当前位置: 仪器信息网 > 行业主题 > >

氨基酸氧化酶来源于东部

仪器信息网氨基酸氧化酶来源于东部专题为您提供2024年最新氨基酸氧化酶来源于东部价格报价、厂家品牌的相关信息, 包括氨基酸氧化酶来源于东部参数、型号等,不管是国产,还是进口品牌的氨基酸氧化酶来源于东部您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氨基酸氧化酶来源于东部相关的耗材配件、试剂标物,还有氨基酸氧化酶来源于东部相关的最新资讯、资料,以及氨基酸氧化酶来源于东部相关的解决方案。

氨基酸氧化酶来源于东部相关的论坛

  • 绿豆的消暑功效来源于绿豆皮

    绿豆的消暑功效来源于绿豆皮,中医也叫做“绿豆衣”,主要是其所含的多酚类物质发挥作用。绿豆煮的时间越短,多酚类物质含量越高,它的抗氧化活性也越高,解暑功能也最好,因此想要消暑热,绿豆无需煮开花。

  • 【讨论】请教:黄嘌呤氧化酶(xanthine oxidase)

    黄嘌呤氧化酶(xanthine oxidase,XOD),可选择性催化氧化黄嘌呤和次黄嘌呤生成尿酸。有没有做过该酶传感器和对该酶性质了解的朋友?这种酶传感器似乎比较难做?因为:1. XOD活力小,0.67U/mg。2.检测对象次黄嘌呤在水中溶解度小,一般只能配到10^(-4)M级。所以电流响应始终做不出来。相同的方法换成葡萄糖氧化酶效果要好的多。大家多给意见。

  • 土壤多酚氧化酶测定

    关松荫的土壤多酚氧化酶测定方法中需要[font=宋体][font=Calibri]pH4.5的[/font][font=宋体]柠檬酸[/font][font=Calibri]-[/font][font=宋体]磷酸缓冲液,但是没有具体的配置方法?重铬酸钾的标准也应该取多少量呢,要怎么制定?求大神解答!!![/font][/font]

  • 【资料】试剂与生活——抗氧化剂!

    抗氧化剂:是阻止氧气不良影响的物质。 它是一类能帮助捕获并中和自由基,从而祛除自由基对人体损害的一类物质。如维生素A、C、E;例胡萝卜素(虾青素、角黄素、叶黄素,B-胡萝卜素等);微量元素:硒、锌、铜和锰等  饮食中抗氧化剂长期以来倍受国内外学者关注,这是因为①食物中抗氧化剂能够保护食物免受氧化损伤而变质②在人体消化道内具有抗氧化作用,防止消化道发生氧化损伤@吸收后可在机体其他组织器官内发挥作用④来源于食物的某些具有抗氧化作用的提取物可以作为治疗药品。抗氧化剂的作用机理包括鳌合金属离子、清除自由基、淬灭单线态氧、清除氧、抑制氧化酶活性等。

  • 【金秋计划】药食同源的火麻仁多肽功效

    [size=12px] [b]降血压[/b] 火麻仁蛋白的降血压活性主要来源于其蛋白水解产物和衍生肽。火麻仁蛋白水解物的降压能力取决于所用蛋白酶的类型、水解条件、蛋白质底物的特性及其氨基酸组成。火麻仁蛋白水解物的降压能力还取决于其氨基酸组成,因为氨基酸的疏水性、支链和芳香残基的存在有助于增强对ACE和血管紧张素原酶的抑制作用。特别是,疏水性氨基酸可以增加肽在脂基介质中的溶解度,从而促使更大的降压效果。据报道,在已鉴定的23种火麻仁血管紧张素转换酶抑制肽中,两条序列分别为Trp-Tyr-Thr(WYT)和Ser-Val-Tyr-Thr(SVYT)的肽具有最高的 ACE和血管紧张素转换酶抑制作用。此外,SVYT、Ile-Pro-Ala-Gly-Val(IPAGV)和 Pro-Ser-Leu-Pro-Ala(PSLPA)在口服给自发性高血压小鼠后也表现出显著的降压能力。 [b]降血糖[/b] 一类天然的具有降血糖活性的物质就是从食用蛋白质中获得的生物活性肽,其中也包括从火麻仁蛋白水解物中纯化出来的生物活性肽。据报道,用碱性蛋白酶催化方法制备的火麻仁蛋白水解物显示出较高的α-葡萄糖苷酶抑制作用,进一步纯化和鉴定后,鉴定出两个多肽序列:Leu-Arg(LA)和Pro-Leu-Met-Leu-Pro(PLMLP)。同时发现多肽中的疏水性氨基酸,尤其是脯氨酸Pro和亮氨酸 Leu,对火麻仁蛋白水解物的α-葡萄糖苷酶抑制作用有很大的贡献。其他研究人员发现来源于火麻仁蛋白水解物的肽在体外具有DPP-IV抑制作用。 [b]神经保护[/b] 近年来也有研究验证了火麻仁蛋白水解物在预防或治疗神经衰退性疾病方面的潜在作用。在目前用于阿尔茨海默病治疗的药物中, 乙酰胆碱酯酶(AChE)抑制剂是处方最多的类别。使用1%胃蛋白酶水解的火麻蛋白对乙酰胆碱酯酶(AChE)有较强的抑制作用,IC50为6μg/mL,比其他蛋白酶的抑制作用都强。此外,火麻仁蛋白水解物还通过上调炎症相关基因的表达和下调氧化应激相关基因的表达,对BV-2小胶质细胞发挥神经保护作用。这些发现证明了火麻仁蛋白水解物在改善神经炎症状态方面的巨大潜力。 [b]抗氧化、抗癌[/b] 研究发现,纯化后的火麻仁蛋白多肽比相应的蛋白水解产物具有更强的自由基清除能力。有研究通过对发酵火麻仁粉进行研究,发现火麻仁蛋白可以激活Nrf2通路,修复HepG2细胞遭受到的氧化损伤。火麻仁蛋白还可以提高小鼠的抗疲劳能力和免疫调节功能,提高小鼠的运动耐力。此外,火麻仁蛋白水解物对癌细胞也显示出剂量依赖性的抗增殖作用。总的来说,这些发现有力地支持了火麻仁多肽具有作为功能性食品促进人类健康的潜在价值。 [b]02 法规动态[/b] 2002年,我国卫生部在关于进一步规范保健食品原料管理的通知中,将火麻仁列入[b]既是食品又是药品的物品名单[/b]。2020年版的中国药典详细规定了火麻仁的性状、鉴别、检查、含量测定、炮制方法、性味与归经、功能与主治、用法与用量以及贮藏条件。 目前,国内外尚未有关于火麻仁多肽相关的的法规发布。 [b]03 市场应用与产品动态[/b] 火麻仁具有抗氧化、抗衰老、改善记忆和心血管健康等多重药理活性,在食品应用领域,由于火麻仁含油量高,可以提炼成火麻油,这种油富含不饱和脂肪酸,有助于降低胆固醇和抗氧化。在保健品应用领域,火麻仁可用于治疗肠燥便秘,现代保健品开发中也常以此为主要功效,开发出润肠通便的保健品,如麻仁软胶囊和麻仁润肠丸等。火麻仁含有丰富的抗氧化成分,保健品行业利用这一点开发了具有抗衰老功效的产品,例如含有火麻仁提取物的营养补充胶囊。火麻仁的抗炎活性也被用于保健品的开发,可能有助于缓解慢性炎症相关的症状。 火麻仁多肽具有降血压、降血糖、提高免疫和保护心血管等多重药理活性,使其在食品、保健品和药品等领域开发前景广阔。火麻仁多肽含有人体所需的所有必需氨基酸,比例均衡,营养价值高。在80年代末到90年代初,我们国家就己经开始使用酶解制备的多肽来作为食物的营养基料,一些公司会加入一定数量的火麻仁多肽在儿童食品生产中来提高儿童免疫力,増强体质。多肽产品还可以用作婴幼儿以及老年人食品、调节肠道功能食品和免疫食品等基料,在临床上还可以用作辅助治疗食品,如脑病、消化不良、创伤、烧伤等患者。 [b]04 生产技术现状[/b] 制备生物活性肽的方法主要为酶解法,微生物发酵法,无需以食物蛋白作为原料、直接化学合成目标多肽的固相合成法以及基因重组法等。但是这些方法存在不足之处,例如,以固相合成法为代表的化学合成法,通常作为验证新肽的标准方法,但是,保护碱基和脱保护步骤繁琐,而且多周期和复杂的纯化过程也阻碍了其大规模的工业应用。蛋白酶水解法是从蛋白质中制备功能性多肽应用最广泛的方法,但缺点是水解过程不可控、目标肽含量低、纯化成本高、蛋白提取率低等。随着科学技术的不断发展,利用计算机技术筛选设计生物活性肽的研究逐渐增加,它较好地克服了传统方法的不足,可实现高通量筛选生物活性肽的目标。然而迄今为止,尚未开展利用计算机虚拟筛选火麻仁来源黄嘌呤氧化酶抑制肽的相关研究以及对火麻仁来源的黄嘌呤氧化酶抑制肽进行表征。 [b]05 科学家技术成果介绍 此技术中利用计算机技术对火麻仁蛋白进行虚拟酶解[/b],评价多肽的生物活性,得到火麻仁多肽库;分子对接评价多肽与黄嘌呤氧化酶的结合方式,得到候选火麻仁多肽序列;化学合成所述黄嘌呤氧化酶抑制肽并测定其抑制活性;利用对应的蛋白酶酶解火麻仁蛋白并鉴定得到黄嘌呤氧化酶抑制肽。该抑制肽具有安全无毒副作用,水溶性较好的特点,能够持续稳定地抑制黄嘌呤氧化酶活性。该抑制肽DDNPRRFY的半抑制浓度IC50为2.10±0.06mg/mL,Ki值0.48±0.02mg/mL,表现为一种混合型抑制剂,能够持续稳定地抑制黄嘌呤氧化酶的活性。在预防和治疗痛风及高尿酸血症的药物、功能性食品添加剂,以及患者的长期治疗保健领域具有广泛的应用前景。 [b]06 结 论[/b] 此技术首次开展火麻仁蛋白来源抗痛风肽的研究,利用计算机虚拟酶解蛋白和分子对接技术筛选火麻仁黄嘌呤氧化酶抑制肽,比传统蛋白酶随机切割结合抑制活性筛选的方法更为高效、快速筛选得到新型的黄嘌呤氧化酶抑制肽。 [/size]

  • “涩味”食物具有强烈的抗氧化强

    [color=#3e3e3e]“涩味”食物抗氧化强。葡萄皮、小苹果都是味道比较涩的食物,而它们的涩味其实是来源于植物中的单宁、植酸和草酸。这些涩味物质的抗氧化性都很强,对血脂和胆固醇都有一定效果。对女性来说,这种涩味物质单宁还有抗衰老、抗氧化、美白等功效。[/color]

  • 【求助】葡萄糖氧化酶传感器在血液中测试响应下降问题``

    我通过几种方法制备了葡萄糖氧化酶电极,利用恒压(0.3-0.5V)这PBS溶液中测试葡萄糖响应良好,100mg/dl的糖响应在2uA左右,但将电极放入血液中测试时,响应下降明显,而且有时出现尖峰,同时背景电流就带来很大的干扰,不知道各位达人有没遇到同样的情况。 我在葡萄糖氧化酶电极制备完成后,再固定扩散限制层和生物相容层,效果还是不明显,不知道各位有没试过对葡萄糖氧化酶电极再修饰。

  • 【求助】我测多酚氧化酶和蔗糖酶遇到了问题

    在做标准曲线的时候,我用不加样品的空白调零后,再测定这个空白,为什么吸光值不是0,而是负数? 还有啊, 多酚氧化酶的测定,需使催化成的没食子素溶于乙醚进行测定,标准溶液也要用乙醚萃取吗?还是直接比色就行, 我两种都有试过,但加了乙醚萃取的测出的值极不相关,不太确定 请教下高手啊-----------

  • 食品中的重金属主要来源于哪里?

    看到食品检测版面控制重金属检测,那么重金属的污染主要来源于哪里??食品中都有那些重金属?标准规定的重金属是常规检测项目,那么没有规定的重金属污染有检测的吗??http://simg.instrument.com.cn/bbs/images/default/emyc1010.gif

  • 【转帖】氨基酸的主要化学反应

    氨基酸的主要化学反应(一)茚三酮反应茚三酮反应(ninhydrin reaction)这是氨基酸的α-NH2所引起的反应。α-氨基酸与水合茚三酮一起在水溶液中加热,可发生反应生成蓝紫色物质。首先是氨基酸被氧化分解,放出氨和二氧化碳,氨基酸生成醛,水合茚三酮则生成还原型茚三酮。在弱酸性溶液中,还原型茚三酮、氨和另一分子茚三酮反应,缩合生成蓝紫色物质。所有氨基酸及具有游离α-氨基的肽都产生蓝紫色,但脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质,因其α-氨基被取代,所以产生不同的衍生物。此反应十分灵敏,根据反应所生成的蓝紫色的深浅,在570nm波长下进行比色就可测定样品中氨基酸的含量。也可在分离氨基酸时作为显色剂定性、定量地测定氨基酸。 (二)氨基酸与2,4-二硝基氟苯的反应 此反应又称桑格反应(Sanger reaction)。在弱碱性(pH 8~9)、暗处、室温或40℃条件下,氨基酸的α-氨基很容易与2,4-二硝基氟苯(缩写为FDNB)反应,生成黄色的2,4-二硝基氨基酸(dinitrophenyl amino acid,简称DNP-氨基酸)。该反应由F. Sanger首先发现。多肽或蛋白质的N-末端氨基酸的α-氨基也能与FDNB反应,生成一种二硝基苯肽(DNP-肽)。由于硝基苯与氨基结合牢固,不易被水解,因此当DNP-多肽被酸水解时,所有肽键均被水解,只有N-末端氨基酸仍连在DNP上,所以产物为黄色的DNP-氨基酸和其它氨基酸的混合液。混合液中只有DNP-氨基酸溶于乙酸乙酯,所以可以用乙酸乙酯抽提并将抽提液进行色谱分析,再以标准的DNP-氨基酸作为对照鉴定出此氨基酸的种类。因此2,4-二硝基氟苯法可用于鉴定多肽或蛋白质的N-末端氨基酸。(三)氨基酸与苯异硫氰酸(PITC)的反应 此反应又称艾德曼反应(Edman reaction)。在弱碱性条件下,氨基酸的α-氨基可与苯异硫氰酸(phenylisothiocyanate, PITG)反应生成相应的苯氨基硫甲酰氨基酸(简称PTC-氨基酸)。在酸性条件下,PTC-氨基酸环化形成在酸中稳定的苯乙内酰硫脲氨基酸(phenylthiohydantoin,简称PTH)。蛋白质多肽链N-末端氨基酸的α-氨基也可有此反应,生成PTC-肽,在酸性溶液中释放出末端的PTH-氨基酸和比原来少一个氨基酸残基的多肽链。PTH-氨基酸在酸性条件下极稳定并可溶于乙酸乙酯,用乙酸乙酯抽提后,经高压液相层析鉴定就可以确定肽链N-末端氨基酸的种类。该法的优点是可连续分析出N端的十几个氨基酸。瑞典科学家P. Edman首先使用该反应测定蛋白质N-末端的氨基酸。氨基酸自动顺序分析仪就是根据该反应原理而设计的。(四)α-羧基的反应 氨基酸的α-羧基和一般的羧基一样,可以和碱作用生成盐,其中重金属盐不溶于水。氨基酸的羧基还能与醇类作用,被酯化生成相应的酯。酯化作用在人工合成多肽中常用来保护氨基酸的α-羧基。例如,氨基酸在无水乙醇中通入干燥氯化氢气体,或加入二氯亚砜,然后回流,生成氨基酸酯的盐酸盐。氨基酸的α-羧基被还原可产生相应的α-氨基醇,例如被氢硼化锂还原的反应。此性质在蛋白质一级结构的测定中是鉴定C-末端氨基酸的一种方法。(五)R基的反应 氨基酸的R侧链含有官能团时也能发生化学反应,例如丝氨酸、苏氨酸和羟脯氨酸均为含有羟基的氨基酸,所以能形成酯。酪氨酸的R侧链含有苯酚基,具有还原性,所以可利用此性质定量地测定蛋白质。另外,苯酚基和组氨酸中的咪唑基具有芳香环或杂环的性质,能与重氮化合物(如对氨基苯磺酸的重氮盐)结合而生成棕红色的化合物,此反应可用于定性、定量测定。此外,半胱氨酸的侧链上的巯基(-SH)的反应性能高,在碱性溶液中容易失去硫原子并且容易被氧化而生成胱氨酸。另外,极微量的某些重金属离子,如Ag+、Hg2+,都能与-SH基反应,生成硫醇盐,从而导致含-SH酶失活。

  • 碘量法分析土壤多酚氧化酶活性

    碘量法分析土壤多酚氧化酶活性

    有没有人用碘量法分析过土壤多酚氧化酶活性?请问方法的原理!!!1. 食品化学实验指导(来自网络)http://ng1.17img.cn/bbsfiles/images/2012/10/201210142257_396555_1607572_3.jpg2. 关松荫的《土壤酶及其研究法》中的原理介绍:http://ng1.17img.cn/bbsfiles/images/2012/10/201210142257_396556_1607572_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/10/201210142301_396560_1607572_3.jpg请教专家,不知道哪一个原理正确!!!

  • 过程工程所高性能无酶生物传感复合材料的绿色合成获进展

    可用于生物传感的材料必须具备如下条件:响应灵敏;很好的稳定性;比较大的检测范围以及较低检测限;对被检测物质具有较好的选择性。过氧化氢不仅是一类含活性氧物质,也是生物体内许多酶(包括葡萄糖氧化酶、胆固醇氧化酶、尿酸、醇氧化酶、半乳糖氧化酶、肌氨酸氧化酶、L-氨基酸氧化酶等)氧化后的副产物,因此发展一种有效的生物传感器用于检测过氧化氢显得十分重要。在生物传感器中,无酶的生物传感价格低廉并且具有较好的稳定性能,因此制备一种同时具有较低的检测限和较宽的线性检测范围的无酶生物传感器具有重大的意义。 考虑到石墨烯具有非常大的比表面积、良好的导电性能及很好的化学稳定性,在超敏生物传感器中有很大的应用前景;另外,贵金属纳米粒子具有很好的电学、光学、磁学性质及催化活性,中科院过程工程研究所科研人员在材料设计的基础上,采用绿色光电催化剂杂多酸(12O40][sup]3-[/sup] (PW12))同时作为还原剂、包覆剂与桥接剂,制备石墨烯上负载金纳米粒子的三元复合材料,并研究了它们作为过氧化氢无酶生物传感器的应用。 研究团队最近曾首次报道过采用PW12同时作为还原剂、包覆剂与桥接剂制备碳纳米管上修饰贵金属纳米粒子的三元复合材料,并发现它们具有很好的光电催化活性([i]J. Mater. Chem.[/i] 2011, 21, 2282;[i]Carbon[/i] 2011, 49, 1906;[i]J. Mater. Chem.[/i] 2011, 21, 14917)。最新研究在此工作的基础上,进一步制备了金纳米粒子、杂多酸与石墨烯的三元杂合材料。通过调节杂多酸与金属离子的浓度,可以制备石墨烯上不同金负载率的复合材料。透射电镜分析发现,石墨烯表面附着的金纳米粒子分散均匀并且颗粒大小很均一。XRD、XPS与拉曼光谱分析进一步证明了研究团队制备出了相应的三元杂合材料。 本反应的一个显著优点是避免了有机模板分子与表面活性剂的引入,能有效的增强材料的导电性与电催化活性。研究发现,此三元材料对过氧化氢的无酶生物传感检测限达到1.33×10[sup]-6[/sup] M,线性检测范围为 5.0×10[sup]-6[/sup]-1.8×10[sup]-2[/sup] M,同时满足具有较低的检测限和较宽的线性检测范围,是目前报道的含金的过氧化氢无酶生物传感器中最好的材料。通过进一步的研究发现,此材料的优异催化性能主要来源于金纳米粒子与石墨烯的协同作用。 该研究得到了中科院过程工程研究所百人计划与国家自然科学基金(21071146,51002155)的资助。相关研究结果已经发表在[i]Small[/i](2012, 8, 1398-1406)上,得到审稿人的高度评价。 [url=http://onlinelibrary.wiley.com/doi/10.1002/smll.201102298/abstract]论文链接[/url][img]http://www.cas.cn/ky/kyjz/201207/W020120713382999033734.jpg[/img]复合三元材料的制备方法[align=center][img]http://www.cas.cn/ky/kyjz/201207/W020120713382999042954.jpg[/img][/align][align=center] (a)复合材料的TEM形貌;(b)复合材料对过氧化氢的电化学生物传感。[/align]

  • 【求助】(已应助)求关键词为氨基酸+茚三酮的文献若干篇

    最近用茚三酮法做茶叶中的游离氨基酸,遇到很大的问题需要找一些参考资料。1、【题名】:茚三酮与氨基酸显色反应再探氨基酸杂志论文(ZuoSanTongYuAnJiSuanXianSeFanYingZaiTanAnJiSuanZaZhiLunWen)【关键词】:茚三酮 氨基酸 显色反应【keywords】:ZuoSanTong AnJiSuan XianSeFanYing【作者】:赵凡 【来源】: 知识词典【期刊名称】:氨基酸杂志(AnJiSuanZaZhi)2、氨基酸显色剂茚三酮试剂的研究(二):不同浓度显色剂对氨基…氨基酸和生物资源 1995年第17卷第2期摘  要:氨基酸显色剂是氨基酸分析的的重要试剂之一,主要成份是茚三酮、二甲亚砜、还原剂、氢氧化锂等有机试剂氨基酸显色剂(以下称显色剂)。目前这种显色剂依赖从国外进口,由于受价格、进口周期及有效期限等诸多因素的影响,使之远远不能满足国内用户的需要,为适应国内用户的需要,进一步认自制显色剂的可行性和可靠性,确定显色剂的最佳配方,本项目对自制显色剂的存放时间、不同浓度显色剂、以及显色剂光学试验等项指标进行了全面系 (共8页)3、茚三酮与氨基酸显色反应再探作者:赵凡4、凡是关键词是氨基酸+茚三酮的文献,偶都要!谢谢各位!

  • 【“仪”起享奥运】氨基酸分析过程中前处理方法的选择及优化

    [font=宋体]在所检测氨基酸样品中,有的样品中氨基酸以游离态存在,而有的样品中氨基酸以蛋白或多肽形式存在,当然,大多数样品氨基酸以两种形式同时存在。根据关注点不同,我们常常把样品分为游离样品和水解样品。[/font][b][font=宋体]水解样品前处理技术[/font][/b][font=宋体]水解技术适用于氨基酸以蛋白或多肽形式存在的样品,氨基酸主要是以肽键结合,需要设法将肽键打开,水解成单个游离氨基酸,而当前还没有哪一种水解剂能将所有的氨基酸毫无破坏的水解出来,这就决定了氨基酸总量测定前处理方法的复杂性和多样性。[/font][font=宋体]常用的水解方法分为:盐酸水解法、磺酸水解法、酶水解法、过甲酸氧化法和碱水解法。由于酸水解对色氨酸完全破坏,而胱氨酸水解成半胱氨酸,后者不能与茚三酮产生颜色反应;所以碱水解法是测定色氨酸最有效的方法,过甲酸氧化法只是用来测定胱氨酸。[/font][b][font=宋体]游离氨基酸测定样品的制备[/font][/b][font=宋体]游离氨基酸测定样品从形态上可分为两大类:液体样品和固体样品。测定游离氨基酸的样品,主要需要考去除杂质。如果氨基酸存在于组织等固体样品中,则需要从样品中中把氨基酸提取出来并去除杂质。杂质主要包括蛋白质和金属离子,金属离子用[/font]EDTA[font=宋体]去除,蛋白沉淀剂应用较多的有三氯乙酸法、苦味酸、磺基水杨酸([/font]SAA[font=宋体])法、乙醇沉淀法、超速离心法等,经过对蛋白沉淀实验比较,发现采用三氯乙酸法相比较其他方法去蛋白效果更好。脂肪含量高的样品仍需先用乙醚或者石油醚脱脂。[/font] [b][font=宋体]影响水解因素及其优化[/font][font=宋体]1.[/font][font=宋体]样品的性质[/font][/b][font=宋体]纯蛋白样品水解影响因素较小,而对含碳水化合物较多的如饲料样品就会因碳水化合物而回收率降低,使水解方法受到限制。如在盐酸水解时纯蛋白质中的蛋氨酸损失很小,而谷类样品中的蛋氨酸则会损失[/font]20-30%[font=宋体],如果此时在酸中加入巯基试剂,谷类样品中的蛋氨酸回收率就会大大提高,一般是碳水化合物越多,回收率也就越高。[/font][b][font=宋体]2.[/font][font=宋体]水解试剂的选择[/font][/b][font=宋体]因对蛋白质中[/font]20[font=宋体]种氨基酸有极强的水解能力,所以最常用的水解剂是盐酸;对特殊要求如测定色氨酸时,最好选择碱做水解剂。如果在酸水解液中加入保护剂巯基乙醇可以提高胱氨酸和蛋氨酸的回收率;如要提高酪氨酸的回收率则应在盐酸中加入酚类化合物。如果要测定酰胺类化合物,应选用蛋白酶作水解液。怎么样选择水解液,最好要根据氨基酸的特性来选择。[/font][b][font=宋体]3.[/font][font=宋体]水解液的使用量[/font][/b][font=宋体]一般采用相当于蛋白质重量[/font]500-5000[font=宋体]倍的[/font]6mol[font=宋体]盐酸,相对加大[/font]6mol[font=宋体]盐酸与蛋白质重量的比例,可以避免氨基酸水解的损失,也就是说,水解液越多,对氨基酸的破坏越小。[/font][b][font=宋体]4.[/font][font=宋体]水解的真空度[/font][/b][font=宋体]水解管中含氧量在有空气存在的情况下,含硫氨基酸由于氧化而有较大损失,如酸水解可使蛋氨酸损失可达[/font]20-30%[font=宋体],酪氨酸和组氨酸也会损失[/font]10%[font=宋体]左右。因此在水解管封管前要先充满高纯氮气,再封管。[/font][b][font=宋体]5.[/font][font=宋体]水解时间的影响[/font][/b][font=宋体]不同氨基酸形成的肽键对水解液反应不同,完全水解所需时间也会不同,缬、异亮肽键不易水解,[/font]72[font=宋体]小时才能达到最大值,而胱氨酸、苏氨酸、丝氨酸、酪氨酸、苯丙氨酸、蛋氨酸等氨基酸随水解时间延长而逐渐破坏,水解时间越长,回收率也就越低。[/font]24[font=宋体]小时是取一个相当于固定大的多数氨基酸回收率都较高的一个时间。[/font][b][font=宋体]6.[/font][font=宋体]水解温度的选择[/font][/b][font=宋体]水解温度过低会使水解不完全,温度太高又会使有极性侧链的氨基酸如苏氨酸、丝氨酸等破坏。常用水解温度是[/font]110[font=宋体]℃,水解时间为[/font]22-24[font=宋体]小时。也可以适当提高水解的温度,能缩减水解时间,提高工作效率,如用[/font]140[font=宋体]℃高温水解,仅水解[/font]4-5[font=宋体]小时实验结果就与[/font]110[font=宋体]℃条件下[/font]24[font=宋体]小时水解结果相似。[/font][font=宋体]在酸水解当中。一些氨基酸的破坏可以用实验值来进行校正。一种是用与水解蛋白质样品相同条件情况下来水解已知含量的氨基酸混合标准,用测定值来校正蛋白质水解后的氨基酸数值。例如[/font]110[font=宋体]℃条件下[/font]6mol[font=宋体]盐酸水解[/font]24[font=宋体]小时的[/font]Arg[font=宋体]精氨酸回收率为[/font]95.5%[font=宋体],[/font]Leu[font=宋体]亮氨酸回收率为[/font]96.2%[font=宋体],[/font]Ser[font=宋体]丝氨酸回收率为[/font]92.7%[font=宋体]等。另一种方法是用已知含量和组成的纯蛋白质,在相同条件下进行水解,用测定值得到各个氨基酸的回收率,用来去校正分析数据。[/font]

  • 关于一氧化碳的主要来源介绍

    一氧化碳是一种大气污染物,在大气中数量最多、分布最广,是煤、石油等含碳物质不完全燃烧的产物,其生成机理为:RH→R→RO2→RCHO→RCO→CO(R表示碳氢自由基团)。主要来源于冶金工业中炼焦、炼铁等生产过程;化学工业中合成氨、甲醇等生产过程;矿井放炮和煤矿瓦斯爆炸事故;汽车等交通工具尾气的排放;锅炉中燃料的不完全燃烧;家庭居室中煤炉产生的煤气或液化气管道漏气以及火山爆发、森林火灾、地震等自然灾害中一氧化碳的释放。此外,高层大气的化学反应、二氧化碳的轻微解离作用及动物新陈代谢过程中也会产生少量的一氧化碳。  大气对流层中一氧化碳的浓度约为0.1~2ppm(1 ppm=10-6,表示体积分数。由于一氧化碳的气态密度为1.2504 kg/m3,故体积分数为1 ppm时,一氧化碳的浓度为1.2504×10-6kg/m3=1.2504 mg/m3 [51] ),这种含量对人体无害。但由于世界各国交通运输事业、工矿企业不断发展,煤和石油等燃料的消耗量持续增长,一氧化碳的排放量也随之增多。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制