当前位置: 仪器信息网 > 行业主题 > >

亚乙基硫脲乙撑硫脲标准

仪器信息网亚乙基硫脲乙撑硫脲标准专题为您提供2024年最新亚乙基硫脲乙撑硫脲标准价格报价、厂家品牌的相关信息, 包括亚乙基硫脲乙撑硫脲标准参数、型号等,不管是国产,还是进口品牌的亚乙基硫脲乙撑硫脲标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合亚乙基硫脲乙撑硫脲标准相关的耗材配件、试剂标物,还有亚乙基硫脲乙撑硫脲标准相关的最新资讯、资料,以及亚乙基硫脲乙撑硫脲标准相关的解决方案。

亚乙基硫脲乙撑硫脲标准相关的资讯

  • 你说的白,是什么白:小麦粉中硫脲的测定
    2019年,国家粮食和物资储备局办公室在第330号通知[1]中公开了国家标准《小麦粉》征求意见稿,其中小麦粉的定义为:小麦粉wheat flour是指由普通小麦(六倍体小麦,Triticum aestivum L.)经过碾磨制粉,去除部分麸皮和胚并达到一定加工精度要求的、未添加任何物质的、能够满足制作面制食品要求的产品。与《关于进一步加强小麦粉质量安全监管的公告》(2017 年第132号)[2]中关于小麦粉(通用)中添加物的要求,即“取得‘小麦粉(通用)’生产许可的企业,不得在小麦粉中添加任何食品辅料”,保持一致。 早前被允许添加之后又被禁止的过氧化苯甲酰(Dibenzoyl peroxide, BPO),在近几年的食品安全抽检中时有被检出,其非法添加的目的主要是给新生产的小麦粉脱色[3]。然而在小麦粉的加工和储藏过程中,经常会出现颜色加深的现象,即褐变。发生褐变的主要原因是,小麦籽粒中的多酚氧化酶(Polyphenol oxidase, PPO)催化酚类物质氧化生成褐色或黑色的醌类物质[4],从而影响了小麦粉的色泽,降低了小麦粉的品质。 根据GB 2760-2014 附录B[5]中,对食品漂白剂的定义:能够破坏、抑制食品的发色因素,使其褪色或使食品免于褐变的物质。针对小麦粉的酶促褐变,一些不法的的商贩会通过添加具有还原性的硫脲(Thiourea)进行漂白,硫脲能够抑制多酚氧化酶的活性,阻止褐变的发生,在一定程度上将醌类还原成酚类,掩盖不好的品质,达到提亮增白的效果。而硫脲的非法添加会刺激呼吸道和肠道,抑制甲状腺和造血器官的机能,引起咳嗽、胸闷、头痛、嗜睡、无力、面色苍白、面部虚肿、基础代谢降低、血压下降、脉搏变慢、白细胞减少等症状[6]。早在2001年,世界卫生组织国际癌症研究机构就将硫脲列在了3类致癌物清单中。 原食品药品监督管理总局于2016年发布第196号公告[7],公布了食品补充检验方法《小麦粉中硫脲的测定 BJS 201602》,填补了国内硫脲检测标准的空白。为了进一步规范企业的生产行为,加强小麦粉质量安全监管,总局于2017年发布第132号公告[2],其中明确规定“严禁生产企业在小麦粉中添加过氧化苯甲酰、次磷酸钠、硫脲、间苯二酚、过硫酸盐、噻二唑、曲酸等非食品原料”。 在此背景下,赛默飞实验室对高效液相色谱法测定小麦粉中硫脲的实验条件,开展了相关研究工作。 01样品前处理准确称取均质小麦粉1.0 g(精确至0.01 g)于15 mL旋盖螺口圆底离心管中,加入10.00 mL 80:20乙腈水,旋紧盖子,涡旋分散30 s,水浴超声提取20 min(由于超声时间较长,水浴温度会升高,建议加入冰袋控温),10000 rpm 4℃ 冷冻离心10 min,取上清液过0.2 μm亲水PTFE微孔滤膜,滤液上机测试。02色谱条件● 液相色谱仪:UltiMate™ 3000 HPLC 液相色谱系统● 色谱柱:Syncronis™ HILIC, 250×4.6 mm, 5μm (P/N: 97505-254630)● 柱温:20 ℃● 进样量:5 µL● 流动相:A为乙腈,B为水● 洗脱程序:A:B=90:10,等度洗脱● 流速:1 mL/min● 检测波长:246 nm● 采样频率:5 Hz● 采集时间:12 min03实验结果与讨论3.1色谱条件优化 3.1.1 色谱柱选择硫脲标准品溶液在Syncronis HILIC色谱柱上获得了出色的峰型和优异的灵敏度。图1. 硫脲标准品溶液色谱图(1.00 μg/mL) (点击查看大图) 3.1.2 样品溶剂的选择在HILIC模式下,采用80:20乙腈水作为标准品稀释液时,10.0 μg/mL硫脲标准品得到了尖锐且对称的峰型。图2. 硫脲标准品溶液色谱图(10.0 μg/mL)(A:稀释溶剂为纯水,B:稀释溶剂为80:20乙腈水)3.1.3 柱温的选择当色谱柱柱温选择20 ℃ 时,硫脲峰与杂质峰可达到基线分离。同时,采集时间由10 min延长至12 min,可避免11 min左右的杂质峰延迟至下一针进样时出峰。图3. 30℃ 柱温,小麦粉空白基质和0.20 μg/mL基质加标叠加色谱图(点击查看大图)图4. 20℃ 柱温,小麦粉空白基质和0.20 μg/mL基质加标叠加色谱图(点击查看大图)3.2样品前处理优化本次试验中前处理流程为:称取1.00 g小麦粉,加入10.00 mL 80:20乙腈水(提取溶剂与标准品稀释溶剂保持一致),涡旋混匀,高速冷冻离心,取上清液过膜,上机测试。处理一批次8个样品,耗时约1小时。而标准推荐的前处理流程,在提取、过滤(离心)后,加入了旋蒸浓缩10 mL 80:20乙醇水提取液的操作,耗时较长,且样品通量小。因此优化后的前处理流程,提高了样品通量,减少了溶剂用量,效率得到提升。 3.3线性范围、方法检出限及方法定量限在优化的色谱条件下,硫脲标准工作液线性范围为0.20-5.00 μg/mL,线性方程y=0.9109x-0.0300,线性相关系数r2=0.99992,线性关系良好。硫脲线性方程图及标准曲线点叠加色谱图。在优化前处理条件下,硫脲方法检出限为2.0 mg/kg,定量限为5.0 mg/kg。 图5. 硫脲线性方程图及标准曲线点叠加色谱图(点击查看大图)3.4回收率和精密度小麦粉基质 2.0、5.0、20.0 mg/kg 三水平加标回收率范围在 91.2%~95.0% 之间,相对标准偏差在 0.57%~2.36% 之间(n=6)表1 小麦粉基质 2.0、5.0、20.0 mg/kg三水平加标回收率范围和精密度(点击查看大图)图6小麦粉基质 2.0、5.0、20.0 mg/kg 三水平加标回收率范围和精密度(点击查看大图)图7小麦粉基质中硫脲方法检出限 MDL 浓度 (2.0 mg/kg) 加标 (点击查看大图)图8小麦粉基质中硫脲方法定量限 LOQ 浓度 (5.0 mg/kg)加标(点击查看大图)图9小麦粉基质中硫脲10倍方法检出限浓度 (20.0 mg/kg)加标(点击查看大图)04结论本方法针对食品补充检验方法《小麦粉中硫脲的测定 BJS201602》进行了优化,简化了前处理流程,优化了色谱条件,线性范围、方法检出限及定量限、加标回收率及精密度均能满足方法确认的要求。该方法简单、便捷,适用于小麦粉中非法添加物硫脲的快速测定。 参考文献:[1] 国家粮食和物资储备局办公室. 关于《小麦》《小麦粉》国家标准公开征求意见的通知 国粮办发[2019]330号[EB/OL]. http://www.lswz.gov.cn/html/zmhd/yjzj/2019-11/11/content_247627.shtml[2] 总局关于进一步加强小麦粉质量安全监管的公告(2017年第132号)[J]. 现代面粉工业,2017,31(06):28.[3] 于鸿飞. 国内外小麦粉标准的差异及我国现行小麦粉标准的修订研究[D]. 西北农林科技大学,2011.[4] 黄海霞,张真,吴金芝. 小麦多酚氧化酶特性及褐变控制研究[J]. 安徽农业科学,2008,36(31):13574-13575,13638.[5] GB 2760-2014. 食品安全国家标准 食品添加剂使用标准[S]. 2014[6] 焦安浩. 硫脲的危险性及安全管理措施研究[J]. 化工管理,2021(07):95-96[7] 总局关于发布食品中那非类物质的测定和小麦粉中硫脲的测定2项检验方法的公告[J]. 中国食品卫生杂志,2017,29(01):25.[8] Thermo Fisher Scientific Technical Guide 21003:HILIC Separations Technical Guide-A Practical Guide to HILIC Mechanisms, Method Development and Troubleshooting[A/OL]. https://assets.thermofisher.cn/TFS-Assets/CMD/brochures/TG-21003-HILIC-Separations-TG21003-EN.pdf . 2014
  • 食药监公布食品中那非类物质和小麦粉中硫脲2项检验方法
    2016年12月26日,食品药品监管总局发布《食品中那非类物质的测定和小麦粉中硫脲的测定2项检验方法》的公告,宣布食品中那非类物质的测定(BJS201601)和小麦粉中硫脲的测定(BJS201602)获批,并予以公布。 以下为公告原文:  按照《食品安全抽样检验管理办法》有关规定,《食品中那非类物质的测定》和《小麦粉中硫脲的测定》等两项检验方法已经国家食品药品监督管理总局批准,现予发布。  特此公告。  附件: 1.2016年第196号公告-食品中那非类物质的测定(BJS201601).docx  2.2016年第196号公告-小麦粉中硫脲的测定(BJS201602).docx  食品药品监管总局  2016年12月22日
  • 环保部连发6项国家环保标准 涉LC、GCMS等仪器分析方法
    p   日前,环保部连续发布两则公告,共计批准发发布6项目国家环境保护标准。 /p p    strong 8月28日,环保部公告批准发布《水质 乙撑硫脲的测定 液相色谱法》等四项标准为国家环境保护标准,自2017年11月1日起实施,由中国环境出版社出版,四项标准均为首次发布。 /strong /p p    a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://kjs.mep.gov.cn/hjbhbz/bzwb/shjbh/sjcgfffbz/201708/W020170831377026537289.pdf" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 一、《水质 乙撑硫脲的测定 液相色谱法》(HJ 849-2017) /strong /span /a /p p   本标准规定了测定水中乙撑硫脲的液相色谱法,为首次发布。 /p p   适用于地表水、地下水、生活污水和工业废水中乙撑硫脲的测定。 /p p   当进水量为20μl时,方法的检出限为3μg/L,测定下限为12μg/L。 /p p    a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://kjs.mep.gov.cn/hjbhbz/bzwb/shjbh/sjcgfffbz/201708/W020170831379928319348.pdf" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 二、《水质 硝磺草酮的测定 液相色谱法》(HJ 850-2017) /strong /span /a /p p   本标准规定了测定水中硝磺草酮的液相色谱法,为首次发布。 /p p   适用于地表水、地下水、生活污水和工业废水中硝磺草酮的测定。 /p p   当进水量为20μl时,方法的检出限为0.01mg/L,测定下限为0.04mg/L。 /p p    a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://kjs.mep.gov.cn/hjbhbz/bzwb/shjbh/sjcgfffbz/201708/W020170831383033827393.pdf" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 三、《水质 灭多威和灭多威肟的测定 液相色谱法》(HJ 851-2017) /strong /span /a /p p   本标准规定了测定水中灭多威和灭多威肟的液相色谱法,为首次发布。 /p p   适用于地表水、地下水、生活污水和工业废水中灭多威和灭多威肟的测定。 /p p   当进水量为50μl时,灭多威和灭多威肟的方法检出限为1μg/L,测定下限均为4μg/L。 /p p    a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/jcgfffbz/201708/W020170831386836503809.pdf" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 四、《环境空气 指示性毒杀芬的测定 气相色谱-质谱法》(HJ 852-2017)。 /strong /span /a /p p   本标准规定了测定环境空气中三种指示性毒杀芬的气相色谱-质谱法,为首次发布 /p p   适用于环境空气中三种指示性毒杀芬(P26、P50、P62)的测定。 /p p   当采气量为500m sup 3 /sup (标准状态)时,三种指示性毒杀芬P26、P50、P62的方法检出限分别为4pg/m sup 3 /sup 、4pg/m sup 3 /sup 、8pg/m sup 3 /sup ,测定下限为16pg/m sup 3 /sup 、16pg/m sup 3 /sup 、32pg/m sup 3 /sup 。 /p p   strong  8月31日,环保部再批准发布两项国家环境保护标准,上以上两项标准自2017年10月1日起实施,自实施之日起,《含多氯联苯废物污染控制标准》(GB & nbsp 13015-91)废止。 /strong /p p   其中,《固体废物鉴别标准 & nbsp 通则》(GB 34330-2017 )为国家固体废物污染环境防治技术标准,《含多氯联苯废物污染控制标准》(GB 13015-2017)为国家污染物排放(控制)标准。 /p p & nbsp /p
  • 原子荧光光谱法测定食品添加剂中砷元素
    GB 5009.76-2014 食品安全国家标准 食品添加剂中砷的测定代替GB/T 5009.76-2003 食品添加剂中砷的测定,将于2016年3月1日正式实施。标准中将原子荧光光谱法作为食品添加剂中砷的测定方法之一。原子荧光作为检测砷、汞、铅等重金属的常规分析仪器具有灵敏度高、操作简便等特点,而作为中国氢化法原子荧光技术发源地的北京金索坤推出的新一代原子荧光光度计更是具有“多、快、好、省”四大特色。下面为各位实验室检测同行分享下如何应用原子荧光光度计测试食品添加剂中的砷元素。 按照新标准,应用原子荧光光度计测试食品添加剂中的砷元素需要准备以下试剂:氢氧化钠(NaOH)(优级纯)、硼氢化钠或硼氢化钾(NaBH4或KBH4)、硫脲(CH4N2S)、硝酸(HNO3)(优级纯)、硫酸(H2SO4)(优级纯)、高氯酸(HCIO4)(优级纯)、盐酸(HCl)(优级纯)、硝酸镁[Mg(N03)2.6H2O]、氧化镁(MgO)、过氧化氢(H2O2)。 试剂的配制1、氢氧化钠溶液(2 g/L):称取2.0 g氢氧化钠,溶于1 000 mL水中,混匀。2、硼氢化钠溶液(10 g/L):称取10.0 g硼氢化钠,溶于1 000 mL氢氧化钠溶液中,混匀。临用现配(也可称取14 g硼氢化钾代替硼氢化钠)。3、硫脲溶液(50 g/L):称取50 g硫脲,溶于1 000 mL水中,混匀。4、硫酸溶液(1+9):量取100 mL硫酸,小心倒入水900 ml。中,混匀。5、氢氧化钠溶液(100 g/L):称取1.0 g氢氧化钠,溶于10 mL水中。6、盐酸溶液(1+1):量取100 mL盐酸缓慢倒入100 mL水中,混匀,冷却后使用。7、硝酸镁溶液(150 g/L):称取150 g硝酸镁,溶于1 000 mL水中,混匀。 标准溶液的配制1、砷标准储备液(0.1 mg/mL。):精确称取于100℃干燥2h以上的三氧化二砷0.1320 g,加100 g/L氢氧化钠溶液10 mL溶解,用水定量转入1 000 mL容量瓶中,加硫酸溶液(1+9)25 mL定容至刻度。2、砷标准使用液(1/μg/mL):吸取1.00 mL砷储备标准液于100 mL容量瓶中,用水稀释至刻度。 分析步骤以湿法消解为例称取固体试样1 g~2.5 g(精确至0.001 g),液体试样5 g~10 g(精确至0.001 g),置于100 mL锥形瓶中,加硝酸20 mL~40 mL,硫酸1.25 mL,放置过夜。次日置于电热板上加热消解(主气流量:为定值,500mL/min左右 辅气流量:800~1000mL/min泵速:70~80转/min检出限(参考值):0.01ng/mL 注意事项:(1)在盐酸中一般都存在着一定含量的As,因此采用优级纯HCL可减少空白。但也有个别情况分析纯中As含量低于优级纯,以及不同生产厂或不同的生产批号As的含量差别也很大, 因此建议在使用前先用少量的HCl配制成10%(V/V)条件下进行对比检验。(2)将所使用前的各种器皿必须用(1+1)HNO3浸泡24小时,然后认真清洗干净,防止As的污染。(3)本说明所配制的砷标准贮备液为三价状态,为防止在保存期间砷被氧化,仍建议加入硫脲+抗坏血酸,碘化钾预先还原As(Ⅴ)至As(Ⅲ),还原速度受温度影响,室温低于或小于15℃,至少应放置30分钟,样品也必须同样进行预还原。(4)配置标准溶液的容量瓶必须长期固定不变,不能任意变动。(5)配制标准溶液时宜采用固定的一支5mL刻度的移液管,可直接用于配制全部标准系列。(6)硼氢化钾溶液浓度对As测定有较大影响。
  • 国家质检总局国标委发布94项分析测试国家标准
    11月10日,国家质检总局、国家标准委发布了398项国家标准。该批国家标准中,制定239项,修订159项 强制性标准43项,推荐性标准348项,指导性技术文件7项。标准名称、编号及实施日期在《中华人民共和国国家标准批准发布公告》(2010年第8号)中向社会发布。其中,与分析测试直接相关的国家标准共计94项。   附:与分析测试直接相关的国家标准 序号 国家标准编号 国  家  标  准  名  称 代替标准号 实施日期 1 GB/T 13071-2010 地质水样 234U/238U、230Th/232Th放射性活度比值的测定 萃淋树脂萃取色层分离α能谱法 GB/T 13071-1991 2011-2-1 2 GB/T 13072-2010 地质水样 226Ra/228Ra 放射性活度比值测定 射气法-β法 GB/T 13072-1991 2011-2-1 3 GB/T 14352.1-2010 钨矿石、钼矿石化学分析方法 第1部分:钨量测定 GB/T 14352.1-1993 2011-2-1 4 GB/T 14352.2-2010 钨矿石、钼矿石化学分析方法 第2部分:钼量测定 GB/T 14352.2-1993 2011-2-1 5 GB/T 14352.3-2010 钨矿石、钼矿石化学分析方法 第3部分:铜量测定 GB/T 14352.3-1993 2011-2-1 6 GB/T 14352.4-2010 钨矿石、钼矿石化学分析方法 第4部分:铅量测定 GB/T 14352.4-1993 2011-2-1 7 GB/T 14352.5-2010 钨矿石、钼矿石化学分析方法 第5部分:锌量测定 GB/T 14352.5-1993 2011-2-1 8 GB/T 14352.6-2010 钨矿石、钼矿石化学分析方法 第6部分:镉量测定 GB/T 14352.6-1993 2011-2-1 9 GB/T 14352.7-2010 钨矿石、钼矿石化学分析方法 第7部分:钴量测定 GB/T 14352.7-1993 2011-2-1 10 GB/T 14352.8-2010 钨矿石、钼矿石化学分析方法 第8部分:镍量测定 GB/T 14352.8-1993 2011-2-1 11 GB/T 14352.9-2010 钨矿石、钼矿石化学分析方法 第9部分:硫量测定 GB/T 14352.9-1993 2011-2-1 12 GB/T 14352.10-2010 钨矿石、钼矿石化学分析方法 第10部分:砷量测定 GB/T 14352.10-1993 2011-2-1 13 GB/T 14352.11-2010 钨矿石、钼矿石化学分析方法 第11部分:铋量测定 GB/T 14352.11-1993 2011-2-1 14 GB/T 14352.12-2010 钨矿石、钼矿石化学分析方法 第12部分:银量测定 GB/T 14352.12-1993 2011-2-1 15 GB/T 14352.13-2010 钨矿石、钼矿石化学分析方法 第13部分:锡量测定 GB/T 14352.13-1993 2011-2-1 16 GB/T 14352.14-2010 钨矿石、钼矿石化学分析方法 第14部分:镓量测定 GB/T 14352.14-1993 2011-2-1 17 GB/T 14352.15-2010 钨矿石、钼矿石化学分析方法 第15部分:锗量测定 GB/T 14352.15-1993 2011-2-1 18 GB/T 14352.16-2010 钨矿石、钼矿石化学分析方法 第16部分:硒量测定 GB/T 14352.16-1993 2011-2-1 19 GB/T 14352.17-2010 钨矿石、钼矿石化学分析方法 第17部分:碲量测定 GB/T 14352.17-1993 2011-2-1 20 GB/T 14352.18-2010 钨矿石、钼矿石化学分析方法 第18部分:铼量测定 GB/T 14352.18-1993 2011-2-1 21 GB/T 14353.1-2010 铜矿石、铅矿石和锌矿石化学分析方法 第1部分:铜量测定 GB/T 14353.1-1993 2011-2-1 22 GB/T 14353.2-2010 铜矿石、铅矿石和锌矿石化学分析方法 第2部分:铅量测定 GB/T 14353.2-1993 2011-2-1 23 GB/T 14353.3-2010 铜矿石、铅矿石和锌矿石化学分析方法 第3部分:锌量测定 GB/T 14353.3-1993 2011-2-1 24 GB/T 14353.4-2010铜矿石、铅矿石和锌矿石化学分析方法 第4部分:镉量测定 GB/T 14353.4-1993 2011-2-1 25 GB/T 14353.5-2010 铜矿石、铅矿石和锌矿石化学分析方法 第5部分:镍量测定 GB/T 14353.5-1993 2011-2-1 26 GB/T 14353.6-2010 铜矿石、铅矿石和锌矿石化学分析方法 第6部分:钴量测定 GB/T 14353.6-1993 2011-2-1 27 GB/T 14353.7-2010 铜矿石、铅矿石和锌矿石化学分析方法 第7部分:砷量测定 GB/T 14353.7-1993 2011-2-1 28 GB/T 14353.8-2010 铜矿石、铅矿石和锌矿石化学分析方法 第8部分:铋量测定 GB/T 14353.8-1993 2011-2-1 29 GB/T 14353.9-2010 铜矿石、铅矿石和锌矿石化学分析方法 第9部分:钼量测定 GB/T 14353.9-1993 2011-2-1 30 GB/T 14353.10-2010 铜矿石、铅矿石和锌矿石化学分析方法 第10部分:钨量测定 GB/T 14353.10-1993 2011-2-1 31 GB/T 14353.11-2010 铜矿石、铅矿石和锌矿石化学分析方法 第11部分:银量测定 GB/T 14353.11-1993 2011-2-1 32 GB/T 14353.12-2010 铜矿石、铅矿石和锌矿石化学分析方法 第12部分:硫量测定 GB/T 14353.12-1993 2011-2-1 33 GB/T 14353.16-2010 铜矿石、铅矿石和锌矿石化学分析方法 第16部分:碲量测定 GB/T 14353.16-1993 2011-2-1 34 GB/T 14506.1-2010 硅酸盐岩石化学分析方法 第1部分:吸附水量测定 GB/T 14506.1-1993 2011-2-1 35 GB/T 14506.2-2010 硅酸盐岩石化学分析方法 第2部分:化合水量测定 GB/T 14506.2-1993 2011-2-1 36 GB/T 14506.3-2010 硅酸盐岩石化学分析方法 第3部分:二氧化硅量测定 GB/T 14506.3-1993 2011-2-1 37 GB/T 14506.4-2010 硅酸盐岩石化学分析方法 第4部分:三氧化二铝量测定 GB/T 14506.4-1993 2011-2-1 38 GB/T 14506.5-2010 硅酸盐岩石化学分析方法 第5部分:总铁量测定 GB/T 14506.5-1993 2011-2-1 39 GB/T 14506.6-2010 硅酸盐岩石化学分析方法 第6部分:氧化钙量测定 GB/T 14506.6-1993 2011-2-1 40 GB/T 14506.7-2010 硅酸盐岩石化学分析方法 第7部分:氧化镁量测定 GB/T 14506.7-1993 2011-2-1 41 GB/T 14506.8-2010 硅酸盐岩石化学分析方法 第8部分:二氧化钛量测定 GB/T 14506.8-19932011-2-1 42 GB/T 14506.9-2010 硅酸盐岩石化学分析方法 第9部分:五氧化二磷量测定 GB/T 14506.9-1993 2011-2-1 43 GB/T 14506.10-2010 硅酸盐岩石化学分析方法 第10部分:氧化锰量测定 GB/T 14506.10-1993 2011-2-1 44 GB/T 14506.11-2010 硅酸盐岩石化学分析方法 第11部分:氧化钾和氧化钠量测定 GB/T 14506.11-1993 2011-2-1 45 GB/T 14506.12-2010 硅酸盐岩石化学分析方法 第12部分:氟量测定 GB/T 14506.12-1993 2011-2-1 46 GB/T 14506.13-2010 硅酸盐岩石化学分析方法 第13部分:硫量测定 GB/T 14506.13-1993 2011-2-1 47 GB/T 14506.14-2010 硅酸盐岩石化学分析方法 第14部分:氧化亚铁量测定 GB/T 14506.14-1993 2011-2-1 48 GB/T 14506.15-2010 硅酸盐岩石化学分析方法 第15部分:锂量测定 GB/T 14506.15-1993 2011-2-1 49 GB/T 14506.16-2010 硅酸盐岩石化学分析方法 第16部分:铷量测定 GB/T 14506.16-1993 2011-2-1 50 GB/T 14506.17-2010 硅酸盐岩石化学分析方法 第17部分:锶量测定 GB/T 14506.17-1993 2011-2-1 51 GB/T 14506.18-2010 硅酸盐岩石化学分析方法 第18部分:铜量测定 GB/T 14506.18-1993 2011-2-1 52 GB/T 14506.19-2010 硅酸盐岩石化学分析方法 第19部分:铅量测定 GB/T 14506.19-1993 2011-2-1 53 GB/T 14506.20-2010 硅酸盐岩石化学分析方法 第20部分:锌量测定 GB/T 14506.20-1993 2011-2-1 54 GB/T 14506.21-2010 硅酸盐岩石化学分析方法 第21部分:镍和钴量测定 GB/T 14506.21-1993 2011-2-1 55 GB/T 14506.22-2010 硅酸盐岩石化学分析方法 第22部分:钒量测定 GB/T 14506.22-1993 2011-2-1 56 GB/T 14506.23-2010 硅酸盐岩石化学分析方法 第23部分:铬量测定 GB/T 14506.23-1993 2011-2-1 57 GB/T 14506.24-2010 硅酸盐岩石化学分析方法 第24部分:镉量测定 GB/T 14506.24-1993 2011-2-1 58 GB/T 14506.25-2010 硅酸盐岩石化学分析方法 第25部分:钼和钨量测定 GB/T 14506.25-1993 2011-2-1 59 GB/T 14506.26-2010 硅酸盐岩石化学分析方法 第26部分, :, 钴量测定 GB/T 14506.26-1993 2011-2-1 60 GB/T 14506.27-2010 硅酸盐岩石化学分析方法 第27部分:镍量测定 GB/T 14506.27-1993 2011-2-1 61 GB/T 14506.28-2010 硅酸盐岩石化学分析方法 第28部分:16个主次成分量测定 GB/T 14506.28-1993 2011-2-1 62 GB/T 14506.29-2010 硅酸盐岩石化学分析方法 第29部分:稀土等22个元素量测定   2011-2-1 63 GB/T 14506.30-2010 硅酸盐岩石化学分析方法 第30部分:44个元素量测定   2011-2-1 64 GB/T 15922-2010 钴矿石化学分析方法 钴量测定 GB/T 15922-1995 2011-2-1 65 GB/T 15923-2010 镍矿石化学分析方法 镍量测定 GB/T 15923-1995 2011-2-1 66 GB/T 15924-2010 锡矿石化学分析方法 锡量测定 GB/T 15924-1995 2011-2-1 67 GB/T 15925-2010 锑矿石化学分析方法 锑量测定 GB/T 15925-1995 2011-2-1 68 GB/T 15926-2010 铋矿石化学分析方法 铋量测定 GB/T 15926-1995 2011-2-1 69 GB/T 15927-2010 砷矿石化学分析方法 砷量测定 GB/T 15927-1995 2011-2-1 70 GB/T 16559-2010 船舶溢油应变部署表 GB/T 16559-1996 2011-3-1 71 GB/T 17413.1-2010 锂矿石、铷矿石、铯矿石化学分析方法 第1部分:锂量测定 GB/T 17413.1-1998 2011-2-1 72 GB/T 17413.2-2010 锂矿石、铷矿石、铯矿石化学分析方法 第2部分:铷量测定 GB/T 17413.2-1998 2011-2-1 73 GB/T 17413.3-2010 锂矿石、铷矿石、铯矿石化学分析方法 第3部分:铯量测定 GB/T 17413.3-1998 2011-2-1 74 GB/T 17414.1-2010 铍矿石化学分析方法 第1部分:铍量测定 埃利罗菁R光度法 GB/T 17414.1-1998 2011-2-1 75 GB/T 17414.2-2010 铍矿石化学分析方法 第2部分:铍量测定 催化极谱法 GB/T 17414.2-1998 2011-2-1 76 GB/T 17415.1-2010 钽矿石、铌矿石化学分析方法 第1部分:钽量测定 GB/T 17415.1-1998 2011-2-1 77 GB/T 17415.2-2010 钽矿石、铌矿石化学分析方法 第2部分:铌量测定 GB/T 17415.2-1998 2011-2-1 78 GB/T 17416.1-2010 锆矿石化学分析方法 第1部分:锆铪合量测定 GB/T 17416.1-1998 2011-2-1 79 GB/T 17416.2-2010 锆矿石化学分析方法 第2部分:锆量和铪量测定 GB/T 17416.2-1998 2011-2-1 80 GB/T 17417.1-2010 稀土矿石化学分析方法 第1部分:稀土分量测定 GB/T 17417.1-1998 2011-2-1 81 GB/T 17417.2-2010 稀土矿石化学分析方法 第2部分:钪量测定 GB/T 17417.2-1998 2011-2-1 82 GB/T 17418.1-2010 地球化学样品中贵金属分析方法 第1部分:总则及一般规定 GB/T 17418.1-1998 2011-2-1 83 GB/T 17418.2-2010 地球化学样品中贵金属分析方法 第2部分:铂量和铑量的测定 硫脲富集-催化极谱法 GB/T 17418.2-1998 2011-2-1 84 GB/T 17418.3-2010 地球化学样品中贵金属分析方法 第3部分:钯量的测定 硫脲富集-石墨炉原子吸收分光光度法 GB/T 17418.3-1998 2011-2-1 85 GB/T 17418.4-2010 地球化学样品中贵金属分析方法 第4部分:铱量的测定 硫脲富集-催化分光光度法 GB/T 17418.4-1998 2011-2-1 86 GB/T 17418.5-2010 地球化学样品中贵金属分析方法 第5部分:钌量和锇量的测定 蒸馏分离-催化分光光度法 GB/T 17418.5-1998 2011-2-1 87 GB/T 17418.6-2010 地球化学样品中贵金属分析方法 第6部分:铂量、钯量和金量的测定 火试金富集-发射光谱法 GB/T 17418.6-1998 2011-2-1 88 GB/T 17418.7-2010 地球化学样品中贵金属分析方法 第7部分:铂族元素量的测定 镍锍试金-电感耦合等离子体质谱法   2011-2-1 89 GB/T 18340.1-2010 地质样品有机地球化学分析方法 第1部分:轻质原油分析 气相色谱法 GB/T 18340.1-2001 2011-2-1 90 GB/T 18340.2-2010 地质样品有机地球化学分析方法 第2部分:有机质稳定碳同位素测定 同位素质谱法 GB/T 18340.2-2001 2011-2-1 91 GB/T 18340.3-2010 地质样品有机地球化学分析方法 第3部分:石油重馏分中饱和烃族组分测定 质谱法 GB/T 18340.3-2001 2011-2-1 92 GB/T 18340.4-2010 地质样品有机地球化学分析方法 第4部分:石油重馏分中芳香烃族组分测定 质谱法 GB/T 18340.4-2001 2011-2-1 93 GB/T 18340.5-2010 地质样品有机地球化学分析方法 第5部分:岩石提取物和原油中饱和烃分析 气相色谱法 GB/T 18340.5-2001 2011-2-1 94 GB/T 18340.6-2010 地质样品有机地球化学分析方法 第6部分:汽油族组成测定 质谱法 GB/T 18340.6-2001 2011-2-1
  • 中国出入境检验检疫协会发布《茶叶中丁醚脲及其降解产物残留量的测定液相色谱-串联质谱法》等三项团体标准(征求意见稿)
    CIQA/TC12各成员单位及专家、各有关单位:根据《中国出入境检验检疫协会团体标准管理办法》及实施细则的规定,《茶叶中丁醚脲及其降解产物残留量的测定 液相色谱-串联质谱法》P/CIQA-142-2023、《鲜禽蛋中喹诺酮类和磺胺类药物残留量的测定 液相色谱-串联质谱法》P/CIQA 141-2023、《食用植物油中乙基麦芽酚的测定 液相色谱-串联质谱法》P/CIQA-140-2023等三项团体标准已由中国出入境检验检疫协会综合质量服务标准化技术委员会(CIQA/TC12)组织起草完毕,现进入征求意见阶段。请在30天内将意见和建议填写在《意见反馈表》中,于2024年7月12日前将书面意见以邮件形式反馈至CIQA/TC12秘书处。请务必留下您的姓名、单位名称及联系方式,便于联系。CIQA/TC12秘书处联系人:汪顿;010-84538815,15210031335邮箱:wangdun@ccic.com协会联系人:阳 焰;01062029721, 13901217549邮箱:yangyan@ciq.org.cn。附件:附件.zip1.《茶叶中丁醚脲及其降解产物残留量的测定 液相色谱-串联质谱法》团体标准征求意见稿2.《茶叶中丁醚脲及其降解产物残留量的测定 液相色谱-串联质谱法》(征求意见稿)编制说明3.《茶叶中丁醚脲及其降解产物残留量的测定 液相色谱-串联质谱法》反馈意见表4.《鲜禽蛋中喹诺酮类和磺胺类药物残留量的测定 液相色谱-串联质谱法》(征求意见稿)团体标准征求意见稿5.《鲜禽蛋中喹诺酮类和磺胺类药物残留量的测定 液相色谱-串联质谱法》(征求意见稿)编制说明6.《鲜禽蛋中喹诺酮类和磺胺类药物残留量的测定 液相色谱-串联质谱法》反馈意见表7.《食用植物油中乙基麦芽酚的测定 液相色谱-串联质谱法》团体标准征求意见稿8.《食用植物油中乙基麦芽酚的测定 液相色谱-串联质谱法》(征求意见稿)编制说明9.《食用植物油中乙基麦芽酚的测定 液相色谱–串联质谱法》反馈意见表中国出入境检验检疫协会2024年6月12日
  • 环保部征求九项环境监测标准意见 涉及LC、GC和GCMS
    近日,环保部发布九项环境监测标准的征求意见稿,涉及的样品为水质、环境空气和固定污染源废气,涉及的仪器包括液相色谱仪、气相色谱仪和气相色谱-质谱仪。  征求意见稿如下:水质灭多威和灭多威肟的测定液相色谱法 (征求意见稿).pdf水质硝磺草酮的测定液相色谱法(征求意见稿).pdf水质乙撑硫脲的测定液相色谱法(征求意见稿).pdf环境空气气相和颗粒物中有机氯农药的测定气相色谱法(征求意见稿).pdf环境空气 气相和颗粒物中多氯联苯单体的测定 气相色谱法(征求意见稿).pdf.环境空气 气相和颗粒物中多氯联苯混合物的测定 气相色谱法(征求意见稿).pdf.环境空气 气相和颗粒物中酞酸酯类的测定 气相色谱-质谱法(征求意见稿).pdf环境空气 气相和颗粒物中酞酸酯类的测定 高效液相色谱法(征求意见稿).pdf固定污染源废气 酞酸酯类的测定 气相色谱法(征求意见稿).pdf
  • 原子荧光光谱法检测再生水标准本月开始实施
    检测再生水的原子荧光光谱法本月正式开始实施。为了保证再生水达到标准,国家制定了一系列相关标准,其中这个月开始正式实施的《GB/T 39306-2020 再生水水质 总砷的测定 原子荧光光谱法》是专门为检测再生水中砷含量制定的标准,可见国家对再生水质的关注,同时也说明原子荧光光谱仪在再生水检测中发挥重要作用。使用原子荧光光谱仪检测再生水中砷的操作可以简述为:取适量水样于烧杯中,加入硝酸,盖上表面皿加热至微沸,冷却后移入容量瓶分别加入盐酸和硫脲和抗坏血酸混合溶液,加水定容静置半小时待测。同时做对比实验。检测时,按照所使用的原子荧光光谱仪推荐测试条件输入相关参数。预热,待仪器稳定后,先测定标准系列溶液,后测定样品溶液。通过以上操作就可以检测水样中砷的浓度。在依照《GB/T 39306-2020 再生水水质 总砷的测定 原子荧光光谱法》,使用原子荧光光谱仪检测水样中砷时,应注意采样容器应为聚乙烯瓶或聚丙烯瓶,样品采集后,应立即加入盐酸酸化,防止碳酸钙沉淀,当水样中悬浮物较多时,可用中速定量滤纸过滤,滤液贮于聚乙烯瓶内。另外在使用原子荧光光谱法时,所有使用到的玻璃器皿需要经硝酸浸泡。还有应为使用原子荧光光谱仪检测水样中砷时,还原剂的浓度、溶液的pH值、使用的原子荧光光谱仪型号等差异都会对检测结果产生影响,因此使用者需要根据原子荧光光谱仪型号选择适宜的测试条件,已达到检测结果。原子荧光光谱仪检出限低、稳定性好,在水质检测中发挥着越来越重要的检测中。金索坤作为原子荧光行业领跑者,为提高水质检测速度和稳定性推出SK-2003A便捷型原子荧光光谱仪、SK-盛析高效稳定性原子荧光光谱仪等产品,金索坤还会不断地推陈出新,用更加优质的原子荧光产品助力各种水质检测。金索坤SK-乐析 测汞型原子荧光光谱仪/光度计
  • CFDA批准发布两项食品检验方法 含LC、LC-MS
    p   日前,食品药品监管总局批准发布了《食品中那非类物质的测定》和《小麦粉中硫脲的测定》等两项液相色谱-串联质谱和高效液相色谱检验方法。 /p p   《食品中那非类物质的测定(BJS201601)》规定了食品(含保健食品)中西地那非、豪莫西地那非、羟基豪莫西地那非、那莫西地那非、硫代艾地那非、红地那非、那红地那非、伐地那非、伪伐地那非、他达拉非、氨基他达拉非含量的液相色谱-串联质谱测定方法。 /p p   《小麦粉中硫脲的测定(BJS201602)》规定了小麦粉中硫脲含量的高效液相色谱测定方法。 /p p style=" text-align: left "    strong 通知详情如下: /strong /p p style=" text-align: center " strong 总局关于发布食品中那非类物质的测定和小麦粉中硫脲的测定2项检验方法的公告 /strong /p p style=" text-align: center " strong (2016年第196号) /strong /p p   按照《食品安全抽样检验管理办法》有关规定,《食品中那非类物质的测定》和《小麦粉中硫脲的测定》等两项检验方法已经国家食品药品监督管理总局批准,现予发布。 /p p   特此公告。 /p p   附件: /p p style=" line-height: 16px "   1. img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201612/ueattachment/44faebf1-af34-42cf-8d51-bcd09a963963.docx" 食品中那非类物质的测定(BJS201601).docx /a /p p style=" line-height: 16px "   2. img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201612/ueattachment/dda9da5e-5cf0-432b-ace5-aadedf30250d.docx" 小麦粉中硫脲的测定(BJS201602).docx /a /p p style=" text-align: right "   食品药品监管总局 /p p style=" text-align: right "   2016年12月22日 /p p br/ /p
  • 原子荧光光谱法 同时测定食盐中砷、锑、铋和汞的含量
    摘要: 本文应用北京吉天仪器有限公司(以下简称:吉天仪器)的Kylin S18四通道双光束原子荧光光度计同时测定食盐中砷、锑、铋和汞元素的含量,并对方法进行了验证。实验结果表明:参考国标方法,用微波消解食盐样品,同测砷、锑、铋和汞四种元素,方法检出限为As 0.0004μg/g,Sb 0.0005μg/g,Bi 0.0003μg/g,Hg 0.0001μg/g,加标回收率在94.4%~114.9%。采用Kylin S18可以同时测定食盐中砷、锑、铋和汞四种元素的含量,结果真实可靠。1.前言食盐是人们日常生活中不可替代的特殊调味品,但如果食盐中含有砷、锑、铋、汞等重金属,便会危害人们的身体健康。GB2762-2017《食品安全国家标准 食品中污染物限量》中明确规定了食盐中砷、汞、铅、镉等元素的限量指标,并且指明了砷和汞的检验方法,按GB 5009.11和GB 5009.17规定的方法测定。目前,砷、锑、铋和汞的测定方法主要有原子吸收光谱法、原子荧光光谱法和电感耦合等离子体质谱法等。其中,原子荧光光谱法因其灵敏度好、重复性好、准确度高等优点而被广泛使用。国标采用原子荧光光谱法测食品中砷、锑、铋和汞元素均单独检测。本研究参考GB5009,采用微波消解前处理,原子荧光光谱法四通道同时测定食盐中砷、锑、铋和汞四种元素。该方法操作简单,准确可靠,且检测效率高,为食盐中重金属元素含量的测定提供了较好的参考方法。2.仪器设备表1:实验所用仪器/设备/耗材/试剂#仪器/设备/耗材#试剂1Kylin S18 四通道双光束原子荧光光度计(北京吉天仪器有限公司)1砷标准溶液(GBW(E)080117)2微波消解仪2锑标准溶液(GBW(E)080545)3智能控温电加热器3铋标准溶液(GBW(E)080271)4分析天平(万分之一)4汞标准溶液(GBW(E)080124)5超纯水仪5硝酸(优级纯)6氩气(纯度≥99.99%)6盐酸(优级纯)7容量瓶7氢氧化钾(优级纯)8比色管8硼氢化钠(分析纯)9离心管9硫脲(分析纯)10抗坏血酸(分析纯)1130%过氧化氢(分析纯)3. 测试原理样品经微波消解后,加入硫脲使五价砷和五价锑预还原为三价砷和三价锑,再加入硼氢化钾(或硼氢化钠)使其进一步还原生成砷化氢和锑化氢,铋被还原为铋化氢,汞被直接还原为原子态汞,由氩气载入石英原子化器中分解为原子态砷、锑和铋。在高强度砷、锑、铋和汞空心阴极灯的发射光激发下产生原子荧光,其荧光强度在固定条件下与被测溶液中砷、锑、铋和汞的浓度成正比,与标准系列比较定量。多道原子荧光同时检测砷、锑、铋和汞元素的含量。4.分析方法4.1 试样制备4.1.1 试剂溶液盐酸溶液(1+1):量取50mL盐酸,缓缓加入到50mL去离子水中。5%盐酸(V/V):量取50mL盐酸,用去离子水定容至1000mL。1.05%硼氢化钠(W/V,或1.5%硼氢化钾,溶于0.5%氢氧化钾溶液):先称取5g氢氧化钾,放入1000mL去离子水中,待完全溶解后,再加入称好的10.5g硼氢化钾,溶解后摇匀。10%硫脲+10%抗坏血酸混合溶液(W/V):称取10g硫脲和10g抗坏血酸,加去离子水定容至100mL,搅拌、超声或加热,使其溶解。4.1.2 标准品溶液砷标准使用溶液(1μg/mL):精确吸取100μg/mL砷标准贮备液1mL至100mL容量瓶中,用5%盐酸稀释至刻度。锑标准使用溶液(1μg/mL):精确吸取100μg/mL砷标准贮备液1mL至100mL容量瓶中,用5%盐酸稀释至刻度。铋标准使用溶液(1μg/mL):精确吸取100μg/mL砷标准贮备液1mL至100mL容量瓶中,用5%盐酸稀释至刻度汞标准使用溶液(1μg/mL):精确吸取100μg/mL汞标准贮备液1mL至100mL容量瓶中,用5%盐酸稀释至刻度。 测定用砷、锑、铋和汞混合标准溶液: 准确吸取砷标准使用液1mL、锑标准使用液1mL、铋标准使用液1mL、汞标准使用液0.1mL于100mL容量瓶中, 加入5mL浓盐酸,加入10mL 10%的硫脲+10%的抗坏血酸混合溶液,用去离子水定容至刻度(混合标准溶液中砷、锑和铋的浓度为10.0 ng/mL、汞的浓度为1.0 ng/mL)。4.1.3 样品溶液称取样品1g,精确至0.0001g,置于消解罐中,加入硝酸和过氧化氢,按照微波消解条件(表2)进行微波消解。消解完毕,待消解罐冷却后打开,用少量去离子水将消解罐的盖子进行冲洗,并入到消解罐内罐中。将消解罐内罐放入智能电加热器中,130℃加热赶酸至约2~4mL。用少量去离子水分三次冲消解罐内罐,将溶液移至25mL比色管,加入2.5mL盐酸溶液(1+1),加入2.5mL10%的硫脲+10%的抗坏血酸混合溶液,用去离子水稀释定容,摇匀,预还原30min后上机测定As、Sb、Bi和Hg元素的含量。同时做试剂空白试验和样品加标实验。 表2:微波消解条件步骤温度/℃保温时间/min压力/atm11205202150535318054042002540 4.2 仪器工作条件表 3:仪器工作条件仪器北京吉天仪器有限公司kylin S18 原子荧光光度计通道A道(As)B道(Sb)C道(Bi)D道(Hg)灯电流(主阴极/辅阴极)80/40 mA80/40 mA60/30mA35/0 mA负高压280V灯双光束扣漂移是载气400 mL/min屏蔽气800 mL/min原子化器温度200 ℃原子化器温度高度12 mm5 实验结果5.1 重复性连续进样7次测定用混合标准溶液1.0 mL,重复性统计见表4。 表4:砷、锑、铋和汞四种元素的重复性#信号值A道(As)B道(Sb)C道(Bi)D道(Hg)13398.093581.324146.192106.4623382.683597.364129.802108.9933402.693601.064164.762118.9343359.803572.504177.612086.2553359.873582.684185.082098.3063361.893590.254128.902078.0573364.463575.624151.212095.27RSD0.55%0.30%0.53%0.66%5.2 标准曲线和方法检出限将混合标准溶液依次进样0.1 mL,0.2 mL,0.4mL,0.8 mL和1.0mL,以元素浓度为横坐标,信号值为纵坐标绘制标准曲线,砷、锑、铋和汞的线性见图1、图2、图3和图4,线性及相关系数见表5。连续进11次标准空白溶液,计算方法检出限,结果见表6。 图1 As的标准曲线 图2 Sb的标准曲线图3 Bi的标准曲线 图4 Hg的标准曲线 表5:线性范围、线性回归方程及相关系数元素线性范围(ng/mL)线性方程相关系数rA道(As)1.0~10.0Y=319.66X+1.260.9998B道(Sb)1.0~10.0Y=356.71X-21.780.9995C道(Bi)1.0~10.0Y=410.20X-11.510.9999D道(Hg)0.1~1.0Y=2071.6X-23.080.9998 表6:方法检出限元素11次空白信号值方法检出限(μg/g)A道(As)1.77,3.26,0.39,2.16,4.31,1.85,0.49,-0.51,3.53,1.74,-1.200.0004B道(Sb)3.73,5.79,1.59,3.72,6.24,2.71,0.19,4.22,1.08,1.02,-0.060.0005C道(Bi)-2.15,-3.01,-1.43,-2.02,-2.23,-1.35,1.44,0.02,-0.10,-3.26,-0.870.0003D道(Hg)15.65,18.21,15.80,21.49,19.13,24.16,26.30,23.14,21.57,19.78,20.430.00015.3 样品测试结果及准确度表7:样品测量浓度及准确度结果表样品名称测定值(mg/kg)加标回收率(%)A道(As)B道(Sb)C道(Bi)D道(Hg)A道(As)B道(Sb)C道(Bi)D道(Hg)海藻盐未检出未检出未检出未检出97.194.5103.3103.0未检出未检出未检出未检出96.399.5100.799.4井盐未检出未检出未检出未检出94.499.2103.5101.7未检出未检出未检出未检出97.0100.7101.595.8湖盐未检出未检出未检出未检出101.7105.8105.1103.7未检出未检出未检出未检出114.9112.1104.0101.2腌制盐未检出未检出未检出未检出94.899.599.9101.5未检出未检出未检出未检出99.8 102.4 106.0 103.3 6 结论  应用北京吉天仪器有限公司的Kylin S18四通道双光束原子荧光光度计四通道同时测定食盐样品中砷、锑、铋和汞四种元素的含量。实验结果表明,采用该方法可以准确地测定食盐样品中砷、锑、铋和汞元素的含量,测量重复性好,线性好,加标回收率较好。该方法参考了GB5009,结果准确可靠,值得推广。
  • 化妆品乱象 金索坤产品严把检测关
    夏日炎炎,各类防晒、护肤产品又迎来了它的旺季。琳琅满目的防晒护肤产品以及各色促销手段引起了一个小小的购物热潮。不过在2017年6月8日,国家食药监总局发出了一则《关于12批次防晒类化妆品不合格的通告》,在公告中指出赫拉水透亲肤防晒液(进口国澳大利亚);花信堂美白防晒露以及温碧泉透清莹防晒乳等产品出现不合格指标。化妆品一直被认为是一个利润很高的行业,所以为了规范化妆品行业健康发展,保护消费者的合法权益,国家出台了《化妆品安全技术规范》等相关标准。在《规范》中对于化妆品的禁用组分、标准组分以及检测方法都做了详细的要求。举例来说,在一些美白性质的化妆品明确规定重金属砷、汞、镉的限定量小于0.07ug/L。用来检测化妆品中重金属含量的仪器有很多,如火焰法原子吸收光谱仪、ICP-MS等。拥有我国自主知识产权的原子荧光光谱仪因为它检出限低,灵敏度高,杂光干扰少等优势在我国化妆品中重金属检测领域得到越来越多的应用。但同时也发现在使用原子荧光法检测化妆品中的镉时会出现信号较弱的问题。根据原子荧光原理可以知道,在低浓度范围内,原子荧光强度和被测元素的浓度呈线性关系。得到更多被测元素的原子就要提高氢化反应效率。而应用原子荧光法检测样品中的镉时,信号弱就是因为氢化反应效率低。为了提高镉的氢化反应效率,北京金索坤公司专门组织了研发小组进行研究。北京金索坤技术开发有限公司既是原子荧光技术的发源地也是原子荧光行业的领跑者。为了提高镉的氢化反应效率,金索坤的研发小组在郭小伟教授的带领下,经过反复的理论研究和无数次的实验论证,终于研制出可以增强镉氢化反应效率的镉信号专用试剂。将镉元素专用试剂应用于氢化反应中,可以大幅度改善氢化反应体系中镉的生成效率,可以使信号强度提高1~2个数量级,完全可以满足测试需求。作为市面上唯一一家只专注原子荧光技术发展的高新技术企业,金索坤公司在化妆品中镉的检测做了大量实验研究。下面是公司应用SK-乐析检测化妆品中镉的试验方法。一、方法提要试样用酸溶解后,在酸性介质中,试样中的镉被硼氢化钾(KBH4)还原成镉的挥发性组份,由载气(氩气)带入原子化器中,在氩氢火焰中原子化,在特制空心阴极灯的照射下,基态镉原子被激发至高能态,在去活化回到基态时,发射出特征波长的荧光,其荧光强度与镉含量成正比,与标准系列比较定量。 二、试剂和材料 除特别注明外,所用试剂均为优级纯,所用水均为通过超纯水机处理后的超纯水,电阻率不低于18.2 M Ω?cm,所有实验用玻璃器皿使用前都经过5% (v/v)硝酸浸泡24 h,然后用去离子水冲洗干净、备用。 2.1 硝酸。 2.2 盐酸 2.3 硫酸。 2.4氢氧化钾。 2.5 硫脲。 2.6 抗坏血酸。 2.7 镉信号增强剂1号。 2.8 镉信号增强剂2号。 2.9 乙醇 2.10 标准空白体系的配制:称取10g硫脲、10g抗坏血酸及0.1g镉信号增强剂2号于980 mL水中,后加入20 mL的盐酸,不断搅拌至完全溶解。 2.11 还原剂体系的配制:称取15g镉信号增强剂1号、2.5g氢氧化钾于20 mL水中,加入100 mL乙醇,不断搅拌至试剂完全溶解,后加入380 mL水。三、仪器、设备 3.1 SK-乐析原子荧光光谱仪。3.2 镉元素高性能空心阴极灯。3.3 分析天平(精度为0.1g、0.1mg)。 3.4 超纯水制备系统。 3.5 实验室常规玻璃器皿。 四、分析步骤 1、样品预处理 称取约0.1g(精确到0.0001g)化妆品样品于50 mL烧杯中,加入8mL硝酸及2mL硫酸(即硝酸与硫酸比例为8:2),于电热板上消解至溶液尽干,无白烟冒出,后用标准空白介质定容至一定体积,待测。 2、标准曲线的绘制 准确吸取0.10μg/mL的镉标准溶液0.00 mL(空白)、0.10 mL、0.50 mL、1.00 mL、1.50 mL、2.00 mL于六个100 mL容量瓶中,用标准空白介质稀释至刻度,即此标准系列溶液中镉的质量浓度分别为0.00、0.10、 0.50、1.00、1.50 、2.00μg/L,摇匀待测。 3、测定 开机设置好各项参数,待仪器稳定后方可进行测定。测定时,将标准系列溶液、供试液导入仪器中进行测定,测定供试液中待测元素含量。 下面是在使用了镉信号增强剂与未加如信号增强剂的对比图。从图中可以看出,镉元素信号增强剂可以明显提高镉元素的荧光信号强度,可使信号增强1~2个数量级。爱美之心人皆有之,而正是这种“求美”心切使得一些化妆品厂商有机可乘。保证我国化妆品市场健康发展就需要相关的检测标准和检测仪器,北京金索坤技术开发有限公司会一如既往地为原子荧光技术的发展探索乾坤,为我国化妆品市场健康有序的发展贡献力量。 金索坤SK-乐析原子荧光光谱仪
  • 国家卫生健康委发布《尿中硫氰酸根测定标准 离子色谱法》等13项国家职业卫生标准及1项标准修改单
    现发布《职业性慢性氯丙烯中毒诊断标准》等13项国家职业卫生标准及1项标准修改单,编号和名称如下:一、强制性国家职业卫生标准1.GBZ 6—2024职业性慢性氯丙烯中毒诊断标准(代替GBZ 6—2002)2.GBZ 10—2024职业性急性溴甲烷中毒诊断标准(代替GBZ 10—2002)3.GBZ 15—2024职业性急性氮氧化物中毒诊断标准(代替GBZ 15—2002)4.GBZ 23—2024职业性急性一氧化碳中毒诊断标准(代替GBZ 23—2002)5.GBZ 27—2024职业性汽油中毒诊断标准(代替GBZ 27—2002)6.GBZ 37—2024职业性铅及其无机化合物中毒诊断标准(代替GBZ 37—2015)7.GBZ 40—2024职业性急性硫酸二甲酯中毒诊断标准(代替GBZ 40—2002)8.GBZ 89—2024职业性汞中毒诊断标准(代替GBZ 89—2007)9.GBZ 331—2024职业卫生技术服务工作规范二、推荐性国家职业卫生标准10.GBZ/T 332—2024尿中硫氰酸根测定标准 离子色谱法(代替 WS/T 39—1996)11.GBZ/T 333—2024尿中铍测定标准 电感耦合等离子体质谱法(代替WS/T 46—1996)12.GBZ/T 334—2024尿中亚硫基二乙酸测定标准 离子色谱法(WS/T 63—1996)13.GBZ/T 335—2024尿中三氯乙酸测定标准 顶空气相色谱法(代替WS/T 96—1996)三、标准修改单《工作场所有害因素职业接触限值 第1部分:化学有害因素》(GBZ 2.1—2019)第2号修改单上述强制性标准及标准修改单自2025年5月1日起施行,GBZ 6—2002、GBZ 10—2002、GBZ 15—2002、GBZ 23—2002、GBZ 27—2002、GBZ 37—2015、GBZ 40—2002、GBZ 89—2007同时废止。上述推荐性标准自2024年11月1日起施行,WS/T 39—1996、WS/T 46—1996、WS/T 63—1996、WS/T 96—1996同时废止。特此通告。国家卫生健康委2024年5月9日附件:1.国卫通〔2024〕9 号 13项标准文本+1项修改单.rar
  • 赛普仪器发布BOD5机器人自动测量分析系统新品
    标准化:符合中国和国际相关标准,5日生化培养+溶解氧电极法测定。自动化设计:机械臂定位,实现自动样品稀释、试剂加注 、自动开盖、自动加盖及加水封和溶氧电极自动测量及清洗等自动功能。智能化:依照国家标准方法,程序自动计算BOD5。样品量:单组54位瓶位,可多组测量。操作简单:HMI交互界面,触摸屏全程操控,也可通过微机软件操控。自动校正:电极自动校正,校正数据自动保存。数据存储:数据实时存储,系统数据及测量数据掉电不丢失。安全:无危险试剂,排出液体无害测量范围:2~6000mg/L电极测量范围:0-20mg/L分辨率:0.01 mg/L重现性:0.1Mg/L(单组)电极校正:智能薄膜校正(IQMC)技术使用过程无需校正自动稀释:提供多通道自动稀释功能。稀释水采用蠕动泵智能自控加注系统,流量1.2L、min接种液采用高精度注射泵自动加注系统,加液范围0-100ml丙烯基硫脲采用高精度注射泵自动加注系统,加液范围0-100ml自动清洗: 管路和溶解氧探头可进行自动定时清洗。样品数:多组重复不限量。单组实现54瓶位样品的测量。模块化样品盘设计:3*6样品瓶/盘。样品容器:标准玻璃培养瓶300ml。盖瓶盖/开瓶盖:由机械臂附加装置自动完成,瓶盖加水封密封。运动模块:全电控模组定位准确,多轴联动,柔性稳定。电源要求:AC220V 50HZ电源功率:350W 外形尺寸:1500*650*650mm环境要求:5~45℃ ,无腐蚀性气体。高灵敏全极霍尔定位自动搅拌功能保持样品溶解氧均匀,也可赶出过饱和溶解氧。溶解氧膜电极具有自动温度补偿、自动盐度补偿和自动气压补偿的功能。测量范围:(0 ~ 20.00)mg/L(ppm) (0 ~ 200.0)%分辨率:0.1/0.01 mg/L(ppm) 1/0.1 %响应时间:≤30 s(25℃, 90%响应)准确度:≤0.1 mg/L温度补偿范围:(0 ~ 45)℃(自动)盐度补偿范围:(0 ~ 45)ppt(自动)气压补偿范围:(80 ~ 105)kPa(自动)创新点:自动化设计:机械臂定位,可按程序设置自动完成稀释接种水加注、营养盐加注、硫脲加注、开取及闭合瓶盖、溶氧自动测量、溶氧电极自动清洗及加水封等自动功能。内置液位自动检测电极。 智能化:依照国家标准方法,用户可自行定义分析流程,程序自动计算BOD5。 产品完全符合 HJ505-2009《水质 五日生化需氧量(BOD5)的测定 稀释与接种》 BOD5机器人自动测量分析系统
  • 土壤样品中As、Hg等元素的测定
    土壤中微量As的测定一、取0.2000克试样于25毫升的比色管中,加入1:1的王水5毫升,于沸水浴中加热溶解1小时,冷却后加入蒸馏水10毫升,摇匀,再加入混和还原剂2.5毫升,用蒸馏水定容到25毫升,摇匀放置澄清。二、原子荧光光谱仪测定。 ***保持样品介质为10%王水,1%硫脲,1%的抗坏血酸。 ***标准系列也要保持介质为10%王水,1%硫脲,1%的抗坏血酸。土壤中微量Hg的测定一、取0.2000克试样于25毫升的比色管中,加入1:1的王水5毫升,于沸水浴中加热溶解1小时,冷却后用蒸馏水定容摇匀放置澄清。二、原子荧光光谱仪测定。 ***保持样品介质为10%王水。 ***标准系列保持介质为10%王水。 原子荧光光谱仪还能检测土壤样品中的Sb、Bi、Pb、Sn、Te、Se、Ge、Zn、Cd、Au、Ag、Cu、Cr、Co、Ni等元素。 详情请垂询:北京金索坤技术开发有限公司,联系电话:010-56370668
  • 《乌梅子酱》听得上头,Detelogy教你如何检测食用果酱
    小贴士 Tips生活中我们经常食用的果酱有:蓝莓酱、草莓酱、苹果酱、杨梅酱等。相比而言,乌梅子酱比较小众,它是一种以乌梅为主料,辅以山楂、桑葚、甘草等食材原料熬制而成,口感酸甜、开胃,吃法花样多!果酱是一种以水果、果汁或果浆及糖等为主要原料,经预处理、煮制、或破碎、配料、浓缩、包装等工序制成的酱状产品。制作果酱是长时间保存水果的一种方法,其食品安全风险主要来自于在生产加工的过程中人为添加的过量色素、食品添加剂、防腐剂等,又或者是环境污染引入的重金属污染、不当保存导致的有害微生物,霉菌、致病菌的滋长等。果酱中的重金属的检测是一项必不可少的监控指标,不同品种的果酱由于选用的原料和工艺不尽相同,果酱中重金属元素的含量也不尽相同,其食用安全问题受到人们的广泛关注。Detelogy奉上果酱中重金属检测前处理方案!01 食品中铅的测定 参考标准:GB 5009.12-2017 第一法实验步骤:称取果酱试样2g于带刻度消解管中,加入10mL硝酸和0.5mL高氯酸,置于iGBlock-36智能石墨消解仪上消解(参考条件:120℃/0.5h~1h;升至180℃/2h~4h,升至200℃~220℃)。若消解液呈棕褐色,再加少量硝酸,消解至冒白烟,消化液呈无色透明或略带黄色,取出消解管,冷却后用水定容至10mL,混匀备用。同时做试剂空白试验。定容好的样品待石墨炉原子吸收光谱仪测定。02 食品中锡的测定 参考标准:GB 5009.16-2014 第一法实验步骤:称取2g果酱试样于锥形瓶中,加入20mL硝酸-高氯酸混合溶液(4 1)、1.0mL硫酸、玻璃珠,放置过夜后置于iGHP-37C智能石墨电热板加热消解,待液体体积近1mL时取下冷却。用水将消解试样转移入50mL容量瓶中,加水定容至刻度,摇匀备用。取定容后的试样10.0mL于25 mL比色管中,加入3.0mL硫酸溶液(1 9),加入20mL硫脲(150g/L)十抗坏血酸(150g/L)混合溶液,再用水定容,摇匀。定容好的样品待原子荧光光谱仪测定。03 食品中总砷的测定 参考标准:GB 5009.11-2014 第二法实验步骤:称取果酱试样2g,置于锥形瓶中。加入硝酸20mL 、高氯酸4mL和硫酸1.25mL,放置过夜。次日置于iGHP-37C智能石墨电热板上加热消解。持续加热至消解完全后,再持续蒸发至高氯酸的白烟散尽,硫酸的白烟开始冒出,进行冷却并加水25mL,再蒸发至冒硫酸白烟。冷却,用水将内溶物转入25mL容量瓶或比色管中,加入硫脲 抗坏血酸溶液 2mL,补加水至刻度。混匀,放置30 min。原子荧光光谱仪待测。Tips:若消解液处理至1mL左右时仍有未分解物质或色泽变深,取下放冷,补加硝酸5mL~10mL,再消解至2mL 左右,如此反复两三次,注意避免炭化。
  • 食药总局:网络食安问题电商平台将承担连带责任
    国家食品药品监督管理总局今日在北京召开新闻发布会,公布《网络食品安全违法行为查处办法》。据悉,该《办法》包括总则、网络食品安全义务、网络食品安全违法行为查处管理、法律责任、附则等,共五章48条,该办法将于2016年10月1日起实施。草酸二水合物 Oxalic acid dihydrate 6153-56-6双[3-(三乙氧基甲硅烷基)丙基]四硫化物 Bis[3-(triethoxysilyl)propyl] tetrasulfide 40372-72-3D-薄荷醇 D-Menthol 15356-60-2L-薄荷醇 L-Menthol 2216-51-51-十二烷醇 1-Dodecanol 112-53-81-十二烷醇 1-Dodecanol 112-53-81-十二烷醇 1-Dodecanol 112-53-81-辛醇 1-Octanol 111-87-55-甲基呋喃醛 5-Methylfurfural 620-02-0N-环己基甲酰胺 N-Cyclohexylformamide 766-93-84-甲基-2-戊醇 4-Methyl-2-pentanol 108-11-2N,N-二甲基-对苯二胺 N,N-Dimethyl-p-phenylenediamine 99-98-95,6,7,8-四氢-1-萘胺 5,6,7,8-Tetrahydro-1-naphthylamine 2217-41-6肼二盐酸盐 Hydrazine dihydrochloride 5341-61-7硫氰酸钾 Potassium thiocyanate 333-20-0二甲基硫醚 Dimethyl sulfide 75-18-3聚苯醚 Polyphenyl ether 31533-76-3叔丁基甲基醚 气相色谱级 Tert-Butyl methyl ether 1634-04-4七氟丁酸 Heptafluorobutyric acid 375-22-4甲苯二异氰酸酯 Tolylene Diisocyanate(TDI) 26471-62-53,4-二羟基苄胺氢溴酸盐 3,4-Dihydroxybenzylamine hydrobromide 16290-26-9N,N-二(羟基乙基)椰油酰胺 Coconut diethanolamide(CDEA) 68603-42-9/61791-31-9甲苯二异氰酸酯 Tolylene Diisocyanate(TDI) 26471-62-5异冰片基丙烯酸酯 Isobornyl acrylate 5888-33-5N,N' -二苯基硫脲 1,3-Diphenyl-2-thiourea 102-08-9聚合氯化铝 Aluminum chlorohydrate 1327-41-9四丁基氢氧化铵10%溶液 Tetrabutylammonium hydroxide solution 2052-49-5四丁基氢氧化铵25%溶液 Tetrabutylammonium hydroxide solution 2052-49-5L-苯基丙氨酸 L-Phenylalanine 63-91-2无水硫酸铈 Cerium(IV) sulfate 13590-82-4硫酸铈铵四水合物 Ammonium cerium(Ⅳ) sulfate tetrahydrate 18923-36-9脂蛋白脂肪酶 Lipoprotein Lipase 9004/2/8乙二胺≥99.5%标准品 Ethylenediamine 107-15-3壬二酸 Azelaic acid (Nonanedioic acid) 123-99-9N,N-二甲基-1-萘胺 N,N-Dimethyl-1-naphthylamine 86-56-6双(三氟甲烷)磺酰亚胺锂盐 Bis(trifluoromethane)sulfonimide lithium salt 90076-65-6
  • 原子荧光光谱仪的应用-保温杯中不锈钢的检测
    原子荧光光谱仪也叫做原子荧光光度计,因其操作简单性价比高等优势被广泛应用在各种行业砷、汞等重金属的检测中。其中就包括我们生活中常使用的保温杯中的不锈钢检测。保温杯与我们的生活密切相关,不锈钢中重金属是否达标可以直接影响我们的身体健康。国家制定了一系列不锈钢检测标准。原子荧光光谱仪作为检测砷、汞等重金属元素的主要仪器在不锈钢检测中发挥重要作用。专注研究原子荧光光谱仪的研发以及生产二十余载的金索坤在研究使用原子荧光光谱仪检测不锈钢中砷、汞等重金属积累了大量经验,今天金索坤的小编和您分享如何应用原子荧光光度计检测不锈钢中的砷。依照标准《GB/T 20127.2-2006 钢铁及合金 痕量元素的测定 第2部分氢化物发生-原子荧光光谱法测定砷含量》检测不锈钢中的砷的操作步骤可简化为:按标准取样后,取适量试料于100 mL烧杯中,加入盐酸、硝酸在低温炉上加热溶解。待完全溶解后冷却。加入硫酸磷酸混合酸,加热蒸发至出现白烟,冷却至室温后加水,低温加热至溶解。溶液移入容量瓶,加定容。取适量试液于容量瓶中,加入硫脲和抗坏血酸混合溶液,静置30分钟后加水定容。然后调节原子荧光光谱仪参数至最佳分析测试条件,制作标准曲线,检测样品原子荧光强度,最后得到样品中砷含量。在应用原子荧光光谱法检测不锈钢中砷时加入硫酸磷酸混合酸可以络合钨、钼、铌、钽等容易水解的元素,另外在原子荧光光谱法检测钢铁中抗坏血酸混合溶液将砷(V)还原为砷(I),并抑制镍、钴、铜等元素的干扰。随着原子荧光技术的提高,原子荧光光谱仪的应用范围已经由地质选矿、卫生防疫等领域逐渐扩展到食品以及保温杯等日常生活用品中。金索坤作为原子荧光行业领跑者会随着原子荧光光谱仪应用领域的逐渐扩展不断地推陈出新,用更加优质的原子荧光产品服务官大客户。 金索坤SK-乐析 原子荧光光谱仪/光度计
  • 原子荧光使用问题汇总 第一章
    春节即将到来,忙碌了一整年的实验室小伙伴们辛苦了!金索坤给您拜年了!陪伴我们一年的各种分析仪器也要歇歇脚了。一年里,应付脾气各异的仪器设备也着实不易。年底,我们总结了使用原子荧光光谱仪曾经出现过的问题,分享给各位小伙伴们。也希望更多的用户朋友可以分享更多的使用经验。1)使用SK-2003A原子荧光光度计测汞一切正常,测砷没有信号是怎么回事?答:原子化器没有着火。2)测汞做标准曲线,无论是空白还是最高点都饱和,降负高压也不行,前几天还好的,其他的什么也没动,仪器为什么会出现这种现象?答:出现了严重的污染。3)用5%硝酸介质测汞,加1%硫脲和1%VC能起什么作用?答:预还原作用,是氢化物发生效率提高,掩蔽保护作用,降低空白的荧光强度,提高检测灵敏度。4)我们测试食品样品,在测试时总堵SK-2003A的多功能反应模块,溶液进入气路里面去了,怎么解决呢?答:消解时高氯酸没有赶干净,将高氯酸赶干净即可。5)用SK-锐析原子荧光光度计自动配置标准曲线时,最后一点总偏低是怎么回事?答:泵卡压力不够,进样量不与泵转数成正比了,将泵卡压到第三档即可。6)使用SK-锐析-LC原子荧光形态分析仪做形态的重复性时,将柱子去掉实验整个流程,反而重复性还不如加柱子好,是什么原因造成的。答:去掉色谱柱没有柱压缓冲作用下,液相泵的脉冲作用会更明显,使测试稳定性更差。7)如果砷和汞要在同一个溶液中测试,请问,硼氢化钾的浓度配多大合适?答:1.5%(质量百分数)8) 我们使用SK-2003AZ测试水质中砷的标准样品。标准曲线R=0.999以上,但是就是测试值偏高是怎么回事?答:标准溶液失效,浓度偏低了9)在我们测试的食品和海产品样品中,我们用同一个空白溶液配制标准曲线和稀释的样品,但是经常出现样品的荧光强度值低于空白的荧光强度值,是怎么回事?答:样品基质有干扰或者没有消解完全10)我用的是SK-2003A原子荧光光度计做汞,上午做的标准曲线还算可以,但是我什么也没动,下午再做一遍相同的一套标准曲线,就是七上八下的。一点都不成线,这是怎么回事啊?答:盛放线性系列的标准溶液瓶子对汞有吸附,并且吸附效率不等,使放置一段时间以后汞的浓度就变了,所以不呈线性。 PS:金猴贺喜 金索坤春节期间开展微信活动赢取礼品,红包、京东卡等您来领!活动详情请关注“金索坤原子荧光”官方微信。
  • 赫施曼助力钨及钨合金中铋和砷含量的测定
    钨及钨合金具有高熔点、高比重、高硬度的特点,广泛应用于机械加工、冶金、采矿、航空航天等领域。GB/T 4324旨在通过实验研究建立一套完整、切实可行且适应于钨产品生产和贸易需求的化学成分分析的方法标准。根据GB/T 4324.2-2023,测定钨及钨合金中铋和砷含量方法是原子荧光光谱法。实验涉及样品的溶解及分析试液的制备:1.样品的溶解1.1钨粉、钨条:将试料置于100mL烧杯中,以少量水润湿,用赫施曼瓶口分液器按3mL/次分3次加入过氧化氢,待剧烈反应停止后,置于电炉上加热至样品完全溶解,加热蒸至近干。沿杯壁冲洗少量水,用瓶口分液器加10mL氢氧化钠溶液,在电炉上溶解至清亮并冒大气泡,取下冷却。1.2三氧化钨、钨酸、偏钨酸铵、仲钨酸铵:将试料置于100mL烧杯中,用少量水润湿,用瓶口分液器加入10mL氢氧化钠溶液,在电炉上溶解至清亮并冒大气泡,取下冷却。1.3蓝钨、碳化钨(细、中颗粒):将试料置于100mL烧杯中,用少量水润湿,用瓶口分液器按3mL/次分3次加入过氧化氢,加热蒸至近干。沿杯壁冲洗少量水,用瓶口分液器加10mL氢氧化钠溶液,在电炉上溶解至清亮并冒大气泡,取下冷却。1.4紫钨、粗颗粒碳化钨:将试料置于100mL石英锥形瓶中,于750℃高温炉中氧化完全后,取出,以下按1.2项进行。1.5将试液(1.1~1.4)移至100mL容量瓶中,用瓶口分液器加入30mL柠檬酸溶液摇匀。用瓶口分液器加入10 mL盐酸摇匀。用Miragen电动移液器加入5mL硫脲溶液、2mL抗坏血酸溶液,用水稀释至刻度,摇匀。2.分析试液的备制2.1铋分析试液的备制2.1.1当铋含量不大于0.0010%时,直接测定试液(1.5)。2.1.2当铋含量大于0.0010%时,按表1移取试液(1.5)于100mL容量瓶中,用瓶口分液器加入30mL柠檬酸溶液,摇匀。用瓶口分液器加入10mL盐酸摇匀。用Miragen电动移液器加入5mL硫脲溶液、2mL抗坏血酸溶液,用水稀释至刻度,摇匀,待测。2.2砷分析试液的制备2.2.1 当砷含量不大于0.0010%时,用瓶口分液器移取25.00mL试液(1.5)于50mL烧杯中,用Miragen电动移液器加入0.50mL三氯化钛溶液,摇匀放置30min,待测。2.2.2 当砷含量大于0.0010%时,按表1移取试液(1.5)于100mL容量瓶中,用瓶口分液器加入30mL柠檬酸溶液,摇匀。用瓶口分液器加入10mL盐酸摇匀。用Miragen电动移液器加入5mL硫脲溶液、2mL抗坏血酸溶液,用水稀释至刻度,摇匀。2.2.3 用瓶口分液器移取25.00mL试液(2.2.2)于50mL烧杯中,用Miragen电动移液器加入0.50mL三氯化钛溶液,以盐酸稀释至100mL,摇匀放置30min,待测。3.系列标准溶液的配制3.1工作曲线1:适用于铋或砷质量分数不大于0.0010%的样品按表1称取与试料中钨质量相当的钨基体,分别置于7个100mL烧杯中,再采用两个20mL规格的opus电子瓶口分配器,stepper模式,均设置6个分液体积0.50、1.00、2.00、3.00、4.00、5.00mL,然后按分液键,将铋标准溶液B和砷标准溶液B分别加入到以上6个100mL烧杯中,另设一个不加的做空白对照,以下铋系列标准溶液按2.1.1操作,砷系列标准溶液按2.2.1操作。标准系列铋和砷的浓度见表2。3.2 工作曲线2:适用于铋或砷质量分数0.0010%~0.0050%的样品按表1称取与试料中钨质量相当的钨基体,分别置于6个100mL烧杯中,再采用两个20mL规格的opus电子瓶口分配器,stepper模式,均设置5个分液体积1.00、2.00、3.00、4.00、5.00mL,然后按分液键,将铋标准溶液A和砷标准溶液A分别加入到以上5个100mL烧杯中,另设一个不加的做空白对照,以下铋系列标准溶液按2.1.2操作,砷系列标准溶液按2.2.2、2.2.3操作。标准系列铋和砷的浓度见表2。3.3工作曲线3:适用于铋或砷质量分数0.0050%~0.020%的样品按表1称取与试料中钨质量相当的钨基体,分别置于6个100mL烧杯中,再采用两个50mL规格的opus电子瓶口分配器,stepper模式,均设置5个分液体积2.00、4.00、6.00、8.00、10.00mL,然后按分液键,将铋标准溶液A和砷标准溶液A分别加入到以上5个100mL烧杯中,另设一个不加的做空白对照,以下铋系列标准溶液按2.1.2操作,砷系列标准溶液按2.2.2、2.2.3操作。标准系列铋和砷的浓度见表2。3.4工作曲线4:用固体实物标准样品配制或采用符合标准曲线要求的固体实物标准样品配制。移取液体的一般是量筒和移液管,存在三个缺点:一是敞口操作,对强腐蚀、有毒有害、挥发性的液体,存在安全隐患;二是操作上环节多,需目视确认凹液面,实现精度难以保证;三是效率较低,无法满足日益增加的液体移取的工作需求。赫施曼瓶口分配器可代替量筒、刻度移液管,便捷、安全地进行0.2-60mL的酸(包括盐酸、硝酸、氢氟酸等强酸)、碱、有机试剂等的移取。实验室移取小体积(几微升到10毫升)的液体,一般采用移液器。Miragen电动移液器,数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。赫施曼的opus电子瓶口分配器分辨率可达微升,不仅可用于常规的等体积分液,一次装液还可完成10个不同体积的连续分液,可用于毫升级的母液添加和分液,大体积的型号可代替烧杯、玻璃棒、洗瓶,用于稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
  • 深圳某单位批量采购94类试剂、标物
    深圳某终端单位,批量采购以下试剂、标物,共计94类,能做的厂商请联系,清单如下:试剂名称要求数量硫酸痕量金属级3硝酸痕量金属级3过氧化氢痕量金属级1氢氟酸痕量金属级3硼酸优级纯3氢溴酸优级纯3高氯酸优级纯3硼氢化钾优级纯1高锰酸钾痕量金属级3硼氢化钠痕量金属级1氢氧化钠痕量金属级1氯化钠优级纯1盐酸羟胺优级纯3二苯碳酰二肼优级纯1重铬酸钾标准物质优级纯3丙酮优级纯1正磷酸优级纯3铁氰化钾优级纯1氢溴钾优级纯1四氟硼酸痕量金属级3硫脲优级纯1草酸优级纯3邻菲罗啉优级纯1抗坏血酸优级纯3四氢硼酸钾痕量金属级3四氢硼酸钠痕量金属级3四氢氯金四水化合物痕量金属级1多孔颗粒状硅藻土优级纯1N-甲基吡咯烷酮(NMP)优级纯1碳酸钠优级纯3无水氯化镁优级纯1PH标准缓冲液(4.00,6.86,9.18)优级纯1铬酸铅优级纯3甲苯优级纯1二苯卡巴肼溶液优级纯1叔丁基甲醚(CAS:1634-04-04)优级纯1乙腈优级纯1连二亚硫酸钠(纯度≧87%)优级纯34-氨基偶氮苯标准溶液(1000mg/L)优级纯1蒽-d10(CAS:1719-06-8)优级纯1乙醚优级纯1硫酸亚铁溶液优级纯3正己烷(色谱纯或更高)优级纯1乙酸酐优级纯3无水碳酸钾优级纯3无水硫酸钠优级纯3硝酸钾优级纯3硫酸钠优级纯3乙酰丙酮溶液优级纯1乙酸铵优级纯3冰乙酸溶液优级纯3双甲酮(二甲基-二羟基-间苯二酚或5,5-二甲基环己烷-1,3-二酮)优级纯1乙醇优级纯1四氢呋喃(109-99-9)(色谱纯或更高)优级纯1氯化钾优级纯1酸性汗液优级纯3乙酸钠优级纯3无水硫酸钠优级纯3四乙基硼化钠(NaBEt4)优级纯1醋酸铵优级纯3冰醋酸优级纯3碘液0.05M(12.68g碘/L)优级纯1硫代硫酸钠优级纯3淀粉优级纯1十二烷基磺酸钠优级纯3柠檬酸盐缓冲液0.06M优级纯3甲醇优级纯1尿素优级纯1DL-乳酸:质量分数大于0.88,p=1.21g/mL优级纯3氨水:质量分数为0.25,p=0.91g/mL优级纯1正庚烷优级纯1二氯甲烷(分析纯或色谱纯)优级纯1环己烷(色谱纯或更高)优级纯1硼氰化钾痕量金属级1标物详情数量18 PAHs 混标1000mg/L0-1000mg/L①扩展不确定度0.1%2AZO混标1000mg/L0-1000mg/L①扩展不确定度0.1%2PBB,PBDE混标1000mg/L0-1000mg/L①扩展不确定度0.1%2PH标准缓冲溶液套装5g0-14①扩展不确定度0.1%2钡标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2单丁基锡500mg0-1000ppm①扩展不确定度0.1%2二丁基锡500mg0-1000ppm①扩展不确定度0.1%2镉标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2铬标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2汞标准溶液1000ppm0-1000ppm①扩展不确定度0.7%2甲醛标准溶液1000mg/L0-1000mg/L①扩展不确定度3%2邻苯6p混标1000ppm0-1000ppm①扩展不确定度0.2%2六价铬标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2镍标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2铅标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2三丁基锡500mg0-1000ppm①扩展不确定度0.1%2砷标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2四,五氯苯酚1000mg/L0-1000mg/L①扩展不确定度0.1%2锑标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2硒标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2联系方式:为避免过度打扰,请添加仪器信息网工作人员微信获取采购方联系方式:
  • Kylin S1原子荧光光谱法 四道同测自来水中硒,汞,砷和锑
    简介工业和生活用水中砷、硒和汞的污染来源于天然矿床,工业排放,水源流经采矿区,垃圾填埋和农业活动。食用被污染的水会引起皮肤损害(砷),肾脏和神经系统损伤(汞)以及手指和脚趾的麻木(硒),同时(锑)也可以造成皮肤黏膜、心脏、肝脏、肺及神经系统等多个组织器官的损害。原子荧光法是近10年来发展较快的一种新的分析技术。该方法具有检测操作简单、易行,分析结果准确、可靠,应用范围广等特点。应用北京吉天仪器有限公司生产的kylin s1四通道原子荧光光谱仪同时测定自来水中硒、汞、砷和锑的含量。符合国家标准。吉天仪器kylin s1系列原子荧光光谱仪为生活用水,水质分析提供了高效准确的分析方法。方案优势原子荧光(afs)是中国具有自主知识产权的分析仪器,广泛应用于环境监测,食品安全,地质矿产等领域,具有灵敏度高、线性范围宽、光谱干扰及化学干扰少、仪器结构简单、成本低等优点。可以发生氢化反应的元素,在酸性介质中,硼氢化钾(硼氢化钠)生成的新生态氢,作为还原剂,发生氢化反应,生产氢化物(汞为汞蒸气),通过氩气将氢化物(汞蒸气)导入原子化器中,在氢火焰中发生原子化,被测元素空心阴极灯作为激发光源,被测元素原子受光辐射激发产生电子跃迁,当激发态的电子返回基态时即发出特征荧光,荧光强度在一定范围内与被测元素含量成正比。硒、汞、砷和锑元素的主要荧光谱线介于200~290nm之间,正好是日盲光电倍增管灵敏度最好波段,处于最佳检测波长范围之内。硒、汞、砷和锑作为水质分析的主要指标,同时测定各类水质样品中这四种元素可以很大程度节约分析时间和试剂成本。本文对于自来水样品中的硒、汞、砷和锑的含量进行了四道同时测定并进行了方法学考察。表一:实验所用仪器/设备/耗材/试剂序号仪器/设备/耗材序号试剂1北京吉天仪器有限kylin s1 原子荧光光度计1硒标准溶液(gbw(e)080215)2水浴锅2汞标准溶液(gbw(e)080124)3分析天平(万分之一)3砷标准溶液(gbw(e)080117)4超纯水仪4锑标准溶液(gbw(e)080545)5超声仪5盐酸(优级纯)6氩气(纯度≥99.99%)6氢氧化钾(优级纯)7烧杯(1000ml)7硼氢化钾(优级纯)8容量瓶(100ml)8硫脲(优级纯)9比色管(25ml和100ml) 1、测试原理样品中硒、汞、砷和锑经浓盐酸提取后,用硫脲将五价砷还原为三价砷,六价硒被还原成四价硒,五价锑还原为三价锑,kbh4在酸性环境下产生新生态氢,与样品中元素发生氢化反应,生成氢化物(汞为汞蒸气),通过氩气将氢化物(汞蒸气)导入原子化器中并在氢火焰中发生原子化,被测元素空心阴极灯作为激发光源,被测元素原子受光辐射激发产生电子跃迁,当激发态的电子返回基态时即发出特征荧光,荧光强度在一定范围内与被测元素含量成正比,外标法定量。2 、实验结果12 2.1、标准曲线将混合标准使用液依次进样0 ml,0.1 ml,0.2 ml,0.5 ml,0.8 ml和1.0ml,以元素浓度为横坐标,峰面积为纵坐标绘制标准曲线,硒,砷和锑的线性图见图一,汞的线性图见图二,线性及相关系数见表二。 图一:硒,砷和锑的标准曲线 图二:汞的标准曲线 表二:线性及相关系数元素线性方程相关系数ra道(se)y=122.23x+78.2950.9983b道(hg)y=847.5x+0.77890.9994c道(as)y=300.19x+81.8760.9990d道(sb)y=176.66x+-23.7940.99942.2 、重复性连续进7针标混合标准溶液0.4ml,重复性统计见表三。表三:硒、汞、砷和锑四种元素的重复性#峰面积(mv.s)a道(se)b道(hg)c道(as)d道(sb)11246.17829.412967.891623.7721239.25847.942926.031605.3031231.58844.902955.481609.8141231.01843.212912.411605.0351251.12835.912973.341636.6461213.90840.462908.381607.0271230.81830.152921.931589.58rsd0.99%0.86%0.92%0.94%2.3 、样品及加标回收率样品的浓度见表四,加标回收见表五。表四:样品浓度样品名称含量(mg/kg)a(se)b(hg)c(as)d(sb)样品-10000样品-20000表五:加标回收率样品名称回收率(%)a(se)b(hg)c(as)d(sb)加标-187.22%98.57%95.41%93.11%加标-289.92%99.30%94.22%91.06%3 、 结论测试结果显示:应用北京吉天仪器有限公司设计的kylin s1原子荧光光度计可以很好的测定自来水样品中的痕量砷、锑、硒和汞四种元素,线性关系良好;重复性好;各待测元素回收率良好。
  • 原子荧光光度计助力口罩中重金属检测
    因疫情的影响人们逐渐习惯了口罩的生活。现在口罩已经成为人们出行的必备品,为了不让口罩过于单调,口罩被染成各种图案,甚至还出现口罩打印机。我们知道打印所用的墨都会有一定的重金属含量,那么这些口罩安全吗?原子荧光光度计作为检测重金属的主要仪器在口罩的检测中同样发挥着重要作用。今天金索坤的小编和您分享原子荧光光度计在口罩检测中的作用。口罩中的重金属都是哪来的?其中最主要的一部分就来自于口罩的彩印因为彩印用的油墨一般都会含有重金属成分;另外就是口罩纺织物的纤维也有可能含有重金属成分。因为口罩与人体十分密切,口罩的重金属元素可以直接经鼻腔、口腔进入人体,影响人体健康。因此其检测需要更加严格。因为目前还没有直接针对口罩染料中重金属检测的标准,因此口罩中重金属的检测依照的是《GB/T 17593.4-2006 纺织品 重金属的测定 第4部分砷、汞 原子荧光分光光度法》等纺织品检测标准。在检测前先将样品剪碎至于烧瓶,加酸在恒温水浴锅中震荡一小时,冷却后过滤,取滤液待测,同时做空白试验。检测砷时,取适量萃取液加入硫脲-抗坏血酸溶液待测,同时调整原子荧光光度计的相关参数至推荐测试条件。预热仪器,到原子荧光光度计稳定后测定标准系列溶液,然后测定样品含量。通过这样就可以检测出口罩中砷、汞的含量。有调查数据显示,市面上大部分的口罩都是合格的。但金索坤的小编也提醒大家购买口罩一定要到正规商店,否则买到的口罩不但起不到防护的作用,还可能影响身体健康。作为原子荧光光度计的生产厂家会不断地推陈出新,用更加优质的原子荧光产品为健康把关。 金索坤SK-2003A 便捷型原子荧光光谱仪/光度计
  • 欧盟食品安全局审查霜脲氰的最大残留限量
    p style=" LINE-HEIGHT: 1.75em" & nbsp & nbsp & nbsp & nbsp 近日,欧盟食品安全局审查了霜脲氰(cymoxanil)的最大残留限量,提议修订其在部分商品中的残留限量。 /p p style=" LINE-HEIGHT: 1.75em" & nbsp & nbsp & nbsp & nbsp 根据欧盟法规396/2005号第12条的规定,欧盟食品安全局对霜脲氰的残留限量进行了审查。为评估霜脲氰在植物、加工产品、轮作作物、牲畜中最大残留限量,欧盟食品安全局参考了91/414/EEC指令框架下的结论以及成员国报告的欧盟许可进口限量,在现行数据的基础之上,得出残留限量建议。最终提议修订霜脲氰在土豆、大蒜、洋葱等商品中的最大残留限量。 /p p style=" TEXT-ALIGN: center LINE-HEIGHT: 1.75em" img style=" WIDTH: 600px HEIGHT: 408px" title=" QQ图片20151215141546.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201512/insimg/bc2cf991-899a-4f5e-aa04-c8dab9bfa08f.jpg" width=" 600" height=" 408" / /p p br/ /p
  • 土壤重金属检测仪【竞道光电新款发布】
    土壤重金属检测仪【竞道光电新款发布】JD-ZSBเครื่องวัดโลหะหนักในดิน,近年来环境污染越来越受到公众的关注。大量重金属通过污水,大气沉降,固体废弃物等沉积富集在土壤中,重金属具有较强的迁移性和生物毒性,对人类及动植物均会产生较大威胁和危害。目前,土壤中重金属检测国标方法多采用混酸加热进行湿法消解后的原子光谱法测定金属含量,该方法操作复杂,重复性较差,偶然误差大。  食品、土壤、水质逐渐被工业废气、废水、废渣所污染,甚至有些人直接用工业废水浇灌庄稼,造成土壤耕作层内的镉、铜、砷、铬、汞、镍、铁、铝、锌、锰、铜等 重金属大量富积、积累,特别是城市郊区现象更为严重 加上大量使用无机化学农药等致使蔬菜和鱼类体内的重金属含量严重超标的情况,不断在人体内积累,导致 消费者重金属慢性中毒现象发生,国内已发生多起重金属集体中毒事件,已引起政府的高度重视和社会各界的广泛关注,但是当前重金属测定方法测定速度慢、步骤 繁琐且仪器昂贵。基于这种形势,我们开发出了重金属快速测定方法,可对蔬菜、食品、土壤、有机肥、烟叶等样品中的铅、砷、铬、镉、汞等进行快速联合测定。  一、土壤重金属检测仪检测原理:  (一)样品经消化后,所有形态的重金属(包括砷、铅、镉、铬、汞、镍、铁、铝、锌、锰、铜等)都转化为离子型态,加入相关检测试剂后显色,在一定浓度范围内溶液颜色的深浅与重金属的含量呈比例关系,服从朗伯--比尔定律,再通过仪器进行测定得出含量值,与国家标准农产品安全质量无公害蔬菜安全要求允许限量的标准进行比较,来判断蔬菜样品重金属含量。  (二)各项重金属的检测原理及采用标准  1、重金属砷的检测原理及采用标准  采用国家标准(GB/T5009.11-2003)硼氢化物还原比色法,即样品经消化后,加入碘化钾-硫脲并加热,将五价砷还原为三价砷,在酸性条件下硼氢化钾将三价砷还原为负三价,形成砷化氢导入吸收液中呈黄色,经仪器检测得出砷含量。  2、重金属铅的检测原理及采用标准  采用国家标准(GB/T5009.12-2003)二硫腙比色法,即样品经消化后,在弱碱性条件下,铅离子与二硫腙生成红色络合物,溶于三氯甲烷后,比色测定。  3、重金属铬的检测原理及采用标准  样品经消化后,在二价锰存在条件下,铬离子与二苯碳酰二肼反应生成紫红色络合物,络合物颜色的深浅与六价铬含量呈正比,比色测定可得出铬含量。  4、重金属镉的检测原理及采用标准  采用国家标准(GB/T5009.15-2003)比色法,即样品经消化后,在碱性条件下,镉离子与6-溴苯丙噻唑偶氮萘酚生成红色络合物,溶于三氯甲烷后,比色测定。  5、重金属汞的检测原理及采用标准  采用国家标准(GB/T5009.17-2003)二硫腙比色法,即样品经消化后,在酸性条件下,汞离子与二硫腙生成橙红色络合物,溶于三氯甲烷后,比色测定。
  • 超快速表面处理,秒取高质量界面【GDS微课堂-7】
    上图是瑞士摄影师马丁-奥格里利 ( Martin Oeggerli ) 通过扫描电子显微镜SEM拍摄的花粉照片,是不是很炫酷?但并非所有样品通过SEM,都能得到上图中直观惊艳的照片,更多样品需要经过预处理后方可充分展示。GDS就是对样品进行预处理,将观测的界面更好展示出来的利器。通过氩气等离子体持续轰击样品表面、溅射出样品离子后再进行分析的方法,GDS可以轻松替SEM剥蚀样品,供SEM进行观测。那与其他可用的剥蚀方法相比,GDS在样品制备与表征上有哪些优势呢?让我们一起来看看。GDS通过控制溅射时间,能精确地获得不同深度和清晰度的界面,将任意深度的包埋层完美地展现出来,供SEM分析。上图是铜表面的元素深度剖析图。铜的表面覆盖一层硫脲,硫脲分子通过硫端吸附到铜表面,C-S键垂直于金属表面。这个吸附层在深度剖面上以窄峰的形式清晰地显示在铜基体上方,包括碳、氢、氮和硫。从右图我们还可以看到,峰的位置按照吸附在铜基体上的硫脲分子的方向顺序被分离和定位。在扫描电镜中,必须精确控制溅射深度,GDS这种在原子尺度深度的分辨率,使这种精细的分析得以实现。GDS使用的是能力很低(低于50eV)但电流密度很高(~100mA cm-2)的氩气等离子体。氩离子的高电流密度能确保高速溅射,溅射速率每分钟达到1-10μm,整个样品的处理时间短,包括溅射在内往往几秒至几分钟就能搞定,相比于以往费时费力的机械抛光、化学抛光、电化学抛光、超薄切片等制备方法,不知道快了多少倍。比如为了获得高质量的表面,通常会用胶态二氧化硅悬浮液对样品进行抛光,来去除受损的表面区域。但是这种方法的抛光率非常低(仅为每分钟几纳米),因此对于延伸几百纳米的区域来说,需要数小时甚至一天的时间。而通过GDS溅射,可以在几十秒内去除大多数材料的受损表面区域。另外,GDS还有一个特点就是它是靠氩离子去撞击样品,通过溅射方法移除样品表面的材料,是对样品粒子一层层的剥蚀。此外,由于差动溅射效应,GDS能够在不同材料的分界处产生清晰的界面,这对于观测样品的表面形貌非常重要。而传统的机械抛光,靠的是细小的抛光粉的磨削、滚压,在对样品表面磨削的过程中势必会将凸起的花纹也一并磨掉,只留下光秃秃的平滑面。Show一个简单的比较图,让大家更直观的感受一下:(a)是机械抛光获得的结果,(b)是GDS剥蚀3S后获得的结果(a)图中是机械抛光获得的结果,我们看到样品表面的纹理被磨掉了;(b)图是GDS剥蚀处理后的结果,样品表面的花纹和结构保存的很好,我们可以看到表面的精细结构。我们再来看一个例子:通过超薄切片处理过的镀锌钢的横截面(a)图是通过超薄切片技术制备的整个镀锌钢样品的SEM图像;(b)图是通过超薄切片技术制备的镀锌钢样品中,锌/钢界面的SEM图,可以看到表面有严重的刮痕;(c)图是对(b)进行GDS溅射10秒后,锌/钢界面的SEM图片,可以看到而GDS制备的样品消除了刮痕,完美保留了样品的形貌。GDS除了可以为扫描电镜制备样品外,还可以联合SEM全面表征样品。下面是同一个样品:AlCrN/TiN/AlCrN/TiN/Fe使用SEM和GDS分别测试的结果。SEM提供了样品横截面的结构:根据颜色的深浅,可以了解到样品包含4个镀层,图中详细标注了不同镀层的厚度;GDS则展示了样品中各元素从表面到铁基体,不同深度处的含量分布。两个结果有交叠的信息也有截然不同的信息,更加全面立体地展示了样品的结构信息和含量分布。往期回顾【GDS微课堂-1】随Dr.JY掀起GDS神秘面纱【GDS微课堂-2】七问七答,掌握GDS常用概念【GDS微课堂-3】GDS解密:如何打造钢铁侠的战衣盔甲?【GDS微课堂-4】锂电池研发的“秘密武器”【GDS微课堂-5】“钢铁侠”背后的清洁能源之梦【GDS微课堂-6】看GDS如何助力“灯厂”奥迪独领风骚? HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的JobinYvon更有着200年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 基于SERS借力策略的纳米探针 实现单细胞水平线粒体ROS原位动态监测
    杨朝勇课题组近期在Angew. Chem. Int. Ed.期刊上发表了题为“Direct and Simultaneous Identification of Multiple Mitochondrial Reactive Oxygen Species in Living Cells Using a SERS Borrowing Strategy”的文章。该工作提出了一种基于表面增强拉曼散射(SERS)借力策略的Au@Pt核壳结构纳米探针,能够吸附多种活性氧物种(ROS),获取其拉曼指纹图谱,从而同时检测和区分多种不同ROS。通过表面修饰三苯基膦(TPP)分子,Au@Pt-TPP纳米探针能够靶向线粒体,实现单个活细胞内线粒体中多种不同ROS的原位动态监测。 背景介绍活性氧物种(ROS)是一类具有强反应活性的含氧物质(包括• O2–,H2O2,• OH和1O2等)。细胞线粒体中ROS的过度产生或紊乱会破坏细胞氧化还原平衡,引起细胞氧化应激,影响正常的生理过程,甚至导致多种疾病,包括癌症、炎症、心血管疾病和神经退行性疾病等。为了深入理解多种ROS在生物学过程中扮演的角色和发挥的作用,需要发展能够同时检测并准确区分多种ROS的方法。但是,目前活细胞水平检测ROS的方法,包括荧光法、电化学法和拉曼光谱法等,都难以满足上述要求。荧光探针大都只能对单独某一种ROS进行检测,且探针的设计和合成十分复杂,也存在探针容易被光漂白和生物相容性差等缺点;电化学法的电极插入对活细胞有一定的伤害和影响,而且电极在亚细胞水平的定位精度不足;拉曼光谱法通过化学反应间接检测ROS,且很难实现对多种不同ROS的同时检测和区分。因此,发展能够同时检测和区分活细胞中多种不同ROS并原位监测ROS动态变化的方法是一项重大的挑战,也是亟待解决的重要问题。设计思路为了解决上述问题,杨朝勇课题组提出了一种基于SERS借力策略的Au@Pt核壳结构纳米探针。壳层金属Pt能够吸附多种ROS,并借助具有极高SERS活性的内核Au纳米粒子的电磁场长程效应,提升壳层金属SERS的增强性能。Au@Pt纳米探针可以直接获取多种不同ROS的拉曼指纹图谱,对物种进行指认。不同的ROS的分子振动模式不同,相应的拉曼信号峰的位置也不同,因此可以实现多种不同ROS的同时检测和准确区分。当Au@Pt表面修饰TPP分子后,Au@Pt-TPP纳米探针能够靶向细胞线粒体,并在显微拉曼光谱仪的辅助下,原位监测单个活细胞内线粒体中不同ROS的动态变化。图1 基于SERS借力策略原位监测单个活细胞内线粒体ROS数据介绍首先通过原位还原的方法在直径55纳米的Au纳米粒子表面沉积了Pt单质,我们制备了壳层厚度可控的Au@Pt核壳结构纳米探针。通过透射电镜和元素成像表征,证明了Au纳米粒子表面Pt壳层的成功制备(图2a)。另外,紫外可见吸收光谱表征也表明,在Au纳米粒子表面沉积Pt后,其最大吸收峰的位置发生红移,且随着壳层厚度增加而增大(图2b)。如图2c所示,得到的Au@Pt纳米探针能够通过拉曼指纹图谱检测到溶液中低至生理浓度(0.1 mM)的H2O2在波数为833 cm-1处的信号峰,而Au纳米粒子则检测不到。这说明Au虽然具有很强的SERS活性但对于ROS的吸附能力较弱,也证明了SERS借力策略的有效性。图2 Au@Pt纳米探针的结构和性能表征接着,从人乳腺癌MCF-7细胞中提取线粒体,用Au@Pt纳米探针检测线粒体呼吸产生的ROS。如图3a所示,Au@Pt纳米探针通过不同的ROS(即• OOH,H2O2, • OH)的拉曼指纹图谱(即675 cm-1和733 cm-1,830 cm-1,973 cm-1),同时检测和区分线粒体呼吸产生的三种不同的ROS。由于这三种ROS中都含有H元素,所以当细胞培养基被替换成重水配制的培养基后,ROS中的H元素被替换成D元素,这些检测到的ROS的拉曼振动峰都向低波数发生了移动,与经典的分子键谐波振荡模型相符合(图3b)。我们也通过密度泛函理论(DFT)计算模拟了不同ROS在Pt团簇表面最稳定的吸附构象,并得到了相应的振动波数值(图3c)。这些模拟结果与实验结果相一致,进一步证实了Au@Pt纳米探针同时检测和区分不同ROS的能力。图3 重水实验和DFT理论计算验证纳米探针检测ROS的能力最后,在Au@Pt纳米探针表面通过Pt-S键修饰了HS-PEG-NH2(分子量2000 Da),并进一步通过EDC/NHS交联反应修饰上具有线粒体靶向功能的TPP分子,将Au@Pt-TPP纳米探针靶向到细胞中的线粒体。如图4a和4b所示,在与MCF-7细胞孵育24小时后,Au@Pt-TPP纳米探针内吞进细胞并成功靶向线粒体,而Au@Pt则无法靶向线粒体,证明了TPP修饰的有效性。如图4c所示,当Au@Pt-TPP纳米探针作用于MCF-7细胞,能够在单细胞水平原位监测受到佛波酯PMA刺激后的30分钟内,随着作用时间的延长,细胞逐步发生氧化应激以及线粒体产生大量ROS的过程。我们还考察了PMA和抗氧化剂二甲基硫脲(• OH清除剂)同时处理的条件下,线粒体ROS的动态变化。如图4d所示,在二甲基硫脲存在情况下,只能检测到• OOH和H2O2的信号而没有• OH的信号,说明二甲基硫脲选择性清除了• OH。这些结果表明,Au@Pt-TPP纳米探针能够成功实现单个活细胞内线粒体ROS动态变化的原位监测。总结该工作设计了一种基于SERS借力策略的Au@Pt纳米探针,Pt壳层能够吸附多种ROS,并借助内核Au的SERS活性,获取多种ROS的拉曼指纹图谱,同时检测和区分多种不同ROS。在Au@Pt表面修饰TPP后,Au@Pt-TPP纳米探针能够靶向细胞线粒体,实现外界刺激条件下单个活细胞内线粒体中多种不同ROS的同时原位监测。未来可将Au@Pt纳米探针应用于监测正常生理过程、细胞应激反应和疾病发生发展进程中细胞中ROS的动态变化和揭示不同ROS的作用机制。
  • ECHA发布第十批拟列入SVHC的清单进行公众咨询
    2013年9月2日,ECHA在其官网上发布了第十批七种拟列入SVHC清单的物质进行公众咨询,公众意见截至日期为2013年10月17日。详情如下表所示。 物质名称 EC号 CAS号 提案国 提案原因 硫化镉 215-147-8 1306-23-6 瑞典 致癌; 与可能严重影响人体健康的关注水平相当 邻苯二甲酸二己酯 201-559-5 84-75-3 德国 生殖毒性 CI直接红28 209-358-4 573-58-0 荷兰 致癌 CI直接黑38 217-710-3 1937-37-7 荷兰 致癌 亚乙基硫脲 202-506-9 96-45-7 瑞典 生殖毒性 铅底(醋酸) 206-104-4 301-04-2 荷兰 生殖毒性 磷酸三二甲苯酚 246-677-8 25155-23-1 奥地利 生殖毒性   详情参见http://echa.europa.eu/addressing-chemicals-of-concern/authorisation/substances-of-very-high-concern-identification
  • 赛普推出BOD5自动测量分析系统 三大亮点抢先看
    p   在水质检测中,五日生化需氧量(BOD5)的实验室分析始终是环境实验室的分析难点,存在操作过程繁琐,且分析数据的合格率低等诸多问题。 /p p   近日赛普仪器全新推出BODAutoTM系列自动分析仪,针对以上问题提出自动化、智能化、模块化三大创新改进,实现在提升工作效率的同时,大幅度提升数据合格率。 /p ul class=" list-paddingleft-2" style=" list-style-type: disc " li p    span style=" color: rgb(0, 112, 192) " strong 自动化设计 /strong /span /p /li /ul p   机械臂全自动操作,可按程序设置自动完成稀释水加注、接种液加注、硫脲加注、开取及闭合瓶盖、溶氧自动测量、溶氧电极自动清洗及加水封等功能。 span style=" text-indent: 2em " 内置液位自动检测传感器, /span span style=" text-indent: 2em " 可配置专用生化培养箱实现实验全流程无人值守,并可通过远程查看实验过程及实验数据。 /span /p ul class=" list-paddingleft-2" style=" list-style-type: disc " li p    span style=" color: rgb(0, 112, 192) " strong 智能化 /strong /span /p /li /ul p   依照国家标准方法,用户可自行定义分析流程,程序自动计算BOD5。 /p ul class=" list-paddingleft-2" style=" list-style-type: disc " li p    span style=" color: rgb(0, 112, 192) " strong 模块化样品盘设计 /strong /span /p /li /ul p   每批次可容纳54个BOD瓶子,用户可根据需求增加样品盘及样品瓶数量,分析仪允许用户自定义运行程序和步骤,例如自动样品稀释,自动开取及闭合瓶盖,添加试剂等。 /p p style=" text-indent: 2em " BODAutoTM系列自动分析仪使繁琐的生化需氧量分析简单化,通过智能机械臂协作替代人力的方式,自动化处理繁琐工序,实验人员只需要将样品移入样品瓶中推入系统,即可自动开始检测,大大降低了劳动强度,提高准确率。 /p p script src=" https://p.bokecc.com/player?vid=8E4F8A53BB5D8F8E9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script /p p style=" text-align: center " span style=" color: rgb(63, 63, 63) " strong 现场展示 /strong /span /p p strong 此项方法符合中国环境标准及多项国际标准: /strong /p p  中国环境标准: /p p   HJ 506—2009《水质溶解氧的测定电化学探头法》 /p p   HJ 505—2009《水质五日生化需氧量(BOD5)的测定稀释与接种》 /p p  日本工业标准: /p p   JIS K—0102—32.3 工场排水试验方法BOD的测定 /p p  美国环境标准: /p p   EPA METHOD 405.1 BiochemicalOxygenDemand(BOD) 5Days /p p  国际ISO标准: /p p   ISO 5815—1水质.n日生化需氧量(BODn)的测定。第1部分:加烯丙硫脲的稀释和接种法 /p p   ISO 5815—2水质.n日生化需氧量(BODn)的测定。第2部分:未稀释样品的测定法 /p
  • CFDA:小麦粉中严禁添加过氧化苯甲酰等非食品原料
    p   为规范生产行为,加强小麦粉质量安全监管,现将有关事项公告如下: /p p   一、取得“小麦粉(通用)”生产许可的企业,不得在小麦粉中添加任何食品辅料。 /p p   二、取得“小麦粉(专用)”生产许可的企业,生产专用小麦粉时,应按照《食品安全国家标准食用淀粉》(GB 31637)、《食品安全国家标准食品加工用植物蛋白》(GB 20371)、《谷朊粉》(GB/T 21924)等相应的标准,添加食用淀粉、大豆蛋白、谷朊粉等食品辅料,并制定相应的企业标准,报省级卫生行政部门备案。 /p p   三、小麦粉生产企业应当按照《中华人民共和国食品安全法》、《食品安全国家标准预包装食品标签通则》(GB 7718)、《食品安全国家标准预包装食品营养标签通则》(GB 28050)等相关法律、法规和标准要求如实标注,不得虚假标注产品成分,不得虚假标注执行标准,不得生产无标识、标识不全或标识信息不真实的小麦粉。 /p p   四、严禁生产企业在小麦粉中添加过氧化苯甲酰、次磷酸钠、硫脲、间苯二酚、过硫酸盐、噻二唑、曲酸等非食品原料。 /p p   五、小麦粉生产企业要严格履行小麦原料进货查验、小麦粉出厂检验,落实质量安全主体责任。 /p p   六、各地食品药品监管部门要加大对小麦粉生产企业的日常监督检查、监督抽检与风险监测,严肃查处在小麦粉中超范围、超限量使用食品添加剂的行为,严肃查处在小麦粉中添加非食品原料的行为,严肃查处标签不如实标注小麦粉成分的行为,涉嫌犯罪的及时移送公安机关追究刑事责任。 /p p br/ /p
  • 赫施曼助力食品中锡含量的测定
    锡是机体必须的微量元素,能促进蛋白质及核酸的合成,适量的锡能促进机体生长发育。但摄入过量的锡会引起呕吐、痉挛和中枢神经错乱,还可能会促使肝脏脂肪性变及肾血管变化,肝及肾功能异常。根据GB 5009.16-2023,测定食品中锡含量的第一法为:氢化物原子荧光光谱法。其原理为:试样经消解后,在硼氢化钠(或硼氢化钾)的作用下生成锡的氢化物(SnH₄ ),并由载气带入原子化器中进行原子化,在锡空心阴极灯的照射下,基态锡原子被激发至高能态,在去活化回到基态时,发射出特征波长的荧光,其荧光强度与锡含量成正比,与标准系列溶液比较定量。实验中标准溶液配置步骤如下:1.锡标准溶液(1.00mg/mL):准确称取0.1000g金属锡标准品,置于小烧杯中,用瓶口分液器加入10.0 mL硫酸,盖以表面皿,加热至锡完全溶解,移去表面皿,继续加热至出现浓白烟,冷却,慢慢加入50mL水,移入100mL容量瓶中,用硫酸溶液(1+9)多次洗涤烧杯,洗液并入容量瓶中,并稀释至刻度,混匀。2.锡标准中间液(10.0mg/L):用Miragen电动移液器准确移取锡标准溶液(1.00mg/mL)1.00mL于100mL容量瓶中,用硫酸溶液(1+9)定容至刻度,混匀。于0℃~5℃保存,有效期4周。3.锡标准使用液(1.00mg/L):用Miragen电动移液器准确移取锡标准中间液(10.0mg/L)10.0mL于100mL容量瓶中,用硫酸溶液(1+9)定容至刻度,混匀。于0℃~5℃保存,有效期4周。4.采用20mL规格的opus电子瓶口分配器,stepper模式设置5个体积分别为0.500、2.00、3.00 、4.00、5.00mL,然后按分液键,将5个体积的锡标准使用液(1.00mg/L)分别加入25mL容量瓶中,另设一个不加的做空白对照;同样用opus电子瓶口分配器向容量瓶中分别加入硫酸溶液(1+9)5.00(空白)、4.50、3.00、2.00、1.00mL;再用瓶口分液器加入硫脲+抗坏血酸溶液2.0mL,最后用水定容至25 mL。此锡标准系列溶液的质量浓度分别为0μg/L、20.0μg/L、80.0μg/L、120μg/L、160μg/L、200μg/L。临用现配。赫施曼瓶口分配器可代替量筒、刻度移液管,便捷、安全地进行0.2-60mL的液体移取。其中ceramus痕量分析瓶口分配器,采用极耐腐蚀的材质,以及可以阻断试剂挥发进主机的专利密封阀设计,使其适用于除氢氟酸以外的几乎所有溶剂的液体分配工作,包括浓硝酸、浓盐酸和王水等强腐蚀性或挥发性的特殊试剂。实验室移取几微升到几毫升的液体,一般采用移液器。Miragen电动移液器,接头和内腔为不锈钢,相对于常见的橡胶和塑料,更适合有机试剂。电枪的数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。赫施曼的opus电子瓶口分配器分辨率可达微升,不仅可用于常规的等体积分液,一次装液还可完成10个不同体积的连续分液,可用于毫升级的母液添加;大体积的型号可代替烧杯、玻璃棒、洗瓶,用于稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制