当前位置: 仪器信息网 > 行业主题 > >

苯丙氨酸甜菜碱对照品

仪器信息网苯丙氨酸甜菜碱对照品专题为您提供2024年最新苯丙氨酸甜菜碱对照品价格报价、厂家品牌的相关信息, 包括苯丙氨酸甜菜碱对照品参数、型号等,不管是国产,还是进口品牌的苯丙氨酸甜菜碱对照品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合苯丙氨酸甜菜碱对照品相关的耗材配件、试剂标物,还有苯丙氨酸甜菜碱对照品相关的最新资讯、资料,以及苯丙氨酸甜菜碱对照品相关的解决方案。

苯丙氨酸甜菜碱对照品相关的资讯

  • 欧盟发布甜菜碱的安全性与效能意见
    欧洲食品安全局(EFSA)近期就甜菜碱作为饲料添加剂的安全性与效能发布了意见,认为按照每千克2000毫克的添加量,将甜菜碱添加至饲料中时,安全边际系数在5以下,不会对猪和消费者的健康构成威胁。   当甜菜碱作为饲料时,欧盟食品安全局提出4点建议:一是引入饲料与饮用水中补充甜菜碱的最大含量 二是避免甜菜碱同时补充于饲料和饮用水中 三是避免预混料中含有甜菜碱功能类似物氯化胆碱 四是在加工甜菜碱时应对操作工人进行必要的防护。   对此,检验检疫部门提醒相关出口企业:要提高风险防控意识,在销售的同时,不要忽略向使用企业尤其是欧盟的使用企业宣传欧盟食品安全局提出的新建议,在确保饲料安全的同时,发挥饲料添加剂的最大效用。
  • 阿斯巴甜“不甜了”,夏天还能愉快炫饮料吗?
    这个夏天,谁能抵抗冰冰凉凉的小甜水呢?一杯冰凉的奶茶、果茶、汽水下肚,酸甜清爽,一下子感觉活了过来。为了健康,很多人在夏天都选择了“无糖”标签的饮料,这类饮料不少使用了阿斯巴甜等甜味剂。在2023年,阿斯巴甜被WHO的癌症研究机构——国际癌症研究机构(IARC)列为“可能对人类致癌的物质”。农业组织食品添加剂联合专家委员会(JECFA)则重申了40mg/kg体重的可接受每日摄入量。虽然这是基于有限的研究数据,但也令许多人开始质疑,饮用无糖饮料或其他含有阿斯巴甜的食物是否会增加患癌的风险。什么是阿斯巴甜?(一)阿斯巴甜定义阿斯巴甜(Aspartame)学名为天门冬酰苯丙氨酸甲酯,又称甜味素、APM,是常见的人造甜味剂之一,甜度是普通蔗糖的约200倍,所以在食品中仅添加一点点就会很甜。很多无糖饮料、口香糖中都会添加阿斯巴甜。(二)阿斯巴甜的最大使用量根据我国现行《GB 2760-2014 食品添加剂使用标准》,不同食品中的阿斯巴甜最大使用量在0.3~10g/kg不等,在饮料、乳饮料中的最大使用量一般为0.6g/kg。针对阿斯巴甜的健康隐患去年5月,世卫组织发布一份关于非糖甜味剂的新指南,建议不要使用阿斯巴甜、安赛蜜、糖精等甜味剂来控制体重或降低非传染性疾病风险。世卫组织指出,对现有证据的系统性回顾表明,使用非糖甜味剂在降低成人或儿童体脂方面没有任何长期益处。长期使用非糖甜味剂可能存在潜在不良影响,如增加2型糖尿病、心血管疾病患病率和成人死亡率的风险。美正生物助力 阿斯巴甜检测食品安全这个弦,任何时刻都不能放松。美正生物助力阿斯巴甜检测,协助生产企业做好“质量风险”监控,从源头上把好质量关。另外,针对甜蜜素、安赛蜜、糖精钠等甜味剂,美正也有相应检测产品。
  • AKF-CH6卡尔费休水分仪在L-丙氨酸水分测定中的精确应用
    在生物化学与医药研究领域,L-丙氨酸作为构成人体蛋白质的重要氨基酸,其品质直接影响着其在营养补充、医药合成等应用中的效果。水分含量是评价L-丙氨酸纯度的关键指标之一,过高的水分不仅会影响其稳定性,还可能导致产品质量下降。因此,采用精确的水分测定技术对L-丙氨酸进行质量控制至关重要。本文介绍了一项应用AKF-CH6卡尔费休水分仪测定L-丙氨酸水分含量的实验,展示了该仪器在精细化学分析中的高效与精确性。 精密配置,确保测量准确实验采用的AKF-CH6卡尔费休水分仪,配备了全封闭安全滴定池组件、双铂针电极和隔膜电解电极,这一组合设计确保了在进行水分测定时的高精度与安全性。卡尔费休库仑法试剂的使用,进一步提升了检测的灵敏度,即使微量水分也能准确捕捉。 高效测定流程,优化操作体验实验过程中,通过选择固体样品测试方法,加热温度(150℃)和通气流量(25mL/min),确保样品在适宜条件下充分释放水分。自动电解档位与稳定的搅拌速度(5转/分钟)保证了滴定过程的平稳与高效。操作简便,仅需将称量好的样品放入进样瓶,放置于加热槽中,点击开始测量与穿刺按钮,系统即自动进行测定,大大节省了时间与人力。 数据准确,结果可靠在26.2℃的环境温度与51.1%的环境湿度条件下,测试时间仅为10分钟,显示了AKF-CH6卡尔费休水分仪的高效性。通过三次平行测试,得到了水质量分别为585.67ug、549.09ug和546.22ug,对应测试结果为335.2ppm、322.8ppm和328.4ppm。计算平均值,样品水分含量约为328.8ppm,显示了测定结果的稳定性和高重复性。序号样品量/g水质量/ug测试结果/ppm平均值/ppm10.5927585.67335.2 328.820.5021549.09322.830.4849546.22328.4AKF-CH6卡尔费休水分仪在L-丙氨酸水分含量测定中的应用,不仅展现了其在生物化学领域测定水分的高精度与快速响应能力,还凸显了仪器设计的实用性和操作的便捷性。通过该仪器的精确测定,能够有效控制L-丙氨酸的水分含量,确保其在后续应用中的稳定性和质量,对提升产品品质、促进医药及营养品行业发展具有重要意义。
  • 卫生部征集55种食品添加剂的技术必要性和安全性评价材料
    各有关单位:  根据工作安排,我部正在组织修订《食品添加剂使用标准》(GB2760-2011)。为做好标准修订工作,现征集《食品添加剂使用标准》(GB2760-2011)附录A中L-半胱氨酸盐酸盐等55种食品添加剂的技术必要性和安全性评价材料。对于上述食品添加剂品种中已无技术必要性或安全性存在问题的,我部将组织重新评估和审查,并按照《食品添加剂新品种管理办法》第十四条规定予以处理。请于2012年1月31日前按下列方式反馈意见:传真010-67711813或电子信箱gb2760@gmail.com。  附件:L-半胱氨酸盐酸盐等55种食品添加剂  二○一二年一月九日  附件:L-半胱氨酸盐酸盐等55种食品添加剂序号食品添加剂品种名称功能食品分类号食品名称最大使用量(g/kg)备注1. L-半胱氨酸盐酸盐面粉处理剂06.03.02.03发酵面制品0.06 06.08冷冻米面制品0.6以L-半胱氨酸盐酸盐计2. 2,4-二氯苯氧乙酸防腐剂04.01.01.02经表面处理的鲜水果0.01残留量≤2.0mg/kg04.02.01.02经表面处理的新鲜蔬菜0.01残留量≤2.0mg/kg3. 2-苯基苯酚钠盐防腐剂04.01.01.02经表面处理的鲜水果(仅限柑橘类)0.95残留量≤12mg/kg4. 4-苯基苯酚防腐剂04.01.01.02经表面处理的鲜水果(仅限柑橘类)1.0残留量≤12mg/kg5. 4-己基间苯二酚抗氧化剂09.01鲜水产(仅限虾类)按生产需要适量使用残留量≤1mg/kg6. 半乳甘露聚糖其他表A.2 7. 冰结构蛋白其他03.0冷冻饮品(03.04食用冰除外)按生产需要适量使用 8. 不饱和脂肪酸单甘酯乳化剂02.02水油状脂肪乳化制品10.0 9. 茶黄色素着色剂04.01.02.09装饰性果蔬按生产需要适量使用 05.02糖果按生产需要适量使用 07.02.04糕点上彩装按生产需要适量使用 14.02.03果蔬汁(肉)饮料(包括含发酵型产品等)按生产需要适量使用固体饮料按稀释倍数增加使用量14.04.02.02风味饮料(包括果味饮料、乳味、茶味、咖啡味及其他味饮料等)(仅限果味饮料)按生产需要适量使用固体饮料按稀释倍数增加使用量14.05.01茶饮料类按生产需要适量使用固体饮料按稀释倍数增加使用量15.02配制酒按生产需要适量使用 10. 茶绿色素着色剂04.01.02.09装饰性果蔬按生产需要适量使用 05.02糖果按生产需要适量使用 07.02.04糕点上彩装按生产需要适量使用 14.02.03果蔬汁(肉)饮料(包括含发酵型产品等)按生产需要适量使用固体饮料按稀释倍数增加使用量14.04.02.02风味饮料(包括果味饮料、乳味、茶味、咖啡味及其他味饮料等)(仅限果味饮料)按生产需要适量使用固体饮料按稀释倍数增加使用量14.05.01茶饮料类按生产需要适量使用固体饮料按稀释倍数增加使用量15.02配制酒按生产需要适量使用 11. 刺梧桐胶稳定剂01.01.03调制乳按生产需要适量使用 02.02水油状脂肪乳化制品按生产需要适量使用 12. 单辛酸甘油酯防腐剂06.03.02.01生湿面制品(如面条、饺子皮、馄饨皮、烧麦皮)1.0 07.02糕点1.0 07.04焙烤食品馅料及表面用挂浆(仅限豆馅)1.0 08.03.05肉灌肠类0.5 13. 多穗柯棕着色剂03.0冷冻饮品(03.04食用冰除外)0.4 05.02糖果0.4 14.04.01.01可乐型碳酸饮料1.0 15.02配制酒0.4 14. 甘草甜味剂04.01.02.08蜜饯凉果按生产需要适量使用 05.02糖果按生产需要适量使用 07.03饼干按生产需要适量使用 08.03.08肉罐头类按生产需要适量使用 12.0调味品按生产需要适量使用 14.0饮料类(14.01包装饮用水类除外)按生产需要适量使用 15. 甘草酸三钾甜味剂04.01.02.08蜜饯凉果按生产需要适量使用 05.02糖果按生产需要适量使用 07.03饼干按生产需要适量使用 08.03.08肉罐头类按生产需要适量使用 12.0调味品按生产需要适量使用 14.0饮料类(14.01包装饮用水类除外)按生产需要适量使用 16. 柑桔黄着色剂06.03.02.02生干面制品按生产需要适量使用 17. 谷氨酰胺转氨酶 稳定剂和凝固剂04.04豆制品0.25 18. 海萝胶增稠剂05.02.01胶基糖果10.0 19. 黑加仑红着色剂07.02.04糕点上彩装按生产需要适量使用 14.04.01碳酸饮料按生产需要适量使用 15.03.03果酒按生产需要适量使用 20. 红花黄着色剂03.0冷冻饮品(03.04食用冰除外)0.5 04.01.02.04水果罐头0.2 04.01.02.08蜜饯凉果0.2 04.01.02.09装饰性果蔬0.2 04.02.02.03腌渍的蔬菜0.5 04.02.02.04蔬菜罐头0.2 04.05.02.01熟制坚果与籽类(仅限油炸坚果与籽类)0.5 05.02糖果0.2 06.04.02.01八宝粥罐头0.2 06.07方便米面制品0.5 06.10粮食制品馅料0.5 07.02.04糕点上彩装0.2 08.02.02腌腊肉制品类(如:咸肉、腊肉、板鸭、中式火腿、腊肠)0.5 12.0调味品(12.01盐及代盐制品除外)0.5 14.02.03果蔬汁(肉)饮料(包括发酵型产品等)0.2固体饮料按稀释倍数增加使用量14.04.01碳酸饮料0.2 14.04.02.02风味饮料(包括果味饮料、乳味、茶味、咖啡味及其他味饮料等)(仅限果味饮料)0.2固体饮料按稀释倍数增加使用量15.02配制酒0.2 16.01果冻0.2如用于果冻粉,按冲调倍数增加使用量16.06膨化食品0.5 21. 葫芦巴胶增稠剂03.0冷冻饮品(03.04食用冰除外)0.1 05.0可可制品、巧克力和巧克力制品(包括代可可脂巧克力及制品)以及糖果0.2 06.03.01小麦粉0.3 07.0焙烤食品0.15 22. 黄蜀葵胶增稠剂03.0冷冻饮品(03.04食用冰除外)5.0 04.01.02.05果酱10.0 07.01面包10.0 07.02糕点10.0 07.03饼干10.0 23. 己二酸酸度调节剂05.02.01胶基糖果4.0 14.06固体饮料类0.01 16.01果冻0.1如用于果冻粉,按冲调倍数增加使用量24. 姜黄素着色剂02.02.01.02人造黄油及其类似制品(如黄油和人造黄油混合品)按生产需要适量使用 03.0冷冻饮品(03.04食用冰除外)0.15 04.05.02.01熟制坚果与籽类(仅限油炸坚果与籽类)按生产需要适量使用 05.0可可制品、巧克力和巧克力制品(包括代可可脂巧克力及制品)以及糖果0.01 05.02.01胶基糖果0.7 05.04装饰糖果(如工艺造型,或用于蛋糕装饰)、顶饰(非水果材料)和甜汁0.5 06.03.02.04面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉0.3 06.07方便米面制品0.5 06.10粮食制品馅料按生产需要适量使用 11.05调味糖浆0.5 12.10复合调味料0.1 14.04.01碳酸饮料0.01 16.01果冻0.01如用于果冻粉,按冲调倍数增加使用量16.06膨化食品按生产需要适量使用 25. 金樱子棕着色剂07.02糕点0.9 07.04焙烤食品馅料及表面用挂浆1.0 14.04.01碳酸饮料1.0 15.02配制酒0.2 26. 酒石酸酸度调节剂表A.2 27. 聚二甲基硅氧烷被膜剂04.01.01.02经表面处理的鲜水果0.0009 04.02.01.02经表面处理的新鲜蔬菜0.0009 28. 聚乙二醇被膜剂05.03糖果和巧克力制品包衣按生产需要适量使用 29. 聚乙烯醇被膜剂05.03糖果和巧克力制品包衣18.0 30. 联苯醚(二苯醚)防腐剂04.01.01.02经表面处理的鲜水果(仅限柑橘类)3.0残留量≤12mg/kg31. 罗汉果甜苷甜味剂表A.2 32. 落葵红着色剂05.02糖果0.1 07.02.04糕点上彩装0.2 14.04.01碳酸饮料0.13 16.01果冻0.25如用于果冻粉,按冲调倍数增加使用量33. 密蒙黄着色剂05.02糖果按生产需要适量使用 07.01面包按生产需要适量使用 07.02糕点按生产需要适量使用 14.02.03果蔬汁(肉)饮料(包括发酵型产品等)按生产需要适量使用固体饮料按稀释倍数增加使用量14.04.02.02风味饮料(包括果味饮料、乳味、茶味、咖啡味及其他味饮料等)(仅限果味饮料)按生产需要适量使用固体饮料按稀释倍数增加使用量15.02配制酒按生产需要适量使用 34. 偏酒石酸酸度调节剂04.01.02.04水果罐头按生产需要适量使用 35. 桑椹红着色剂04.01.02.08.06果糕类5.0 05.02糖果2.0 14.02.03果蔬汁(肉)饮料(包括发酵型产品等)1.5固体饮料按稀释倍数增加使用量14.04.02.02风味饮料(包括果味饮料、乳味、茶味、咖啡味及其他味饮料等)(仅限果味饮料)1.5固体饮料按稀释倍数增加使用量15.03.03果酒1.5 16.01果冻5.0如用于果冻粉,按冲调倍数增加使用量36. 沙棘黄着色剂02.01.01.02氢化植物油1.0 07.02.04糕点上彩装1.5 37. 酸枣色着色剂04.02.02.03腌渍的蔬菜1.0 05.02糖果0.2 07.02糕点0.2 12.04酱油1.0 14.02.03果蔬汁(肉)饮料(包括发酵型产品等)1.0固体饮料按稀释倍数增加使用量14.04.02.02风味饮料(包括果味饮料、乳味、茶味、咖啡味及其他味饮料等)(仅限果味饮料)1.0固体饮料按稀释倍数增加使用量38. 橡子壳棕着色剂14.04.01.01可乐型碳酸饮料1.0 15.02配制酒0.3 39. 辛基苯氧聚乙烯氧基被膜剂04.01.01.02经表面处理的鲜水果0.075 04.02.01.02经表面处理的新鲜蔬菜0.075 40. 薪草提取物稳定剂和凝固剂04.04.01.01豆腐类按生产需要适量使用 41. 叶绿素铜钾盐着色剂03.0冷冻饮品(03.04食用冰除外)0.5 04.02.02.04蔬菜罐头0.5 04.04.01.06熟制豆类0.5 04.05.02加工坚果与籽类0.5 05.02糖果0.5 07.0焙烤食品0.5 14.0饮料类(14.01包装饮用水类除外)0.5固体饮料按稀释倍数增加使用量,果蔬汁(肉)饮料除外14.02.03果蔬汁(肉)饮料(包括发酵型产品等)按生产需要适量使用 15.02配制酒0.5 16.01果冻0.5如用于果冻粉,以冲调倍数增加42. 乙二胺四乙酸二钠钙抗氧化剂12.10复合调味料0.075 43. 乙萘酚防腐剂04.01.01.02经表面处理的鲜水果(仅限柑橘类)0.1残留量≤70mg/kg44. 玉米黄着色剂02.01.01.02氢化植物油5.0 05.02糖果5.0 45. 藻蓝(淡、海水)着色剂01.06干酪0.8 03.0冷冻饮品(03.04食用冰除外)0.8 05.02糖果0.8 12.09.01香辛料及粉0.8 14.02.03果蔬汁(肉)饮料(包括发酵型产品等)0.8固体饮料按稀释倍数增加使用量14.04.02.02风味饮料(包括果味饮料、乳味、茶味、咖啡味及其他味饮料等)(仅限果味饮料)0.8固体饮料按稀释倍数增加使用量16.01果冻0.8如用于果冻粉,按冲调倍数增加使用量46. 皂荚糖胶增稠剂03.01冰淇淋、雪糕类4.0 06.03.01.02专用小麦粉(如自发粉、饺子粉)4.0 12.0调味品4.0 14.0饮料类(14.01包装饮用水类除外)4.0固体饮料按冲调倍数增加使用量47. 植酸钠抗氧化剂02.01基本不含水的脂肪和油0.2 04.01.02加工水果0.2 04.02.02加工蔬菜0.2 05.04装饰糖果(如工艺造型,或用于蛋糕装饰 )、顶饰(非水果材料)和甜汁0.2 08.02.02腌腊肉制品类(如咸肉、腊肉、板鸭、中式火腿、腊肠)0.2 08.03.01酱卤肉制品类0.2 08.03.02熏、烧、烤肉类0.2 08.03.03油炸肉类0.2 08.03.04西式火腿(熏烤、烟熏、蒸煮火腿)类0.2 08.03.05肉灌肠类0.2 08.03.06发酵肉制品类0.2 09.01鲜水产(仅限虾类)按生产需要适量使用残留量≤20mg/kg11.05调味糖浆0.2 14.02.03果蔬汁(肉)饮料(包括发酵型产品等)0.2 48. 仲丁胺防腐剂04.01.01.02经表面处理的鲜水果按生产需要适量使用残留量:柑橘(果肉)≤0.005mg/kg,荔枝(果肉)≤0.009mg/kg,苹果(果肉)≤0.001mg/kg04.02.01新鲜蔬菜(仅限蒜苔和青椒)按生产需要适量使用残留量≤3mg/kg49. 花生衣红着色剂05.02糖果0.4 07.03饼干0.4 08.03.05肉灌肠类0.4 14.04.01碳酸饮料0.1 50. 甲壳素(几丁质)增稠剂、稳定剂02.01.01.02氢化植物油2.0 02.05其他油脂或油脂制品(仅限植脂末)2.0 03.0冷冻饮品03.04食用冰(除外)2.0 04.01.02.05果酱5.0 04.05.02.04坚果与籽类的泥(酱),包括花生酱等2.0 12.03醋1.0 12.10.02.01蛋黄酱、沙拉酱2.0 14.03.01.03乳酸菌饮料2.5 15.03.05啤酒和麦芽饮料0.4 51. 甲基纤维素增稠剂表A.2 52. 蓝锭果红着色剂03.0冷冻饮品(03.04食用冰除外)1.0 05.02糖果2.0 07.02糕点(07.02.04糕点上彩装除外)2.0 07.02.04糕点上彩装3.0 14.02.03果蔬汁(肉)饮料(包括发酵型产品等)1.0固体饮料按稀释倍数增加使用量14.04.02.02风味饮料(包括果味饮料、乳味、茶味、咖啡味及其他味饮料等)(仅限果味饮料)1.0固体饮料按稀释倍数增加使用量53. 天门冬酰苯丙氨酸甲酯乙酰磺胺酸甜味剂01.02.02风味发酵乳0.79 03.0冷冻饮品(03.04食用冰除外)0.68 04.01.02.04水果罐头0.35 04.01.02.05果酱0.68 04.01.02.08.01蜜饯类0.35 04.02.02.03腌渍的蔬菜0.20 05.02 糖果4.5 05.02. 01胶基糖果(仅限无糖胶基糖果)5.00 06.04.02.01八宝粥罐头0.35 11.04餐桌甜味料0.09 12.0调味品1.13 12.04酱油2.00 14.0饮料类(包装饮用水除外)0.68 54. 酸性磷酸铝钠膨松剂06.03.02.04面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉 按生产需要适量使用干品中铝的残留量≤100mg/kg06.03.02.05油炸面制品按生产需要适量使用干品中铝的残留量≤100mg/kg07.0焙烤食品按生产需要适量使用干品中铝的残留量≤100mg/kg55. 液体二氧化碳(煤气化法)防腐剂14.04.01碳酸饮料类按生产需要适量使用 15.03.06其他发酵酒类(充气型)按生产需要适量使用 , , DIV0.075 43. 乙萘酚防腐剂04.01.01.02经表面处理的鲜水果(仅限柑橘类)0.1残留量≤70mg/kg44. 玉米黄着色剂02.01.01.02氢化植物油5.0 05.02糖果5.0 45. 藻蓝(淡、海水)着色剂01.06干酪0.8 03.0冷冻饮品(03.04食用冰除外)0.8 05.02糖果0.8 12.09.01香辛料及粉0.8 14.02.03果蔬汁(肉)饮料(包括发酵型产品等)0.8固体饮料按稀释倍数增加使用量14.04.02.02风味饮料(包括果味饮料、乳味、茶味、咖啡味及其他味饮料等)(仅限果味饮料)0.8固体饮料按稀释倍数增加使用量16.01果冻0.8如用于果冻粉,按冲调倍数增加使用量46. 皂荚糖胶增稠剂03.01冰淇淋、雪糕类4.0 06.03.01.02专用小麦粉(如自发粉、饺子粉)4.0 12.0调味品4.0 14.0饮料类(14.01包装饮用水类除外)4.0固体饮料按冲调倍数增加使用量47. 植酸钠抗氧化剂02.01基本不含水的脂肪和油0.2 04.01.02加工水果0.2 04.02.02加工蔬菜0.2 05.04装饰糖果(如工艺造型,或用于蛋糕装饰 )、顶饰(非水果材料)和甜汁0.2 08.02.02腌腊肉制品类(如咸肉、腊肉、板鸭、中式火腿、腊肠)0.2 08.03.01酱卤肉制品类0.2 08.03.02熏、烧、烤肉类0.2 08.03.03油炸肉类0.2 08.03.04西式火腿(熏烤、烟熏、蒸煮火腿)类0.2 08.03.05肉灌肠类0.2 08.03.06发酵肉制品类0.2 09.01鲜水产(仅限虾类)按生产需要适量使用残留量≤20mg/kg11.05调味糖浆0.2 14.02.03果蔬汁(肉)饮料(包括发酵型产品等)0.2 48. 仲丁胺防腐剂04.01.01.02经表面处理的鲜水果按生产需要适量使用残留量:柑橘(果肉)≤0.005mg/kg,荔枝(果肉)≤0.009mg/kg,苹果(果肉)≤0.001mg/kg04.02.01新鲜蔬菜(仅限蒜苔和青椒)按生产需要适量使用残留量≤3mg/kg49. 花生衣红着色剂05.02糖果0.4 07.03饼干0.4 08.03.05肉灌肠类0.4 14.04.01碳酸饮料0.1 50. 甲壳素(几丁质)增稠剂、稳定剂02.01.01.02氢化植物油2.0 02.05其他油脂或油脂制品(仅限植脂末)2.0 03.0冷冻饮品03.04食用冰(除外)2.0 04.01.02.05果酱5.0 04.05.02.04坚果与籽类的泥(酱),包括花生酱等2.0 12.03醋1.0 12.10.02.01蛋黄酱、沙拉酱2.0 14.03.01.03乳酸菌饮料2.5 15.03.05啤酒和麦芽饮料0.4 51. 甲基纤维素增稠剂表A.2 52. 蓝锭果红着色剂03.0冷冻饮品(03.04食用冰除外)1.0 05.02糖果2.0 07.02糕点(07.02.04糕点上彩装除外)2.0 07.02.04糕点上彩装3.0 14.02.03果蔬汁(肉)饮料(包括发酵型产品等)1.0固体饮料按稀释倍数增加使用量14.04.02.02风味饮料(包括果味饮料、乳味、茶味、咖啡味及其他味饮料等)(仅限果味饮料)1.0固体饮料按稀释倍数增加使用量53. 天门冬酰苯丙氨酸甲酯乙酰磺胺酸甜味剂01.02.02风味发酵乳0.79 03.0冷冻饮品(03.04食用冰除外)0.68 04.01.02.04水果罐头0.35 04.01.02.05果酱0.68 04.01.02.08.01蜜饯类0.35 04.02.02.03腌渍的蔬菜0.20 05.02 糖果4.5 05.02. 01胶基糖果(仅限无糖胶基糖果)5.00 06.04.02.01八宝粥罐头0.35 11.04餐桌甜味料0.09 12.0调味品1.13 12.04酱油2.00 14.0饮料类(包装饮用水除外)0.68 54. 酸性磷酸铝钠膨松剂06.03.02.04面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉 按生产需要适量使用干品中铝的残留量≤100mg/kg06.03.02.05油炸面制品按生产需要适量使用干品中铝的残留量≤100mg/kg07.0焙烤食品按生产需要适量使用干品中铝的残留量≤100mg/kg55. 液体二氧化碳(煤气化法)防腐剂14.04.01碳酸饮料类按生产需要适量使用 15.03.06其他发酵酒类(充气型)按生产需要适量使用
  • 三孩政策来了!优生优育,先来了解下新生儿疾病筛查
    三孩时代,出生缺陷一级预防显得尤其重要。在符合三孩政策条件的妇女当中,有60%是超过35岁以上的高龄孕产妇。这些高龄产妇生育三孩将面临怀孕难、容易流产等风险,出生缺陷发生率也更高。专家表示,35岁以上的女性有生育计划的,一定要找有资质的医疗机构,做好孕前、产前的相关检查,最大程度减少出生缺陷儿的发生。什么是新生儿疾病筛查新生儿疾病筛查是指通过血液检查对某些危害严重的先天性代谢病及内分泌病进行群体过筛,使患儿得以早期诊断,早期治疗,避免因脑、肝、肾等损害导致生长、智力发育障碍甚至死亡。欧美、日本等发达国家新生儿疾病筛查覆盖率近100%。我国新生儿疾病筛查始于1981年,目前覆盖率已接近50%。新生儿疾病筛查的应用筛查对象:所有出生72小时(哺乳至少6~8次)的新生儿。筛查内容:我国目前筛查疾病仍以苯丙酮尿症(PKU)和先天性甲状腺功能减低症(CH)为主,某些地区则根据疾病的发生率选择如葡萄糖-6-磷酸脱氢酶(G6PD)缺陷病等筛查或开始试用串联质谱技术进行其他氨基酸、有机酸、脂肪酸等少见遗传代谢病的新生儿筛查。【疾病小常识】先天性甲状腺功能低下症:又称“呆小病”,患儿由于先天性甲状腺发育障碍,不能产生足够的甲状腺素,引起生长迟缓、智力发育落后。相关症状在新生儿期往往是隐匿的,不引起家长甚至医生的注意而延误了诊治,常导致脑发育产生不可逆的损害。苯丙酮尿症:是一种染色体遗传病。患儿不能正常代谢苯丙氨酸,使苯丙氨酸及其代谢产物在体内蓄积,引起脑萎缩和智力低下。患儿刚出生时外表没有特殊症状,常在出生后3个月左右出现头发由黑变黄、小便有难闻的臭味、患儿不能抬头。几乎所有未经治疗的患儿都有严重的智力障碍。筛查流程1、填写采血卡信息:记录采血卡片编号、产妇姓名及住院号、出生时间、采血时间、采血人、联系地址、邮编、电话、样本送出时间及特殊情况记录等。2、采血取样:采血部位宜选择足跟内、外侧缘。采血人应清洗双手,佩戴无滑石粉手套,用75%乙醇消毒采血部位,待乙醇自然挥发或用无菌棉球擦掉多余乙醇后开始采血。采血使用一次性采血针刺足跟,刺入深度8 mm)。禁止在1个圆圈处反复多次浸血。采血后用无菌棉球轻压采血部位止血,胶布固定。3、打孔取样:使用自动打孔仪或手动打孔器将干血斑样本打3 mm孔,置于96孔板内。每个96孔板中前2~4个孔用于空白对照。4、临床检测:将96孔板置于自动进样器中,启动程序,创建工作列表,选择合适的数据采集方法运行。由于采血人员技术、血片保存条件、递送方式差异等各种原因,各地新生儿疾病筛查中心都会有不合格血片出现。我们针对此问题设计了SAP 20自动干血斑(DBS)打孔仪,能够为用户提供精确、安全、高效、便捷的 打孔操作。该仪器集控制系统,图像采集设备,条码信息采集设备,打孔装置于一身,用户可实时的在控制软件上观测打孔样本的收集结果,大大提高了样本打孔流程的可靠性。只需将滤纸干血片放到相应打孔区域,即可完成打孔操作,可降低纯手工操作误差并大大降低操作人员的劳动强度,提高工作效率。
  • 欧洲食品安全局认为阿斯巴甜无害食品安全
    欧洲食品安全局28日发表研究报告认为,此前颇有争议的甜味剂阿斯巴甜对食品安全无害。   人造甜味剂阿斯巴甜由化学家在1965年研制溃疡药物时发现。由于它甜度高、热量低,被广泛使用在饮料、甜点、糖果、奶制品和药品等之中。此前有研究发现,阿斯巴甜可能与孕妇流产和某些癌症有关。   欧洲食品安全局表示,该机构从2006年开始对阿斯巴甜的安全性进行研究,结果显示,阿斯巴甜在进入消化系统后分解成人体内天然存在的苯丙氨酸和甲醇等物质,阿斯巴甜并不进入血液循环,不在人体内积存。有关阿斯巴甜存在食品安全问题的质疑没有足够的科学根据。   欧洲食品安全局同时指出,阿斯巴甜的摄入量应保持在每公斤体重每天40毫克以内。
  • 欧洲食品安全局认为阿斯巴甜对食品安全无害
    欧洲食品安全局2月28日发表研究报告认为,此前颇有争议的甜味剂阿斯巴甜对食品安全无害。   人造甜味剂阿斯巴甜由化学家在1965年研制溃疡药物时发现。由于它甜度高、热量低,被广泛使用在饮料、甜点、糖果、奶制品和药品等之中。此前有研究发现,阿斯巴甜可能与孕妇流产和某些癌症有关。   欧洲食品安全局表示,该机构从2006年开始对阿斯巴甜的安全性进行研究,结果显示,阿斯巴甜在进入消化系统后分解成人体内天然存在的苯丙氨酸和甲醇等物质,阿斯巴甜并不进入血液循环,不在人体内积存。有关阿斯巴甜存在食品安全问题的质疑没有足够的科学根据。   欧洲食品安全局同时指出,阿斯巴甜的摄入量应保持在每公斤体重每天40毫克以内。
  • 优化规模生产iPSC衍生的胰岛素合成的β细胞关键工艺参数
    一、摘要:1型糖尿病是一种会导致胰腺β细胞破坏的自身免疫性疾病,需要终身胰岛素治疗。胰岛移植提供了一个很有前途的解决方案,但也面临着诸如可用性有限和需要免疫抑制等挑战。诱导多能干细胞(iPSCs)为功能性β细胞提供了一个潜在的替代来源,并具有大规模生产的能力。然而,目前的分化方案,主要是在混合或2D环境中进行的,缺乏可延展性和悬浮培养的最佳条件。我们研究了一系列可能影响分化过程的生物反应器放大过程参数。该研究采用了一种优化的HD-DoE协议,该协议设计具有可扩展性,并在0.5L(PBS-0.5 Mini)垂直轮式生物反应器中实现。我们开发了一种三阶段的悬浮生长过程,从贴壁培养过渡到悬浮培养,TB2培养基在规模化过程中支持iPSC的生长。阶段性优化方法和延长分化时间用于增强iPSC衍生的胰岛样簇的标记物表达和成熟。连续的生物反应器运行被用于研究营养和生长的限制以及对分化的影响。将连续生物反应器与对照培养基变化生物反应器进行比较,显示出代谢变化和更类似b细胞的分化谱。从试验中收集的低温保存的聚集物被恢复,恢复后显示出活力和胰岛素分泌能力得到维持,这表明它们具有存储和未来移植治疗的潜力。本研究表明,阶段时间的增加或限制培养基补充以减少乳酸积累可以增加在大规模悬浮环境中培养的胰岛素合成细胞的分化能力。二、实验内容节选:营养消耗和代谢物的分析 为了检测细胞潜在的替代碳源和氮源,我们分析了对照组和连续生物反应器在整个培养过程中的氨基酸代谢(图S5A-B)。使用快速培养基氨基酸维生素分析仪Rebel(908 Devices)来分析氨基酸浓度。必需氨基酸,如组氨酸、异亮氨酸、亮氨酸、赖氨酸、蛋氨酸、苯丙氨酸、苏氨酸、色氨酸和缬氨酸在整个培养期间都保持不变。然而,一些氨基酸在两种培养基中都完全耗尽,包括5天后的L-天冬氨酸和16天后的L-谷氨酸。氨基酸代谢对正常的胰腺β细胞功能至关重要,丙氨酸和谷氨酰胺以其调节β细胞功能和胰岛素分泌的作用而闻名。在培养结束时,谷氨酰胺和丙氨酸的浓度高于新鲜培养基,表明它们不限制生长(图S5A-B)。然而,它们增加的来源仍然未知,不像之前的观察而将它们的增加归因于GlutaMAX&trade 添加剂。与起始培养基相比,丙氨酸和谷氨酰胺水平的升高在对照组生物反应器中没有观察到,后者在不同阶段之间和整个延长的内分泌诱导阶段都有频繁的培养基变化。两种生物反应器之间无其他显著性差异。如前所述,限制培养基补充的生物反应器比对照培养基变化的生物反应器具有更好的分化能力。氨基酸浓度调节和血清缺乏与促进来自人类干细胞的胰腺β细胞的发育有关。 此外,使用FLEX2(Nova Biomedical)对两种培养结果进行评估,分析两种反应器的整个培养期间Gln、Glu、NH4+、Na+、K+、Ca++、pH、PCO2和PO2(图S6A-B)。在连续生物反应器中,培养基的渗透压稳定增加,但保持在280-320mOsm/kg范围内。这种增加可以归因于由营养物质代谢和其他废物产生的溶质的积累。相比之下,对照培养基的渗透压变化的生物反应器随着培养基在细胞分化过程的不同阶段被补充而波动。谷氨酰胺和谷氨酸水平也进行了评估,两者都显示随着时间的推移而消耗。这与使用Rebel分析仪进行的测量结果一致。两种生物反应器在生物分化上具有可比性,除了在连续生物反应器中pH的持续下降和预期的耗氧速率方面的主要差异。在反应液中测量的气体可能会受到收集和测量之间时间的影响,但是,对所有样品的总体影响是相同的。总体数据显示,在培养10天或PP诱导分化阶段后,PO2水平开始稳步下降。尽管反应液与两个生物反应器顶空内的气体体积相同(500毫升),但与控制培养基补充变化生物反应器相比,进入反应液的氧气通量可能不足以补充0.5L连续容器中增加的耗氧量。文献来源:doi.org/10.21203
  • 代糖食品安全性存争议
    用人工合成的甜味剂来取代天然蔗糖增加食物的甜度和口感,是食品行业一条默认的规则。但是,一个如影相随的问题是——甜味剂安全吗?   由于可能会引发不安全的后果,因甜味剂而禁售的食物屡见不鲜。2009年6月10日,委内瑞拉就以零度可口可乐中添加了甜蜜素为由将其封杀,尽管可口可乐声明在中国的同类产品使用的甜味剂是阿斯巴甜,但仍然有许多人开始对零度可口可乐敬而远之。   究竟阿斯巴甜是什么,甜蜜素又是什么,二者有何不同?其实,两者都是甜味剂。甜味剂有效解决了蔗糖成本高、能量高等不足,而且其甜度与蔗糖相比只有过之而无不及。因为用在食品中也会让人产生“甜”的感觉,所以甜味剂的名字也叫“代糖”。   与天然的蔗糖相比,种类繁多的甜味剂被有针对性地用于食品中,比如,中国允许甜蜜素作为甜味剂使用在酱菜、调味酱汁、配置酒、糕点、饼干、面包、雪糕、冰淇淋、冰棍、饮料等食品中,而阿斯巴甜则被允许用于乳制品、糖果、巧克力、胶姆糖、餐桌甜味剂、保健食品、腌渍物和冷饮制品等,这是因为阿斯巴甜在高温或高pH值情形下会水解,因此不适于需用高温烘焙的食品。   说专业一点,甜蜜素是环己基氨基磺酸钠,是由氨基磺酸与环己胺及氢氧化钠这两种有机化学制剂反应而成的,甜度是蔗糖的30倍,价格却仅为后者的3倍。而阿斯巴甜化学名天门冬酰苯丙氨酸甲酯,是由苯丙氨酸先与甲醇反应后再和天冬氨酸酯化产生,是一种非碳水化合物类的人造甜味剂,甜度更甚甜蜜素,是蔗糖的200倍,价格为后者的70倍。蔗糖、甜蜜素和阿斯巴甜的单位甜度价格比(价格/甜度)为1:0.1:0.35,要达到同样的甜度,蔗糖的单位价格是最高的,最不经济实惠。   然而,1966年的一项研究报告显示,甜蜜素或许会增加患膀胱癌的几率,因此美国和英国先后于1969年和1970年发布了禁用甜蜜素作为食品添加剂的禁令。之后,也有研究认为甜蜜素会导致睾丸萎缩因而增加患膀胱癌的几率。甚至还有人发现甜蜜素似乎影响到精子的产量,因此推理其可能会损害男性生殖基因。对于这些研究结果,至今似乎还没有任何其他支持或反对的证据。   事实上,即使在那些还没有对甜蜜素发布禁令的国家,也已经制定出来了限量使用的标准。根据中国《食品添加剂使用卫生标准》(GB2760-2007)的规定,就引发争议的可乐而言,甜蜜素的最大使用量为0.65g/kg(与糕点和雪糕、冰淇凌等一致)。   根据该标准,另一种充满了争议的甜味素——阿斯巴甜则被注明“按生产需要而适量添加”,国家标准并没有对它做出确切的定量。这与国际粮农组织和世界卫生组织的规定不同。1984年,两家机构规定阿斯巴甜在饮料中的使用量不能超过0.1%。事实上,阿斯巴甜的使用很早就引起了广泛的争议。有些研究发现不能排除阿斯巴甜引发脑瘤、脑损伤以及淋巴癌等严重后果的可能性。   美国食品药物管理局曾经为此延期数年才允许在食品中添加阿斯巴甜。这些早期的实验结果与阿斯巴甜的生产企业有明显的利益冲突,当然也在审批认证过程中引起很大争议。参考了更多的实验结果后,美国食品药物管理局自1983年逐渐放宽阿斯巴甜的使用限制,直至1996年终于取消所有限制。中国农业大学教授何计国介绍,长期过量摄取阿斯巴甜会对身体产生毒性。这是因为阿斯巴甜会在消化道内被分解成苯丙氨酸、天门冬氨酸和甲醇,天门冬氨酸会造成脑部伤害、内分泌失调或肿瘤,而甲醇在体内可以代谢成甲醛和甲酸等有害物质,先天性苯丙氨酸羟化酶缺陷患者如果服用苯丙氨酸会导致智力发育障碍,这被称为苯丙酮尿症。而且,怀孕中的妇女最好也不要摄入阿斯巴甜。   资料表明,已经有近100个国家批准阿斯巴甜作为甜味剂,其中一些国家使用已经超过了20年。在动物实验中每千克体重每天摄入4000毫克阿斯巴甜也尚未观察到危害。欧洲的食品科学委员会(SCF)在2002年重审了关于阿斯巴甜的研究并再次确认食用阿斯巴甜是安全的,2007年发表在《Critical Reviews in Toxicology》上的综述也列明迄今为止没有证据表明阿斯巴甜有安全性的问题。   但阿斯巴甜还是处于争议中。   2008年,菲律宾有议员希望能在该国禁用阿斯巴甜。同年,美国新墨西哥州通过禁用阿斯巴甜法案。最新的消息是,英国食品标准署在其网站上发表了一份声明,称将开始对阿斯巴甜展开新的研究,聚焦为何有人报告食用后引发头痛、腹痛等不同的症状。从阿斯巴甜的例子可以看出,各国对某一种甜味剂的使用和限量是不尽相同的。   不管是用了甜蜜素还是阿斯巴甜,对于零度可乐的死忠粉丝来说,需要认清的是关于“无糖依然可乐”的另外一个真相。因为热量低,无糖可乐受到糖尿病患者和减肥人士的喜爱,但无糖只是不含蔗糖,其实里面还是有糖分的。如果将其视为绝对不含糖分而肆意摄入,那和摄入高糖食品其实没什么本质性的区别,所以要小心掉入甜蜜的陷阱里!   相关链接:   添加甜蜜素,各国标准不同   1969年之前,甜蜜素被公认为安全物质。1969年美国国家科学院研究委员会收到有关甜蜜素为致癌物的实验证据,美国食品药物管理局为此立即发布规定严格限制使用,并于1970年8月发出了全面禁止的命令。1982年9月,Abbott实验室和能量控制委员会在大量试验事实的基础上,以最新的研究事实证明甜蜜素的食用安全性,许多国际组织也相继发表大量评论明确表示甜蜜素为安全物质。虽然美国食品药物管理局至今还没有最终解决这个问题。但是,目前仍有许多国家(包括中国)继续承认甜蜜素的甜味剂地位,允许甜蜜素的使用。   中国:   根据中国《食品添加剂使用卫生标准》(GB2760-2007)的规定   酱菜、调味酱汁、配置酒、糕点、饼干、面包、雪糕、冰淇淋、冰棍、饮料等最大使用量为0.65g/kg   蜜饯最大使用量为1.0g/kg   陈皮、话梅、话李、杨梅干等最大使用量8.0g/kg。   日本、美国、英国:禁止使用   欧盟:   非酒精饮料,降能或不含糖水性加香饮料,降能或不含糖的牛乳和牛乳派生基质的制品或果汁基质的饮料,使用最大限量为0.25g/L 甜点及类似产品、降能或不含糖水性加香饮料、降能或不含糖的牛乳和牛乳派生基质的制品、降能或不含糖果蔬基质甜点、降能或不含糖蛋基质甜品、降能或不含糖的谷物基质甜点、降能或不含糖的油脂基质甜点,最大使用限量为0.25g/kg 糖制食品,降能或不含糖的可可、牛乳、水果干或油脂基质的三明治涂抹食品,降能或不含糖的罐装的水果,使用的最大限量为0.5g/kg 降能的果酱果冻和橘子,最大使用限量为1g/kg。
  • 阿斯巴甜,福兮祸兮?
    你可能听说过一类食品添加剂,叫“甜味剂”,比如最常见的糖精、阿斯巴甜。但你很可能不知道它们的来历,其实是一些不遵守实验室操作规程的粗枝大叶的理科男无意中发现或发明了它们:1879年一个俄国化学家在实验室倒腾完瓶瓶罐罐,没洗手就回家吃饭,结果发现吃啥都是甜的,“糖精”被发现 1965年一个叫施莱特的化学家在合成药物的时候无意中舔了一下手指,大名鼎鼎的甜味剂“阿斯巴甜”问世。   甜味剂的诞生对于食品工业来说是个天大的好消息,因为它们的甜度数百倍于蔗糖,能大大降低成本。对于消费者来说,其实这也是一个好消息,因为它们提供的热量远低于蔗糖,甚至可以忽略不计,所以既可以满足你对甜食的渴望,又可以避免因能量摄入过多导致的肥胖、糖尿病等慢性疾病。   但是相比那些什么都敢舔的“发明家”,普通人显得谨小慎微,因为大家对“化学合成”的物质总是充满了敬畏、怀疑甚至抵触。所以各国的监管者和研究者都在不断的检验它们的安全性,确保不会对消费者的健康造成损害。当然,科学存在不确定性,科学也在不断发展,随着研究证据的积累,科学界对安全性的诠释也会与时俱进,糖精、甜蜜素、阿斯巴甜等诸多“化学合成”物质都曾在安全和不安全之间多次翻转。   争论其实并不是坏事,自从1976年美国FDA批准阿斯巴甜,围绕它的各种流言、阴谋论、利益绑架疑云甚至漫长的法律诉讼从来没有间断过。这通折腾也许是值得的,后来美国FDA把阿斯巴甜描述为“研究最彻底的食品添加剂之一”,其安全性“毋庸置疑”。美国疾控中心也证实,“没有流行病学证据可以验证阿斯巴甜能引起重大伤害或严重风险”。美国FDA为它制定了每公斤体重50毫克的安全摄入量。   当然,作为阿斯巴甜的主要生产者和推动者,美国拥有很多与之相关的专利,所以始终有人怀疑这里面有利益绑架的嫌疑。但世界各国的权威机构几乎都认可了阿斯巴甜的安全性,世界卫生组织下属的食品添加剂联合专家委员会(JECFA)两次对其安全性进行评估。在动物身上做实验证明,每公斤体重4000毫克也未出现不良反应(NOAEL),考虑到各种不确定因素,设定100倍保险系数,最后确立每公斤体重40毫克为安全摄入水平(ADI)。有100多个国家依此批准它作为食品添加剂使用,包括历来以保守、苛刻着称的欧洲。   最近欧盟食品安全局(EFSA)又一次为阿斯巴甜出具了“安全证明”,之所以说“又”,因为他们在2011年的时候就已经给出结论“阿斯巴甜是安全的”。EFSA对现有证据重新进行了梳理和细致研究,最终再次认定,对于普通人群而言,每公斤体重40毫克的摄入水平是非常安全的,这相当于一个60公斤体重的成年人每天吃2.4克,吃一辈子也没事。   阿斯巴甜是蔗糖甜度的200倍,所以2.4克差不多可以提供1斤白糖的甜度。相对而言,每天2.4克阿斯巴甜或1斤白糖,你会选择哪一个呢?以某品牌的无糖饮料为例,355mL罐装饮料约含有阿斯巴甜180毫克,相当于每天要喝13罐,如果换成含糖饮料呢?对于这样的“吃货”,我真的觉得甜味剂是最后的救命稻草了。   对于网络上传说阿斯巴甜的各种“健康危害”,EFSA的评估结果都予以了否认。他们综合大量研究结果认为,阿斯巴甜不会损伤大脑和神经组织,也不会影响人的行为和认知功能,包括儿童。对于孕妇来说,在当前的安全摄入量下,阿斯巴甜不会影响胎儿的发育(有苯丙酮酸尿症的孕妇除外)。基于动物和人体的充分研究证据,EFSA也排除了阿斯巴甜的致癌可能,这与国际癌症研究中心的资料是吻合的,我没有在致癌物列表中看到它的身影。   对于阿斯巴甜安全性的担忧还来自于它的代谢物,它在体内会降解为苯丙氨酸、天冬氨酸和甲醇。甲醇不是有毒的吗?实际上,水果、蔬菜中也会天然含有少量甲醇,比如果汁生产中,果胶水解会生成甲醇,新鲜果汁甲醇含量可以达到每升一百多毫克,酿制的果酒中甲醇可以达到每升数百毫克甚至更多,而一升无糖饮料中的阿斯巴甜最多生成几十毫克甲醇。所以EFSA的总体结论是,阿斯巴甜的降解产物和我们每天正常吃进去的同类物质相比是“毛毛雨”。当然EFSA也指出,“苯丙酮酸尿症”患者应当避免摄入阿斯巴甜,因为苯丙氨酸的缘故。   我知道还会有人心存疑虑,明明有“科学证据”证明阿斯巴甜有害健康,为什么你故意视而不见?就和法国人做的“转基因玉米导致大鼠肿瘤”一样,个别研究的“惊人”结论往往出自不符合科学规范的实验设计、统计方法等,而搅动舆论的恰恰是它们。相对于个别研究,我更信任经过严格筛选的科学证据集合,比如上述的EFSA评估结果以及之前JECFA的评估。   阿斯巴甜的安全性经历了多年的争论,这次欧盟的评估结论或许能让争论暂时告一段落,但围绕“人造”、“化学合成”物质的安全性争论不会走远,人们对“安全”的渴望也会促使科学界不断的深入研究,去探索人类健康的奥秘。对于我个人来说,我是不担心它的安全性的,在超市选择碳酸饮料的时候还会特意选择使用甜味剂的品种。虽然我也知道平衡膳食、多运动才是王道,但还是义无反顾的选择用甜味剂去平衡我的懒。
  • 人工甜味剂“阿斯巴甜”会致癌吗?
    【谣言】最近有一则消息引发了中国消费者的担忧:2015年8月起,百事可乐旗下的健怡系列汽水将不再使用有致癌争议的代糖“阿斯巴甜”,改用由三氯蔗糖、乙酰磺胺酸钾混合而成的代糖。这一改变仅限于美国,不涉及中国市场。  【真相】人工甜味剂是否致癌是个老调重弹的问题。多个权威机构都曾为“阿斯巴甜”开出安全证书,包括FDA(美国食品药品监督管理局)、EFSA(欧盟食品安全局)、国际食品添加剂委员会等权威机构都认为,“阿斯巴甜”在推荐剂量内使用不会对健康造成危害,也没有发现对人体有危害或者致癌的案例。唯一需要强调的是,由于“阿斯巴甜”含有苯丙氨酸,有苯丙酮酸尿症的患者不能食用,还有一部分人有“阿斯巴甜”不耐症,会产生诸如呕吐、恶心等类似过敏症状。
  • 食品添加剂新规本月实施 一盒牛奶含11种添加剂
    从本月起,国家质检总局颁发的《食品添加剂生产监督管理规定》正式实施,根据新规,所有食品添加剂成分,必须要在包装上毫无保留地进行明示。昨天,南京市民许女士特意看了一下,孩子几乎每天都喝的一款牛奶新包装,不禁被吓了一跳,因为这款牛奶饮品中,竟添加了11种食品添加剂。   一看吓一跳:喝的不是奶,是食品添加剂 250ml饮品中含11种添加剂   “1、2、3、4……11!”当许女士数着手中一款市场上热销的“乳味饮品”的食品添加剂成分时,着实被吓了一跳,因为细细一数,这款只有250毫升容量的乳味饮品中,竟然含有11种食品添加剂。   而对于这些食品添加剂的用处,许女士一点都不知道。“这添加的都是些什么东西呀,对人体到底有没有害处?”许女士给记者念出了一堆词组,包括乳酸、果胶、柠檬酸钠、琳甲基纤维素钠、黄原胶、海藻酸丙二醇酯、瓜尔胶、阿斯巴甜、安赛蜜、柠檬酸、苯丙氨酸等,很是深奥。读完后,许女士有些揪心,因为她感觉孩子以前喝的不是牛奶,而是食品添加剂。   许女士告诉记者,以前买这款牛奶的时候,也注意到了包装中的配料表成分,当时这款产品只是写了“食品添加剂”几个字,但是具体成分由于产品没有写,因此她也就没太在意。在她的思维中,适当加点食品添加剂也是正常的,但让她感到无法理解的是,为啥一款乳味饮品,一下子要加上这么多玩意儿。面对长长的一串没听说过的名字,她深深地感到惊讶和不安。她说,以后再也不会买这种饮品给孩子喝了。   7行配料介绍添加剂占5行   本月起,《食品添加剂生产监督管理规定》正式实施。在“新规”的威力下,记者在南京数家超市的食品柜台采访时发现,以往犹抱琵琶半遮面的食品添加剂,如今几乎是在一夜之间清晰地出现在了消费者的面前。   也正因为此,记者在采访时惊讶地发现,一些产品中的食品添加剂数量之多,着实令人感到有些吃不消。在琳琅满目的牛奶柜台,虽然产品都放在一起,但调味牛奶、乳饮料、乳味饮品、乳酸菌饮料等称谓足以让人头昏,不过在这些产品的包装上,共性的地方在于,都离不开食品添加剂的身影,除了许女士看到这种含有11种之多食品添加剂的乳味饮品之外,另外一个品牌的高钙牛奶,也成了食品添加剂的展示区域,总共才占据7行的配料介绍中,食品添加剂就占据了5行的位置,成分多达9种。   生产商直言:添加剂就是为了“好看好吃好卖”   “添食品添加剂,为的就是让产品好看、好吃、好卖!”一家食品企业的负责人面对消费者疑虑的食品添加剂随处可见的现状直言,食品添加剂对于食品企业而言不可或缺。   在他看来,正是因为食品添加剂有着“神奇”的功效,因此食品企业才在食品中大量使用添加剂。他举例说,在牛奶中常见的黄原胶、海藻酸丙二醇酯的物质,其实起到的作用就是增稠,让消费者在喝奶制品的时候,感觉牛奶更浓稠,口感更好。而在蜜饯中常见的阿斯巴甜或是安赛蜜,则可以增加产品的甜度。   这位人士表示,在他看来,食品添加剂本身没有错,问题出在被无节制地滥用。一些食品添加剂在规定的用量范围内,能让我们吃到美味可口的食品。比如,现在的猪肉价格都上涨了,有些火腿肠为啥还很便宜?就是一些杂牌火腿肠生产厂家在火腿肠里放很少的肉,兑上点儿香精和大豆蛋白,再加上点儿色素,让你吃起来仍然感觉像肉。这些对人体的危害还不算大,更大的危害在于一些商家违法使用化工原料,吊白块、苏丹红、三聚氰胺、福尔马林都属于化工原料,根本不是食品添加剂。
  • 惹争议!阿斯巴甜致癌?世卫组织7月14日将回应
    据媒体报道,世界卫生组织下属的国际癌症研究机构7月将宣布阿斯巴甜为“可能致癌物”,这将使该机构与食品行业和监管机构形成对立。消息人士说,阿斯巴甜将于今年7月首次被世界卫生组织(WHO)的癌症研究机构——国际癌症研究机构(IARC)列为“可能对人类致癌的物质”。市面上销售的诸多打上“无糖”标签的食品饮料中,实际上都使用了阿斯巴甜等甜味剂。阿斯巴甜是什么?什么产品中含有阿斯巴甜?阿斯巴甜安全吗?阿斯巴甜是一种人工甜味剂,多用于无糖饮料、口香糖、酸奶等。它的化学名称为天门冬酰苯丙胺酸甲酯,由化学家在1965年研制溃疡药物时发现,甜度是普通蔗糖的约200倍。阿斯巴甜尽管有强烈甜味,但热量几乎为零,而且没有糖精那样的苦味,因此被食品工业视为代替蔗糖的甜味剂。阿斯巴甜于1974年被美国食品和药物管理局批准用作甜味剂以及多种食品的添加剂。在欧洲,阿斯巴甜1994年获准作为蔗糖的替代物添加到食品中。迄今,阿斯巴甜在食品中的使用已在英国、西班牙、法国、意大利、丹麦、德国、澳大利亚和新西兰等近100个国家获得许可。世卫组织和联合国粮农组织食品添加剂联合专家委员会(JECFA)建议的阿斯巴甜日容许摄入量为每公斤体重40毫克以内。但围绕阿斯巴甜对健康的影响,数十年来争议不断。在致癌性方面,美国“公众利益科学中心”2013年发表声明说,动物实验发现阿斯巴甜可能导致白血病、淋巴癌等癌症,它不应出现在食品供应体系中。然而,尽管一些动物实验称阿斯巴甜有诱发肿瘤的作用,但JECFA、美国食品和药物管理局等此前评估认为阿斯巴甜对动物无致癌作用。美国癌症学会此前指出,多项人体研究表明,阿斯巴甜与癌症风险增加之间没有关联。世卫组织正在调查,下月出结果目前,IARC依据患癌几率的高低将致癌因素分为五类:1类:对人类有确认的致癌性2A类:对人类很可能有致癌性2B类:有可能对人类致癌3类:尚不能确定其是否对人体致癌4类:对人体基本无致癌作用根据媒体披露的信息,IARC将把阿斯巴甜列为“2B类”,即有可能对人类致癌。就在不久前,联合国粮农组织/世界卫生组织食品添加剂联合专家委员会(JECFA)也在调查阿斯巴甜对人体健康的影响,该机构于6月底召开会议,并且也将于7月14日宣布其调查结果。早在今年5月,世界卫生组织发布了一份关于非糖甜味剂的新指南,建议大多数人应避免食用安赛蜜、阿斯巴甜、糖精、三氯蔗糖、甜菊糖等非糖甜味剂。世卫组织在指南中表示,有证据表明,使用非糖甜味剂对减少成人或儿童的体脂没有任何长期益处。此外,长期使用非糖甜味剂可能会产生潜在的不良影响,例如导致成人患2型糖尿病、心血管疾病和死亡率的风险增加。据了解,上述指南所指的非糖甜味剂主要包括安赛蜜、阿斯巴甜、安美、甜蜜素、纽甜、糖精、三氯蔗糖、甜菊糖和甜菊糖衍生物等等。倘若世卫组织该篇指南中的结论最终被全面证实,主打非糖甜味剂的无糖饮料行业或将面临逻辑被颠覆的风险。为规范阿斯巴甜行业发展,我国出台了食品添加剂国家标准GB2760-2014对其应用范围和剂量进行了规定。根据该标准规定,阿斯巴甜可在胶基糖果、蜜饯、甜点、酸奶、风味饮料、冷冻饮品、面包、预制水产品、水产品罐头等共计41种食品中使用。同时我国也出台了以下检测标准,进一步管理阿斯巴甜。1、GB 1886.47-2016 食品安全国家标准 食品添加剂 天门冬酰苯丙氨酸甲酯(又名阿斯巴甜)2、GB 22367-2008 食品添加剂 天门冬酰苯丙氨酸甲酯(阿斯巴甜)3、GB/T 22254-2008 食品中阿斯巴甜的测定4、NY/T 3473-2019 饲料中纽甜、阿力甜、阿斯巴甜、甜蜜素、安塞蜜、糖精钠的测定 液相色谱-串联质谱法5、GOST EN 12856-2015 食品. 采用高效液相色谱法测定安赛蜜, 阿斯巴甜和糖精
  • 2秒检测出“农药残留”—新型且无酶便携式传感平台研发成功
    近日,中国科学院合肥物质科学研究院固体物理研究所研究员蒋长龙团队开发了一种新型且无酶的便携式传感平台(以下简称传感平台),2秒内检测出环境和食品中的草甘膦残留,最终浓度结果直接显示在智能手机上。相关研究成果发表于《危害物质杂志》。课题组人员用试纸现场检测草甘膦 课题组供图 现场2秒“看到”结果 “人们只需将瓜果蔬菜表面润湿,用检测试纸在表面轻轻擦拭,约2秒后,用紫外灯照射,通过试纸颜色变化就可以大致判断草甘膦残留浓度的高低。”蒋长龙向《中国科学报》介绍。如果试纸是蓝色,说明草甘膦残留浓度很低;试纸是粉色时,说明浓度较大;当试纸呈现橙红色时,说明浓度很高。 “这种方法属于初筛,适合人们居家自测。”蒋长龙说,若想得到更精确结果,需要将试纸放入传感平台的试纸槽内。通过传感平台自带的紫外灯照射,再用手机拍摄试纸照片,利用手机的颜色识别软件自动分析转换,显示最终农残浓度结果超标还是未超标。 蒋长龙介绍,传感平台包括传感器、可用于读取数据的智能手机、提供荧光检测环境的手机附件。“传感器是主要‘功臣’,由团队设计制备的蓝色碳点和金纳米团簇构成,能快速‘识别检测草甘膦’。”其原理是当草甘膦加入传感器后,与碳点反应,导致碳点的蓝色荧光快速猝灭,而金纳米团簇的橙色荧光保持不变。从视觉上来看,试纸荧光颜色变化从蓝色到粉色最终变为橙红色。团队对一些实际样品,比如沾有草甘膦残留的瓜果蔬菜、水样进行测试,其检测结果与实验室的检测结果基本一致。 蒋长龙表示,其团队研发的传感器更加快速便捷,没有经过专业培训的人也可操作使用,并且实现实验室检测无法做到的现场或实时检测,适用于基层环境监督部门、农贸市场及超市、个体消费者。比率荧光传感器快速可视化定量检测草甘膦残留示意图 课题组供图 “农药残留”不等于“农药残留超标” 草甘膦是目前国际上使用量最大的除草剂,在有机磷农药中占有重要位置。“这也是团队选择草甘膦做农残检测的重要原因。” 蒋长龙说。 草甘膦通过茎叶吸收后传导到植物各部位,抑制植物体内的烯醇丙酮基莽草素磷酸合成酶,从而抑制莽草素向苯丙氨酸、酪氨酸及色氨酸的转化,使蛋白质合成受到干扰,从而导致植物死亡。 然而,较高的使用量及不合理的使用方法会造成农产品中草甘膦残留量超标。 随着生活水平的提高,人们的环保意识、安全意识与日俱增。蒋长龙说,“目前,人们通常采用实验室仪器或酶抑制法等方法检测农残,但这种检测多由专业人员完成,检测仪器昂贵,检测结果两至三天才能出来。” 因此,发展快速有效、现场检测草甘膦残留的方法,成为控制和处理有机磷农残污染与危害的关键环节。“需要指出的是,农药残留并不等同于农药残留超标。按照农残限量,中国拟定草甘膦残留最大限量为4.14 微摩尔。 ”蒋长龙说,如果农药残留不超过最大限量,即为安全,人们可以放心食用。 此外,值得注意的是,随着瓜果蔬菜等农产品在我国膳食中占比越来越大,其质量安全备受关注,残留限量标准也正向着“科学、严谨”的方向修改。基于智能手机的监测平台可视化定量检测草甘膦 课题组供图 构建多种目标分析物快速检测平台 “本文报道了一种用于草甘膦定量检测的快速可视化荧光传感平台。该方法的创新之处在于结合智能手机对荧光信号进行处理,方便、准确。此外,该传感体系使用两种荧光物质作为信号,而不是依赖于酶,在现场检测中具有一定应用潜力。” 一位审稿人如是说。 但蒋长龙坦言,此次研发的传感器仅针对草甘膦残留检测,“目前,团队正在探究与研发其他类农药的快检方法与器件,如菊酯类、氨基甲酸酯类等。“ 此外,传感器的检测信号依赖于宽光谱荧光色度的变化,而这种荧光色度可能会受到使用环境光的影响。蒋长龙说,“我们希望可以进一步升级检测平台的配件,或是研发其他检测方法并构建传感器,避免一切外界因素对检测结果的不良干扰。” 下一步,研究团队将着力探索多色发光纳米探针的制备,进一步构建对于多种目标分析物的快速检测平台,建立基于纳米光效应传感器件,用于环境中多种污染物检测的评价体系与技术标准,期望在人体健康预警可视化分析检测方面取得新进展。
  • 上海通微最新推出饲料添加剂检测解决方案
    近几年,人类食品安全质量问题层出不穷,成为国内外关注焦点。跟食品安全息息相关的饲料行业也成为重点管控对象。2012年,一系列的饲料、畜牧法规条例相继出台,标志着将对畜牧产品质量安全、饲料行业行为将更加规范。   2012年5月1日生效的国务院令第609号《饲料和饲料添加剂管理条例》明确规定: 饲料、饲料添加剂生产企业应当按照国务院农业行政主管部门的规定和有关标准,对采购的饲料原料、单一饲料、饲料添加剂、药物饲料添加剂、添加剂预 混合饲料和用于饲料添加剂生产的原料进行查验或者检验。   2012年10月22日,农业部1849号公告,公布了《饲料生产企业许可条件》和《混合型饲料添加剂生产企业许可条件》。两许可条件自2012年12月1日起施行。该许可条件规定必须没有饮料检测实验室,规定检测实验室中必须配备的仪器,其中包括原子吸收分光光度计、高效液相色谱仪等相关检测仪器。   上海通微分析技术有限公司依托自身强大的研发团队,利用EasySepTM-1020高性能自动化液相色谱系统为饲料行业开发出多套饲料添加剂检测专用高效解决方案。检测项目包括:   饲料中20种氨基酸的检测:牛磺酸(2-aminoethanesulfonic acid)、甘氨酸(Gly)、丝氨酸(Ser)、天冬氨酸(Asp)、谷氨酰胺(Gln)、苏氨酸(Thr)、丙氨酸(Ala)、半胱氨酸(Cys)、脯氨酸(Pro)、胱氨酸(Cys)、赖氨酸(Lys)、组氨酸(His)、缬氨酸(Val)、甲硫氨酸(Met)、精氨酸(Arg)、酪氨酸(Tyr)、异亮氨酸(Ile)、亮氨酸(Leu)、苯丙氨酸(Phe)、色氨酸(Trp)   饲料中维生素的检测:烟酸、维生素B5、维生素B6、维生素B1、叶酸、维生素B12、维生素B2、维生素K3、维生素A、乙酸酯、维生素D3、维生素E   饲料中其他添加剂的检测:苏丹红、三聚氰胺   上海通微分析技术有限公司独创未衍生氨基酸的直接测定分析法,比传统的衍生检测法更快速、简便、成本低、准确度高。   详情,请咨询上海通微分析技术有限公司http://www.instrument.com.cn/netshow/SH100522/office.asp   上海通微公司实力   留美博士阎超教授2002年创办,总部位于美国硅谷的美国通微技术股份有限公司。   中国分析仪器行业内唯一一家经国家批准的企业博士后科研工作站。   通微自主研发生产的产品获得国家和行业内无数奖项,也是取得国内外专利最多的科技型企机构   与国内多所著名研究所和高校联合,设有联合实验室,在行业解决方案方面提供强有力的技术支持   上海通微分析技术有限公司是国内一流的集色谱仪器研发、生产、销售为一体高新技术企业,下设有苏州环球色谱有限责任公司、无锡通微检测技术有限公司两个全资子公司。
  • 婴幼儿食品和乳品中乳清蛋白的测定
    乳清蛋白是采用先进工艺从牛奶中分离提取出来的珍贵蛋白质,以其具有高生物价、高消化率、高蛋白质功效比和高利用率等优点,被誉为“蛋白zhi王”,是公认的人体优质蛋白质补充剂之一。其含量的高低决定了婴幼儿奶粉的品质,相关国标通过酸水解以后的氨基酸来评价乳清蛋白的含量,月旭科技推出的检测方法检测更加快捷可靠。样品前处理称取0.1g试样(含蛋白质7.5mg-25mg的样品),于水解管中,在冰水浴中冷却 30min后加入2mL已经冷却的过甲酸溶液,盖好瓶塞后置于0℃±1℃冰箱中,冰浴16h。向各水解管中加入0.3mL氢溴酸,振摇后冰浴 30min,在60℃±2℃氮吹仪上浓缩至干。向水解管内加入6moL/L盐酸10mL,冲入氮气1min 后,拧紧螺丝盖,将水解管放在110℃±1℃的恒温干燥箱内水解24h后取出冷却至室温。将水解液用超纯水转移并定容至25mL容量瓶中,混匀,滤纸过滤。吸取滤液1mL于60℃±2℃氮吹仪上浓缩至干,残留物用1mL超纯水溶解,待衍生。标准品溶液用超纯水配置磺基丙氨酸、天冬氨酸、丙氨酸、脯氨酸、苯丙氨酸标准品溶液1μmoL/mL,待衍生。衍生方法分别将月旭科技氨基酸衍生方法包中 A、B两种衍生试剂用稀释剂稀释至原来浓度的 1/5;精密量取混标溶液及样品溶液各160μL,加入稀释后的衍生溶液 A、B 各100μL,混匀,室温反应60min;然后加入正己烷溶液 400μL,旋紧盖子后振摇10s,室温静置分层,取下层液200μL,加入800μL水中,混匀;再移取200μL加入到800μL水中,混匀,用0.45μm 有机滤膜过滤,即得。色谱条件色谱柱:月旭Ultimate® AQ-C18(4.6×250mm,3μm)。柱温:40℃;紫外检测器:254nm; 流速:1.0mL/min; 进样量:5μL。谱图和数据1. 磺基丙氨酸、天冬氨酸、丙氨酸、脯氨酸、苯丙氨酸标准品溶液1μmoL/mL。2. 样品水解结论用月旭Ultimate® AQ-C18(4.6×250mm,3μm)色谱柱,在该色谱条件下测定,能满足实验需求。
  • 阿斯巴甜被列为致癌物,“无糖”爱好者的狂欢结束了?
    近日,世界卫生组织下属国际癌症研究机构(IARC)宣布了一则重磅消息,无糖饮食中常用的代糖——阿斯巴甜被正式列为2B类致癌物阿斯巴甜究竟是什么? 自20世纪80年代起,阿斯巴甜就广泛用于各种食品和工业,作为一种人造甜味剂,它的甜度大约是糖的200倍,且1克阿斯巴甜仅产生约4卡路里的热量。在世界卫生组织建议限制糖类摄入后,阿斯巴甜更是以“代糖”的身份广泛出现在消费市场,市面上常见零度可乐、无糖饮料、糖果、调制酒、酸奶、蛋糕等日常食品饮料都有着阿斯巴甜的身影。阿斯巴甜由苯丙胺酸及天冬胺酸这两种胺基酸所合成,含有50%苯丙氨酸、40%天门冬胺酸、10%甲醇。除了提供甜味外,阿斯巴甜中的苯丙氨酸是人体必需的且不能自身合成的氨基酸之一,它在人体内能合成重要的神经递质与激素,对人体有许多作用,例如可以令情绪变得高昂,消除抑郁情绪,降低饥饿感等等。但阿斯巴甜也并非适合所有人食用,如孕妇、婴幼儿、苯丙酮尿症患者就必须避免食用阿斯巴甜,以免对身体产生健康危害。被列为致癌物,和“无糖”饮食说再见?IARC大致将致癌性分为5个等级,包括1类(有确认致癌性)、2A类(很可能有致癌性)、2B类(有可能致癌)、3类(尚不能确定是否致癌)、4类(基本无致癌作用)。2A和2B的界定类似但又有区别:2A类致癌物是对人很可能致癌,此类致癌物对人的致癌性证据有限,对实验动物致癌性证据充分。2B类致癌物则是对人可能致癌,此类致癌物对人致癌性证据有限,对实验动物致癌性证据并不充分,或对人类致癌性证据不足,对实验动物致癌性证据充分。阿斯巴甜此次被列为致癌物的分类处于2B类——可能对人类有致癌性但缺乏充分科学证据。其分类低于日常接触频率更多的食用红肉、烟酒槟榔等。粮食及农业组织食品添加剂联合专家委员会(JECFA)认为,评估的数据表明没有足够的理由改变先前确定的阿斯巴甜每日可接受摄入量(ADI)0-40 毫克/公斤体重。因此,委员会重申,一个人每天的摄入量在这个限度内是安全的。例如,假设没有从其他食物来源摄入,一罐含有 200 或 300 毫克阿斯巴甜的无糖软饮料,一个体重 70 公斤的成年人每天需要消耗 9-14 罐以上才能超过可接受的每日摄入量。IARC的 Mary Schubauer-Berigan 博士表示,“在人类和动物中致癌证据有限,如何致癌的机制证据同样有限,需要更多的研究来完善对食用阿斯巴甜是否构成致癌危害的理解。”同样,我国对食品安全有着严格的国家标准,对阿斯巴甜的使用范围、最大使用量等进行严格规范管理。依据的《食品添加剂使用标准》(GB2760),在食品添加剂批准使用前都会经过一系列严格的程序,保证其安全性和工艺必要性。国家食品安全风险评估中心联合国家癌症中心结合JECFA最新评估结果和我国居民消费情况进行安全性评估,阿斯巴甜按照我国现行标准规范使用可以保障安全。捍卫食品安全标准,海岸鸿蒙提供优质解决方案食品安全是保障人类健康和生命安全的基础,关系到每位公民的生活,因此确保食品安全是一个国家的重要任务,是相关企业应尽的责任义务。海岸鸿蒙深耕标准物质领域27年,拥有一系列食品检测用标准物质,助力检测检验机构的工作,共同捍卫食品安全标准。编号名称质量浓度介质规格标准值BW0826阿斯巴甜溶液标准物质1000μg/mLH2O5mLBW0777纽甜溶液标准物质1000μg/mLH2O5mLGBW(E)100166食品甜味剂糖精钠溶液标准物质10.0mg/mLH2O10mlGBW(E)100171食品甜味剂乙酰磺胺酸钾溶液标准物质10.0mg/mLH2O5mLGBW(E)100172食品甜味剂乙酰磺胺酸钾、糖精钠溶液标准物质10.0mg/mLH2O5mLGBW(E)100173食品甜味剂环己基氨基磺酸钠(甜蜜素)溶液标准物质10.00mg/mLH2O5mLBW0815苯甲酸、山梨酸、糖精钠、安赛蜜混合溶液标准物质100μg/mLH2O10ml
  • 检测食品中的阿斯巴甜,Detelogy有办法!
    早前,关于阿斯巴甜可能会致癌的新闻引起人们的关注,一时之间引发了巨大的争议,市面上诸多打着“无糖”标签的食品饮料,实际都使用了阿斯巴甜等甜味剂去增添风味,可谓与我们的生活密切相关。那么阿斯巴甜是什么?它究竟安不安全呢?阿斯巴甜是一种人工甜味剂,多用于无糖饮料、口香糖、酸奶等。化学名称为天门冬酰苯丙胺酸甲酯,由化学家在1965年研制溃疡药物时发现,甜度是普通蔗糖的约200倍。阿斯巴甜尽管有强烈甜味,但热量几乎为零,而且没有糖精那样的苦味,因此被食品工业视为代替蔗糖的甜味剂。我国规定可用于糕点、饼干、 面包 、配制酒、雪糕、冰棍、饮料、糖果、用量按正常生产需要。2023年7月14日,世界卫生组织的国际癌症研究机构(IARC)公布将阿斯巴甜列为“可能对人类致癌的物质”( 国际癌症研究机构第2B组 )。联合国粮农组织/世界卫生组织食品添加剂联合专家委员会(JECFA)公布“维持阿斯巴甜原风险评估结论,按照目前剂量和范围使用,不会对消费者产生健康危害”。联合专家委员会得出结论,所评估的数据表明没有充分理由改变以往 确定的 阿斯巴甜每公斤 体重0-40毫克这一每日允许摄入量 。因此,委员会重申,人们可在这个每日限量内放心食用。国家食品安全风险中心表示,阿斯巴甜按照目前的剂量和范围使用是不会对消费者产生健康危害,也就是假设没有其他方面的食物摄入,一罐含有200或300毫克阿斯巴甜的减肥软饮料,一位体重70公斤的成人每天要饮用9-14罐以上才会超过每日允许摄入量。所以抛开剂量谈毒性都是不客观的,因此,不必过于担忧阿斯巴甜的食品安全问题。实际上我国也有相关的标准进一步规范了阿斯巴甜的使用:GB 2760-2014 食品安全国家标准 食品添加剂使用标准GB 5009.263-2016 食品安全国家标准 食品中阿斯巴甜和阿力甜的测定GB 1886.47-2016 食品安全国家标准 食品添加剂 天门冬酰苯丙氨酸甲酯(又名阿斯巴甜)NY/T 3473-2019 饲料中纽甜、阿力甜、阿斯巴甜、甜蜜素、安赛蜜、糖精钠的测定 液相色谱-串联质谱法下面参考GB 5009.263-2016 《食品安全国家标准 食品中阿斯巴甜和阿力甜的测定》来看看阿斯巴甜的测定解决方案吧!一、乳制品、含乳饮料和冷冻饮品对于含有固态果肉的液态乳制品需要用MHS-60多样品均质系统进行匀浆,对于干酪等固态乳制品,需用MHS-60多样品均质系统按试样与水的质量比1:4进行匀浆,分别称取约5g液态乳制品、含乳饮料、冷冻饮品、固态乳制品匀浆试样于50 mL离心管,加入10 mL乙醇,盖上盖子;对于含乳饮料和冷冻饮品试样,首先轻轻上下颠倒离心管5次(不能振摇),对于乳制品,先将离心管用MultiVortex多样品涡旋混合器涡旋混匀10 s,然后静置1 min,离心后上清液滤入25 mL容量瓶,沉淀用8mL乙醇-水(2+1)洗涤,离心后合并上清液,用乙醇-水(2+1)定容,过滤膜待测。二、蔬菜及其制品、水果及其制品、食用菌和藻类步骤样品均质提取定容对于较干较硬的试样与水的质量比为1:4于MHS-60多样品均质系统进行匀浆加入10 mL70%的甲醇水溶液,摇匀后超声10 min,离心后取上清液于25 mL容量瓶,再加8 mL50%的甲醇水溶液重复操作一次,合并提取液最后用50%的甲醇水溶液定容,过滤膜待测。对于含糖多的、较粘的、较软的试样与水的质量比为1:2于MHS-60多样品均质系统进行匀浆加入10 mL60%的甲醇水溶液,摇匀后超声10min,离心后取上清液转入25 mL容量瓶,再加10 mL50%的甲醇水溶液重复操作一次,合并提取液其他试样与水的质量比为1:1于MHS-60多样品均质系统进行匀浆3、 果冻对于可吸果冻和透明果冻,用玻璃棒搅匀,含有水果果肉的果冻需要用MHS-60多样品均质系统进行匀浆,称取约5 g试样于50mL的比色管中,加入25mL 80%的甲醇水溶液,在70℃的水浴上加热10min后趁热将提取液转入50 mL容量瓶,再用15 mL80%的甲醇水溶液分两次清洗比色管,并每次MultiVortex多样品涡旋混合器涡旋约10 s;并转入同一个50 mL的容量瓶,冷却至室温,用80%的甲醇水溶液定容到刻度,混匀后离心;过滤膜待测。四、谷物及其制品、焙烤食品和膨化食品称取1g粉碎试样于50 mL离心管中,加入12 mL50%甲醇水溶液MultiVortex多样品涡旋混合器涡旋混匀,超声振荡提取10 min,离心后上清液转移入25 mL容量瓶中,再加10 mL 50%甲醇水溶液,MultiVortex多样品涡旋混合器涡旋混匀,超声振荡提取5min;离心后合并上清液,用蒸馏水定容,过滤膜待测。五、胶基糖果、脂肪类乳化制品、可可制品、巧克力及巧克力制品、坚果与籽类、水产及其制品和蛋制品用MHS-60多样品均质系统按试样与水的质量比为1:4进行均质,称取约5g试样于25 mL离心管中,加入10mL水超声振荡提取20 min,静置1min,离心后上清液转入100mL的分液漏斗中,离心管中再加入8mL水超声振荡提取10min,静置和离心后将上清液再次转入分液漏斗中,向分液漏斗加入15mL正已烷,振摇30 s;静置分层约5 min;将下层水相放入25 mL容量瓶,用水定容至刻度,摇匀后过水相滤膜后用于色谱分析。胶基糖果:称取约3 g剪细的胶基糖果试样,转入100 mL的分液漏斗中,加入25 mL水振摇约1 min,再加入30mL正已烷,继续振摇直至口香糖全部溶解,静置分层后,将下层水相放入50 mL容量瓶,再加入10 mL水,重复2次操作,最后用水定容至刻度,过滤膜待测。六、碳酸饮料、浓缩果汁、固体饮料、餐桌调味料和除胶基糖果以外的其他糖果称取约5g碳酸饮料试样于50mL烧杯中,在50℃水浴上除去二氧化碳,然后将试样全部转入25mL容量瓶中,备用;称取约2g浓缩果汁试样于25mL容量瓶中备用;称取约1g的固体饮料或餐桌调味料或绞碎的糖果试样于50mL烧杯中,加10mL水后超声波震荡提取20min,将提取液移入25mL容量瓶中,烧杯中再加入10mL水超声波震荡提取10min,提取液移入同一25mL容量瓶,备用,将上述容量瓶的液体用水定容,混匀,4000r/min离心5min,过滤膜待测。Detelogy优选仪器MHS-60多样品均质系统✦ 六刀头并联,可同时均质6个样品✦ 可以容纳5mL-180mL标准试管或离心管,可定制冰浴专用试管架✦ 均质过程中,试管架可以自动上下振荡,每分钟可完成60次振荡✦ 均质过程随时启停,完成后蜂鸣报警提示MultiVortex 多样品涡旋混合器✦ 兼容性多种规格样品管,转速可调:200-3000rpm✦ 小巧极简机身,主机低重心设计,运行噪声低✦ 程序调速功能,可自动变速涡旋✦ 5寸高清彩色触屏,实时显示转速和运行时间,随时启停
  • 食品包装上明示添加剂 但专业名称使消费者很茫然
    6月1日起,国家质检总局颁发的《食品添加剂生产监督管理规定》正式实施。按照规定,食品包装上必须明示食品添加剂成分。记者昨天来到位于武宁南路的一家大型超市,见到众多食品添加剂名目已出现在很多产品包装上,但市民对于这些专业、复杂的名字大多感到茫然。   一包饼干加了12种添加剂   一根香肠10种配料,有6种是食品添加剂 一罐牛奶的包装上,“配料单”印了8行(每行约有3种配料),其中6行   标示的是各种添加剂……记者拿起一包饼干,见配料栏有密密麻麻11行(每行3到4种配料),其中苯丙氨酸、5''-肌苷酸二钠、阿巴斯甜、水解植物蛋白等添加剂共有12种。   “这么多专业名词,不要说弄懂,光是读出来就很要命了。”顾阿姨平时购物很少注意产品成分,根本不在意食品包装上有没有列上添加剂,“它写的都是很专业的东西,看不懂,怎么判断有没有害处?何况,包装上说有就有,说没有就没有吗?”   记者随机采访了几位市民,多数人的态度都和顾阿姨如出一辙。大家普遍反映自己缺乏相关知识,因而不会特别注意包装上的食品添加剂。超市促销员秦小姐也表示,从来没有人向她咨询添加剂问题。记者注意到,秦小姐正在推销的某品牌牛奶包装上既无食品添加剂标示,也没有“不含添加剂”的提醒。   正在为孙儿挑选零食的陈先生认为,普通市民没有可能也没有必要搞清楚各种食品添加剂,“我知道添加剂可以增加香味、鲜味,保证食品不腐烂,如果不过量的话,应该不会有问题。”陈先生坦言,写明食品添加剂并不能消除对食品安全的担忧,他“规避风险”的办法是“尽量到大型超市,尽量买信得过的品牌”。   看配料是一种科学消费习惯   市政协常委、中科院上海生命科学研究院研究员、中国毒理学会理事沈建华在接受记者采访时表示,对于食品添加剂,盲目恐惧或无所谓,都说明消费者缺乏与食品安全相关的科学知识。“没有食品添加剂就没有现代食品工业,”沈建华举例说,食盐中的抗凝结剂可以防止盐粒结块,牛奶中的增稠剂增加了液体粘稠度,添加剂对大多数加工食品来说都不可缺少,只要是按照国家标准使用,就不会对人造成伤害。因此,消费者没必要视添加剂如洪水猛兽。   “食品包装上列出的添加剂,有许多只有内行人才看得懂。之所以要明示这些添加剂,主要是便于相关部门监管。”但沈建华指出,消费者应该学会自我保护,“在国外,一般消费者购买加工食品,都有看看产品配料的习惯。我们虽然经历了三聚氰胺等一系列食品安全事件,但相关知识的普及却还不够,消费者习惯也没有培养起来。”沈建华说,食品安全科普之路还很长,不论是消费者个人,还是媒体和相关部门,都应对此给予更多关注。
  • 南方医科大学研究团队成果:人参皂苷Rg1通过调节肠道菌群、色氨酸代谢和血清素能系统功能减轻吗啡依赖
    南方医科大学研究团队发表相关论文,英文题目:GinsenosideRg1 mitigates morphine dependence via regulation of gut microbiota,tryptophan metabolism, and serotonergic system function。中文题目:人参皂苷Rg1通过调节肠道菌群、色氨酸代谢和血清素能系统功能减轻吗啡依赖研究背景吗啡依赖是一种毁灭性的神经精神疾病,可能与肠道菌群失调密切相关。人参皂苷Rg1(Rg1)是从人参根中提取的活性成分,对神经系统具有潜在的保健作用。然而,它在物质使用障碍中的作用仍不清楚。该文探索了Rg1在对抗吗啡依赖中的潜在调节作用。研究结果1.人参皂甙 Rg1 抑制吗啡诱导的小鼠的条件位置偏好(CPP)调理训练后各组小鼠体重略有增加,但是未观察到显著差异(图1C)。使用Smart3.0软件在15分钟内跟踪小鼠头部并记录它们的轨迹和停留时间。对照组和其他组之间的轨迹或CPP分数没有显着差异。在吗啡注射后在白室中花费的时间与基线相比以及在盐水处理后在白室中花费的时间显着增加(图1C,D),表明吗啡成功诱导CPP在实验小鼠中。MRH和MRL组与模型组相比,MRL和MRH小鼠在药物配对隔室的停留时间和轨迹显着减少。然而,在单独用人参皂甙Rg1治疗的小鼠中,没有观察到CPP评分和活动途径的变化。2.人参皂甙Rg1改善CPP小鼠肠道菌群失调阿片类药物成瘾通常与肠道菌群失调有关。为了进一步探索Rg1介导的抗成瘾机制,对粪便进行了16S rRNA 基因扩增子测序,以评估有或没有Rg1处理的CPP小鼠肠道微生物群的组成。维恩图显示了对照组和其他组小鼠共有476个OTU(图2A)。然而,对照组有1108个OTU,M组有1304个,MM组有19个,MRL组有548个,MRH组有1702个,CR组有195个。这些数据暗示了吗啡治疗诱导的肠道微生物群紊乱和人参皂苷Rg1给药后的部分恢复。值得注意的是,使用Chao1指数进行的α多样性分析显示,Rg1阻止了吗啡引起的细菌丰富度下降(图2B);然而,各组之间的香农指数没有差异(图2C)。通过Bray-Curtis主坐标分析(PCoA)研究肠道菌群的整体结构表明,吗啡组的细菌组成发生了变化,与对照组不同,表明肠道菌群失调吗啡处理诱导了微生物群(图2D)。然而,MRL、MRH、MM和CR组显示了四种不同的细菌组成簇。值得注意的是,MRL中的微生物群与MRH组中的微生物群更紧密地聚集在一起。我们在门水平上进一步分析了每组的肠道细菌组成。人参皂甙Rg1显着增加吗啡诱导的拟杆菌门和厚壁菌门相对丰度的降低(图2E),并显着降低吗啡诱导的蓝藻和变形杆菌的相对丰度增加。在家族水平上的进一步分析显示,吗啡处理导致随着叶绿体和线粒体的增加,拟杆菌属、Sutterellaceae和Tannerellaceae的相对丰度急剧下降。在MRL和MRH组中,吗啡诱导的丰度变化不同程度地逆转(图2F,G)。此外,Kruskal-WallisH检验用于评估指定组之间在物种水平上的差异的显着性,并观察到15个优势物种(图2H)。考虑到报告显示吗啡依赖模型中拟杆菌属的丰度低于对照,我们专注于拟杆菌属物种B.vulgatus、B.xylanisolvens和B.acidifaciens。吗啡显着降低了B.acidifaciens、B.vulgatus和B.xylanisolvens 的丰度。值得注意的是,B.vulgatus的相对丰度在Rg1给药后显着增加(图2I)。除了16SrRNA 测序外,我们还用B.vulgatus特异性引物进行了定量PCR,证实吗啡显着降低了丰度,人参皂苷Rg1处理后丰度显着增加(图2J)。图片图片图23.人参皂甙 Rg1抑制肠道微生物群衍生的水平和CPP小鼠血清色氨酸代谢物在药物依赖期间,肠道代谢谱发生变化,宿主代谢途径可能发生改变。我们假设人参皂苷Rg1可能通过肠道微生物发酵过程中产生的代谢物影响CPP。基于这一理论,我们使用非靶向代谢组学来识别可能在小鼠血清和肠道中改变的关键代谢物和代谢途径。MRL组和MRH组对吗啡诱导的CPP的疗效没有观察到统计学差异;然而,行为分析数据显示,MRH组的疗效优于MRL组。因此,我们选择MRH组作为非靶向代谢组学分析的代表性药物干预组。在血清和粪便中分别鉴定出1955和559种代谢物。偏最小二乘判别分析(PLS-DA)模型分别在血清和粪便中的CONTROL、MODEL和MRH组中显示出显着的聚类分离(图3A、G)。热图分析显示,CPP导致代谢物发生显着变化,小鼠粪便和血清中共有177种代谢物(96种上调和81种下调)和69种代谢物(44种上调和25种下调)分别显着改变(图3D和J)。此外,对代谢物途径的分析表明,与对照组相比,CPP小鼠的以下途径发生了显着变化:色氨酸、α-亚麻酸、甘油磷脂、精氨酸和脯氨酸、苯丙氨酸、酪氨酸和色氨酸代谢。值得注意的是,色氨酸代谢受到粪便和血清中吗啡的显着影响(图3B和H)。将MRH与MODEL组进行比较,在人参皂苷Rg1处理后,粪便和血清中的195种代谢物(94种上调和101种下调)和115种代谢物(60种上调和55种下调)分别显着改变(图3E和K)。代谢组学图显示色氨酸代谢受到Rg1补充的显着影响(图3C和I)。色氨酸代谢在微生物组-肠-脑轴中起关键作用。在这种情况下,我们专注于色氨酸代谢相关的代谢物。具体而言,色氨酸代谢相关代谢物的热图分析表明,参与色氨酸代谢的四种主要中间代谢物L-色氨酸、吲哚、N' -甲酰基犬尿氨酸和血清素是对吗啡的反应最显着增加的代谢物,它们的水平在Rg1处理后,粪便或血清中的含量降低。具体来说,我们发现与模型组相比,Rg1处理的肠道色氨酸和血浆血清素水平下调(图3F和L)。4.人参皂甙 Rg1 改善 CPP 小鼠海马 5-羟色胺能系统的变化血清色氨酸浓度会影响大脑的血清素系统。我们推测宿主色氨酸代谢物的变化可能与CPP小鼠的海马血清素能系统和其他神经递质有关。为了验证这一假设,使用酶联免疫吸附法检测海马和外周血清中谷氨酸、多巴胺、γ-GABA和5-HT的表达水平。在海马中,相对于对照组,CPP小鼠表现出显着升高的多巴胺水平和降低的γ-GABA水平(图4C)。然而,组间谷氨酸和血清素的浓度没有差异(图4A)。与M组相比,MRH组海马中GABA含量增加。此外,在MRL和MRH小鼠中观察到多巴胺水平显着下降。注射吗啡后血清中血清素和多巴胺水平升高,γ-GABA水平降低。所有CPP诱导的变化都被Rg1处理逆转(图4B、D、S2B)。为了进一步探索Rg1介导的抗成瘾机制,我们使用qPCR检测了小鼠海马中奖赏相关基因mRNA的相对转录水平,包括脑源性神经营养因子(BDNF)、神经营养酪氨酸激酶受体2型(TrkB)和血清素受体。与Rg1治疗组的转录水平相比,吗啡组中5-羟色胺受体(5-HTR1B和5-HTR2A)、BDNF和TrkB的转录水平因人参皂苷Rg1给药而下调(图4E、F)。这些数据表明人参皂甙Rg1可能通过抑制血清素系统来改善吗啡依赖。5.肠道微生物组的调控影响人参皂甙 Rg1 对吗啡诱导的小鼠 CPP 的抑制作用为了研究肠道菌群失调对吗啡诱导的小鼠行为的影响,我们在进行吗啡依赖性CPP训练之前,给BALB/cSPF 小鼠施用了不可吸收的抗菌剂或无菌水的混合物7天,然后进行CPP测试(图5A)。ATM治疗后各组小鼠体重下降,调理训练后略有增加;然而,各组之间没有观察到差异(图5B)。ABX与对照组相比,同时给予多种抗生素后,所有抗生素治疗小鼠在药箱中的停留时间均增加。此外,与ABX组相比,AM组在药物配对隔室中的停留时间明显增加。令人惊讶的是,小鼠在AMRL、AMRH和AMM组的药物配对隔室中的停留时间与AM组没有显着差异(图5D)。我们在鼠标头部轨迹中观察到相同的现象(图5C)。为了评估抗生素暴露后小鼠肠道微生物群发生的变化,通过16SrRNA 基因测序测定了粪便细菌组成。抗生素治疗极大地改变了微生物组并减少了细菌负荷(图5E)。为了研究肠道菌群失调对吗啡诱导的小鼠行为的影响,我们使用了维恩图显示了对照组和其他抗生素治疗小鼠共享的476个OTU;然而,1606个OTU是对照组独有的,48-68个OTU是其他六个抗生素治疗组独有的。随后用抗生素混合物治疗导致肠道微生物群显着消耗,细菌多样性显着降低。PCoA显示抗生素治疗的小鼠与对照小鼠相比具有显着不同的微生物群落(图5F)。但ABX、AM、AMRL、AMRH、AMM和AR组的细菌多样性没有显着变化,说明抗生素治疗根除大部分共生菌,吗啡和人参皂苷Rg1治疗后没有显着变化.我们在ABX小鼠的粪便中发现了几种细菌门,这些细菌门相对于对照组的粪便发生了改变(图5G)。优势门不同,伴随着Proteobacteria的丰度显着增加,而Verrucomicrobiota、Cyanobacteria、Firmicutes和Deferribacterota的丰度在抗生素处理后下降。然而,用抗生素治疗小鼠并没有改变拟杆菌的相对丰度,尽管抗生素治疗耗尽了肠道微生物组成。最后,我们用B.vulgatus特异性引物进行了定量PCR,并证实与对照组相比,抗生素治疗组的细菌显着减少了数百至数千倍(图5H)。此外,吗啡和人参皂甙Rg1并没有改变B.vulgatus对抗生素的反应。6.肠道微生物组的消耗影响色氨酸代谢并抑制 Rg1 诱导的基因表达接下来检测了抗生素混合物治疗对吗啡诱导的CPP小鼠代谢物和代谢途径的影响。偏最小二乘判别分析(PLS-DA)模型显示,在粪便中的代谢物方面,对照组和ABX组之间的簇显着分离(图6A)。值得注意的是,抗生素治疗后ABX、AM和AMRH组之间没有明显的代谢物聚集。我们专注于色氨酸代谢途径,并观察到参与色氨酸代谢的代谢物被ATM显着改变。然而,在ABX、AM和AMRH中未观察到显着变化。因此,这些数据表明抗生素治疗强烈降低了粪便中色氨酸代谢物的水平(图6C),并且由吗啡和Rg1引起的代谢改变被消除。此外,在血清中,PLS-DA结果显示四组(对照组、ABX、AM和AMRH)的代谢物谱不同(图6B)。ATM显着改变了色氨酸代谢物。值得注意的是,与 ABX小鼠相比,注射吗啡的小鼠的代谢物发生了相当大的变化。具体而言,与 AM组相比,色氨酸代谢物在Rg1处理后没有显示出显着变化(图6D)。我们发现 Rg1治疗组和模型组在ABX治疗后肠道色氨酸和血浆血清素水平没有差异(图6E和F)。随后,我们发现微生物组消耗抵消了 Rg1在CPP小鼠海马体中诱导的变化(图6G-L)。Rg1治疗未能逆转5-HT、多巴胺、5-HTR1B/5-HTR2A 和BDNF-TrkB信号通路。7.B.vulgatus 协同增强人参皂苷 Rg1 抑制吗啡诱导的小鼠 CPP因为肠道B.vulgatus 减少和增加与吗啡诱导的CPP增加和Rg1降低CPP一致,并且在抗生素处理的小鼠中消除了人参皂苷Rg1对CPP的改善,我们探讨了B.vulgatus 是否在吗啡中起作用依赖。作为典型的拟杆菌属物种,普通拟杆菌是小鼠肠道中的主要细菌物种,我们试图确定普通拟杆菌是否会影响CPP进展。我们首先使用抗生素治疗来消耗肠道微生物群,然后再用B.vulgatus 定植。在吗啡诱导的CPP小鼠模型中检查B.vulgatus 对吗啡成瘾的影响(图7A)。抗生素治疗或B.vulgatus 移植没有显着改变体重(图7B)。单独使用B.vulgatus (AMBV) 进行灌胃显着降低了白框中的停留时间和轨迹百分比,而吗啡则增加了该百分比(图7C、7D)。值得注意的是,与B.vulgatus 和人参皂苷Rg1(AMBVR)共同治疗的小鼠在药物配对隔室中的停留时间和轨迹百分比显着降低。这些数据清楚地表明AMBVR在抑制CPP方面比AMBV取得了更好的功效。值得注意的是,在我们的研究中,用“吗啡”微生物组(AMF)进行肠道再定殖并没有诱导CPP行为。8.B.vulgatus 可以改变肠道微生物组成小鼠粪便样本的16SrRNA 基因测序揭示了用活的B.vulgatus灌胃肠道微生物群组成的变化。拟杆菌门的相对丰度从AM组的不到20%增加到AMBV组的40%和AMBVR组的60%(图7E)。定量PCR证实,与对照组相比,AMBV和AMBVR组灌胃后肠道中的细菌显着过度生长数百至数万倍(图7F)。这些数据表明,人参皂甙Rg1提高了CPP小鼠中普通双歧杆菌的丰度。9.B.vulgatus 改变了肠道微生物群衍生和宿主色氨酸代谢物对小鼠的粪便和血清进行了代谢组学分析。偏最小二乘判别分析(PLS-DA)显示AM、AMBV和AMBVR组之间完全分离(图8A和D)。热图分析显示,仅用B.vulgatus灌胃导致CPP小鼠代谢物发生显着变化,粪便中有332种代谢物(211种上调和121种下调),血清中有82种代谢物(58种上调和24种下调)。我们对具有已知KEGGID 的332和82种显着不同的代谢物进行了KEGG途径富集分析,并分别鉴定了14和11种富含色氨酸代谢的代谢物。同时,将AMBVR与AM组进行比较,粪便中的313种代谢物(237种上调和76种下调)和血清中的82种代谢物(44种上调和38种下调)在与普通芽孢杆菌和人参皂甙Rg1共同处理后显着改变。在粪便中发现了13种代谢物,血清中发现了11种代谢物富集到色氨酸代谢,AMBV和AMBVR都改变了肠道微生物群衍生和宿主色氨酸代谢。我们随后检查了粪便和血清中由AMBV和AMBVR改变的色氨酸代谢物的相对丰度(图8B,C)。用B.vulgatus 灌胃下调色氨酸和血清素水平(图8E-I和9B)。10.B.vulgatus 协同增强人参皂甙-Rg1 诱导的吗啡诱导的海马 5-羟色胺能变化的抑制作用最后,为了证实人参皂甙Rg1通过影响肠道微生物群衍生的色氨酸代谢-血清素途径来减轻吗啡依赖,我们测定了海马和血清中5-HT、多巴胺和GABA的水平。CPP小鼠中血清素和多巴胺的血浆浓度较低,而GABA的血浆浓度高于单独用普通双歧杆菌灌胃或与Rg1共同治疗的小鼠(图9A-D)。值得注意的是,AMBVR小鼠的海马5-HT浓度显着低于AM小鼠。qPCR进一步证实了血清素受体和BDNF-TrkB的mRNA水平升高。我们观察到5-HTR1B、5-HTR2A和BDNF-TrkB的表达被B.vulgatus 定植和Rg1处理有效抑制(图9E、F)。研究结论该研究表明人参皂苷Rg1对吗啡依赖的改善作用与肠道微生物群有关。此外,我们发现微生物组的消耗和拟杆菌的补充可以影响吗啡依赖性并影响Rg1的功效,伴随着色氨酸代谢和5-羟色胺的变化。该研究结果提供了一个新的框架来理解中药通过肠道微生物群-色氨酸代谢和血清素能系统拮抗吗啡成瘾的机制,可能会带来新的诊断和治疗策略。
  • 报告称无糖饮料存隐患
    日前,英国食品标准署表示将重新对阿斯巴甜展开研究,希望弄清楚为何长期以来总有部分人群声称食用后身体产生不良反应。专家指由于仍存有学术争议,有关产品应该在包装上标明成分。 记者日前在英国食品标准署网站上看到了这份声明。声明称,将开始对阿斯巴甜展开新的研究,聚焦为何有人报告对这种人工甜味剂产生不良反应,包括声称食用后引发头痛、腹痛等不同的症状。   阿斯巴甜的甜度是蔗糖的200倍,并一直使用在多种“无糖”食品中。包括各种常见的饮料和小食中,该署首席科学家安德鲁魏吉表示,这个研究不是针对阿斯巴甜的安全性的,原因是它的安全性已经被证明。   据这份声明称,英国食品标准署仍然会视阿斯巴甜为可安全消费,也不推荐改变它的使用现状,但是该署指知道有部分人会把身体不适和消费阿斯巴甜联系起来,所以认为研究很重要,将有助增加了解到底是怎么一回事。   据悉,有关研究将在7月份开始,并按照欧洲的标准进行,预计将会耗时约18个月。目前,正处于鉴别和选择实验自愿者的阶段,希望有关结果能在2011年初发布。   专家:明确标示成分由消费者选择   记者昨日在市面看见,阿斯巴甜已经作为一种取代蔗糖、白砂糖的化合物,被广泛应用于各种食品之中,这些产品大多标注“无糖”。例如可口可乐的零度可乐含有阿斯巴甜(含苯丙氨酸),啤儿茶爽等都有阿斯巴甜成分,不过记者发现百事可乐新上市的极度可乐将其写为甜味素(含苯丙氨酸)。   中山大学公共卫生学院营养学系教授蒋卓勤告诉本报记者,阿斯巴甜是最常用的甜味剂,对于英国重启研究,他并不意外,因为各国对阿斯巴甜可以有不同规定,甚至有些国家禁止添加。   鉴于目前阿斯巴甜仍在学术范围惹起争论,专家呼吁产品应尽量明示,由消费者去选择。暨南大学食品研究中心傅亮质疑百事可乐甜味素(含苯丙氨酸)的写法不是一个标准术语。“不管天然或合成成分,标签都必须明确标示名称,在食品添加剂中并没有‘甜味素’这个说法,也没有这个国家标准。”(刘俊)   链接一   国外阿斯巴甜禁用情况   反方:2007年,印尼考虑禁用阿斯巴甜。2008年,菲律宾有议员希望禁用阿斯巴甜。同年,美国新墨西哥州引入禁用阿斯巴甜法案,夏威夷也申请FDA解除对阿斯巴甜的使用批准。   正方:阿斯巴甜在全球近100个国家被批准作为食品添加剂的甜味素和增味剂,一些国家批准使用已超过20年。 (刘俊)   链接二   市面部分含人工合成甜味剂食品和饮料   百事轻怡:甜味素(含苯丙氨酸)   可口可乐健怡:安赛蜜   健力宝部分口味:安赛蜜   乐事部分薯片:阿斯巴甜   可比克部分薯片:阿斯巴甜   格力高部分百力滋:阿斯巴甜   喜之郎乳酸果冻:甜蜜素   四洲紫菜番茄味:阿斯巴甜   洽洽香瓜子:甜蜜素、安赛蜜   卡乐B粟一烧:阿斯巴甜   绿箭粒装:甜味素、安赛蜜   益达:甜味素、安赛蜜   劲浪口香糖:甜味素、安赛蜜   娃哈哈AD钙奶、营养快线:阿斯巴甜、安赛蜜 (刘俊)
  • 食品、保健品的分析和检测,电位滴定仪哪家好?
    关键词:AT-6,电位滴定仪,自动电位滴定仪,果维康维生素,保健品随着大众消费水平的提高和保健意识的增强,保健食品在居民日常消费中所占比重日益增高,一些进口保健食品也受到不少消费者的青睐。然而,保健食品市场中存在的标签证号缺失、功能声称夸大、产品真假难辨等乱象,正日渐成为市场隐患,损害了消费者的健康和权益。2015年10月1日新修订的《中华人民共和国食品安全法》其对保健食品审批、功能宣称等内容进行了新的规定。 果维康维生素是以维生素c、山梨醇、硬脂酸镁、阿斯巴甜(含苯丙氨酸)、薄荷香精、亮蓝铝色淀、羟丙甲纤维素为主要原料制成的保健食品,经功能试验证明,具有补充维生素C的保健功能。维生素c又称抗坏血酸,是人体不可缺少的一种营养素。人体自身无法合成维生素c,必须额外从食物中获取。维生素c普遍存在于蔬菜水果中,但容易因外在坏境的改变而遭到破坏。维生素C,具有抗氧化自由基的作用、并能刺激身体制造干扰素来破坏病毒以减少白血球与病毒的组合,保持白血球的数目,提高中性细胞和淋巴细胞的杀菌和抗病毒能力,对提高人体免疫力有着重要作用。因此,在感冒早期服用维生素C,可以减轻感冒症状,缩短近1/4的感冒时间。能够影响人类身体健康与生命安全的食品、药品、保健品在生产中含量检测都需要严格把控。 采用上海禾工AT-6电位滴定仪完全可以满足果维康中维生素c含量的测定需求。 AT-6电位滴定仪是一款智能的滴定分析器,根据样品性质,仪器选用不同电极可进行酸碱滴定、氧化还原滴定、络合滴定、非水滴定和pH测量等多种滴定。AT-6电位滴定仪具备多项专利技术,仪器运行安静平稳,检测精度高,测量结果重复性好,各项性能指标达到进口同类产品,同时仪器故障率及使用寿命远高于国内同类产品。仪器具有串口通讯连接打印机实现分析结果打印,具有USB接口连接U盘实现数据备份,具有WLAN接口连接电脑实现联机控制。
  • 【知识分享】有关物质超标了,是不是杂质峰被误判了?
    结论分析工作者在药物的有关物质高效液相色谱法的方法开发和检查,应对检验过程中出现的杂质峰予以重视,以免出现误判。结果易被误认为是有关物质的峰包括溶剂峰、有机酸盐峰、无机酸盐峰和辅料峰,本次将举例说明并对这些峰的形成原因进行简单分析。根据药品注册的国际技术要求中杂质的含义,杂质分为有机杂质、无机杂质和残留溶剂。有关物质是杂质的一种,主要是指有机杂质,它可能是原料药合成过程中带入的原料药前体、中间体、试剂、分解物、副产物、聚合体、异构体以及不同晶型、旋光异构的物质,也可能是制剂过程或是在贮藏、运输、使用过程中产生的降解物。有关物质的检查方法很多,主要有薄层色谱法、高效液相色谱法(HPLC法)、气相色谱法和紫外分光光度法等。其中,HPLC法由于分离效果好、专属性强、灵敏度高,在有关物质检查中最为常用。在采用HPLC法对药物进行有关物质分析时,一般要求考察最大杂质峰面积或各杂质峰面积的和,将其与对照溶液的主峰面积(主成分自身对照品法)或总峰面积(面积归一化法)比较,规定应不超过某一特定的数值。但在实际检验过程中,排除配样引进或者是柱子没冲干净这些因素外,色谱图上仍然会出现保留时间较弱的峰,易被误认为是杂质峰,从而造成结果的误判。笔者结合日常检验工作和相关文献,选取了几个具有代表性的品种,将这些易被误认为是杂质峰的峰归纳为溶剂峰、有机酸盐峰、无机酸盐峰和辅料峰,并对这些峰的形成原因进行分析,以期对药物的有关物质HPLC方法的研究和常规检查提供参考。1. 溶剂峰在HPLC法中,由于溶解对照品或供试品的溶剂和流动相在某一波长的吸光值不一样,因此产生了吸光值的变化,表现为出现溶剂峰。溶剂峰可能是正常形状的峰,也可能是倒峰,还有可能是一组奇形怪状的峰。减小该类溶剂峰最有效的方法是使用流动相作为溶剂溶解样品,这样既可以避免样品溶剂和流动相之间任何强度或黏度的不匹配,也可以减少样品分析时基线的漂移。此外,值得注意的是,在进行有关物质分析时,要等基线平稳后,再进空白溶剂。一般进样2次,计算供试品溶液的杂质峰时,溶剂峰位置的峰是不参与计算的。2. 有机酸盐峰《中华人民共和国药典》(以下简称《中国药典》)2020年版(二部)采用HPLC法对苯磺酸氨氯地平的有关物质Ⅱ进行控制。以甲醇-乙腈-0.7%三乙胺溶液(取三乙胺7.0 mL,加水至1000 mL,用磷酸调节pH值至3.0±0.1)(35:15:50)为流动相,色谱柱为十八烷基硅烷键合硅胶柱,检测波长为237nm。标准规定:氨氯地平杂质I峰的峰面积乘以2与其他各杂质峰面积的和应不得大于对照溶液主峰面积的(0.3%)。实际检测时,氨氯地平的出峰时间为17.5min,但是在溶剂峰出峰的位置有响应较高的峰(保留时间3.0min),色谱图见下图。若将该峰判定为杂质峰,则会出现有关物质超标的情况。将苯磺酸配制成一定浓度进样后最终确定该峰为苯磺酸的峰。也有研究采用液相色谱-四级杆飞行时间质谱联用对苯磺酸的出峰予以确证。苯磺酸为一元有机酸,其pKa为0.7,在通常的流动相pH范围内,苯磺酸氨氯地平主要解离为氨氯地平阳离子(被质子化)和苯磺酸阴离子(C6H5SO3-),因此,苯磺酸氨氯地平会出现两个峰,一个是苯磺酸(保留时间较短),一个是氨氯地平。同时,研究表明,采用反相HPLC法同时测定复方感冒药中的多种成分时,对马来酸氯苯那敏色谱峰的识别易出现判断错误,将马来酸的峰误认为是马来酸氯苯那敏。马来酸为二元有机酸,其pKa分别为2.00和6.26,在通常的流动相pH范围内,马来酸氯苯那敏主要解离为氯苯那敏阳离子(被质子化)和马来酸阴离子(HOOCCH=CHCOO-),因此,马来酸氯苯那敏也会出现两个峰。在色谱系统开发过程中,一般会调节流动相pH,与目标化合物pKa相差2个单位以上,使药物全部解离或结合,这样才能准确定量。对于带有机酸根的化合物的液相检测,比如马来酸氯苯那敏、富马酸喹硫平、苯磺酸氨氯地平,在选择的流动相pH条件下,若目标化合物以离子型存在,则马来酸、苯磺酸和富马酸等有机酸也会以盐的形式存在,这些有机酸因含有共轭结构均有紫外吸收,从而在液相条件下也会出现一个色谱峰。因此,做此类物质的有关物质和含量测定时就应注意,不应将有机酸的峰误认为是杂质峰,或者是将有机酸的峰误认为是目标化合物的峰,造成结果的误判。3.无机酸盐峰《中国药品标准》采用HPLC法检测盐酸左氧氟沙星氯化钠注射液的有关物质。以硫酸铜D-苯丙氨酸溶液(取D-苯丙氨酸1.32g与硫酸铜1g,加水1000mL溶解后,用氢氧化钠试液调节pH值至3.5)-甲醇(82:18)为流动相,检测波长为293nm。标准规定,供试品溶液色谱图中如有杂质峰,各杂质峰面积的和不得大于对照溶液主峰面积。实际分析时,在3.3min出现一个很大的峰,色谱图见下图 。经过分析,认为与盐酸稀释后进样的峰位相同,因而在计算有关物质时不应将该峰误认为是杂质峰。笔者在参与针对新版药典用的氢溴酸右美沙芬化学对照品的标化工作中,参照《中国药典》 中氢溴酸右美沙芬胶囊含量测定的方法,对氢溴酸右美沙芬进行有关物质检查,流动相为乙腈-磷酸盐缓冲液(取磷酸和三乙胺各5mL,加水至1000mL)(28:72),检测波长220nm,实际检测时发现在2.5min出了一个很大的色谱峰。为了验证该峰,用溴水稀释后直接进样分析,结果在同样位置出峰。见下图。因此,在结果判定时,应注意不要误将该峰归纳入杂质峰。类似于含有有机酸的药物,含有无机酸的药物在通常的流动相pH条件下也均会发生解离,以盐形式存在的化合物进入液相系统后会以游离碱的形式存在,盐酸和氢溴酸是强酸,也在流动相里解离形成氯离子和溴离子。在对不同水中氯离子含量的比对分析中,用1cm的石英比色皿,取一定浓度的氯化钠标准溶液作为待测液,采用紫外-可见分光光度计,扫描范围280~350nm,确定了氯离子在波长为308.7nm左右处有最大吸收。研究也验证了溴离子在200~220nm波长范围内有较强的紫外吸收。分析原因,可能是氯离子和溴离子有8电子的稳定结构而导致紫外吸收,具体原因还有待进一步分析。
  • FSA对食品标签政策分工做出调整
    据FSA网站消息,自2010年9月1日起,英国食品标准局(FSA)、环境、食品与农村事务处(Defra)、卫生署(DH)负责的食品标签政策将会发生变化。   FSA将会保留食品标签安全方面的责任 但是在英格兰,其他的职务将由Defra负责 而营养标签的职责转移至DH。这三个部门将紧密合作,以确保政府部门对食品标签政策的参与。而苏格兰、威尔士和北爱尔兰尚未决定是否作出调整。每个部门的职责如下:   英国食品标准局:    发表食品保质期制定方面的科学意见    评估并对含有过敏原成分的食品制定标签,如天(门)冬氨酰苯丙氨酸甲酯、乙二醇、高咖啡因、高甘草酸等物质    保证有机食品的安全并控制其成分标准    保证食品安全的处理方式和条件,如速冻食品、天然及加热牛奶、食品接触材料等    转基因和新型食品,包括纳米技术的使用    动物饲料的安全    食品安全事件,如误导性标签    欧盟一般的食品法规    负责食品添加剂、污染物分析和取样方法的食品卫生法典委员会。   环境、食品与农村事务处的职责除了现有的市场标准和生态标签制定外,还包括:    一般食品标签的立法以及相关欧盟谈判    对欧盟食品信息的提议    原产地标签    食品成分标准和标签,如果汁、果酱、瓶装水等    技术咨询    鱼类标签    使用各种市场术语:自然、新鲜、清晰的标签 自然及素食标签    食品权威计划    负责食品标签、水果蔬菜加工、油脂、鱼类等的食品卫生法典委员会    继续发展食品卫生法典委员会的一般原则和欧洲协调委员会   卫生署:    与欧盟食品信息法规有关的营养信息    包装标签制定    特定营养用途的食品    婴儿配方奶粉    健康和营养声明    食品增补剂    餐厅及其他场所食品的热量信息   特殊膳食营养食品法典委员会
  • 国家卫生健康委发布50项新食品安全国家标准
    近日,根据《食品安全法》规定,国家卫生健康委、市场监管总局联合印发2021年第3号公告,发布50项新食品安全国家标准和4项修改单。本次公布的标准主要包括:《婴儿配方食品》(GB10765-2021)等3项营养与特膳食品标准、《干酪》(GB5420-2021)1项食品产品标准、《食品添加剂碳酸钠》(GB1886.1-2021)等38项食品添加剂质量规格标准、《餐(饮)具集中消毒卫生规范》(GB31651-2021)等4项生产经营规范标准、《食品中总酸的测定》(GB12456-2021)等4项检验方法与规程标准,以及《食品中污染物限量》(GB2762-2017)第1号修改单等4项修改单。上述食品安全国家标准的制定、修订符合法律法规规定,充分考虑群众健康权益,兼顾食品产业发展需求,参考国际相关法规和通行做法,为食品安全监管所需,标准制定、修订过程充分征求了社会各方意见并向世贸组织通报。为保障婴幼儿特殊人群健康,本次还修订了《婴儿配方食品》(GB10765-2021)《较大婴儿配方食品》(GB10766-2021)《幼儿配方食品》(GB10767-2021)等3项营养与特膳食品标准。制定修订并实施婴幼儿配方食品系列标准,是保障婴幼儿配方食品安全性、营养充足性的重要手段,是指导和规范食品生产企业科学生产的技术要求,是监管部门开展监管执法的重要依据。为做好标准实施解读,同时发布婴幼儿配方食品标准问答。 为加强食品安全全程控制,我委组织制定了《餐(饮)具集中消毒卫生规范》(GB31651-2021)等4项生产经营规范标准。其中,《餐(饮)具集中消毒卫生规范》(GB31651-2021)制定以规范餐饮具集中消毒服务单位生产经营行为,保证餐饮具卫生满足人民群众健康需求为目的,为加强餐饮具集中消毒的监督执法提供科学的技术依据。《即食鲜切果蔬加工卫生规范》(GB31652-2021)将进一步规范即食鲜切果蔬加工过程,促进行业健康发展,确保此类产品安全卫生,满足消费者对健康、便利生活的追求。《餐饮服务通用卫生规范》(GB31654-2021)是我国首部餐饮服务行业规范类食品安全国家标准,对于提升我国餐饮业安全水平,保障消费者饮食安全、适应人民群众日益增长的餐饮消费需求具有重要意义。《食品中黄曲霉毒素污染控制规范》(GB31653-2021)重点关注食品链中黄曲霉毒素的产生、消除、降低、控制等措施,对于加强黄曲霉毒素的过程控制,确保原料及下游产品食用安全具有重要意义。其编号和名称如下: GB5420-2021食品安全国家标准干酪 GB10765-2021食品安全国家标准婴儿配方食品 GB10766-2021食品安全国家标准较大婴儿配方食品 GB10767-2021食品安全国家标准幼儿配方食品 GB1886.1-2021食品安全国家标准食品添加剂碳酸钠 GB1886.3-2021食品安全国家标准食品添加剂磷酸氢钙 GB1886.302-2021食品安全国家标准食品添加剂聚乙二醇 GB1886.303-2021食品安全国家标准食品添加剂食用单宁 GB1886.315-2021食品安全国家标准食品添加剂胭脂虫红及其铝色淀 GB1886.316-2021食品安全国家标准 食品添加剂 胭脂树橙 GB1886.317-2021食品安全国家标准食品添加剂β- 胡萝卜素(盐藻来源) GB1886.318-2021食品安全国家标准食品添加剂 玉米黄 GB1886.319-2021食品安全国家标准食品添加剂沙棘黄 GB1886.320-2021食品安全国家标准食品添加剂葡萄糖酸钠 GB1886.321-2021食品安全国家标准食品添加剂索马甜 GB1886.322-2021食品安全国家标准食品添加剂可溶性大豆多糖 GB1886.323-2021食品安全国家标准 食品添加剂 花生衣红 GB1886.324-2021食品安全国家标准 食品添加剂 偏酒石酸 GB1886.325-2021食品安全国家标准食品添加剂聚偏磷酸钾 GB1886.326-2021食品安全国家标准食品添加剂酸式焦磷酸钙 GB1886.327-2021食品安全国家标准食品添加剂 磷酸三钾  GB1886.328-2021食品安全国家标准食品添加剂 焦磷酸二氢二钠 GB1886.329-2021食品安全国家标准食品添加剂 磷酸氢二钠 GB 1886.330-2021食品安全国家标准食品添加剂 磷酸二氢铵 GB1886.331-2021食品安全国家标准食品添加剂 磷酸氢二铵 GB1886.332-2021食品安全国家标准食品添加剂 磷酸三钙 GB1886.333-2021食品安全国家标准食品添加剂 磷酸二氢钙 GB1886.334-2021食品安全国家标准食品添加剂 磷酸氢二钾 GB1886.335-2021食品安全国家标准食品添加剂 三聚磷酸钠 GB1886.336-2021食品安全国家标准食品添加剂 磷酸二氢钠 GB1886.337-2021食品安全国家标准食品添加剂 磷酸二氢钾 GB1886.338-2021食品安全国家标准食品添加剂 磷酸三钠 GB1886.339-2021食品安全国家标准食品添加剂 焦磷酸钠 GB1886.340-2021食品安全国家标准食品添加剂 焦磷酸四钾 GB1886.341-2021食品安全国家标准食品添加剂 二氧化钛 GB1886.342-2021食品安全国家标准食品添加剂 硫酸铝铵 GB1886.343-2021食品安全国家标准 食品添加剂 L-苏氨酸 GB1886.344-2021食品安全国家标准食品添加剂DL-丙氨酸 GB1886.345-2021食品安全国家标准食品添加剂桑椹红 GB1886.346-2021食品安全国家标准食品添加剂柑橘黄 GB1886.347-2021食品安全国家标准食品添加剂4-氨基-5,6-二甲基噻吩并[2,3-d]嘧啶-2(1H)-酮盐酸盐 GB1886.348-2021食品安全国家标准食品添加剂焦磷酸一氢三钠 GB31651-2021食品安全国家标准 餐(饮)具集中消毒卫生规范 GB31652-2021食品安全国家标准 即食鲜切果蔬加工卫生规范 GB31653-2021食品安全国家标准 食品中黄曲霉毒素污染控制规范 GB31654-2021食品安全国家标准 餐饮服务通用卫生规范 GB12456-2021食品安全国家标准 食品中总酸的测定 GB31604.51-2021食品安全国家标准 食品接触材料及制品1,4-丁二醇迁移量的测定 GB31604.52-2021食品安全国家标准 食品接触材料及制品芳香族伯胺迁移量的测定 GB31655-2021食品安全国家标准 哺乳动物体内碱性彗星试验 GB1886.47-2016《食品安全国家标准食品添加剂天门冬酰苯丙氨酸甲酯(又名阿斯巴甜)》第1号修改单 GB 1886.103-2015《食品安全国家标准食品添加剂微晶纤维素》第1号修改单 GB1886.169-2016《食品安全国家标准食品添加剂卡拉胶》第1号修改单 GB2762-2017《食品安全国家标准食品中污染物限量》第1号修改单
  • 老板再也不用担心我的多肽合成 ---来阿拉丁一站式购齐所需试剂和容器
    ALADDIN的优势多肽在基础生理学、生物化学和医药研究,尤其是医药行业新药筛选中起关键作用,新的短链肽和模拟肽在新药研发中为新药提供了较强的生物活性和蛋白酶水解抗性。短肽还可以作为分子探针,更好的阐述生物系统的功能。因此肽合成在化学生物学领域所占份额越来越大。阿拉丁为你提供高质固相和液相肽合成的一站式服务,包括带有Fmoc、Boc和Cbz保护基团的天然或非天然氨基酸合成砌块、偶联试剂、预装树脂、Linker、N-保护试剂。产品列表多肽固相合成管固相多肽合成预装树脂N-保护试剂耦合试剂Fmoc修饰的氨基酸及氨基酸衍生物列表Boc修饰的氨基酸及氨基酸衍生物列表更多相关产品耗材产品列表多肽固相合成管货号品名包装容量外径螺纹口砂板孔隙度P3597-01-1EAP3597-01 多肽固相合成管1个25ml25mm25G2P3597-02-1EAP3597-02 多肽固相合成管1个25ml25mm25G3 试剂产品列表固相多肽合成预装树脂货号品名规格包装 A116077Fmoc-Arg(Pbf)-Wang resin100-200 mesh, 1%DVB1g,5g,25g A116080Fmoc-Asn(Trt)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.41g,5g,25g A116082Fmoc-Asp(OtBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.1g,5g,25g A118255Fmoc-氨基酸-王树脂100-200 mesh, 1%DVB,Substitution 0.3-0.8mmol/g5g,25g A118270AminoMethyl Polystyrene Resin0.5~1.5mmol/g, 100~200 mesh5g,25g,100g C110262氯甲基化聚苯乙烯树脂1% DVB交联 1.0~1.24mmol/g , 100~200 mesh, 1% DVB5g,25g,100g C1182692-Chlorotrityl Chloride Resin0.8-1.5mmol/g, 100~200 mesh5g,25g,100g G116092Fmoc-Glu(OtBu)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.1g,5g G116094Fmoc-Gly-Wang resin100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116104Fmoc-Leu-王氏树脂100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116107Fmoc-Lys(Boc)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-1g,5g,25g M118256Fmoc-Met-王氏树脂100-200 mesh, 1%DVB,Substitution 0.3-0.1g,5g,25g M118275MBHA Resin0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g P118257Fmoc-D-Phe-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.5g,25g P118258Fmoc-Phe(4-Cl)-Wang resin100-200 mesh, 1%DVB1g,5g,25g P118261Fmoc-Pro-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.8m5g,25g R118279Rink Amide-AM Resin 0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g R118280聚合物键合型 Rink 酰胺 4-甲基二苯甲胺0.3~0.8mmol/g, 100~2001g,5g,25g S118282Sieber 酰胺树脂0.3~0.8mmol/g, 100~200 mesh, 1% DVB5g,25g,100g T118264Fmoc-Thr(tBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.31g,5g,25g T118267Fmoc-Tyr(tBu)-Wang resin100-200 mesh, 1%DVB,Substitution 0.5g,25g T118281Fmoc-Threoninol(tBu) DHP HM Resin 0.3~0.8mmol/g, 100~200 mes5g,25g V118268Fmoc-Val-Wang resin100-200 mesh, 1%DVB,Substitution 0.3-0.85g,25gN-保护试剂氨基保护是合成化学和肽合成中必须部分,有效的保护基团可以从合成的化合物易于添加和除去。货号品名规格cas号包装 B105737氯甲酸苄酯 96%,含约 0.1% 碳酸钠稳定剂501-53-125g,100g,500g,2.5kg D106158二碳酸二叔丁酯 98%24424-99-525g,100g,500g,1kg D106159二碳酸二叔丁酯 99%24424-99-525g,100g,1kg D106160二碳酸二叔丁酯 96%24424-99-5100g,500g F1061739-芴甲基-N-琥珀酰亚胺基碳酸酯 98%82911-69-15g,25g,100g F113338芴甲氧羰酰胺 99%84418-43-95g,25g,100g I105738氯甲酸异丁酯 98%543-27-125g,100g,500g耦合试剂由于肽合成中较低的消旋化是固相肽合成的一个关键指标,阿拉丁为你提供各种高质量偶联试剂,包括碳化二亚胺、脲类和磷型的偶联试剂,可以快速、有效和无消旋的缩合货号品名规格cas号包装 A1133452-(7-氮杂苯并三氮唑)-N,N,N' ,N' -四甲基脲四氟硼酸盐 98%873798-09-55g,25g,100g B106161卡特缩合剂 98%56602-33-65g,25g,100g,500g B1093122-溴-1-乙基吡啶四氟硼酸盐 98%878-23-95g,25g B113336溴代三(二甲基氨基)磷鎓六氟磷酸盐 98%50296-37-21g,5g,25g B113343三吡咯烷基溴化鏻六氟磷酸盐 98%132705-51-21g C109314N,N' -羰基二咪唑 &ge 97.0% (T)530-62-12.5kg,25g,100g,500g C109315N,N' -羰基二咪唑 99%530-62-11kg C113337N,N' -羰基二(1,2,4-三氮唑) 96%41864-22-65g,25g,100g H1061761-羟基苯并三唑一水合物 &ge 97.0%123333-53-925g,100g,250g,500g H1061773-羟基-1,2,3-苯并三嗪-4(3H)-酮 98%28230-32-25g,25g,100g H106354N-羟基邻苯二甲酰亚胺 98%524-38-92.5kg,25g,100g,500g H1093281-羟基-7-偶氮苯并三氮唑 99%39968-33-75g,25g,100g,500g H109329N-羟基-5-降冰片稀-2,3-二酰亚胺 99%21715-90-210g,50g,250gH109330N-羟基琥珀酰亚胺 98%6066-82-62.5kg,25g,100g,500g H109337N-羟基硫代琥珀酰亚胺 钠盐 98%106627-54-71g,5g,25g N102772N-琥珀酰亚胺基-N-甲基氨基甲酸酯 97%18342-66-05g,25g N113351TNTU 98%125700-73-41g,5g,25g,100g C113347多肽试剂TCTU 98%330641-16-25g,25g,100g C1171602-氯-1,3-二甲基咪唑六氟磷酸盐 98%101385-69-71g,5g,25g D1028482-(2-吡啶酮-1-基)-1,1,3,3-四甲基脲四氟硼酸盐 99%125700-71-21g,5g,25g D106162N,N' -二异丙基碳二酰亚胺(DIC) 98%693-13-010ml,25ml,100ml,500ml D106171N,N' -琥珀酰亚胺基碳酸酯 98%74124-79-15g,25g,100g D106284N,N-二甲基丙烯基脲(DMPU) 99%7226-23-525g,100g,500g D109331二吡咯烷基(N-琥珀酰亚氨氧基)碳六氟磷酸盐 98%207683-26-91g,5g,25g O113352TOTT 98%255825-38-85g,25g,100g P1091051-苯基-3-甲基-5-吡唑啉酮 99%89-25-82.5kg,100g,500g W111795伍德沃德氏试剂K 98%4156-16-51gFmoc修饰的氨基酸及氨基酸衍生物列表货号品名规格cas号包装 A107817Fmoc-L-天冬氨酸 4-烯丙酯 98%146982-24-31g,5g,25g A140203N-Fmoc-8-氨基辛酸 &ge 98.0%(HPLC)126631-93-41g,5g B116715N-Boc-N' -Fmoc-D-赖氨酸 97%115186-31-75g,25g B121679N-Boc-顺式-4-Fmoc-氨基-L-脯氨酸 97%174148-03-91g,5g C115874FMOC-&beta -环己基-L-丙氨酸 98%135673-97-11g,5g,25g C115932Fmoc-Cys(Mbzl)-OH 98%136050-67-41g,5g,25g D115880N&alpha -Fmoc-L-2,3-二氨基丙酸 97%181954-34-71g,5g,25g F100409Fmoc-S-三苯甲基-L-半胱氨酸 98%103213-32-75g,25g F100413Fmoc-O-叔丁基-L-谷氨酸 98%71989-18-95g,25g F100419Fmoc-L-谷氨酸 98%121343-82-65g,25g F100746N-Fmoc-N' -Boc-L-鸟氨酸 96%109425-55-01g,5g,25g F100759Fmoc-Val-OSu 97%130878-68-15g,25g F100801Fmoc-L-天冬氨酸 98%119062-05-41g,5g,25g,100g F100805Fmoc-L-缬氨酸 98%68858-20-85g,25g,100g F100808Fmoc-L-亮氨酸 98%35661-60-05g,25g,100g F101115FMOC-L-炔丙基甘氨酸 98%198561-07-81g,5g,250mg F101121FMOC-D-炔丙基甘氨酸 96%220497-98-31g,250mg F101195Fmoc-D-烯丙基甘氨酸 96%170642-28-11g,250mgF101202FMOC-D-3-(4-吡啶基)-丙氨酸 98%205528-30-91g,5g F101214Fmoc-3-(3-吡啶基)-L-丙氨酸 98%175453-07-31g,5g,250mg F101220FMOC-L-3-(2-吡啶基)-丙氨酸 97%185379-40-21g,250mg F101223FMOC-D-3-(2-吡啶基)-丙氨酸 98%185379-39-91g,5g F101459Fmoc-2-氨基异丁酸 97%94744-50-05g,25g F101574FMOC-L-4-甲基苯丙氨酸 98%199006-54-71g,250mg F101598FMOC-L-3-甲基苯丙氨酸 98%211637-74-01g,250mg F101600FMOC-D-3-甲基苯丙氨酸 98%352351-64-51gBoc修饰的氨基酸及氨基酸衍生物列表td style="padding-left: 12px "98%货号品名规格cas号包装 B100726BOC-O-苄基-L-酪氨酸 98%2130-96-35g,25g,100g B100799Boc-L-谷氨酰胺 98%13726-85-75g,25gB101207BOC-D-3-(3-吡啶基)-丙氨酸 98%98266-33-21g,5g,250mg B101451BOC-D-丙氨酸 98%7764-95-65g,25g B101478Boc-D-酪氨酸 70642-86-31g,5g,25g,100g B101548BOC-L-4-甲基苯丙氨酸 98%80102-26-71g,5g,250mg B101595BOC-L-3-甲基苯丙氨酸 98%114873-06-21g,5g B101597BOC-D-3-甲基苯丙氨酸 98%114873-14-21g,5g B101616BOC-L-2-甲基苯丙氨酸 98%114873-05-11g B101623BOC-D-2-甲基苯丙氨酸 98%80102-29-01g B101627BOC-D-4-溴苯丙氨酸 98%79561-82-31g B101633BOC-L-2-溴苯丙氨酸 98%261165-02-0500mg B101661BOC-L-3,4-二氯苯丙氨酸 98%80741-39-51g,5g,250mg B101686BOC-L-2-氯苯丙氨酸 98%114873-02-81g,5g B101696BOC-D-2-氯苯丙氨酸 98%80102-23-45g B102424Boc-L-脯氨酸酰胺 97%35150-07-31g,5g B102427N-BOC-L-苯丙氨醛 97%72155-45-41g,250mg B102428Boc-L-脯氨醛 97%69610-41-91g,5g B1024361-(Boc-氨基)环戊烷羧酸 98%35264-09-61g,5g B102447N(&alpha )-Boc-L-2,3-二氨丙酸 97%73259-81-11g,5g B102996BOC-L-异亮氨酸 99%13139-16-75g,25g,100g B103072N-Boc-N' -Cbz-L-赖氨酸 98%2389-45-95g,25g,100g B103084N-Boc-4-氧-L-脯氨酸甲酯 97%102195-80-21g,5g,250mg B103160(S)-N-BOC-4-溴苯丙氨酸 98%62129-39-91g,5g,25g更多产品请访问阿拉丁官网
  • 可口可乐旗下健怡可乐被指存致癌风险
    美国消费者倡导组织&mdash &mdash 公共利益科学中心(CSPI)近日发表公开信,呼吁格莱美获得者、美国女歌手泰勒· 斯威夫特停止为健怡可乐代言。而理由是,可口可乐公司旗下的健怡可乐(diet coke)中含有人工甜味剂&mdash &mdash 阿斯巴甜(aspartame)。这种添加剂在经过实验后被发现,对动物具有致癌性。   今晨,这封公开信的执笔人、美国公益科学中心主任迈克尔· F· 雅各布森先生接受《法制晚报》记者采访时表示,从一些人的角度来看,健怡可乐的确比一般可乐&ldquo 健康&rdquo ,但可能有着令他最为担心的危害&mdash &mdash 致癌。   公开喊话   别&ldquo 忽悠&rdquo 粉丝痛饮   目前美国公益科学中心已经向斯威夫特致以公开信,信中称相对于普通的可乐而言,健怡可乐的确更不易让人患上糖尿病、心脏病和肥胖病。但这种添加了阿斯巴甜的饮品,却可能让人患上其他的严重疾病。   这封公开信指出:&ldquo 你(斯威夫特)代言的产品,在你数以百万计的粉丝面前具有非常大的分量,我很欣赏你在慈善事业上的投入,特别是你对一些与癌症相关的慈善机构的支持&rdquo 。&ldquo 不过你的代言却让更多的人开始喝健怡可乐,或让他们喝得更频繁,所以你的代言很可能让你的粉丝患上癌症。即使这个风险较小,但我们还是觉得你不应该拿自己的名字、形象、声誉去代言任何一款会增加患癌几率的产品。&rdquo   据该组织介绍,斯威夫特从2013年1月开始担任健怡可乐的形象大使,当时在youtube上有她的推广视频。而在视频中,她还让粉丝给健怡可乐的Facebook页面点&ldquo 赞&rdquo 。而在2014年10月,健怡可乐推出由斯威夫特和几十只小猫主演的一个广告,斯威夫特还把这个广告链接分享给自己的社交网络Twitter上的粉丝,而她的Twitter粉丝数量为5000万。据社交媒体市场调研公司的统计,在这些粉丝中,有三分之一是16岁或16岁以下的年轻人。   对话笔者 为什么呼吁停止代言?   雅各布森告诉本报记者,斯威夫特是一名非常棒的歌手,她拥有非常多的粉丝。但是因为为健怡可乐代言,她也成了阿斯巴甜的最大&ldquo 消费推手&rdquo 。   雅各布森表示,现在的名人可以自由地赞同任何一个东西,但像斯威夫特这样拥有高知名度的明星,应该有一个更高的标准来&ldquo 适度挑剔&rdquo 一下代言的产品。她们不应该用自己的影响力,来代言那些垃圾食品。这对其粉丝,尤其是孩子会造成很不好的影响。   阿斯巴甜能够致癌?   雅各布森说,阿斯巴甜是由两种氨基酸和甲醇通过化学合成的手段制成。虽然这种添加剂通过了美国卫生部的允许,但现有的实验结果还是证明,阿斯巴甜会使实验用的老鼠患上癌症。   而现在科学界普遍赞同的是,如果一种化学添加剂会使动物致癌,那它很可能会对人类有相似的作用。   都有哪些&ldquo 致病&rdquo 证据?   到目前为止,已经有3项独立的测试证明了阿斯巴甜的危害性。雅各布森说,去年,5名美国科学家研究了阿斯巴甜对于大老鼠和小老鼠的影响。   而在研究后发现,阿斯巴甜能让大老鼠们患上淋巴瘤、白血病、肾肿瘤和乳腺癌。而许多进行实验的小老鼠,则患上了肝癌和肺癌。   &ldquo 这是非常可怕的事情,这一切很可能会在人类身上发生。&rdquo 雅各布森说,不过,目前研究尚未发现何种类型的人最容易受这个添加剂影响。   它还在哪些产品中存在?   在美国,很多的软饮料里都含有这种人造甜味剂。除了健怡可乐之外,较为著名的还有百事可乐公司的轻怡可乐。   雅各布森说,现在,饮用健怡可乐可能是全世界人最容易接触阿斯巴甜的方式。   已显现出了怎样的影响?   雅各布森最后告诉记者,现在对包括美国、中国在内的许多国家而言,肥胖是一个非常严重的问题,而过度饮用可乐是导致这一现象的其中一个原因,因为普通可乐中含有大量的糖分,所以人们应尽量少饮用可乐。   目前公共利益科学中心已经敦促企业应该不向食品中添加阿斯巴甜,也建议消费者不要饮用健怡可乐。但要让消费者真正远离含有阿斯巴甜的饮品,雅各布森认为卫生部门应该禁止企业在食品中添加阿斯巴甜。   追访专家   人工合成添加剂   特殊人群不能食用   阿斯巴甜,是一种非碳水化合物类的人造甜味剂。因其甜味高和热量低,主要添加于饮料、维他命含片或口香糖中代替糖的使用。   今天上午,国家二级公共营养师谷传玲告诉法晚记者,阿斯巴甜本身并不会对人体造成很大伤害,但是由于它是一种人工合成的添加剂,生产过程中可能会产生有害物质,这也很可能是致病的罪魁祸首。   谷传玲提醒,只要是人工合成的添加剂,就算本身足够安全,但因为是人工合成,过量使用也会导致不良反应。因为阿斯巴甜在消化后会产生苯丙氨酸,所以苯丙酮尿症的患者不能食用阿斯巴甜,因为这样会造成患者体内苯丙氨酸无法代谢,从而导致疾病。
  • 上新福利!爱必信新品活性&含量检测试剂盒
    好消息!好消息! 爱必信活性&含量检测试剂盒上新啦! 本次上新包含200余个酶活性及小分子含量检测试剂盒,覆盖常见酶类如蛋白酶、激酶、连接酶、代谢酶类、凋亡相关酶类等100余种,以及金属离子、糖类、脂类、酸类、酮类、氨类、维生素类等100余种常见生物相关小分子,总有一款适合您! 我们的试剂盒支持多种样本类型,含血清, 血浆, 尿液, 唾液, 乳汁, 细胞培养上清, 组织提取物, 细胞裂解液, 其他生物液体样本等,或者食品, 果汁, 饮料, 其他农产品,动物饲料, 酶制剂, 面包改良剂混合物, 其他材料等。 本次上新福利,限时支持8折优惠,截止2021年5月31日,机会不容错过。产品信息:更多请点击》》货号英文名称中文名称abs580001Acid Phosphatase Microplate Assay Kit酸性磷酸酶 (ACP)abs580002Alanine Transaminase Microplate Assay Kit谷丙转氨酶 (ALT)abs580003Alkaline Phosphatase Microplate Assay Kit碱性磷酸酶 (ALP)abs580004Aspartate Transaminase Microplate Assay Kit谷草转氨酶 (AST)abs580005Glutamate Microplate Assay Kit谷氨酸abs580006Glutathione Microplate Assay Kit谷胱甘肽abs580007Lactate Dehydrogenase Microplate Assay Kit乳酸脱氢酶abs580008NAD/NADH Microplate Assay Kit辅酶ⅠNAD(H)abs580009NADP/NADPH Microplate Assay Kit辅酶ⅡNADP(H)abs580010Superoxide Dismutase Microplate Assay Kit超氧化物歧化酶 (SOD)abs580011Malondialdehyde Microplate Assay Kit丙二醛 (MDA)abs580012Hydrogen Peroxide Microplate Assay Kit过氧化氢 (H2O2)abs580013Polyphenol Oxidase Microplate Assay Kit多酚氧化酶abs580014Nitrate Reductase Microplate Assay Kit硝酸还原酶abs580015Trehalase Microplate Assay Kit海藻糖酶abs580016Pyruvate Microplate Assay Kit丙酮酸abs580017NADPase Microplate Assay KitNADP磷酸酶abs580018Phenylalanine ammonia-lyase Microplate Assay Kit苯丙氨酸解氨酶abs580019Na+/K+ ATPase Microplate Assay KitNa+K+-ATP酶abs580020Ca2+/Mg2+ ATPase Microplate Assay KitCa2+Mg2+-ATP酶abs580021Glutamine Synthetase Microplate Assay Kit谷氨酰胺合成酶 (GS)abs580022Starch Microplate Assay Kit淀粉abs580023Alpha-Amylase Microplate Assay Kitα-淀粉酶abs580024Beta-Amylase Microplate Assay Kitβ-淀粉酶abs580025Glucose Microplate Assay Kit葡萄糖abs580026Acid Invertase Microplate Assay Kit酸性转化酶abs580027Neutral Invertase Microplate Assay Kit中性转化酶abs580028Beta-1,3-Glucanase Microplate Assay Kitβ-1,3葡聚糖酶abs580029Trehalose Microplate Assay Kit海藻糖abs580030NADPH-Cytochrome c Reductase Microplate Assay KitNADPH-细胞色素C还原酶 Absin特色产品线(全部现货):WB相关:ECL发光液、预染marker、预制胶;IHC相关:二抗试剂盒、组化笔;IP/CoIP试剂盒;激动剂/抑制剂;血清、BSA、蛋白酶K、CTB、TTX、CEE;凋亡试剂盒;呼吸爆发试剂盒;ELISA试剂盒;重组蛋白;抗体: 二抗、标签抗体、对照抗体;定制服务(抗体/多肽/蛋白/标记/检测)... 爱必信(上海)生物科技有限公司联系邮箱:info@absin.cn公众平台:爱必信生物
  • 质检总局公布我国最新食品添加剂标准目录
    国家质检总局7月26日消息,我国最新的食品添加剂标准目录公布,详细见下表: 食品添加剂品种名称 标准名称 备注 1.食品添加剂 柠檬酸 GB 1987-2007 食品添加剂 柠檬酸   2.食品添加剂 乳酸 GB 2023-2003 食品添加剂 乳酸   3.食品添加剂 dl-酒石酸 GB 15358-2008 食品添加剂 dl-酒石酸   4.食品添加剂 L(+)-酒石酸 GB 25545-2010 食品添加剂 L(+)-酒石酸 卫生部公告2010年第19号 5.食品添加剂 L-苹果酸 GB 13737-2008 食品添加剂 L-苹果酸   6.食品添加剂 DL-苹果酸 GB 25544-2010 食品添加剂 DL-苹果酸 卫生部公告2010年第19号 7.食品添加剂 冰乙酸(冰醋酸) GB 1903-2008 食品添加剂 冰乙酸(冰醋酸)   8.食品添加剂 碳酸钾 GB 25588-2010 食品添加剂 碳酸钾 卫生部公告2010年第19号 9.食品添加剂 柠檬酸钾 GB 14889-1994 食品添加剂 柠檬酸钾   10.食品添加剂 柠檬酸钠 GB 6782-2009 食品添加剂 柠檬酸钠   11.食品添加剂 富马酸 GB 25546-2010 食品添加剂 富马酸 卫生部公告2010年第19号 12.食品添加剂 磷酸三钾 GB 25563-2010 食品添加剂 磷酸三钾 卫生部公告2010年第19号 13.食品添加剂 碳酸氢三钠(倍半碳酸钠) GB 25586-2010 食品添加剂 碳酸氢三钠(倍半碳酸钠) 卫生部公告2010年第19号 14.食品添加剂 盐酸 GB 1897-2008 食品添加剂 盐酸   15.食品添加剂 氢氧化钠 GB 5175-2008 食品添加剂 氢氧化钠   16.食品添加剂 碳酸钠 GB 1886-2008 食品添加剂 碳酸钠   17.食品添加剂 氢氧化钙 GB 25572-2010 食品添加剂 氢氧化钙 卫生部公告2010年第19号 18.食品添加剂 氢氧化钾 GB 25575-2010 食品添加剂 氢氧化钾 卫生部公告2010年第19号 19.食品添加剂 碳酸氢钾 GB 25589-2010 食品添加剂 碳酸氢钾 卫生部公告2010年第19号 20.食品添加剂 磷酸二氢钾 GB 25560-2010 食品添加剂 磷酸二氢钾 卫生部公告2010年第19号 21.食品添加剂 磷酸三钠 GB 25565-2010 食品添加剂 磷酸三钠 卫生部公告2010年第19号 22.食品添加剂 磷酸二氢钙 GB 25559-2010 食品添加剂 磷酸二氢钙 卫生部公告2010年第19号 23.食品添加剂 磷酸氢钙 GB 1889-2004食品添加剂 磷酸氢钙   24.食品添加剂 焦磷酸二氢二钠 GB 25567-2010 食品添加剂 焦磷酸二氢二钠 卫生部公告2010年第19号 25.食品添加剂 焦磷酸钠 GB 25557-2010 食品添加剂 焦磷酸钠 卫生部公告2010年第19号 26.食品添加剂 乳酸钠(溶液) GB 25537-2010 食品添加剂 乳酸钠(溶液) 卫生部公告2010年第19号 27.食品添加剂 磷酸 GB 3149-2004 食品添加剂 磷酸   28.食品添加剂 六偏磷酸钠 GB 1890-2005 食品添加剂 六偏磷酸钠   29.食品添加剂 硫酸钙 GB 1892-2007 食品添加剂 硫酸钙   30.食品添加剂 乳酸钙 GB 6226-2005 食品添加剂 乳酸钙   31.食品添加剂 L-乳酸钙 GB 25555-2010 食品添加剂 L-乳酸钙 卫生部公告2010年第19号 32.食品添加剂 磷酸三钙 GB 25558-2010 食品添加剂 磷酸三钙卫生部公告2010年第19号 33.食品添加剂 柠檬酸一钠 食品添加剂 柠檬酸一钠 卫生部公告2011年第8号指定标准 34.食品添加剂 亚铁氰化钾(黄血盐钾) GB 25581-2010 食品添加剂 亚铁氰化钾(黄血盐钾) 卫生部公告2010年第19号 35.食品添加剂 二氧化硅 GB 25576-2010 食品添加剂 二氧化硅 卫生部公告2010年第19号 36.食品添加剂 硅铝酸钠 GB 25583-2010 食品添加剂 硅铝酸钠 卫生部公告2010年第19号 37.食品添加剂 滑石粉 GB 25578-2010 食品添加剂 滑石粉 卫生部公告2010年第19号 38.食品添加剂 微晶纤维素 食品添加剂 微晶纤维素 卫生部公告2011年第8号指定标准 39.食品添加剂 叔丁基-4-羟基茴香醚 GB1916-2008 食品添加剂 叔丁基-4-羟基茴香醚   40.食品添加剂 二丁基羟基甲苯(BHT) GB 1900-2010 食品添加剂 二丁基羟基甲苯(BHT) 卫生部公告2010年第19号 41.食品添加剂 没食子酸丙酯 GB 3263-2008食品添加剂 没食子酸丙酯   42.食品添加剂 茶多酚 QB 2154-1995(2009)食品添加剂 茶多酚   43.食品添加剂 植酸(肌醇六磷酸) HG 2683—1995(2007)食品添加剂 植酸(肌醇六磷酸)   44.食品添加剂 特丁基对苯二酚 GB 26403-2011食品添加剂 特丁基对苯二酚 卫生部公告2011年第7号 45.食品添加剂 甘草抗氧物 QB 2078-1995(2009)食品添加剂 甘草抗氧物   46.食品添加剂 抗坏血酸钙 GB 15809-1995食品添加剂 抗坏血酸钙   47.食品添加剂 L-抗坏血酸棕榈酸酯 GB 16314-1996食品添加剂 L-抗坏血酸棕榈酸酯 食品添加剂 抗坏血酸棕榈酸酯 卫生部公告2011年第8号指定标准 48.食品添加剂 迷迭香提取物 QB/T 2817-2006食品添加剂 迷迭香提取物   49.食品添加剂 D-异抗坏血酸钠 GB 8273-2008食品添加剂 D-异抗坏血酸钠   50.食品添加剂 D-异抗坏血酸 GB 22558-2008食品添加剂 D-异抗坏血酸   51.食品添加剂 抗坏血酸钠 GB 16313-1996食品添加剂 抗坏血酸钠   52.食品添加剂 维生素E(dl-a-醋酸生育酚) GB 14756-2010食品添加剂 维生素E(dl-a-醋酸生育酚) 卫生部公告2010年第19号 53.食品添加剂 山梨酸 GB 1905-2000食品添加剂 山梨酸   54.食品添加剂 山梨酸钾 GB 13736-2008食品添加剂 山梨酸钾   55.食品添加剂 羟基硬脂精(氧化硬脂精) 食品添加剂 羟基硬脂精(氧化硬脂精) 卫生部公告2011年第8号指定标准 56.食品添加剂 硫代二丙酸二月桂酯 食品添加剂 硫代二丙酸二月桂酯 卫生部公告2011年第8号指定标准 57.食品添加剂 连二亚硫酸钠(保险粉) GB 22215-2008食品添加剂 连二亚硫酸钠(保险粉)   58.食品添加剂 焦亚硫酸钠 GB 1893-2008食品添加剂 焦亚硫酸钠   59.食品添加剂 无水亚硫酸钠 GB 1894-2005食品添加剂 无水亚硫酸钠   60.食品添加剂 焦亚硫酸钾 GB 25570-2010 食品添加剂 焦亚硫酸钾 卫生部公告2010年第19号 61.食品添加剂 亚硫酸氢钠 GB 25590-2010 食品添加剂 亚硫酸氢钠 卫生部公告2010年第19号 62.食品添加剂 硫磺 GB 3150—2010 食品添加剂 硫磺 卫生部公告2010年第19号 63.食品添加剂 碳酸氢铵 GB 1888-2008食品添加剂 碳酸氢铵   64.食品添加剂 酒石酸氢钾 GB 25556-2010 食品添加剂 酒石酸氢钾 卫生部公告2010年第19号 65.食品添加剂 复合膨松剂 GB 25591-2010 食品添加剂 复合膨松剂 卫生部公告2010年第19号 66.食品添加剂 硫酸铝钾 GB 1895-2004食品添加剂 硫酸铝钾   67.食品添加剂 硫酸铝铵 GB 25592-2010 食品添加剂 硫酸铝铵 卫生部公告2010年第19号 68.食品添加剂 羟丙基淀粉醚 QB 1229-1991(2009)食品添加剂 羟丙基淀粉醚   69.食品添加剂 山梨糖醇液 GB 7658-2005食品添加剂 山梨糖醇液   70.食品添加剂 聚葡萄糖 GB 25541-2010 食品添加剂 聚葡萄糖 卫生部公告2010年第19号 71.食品添加剂 碳酸氢钠 GB 1887-2007食品添加剂 碳酸氢钠   72.食品添加剂 碳酸钙 GB 1898-2007食品添加剂 碳酸钙   73.食品添加剂 碳酸镁 GB 25587-2010 食品添加剂 碳酸镁 卫生部公告2010年第19号 74.食品添加剂 偶氮甲酰胺 食品添加剂 偶氮甲酰胺 卫生部公告2011年第8号指定标准 75.食品添加剂 苋菜红 GB 4479.1—2010 食品添加剂 苋菜红 卫生部公告2010年第19号 76.食品添加剂 苋菜红铝色淀 GB 4479.2-2005食品添加剂 苋菜红铝色淀   77.食品添加剂 胭脂红 GB 4480.1-2001食品添加剂 胭脂红   78.食品添加剂 胭脂红铝色淀 GB 4480.2-2001食品添加剂 胭脂红铝色淀   79.食品添加剂 柠檬黄 GB 4481.1—2010 食品添加剂 柠檬黄 卫生部公告2010年第19号 80.食品添加剂 柠檬黄铝色淀 GB 4481.2—2010 食品添加剂 柠檬黄铝色淀 卫生部公告2010年第19号 81.食品添加剂 日落黄 GB 6227.1—2010 食品添加剂 日落黄 卫生部公告2010年第19号 82.食品添加剂 日落黄铝色淀 GB 6227.2-2005食品添加剂 日落黄铝色淀   83.食品添加剂 亮蓝 GB 7655.1-2005食品添加剂 亮蓝   84.食品添加剂 亮蓝铝色淀 GB 7655.2-2005食品添加剂 亮蓝铝色淀   85.食品添加剂 新红 GB 14888.1-2010 食品添加剂 新红 卫生部公告2010年第19号 86.食品添加剂 新红铝色淀 GB 14888.2-2010 食品添加剂 新红铝色淀 卫生部公告2010年第19号 87.食品添加剂 诱惑红 GB 17511.1-2008食品添加剂 诱惑红   88.食品添加剂 诱惑红铝色淀 GB 17511.2-2008食品添加剂 诱惑红铝色淀   89.食品添加剂 赤藓红 GB 17512.1-2010 食品添加剂 赤藓红 卫生部公告2010年第19号 90.食品添加剂 赤藓红铝色淀 GB 17512.2-2010 食品添加剂 赤藓红铝色淀 卫生部公告2010年第19号 91.食品添加剂 β-胡萝卜素 GB 8821—2010 食品添加剂 β-胡萝卜素 卫生部公告2010年第19号 92.食品添加剂 天然β-胡萝卜素 QB 1414-1991(2009)食品添加剂 天然β-胡萝卜素   93.食品添加剂 甜菜红 QB/T 3791-1999(2009)食品添加剂 甜菜红   94.食品添加剂 紫胶红色素 GB 4571—1996食品添加剂 紫胶红色素   95.食品添加剂 辣椒红 GB 10783-2008食品添加剂 辣椒红   96.食品添加剂 焦糖色(亚硫酸铵法、氨法、普通法) GB 8817-2001食品添加剂 焦糖色(亚硫酸铵法、氨法、普通法)   97.食品添加剂 红米红 GB 25534-2010 食品添加剂 红米红 卫生部公告2010年第19号 98.食品添加剂 栀子黄 GB 7912-2010 食品添加剂 栀子黄 卫生部公告2010年第19号 99.食品添加剂 菊花黄 QB 3792-1999(2009)食品添加剂 菊花黄   100.食品添加剂 黑豆红 QB 3793-1999(2009)食品添加剂 黑豆红   101.食品添加剂 高粱红 GB 9993-2005食品添加剂 高粱红   102.食品添加剂 可可壳色素 GB 8818-2008食品添加剂 可可壳色素   103.食品添加剂 红曲米(粉) GB 4926-2008食品添加剂 红曲米(粉)   104.食品添加剂 红曲红 GB 15961-2005食品添加剂 红曲红   105.食品添加剂 天然苋菜红 QB 1227-1991(2009)食品添加剂 天然苋菜红   106.食品添加剂 姜黄色素 QB 1415-1991(2009)食品添加剂 姜黄色素   107.食品添加剂 叶绿素铜钠盐 GB 26406-2011 食品添加剂 叶绿素铜钠盐 卫生部公告2011年第7号 108.食品添加剂 萝卜红 GB 25536-2010 食品添加剂 萝卜红 卫生部公告2010年第19号 109.食品添加剂 二氧化钛 GB 25577-2010 食品添加剂 二氧化钛 卫生部公告2010年第19号 110.食品添加剂 蔗糖脂肪酸酯 食品添加剂 蔗糖脂肪酸酯 GB 8272-2009食品添加剂 蔗糖脂肪酸酯   食品添加剂 蔗糖脂肪酸酯(丙二醇法) GB 10617-2005食品添加剂 蔗糖脂肪酸酯(丙二醇法)   食品添加剂 蔗糖脂肪酸酯(无溶剂法) QB 2245-1996(2009)食品添加剂 蔗糖脂肪酸酯(无溶剂法)   111.食品添加剂 酪蛋白酸钠 QB/T 3800-1999(2009)食品添加剂 酪蛋白酸钠(原GB 10797-89)   112.食品添加剂 蒸馏单硬脂酸甘油酯 GB 15612-1995 食品添加剂 蒸馏单硬脂酸甘油酯   113.食品添加剂 山梨醇酐单硬脂酸酯(司盘60) GB 13481-2010 食品添加剂 山梨醇酐单硬脂酸酯(司盘60) 卫生部公告2010年第19号 114.食品添加剂 山梨醇酐单油酸酯(司盘80) GB 13482-2010 食品添加剂 山梨醇酐单油酸酯(司盘80) 卫生部公告2010年第19号 115.食品添加剂 单、双硬脂酸甘油酯 GB 1986-2007食品添加剂 单、双硬脂酸甘油酯   116.食品添加剂 辛癸酸甘油酯 QB 2396-1998(2009)食品添加剂 辛癸酸甘油酯   117.食品添加剂 聚氧乙烯木糖醇酐单硬脂酸脂 QB/T 3790-1999(2009)食品添加剂 聚氧乙烯木糖醇酐单硬脂酸脂   118.食品添加剂 木糖醇酐单硬脂酸酯 QB/T 3784-1999(2009)食品添加剂 木糖醇酐单硬脂酸酯   119.食品添加剂 改性大豆磷脂LS/T 3225-1990食品添加剂 改性大豆磷脂(原GB 12486-90)   120.食品添加剂 山梨醇酐单月桂酸酯(司盘20) GB 25551-2010 食品添加剂 山梨醇酐单月桂酸酯(司盘20) 卫生部公告2010年第19号 121.食品添加剂 山梨醇酐单棕榈酸酯(司盘40) GB 25552-2010 食品添加剂 山梨醇酐单棕榈酸酯(司盘40) 卫生部公告2010年第19号 122.食品添加剂 双乙酰酒石酸单双甘油酯 GB 25539-2010 食品添加剂 双乙酰酒石酸单双甘油酯 卫生部公告2010年第19号 123.食品添加剂 三聚甘油单硬脂酸酯 GB 13510-1992食品添加剂 三聚甘油单硬脂酸酯   124.食品添加剂 聚氧乙烯(20)山梨醇酐单硬脂酸酯(吐温60) GB 25553-2010 食品添加剂 聚氧乙烯(20)山梨醇酐单硬脂酸酯(吐温60) 卫生部公告2010年第19号 125.食品添加剂 聚氧乙烯(20)山梨醇酐单油酸酯(吐温80) GB 25554-2010 食品添加剂 聚氧乙烯(20)山梨醇酐单油酸酯(吐温80) 卫生部公告2010年第19号 126.食品添加剂 果胶 GB 25533-2010 食品添加剂 果胶 卫生部公告2010年第19号 127.食品添加剂 卡拉胶 GB 15044-2009食品添加剂 卡拉胶   128.食品添加剂 藻酸丙二醇酯 GB 10616-2004食品添加剂 藻酸丙二醇酯   129.食品添加剂 松香甘油酯和氢化松香甘油酯 GB 10287-1988食品添加剂 松香甘油酯和氢化松香甘油酯 食品添加剂 氢化松香甘油酯 卫生部公告2011年第8号指定标准 130.食品添加剂 乳酸脂肪酸甘油酯 食品添加剂 乳酸脂肪酸甘油酯 卫生部公告2011年第8号指定标准 131.食品添加剂 乙酰化单、双甘油脂肪酸酯 食品添加剂 乙酰化单、双甘油脂肪酸酯 卫生部公告2011年第8号指定标准 132.食品添加剂 硬脂酸钙 食品添加剂 硬脂酸钙 卫生部公告2011年第8号指定标准 133.食品添加剂 硬脂酸镁 食品添加剂 硬脂酸镁 卫生部公告2011年第8号指定标准 134.食品添加剂 硬脂酰乳酸钙 食品添加剂 硬脂酰乳酸钙 卫生部公告2011年第8号指定标准135.食品添加剂 硬脂酰乳酸钠 食品添加剂 硬脂酰乳酸钠 卫生部公告2011年第8号指定标准 136.食品添加剂 丙二醇脂肪酸酯 食品添加剂 丙二醇脂肪酸酯 卫生部公告2011年第8号指定标准 137.食品添加剂 聚甘油脂肪酸酯 食品添加剂 聚甘油脂肪酸酯 卫生部公告2011年第8号指定标准 138.食品添加剂 乳糖醇 食品添加剂 乳糖醇 卫生部公告2011年第8号指定标准 139.食品添加剂 α-淀粉酶制剂 GB 8275-2009食品添加剂 α-淀粉酶制剂   140.食品添加剂 糖化酶制剂 GB 8276-2006食品添加剂 糖化酶制剂   141.食品添加剂 果胶酶制剂 QB 1502-1992(2009)食品添加剂 果胶酶制剂   142.食品添加剂 真菌α-淀粉酶 QB 2526-2001(2009)食品添加剂 真菌α-淀粉酶   143.食品添加剂 α-葡萄糖转苷酶 QB 2525-2001(2009)食品添加剂 α-葡萄糖转苷酶   144.食品添加剂 a-乙酰乳酸脱羧酶制剂 GB 20713-2006食品添加剂 a-乙酰乳酸脱羧酶制剂   145.食品添加剂 纤维素酶制剂 QB 2583-2003 纤维素酶制剂   146.食品工业用酶制剂 GB 25594-2010 食品添加剂 食品工业用酶制剂 卫生部公告2010年第19号 147.食品添加剂 5'-鸟苷酸二钠 QB/T 2846-2007食品添加剂 5'-鸟苷酸二钠   148.食品添加剂 呈味核苷酸二钠 QB/T 2845-2007食品添加剂 呈味核苷酸二钠   149.食品添加剂 甘氨酸(氨基乙酸) GB 25542-2010 食品添加剂 甘氨酸(氨基乙酸) 卫生部公告2010年第19号 150.食品添加剂 L-丙氨酸 GB 25543-2010 食品添加剂 L-丙氨酸 卫生部公告2010年第19号 151.食品用石蜡 GB 7189-1994食品用石蜡   152.食品级白油 GB 4853-2008食品级白油   153.食品添加剂 吗啉脂肪酸盐果蜡 GB12489-2010 食品添加剂 吗啉脂肪酸盐果蜡 卫生部公告2010年第19号 154.食品添加剂 紫胶(虫胶) LY 1193—1996 食品添加剂 紫胶(虫胶)   155.食品添加剂 松香季戊四醇酯 食品添加剂 松香季戊四醇酯 卫生部公告2011年第8号指定标准 156.食品添加剂 巴西棕榈蜡 食品添加剂 巴西棕榈蜡 卫生部公告2011年第8号指定标准 157.食品添加剂 蜂蜡 食品添加剂 蜂蜡 卫生部公告2011年第8号指定标准 158.食品添加剂 三聚磷酸钠 GB 25566-2010 食品添加剂 三聚磷酸钠 卫生部公告2010年第19号 159.食品添加剂 磷酸氢二钾 GB 25561-2010 食品添加剂 磷酸氢二钾 卫生部公告2010年第19号 160.食品添加剂 磷酸二氢铵 GB 25569-2010 食品添加剂 磷酸二氢铵 卫生部公告2010年第19号 161.食品添加剂 磷酸氢二钠 GB 25568-2010 食品添加剂 磷酸氢二钠 卫生部公告2010年第19号 162.食品添加剂 磷酸二氢钠 GB 25564-2010 食品添加剂 磷酸二氢钠 卫生部公告2010年第19号 163.食品添加剂 L-赖氨酸盐酸盐 GB 10794-2009 食品添加剂 L-赖氨酸盐酸盐   164.食品添加剂 牛磺酸 GB 14759-2010食品添加剂 牛磺酸 卫生部公告2010年第19号 165.食品添加剂 左旋肉碱 GB 17787-1999 食品添加剂 左旋肉碱 食品添加剂 左旋肉碱 卫生部公告2011年第8号指定标准 166.食品添加剂 维生素A GB 14750-2010 食品添加剂 维生素A 卫生部公告2010年第19号 167.食品添加剂 维生素B1(盐酸硫胺) GB 14751-2010 食品添加剂 维生素B1(盐酸硫胺) 卫生部公告2010年第19号 168.食品添加剂 维生素B2(核黄素) GB 14752-2010 食品添加剂 维生素B2(核黄素) 卫生部公告2010年第19号 169.食品添加剂 维生素B6(盐酸吡哆醇) GB 14753-2010 食品添加剂 维生素B6(盐酸吡哆醇) 卫生部公告2010年第19号 170.食品添加剂 维生素C(抗坏血酸) GB 14754-2010 食品添加剂 维生素C(抗坏血酸) 卫生部公告2010年第19号 171.食品添加剂 维生素D2(麦角钙化醇) GB 14755-2010 食品添加剂 维生素D2(麦角钙化醇) 卫生部公告2010年第19号 172.食品添加剂 烟酸 GB 14757-2010 食品添加剂 烟酸 卫生部公告2010年第19号 173.食品添加剂 叶酸 GB 15570-2010 食品添加剂 叶酸 卫生部公告2010年第19号 174.食品添加剂 乳酸亚铁 GB 6781-2007 食品添加剂 乳酸亚铁   175.食品添加剂 柠檬酸钙 GB 17203-1998 食品添加剂 柠檬酸钙   176.食品添加剂 葡萄糖酸钙 GB 15571-2010食品添加剂 葡萄糖酸钙 卫生部公告2010年第19号 177.食品添加剂 生物碳酸钙 QB 1413-1999(2009)食品添加剂 生物碳酸钙   178.食品营养强化剂 煅烧钙 GB 9990-2009 食品营养强化剂 煅烧钙   179.食品添加剂 L-苏糖酸钙 GB17779-2010 食品添加剂 L-苏糖酸钙 卫生部公告2010年第19号 180.食品添加剂 乙酸钙 GB 15572-1995 食品添加剂 乙酸钙及第1号修改单   181.食品添加剂 葡萄糖酸锌 GB 8820-2010 食品添加剂 葡萄糖酸锌 卫生部公告2010年第19号 182.食品添加剂 天然维
  • 兰州化物所开发出氮掺杂多孔石墨烯制备新方法并用于稀土分离
    近日,中国科学院兰州化学物理研究所手性分离与微纳分析课题组开发出一种多重限域的一步可控合成掺杂方法,制备出对稀土离子具有高分离选择性的氮掺杂纳孔石墨烯膜(专利申请号:CN 202010861481.0)。该研究在吸附了苯丙氨酸的氧化石墨烯膜的二维层间空间限域生长层状锌类水滑石,从而构建类水滑石/苯丙氨酸/氧化石墨烯三明治型复合材料。由于锌类水滑石层间夹层可作为密闭反应器,通过限域燃烧,可将苯丙氨酸中的氮原子掺杂到石墨烯晶格中。同时,形成的多孔锌类水滑石可作为模板,通过孔区域内限域燃烧在氧化石墨烯上蚀刻出孔径可控的纳米孔(图1)。  科研人员将获得的氮掺杂纳孔石墨烯(图2)制备成膜用于稀土元素的分离,获得了良好的分离选择性,最高膜分离因子达到3.7。理论模拟表明,氮掺杂纳孔石墨烯中的吡咯氮原子,在稀土离子的选择性分离过程中起到主要作用。该制备方法简单高效、膜分离稳定性优异。该研究不仅为杂原子掺杂纳孔石墨烯材料的制备开辟了新途径,而且为实现稀土离子的高选择性膜分离提供了新思路,具有潜在的工业应用前景。相关研究成果发表在Cell Press旗下综合类子刊iScience上,博士生谭洪鑫为论文第一作者,研究员李湛和邱洪灯为论文共同通讯作者。  此外,研究人员在自主研发的纳孔石墨烯/氧化锌纳米复合材料的基础上,利用固相合成策略,使均苯三甲酸与纳孔石墨烯表面的氧化锌纳米颗粒直接反应,原位绿色合成出纳孔石墨烯/MOF复合纳米材料,并发现该材料适合于水溶液中稀土离子的选择性固相吸附分离,该研究成果发表在Analytical Chemistry上。  研究工作得到国家重点研发计划、国家自然科学基金、中科院和甘肃省人才计划项目的支持。 图1.多重限域策略可控合成氮掺杂纳孔石墨烯示意图 图2.氮掺杂纳孔石墨烯表征图
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制