业,从初代的LS-POP(3)到新一代明星产品LS-609,再到针对活性碳酸钙、纳米碳酸钙等亚微米、纳米颗粒检测的不二之选——Topsizer高端激光粒度仪,欧美克产品质量持久耐用,测试重复性高、精度高等诸多优点深受“钙帮”老板们的青睐。纳米碳酸钙的测试,除了需要科学、有效的样品前分散处理外,更需要一台测试性能优异、分辨能力高、重现性能好、测试范围涵括纳米、亚微米及微米级别的高性能激光粒度分析仪。近年来,欧美克仪器在纳米碳酸钙客户中,积累了连州凯恩斯、江西九峰、湖北科迈、湖北凯龙等行业典型客户,靠得就是Topsizer型激光粒度仪在检测亚微米、纳米颗粒的优异表现以及一套行之有效的检测方案。 Topsizer激光粒度分析仪采用国际先进的红蓝双光源设计,红光主光源为进口氦-氖激光器,并有蓝光辅助半导体光源,弥补了常规设计散射光角度的盲区,极大地提高了对纳米级颗粒及少量大颗粒的分辨力。同时具有量程宽、重复性好、精度高、测试结果真实、自动化程度高等诸多优点,是纳米碳酸钙粒度检测的优选激光粒度仪。【可详见《“好的仪器,用在刀刃上!”——Topsizer在纳米碳酸钙测试中的应用》】欧美克仪器作为粒度检测与控制技术专家,将继续服务于不断发展中的碳酸钙产业,与钙帮们携手并进,为精品碳酸钙产业的高质量发展贡献一份绵薄之力!
  • 赛默飞的验“毒”术:教你测定“毒淀粉”中的顺丁烯二酸(酐)
    毒奶粉、瘦肉精、塑化剂&hellip 近年来食品&ldquo 染毒&rdquo 事件频发,食品安全已经成为公众关注的焦点之一。因此,作为食品安全问题源头之一的食品添加剂也渐渐进入消费者视野。今年3月,台湾爆发&ldquo 毒淀粉&rdquo 事件,食物中惊现含有顺丁烯二酸(酐) 的有毒淀粉。作为检测领域的世界领导者,赛默飞世尔科技(以下简称:赛默飞)积极响应,针对顺丁烯二酸酐可水解成马来酸的特性,提出运用离子色谱法测定淀粉中的顺丁烯二酸(酐)的解决方案。 顺丁烯二酸(HO2CCH=CHCO2H),又称&ldquo 马来酸&rdquo ,是饱和二元羧酸,可以用于树脂化学黏合剂原料。在淀粉中加入一定量的顺丁烯二酸,可增加食物的弹性、黏性、外观光亮度、以及保质期。然而,长期超标食用含顺丁烯二酸的食品,将极大程度损伤人体肾脏功能,甚至引发不孕不育。令人担忧的是,食品专家指出,顺丁烯二酸(酐)在食品领域可能存在一定滥用现象,成本的低廉以及效果的显著促使不法商家使用顺丁烯二酸(酐)作为食品添加剂,以谋取暴利。 离子色谱法测定淀粉中的顺丁烯二酸(酐) 顺丁烯二酸与反丁烯二酸(又称&ldquo 富马酸&rdquo )互为几何异构体,其中反丁烯二酸可以作为食品添加剂应用于食品中,主要起酸度调节剂作用,是食品添加剂卫生标准(GB2760-2011)允许添加的食品添加剂。相反,顺丁烯二酸(酐)则并未收入允许添加的食品添加剂目录。对于顺丁烯二酸(酐)在食品领域可能存在的滥用现象,赛默飞推出一种测定淀粉中顺丁烯二酸(酐)的方法,以满足食品安全监测的迫切需求。 顺丁烯二酸酐遇水则水解成马来酸,因此可以通过检测样品中马来酸的含量,得到顺丁烯二酸(酐)的总量。赛默飞针对马来酸作为一种有机酸极易溶于水且呈阴离子状态的特性,运用离子色谱法测定淀粉中顺丁烯二酸(酐)的测定方法。 与我国目前已有毛细管电泳法以及现行国家标准GB/T 23296.21-2009采用的高效液相色谱法等检测方法相比,赛默飞推出的离子色谱法测定淀粉中顺丁烯二酸(酐),不但样品前处理简单、便捷,而且方法稳定,线性范围内相关性好,准确度高,受其他因素干扰小,可以成为检测淀粉中的马来酸的有效手段。 赛默飞验&ldquo 毒&rdquo 术解决食品安全中的添加剂隐患 作为科学服务领域的世界领导者,赛默飞始终积极关注食品安全问题。对于近年来食品添加剂引发的食品安全事故层出不穷,赛默飞采取快速应对方式,在事件发生的第一时间组织分析专家开展检测工作,及时建立和发布相应解决方案。除了&ldquo 毒淀粉&rdquo ,赛默飞对于&ldquo 毒奶粉&rdquo 、塑化剂、瘦肉精等都有着独到的验&ldquo 毒&rdquo 术。 早在&ldquo 毒奶粉&rdquo 事件爆发之时,美国食品和药物管理局就发布过用赛默飞TSQ Quantum LC-MS/MS系统检测婴儿配方乳制品中三聚氰胺和三聚氰酸残留的方法。2007年,美国国家食品安全与技术中心又借助赛默飞的TSQ Quantum Ultra TM三重四级杆液相色谱串联质谱仪,建立了一个新的液相色谱串联质谱方法测定食品中的三聚氰胺。除了提供先进的检测技术,赛默飞还将独有的线样品前处理技术TurboFlow色谱净化和TSQ Quantum LC-MS/MS分析结合,使分析流程得到大大简化和操作自动化。赛默飞三聚氰胺检测方法因此获得了&ldquo 2009荣格食品饮料业技术创新奖&rdquo 。除此之外,赛默飞还针对塑化剂中的邻苯二甲酸二乙基乙酯(DEHP)和邻苯二甲酸二异壬酯(DINP),瘦肉精中的&beta -受体激动剂,以及防霉保鲜剂中的富马酸二甲酯(DMF)等食品添加剂推出了简单易行,分析时间短,且适用于大规模筛选的处理办法。 不止如此,赛默飞立足于整个食品安全的产业链,涵盖仪器设备、试剂以及LIMS实验室信息管理系统的无敌产品组合,为大家提供从农场到实验室到工厂&mdash &mdash 最全面的食品安全解决方案。 了解更多赛默飞食品安全完全解决方案信息,请点击http://www.thermo.com.cn/foodsafety。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 工业和信息化部办公厅关于印发2023年第二批《畜禽肉制品中5种核苷酸的测定》等行业标准制修订和外文版项目计划的通知
    各有关单位:根据工业和信息化标准制修订工作总体安排,我部编制完成了2023年第二批行业标准制修订和外文版项目计划。现印发给你们,请认真组织落实。具体要求如下:一、标准起草单位要注意做好标准制定与技术创新、试验验证、知识产权处置、产业化推进、应用推广的统筹协调。二、有关行业协会(联合会)、标准化技术组织、标准化专业机构等主管单位要尽早安排,将文件及时转发至主要起草单位,并做好标准组织起草、征求意见和技术审查等工作,把好技术审查关。三、部机关相关司局、相关地方行业主管部门要做好行业标准制修订、外文版研制过程的管理工作,确保标准的质量和水平。四、计划执行过程中,如需对标准项目进行调整,按有关规定办理。工业和信息化部办公厅2023年7月26日(联系电话:010-68205240)附件下载相关标准如下:序号项目名称性质制修订项目周期(月)1畜禽肉制品中5种核苷酸的测定推荐制定242畜禽肉制品中非肉类蛋白的测定推荐制定243塑料 产品可回收再生设计通用要求推荐制定24
  • 北京水利学会关于批准发布《水质 碱度、碳酸盐和重碳酸盐的测定 自动电位滴定法》团体标准
    经理事长专题办公会批准,决定发布《水质 碱度、碳酸盐和重碳酸盐的测定 自动电位滴定法》团体标准,现予以公告。标准自2023年10月1日起实施。标准名称标准编号批准日期实施日期《水质 碱度、碳酸盐和重碳酸盐的测定 自动电位滴定法》T/BHES 0001—20232023.8.252023.10.1北京水利学会2023年8月25日
  • 博纳艾杰尔提供邻苯二甲算酯标准品
    相关标准品如下,价格请咨询当地销售 中文名称 英文名称 CAS号 邻苯二甲酸二甲酯(DMP) Dimethyl phthalate (DMP) 131-11-3 邻苯二甲酸二乙酯(DEP) Diethyl phthalate(DEP) 84-66-2 邻苯二甲酸二异丁酯(DIBP) Phthalic acid, bis-iso-butyl ester 84-69-5 邻苯二甲酸二丁酯(DBP) Di-n-butyl phthalate 84-74-2 邻苯二甲酸双(2-甲氧基乙)酯(DMEP) Phthalic acid, bis-methylglycol ester 117-82-8 邻苯二甲酸双-4-甲基-2-戊酯 Phthalic acid, bis-4-methyl-2-pentyl ester 146-50-9 邻苯二甲酸双-2-乙氧基乙酯 Phthalic acid, bis-2-ethoxyethyl ester 605-54-9 邻苯二甲酸二戊酯(DPP) Diamyl phthalate 131-18-0 邻苯二甲酸二正己酯(DNHP) Dihexyl phthalate 84-75-3 邻苯二甲酸丁苄酯(BBP) Benzyl butyl phthalate 85-68-7 邻苯二甲酸二丁氧基乙酯 (DBEP) Phthalic acid,bis-butoxyethyl ester 117-83-9 邻苯二甲酸二环己酯(DCHP) Dicyclohexyl phthalate 84-61-7 邻苯二甲酸二(2-乙基)己酯(DEHP) Di(2-ethyl hexyl) phthalate (DEHP) 117-81-7 邻苯二甲酸二苯酯 Diphenyl phthalate 84-62-8 邻苯二甲酸二正辛酯(DNOP) Di-n-octyl phthalate 117-84-0 邻苯二甲酸二壬酯 Phthalic acid, bis-nonyl ester 84-76-4 相关检测方法请登录博纳艾杰尔网站http://www.agela.com.cn/newDetail.aspx?id=59
  • 上海市食品接触材料协会发布《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准征求意见稿
    各有关单位及专家:由上海市食品接触材料协会归口,上海市质量监督检验技术研究院等相关单位共同起草的《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准已完成征求意见稿(附件1-14)的编制,现面向社会公开征求意见。诚请有关单位及行业专家积极提出宝贵意见和建议,并填写《意见反馈表》(附件15),于2023年8月10日之前将书面意见以邮件或寄送方式反馈至上海市食品接触材料协会。联 系 人: 陈宁宁 黄 蔚联系电话: 021-64372216 邮 箱:safcmxh@163.com邮寄地址:上海市徐汇区永嘉路627号301室上海市食品接触材料协会2023年7月10日附件下载附件1《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》团体标准征求意见稿.pdf附件2《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》团体标准编制说明.pdf附件3《食品接触材料 着色剂中芳香族伯胺的测定》团体标准征求意见稿.pdf附件4《食品接触材料 着色剂中芳香族伯胺的测定》团体标准编制说明.pdf附件5《食品接触材料 着色剂中多氯联苯含量的测定》团体标准征求意见稿.pdf附件6《食品接触材料 着色剂中多氯联苯含量的测定》团体标准征编制说明.pdf附件8《食品接触材料 着色剂中盐酸可溶物(锑、砷、钡、镉、铬、铅、汞和硒)的测定》团体标准编制说明.pdf附件9《食品接触材料 着色剂中盐酸可溶物(六价铬)的测定》团体标准征求意见稿.pdf附件7《食品接触材料 着色剂中盐酸可溶物(锑、砷、钡、镉、铬、铅、汞和硒)的测定》团体标准征求意见稿.pdf附件12《食品接触材料及制品 高锰酸钾消耗量的测定 自动滴定仪法》团体标准编制说明.pdf附件10《食品接触材料 着色剂中盐酸可溶物(六价铬)的测定》团体标准编制说明.pdf附件11《食品接触材料及制品 高锰酸钾消耗量的测定 自动滴定仪法》团体标准征求意见稿.pdf附件14《食品接触材料及制品 1,4-二氯苯迁移量的测定》团体标准征编制说明.pdf附件13《食品接触材料及制品 1,4-二氯苯迁移量的测定》团体标准征求意见稿.pdf关于征求《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准意见的通知1.pdf
  • 北京水利学会发布团体标准《水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法》(征求意见稿)
    各有关单位及专家: 根据《北京水利学会团体标准管理办法》(京水学〔2022〕1号)有关规定,由我会组织相关单位编制的团体标准《水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法》已完成征求意见稿(见附件1)。现向有关单位及专家(名单见附件2)征求意见,请认真研究并填写意见表(见附件3),并于2023年6月30日前反馈我会。 《水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法》团体标准征求意见材料和意见表可登陆北京水利学会官网(http://www.bjslxh.org.cn),于公告栏中下载。 联 系 人:徐斌010-68183703、魏工 010-88613202 电子邮箱:18600597703@163.com、shuilxh@126.com 单 位:北京水利学会 通讯地址:北京市海淀区玉渊潭南路普慧北里北京水务综合楼305室 邮政编码:100036 附件:1. 《水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法》征求意见材料 2. 《水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法》(征求意见稿)征求意见单位及专家名单 3. 《水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法》(征求意见稿)专家(单位)意见表   北京水利学会2023年6月12日 附件1-1:水质 碱度、重碳酸盐和碳酸盐的测定 自动电位滴定法(征求意见稿)V1.0.pdf附件1-2:编制说明V1.0.pdf附件3:专家(单位)意见表-0612.pdf附件2:征求意见单位及专家名单-0613-徐(4).pdf
  • 雀巢否认其婴幼儿食品含砷 在华标准“宽”几百倍遭疑
    新闻背景  瑞典查出雀巢米粉含砷  婴儿米糊就是家长常给宝宝吃的婴儿辅食米粉,主要是以大米、小麦、黑米等为原料。记者前天从瑞典国家食品局了解到,一些畅销的婴儿食品中含有有毒物质砷。  瑞典国家食品局称,瑞典卡罗林斯卡研究院化验雀巢、喜宝在内的知名婴儿食品时发现,里面可能含大量有毒元素如砷、镉、铅、铀,像喜宝的有机桃和香蕉早餐麦片含1.7微克砷、0.13微克镉和0.33微克铅(单位均为每公斤)。这些主要来源于以稻米为基础的原材料食品,这些稻米含高浓度的砷。  研究称,婴儿每日进食2次米糊等食品,砷的吸入量会较单独喂母乳高50倍,镉高150倍,铅则高8倍。  雀巢称中国产品安全  前晚,雀巢中国对婴幼儿食品含砷的说法回应称:“我们确认报道中所涉及的雀巢产品是完全安全的,并符合所有北欧和欧洲的相关标准。”  雀巢中国表示,研究中提及的雀巢产品未在中国生产和销售。  雀巢中国还称,雀巢在中国生产和销售的婴幼儿食品完全符合中国法规及标准的要求,消费者可放心食用。  记者超市探访  很多家长都买雀巢米粉喂宝宝  有人想退货,但因为没有权威认证目前还不能退  雀巢没有重金属含量标识  记者昨天在超市采访发现,目前南京雀巢产品销售正常,一些产品也正在做着促销活动。记者在南京几大超市看到,婴幼儿米粉主要是亨氏、雀巢等品牌。记者接连拿起几个品牌的米粉,在外包装盒看到标出来的主要是各种营养成分,根本没有砷、铅等重金属的含量。  雀巢大牌又便宜,销量不错  一位正在购买亨氏米粉的妈妈告诉记者,一般来说宝宝长到4到6个月都需要添加辅食,家长选择的大多是米粉,或者水果泥、蔬菜泥等。“以前都是自己把蔬菜水果熬成泥,现在一方面是"懒",另一方面也不会熬,给孩子吃得最多的还是米粉。”  据悉,目前南京超市里销量比较好、比较受家长欢迎的米粉要属亨氏雀巢,此外像国产的贝因美等的销量也还可以。  至于为什么选择米粉,一位消费者说得很明白:“都标明了含钙铁锌强化配方,总比自己做的好吧?而且一盒米粉也不贵,比奶粉便宜多了,小包装的200多克一盒才一二十元,便宜。我们都是买回家给宝宝掺奶粉吃。”  南京有消费者想退货  昨天,南京市工商部门已经接到不少消费者的咨询电话。  一位女士在电话中表示,她本月初在南京的一家超市买了6盒雀巢二段米粉,还没来得及吃,她想退货,不过超市并不接受退货要求。对此,工商部门人士表示尚没有接到权威部门的确认通知,因此雀巢还是可以正常销售的,也暂时不能要求超市退货。不过消费者可以在检验证书出来之前保留好票据。陈郁 阿杜  家长网上质疑  雀巢在我国和国外难道有两套“标准”?  昨天晚上,网上有细心的家长惊讶地发现,关于米粉含砷在多少微克范围内算正常,我国标准和瑞典公布的“含毒”标准相差几百倍!记者就此采访了一位不愿意透露姓名的专家,对此消息得到证实。  对于雀巢中国称婴幼儿食品完全符合中国法规及标准,甚至有家长怀疑:雀巢在我国和国外是否实行两套“标准”?  瑞典:1.7微克就算超标  4月11日,瑞典在化验雀巢、喜宝在内的知名婴儿食品时发现,里面可能含大量有毒元素如砷、镉、铅、铀,像喜宝的有机桃和香蕉早餐麦片含1.7微克砷、0.13微克镉和0.33微克铅(单位均为每公斤),而婴儿每天只要吃两次这样的米粉,砷的吸入量较母乳就多50倍,因此被视为“含致癌重金属”。  我国:两三百微克算正常  记者查询了国家卫生部官方网站。发现卫生部在2010年3月发布了《生乳等66项食品安全国家标准》,其中《婴幼儿谷类辅助食物》一项中规定在添加藻类的婴幼儿谷类辅助食物中无机砷不超过0.3毫克/公斤,其他婴儿辅食中无机砷的限量为0.2毫克/公斤。  根据1毫克=1000微克计算,在我国婴幼儿食品中每公斤含有200—300微克的无机砷属于安全范围,而瑞典研究机构公布的相关产品含砷量为1.7微克这个标准已经被视为“含致癌重金属”。  而中国工程院院士、中国疾病预防控制中心营养与食品安全所研究员陈君石在接受新京报采访时表示,我国正在修改《食品中污染物限量》,但不涉及大米、婴幼儿食品含砷的限量调整,“没有什么理由要调整”。  事实上,早在今年1月初,卫生部监督局即发布了关于做好2011年食品安全与卫生监督重点工作的通知。通知要求,要进一步健全食品安全标准管理体系,加强食品安全国家标准能力建设。如今,雀巢米粉事件再一次提醒我们:我国食品安全标准亟待与国际接轨。  海带虾蟹中含砷更高  专家表示,在含砷的食品上,其实最吸引研究人员注意的不是米面等食品,而是海产品。我们日常食用的一些海产品,如海产鱼类、牡蛎、扇贝、虾蟹和紫菜、海带等,也有含量较高的砷。  那么,吃海带也能毒害我们自身?对记者这个问题,专家表示,事实上人类食用这些海产品已有数千年,并未发现对身体有多大的影响。奥秘在于海产品尽管含砷量高,但所含的大都是毒性较小的有机砷化合物,其影响几乎可以忽略不计。  这两条新闻也让人震惊 1  超市接到工商“提醒函”  专家:黄得鲜艳吃着细腻的可能有嫌疑  上海“染色馒头”被曝光后,南京市工商部门昨天表示,他们已经向市内各超市、卖场发出通知,严禁添加违规食品添加剂,并建立索证索票制度,各种原料来源必须清楚规范。  记者昨天在南京市城北的一家超市内看到,熟食柜台上正在蒸着热气腾腾的馒头,这里的生意很不错。不过记者注意到,这些现做的馒头没有任何包装,自然也看不到添加成分。记者对此询问工作人员,对方表示,他们的馒头都是现做的,质量肯定没有问题。对于卖得好的玉米馒头,工作人员从柜台内拿出了一大袋玉米粉说,他们可都是货真价实添加的。不过他也坦言,他们也会在和面时加入些南瓜,主要为提色,同时也改善了口感。  对于染色馒头的事件,南京市工商局相关人士昨天向记者表示,他们向所管辖的超市卖场下发了提醒函,要求卖场企业一定要诚信经营,严禁添加违规食品添加剂。  对于染色馒头的鉴别,有关专家提醒,首先是看,是否能在黄色的面粉里看见颗粒。如果整个馒头黄得很干净、很鲜艳,那多半是添加了色素的,而这种色素多以柠檬黄为主。其次是尝。由于玉米是粗粮,玉米粉制作的食品吃在嘴里,有些糙。如果吃起来非常细腻,则说明玉米粉加得不多。  这两条新闻也让人震惊 2  芒果大多也是催熟的  专家:剥了皮再吃没多大影响  那么,南京市面上的芒果是不是也是催熟的呢?昨天,一位业内人士向记者透露,目前南京市面上的芒果也多半是催熟的,主要原因是芒果多产自热带,如果是熟了后采摘再运输过来,容易烂掉,为保证食用,都是提前采摘,到当地以后再用各种方法催熟。  南京农副产品物流中心的芒果批发商钱叶和告诉记者,早些年是使用石灰催熟,后来因为生石灰接触芒果不卫生,加工时灰尘也多,因此这些年大多改用袋装乙烯利药剂放入盛了芒果的纸箱里,然后用取暖器等进行加热,芒果于是会变色成熟。据了解,这种催熟剂价格一般在10多元一袋,里面有20小袋,可以催熟20箱芒果。不过也不排除一些小商贩使用石灰催熟。  那到底这些被催熟的芒果食用起来对人体有没有害处呢?南京农业大学食品工程学院的郁志芳教授解释说:“一般来说,只要不过量,催熟芒果是没问题的。”因为对果肉没有不良影响,在吃的时候把外皮去除就可以了。至于一些市民吃到芒果感觉苦涩或者过敏,一个原因可能是芒果本身没有成熟,另一个原因可能是果品上残留的碳酸钙没有洗净。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制