当前位置: 仪器信息网 > 行业主题 > >

甲基丙烯酸烯丙酯标准品

仪器信息网甲基丙烯酸烯丙酯标准品专题为您提供2024年最新甲基丙烯酸烯丙酯标准品价格报价、厂家品牌的相关信息, 包括甲基丙烯酸烯丙酯标准品参数、型号等,不管是国产,还是进口品牌的甲基丙烯酸烯丙酯标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甲基丙烯酸烯丙酯标准品相关的耗材配件、试剂标物,还有甲基丙烯酸烯丙酯标准品相关的最新资讯、资料,以及甲基丙烯酸烯丙酯标准品相关的解决方案。

甲基丙烯酸烯丙酯标准品相关的资讯

  • 文献解读丨生物活性聚甲基丙烯酸甲酯骨水泥治疗骨质疏松性椎体压缩性骨折
    研究背景 目前全球骨缺损手术每年约为2000万例,为保持原有骨骼的结构与功能的完整,骨修复就必须依赖于移植材料,因而临床治疗中对于具有支撑作用的骨植入材料需求量巨大。植入材料的特性对于骨修复具有重要影响,是再生医学研究中的关键问题,也是临床骨修复的核心要点。聚甲基丙烯酸甲酯 (PMMA) 骨水泥是临床上出现很早、使用非常广泛的骨水泥制品,其安全性和临床效果已经得到普遍认可。但是过高的弹性模量、相对较低的生物活性都限制了它在临床使用上的进一步应用和发展。骨组织的修复和再生是一个动态过程,始于骨祖细的增殖和迁移,最终分化为成熟骨细胞。虽然骨组织具有较强的再生能力,但是当大段骨组织损伤造成大范围骨缺损时,为保持原有骨骼的结构和功能,骨的修复就必须依赖于移植材料。植入材料的特性对于骨修复具有重要影响,该过程的影响成为再生医学研究中的关键问题,也是临床骨修复的核心要点。骨植入材料主要有自体骨、异体骨(同种异体骨、异种骨)和合成材料等。自体骨一直被认为是骨移植材料的金标准,但来源有限,取骨后容易出现穿孔、伤口感染、脓肿、出血等相关并发症,植入困难、创伤大等,也使其在临床上的应用受到限制。随着组织工程技术的不断发展,人工骨不仅可以实现大批量生产,而且往往具有新的研究不断赋予的生物相容性、成骨诱导性等特点,使得人工骨普遍应用于临床骨修复以及作为骨外科填充材料。 鉴于上述缺点,材料和医学科学家尝试了多种PMMA骨水泥改性策略,通过改变单体、添加生物活性材料或有机材料等策略来优化PMMA骨水泥的生物机械性能和生物学活性。 方法与结果 本研究以PMMA骨水泥作为支持材料,在其中添加具有生物活性的矿化胶原(MC)材料,通过基础实验研究复合骨水泥的材料学表征以及体内外活性,通过将该材料应用于临床,探究临床的实用性以及价值。采用兔骨质疏松模型对复合骨水泥材料MC-PMMA在体内的生物相容性及成骨性能进行评价。 采用岛津InspeXio SMX-225 CT FPD HR对骨水泥进行扫描重建,统计骨水泥的孔隙率。如图1所示,PMMA骨水泥的孔隙率与MC-PMMA骨水泥的孔隙率几乎相同(5.61±0.16%比7.22±0.53%)。与PMMA骨水泥相比,MC-PMMA具有较低的CT值(9.36±0.13对5.46±0.22)。图1 岛津micro-CT扫描材料结果 体内实验中,更重要的评价环节为影像学评价。在4周,8周,12周时处死兔子,选择有材料的椎体,在Micro-CT定位下确定材料的位置,并进行硬组织切片和染色。采用岛津InspeXio SMX-225 CT FPD HR扫描样品,扫描后经三维等值画图软件重建并进行成骨体积分析测定。通过X线透视及CT扫描影像评估样品植入前后的形状、骨密度,并通过成骨体积的测量进行定量分析。 术后各组在各个时间点的典型扫描三维重建结果如图2A所示,骨水泥材料牢固地结合到骨组织上,没有明显的间隙。通过显微CT进行的三维渲染显示了缺损和骨水泥的位置。在图2A中,骨水泥具有以红色和黄色显示的高CT值,而骨是黑色的。随着骨水泥被骨替代,颜色变为绿色,蓝色,最后变为黑色,表明CT值逐渐降低。在4周时,两组标本的骨水泥CT值和体积相似。在8周时,MC-PMMA组的CT值下降,但在PMMA组中几乎相同。在12周时,MC-PMMA组的CT值与以前相似的区域更多。然而,PMMA组的CT值保持不变。骨水泥的界面外观和CT值的差异表明MC-PMMA组中的材料吸收和骨再生比PMMA组更多。在手术后4,8和12周,MC-PMMA骨水泥组的椎体重建三维图像的定量显示比PMMA骨水泥组有更多的骨形成(图2B-E)。手术后4周,MC-PMMA组的骨量百分比和骨小梁厚度较高。然而,骨小梁厚度或骨小梁分离没有差异。手术后8周和12周,与PMMA组相比,MC-PMMA组的骨小梁厚度显着增加,骨量百分比增加,骨小梁数较高,骨小梁分离度较低,表明随着时间的推移MC-PMMA组的骨生长增加。图2 micro-CT三维重建结果和计算结果 总结与讨论 本研究通过向广泛用于PVP和BKP的PMMA骨水泥品牌的粉末中添加矿化胶原来开发基于生物活性PMMA的骨水泥。与PMMA骨水泥相比,MC-PMMA骨水泥的压缩模量显着降低,而处理时间大致相同。MC-PMMA骨水泥促进细胞增殖和分化,并加速骨质疏松兔模型中椎骨的修复和小规模临床试验中患者的OVCF。我们的研究结果表明,MC-PMMA骨水泥有望用于临床转化。 微焦点X射线CT装置inspeXio SMX-225CT FPD HR Plus高分辨率,图像清晰擅长复合材料的拍摄操作简单、试验速度快 文献题目《Bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures》 使用仪器岛津inspeXio SMX-225CT FPD HR Plus 第一作者诸进晋,杨淑慧 原文链接:https://doi.org/10.7150/thno.44276
  • 关于征求《水质 丙烯酸的测定 离子色谱法(征求意见稿)》等四项国家生态环境标准意见的通知
    各有关单位:  为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《水质 丙烯酸的测定 离子色谱法》等四项国家生态环境标准征求意见稿,现征求各有关单位意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。其他各有关单位和个人也可提出意见和建议。  请于2022年3月21日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档同时发送至联系人邮箱。  联系人:生态环境部监测司 杜祯宇  电话:(010)65646262  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:1.征求意见单位名单     2.水质 丙烯酸的测定 离子色谱法(征求意见稿)     3.《水质 丙烯酸的测定 离子色谱法(征求意见稿)》编制说明     4.环境空气颗粒物(PM2.5)中有机碳、元素碳连续自动监测技术规范(征求意见稿)     5.《环境空气颗粒物(PM2.5)中有机碳、元素碳连续自动监测技术规范(征求意见稿)》编制说明     6.环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范(征求意见稿)     7.《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范(征求意见稿)》编制说明     8.环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范(征求意见稿)     9.《环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范(征求意见稿)》编制说明  生态环境部办公厅  2022年2月17日  (此件社会公开)  附件1征求意见单位名单  中国气象局办公室  生态环境部各流域海域生态环境监督管理局监测与科研中心  各省、自治区、直辖市生态环境监测站(中心)  新疆生产建设兵团生态环境第一监测站  各环境保护重点城市生态环境监测站(中心)  中国科学院生态环境研究中心  中国环境科学研究院  中国环境监测总站  生态环境部环境发展中心  生态环境部南京环境科学研究所  生态环境部华南环境科学研究所  国家环境分析测试中心  河北环境工程学院
  • 全自动乌氏粘度计在聚丙烯酸钠中的应用
    聚丙烯酸钠(PAAS),化学式为(C3H3NaO2)n,是一种新型功能高分子材料和重要化工产品,固态产品为白色或浅黄色块状或粉末,液态产品为无色或淡黄色粘稠液体。由丙烯酸及其酯类为原料,经水溶液聚合而得,无味,溶于氢氧化钠水溶液,在氢氧化钙、氢氧化镁等水溶液中沉淀。常被用作水处理剂、盐水精制及胶乳增稠,也可用作食品增粘、乳化。聚丙烯酸钠(PAAS)材料的相对分子质量因生产条件会有较大的波动,某些性质会随着相对分子质量的变化产生较大的差别,当聚丙烯酸钠(PAAS)材料相对分子量较小时,其状态为稀溶液,常用作水处理剂和油田助剂,当相对分子量增大时,聚丙烯酸钠(PAAS)材料的状态变为弹性凝胶,这时更多被用于絮凝剂或增稠剂之中。工业上使用乌氏粘度法测试特性黏度对聚丙烯酸钠(PAAS)材料加以规范,例如聚丙烯酸钠(PAAS)材料作为水处理剂时特性黏度被规定应处于(0.060~0.10dl/g,30℃)的区间之内,偏离这个范围的聚丙烯酸钠(PAAS)材料的水处理性能会大幅度下降。精准,高效的测试特性黏度是整个聚丙烯酰胺(PAAS)材料质量控制环节的重中之重。全自动乌氏粘度仪IV8000X系列具有操作方便,分子量适用范围广泛,数据重复性良好等优点,所以成为聚丙烯酸钠(PAAS)等高分子材料化验分析中的常用实验仪器,为聚丙烯酸钠(PAAS)材料的研发及生产提供更精准的实验数值参照。以杭州卓祥科技有限公司的IV8000X系列全自动在线稀释型乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例。 IV8000X系列全自动在线稀释型乌氏粘度仪相较于传统的手动测试方法:⑴ 拥有更高的温控精度以及均匀度:IV8000X系列乌氏粘度仪所使用的HCT系列高精度恒温浴槽的温控精度优于“±0.01℃”,让实验得出的数据更精准,数据重复性更稳定。⑵ 特殊的检测方式:采用不锈钢铠装光纤,可满足测试不同颜色的样品,耐腐蚀,且使用寿命长。⑶ 粘度管不再是耗材:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。⑷ 实验流程自动化:IV8000X系列自动稀释型乌氏粘度仪在 “单点法”的测量过程中能实现自动测量-自动排液-自动清洗-自动干燥的自动化实验流程,在“多点法”的测量过程中每个测量位都具有连续测量、在线自动稀释样品、自动混匀、自动清洗、自动干燥等功能,在多次测量及清洗干燥整个过程中无需人员看管。
  • 全自动乌氏粘度计测定聚丙烯酸钠(PAAS)极限黏数
    聚丙烯酸钠,化学式为(C3H3NaO2)n,是一种新型功能高分子材料和重要化工产品,固态产品为白色或浅黄色块状或粉末,液态产品为无色或淡黄色黏稠液体。由丙烯酸及其酯类为原料,经水溶液聚合而得。无味,溶于氢氧化钠水溶液,在氢氧化钙、氢氧化镁等水溶液中沉淀,聚丙烯酸钠还具有很强的吸水性,常规聚丙烯酸钠的吸水率(纯净水)是其自身的数百倍,改进后的产品可以达到数千倍。常被用作水处理剂、盐水精制及胶乳增稠,也可用作食品增粘、乳化。随着国民经济的飞速发展,水处理的必要性日益突出,絮凝技术是提高水处理效率的最常用技术之一。特别是作为絮凝剂的高相对分子质量聚丙烯酸钠,已经成为国内外科研人员竞相研究的课题。研究丙烯酸及其共聚单体的反相乳液聚合,首先应对乳化剂的选配、引发剂体系的选择及其用量、聚合温度及时间的确定等方面进行探讨,研究体系的中和度、共聚单体的种类和配比、单体总浓度、非极性溶剂的种类和混配等。应继续发展和完善现有的聚合方法和工艺条件,对各个聚合机理及聚合动力学进行深入研究,开发新的高效、合理的聚合引发体系,探讨高性能的缓聚剂,探索更有效的聚合方法,研究如何提高相对分子质量以优化其性能,研究高固含量聚合和新技术在各聚合方法中的应用,研制高分子型的乳化剂,探索反相微乳液聚合方法,从而使聚丙烯酸钠从实验室研究向产业化、工业化进军。随着经济建设的蓬勃发展,科学技术的不断进步,对高分子水溶性的聚合物尤其聚丙烯酸类的产品性能要求会越来越高,其势必会有更广阔的发展前景。 目前毛细管法测定聚丙烯酸钠(PAAS)极限粘数是行业内作为控制产品质量重要的指标之一,按HG/T 2838-2010中描述的步骤测定PAAS的极限黏数,溶剂优先选择氢氧化钠和硫氰酸钠,温度为30℃。实验方法如下:实验所需仪器:卓祥全自动粘度仪、干燥箱、万分之一电子天平。实验所需试剂:氢氧化钠溶液(80g/L)、硫氰酸钠溶液(101g/L)、纯水、乙醇。1、溶剂粘度的测定:卓祥全自动粘度仪设置到30℃温度值并且稳定后,加入硫氰酸钠溶液(101g/L),软件中启动测试,连续测定三次,误差不超过0.2s,取其平均值t(s)。2、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。3、PAAS稀溶液样品的制备:称取**g试样置于培养皿中,用氢氧化钠溶液调节试液的PH值至**,然后放入干燥箱中干燥,箱中冷却至室温待用,用万分之一天平称量**干燥试样,到0.2mg,置于烧杯中,加入硫氰酸钠溶液溶解,全部转移至溶量瓶中,用硫氰酸钠溶液稀释至刻度,摇匀待用。4、样品粘度的测定:加入样品试液,启动软件中特定公式测试,连续测定三次,误差不超过0.2s,取其平均值t(s)。5、粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。6、通过自动测量软件自动计算得出对应的数据及报表。
  • 上海市食品接触材料协会立项《食品接触材料及制品 甲基丙烯酰胺迁移量的测定》等两项团体标准
    各有关单位:根据《上海市食品接触材料协会团体标准管理办法》的相关规定,协会组织专家组对《食品接触材料及制品 甲基丙烯酰胺迁移量的测定》、《食品接触材料及制品 间苯二甲酸二甲酯迁移量的测定》团体标准进行了立项评审。经评审,两项团体标准的申报材料符合立项条件,批准立项。请编制单位按照协会工作要求,严把标准质量关,确保标准的适用性和有效性,按期完成标准的起草编制工作。同时,欢迎有关单位积极申报,参与上述两项团体标准的起草编制工作。特此公告。联 系 人:陈宁宁 黄 蔚联系电话:021-64372212邮 箱:safcmxh@163.com通信地址:上海市徐汇区永嘉路627号301室邮 编:200031上海市食品接触材料协会2024年3月29日上海市食品接触材料协会关于《食品接触材料及制品 甲基丙烯酰胺迁移量的测定》、《食品接触材料及制品 间苯二甲酸二甲酯迁移量的测定》团体标准的立项公告.pdf
  • 《化妆品中丙烯酰胺标准物质的研制》通过鉴定
    日前,由上海市计量院承担的国家质检总局科技项目《化妆品中丙烯酰胺标准物质的研制》顺利通过专家鉴定。   本项目主要针对占化妆品总量70-80%的霜膏、水剂类化妆品作为基体、以美国化妆品成分安全委员会(CIR)订定化妆品中可接受的丙烯酰胺残留上限(5µ g/g)作为参考依据,成功研制了特性量值均为5.0μg/g的带基体的化妆品标准物质,其均匀性、稳定性均达到国家级标准物质技术规范的要求。   本项目的水剂及膏霜两种基体中丙烯酰胺标准物质的成功研制,将为各检测实验室化妆品中丙烯酰胺检测提供可靠的量值溯源,有效促进我国化妆品行业的检测规范,且能够严格、准确、可靠地监控化妆品中丙烯酰胺含量,为化妆品行业的产品质量把好质量关,从而保障人民生活健康,具有良好的实用价值与广泛应用前景。
  • 食品接触材料检测行业37项标准通过审定
    近日,食品接触材料检测行业标准审定会在江苏省常州市召开。汤礼军、魏红兵、陈少鸿、宋志刚、董辉、钟怀宁、刘伟、程维勇、孙忠松、卞学东、祖立武、曹国庆、陶强、马强、蒋伟、唐树田、宋欢、张旭龙、陈文等19位专家组成了审定委员会,下列37项标准通过本次审定:   1、食品接触材料检测方法 辅助材料 荧光增白剂迁移量的检测 液相色谱法(深圳检验检疫局)   2、食品接触材料检测方法 高分子材料 4,4'二氨基二苯甲烷迁移量的测定 液相色谱法(广东检验检疫局)   3、食品接触材料检测方法 高分子材料 非奶嘴用含氯橡胶制品中2-巯基咪唑的测定 液相色谱法(深圳检验检疫局)   4、食品接触材料检测方法 高分子材料 铬、锆和钒的测定 ICP-AES法(福建检验检疫局)   5、食品接触材料检测方法 高分子材料 聚苯乙烯制品(PS)中甲苯、乙苯、丙苯、异丙苯、苯乙烯、总挥发性物质的测定 气相色谱法(广东检验检疫局)   6、食品接触材料检测方法 高分子材料 聚对苯二甲酸乙二醇酯(PET)树脂及其制品中乙醛的测定(江苏检验检疫局)   7、食品接触材料检测方法 高分子材料 聚甲基丙烯酸甲酯(PMMA)中甲基丙烯酸甲酯的测定 气相色谱法(上海检验检疫局)   8、食品接触材料检测方法 高分子材料 聚氯乙烯制品(PVC)中磷酸甲苯酯的测定 气相色谱法(浙江检验检疫局)   9、食品接触材料检测方法 高分子材料 磷酸甲酚酯的测定 液相色谱法(山东检验检疫局)   10、食品接触材料检测方法 高分子材料 偏二氯乙烯的测定 液相色谱法(山东检验检疫局)   11、食品接触材料检测方法 高分子材料 三乙胺及三正丁胺的测定 液相色谱法(广东检验检疫局)   12、食品接触材料检测方法 高分子材料 食品模拟物中初级芳香胺的测定 气相色谱-质谱法(广东检验检疫局)   13、食品接触材料检测方法 高分子材料 食品模拟物中二氨基乙醇的测定 气相色谱法(江苏检验检疫局)   14、食品接触材料检测方法 高分子材料 食品模拟物中甲基丙烯酸甲酯的测定(厦门检验检疫局)   15、食品接触材料检测方法 高分子材料 食品模拟物中抗氧化剂的测定 气相色谱法(天津检验检疫局)   16、食品接触材料检测方法 高分子材料 双(羟苯基)甲烷-双(2,3-环氧丙基)醚迁移量的测定 气相色谱法(珠海检验检疫局)   17、食品接触材料检测方法 高分子材料 油脂接触下的试验方法(山东检验检疫局)   18、食品接触材料检测方法 高分子材料 总乳酸迁移量的测定 液相色谱法(山东检验检疫局)   19、食品接触材料检测方法 高分子材料中溶剂残留的测定 气相色谱法(上海检验检疫局)   20、食品接触材料检测方法 高分子材料中锑的测定原子荧光光度法(浙江检验检疫局)   21、食品接触材料检测方法 金属材料 苯酚的测定气相色谱法(宁波检验检疫局)   22、食品接触材料检测方法 金属材料 表面涂料中环氧氯丙烷的测定 液相色谱法(宁波检验检疫局)   23、食品接触材料检测方法 金属材料 金属基质的聚合涂层 总迁移物试验条件和试验方法选择指南(江苏检验检疫局)   24、食品接触材料检测方法 金属材料 氯乙烯迁移量的测定 气相色谱法(河北检验检疫局)   25、食品接触材料检测方法 挠性包装密封件破裂试验(山东检验检疫局)   26、食品接触材料检测方法 鲜切制品自发气调控制式食品包装的测试(山东检验检疫局)   27、食品接触材料检测方法 纸、再生纤维材料 聚合涂层 总迁移物试验条件和试验方法选择指南(山西检验检疫局)   28、食品接触材料检测方法 纸、再生纤维材料 抗氧化剂的测定 气相色谱法(山西检验检疫局)   29、食品接触材料检测方法 纸、再生纤维材料 食品模拟物中抗氧化剂的测定 气相色谱法(山东检验检疫局)   30、食品接触材料检测方法 纸、再生纤维材料 荧光增白的纸和纸板牢度的测定(上海检验检疫局)   31、食品接触材料检测方法 纸、再生纤维材料 有机氯农药残留的测定 气相色谱法(吉林检验检疫局)   32、食品接触材料检测方法 纸、再生纤维材料 杂酚油的测定 气相色谱法(山东检验检疫局)   33、食品接触材料检测方法 纸、再生纤维材料中砷的测定 原子荧光光度法(厦门检验检疫局)   34、食品接触材料中4-甲基二苯甲酮迁移量的测定(江苏检验检疫局)   35、食品接触材料 高分子材料 食品模拟物中偏二氯乙烯的测定 气相色谱法(宁波检验检疫局)   36、食品接触材料 食品模拟物中环氧大豆油迁移量的检测 气相-质谱联用法(广东检验检疫局)   37、木郑皇品表面涂层中总铅含量快速筛选检测方法 X射线荧光光谱法(江苏检验检疫局)。
  • 《水质 黄磷的测定 钼酸铵分光光度法》等两项国家生态环境标准公开征求意见
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,生态环境部组织编制了《水质 黄磷的测定 钼酸铵分光光度法(征求意见稿)》、《固定污染源废气 丙烯酸和甲基丙烯酸的测定 液相色谱法(征求意见稿)》两项国家生态环境标准征求意见稿,现公开征求意见。《水质 黄磷的测定 钼酸铵分光光度法(征求意见稿)》(点击下载)为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》,防治生态环境污染,改善生态环境质量,规范水中黄磷的测定方法,制定本标准。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中黄磷的钼酸铵分光光度法。本标准适用于地表水、地下水、生活污水、工业废水和海水中黄磷的测定。本标准是对《水质 单质磷的测定 磷钼蓝分光光度法(暂行)》(HJ 593-2010)的 修订,本次为第一次修订。主要修订内容如下:——标准的名称由《水质 单质磷的测定 磷钼蓝分光光度法》改为《水质 黄磷的 测定 钼酸铵分光光度法》; ——修订了方法的适用范围; ——修订了方法测定的目标组分; ——修订了方法的检出限、方法原理、试剂和材料、仪器和设备、样品采集和分析步骤; ——增加了术语和定义、结果表示、准确度、质量保证和质量控制等条款。《固定污染源废气 丙烯酸和甲基丙烯酸的测定 液相色谱法(征求意见稿)》(点击下载)为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染, 改善生态环境质量,规范固定污染源有组织排放废气和无组织排放监控点空气中丙烯酸和甲基丙烯酸的测定方法,制定本标准。 本标准规定了测定固定污染源有组织排放废气和无组织排放监控点空气中丙烯酸和甲基丙烯酸的 液相色谱法。本标准适用于固定污染源有组织排放废气和无组织排放监控点空气中丙烯酸和甲基丙烯酸的测定。
  • 9项国家生态环境标准发布,涉及多类别仪器检测方法
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,《土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法》等9项标准为国家生态环境标准批准发布,自 2024年6月1日起实施。一、 土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法(HJ 1315—2023)此标准规定了测定土壤和沉积物中 19 种金属元素总量的电感耦合等离子体质谱法,适用于土壤和沉积物中银(Ag)、砷(As)、钡(Ba)、铍(Be)、铋(Bi)、镉(Cd)、铬(Cr)、钴(Co)、铜(Cu)、锂(Li)、锰(Mn)、钼(Mo)、镍(Ni)、锑(Sb)、锶(Sr)、铅(Pb)、铊(Tl)、钒(V)和锌(Zn)共 19 种金属元素的测定。此标准由生态环境部生态环境监测司、法规与标准司组织制订,主要起草单位为中国环境监测总站、生态环境部华南环境科学研究所、湖南省生态环境监测中心、河南省生态环境监测中心,验证单位为湖北省生态环境监测中心站、河南省济源生态环境监测中心、辽宁省生态环境监测中心、宁夏回族自治区生态环境监测中心、天津市生态环境监测中心、北京市生态环境监测中心。此标准自2024年6月1日起实施。二、水质 氨氮的测定 气相分子吸收光谱法 (HJ 195—2023代替HJ/T 195—2005)此标准规定了测定水中氨氮的气相分子吸收光谱法,适用于地表水、地下水、生活污水、工业废水和海水中氨氮(以N 计)的测定,方法的检出限为 0.02 mg/L,测定下限为 0.08 mg/L。自此标准实施之日起,《水质 氨氮的测定 气相分子吸收光谱法》(HJ/T 195—2005)废止。此标准由生态环境部生态环境监测司、法规与标准司组织制订。本标准主要起草单位:江西省生态环境监测中心、安徽省生态环境监测中心、湖北省生态环境监测中心站。本标准验证单位:重庆市生态环境监测中心、广东省生态环境监测中心、辽宁省大连生态环境监测中心、江西省宜春生态环境监测中心、广东省汕头生态环境监测中心站、辽宁省抚顺生态环境监测中心、甘肃省酒泉生态环境监测中心。本标准自 2024 年 6 月 1 日起实施。三、 水质 总氮的测定 气相分子吸收光谱法(HJ 199—2023代替HJ/T 199—2005)本标准规定了测定水中总氮的气相分子吸收光谱法,适用于地表水、地下水、生活污水、工业废水和海水中总氮(以N 计)的测定。采用高温高压消解,取样量为 20.0 ml 时,方法检出限为 0.05 mg/L,测定下限为0.20 mg/L;采用在线紫外消解,方法检出限为 0.05 mg/L,测定下限为 0.20 mg/L。本标准主要起草单位:江西省生态环境监测中心、重庆市生态环境监测中心、辽宁省大连生态环境监测中心。本标准验证单位:湖南省生态环境监测中心、湖北省生态环境监测中心站、四川省生态环境监测总站、江西省宜春生态环境监测中心、广东省汕头生态环境监测中心站、甘肃省酒泉生态环境监测中心。本标准自 2024 年 6 月 1 日起实施。四、水质 硫化物的测定 气相分子吸收光谱法 (HJ 200—2023代替HJ/T 200—2005)本标准规定了测定水中硫化物的气相分子吸收光谱法,适用于地表水、地下水、生活污水、工业废水和海水中硫化物(以S2-计)的测定。方法的检出限为 0.005 mg/L,测定下限为 0.020 mg/L。本标准主要起草单位:江西省生态环境监测中心、辽宁省大连生态环境监测中心、重庆市生态环境监测中心。本标准验证单位:安徽省生态环境监测中心、山西省生态环境监测和应急保障中心、湖北省生态环境监测中心站、甘肃省酒泉生态环境监测中心、广东省汕头生态环境监测中心站、辽宁省抚顺生态环境监测中心。本标准自 2024 年 6 月 1 日起实施。五、固定污染源废气 丙烯酸和甲基丙烯酸的测定 高效液相色谱法 (HJ 1316—2023)本标准规定了测定固定污染源有组织排放废气和无组织排放监控点空气中丙烯酸和甲基丙烯酸的高效液相色谱法,适用于固定污染源有组织排放废气和无组织排放监控点空气中丙烯酸和甲基丙烯酸的测定。进样体积为 10 µl 时,丙烯酸和甲基丙烯酸的最低检出浓度分别为 0.011 mg/L、0.017 mg/L。固定污染源有组织排放废气采样体积为 30 L(标准状态下的干排气),试样定容体积为50 ml 时,丙烯酸和甲基丙烯酸的方法检出限分别为 0.02 mg/m3、0.03 mg/m3,测定下限分别为0.08 mg/m3、0.12 mg/m3。无组织排放监控点空气采样体积为 30 L(标准状态下的干排气),试样定容体积为10 ml 时,丙烯酸和甲基丙烯酸的方法检出限分别为 0.004mg/m3、0.006 mg/m3,测定下限分别为0.016 mg/m3、0.024mg/m3。本标准主要起草单位:广东环境保护工程职业学院。本标准验证单位:广东省广州生态环境监测中心站、广东省佛山生态环境监测站、广东省东莞生态环境监测站、广西壮族自治区南宁生态环境监测中心、广东省科学院生态环境与土壤研究所、广西大学。本标准自 2024 年 6 月 1 日起实施。六、环境空气和废气 6种丙烯酸酯类化合物的测定 气相色谱法 (HJ 1317—2023)本标准规定了测定环境空气和废气中 6 种丙烯酸酯类化合物的气相色谱法,适用于环境空气、无组织排放监控点空气和固定污染源有组织排放废气中丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸甲酯、丙烯酸丙酯、丙烯酸丁酯和甲基丙烯酸丁酯等 6 种丙烯酸酯类化合物的测定。环境空气和无组织排放监控点空气采样体积为 20 L,解吸体积为 1.0 ml,进样量为1.0 μl 时,方法检出限为 0.02 mg/m3,测定下限为 0.08 mg/m3;固定污染源有组织排放废气的进样体积为1.0 ml 时,方法检出限为 1 mg/m3~2 mg/m3,测定下限为 4 mg/m3~8 mg/m3。本标准主要起草单位:江苏省苏州环境监测中心。本标准验证单位:江苏省无锡环境监测中心、上海市浦东新区环境监测站、江苏康达检测技术股份有限公司、苏州市华测检测技术有限公司、浙江省生态环境监测中心和江苏省泰州环境监测中心。本标准自 2024 年 6 月 1 日起实施。七、区域环境空气臭氧自动监测质量评估技术要求(HJ 1318—2023)本标准规定了开展区域环境空气臭氧自动监测质量评估的的工作流程、仪器和设备、质量评估目标、评估区域及点位抽样、现场检查与比对、质量评估、评价质量保证与质量控制,适用于以紫外光度法等为原理的环境空气臭氧自动监测的质量评估。本标准为首次发布。本标准由生态环境部生态环境监测司、法规与标准司组织制订。本标准主要起草单位:中国环境监测总站、北京市生态环境监测中心、河北省生态环境应急与重污染天气预警中心。本标准自 2024 年 6 月 1 日起实施。八、环境空气监测臭氧传递标准校准技术规范(HJ 1319—2023)本标准规定了采用臭氧传递标准校准下级臭氧传递标准的操作技术要求,适用于校准环境空气监测臭氧传递标准,浓度范围为 1 nmol/mol~500 nmol/mol。本标准为首次发布。本标准由生态环境部生态环境监测司、法规与标准司组织制订。本标准主要起草单位:中国环境监测总站、北京市生态环境监测中心、山东省生态环境监测中心、中国环境科学研究院。本标准自 2024 年 6 月 1 日起实施。九、 生态遥感地面观测与验证技术导则(HJ 1320—2023)本标准规定了陆地生态遥感地面观测与验证工作各环节的基本要求,包括地面验证场(站)选址、验证样地样方布设、观测参数、观测方法、基础设施建设、遥感产品验证及验证精度评价等,适用于指导基于生态遥感及地面观测技术的全国及区域遥感产品验证、遥感监测等相关工作。本标准为首次发布。本标准由生态环境部生态环境监测司、法规与标准司组织制订。本标准主要起草单位:生态环境部卫星环境应用中心、中国科学院地理科学与资源研究所、中国科学院空天信息创新研究院、山西省生态环境监测和应急保障中心(山西省生态环境科学研究院)、四川省生态环境科学研究院、江苏省环境监测中心。本标准自 2024 年 6 月 1 日起实施。附:一、土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法(HJ 1315—2023).pdf二、水质 氨氮的测定 气相分子吸收光谱法 (HJ 195—2023代替HJ_T 195—2005).pdf三、水质 总氮的测定 气相分子吸收光谱法(HJ 199—2023代替HJ_T 199—2005).pdf四、水质 硫化物的测定 气相分子吸收光谱法 (HJ 200—2023代替HJ_T 200—2005).pdf五、固定污染源废气 丙烯酸和甲基丙烯酸的测定 高效液相色谱法 (HJ 1316—2023).pdf六、环境空气和废气 6种丙烯酸酯类化合物的测定 气相色谱法 (HJ 1317—2023).pdf七、区域环境空气臭氧自动监测质量评估技术要求(HJ 1318—2023).pdf八、环境空气监测臭氧传递标准校准技术规范(HJ 1319—2023).pdf九、生态遥感地面观测与验证技术导则(HJ 1320—2023).pdf
  • 今天起,这些国家标准正式实施,涉及检验检测等多个行业
    2022年6月1日起实施的国家标准清单序号标准编号标准名称实施日期1GB 41022-2021煤矿瓦斯抽采基本指标2022/6/12GB 30035-2021船员健康检查要求2022/6/13GB/T 5356-2021内六角扳手2022/6/14GB/Z 12414-2021药用玻璃管2022/6/15GB/T 5358-2021内六角花形螺钉旋具2022/6/16GB/T 32483.2-2021灯控制装置的效率要求 第2部分:高压放电灯(荧光灯除外) 控制装置效率的测量方法2022/6/17GB/Z 40892-2021创业园科技服务基本要求2022/6/18GB/T 40891-2021化妆品中新铃兰醛的测定 气相色谱-质谱法2022/6/19GB/T 40946-2021海洋牧场建设技术指南2022/6/110GB/T 40950-2021化妆品中烷基(C12~C22)三甲基铵盐的测定 高效液相色谱串联质谱法2022/6/111GB/T 40913-2021玻璃瓶罐热端涂层厚度的测定方法2022/6/112GB/T 40955-2021化妆品中八甲基环四硅氧烷(D4)和十甲基环五硅氧烷(D5)的测定 气相色谱法2022/6/113GB/T 40911.3-2021塑料制品 聚甲基丙烯酸甲酯板材 类型、尺寸和特性 第3部分:连续浇铸板材2022/6/114GB/T 40911.2-2021塑料制品 聚甲基丙烯酸甲酯板材 类型、尺寸和特性 第2部分:挤出板材2022/6/115GB/T 40915-2021X射线荧光光谱法测定钠钙硅玻璃中SiO2、Al2O3、Fe2O3、K2O、Na2O、CaO、MgO含量2022/6/116GB/T 40918-2021聚苯乙烯户外仿木板材通用技术要求2022/6/117GB/T 40921-2021发泡聚丙烯(PP-E)珠粒2022/6/118GB/T 40933-2021塑料制品 薄膜和薄片 热塑性塑料薄膜试验指南2022/6/119GB/T 40937-2021塑料管道系统 塑料复合管材和管件长期强度的测定方法2022/6/120GB/T 40935-2021青贮牧草膜2022/6/121GB/T 30104.101-2021数字可寻址照明接口 第101部分:一般要求 系统组件2022/6/122GB/T 30104.201-2021数字可寻址照明接口 第201部分:控制装置的特殊要求 荧光灯(设备类型0)2022/6/123GB/T 40916-2021液化气储运用高强度聚氨酯泡沫塑料2022/6/124GB/T 15039-2021发光强度、总光通量标准灯泡2022/6/125GB/T 13259-2021高压钠灯 性能要求2022/6/126GB/T 30104.102-2021数字可寻址照明接口 第102部分:一般要求 控制装置2022/6/12022/6/129GB/T 40967-2021核电厂用
  • 科学认识食品中的丙烯酰胺
    导读 据中新网报道,近日,香港消委会在5款饼干中检出致癌物丙烯酰胺,其中就包括大家耳熟能详的大品牌“奥**原味迷你饼干”,这5款饼干均为马来西亚生产,香港消委会称长期摄入饼干中的丙烯酰胺会导致人的生殖出现问题,而马来西亚卫生部则回应,这些饼干含有的致癌物丙烯酰胺含量没有超过欧盟标准,他们检测出这5款饼干中丙烯酰胺含量为每公斤246微克,而欧盟标准为每公斤350微克,对人的健康威胁不大。关于食品中含有可能致癌物丙烯酰胺的报道层出不穷。那么,食品中丙烯酰胺的成因是什么?它的致癌性究竟如何?我们又该怎样快速准确测定食品中丙烯酰胺的含量呢?下面我们将——梳理。 美拉德反应与丙烯酰胺 在烹饪界,美拉德反应一直普遍存在。每次你做烤面包、烤牛排、烘焙咖啡豆… … 的时候,当温度达到140-160°C,它都可能快速发生。美拉德反应的真正魅力,并不仅仅在于颜色的变化,而是风味和香气,所以,它也被称为“风味反应”。 在高温下,氨基酸(来自蛋白质)和还原糖(葡萄糖、果糖、乳糖等),激烈地碰撞和重组,产生数百种化合物,从而使这些食物散发出了诱人的香味。美拉德反应原理 然而,美拉德反应中也会生成醛、杂环胺等有害副产物,其中最让人心有余悸的就是丙烯酰胺。 由于谷物类和马铃薯含有较高浓度的天冬酰胺和还原糖,以它们为原料的饼干、薯片等食品在加工过程中往往会有丙烯酰胺生成,是人体摄入丙烯酰胺的主要来源。 管控要求 2017年欧盟发布法规(EU)2017/2158,制定减少食品中丙烯酰胺含量的缓解措施和基准水平,并于附件IV中规定了各类食品的丙烯酰胺基准值,如下表所示。国内目前没有食品中丙烯酰胺相关限量标准。 检测标准 现有的丙烯酰胺检测标准如下表所示。岛津对应方案 利用硅烷化衍生法处理样品,建立了GCMS和GC-MS/MS两种快速测试方法,并对数据进行了比较分析。【方案一 GCMS检测方案】样品中加乙腈后超声提取,离心后取上清液加入丙烯酰胺-13C3内标和MSTFA+1%TMCS衍生试剂,然后在烘箱中衍生,冷却至室温后用GCMS分析。内标法定量。丙烯酰胺色谱图和校准曲线如下所示。某面包样品未检出丙烯酰胺 面包样品色谱图 【方案二 GC-MS/MS检测方案】样品中加乙腈后超声提取,离心后取上清液加入MSTFA+1%TMCS衍生试剂于烘箱中衍生,冷却至室温后用GC-MS/MS分析。外标法定量。丙烯酰胺色谱图和校准曲线如下所示。 对某品牌饼干样品进行处理并检测,样品中检出极微量的丙烯酰胺,浓度为3.98μg/kg,远低于欧盟设定的饼干中350μg/kg基准水平值。 饼干样品色谱图 【两种测试方案对比】GCMS方法的加标量为25 μg/kg,GC-MS/MS的加标量为5 μg/kg,都低于欧盟(EU)2017/2158法规的最小基准值40 μg/kg(婴幼儿食品),两种测试方案的回收率和重复性结果良好,如下表所示。 GCMS和GC-MS/MS方法结果对比结束语 本着“为了人类和地球的健康”的愿景,岛津公司向您推荐食品中丙烯酰胺的两种测试方法-GCMS和GC-MS/MS法,以便帮助企业快速准确测定食品中丙烯酰胺含量,为食品安全和消费者健康保驾护航。
  • 2023年“三新食品”公示名单汇总!
    “三新食品”是指新食品原料、食品添加剂新品种和食品相关产品新品种。2023年5月,根据《食品安全法》及其实施条例有关规定,国家卫生健康委组织专业技术机构梳理了 “三新食品”目录及适用的食品安全标准(点击下载),范围涵盖自原卫生部2009年第3号公告至国家卫生健康委2021年第9号公告的新食品原料(菌种除外)、自原卫生部2009年第11号公告至国家卫生健康委2021年第9号公告的食品添加剂新品种、自原卫生部2012年第11号公告至国家卫生健康委2021年第9号公告的食品相关产品新品种,共计98个新食品原料品种、215个食品添加剂新品种和235个食品相关产品新品种。2023年国家食品安全风险评估中心共发布16条征求意见,共涉及53种化合物。小编汇总了2023年以来公开征求意见的“三新食品”名录。新品种序号名称公示时间使用范围111-氨基十一(烷)酸的均聚物2023年11月03日聚酰胺(PA)2瑞鲍迪苷 M2023年10月26日调制乳、风味发酵乳、冰淇淋、雪糕类、胶基糖果、饮料类3环糊精葡萄糖苷转移酶2023年10月26日食品工业用酶制剂4纤维素酶2023年10月26日食品工业用酶制剂52’-岩藻糖基乳糖2023年10月26日食品营养强化剂6(3R,3'S)-二羟基-β-胡萝卜素2023年8月28日乳及乳制品、饮料类、焙烤食品、糖果、即食谷物、冷冻饮品,使用范围不包括婴幼儿食品。7克鲁维毕赤酵母2023年8月28日批准列入《可用于食品的菌种名单》,使用范围包括发酵酒、果蔬汁、茶饮料的发酵加工,不包括婴幼儿食品。8枯草芽孢杆菌 DE1112023年8月28日批准列入《可用于食品的菌种名单》92'-岩藻糖基乳糖2023年8月23日:食品营养强化剂10甲基丙烯酸丁酯与甲基丙烯酸甲酯、丙烯酸正丁酯和1,4-丁二醇二甲基丙烯酸酯的聚合物2023年6月28日涂料及涂层11混合生育三烯酚浓缩物2023年6月26日植物油脂12巴拉圭冬青叶2023年6月21日马黛茶叶新原料131,4-苯二甲酸与癸二酸和 1,2-乙二醇的聚合物2023年4月25日涂料及涂层14.甲基丙烯酸与甲基丙烯酸丁酯、丙烯酸乙酯和甲基丙 烯酸甲酯的聚合物和对苯二酚与 4,4-亚甲基双(2,6-二甲基 酚)和氯甲基环氧乙烷的聚合物与 N,N-二甲基乙醇胺的反应 产物2023年4月25日涂料及涂层15丝氨酸蛋白酶2023年4月24日食品工业用酶制剂新品种16桃胶2023年4月23日婴幼儿、孕妇、哺乳期妇女及经期妇女不宜食用,标签、说明书应当标注不适宜人群和食用限量。17油莎豆2023年4月23日食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。18肠膜明串珠菌乳脂亚种2023年4月23日批准列入《可用于食品的菌种名单》,使用范围包括乳及乳制品、果蔬制品、谷物制品的发酵加工,不包括婴幼儿食品。19吡咯并喹啉醌二钠盐2023年4月23日使用范围和最大使用量:饮料(40mg/kg,固体饮料按照冲调后液体质量折算)。20N-(2-氨基乙基)-β-丙氨酸单钠盐与1,4-丁二醇、1,6-二异氰酸根合己烷、1,3-二异氰酸根合甲苯和己二酸的聚合物2023年3月15日黏合剂(直接接触食品用)21文冠果种仁2023年3月10日食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。22文冠果叶2023年3月10日食用方式:泡饮。23酵母蛋白2023年3月10日婴幼儿、孕妇和哺乳期妇女不宜食用,标签及说明书应当标注不适宜人群。24β-淀粉酶2023年2月10日食品工业用酶制剂新品种25溶血磷脂酶2023年2月10日食品工业用酶制剂新品种262’-岩藻糖基乳糖2023年2月10日食品营养强化剂新品种27己二酸与 2-乙基-2-(羟甲基)-1,3-丙二醇和 4-(1,1-二 甲基乙基)苯甲酸酯的聚合物2023年1月16日涂料及涂层284,8-三环[5.2.1.02,7]癸烷二甲醇与对苯二甲酸和 1,6-己 二醇的聚合物2023年1月16日涂料及涂层29氢化二聚 C18 不饱和脂肪酸与 1,4-丁二醇、乙二醇、 对苯二甲酸和 2-乙基-2-(羟甲基)-1,3-丙二醇的嵌段共聚物2023年1月16日塑料30蓝莓花色苷2023年1月12日乳及乳制品、饮料类、果冻、可可制品、巧克力和巧克力制品、糖果、冷冻饮品、焙烤食品、酒类。31绿茶儿茶素2023年1月12日饮料、糖果32蛋壳膜提取物2023年1月12日婴幼儿、孕妇、哺乳期妇女、对鸡蛋过敏者不宜食用。33黑麦花粉2023年1月12日婴幼儿、孕妇、哺乳期妇女,以及花粉过敏者不宜食用。扩大使用范围序号名称公示时间扩大使用范围1番茄红2023年10月26日肉脯类、肉灌肠类、腌腊肉制品类2聚氧乙烯(20)山梨醇酐单油酸酯(又名吐温 80)2023年10月26日胶原蛋白肠衣3迷迭香提取物2023年10月26日加工坚果与籽类4维生素 E(dl-α- 生育酚,d-α-生育酚,混合生育酚浓缩物)2023年10月26日其他(仅限叶黄素酯)5L-丙氨酸2023年8月23日果蔬汁(浆)类饮料6海藻酸丙二醇酯2023年8月23日粉丝、粉条、粉圆7N,N'-己基-1,6-二[3-(3,5-二叔丁基-4-羟苯基)丙酰胺]2023年6月28日塑料:聚氨酯(PUR)传送带82,2-双[[3[3,5-双(1,1-二甲基乙基)-4-羟苯基]-1-氧代丙氧基]甲基]-1,3-丙二基-3,5-双(1,1-二甲基乙基)-4-羟基苯丙酸酯;四[3-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯2023年6月28日塑料:聚氨酯(PUR)传送带9咖啡渣2023年6月28日塑料:聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)10食用单宁2023年6月26日制糖工艺11乙酸乙酯2023年6月26日茶叶提取物的加工工艺12C.I.颜料黑 72023年4月25日塑料:聚醚醚酮(PEEK)13丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸 和 N,N'-亚甲基双丙烯酰胺的共聚物2023年4月25日纸和纸板142-(乙烯氧基)-1,2,3-丙三羧酸三丁基酯2023年4月25日间接接触食品用油墨15乳酸钙2023年4月24日腌渍的蔬菜、蔬菜罐头16三赞胶2023年4月24日调制乳、复合蛋白饮料17玻璃纤维;玻璃棉2023年3月15日塑料:聚醚醚酮(PEEK)18C.I.颜料黑 282023年3月15日涂料及涂层19三赞胶2023年2月10日调制乳、冰激凌、雪糕类、复合蛋白饮料、风味饮料20硫酸2023年2月10日油脂加工工艺三新食品2023年公示.rar
  • 生态环境部发布《土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法》等9项国家生态环境标准
    为支撑相关生态环境质量标准、风险管控标准、污染物排放标准实施,近期,生态环境部发布《土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法》(HJ 1315-2023)、《水质 氨氮的测定 气相分子吸收光谱法》(HJ 195-2023)、《水质 总氮的测定 气相分子吸收光谱法》(HJ 199-2023)、《水质 硫化物的测定 气相分子吸收光谱法》(HJ 200-2023)、《固定污染源废气 丙烯酸和甲基丙烯酸的测定 高效液相色谱法》(HJ 1316-2023)、《环境空气和废气 6种丙烯酸酯类化合物的测定 气相色谱法》(HJ 1317-2023)、《区域环境空气臭氧自动监测质量评估技术要求》(HJ 1318-2023)、《环境空气监测臭氧传递标准校准技术规范》(HJ 1319-2023)、《生态遥感地面观测与验证技术导则》(HJ 1320-2023)等9项国家生态环境标准。  《土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法》(HJ 1315-2023)为首次发布,适用于土壤和沉积物中19种金属元素总量的测定。与现行相关监测标准相比,本标准具有可测定金属元素种类多、灵敏度高、易于推广等优点,可支撑《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB 15618-2018)、《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)等标准实施。  《水质 氨氮的测定 气相分子吸收光谱法》(HJ 195-2023)、《水质 总氮的测定 气相分子吸收光谱法》(HJ 199-2023)、《水质 硫化物的测定 气相分子吸收光谱法》(HJ 200-2023)等3项标准均为第一次修订,适用于地表水、地下水、生活污水、工业废水和海水中氨氮、总氮和硫化物的测定。与原标准相比,3项标准增加了试样制备、质量保证和质量控制等条款,完善了干扰和消除、标准曲线建立等内容,可支撑《地表水环境质量标准》(GB 3838-2002)、《城镇污水处理厂污染物排放标准》(GB 18918-2002)等标准实施。  《固定污染源废气 丙烯酸和甲基丙烯酸的测定 高效液相色谱法》(HJ 1316-2023)为首次发布,适用于固定污染源废气和无组织排放监控点空气中丙烯酸与甲基丙烯酸的测定,填补了大气中相关分析方法标准空白。本标准具有检出限低、准确度高、稳定性好等优点,可支撑《石油化学工业污染物排放标准》(GB 31571-2015)、《涂料、油墨及胶粘剂工业大气污染物排放标准》(GB 37824-2019)等标准实施。  《环境空气和废气 6种丙烯酸酯类化合物的测定 气相色谱法》(HJ 1317-2023)为首次发布,适用于环境空气、无组织排放监控点空气和固定污染源废气中6种丙烯酸酯类化合物的测定,填补了大气中相关分析方法标准空白。本标准具有可测定污染物种类多、检出限低、精密度高等优点,可支撑《石油化学工业污染物排放标准》(GB 31571-2015)、《合成树脂工业污染物排放标准》(GB 31572-2015)等标准实施。  《区域环境空气臭氧自动监测质量评估技术要求》(HJ 1318-2023)为首次发布,适用于对采用紫外光度法等原理的点式环境空气臭氧分析仪监测的质量评估。本标准明确了区域环境空气臭氧自动监测质量评估工作的流程与内容,具有操作简便、易于推广等优点,有力支撑臭氧自动监测质量控制、监督检查与质量评估等工作。  《环境空气监测臭氧传递标准校准技术规范》(HJ 1319-2023)为首次发布,适用于臭氧二、三、四级传递标准之间的校准。本标准规范了臭氧传递标准的逐级校准工作,与《环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统运行和质控技术规范》(HJ 818-2018)、《环境空气臭氧监测一级校准技术规范》(HJ 1099-2020)配套执行,构成一条从现场臭氧分析仪至臭氧原级测量标准的不间断的量值溯源链。  《生态遥感地面观测与验证技术导则》(HJ 1320-2023)为首次发布,适用于全国及区域尺度生态遥感监测、遥感产品验证等相关工作。本标准规定了生态遥感地面观测与验证工作各环节的基本要求,有助于提高生态遥感监测结果的准确性、可比性,支撑全国生态质量监测与评价、自然保护地和生态保护红线监管等工作。  上述9项标准的发布实施,丰富了监测标准供给,对于进一步完善国家生态环境监测标准体系,规范生态环境监测工作,保证环境监测数据质量,服务生态环境监管执法具有重要意义。
  • 生态环境部发布《土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法》等9项国家生态环境标准,2024-06-01 实施
    为支撑相关生态环境质量标准、风险管控标准、污染物排放标准实施,近期,生态环境部发布《土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法》(HJ 1315-2023)、《水质 氨氮的测定 气相分子吸收光谱法》(HJ 195-2023)、《水质 总氮的测定 气相分子吸收光谱法》(HJ 199-2023)、《水质 硫化物的测定 气相分子吸收光谱法》(HJ 200-2023)、《固定污染源废气 丙烯酸和甲基丙烯酸的测定 高效液相色谱法》(HJ 1316-2023)、《环境空气和废气 6种丙烯酸酯类化合物的测定 气相色谱法》(HJ 1317-2023)、《区域环境空气臭氧自动监测质量评估技术要求》(HJ 1318-2023)、《环境空气监测臭氧传递标准校准技术规范》(HJ 1319-2023)、《生态遥感地面观测与验证技术导则》(HJ 1320-2023)等9项国家生态环境标准。  《土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法》(HJ 1315-2023)为首次发布,适用于土壤和沉积物中19种金属元素总量的测定。与现行相关监测标准相比,本标准具有可测定金属元素种类多、灵敏度高、易于推广等优点,可支撑《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB 15618-2018)、《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)等标准实施。  《水质 氨氮的测定 气相分子吸收光谱法》(HJ 195-2023)、《水质 总氮的测定 气相分子吸收光谱法》(HJ 199-2023)、《水质 硫化物的测定 气相分子吸收光谱法》(HJ 200-2023)等3项标准均为第一次修订,适用于地表水、地下水、生活污水、工业废水和海水中氨氮、总氮和硫化物的测定。与原标准相比,3项标准增加了试样制备、质量保证和质量控制等条款,完善了干扰和消除、标准曲线建立等内容,可支撑《地表水环境质量标准》(GB 3838-2002)、《城镇污水处理厂污染物排放标准》(GB 18918-2002)等标准实施。  《固定污染源废气 丙烯酸和甲基丙烯酸的测定 高效液相色谱法》(HJ 1316-2023)为首次发布,适用于固定污染源废气和无组织排放监控点空气中丙烯酸与甲基丙烯酸的测定,填补了大气中相关分析方法标准空白。本标准具有检出限低、准确度高、稳定性好等优点,可支撑《石油化学工业污染物排放标准》(GB 31571-2015)、《涂料、油墨及胶粘剂工业大气污染物排放标准》(GB 37824-2019)等标准实施。  《环境空气和废气 6种丙烯酸酯类化合物的测定 气相色谱法》(HJ 1317-2023)为首次发布,适用于环境空气、无组织排放监控点空气和固定污染源废气中6种丙烯酸酯类化合物的测定,填补了大气中相关分析方法标准空白。本标准具有可测定污染物种类多、检出限低、精密度高等优点,可支撑《石油化学工业污染物排放标准》(GB 31571-2015)、《合成树脂工业污染物排放标准》(GB 31572-2015)等标准实施。  《区域环境空气臭氧自动监测质量评估技术要求》(HJ 1318-2023)为首次发布,适用于对采用紫外光度法等原理的点式环境空气臭氧分析仪监测的质量评估。本标准明确了区域环境空气臭氧自动监测质量评估工作的流程与内容,具有操作简便、易于推广等优点,有力支撑臭氧自动监测质量控制、监督检查与质量评估等工作。  《环境空气监测臭氧传递标准校准技术规范》(HJ 1319-2023)为首次发布,适用于臭氧二、三、四级传递标准之间的校准。本标准规范了臭氧传递标准的逐级校准工作,与《环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统运行和质控技术规范》(HJ 818-2018)、《环境空气臭氧监测一级校准技术规范》(HJ 1099-2020)配套执行,构成一条从现场臭氧分析仪至臭氧原级测量标准的不间断的量值溯源链。  《生态遥感地面观测与验证技术导则》(HJ 1320-2023)为首次发布,适用于全国及区域尺度生态遥感监测、遥感产品验证等相关工作。本标准规定了生态遥感地面观测与验证工作各环节的基本要求,有助于提高生态遥感监测结果的准确性、可比性,支撑全国生态质量监测与评价、自然保护地和生态保护红线监管等工作。  上述9项标准的发布实施,丰富了监测标准供给,对于进一步完善国家生态环境监测标准体系,规范生态环境监测工作,保证环境监测数据质量,服务生态环境监管执法具有重要意义。
  • 总局发布《食用调和油》等185项推荐性国家标准,于2022年开始实行
    相关标准如下:序号国家标准编号国 家 标 准 名 称代替标准号实施日期1GB/T 40851-2021食用调和油2022-06-012GB/T 40891-2021化妆品中新铃兰醛的测定 气相色谱-质谱法2022-06-013GB/T 40894-2021化妆品中禁用物质甲巯咪唑的测定 高效液相色谱法2022-06-014GB/T 40895-2021化妆品中禁用物质丁卡因及其盐类的测定 离子色谱法2022-06-015GB/T 40896-2021化妆品中二乙二醇单乙醚的测定 气相色谱-质谱法2022-06-016GB/T 40897-2021化妆品中碱金属硫化物和碱土金属硫化物的测定 亚甲基蓝分光光度法2022-06-017GB/T 40898-2021化妆品中禁用物质贝美格及其盐类的测定 高效液相色谱法2022-06-018GB/T 40899-2021化妆品中禁用物质溴米索伐、卡溴脲和卡立普多的测定 高效液相色谱法2022-06-019GB/T 40900-2021化妆品中荧光增白剂367和荧光增白剂393的测定 液相色谱-串联质谱法2022-06-0110GB/T 40901-2021化妆品中11种禁用唑类抗真菌药物的测定 液相色谱-串联质谱法2022-06-0111GB/T 40911.2-2021塑料制品 聚甲基丙烯酸甲酯板材 类型、尺寸和特性 第2部分:挤出板材2022-06-0112GB/T 40911.3-2021塑料制品 聚甲基丙烯酸甲酯板材 类型、尺寸和特性 第3部分:连续浇铸板材2022-06-0113GB/T 40913-2021玻璃瓶罐热端涂层厚度的测定方法2022-06-0114GB/T 40933-2021塑料制品 薄膜和薄片 热塑性塑料薄膜试验指南2022-06-0115GB/T 40934-2021滚塑成型 粉末流动性的试验方法2022-06-0116GB/T 40935-2021青贮牧草膜2022-06-0117GB/T 40941-2021马鹿茸分等质量2022-06-0118GB/T 40942-2021畜禽饲料安全评价 肉鸡饲养试验技术规程2022-06-0119GB/T 40943-2021梅花鹿茸分等质量2022-06-0120GB/T 40944-2021饲料粒度测定 几何平均粒度法2022-06-0121GB/T 40945-2021畜禽肉质量分级规程2022-06-0122GB/T 40946-2021海洋牧场建设技术指南2022-06-0123GB/T 40950-2021化妆品中烷基(C12~C22)三甲基铵盐的测定 高效液相色谱串联质谱法2022-06-0124GB/T 40955-2021化妆品中八甲基环四硅氧烷(D4)和十甲基环五硅氧烷(D5)的测定 气相色谱法2022-06-0125GB/T 40956-2021食品冷链物流交接规范2022-06-0126GB/T 40957-2021企业竞争力评价规范2022-06-0127GB/T 40958-2021企业生产力评价规范2022-06-0128GB/T 40960-2021苹果冷链流通技术规程2022-06-0129GB/T 40962-2021干鲍鱼2022-06-0130GB/T 40963-2021冻虾仁2022-06-0131GB/T 40964-2021桃冷链流通技术操作规程2022-06-0132GB/T 40969-2021纸和纸板 颜色的测定(D50/2°漫反射法)2022-06-0133GB/T 40970-2021化妆品中氨含量的测定 滴定法2022-06-0134GB/T 40978-2021电饭锅2022-06-0135GB/T 40979-2021智能家用电器个人信息保护要求和测评方法2022-06-0136GB/T 40980-2021生化制品中还原糖的测定 柱前衍生高效液相色谱法39GB/T 40993-2021消费品召回 效果评价2022-03-0140GB/T 40994-2021GB/T 1037-19882022-06-0148GB/T 4214.10-2021家用和类似用途电器噪声测试方法 确定和检验噪声明示值的程序2021-11-262022-06-01
  • 青岛市标准化协会立项《纺织品 定量化学分析氨纶或某些纤维素纤维与聚丙烯腈纤维的混合物(盐酸法)》等三项团体标准
    各相关单位:按照《青岛市标准化协会团体标准管理办法》的规定,青岛市标准化协会《国内棉花残损鉴定技术规范》、《纺织品 定量化学分析氨纶或某些纤维素纤维与聚丙烯腈纤维的混合物(盐酸法)》和《秋月梨 感官定级评价规则》三项团体标准已通过立项论证,同意立项。请各有关单位尽快组织起草并完成标准的制定工作。青岛市标准化协会2023年4月7日
  • 化妆品中丙烯酰胺等禁用物质或限用物质检测方法发布
    关于印发化妆品中丙烯酰胺等禁用物质或限用物质检测方法的通知   国食药监许[2011]96号 各省、自治区、直辖市食品药品监督管理局(药品监督管理局):   为规范化妆品中禁用物质和限用物质检测技术要求,提高化妆品卫生质量安全,化妆品中丙烯酰胺等禁用物质或限用物质的检测方法已经国家食品药品监督管理局化妆品标准专家委员会审议通过,现予印发。   附件:1.化妆品中丙烯酰胺的检测方法     2.化妆品中甲醛的检测方法     3.化妆品中挥发性有机溶剂的检测方法     4.化妆品中钕等15种稀土元素的检测方法     5.化妆品中邻苯二甲酸酯类物质的检测方法     6.化妆品中三氯卡班的检测方法     7.化妆品中苯氧异丙醇的检测方法     8.化妆品中奎宁的检测方法     9.化妆品中6-甲基香豆素的检测方法     10.化妆品中苯甲醇的检测方法     11.化妆品中苯甲酸及其盐的检测方法   国家食品药品监督管理局   二○一一年二月二十一日
  • WTO:9月关于各国标准修订的通报
    新西兰制定鱼食及鱼饵的进口健康标准   新西兰近日发出G/SPS/N/NZL/425号通报,新西兰生物安全局对鱼食及鱼饵制定进口健康标准。内容主要涉及:规定了无论产地国或出口国在签发商品准许入境新西兰的生物安全检验许可证书前必须执行的过境或检疫期间动物卫生要求。在进口风险分析的基础上,制定了适用于所有产地国的鱼食及鱼饵的进口健康修订标准。   该标准的拟批准日期为2009年10月19日。   新西兰修订谷物等进口植物卫生要求   新西兰近日发出G/SPS/N/NZL/295/Add.1号通报,对用于消费、饲料或加工的谷物或种子的进口卫生标准进行了修订。内容涉及:(1)罂粟新计划。罂粟进口要求以前书面写在内部程序里,现在已纳入进口卫生标准,还没有明确的生物安全要求。罂粟种子进口商在进口前必须获得新西兰卫生部的书面批准。(2)修订小麦计划。明确将出口国对监管的真菌进行检测的选项纳入植物卫生要求和补充声明中。   该修订要求无须再征求意见。   新西兰对进口中国食用鲜洋葱头制定植物卫生风险草案   新西兰近日发出G/SPS/N/NZL/42号通报,新西兰农林部生物安全局对进口中国产食用洋葱头制订了植物卫生风险的风险分析草案。   该草案的拟批准日期为2009年8月。   美国修订瓶装水法规   美国近日发出G/SPS/N/USA/1869/Add.1号通报,美国FDA公布了一项最终法规,修订了FDA瓶装水法规,以保证按排泄物指标大肠埃希杆菌显示,瓶装水未受排泄物污染。新法规包含以下要求:(1)瓶装厂家每周对水源的大肠菌总数进行微生物检测 (2)如水源或成品瓶装水中发现任何大肠菌,瓶装厂家必须确定大肠菌生物体是否是大肠埃希杆菌(E.coli.) (3)含E.coli的水源的水质被认为是不安全、不卫生,将禁止用于瓶装水生产 (4)在瓶装厂家使用E.coli检验结果为阳性的水源之前,必须采取适当措施纠正或根除使用水源受E.coli污染的原因,必须保存对该措施的记录 (5)含E.coli的成品瓶装水将被认为掺假。   该最终法规已经公布。   加拿大制定多项农药最高残留限量标准   加拿大近日发出G/SPS/N/CAN/362、364、365、368、369、370/Add.1号多项通报,对农药咪唑菌酮、稀禾定、甲霜灵、吡虫啉、氟酮磺隆以及赛座灭分别制定了最高残留限量。   上述法规均已生效。   韩国制定食品标准规范修订案   韩国近日发出G/SPS/N/KOR/331号通报,韩国食品药物管理局拟修订食品标准规范,涉及产品包括食品仪器、容器及包装。主要内容:(1)规定苯甲酮用作印刷油墨成分的迁移限量及测试方法。   (2)加严以下成分的迁移标准:聚乙烯对苯二酸酯(PET)中的锑(Sb)、-烯-苯乙烯树脂、聚甲基丙烯酸酯(MS)及甲基丙烯酸甲酯-丙烯腈(acrylonitrile)-丁苯(butadiene-styrene)共聚合(MABS)异丁烯酸甲酯内的(Methylmethacrylate)及木材内二氧化硫、邻苯基苯酚(ortho-phenylphenol)、噻苯咪唑(thi?鄄abendazole)、联苯(biphenyl)及戴挫霉(i?鄄mazalil)。   另外,对纸或加工纸内多氯联苯(PCBs)的残留限量及测试方法提出更高要求。该修订案目前正在征求意见中。   韩国拟修订食品添加剂标准规范   韩国近日发出G/SPS/N/KOR/329号通报,韩国食品药物管理局拟修订食品添加剂标准规范,修订内容包括:强化重金属规范,或规范以下30种食品添加剂的成分:微晶纤维素、瓜尔胶、蛋黄素、刺槐豆胶、溶菌酶、万寿菊萃取物、蜂蜡、高岭土、纤维素粉、甜菜红、黄原胶、虫胶、环糊精、阿拉伯树胶、胭脂树萃取物、藻酸、液体石蜡、蔗糖酶、葛兰胶、巴西蜡棕蜡、焦糖色、卡拉牙胶、卡德兰凝胶、胭脂虫提取物、塔拉胶、鞣酸、浓缩微生物E(混合物)、浓缩生育醇(d-a-toco?鄄pherol)、黄蓍胶、辣椒油。   (1) 规定以下5种残留溶剂的规范:瓜尔胶、刺槐豆胶、黄原胶、环糊精、鞣酸。规定以下12种微生物标准:瓜尔胶、刺槐豆胶、溶菌酶、高岭土、黄原胶、环糊精、藻酸、蔗糖酶、葛兰胶、卡拉牙胶、卡德兰凝胶、黄蓍胶。   (2) 修订环糊精和浓缩d-生育酚(混合物)含量的规范。   该法规还规定了转基因食品添加剂的生产标准。修订了次氯酸水、环糊精及浓缩d-生育酚(混合物)的定义以及修订了烟熏味香料的使用标准。修订规范的拟批准日期待定。   韩国拟定修改食品添加剂标准规范   韩国近日发出G/SPS/N/KOR/333号通报,韩国食品药物管理局拟定修改食品添加剂标准,内容涉及:(1)加强重金属包括铅、镉、汞的规范、以及对30种食品添加剂的成分进行规范:稀释过氧苯甲酰、过氧化氢、果胶、葡萄皮萃取物、乙烷、红花油、红花黄色素、活性碳、酶催分解蛋黄素、葡甘露聚糖、皂树萃取物、印度树胶、番红花色素、叶红素、小烛石、叶绿素、甜蛋白、支链淀粉、达玛树脂、番茄红素、月桂酸、硬脂酸、棕榈酸、蓖麻油、肉豆蔻酸、油酸、癸酸、辛酸、尼生素、游霉素 (2)规定6项微生物标准: 葡甘露聚糖、印度树胶、甜蛋白、支链淀粉、尼生素、游霉素 (3)加强果胶溶剂残留规范 (4)制定活性碳内氰化合物的规范 (5)制定乙烷及活性碳内多环(或更高)芳香烃的规范。另外,还修订了食品添加剂法规一般测试方法内原子吸收光谱测定法及制定汞电感耦合等离子体原子发射光谱测定法。   该修订标准目前正在征求意见中。
  • 国家市场监督管理总局批准发布《铁矿石 氯含量的测定 X射线荧光光谱法》等109项国家标准和4项国家标准修改单
    国家市场监督管理总局(国家标准化管理委员会)批准《锰硅合金》等109项国家标准和4项国家标准修改单,现予以公告。国家市场监督管理总局 国家标准化管理委员会2024-06-291、 国家标准序列国家标准编号国 家 标 准 名 称代替标准号实施日期1GB/T 4008—2024锰硅合金GB/T 4008—20082025-01-012GB/T 4585—2024交流系统用高压瓷和玻璃绝缘子的人工污秽试验GB/T 4585—20042025-01-013GB/T 5169.23—2024电工电子产品着火危险试验 第23部分:试验火焰 聚合物管形材料500W垂直火焰试验方法GB/T 5169.23—20082025-01-014GB/T 5270—2024金属基体上的金属覆盖层 电沉积和化学沉积层 附着强度试验方法评述GB/T 5270—20052025-01-015GB/T 6113.106—2024无线电骚扰和抗扰度测量设备和测量方法规范 第1-6部分:无线电骚扰和抗扰度测量设备 EMC天线校准GB/T 6113.106—20182025-01-016GB/T 6730.88—2024铁矿石 氯含量的测定 X射线荧光光谱法2025-01-017GB/T 7260.3—2024不间断电源系统(UPS)第3部分:确定性能和试验要求的方法GB/T 7260.3—20032025-01-018GB/T 9799—2024金属及其他无机覆盖层 钢铁上经过处理的锌电镀层GB/T 9799—20112025-01-019GB/T 12279.1—2024心血管植入器械 人工心脏瓣膜 第1部分:通用要求2025-07-0110GB/T 12297.2—2024心血管植入器械 人工心脏瓣膜 第2部分:外科植入式人工心脏瓣膜2025-07-0111GB/T 14034.3—2024液压传动连接 金属管接头 第3部分:端面密封2024-06-2912GB/T 15597.1—2024塑料 聚甲基丙烯酸甲酯(PMMA)模塑和挤出材料 第1部分:命名系统和分类基础GB/T 15597.1—20092025-01-0113GB/T 15597.2—2024塑料 聚甲基丙烯酸甲酯(PMMA)模塑和挤出材料 第2部分:试样制备和性能测定GB/T 15597.2—20102025-01-0114GB/T 17692—2024汽车发动机及驱动电机净功率测试方法GB/T 17692—19992025-01-0115GB/T 18029.1—2024轮椅车 第1部分:静态稳定性的测定GB/T 18029.1—20082024-10-0116GB/T 18029.8—2024轮椅车 第8部分:静态强度、冲击强度及疲劳强度的要求和测试方法GB/T 18029.8—20082024-10-0117GB/T 18029.22—2024轮椅车 第22部分:调节程序GB/T 18029.22—20092024-10-0118GB/T 19822—2024铝及铝合金硬质阳极氧化膜规范GB/T 19822—20052025-01-0119GB/T 20290—2024家用电动洗碗机 性能测试方法GB/T 20290—20162025-01-0120GB/T 20554—2024海带GB/T 20554—20062025-01-0121GB/T 21672—2024速冻裹衣虾GB/T 21672—20142025-01-0122GB/T 22459.9—2024耐火泥浆 第9部分:常温抗剪粘接强度试验方法2025-01-0123GB/T 24820—2024实验室家具通用技术条件GB 24820—20092025-01-0124GB/T 26694—2024家具绿色设计评价规范GB/T 26694—20112025-01-0125GB/T 28478—2024户外家具 桌椅类通用技术条件GB 28478—20122025-01-0126GB/T 24861—2024水产品流通管理技术规范GB/T 24861—20102025-01-0127GB/T 24977—2024卫浴家具通用技术条件GB 24977—20102025-01-0128GB/T 27624—2024养殖红鳍东方鲀鲜、冻品加工操作规范GB/T 27624—20112025-01-0129GB/T 27988—2024咸鱼加工技术规范GB/T 27988—20112025-01-0130GB/T 28294—2024钢铁渣复合料GB/T 28294—20122025-01-0131GB/T 30685—2024气瓶直立道路运输技术要求GB/T 30685—20142024-10-0132GB/T 30894—2024咸鱼GB/T 30894—20142025-01-0133GB/T 30947—2024罐装冷藏蟹肉GB/T 30947—20142025-01-0134GB/T 32446—2024玻璃家具通用技术要求GB 28008—2011GB/T 32446—20152025-01-0135GB/T 34747—2024干海参等级规格GB/T 34747—20172025-01-0136GB/T 35607—2024绿色产品评价 家具GB/T 35607—20172025-01-0137GB/T 35608—2024绿色产品评价 绝热材料GB/T 35608—20172025-01-0138GB/T 35612—2024绿色产品评价 木塑制品GB/T 35612—20172025-01-0139GB/T 35603—2024绿色产品评价 卫生陶瓷GB/T 35603—20172025-01-0140GB/T 36192—2024活水产品运输技术规范GB/T 36192—20182025-01-0141GB/T 36395—2024冷冻鱼糜加工技术规范GB/T 36395—20182025-01-0142GB/T 36548—2024电化学储能电站接入电网测试规程GB/T 36548—20182025-01-0143GB/T 39560.12—2024电子电气产品中某些物质的测定 第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯2024-10-0144GB/T 42086.3—2024液压传动连接 法兰连接 第3部分:42 MPa、DN25~DN80方形系列2024-06-2945GB/T 43723—2024普通照明用电源电压不大于交流有效值50V或无纹波直流120V的半集成式LED灯 性能要求2025-01-0146GB/T 43931—2024宇航用微波集成电路芯片通用规范2024-10-0147GB/T 43952—2024医用供应装置2025-07-0148GB/T 44072.1—2024液压传动连接 软管总成 第1部分: 尺寸和要求2025-01-0149序列国家标准编号国 家 标 准 名 称代替标准号实施日期1
  • 国家市场监督管理总局关于对《动物和动物产品沙门氏菌检测方法》等285项拟立项国家标准项目公开征求意见的通知
    各有关单位:经研究,国家标准委决定对《动物和动物产品沙门氏菌检测方法》等285项拟立项国家标准项目公开征求意见,征求意见截止时间为2023年8月6日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001309,查询项目信息和反馈意见建议。2023年7月7日相关标准如下:# 项目中文名称 制修订 截止日期1 动物和动物产品沙门氏菌检测方法 制定 2023-08-062 工业锅炉技术规范 修订 2023-08-063 工业锅炉综合能效评价技术规范 制定 2023-08-064 工业氯化钙分析方法 修订 2023-08-065 工业碳酸氢钠 修订 2023-08-066 工业用二甲基二氯硅烷 修订 2023-08-067 工业用甲醇 修订 2023-08-068 工业用六次甲基四胺 修订 2023-08-069 锅炉温室气体排放测试与计算方法 制定 2023-08-0610 锅炉温室气体排放监测技术指南 制定 2023-08-0611 甲醇纯度及其微量有机杂质的测定 气相色谱法 制定 2023-08-0612 奶粉定量充填包装机 修订 2023-08-0613 农业拖拉机 机具用液压压力 制定 2023-08-0614 起重机 分级 第3部分:塔式起重机 修订 2023-08-0615 起重机 检查 第3部分:塔式起重机 修订 2023-08-0616 起重机 司机培训 第3部分:塔式起重机 修订 2023-08-0617 气体分析 纯度分析和纯度数据的处理 修订 2023-08-0618 全自动旋转式PET瓶吹瓶机 修订 2023-08-0619 输送带 基于带宽的压陷滚动阻力 技术条件和试验方法 制定 2023-08-0620 输送带 实验室规模的燃烧特性 要求和试验方法 修订 2023-08-0621 水处理剂 阳离子型聚丙烯酰胺 修订 2023-08-0622 塑料 胺类环氧固化剂 伯、仲、叔胺基氮含量的测定 制定 2023-08-0623 塑料 苯乙烯-丙烯腈(SAN)模塑和挤出材料 第1部分:命名系统和分类基础 修订 2023-08-0624 塑料 苯乙烯-丙烯腈(SAN)模塑和挤出材料 第2部分:试样制备和性能测定 修订 2023-08-0625 塑料 标准气候老化试验方法中性能变化的表观活化能测定 制定 2023-08-0626 塑料 丙烯腈-苯乙烯-丙烯酸酯(ASA)、丙烯腈-(乙烯-丙烯-二烯烃)-苯乙烯(AEPDS)、丙烯腈-(氯化聚乙烯)-苯乙烯(ACS)模塑和挤出材料 第1部分:命名系统和分类基础 制定 2023-08-0627 塑料 丙烯腈-苯乙烯-丙烯酸酯(ASA)、丙烯腈-(乙烯-丙烯-二烯烃)-苯乙烯(AEPDS)、丙烯腈-(氯化聚乙烯)-苯乙烯(ACS)模塑和挤出材料 第2部分:试样制备和性能测定 制定 2023-08-0628 塑料 丙烯腈-丁二烯-苯乙烯 (ABS)模塑和挤出材料 第2部分:试样制备和性能测定 修订 2023-08-0629 塑料 差示扫描量热法(DSC)第8部分:导热系数的测定 制定 2023-08-0630 塑料 弹性指数 熔体弹性性能的测定 制定 2023-08-0631 塑料 导热系数和热扩散系数的测定 第2部分:瞬时平面热源(发热盘)法 制定 2023-08-0632 塑料 动态力学性能的测定 第12部分:非共振压缩振动法 制定 2023-08-0633 塑料 动态力学性能的测定 第2部分:扭摆法 制定 2023-08-0634 塑料 动态力学性能的测定 第3部分:共振弯曲振动法 制定 2023-08-0635 塑料 对火反应 垂直方向试样的火焰蔓延和燃烧产物释放的试验方法 制定 2023-08-0636 塑料 酚醛树脂 分类和试验方法 制定 2023-08-0637 塑料 酚醛树脂 六次甲基四胺含量的测定 凯式定氮法、高氯酸法和盐酸法 修订2023-08-0638 塑料 酚醛树脂 游离甲醛含量的测定 修订 2023-08-0639 塑料 粉状不饱和聚酯模塑料(UP-PMCs) 第2部分:试样制备和性能测定 制定 2023-08-0640 塑料 粉状不饱和聚酯模塑料(UP-PMCs) 第3部分:选定模塑料的要求 制定 2023-08-0641 塑料 粉状不饱和聚酯模塑料(UP-PMCs)第1部分:命名系统和分类基础 制定 2023-08-0642 塑料 粉状三聚氰胺/酚醛模塑料(MP-PMCs) 第1部分:命名系统和分类基础 制定 2023-08-0643 塑料 粉状三聚氰胺/酚醛模塑料(MP-PMCs) 第2部分: 试样制备和性能测定 制定 2023-08-0644 塑料 粉状三聚氰胺/酚醛模塑料(MP-PMCs) 第3部分:选定模塑料的要求 制定 2023-08-0645 塑料 滑动摩擦和磨损 试验参数 制定 2023-08-0646 塑料 环氧树脂硬化剂和促进剂 酸酐中游离酸的测定 制定 2023-08-0647 塑料 环氧树脂用硬化剂和促进剂 第1部分:命名 制定 2023-08-0648 塑料 甲基丙烯酸甲酯-丙烯腈-丁二烯-苯乙烯 (MABS)模塑和挤出材料 第2部分:试样制备和性能测定 制定 2023-08-0649 塑料 甲基丙烯酸甲酯-丙烯腈-丁二烯-苯乙烯(MABS) 模塑和挤出材料 第1部分:命名系统和分类基础 制定 2023-08-0650 塑料 聚氨酯生产用多元醇 近红外光谱法测定羟值 制定 2023-08-0651 塑料 聚丙烯(PP)等规指数的测定 低分辨率核磁共振光谱法 制定 2023-08-0652 塑料 聚乙烯(PE)和聚丙烯(PP)树脂中金属含量的测定 电感耦合等离子体发射光谱法 制定 2023-08-0653 塑料 模塑和挤出用热塑性聚氨酯 第3部分:用于区分聚醚型聚氨酯和聚酯型聚氨酯的测定方法 制定 2023-08-0654 塑料 磨料磨损性能的测定 往复线性滑动法 制定 2023-08-0655 塑料 燃烧试验 标准点火源 制定 2023-08-0656 塑料 热固性粉末模塑料(PMCs)试样的制备 第1部分: 一般原理及多用途试样的制备 制定 2023-08-0657 塑料 热固性粉末模塑料(PMCs)试样的制备 第2部分: 小板 制定 2023-08-0658 塑料 生产质量控制 采用单次测量的统计方法 制定 2023-08-0659 塑料 使用毛细管黏度计测定聚合物稀溶液黏度 第2部分:聚氯乙烯树脂 修订 2023-08-0660 塑料 透明材料总透光率的测定 第1部分:单光束仪器 制定 2023-08-0661 塑料 透明材料总透光率的测定 第2部分:双光束仪器 制定 2023-08-0662 塑料 鲜映度的测定 制定 2023-08-0663 塑料 液体环氧树脂 结晶倾向的测定 制定 2023-08-0664 塑料 用氧指数法测定燃烧行为 第4部分:高气体流速试验 制定 2023-08-0665 塑料 中高加载速率(1m/s)下断裂韧性(GIC和KIC)的测定 制定 2023-08-0666 塑料 总透光率和反射率的测定 制定 2023-08-0667 塑料/橡胶 聚合物分散体和橡胶胶乳(天然和合成)测试方法 制定 2023-08-0668 无机化工产品中总碳和总有机碳含量测定通用方法 制定 2023-08-0669 循环冷却水节水技术规范 修订 2023-08-0670 压力管道规范 长输管道 修订 2023-08-0671 医疗保健产品灭菌 辐射 第2部分:建立灭菌剂量 修订 2023-08-0672 医疗保健产品灭菌 辐射 第3部分:开发、确认和常规控制的剂量测量指南 修订 2023-08-0673 育苗纸 修订 2023-08-0674 纸和纸板 耐脂度的测定 第3部分:松节油法 制定 2023-08-0675 纸和纸浆 印刷纸产品的脱墨性试验方法 制定 2023-08-0676 纸浆 丙酮可溶物的测定 修订 2023-08-06
  • 《GB/T 39694 氢化丙烯腈-丁二烯橡胶(HNBR)通用规范和评价方法》最新标准解读
    引言氢化丁腈橡胶(简写为HNBR),是丁腈橡胶中分子链上的碳碳双键加氢饱和得到的产物,故也称为高饱和丁睛橡胶。 氢化丁腈橡胶具有良好耐油性能(对燃料油、润滑油、芳香系溶剂耐抗性良好);并且由于其高度饱和的结构,使其具良好的耐热性能,优良的耐化学腐蚀性能(对氟利昂、酸、碱的具有良好的抗耐性),优异的耐臭氧性能,较高的抗压缩永久变形性能;同时氢化丁腈橡胶还具有高强度,高撕裂性能、耐磨性能优异等特点,是综合性能极为出色的橡胶之一。 《GBT 39694 氢化丙烯腈-丁二烯橡胶(HNBR)通用规范和评价方法》介绍了氢化丁腈橡胶以性能特性分为通用类和特殊,按照丙烯腈含量进行了分级以及命名与牌号的规则。阐述了生橡胶和硫化橡胶评价方法。 岛津解决方案 傅里叶变换红外光谱仪傅里叶变换红外光谱仪发射红外光,样品受到频率连续变化的红外光照射时,其分子吸收了某些频率的辐射,引起分子之间的振动和转动,然后通过分析特征吸收可以鉴定化合物的结构,定量成分。,氢化丁腈橡胶的红外图谱应具有明显的丙烯腈(AN)、丁二烯(BD)和氢化丁二烯(HBD)的特征吸收谱带。IRTracer-100 ★ 卓越的灵敏度和可靠性高灵敏度,高速度,高分辨率岛津先进的技术,确保干涉仪的优化和长期稳定性★ 新时代的软件工作站网络化的LabSolutions IR工作站软件标配高质量的标准光谱库快速准确的光谱检索新技术丰富多彩的自动宏程序,省时省力★ 满足多样的应用需求解决“是不是”和“是什么”这两大应用问题强大的单组份和多组分同时定量功能,可实时显示浓度和判定结果良好的可扩展性 差示扫描量热仪差示扫描量热仪(DSC)是材料测试必不可少的工具,此类仪器广泛应用于材料研发、生产及质控。DSC作为质控仪器方法的趋势仍在继续增加。 作为一种新理念,岛津打破了“自动取样器是昂贵、笨重并且专用的机器”的传统观念,推出了代表“内置自动进样器”概念的DSC-60 A Plus。并且,DSC-60 A Plus还使用先进的软件功能来节约成本,提高效率;并且机身小巧,可安装在有限的空间内。 DSC-60 A Plus ★ 通过改进型的DSC探测器提高灵敏度和分辨率★ 优异的信噪比★ 内置的冷却装置★ 操作简单方便的探测器清洁★ 可通过网络传输数据★ 基于OLE的动态报告功能★ 更大兼容Windows的32位应用程序★ 与TA-50系列兼容 试验机岛津材料试验机至今已有100多年的历史,在行业内的探究,钻研,积累了十分丰富的技术与经验。岛津试验机产品线丰富,有电子/液压万能试验机,疲劳实验器,显微维氏硬度计与超显微维氏硬度计,门尼粘度计毛细管流变仪等多系列产品。本文内容非商业广告,仅供专业人士参考。
  • 脂溶性聚合物环氧树脂及甲基硅油分子量分布测定
    脂溶性聚合物环氧树脂及甲基硅油分子量分布测定刘兴国 熊亮 曹建明 金燕美丽而寒冷的冬天又到了,室外大雪纷飞,喜欢运动的小伙伴们由户外转战室内,场馆内羽毛球、乒乓球、篮球大战相继上演,运动的身姿和蓝绿色地面、明亮的篮板构成了一道道靓丽的风景线。你可知道这漂亮的场地和器材是用什么材料制造的吗?学化学的你可能回答:“有机材料。”其实这些都是聚合物材料,绿色和蓝色的防滑地面材料为环氧树脂,有机玻璃的篮板材料为聚甲基丙烯酸甲酯。这些均为脂溶性聚合物材料的产品,它们已渗透到日常生活和高端科技的方方面面,从每天要用到的塑料袋到航天材料都可看见它们的身影。 今天,飞飞给大家重点介绍两种脂溶性聚合物。一种是低分子型环氧树脂,是由双酚A和环氧丙烷在氢氧化钠作用下缩聚而成,室温下为黄色液体或半固体,耐热、耐化学药品、电气绝缘性好,广泛用于绝缘材料、玻璃钢、涂料等领域,是常用的基础化工材料。另外一种为甲基硅油,它具有突出的耐高低温性、极低的玻璃化温度、很低的溶解度参数和介电常数等,在织物整理剂、皮革涂饰剂、化妆品、涂料和光敏材料等领域广泛应用。 分子量分布是表征聚合物的重要指标,对聚合物材料的物理机械性能和成型加工性能影响显著。常用测定方法有:粘度法、激光光散射法、质谱法和体积排阻色谱法 (SEC法),其中凝胶渗透色谱法(GPC法)作为体积排阻色谱法的一类,方便快捷、设备普及,具有广泛适用性。通过本文,飞飞给大家介绍以聚苯乙烯为标样,GPC法测定低分子量环氧树脂以及甲基硅油分子量的方法,通过对分子量分布的准确控制可以很好地保证产品的质量。变色龙软件GPC扩展包可以非常方便地将采集的GPC数据进行处理,快速地得到分子量分布的信息,而且该扩展包完全免费。 本实验仪器配置如下:仪器:赛默飞 U3000高效液相色谱仪泵:ISO3100 Pump自动进样器:WPS 3000SL Autosampler柱温箱:TCC3000 Column Compartment检测器:ERC 521示差检测器变色龙色谱管理软件 Chromeleon CDS 7.2 1. 环氧树脂分子量测定双酚A型环氧树脂基本结构及以它为材料制造的体育馆环氧地坪见图1:图1 双酚A型环氧树脂基本结构及体育馆环氧地坪色谱条件如下:分析柱:TSKgel G2500HXL 300*7.8mm,P/N:0016135(适用分子量范围100-20000);TSKgel G3000HXL 300*7.8mm,P/N:0016136(适用分子量范围500-60000);TSKgel G5000HXL 300*7.8mm,P/N:0016138(适用分子量范围1000-4000000);三根色谱柱串联分析。柱温:25℃RI检测器:过滤常数:2s,温度:35℃流动相:四氢呋喃,流速1.0mL/min进样量:15µL 对照品为聚苯乙烯,分子量分别为162,370,580,935,1250,1890,3050和4910;称取适量对照品用四氢呋喃超声溶解,浓度0.02mg/mL。样品用四氢呋喃溶解,浓度0.1mg/mL,测定谱图见图2。 图2不同分子量聚苯乙烯对照品测定谱图注:580和370两个对照品出厂报告上polydispersity多分散系数分别为1.13和1.15,分子量集中度差,所以峰形呈现为多簇小峰。其余对照品多分散系数均小于1.05,峰形呈对称单峰。 校正曲线及相关系数如下: 图3 校正曲线校正曲线方程y=-0.0006x3+0.0502x2-1.5496x+20.4439,相关系数R=0.9998。不同厂家不同批次环氧树脂样品测定结果如下: 表1 环氧树脂样品测定结果样品名称 重均分子量Mw样品-1 387样品-2 401样品-3 396 2. 甲基硅油分子量测定测试甲基硅油的分子量及其分布,常用的GPC方法是采用甲苯或四氢呋喃作为流动相,但是由于甲苯属于管制类试剂,不易购买,因此飞飞采用四氢呋喃(THF)作为流动相来测定硅油的分子量及其分布,结果显示分离与色谱峰形均较好。对照品为聚苯乙烯,分子量分别为1210,2880,6540,22800,56600和129000;称取适量对照品用四氢呋喃超声溶解,浓度约1.0mg/mL。样品用四氢呋喃溶解,浓度1mg/mL。色谱条件如下:分析柱:Shodex KF-805L 8.0*300mm(适用分子量范围300-2000000);柱温:30℃RI检测器温度:31℃流动相:四氢呋喃,流速0.8mL/min进样量:100µL 对照品测定谱图及校正曲线如下:图4 对照品测定谱图及校正曲线 校正曲线方程y=-0.0182x3+0.5987x2-7.1522x+34.6655,相关系数R=0.9996。甲基硅油样品测定结果数均分子量为20727,重均分子量为36273,Z均分子量为59280,Z+1均分子量为91320。总结到这里,飞飞给大家介绍了采用U3000液相结合变色龙软件采集和处理数据,分析低分子量环氧树脂和甲基硅油分子量的方法,由于两者分子量范围差异较大,实验采用了两组不同分子量的聚苯乙烯标准品作为对照品。对于环氧树脂由于需要测定的是低分子量聚合物且对照品分子量接近,所以采用了三根截留分子量不同的凝胶柱串联进行测定,结果更为准确。变色龙GPC分子量计算扩展包功能强大,导入和使用方便,为广大变色龙工作站用户扩展使用GPC功能带来便利。本文介绍的为脂溶性聚合物的分子量测定,对于水溶性聚合物的分子量分布测定,飞飞这里有较多应用文章供大家参考,感兴趣的朋友可联系我索取,这里给大家提供一篇最常用的,右旋糖酐40的分子量分布测定,扫描以下二维码既可查阅。
  • AS塑料制品丙烯腈单体总量不能超标
    近日,宁波慈溪检验检疫局在对辖区某食品接触材料企业出口美国和科威特的两批次真空保鲜罐产品进行安全卫生项目检测时,连续检出不合格,其AS材质塑料部件检测项目“丙烯腈单体总量”结果分别超出美国标准FDA 21 CFR 177.1040和我国国家标准GB17327-1998《食品容器、包装材料用丙烯腈-苯乙烯成型品卫生标准》中的限量要求。   AS(丙烯腈-苯乙烯共聚物)是一种具有高透明度、耐油性和耐化学腐蚀性的塑料原料,在食品用具中广泛使用,如食品餐具、塑料水杯等。AS塑料中可能残留的丙烯腈则是一种对健康有着严重危害的化学物质,一旦人体摄入过量,轻者头晕、恶心,重者直接造成呼吸中枢的麻醉,出现四肢阵发性强直抽搐、昏迷。为此,中国、欧盟、美国、韩国及日本等国家和地区均将该物质纳入对食品接触AS塑料的必检项目,并严格限制其迁移量或总量。   经查找原因,问题出在使用了不符合食品接触材料标准的AS原料。原料采购时企业盲目相信供方提供的合格检测报告,却没有核实检测项目是否符合进口国相关标准。最终该两批产品被判不合格、不准出境,企业为此遭受较大损失。   检验检疫部门提醒相关食品接触材料企业,加强进口国标准及具体检测项目的了解学习,原料采购时仔细核对供方提供的检测报告。必要时可以在大量生产前对原材料中容易超标的项目如“丙烯腈单体总量”进行委托检测。
  • Vocus PTR-TOF对工业园区环境大气中丙烯监测案例详解
    丙烯是一种无色、无臭、稍带有甜味的有机化合物,分子式为C3H6。丙烯是三大合成材料的基本原料之一,应用范围非常广泛,如常见的聚丙烯生产,丙烯腈、环氧丙烷、异丙醇、苯酚、丙酮、丁醇、辛醇、丙烯酸及其酯类、丙二醇、环氧氯丙烷和合成甘油等的制备1。因此,丙烯也是工业区一种比较常见的污染物,属极易燃品,且具有低毒性,丙烯的泄漏会带来潜在的爆炸和健康风险。当前,对丙烯的测量主要依赖于固定站点气相色谱法,如较为通用的搭配低碳色谱柱的GC-FID/PID法。但较长的色谱分离时间限制了其实时捕捉丙烯的瞬时变化特征,也就无法给园区业主提供及时的决策反馈。另一方面,受限于配套的质谱检测器或者离子源等部件属性,现市面上常见的VOCs走航解决方案对以丙烯为代表的低碳烷烃和烯烃的测量和准确分析存在分析难点和数据疑问。Vocus PTR-TOF质谱仪以较高的时间分辨率和质量分辨率,能够对大气中常见VOCs以及多种园区特征物种的瞬时变化进行实时精确分析。丙烯的质子亲核势为751.6 kJ/mol,属于PTR-TOF仪器可检测的物种之一。本文中我们将详细介绍Vocus PTR-TOF对丙烯的定性定量测量能力和定点结合走航案例。 图1. 质子化丙烯分子峰(m/Q 43.054)在Vocus PTR-TOF谱图上的响应以及相对应的同位素峰丙烯的质子亲核势大于水,能够有效的与水合氢离子(H3O+)发生质子转移反应,在’软’质子转移反应条件下检测到的质子化分子离子峰是C3H7+,其精确质量为m/Q 43.054。实际上在质荷比43整数位置上,除丙烯外,还有其他的物质或者干扰峰存在,比如m/Q43.018, 这是一个含氧的干扰峰,其分子组成为C2H3O+。 由图1可见,这两个峰可以清晰的被VocusPTR-TOF质谱仪分开,二者同位素分布也符合的很好。值得说明的是,如需要清楚分开上述这两个峰,质谱仪的质量分辨率需要达到1500Th/Th或更高(参考‘VOCs走航中同标称质量分子(不完全)列表’一文)。简而言之,Vocus PTR-TOF高分辨率质谱仪就像一套高倍放大镜,能够清晰的将目标物与其他微小干扰峰区别开来,这也是实时分析质谱仪精确定性分析的关键所在。这也意味着,受这些潜在的同标称质量的离子碎片或其他干扰物影响,质量分辨率不到1000的实时分析质谱仪会经常出现‘虚高值’或者‘误报’的情况。值得注意的是,丙烯为代表的C2和C3烷烃、烯烃一般需要特别的低碳色谱柱配合FID检测器才能进行有效监测2,而现市面上的走航应用较多的便携式直接进样EI-四级杆质谱对于丙烯或其他短链烷烯烃检测难度较大。 图2. Vocus PTR-TOF丙烯的灵敏度多点标准曲线利用Vocus PTR-TOF质谱仪,我们测试了丙烯标准气体的灵敏度多点标准曲线,结果如图2所示。可见,Vocus PTR-TOF质谱仪对丙烯有较好响应,其灵敏度可达3245cps/ppbv, 线性关系达到0.9996。高灵敏度意味着较高的响应,这对环境大气中单个ppbv级别的丙烯检测来说,具有非常大的检测优势。图3. Vocus PTR-TOF与GC-FID/MS同期检测的丙烯时序图最后,我们进行在线GC-FID/MS与Vocus PTR-TOF平行运行的检测数据对比(图3)。由于GC-MS/FID的数据时间分辨率为1小时,从图中大致可以看出,两个仪器检测的丙烯浓度具有较好的一致性(一般零点为GC校准时段)。而Vocus PTR-TOF质谱仪的秒级响应,在GC两次报数的空档期内,给园区业主和业务部门提供了更多更及时污染物浓度变化信息(参考‘秒级响应PTR-TOF质谱法为工业园区预警管控和源解析提供新思路’一文)。这对工业园区污染物的泄露或其他事故的提前预警至关重。一旦观测到有超出预警范围的浓度时,园区工作人员就可以通过Vocus PTR-TOF发出的实时数据及时采取预警措施,从而为工业园区安全生产带来保障,最大程度的减少对生命安全,生产设备和经济效益的潜在损害。同时,将Vocus PTR-TOF搭载到走航车,从而实现对工业园区区界,厂界和各重点点位的多污染因子(包括丙烯)进行动态网格化监测。如图4所示,我们在某园区内监测到两处丙烯浓度高值污染点,可通过此类方式来发现高污染源,进而有目标性的开展重点监测和排放管控工作。图4. Vocus PTR-TOF质谱仪在某工业园区内丙烯走航监测浓度分布图。绿色线条高度越高,意味着该点位丙烯浓度越高。小结工业园区内以丙烯为代表的低碳烷烃和烯烃的精确测量是现市面上VOCs走航解决方案的一个技术难点。Vocus PTR-TOF所特有的高质量分辨率,‘亚’秒级仪器响应速度和ppt级别的检测限是其成为复杂大气基体中准确鉴别并定量分析痕量丙烯的首选技术之一。除此之外,Vocus PTR-TOF也是园区内异味物质快速检测的优选手段(参考‘国内40种典型恶臭异味物质Vocus PTR-TOF检测能力一览’一文)。 感谢中科三清科技提供文中部分数据! 参考文献1 https://baike.baidu.com/item/%E4%B8%99%E7%83%AF/2276398?fr=aladdin2 https://www.restek.com/en/chromablography/chromablography/to-15--pams--to-11a--chinas-hj759--pams--hj683-part-2-deans-switching-and-to-15pams/
  • “2024年食品检测标准全面解读——GB 31604系列”主题约稿函
    过去的一年里,我国在食品安全领域取得了显著的进步。不仅首部现代设施农业建设规划出台,婴配粉“史上最严”新国标正式实施、同时还发布了85项新的食品安全国家标准。就在今年3月,又公布了47项新的食品安全国家标准,这些举措都旨在强化国家食品安全保障。其中,涉及食品接触材料的标准共有18项。这17项食品接触材料新标准包括5项材质标准(塑料、金属、橡胶、复合材料、油墨)和13项测试方法类标准(GB 31604系列)。这13项新标准是食品接触材料国家标准体系的重要组成部分。它们的实施进一步完善了我国从原料、添加剂到产品,以及生产过程和检测方法的全方位标准覆盖,提升了整个标准体系的完整性和系统性。在此背景下,仪器信息网特别发起“2024年食品检测标准全面解读——GB 31604系列”主题约稿,欢迎专家用户,以及领域内仪器厂商们积极投稿。欢迎投稿,投稿文章将在专题展示并在仪器信息网相关渠道推广,投稿邮箱:caixf@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:13001246355(同微信)。1、 约稿主题:2024年食品检测标准全面解读2、 稿件字符数不少于1000字,如有图片,图片像素应不低于300DPI;3、 稿件无抄袭、署名排序无争议,文责自负,请勿一稿多投;4、 投稿须为Word文档,本网编辑有权对文稿进行修改,如不同意请注明。5、 供稿人建议是贵公司相关产品负责人,请提供姓名、职务、照片等信息。6、 稿件内容会择时在仪器信息网资讯栏目发布显示(单独成文/整合综述文章),同时在专题中推送宣传。7、 回稿时间:2024年7月15日前投稿邮箱:caixf @instrument.com.cn 仪器信息网编辑部附问题:您可以根据下述列表中某一标准解读进行稿件撰写,也可以由此展开相关话题。1、对于上述列表中新标准的深度解读;2、标准新增和修订了哪些方法,您认为这种方法相比之前的方法有什么优势和特点?3、标准新增了的该方法,贵司是否有满足该标准要求的仪器设备,以及解决方案?4、您认为有哪些新兴的技术或方法可以应用到食品检测标准中?5、新标准的实施对于食品检测领域会产生哪些影响?您认为这种变化会带来哪些机遇和挑战?标准名称GB 31604.1-2023食品安全国家标准 食品接触材料及制品迁移试验通则GB 31604.7-2023食品安全国家标准 食品接触材料及制品脱色试验 &ensp GB 31604.46-2023食品安全国家标准 食品接触材料及制品游离酚的测定和迁移量的测定GB 31604.47-2023食品安全国家标准 食品接触材料及制品纸、纸板及纸制品中荧光性物质的测定 &ensp GB 31604. 59-2023食品安全国家标准 食品接触材料及制品 化学分析方法验证通则GB 31604. 58-2023食品安全国家标准 食品接触材料及制品9种抗氧化剂迁移量的测定GB 31604. 29-2023 食品安全国家标准 食品接触材料及制品丙烯酸和甲基丙烯酸及其酯类迁移量的测定GB 31604. 49-2023 食品安全国家标准 食品接触材料及制品多元素的测定和多元素迁移量的测定GB 31604. 57 - 2023 食品安全国家标准 食品接触材料及制品二苯甲酮类物质迁移量的测定GB 31604. 56 - 2023 食品安全国家标准 食品接触材料及制品月桂内酰胺迁移量的测定GB 31604. 54 - 2023 食品安全国家标准 食品接触材料及制品双酚F和双酚S迁移量的测定GB 31604. 55 - 2023 食品安全国家标准 食品接触材料及制品异噻唑啉酮类化合物迁移量的测定GB 31604.60-2024 食品安全国家标准 食品接触材料及制品 溶剂残留量的测定
  • 傅若农谈用于固相微萃取样品制备中的吸着材料
    往期讲座内容见:傅若农老师讲气相色谱技术发展   对复杂基体(例如食品中微量残留物和污染物)的非常低浓度的化合物的分析,通常需要一个复杂的分析方法,包括采样,样品制备,分析物分离,定性和定量测定。多数分析家认为样品准备是关键、瓶颈,因为它通常是耗时最长的步骤,回收率低,容易产生污染,比其他步骤更难以自动化。最近,受绿色分析方法的刺激,把微量固相萃取技术推向前台,而各种吸着(吸附和吸收)材料是这些微萃取技术的基础,所以这一领域的研究最为活跃。  在上世纪70年代,固相萃取(SPE)——经典液相色谱的小型化,很快成为多年使用的液-液萃取处理样品的替代方法之一,虽然SPE比以前使用的样品制备方法大大降低了有机溶剂的量,但是由于要使用相对大量的有机溶剂。因此,出现了各种固相微萃取的小型化方法,进入了所谓的微萃取技术的时代,如下图1所示。 图 1 固相萃取半个多世纪的演变  固相萃取的小型化使这一技术进一步扩大了它的应用,并促进了固相萃取吸着剂的研究和发展,吸着剂(sorbent materials)(或萃取剂,捕获剂)包括吸收和吸附。从微观的角度看,这两类的 SPE 涂层有明显的区别。吸附是分析物分子直接以分子力吸着到涂层表面。吸收则是分子溶入涂层的主体内。基于吸附机理的萃取因其可进行吸附的表面位置有限,因此吸附是竞争过程 而基于吸收机理的萃取,由于两种性质相似的液体可以以任何比例互溶,因此吸收是非竞争过程。如下图2所示。我把两种过程总称为吸着。 图 2 吸收和吸附的概念左面: a 吸附 b. 大孔吸附 c. 小孔吸附右面 a 吸收 b. 大孔吸收 c. 小孔吸收( 色谱,2001,19(4):314)1. 微固相萃取使用的吸着剂  在SPE 半个多世纪的第一阶段,是使用活性碳作吸附剂的时期,这是沿袭了历史的经验,用活性碳吸附水中的有机物,是一种很有效的方法,但是活性炭吸附性不均一,重复性不好,有过高的吸附性,有不可逆活化点,回收率低。所以从上世纪 60 年代末到80 年代初,一直在寻找更为合适的适应性更强的 SPE 填料。有许多溶于水中的有机化合物不能被活性碳所吸附,而一些被吸附的化合物又不能被溶剂洗脱出来。当时就着重于使用聚合物和各种键合在硅胶上的有机基团,前者如交联聚苯乙烯树脂 Amberlite XAD-1,后者如十八烷基硅胶(ODS)和辛基、乙基硅胶。上世纪 60 年代中期 Rohm 和 Haas 公司推出 Amberlite XAD-1 (交联聚苯乙烯)作萃取用吸着剂,上世纪 70 年初代又引入苯乙烯-二乙烯基苯 Amberlite ( XAD-2 和XAD-4)和乙烯二甲基丙烯酸酯树脂(XAD-7和XAD-8)。用于ppb级有机物的萃取。还研究了多种共聚物,如 porapaks 和 Chromosorbs 其中以 Tenax (2,6-diphenyl-p-phenylene oxide) 使用者最多。由于聚合物吸着剂中残留制造时的一些化合物如单体、溶剂,给SPE 的标准化带来困难,同时受到上世纪 70 年代 HPLC 填料研究的刺激,兴起了在 SPE 中使用 HPLC 填料作SPE 的吸着剂。  硅胶是很古老的吸附剂,广泛用于萃取介质,硅胶又可以键合各种有机基团,所以在固相萃取中有较多的使用。硅胶的活性中心是其结构上的羟基(硅烷醇),在结晶的硅胶中,它们是孤立的,不与相邻的羟基相作用。用于SPE 的硅胶是无定形的,其相邻的羟基间可发生氢键相互作用,发生氢键相互作用的羟基数目取决于吸附剂的孔径。小孔硅胶表面主要被氢键相互作用的羟基所占有,大孔硅胶表面主要被孤立的羟基所占有。如果将无定形硅胶进行加热处理,则表面羟基失水转变为硅氧烷,这时,表面活性中心基本消失,吸附作用很弱,大孔硅胶的这种失水反应是可逆的,如果将失水硅胶与水一起加热,硅氧烷与水反应成为硅烷醇。如果失水发生在小孔硅胶或加热温度过高,则反应是不可逆的。未经加热处理的无定形硅胶,其表面羟基被水所覆盖,没有吸附活性,故需将它置于150一200℃下长时间加热进行活化。除去水后的相邻羟基形成氢键。若加热温度超过200℃,氢键相互作用的羟基将失水成为硅氧烷。加热温度超过 600℃,全部羟基(包括氢键相互作用的羟基和孤立的羟基)失水成为憎水的硅氧烷。在更高的温度(900℃)下,硅胶表面将烧结。硅胶表面上成氢键存在的羟基是吸附剂的活性中心,它对单官能团化合物有很强的吸附作用。它对一些化合物会产生永久性的吸附。因此作为SPE吸附剂,应当适当地进行减活处理,使其表面的活性中心比较均匀一致。硅胶吸附少水对其性能有很大的影响。由于极性化台物的k’值随着吸附剂含水量的增加而减少,为了保持吸附的稳定,含水量必须保持恒定。硅胶在含水量为4—20%时,分离效率差别很小,通常,水的加入量只要满足吸附剂表面形成50-75%的水单分子层就行了,此时,每100 m2吸附剂表而含水 0.02-0.038 g 。例如每l00 g 硅胶加水8-12 g 水。加入水后,与干吸附剂相比,容量可提高5-l00倍。  由于 硅胶键合有机物的稳定性和规范化,1978 年形成了SPE 小柱的商品,从而得到了广泛的应用,逐渐成为SPE的主流。如表1 中100例MEPS中使用最多的是这类吸着剂。其中C18—25.1%,C8—24.5%,C2—13.3%,MI——14.4%,硅胶——7.6%,其他——15.4%。C18+ C8+ C2=62.9%。  2006年我从500多篇使用SPE研究报告中发现使用最多的是C18 SPE柱 和OasisHLB 柱(二乙烯基苯-N-乙烯基吡络烷酮共聚物(分析试验室,2006,25(2):100-122)。  表 1 填充吸着剂微萃取(MEPS)使用过的吸着剂吸着剂分析物文献1C18利多卡因,甲哌卡因、布比卡因,罗哌卡因J Chromatogr B,2004, 801:317–3212MIP肌氨酸J Sep Sci,2014, doi:10.1002/jssc.201401116.3硅基苯磺酸阳离子交换剂局部麻醉药J Chromatogr,2004, B 813:129–135.4聚苯乙烯聚合物ISOLUTE ENV +6-(苄基氨基)-2(R)-[[1-(羟甲基)丙基]氨基]-9-异丙基嘌呤(Roscovitine)J Chromatogr B,2005, 817:303–3075聚苯乙烯聚合物奥罗莫星(Olomoucine)Anal Chim Acta,2005, 539: 35–396硅胶基(C8),聚合物( ENV+),和甲基丙烯酸甲酯的有机整体柱罗哌卡因,利多卡因,代谢物(甘氨酰二甲苯胺,甘氨酸二甲代苯胺,3-OH-利多卡因)J Liq Chromatogr Relat Technol,2006,29:829–840.7聚苯乙烯聚合物醋丁洛尔,美托洛尔J Liq Chromatogr Relat Technol, 2007,30:575–5868Csilica-C8美沙酮J Sep Sci,2007,30:2501–25059C2-吸附剂环磷酰胺J Liq Chromatogr Relat Technol, 2008,31: 683–694.10C2, C8, 聚苯乙烯聚合物AZD3409( N-[2-[2-(4-氟苯基)乙基]-5-[[[(2S,4S)-4-[(3-吡啶羰基)硫代]-2-吡咯啉]甲基]氨基]苄基]-L-蛋氨酸 1-甲基乙酯)J Chromatogr Sci,2008,46:518–523.11C18羟基化聚苯乙烯二乙烯基本共聚物(ENV+)布比卡因和 [d3]-甲哌卡因Anal Chim Acta,2008, 630 : 116–12312C18氟喹诺酮类Anal Chem,2009,81:3188–319313C8 , ENV+ ,Oasis MCX,Clean Screen DAU可卡因及其代谢物J Am Soc Mass Spectrom,2009,20:891–89914C18麻醉药品Electrophoresis, 2009,30 :1684–169115C18甲基安非他明和安非他明J Chromatogr A,2009, 1216 :4063–407016C18溶解性有机物和天然有机物Anal Bioanal Chem, 2009, 395:797–80717C18单萜类代谢产物Microchim Acta,2009,166:109–11418C18硅胶有机优先污染物和暴露的化合物J Chromatogr A,2010, 1217 :6002–601119C8抗抑郁药J Chromatogr B,2010, 878:2123–212920C8利培酮及其代谢产物Talanta,2010,81:1547–155321C8,C18紫外滤光片和多环麝香化合物J Chromatogr A,2010,1217:2925–293222C18奥卡西平及其代谢物Anal Chim Acta,2010, 661:222–22823C2, C8, C18,硅胶,C8/SCX可替宁Anal Bioanal Chem,2010,396:937–94124C18甾体代谢物J Chromatogr A,2010,1217:6652–666025C8利培酮和9-羟利培酮J Chromatogr B,2011,879:167–17326MIP氟喹诺酮类化合物Anal Chim Acta,2011,685:146–15227C18非极性杂环胺Talanta,2011,83:1562–156728C8瑞芬太尼J Chromatogr B,2011,879:815–81829--氯氮平及其代谢产物J Chromatogr A,2011,1218:2153–2159.30C8阿托伐他汀及其代谢产物J Pharm Biomed Anal,2011,55:301–308.31C18氯贝酸,布洛芬,萘普生,双氯芬酸和布洛芬J Chromatogr A,2011,1218:9390–939632MIP,C18-硅胶(改性)雌激素类化合物的17β -雌二醇Anal Chim Acta,2011,703 41–5133C8阿片类药物Anal Chim Acta,2011,702:280–28734C2, C8, C18, SIL(未改性硅胶), M1(80% C8 和 20% SCX)(E)-白藜芦醇J Sep Sci,2011,34 :2376–2384. 35C18美沙酮Anal Bioanal Chem,2012,404:503–51136C18黑索金,TNTChromatographia,2012,75:739–74537C18多环芳烃Talanta,2012, 94:152–15738C8免疫抑制药物J Chromatogr B,2012,897:42–49.39C2, C8, C18, SIL, and M1生物相关的酚类成分J Chromatogr A,2012,1229:13–2340C18哌嗪类兴奋剂J Pharm Biomed Anal,2012,61:93–9941C18, C8,和 C8-SCX精神治疗药Anal Bioanal Chem,2012,402:2249–225742C2, C8, C18, 1M(阳离子交换剂)和Sil普萘洛尔、美托洛尔、维拉帕米Rapid Commun Mass Spectrom,2012,26:297–30343C8普伐他汀普伐他汀内酯Talanta,2012,90:22–2944C18酚酸J Chromatogr A,2012 1226:71–76.45C18抗癫痫剂J Sep Sci,2012,35:359–36646硅胶离子液体Talanta,2012, 89:124–12847聚吡咯/尼龙有机磷农药J Sep Sci,2012,35:114–12048C2, C8, C18, 硅胶和 M1 (混合 C8-SCX)挥发性和半挥发性成分Talanta,2012,88:79–9449C8, C18哌嗪类兴奋剂J Chromatogr A,2012,1222:116–12050C2, C8和ENV+感觉神经元特异性受体激动剂BAM8-22和拮抗剂BAM22-8Biomed Chromatogr, 27,2013:396–40351C18大环麝香香水J Chromatogr A,2012,1264:87–9452C8多环芳烃J Chromatogr A,2012,1262:19–26.53C18抗癫痫药物J Sep Sci,2012,35:2970–297754C18卤代苯甲醚J Chromatogr A,2012,1260:200–20555C18芳香胺Anal Bioanal Chem,2012,404:2007–201556聚苯胺纳米线农药 Anal Chim Acta,2012,739:89–9857C2、C8、C18和C8 / SCX,SIL黄酮醇Anal Chim Acta,2012, 739:89–9858C8褪黑素与其他抗氧化剂J Pineal Res,2012,53:21–2859C2, C8, C18和含C8的硅胶类似M1L-抗坏血酸的测定Food Chem,2012,135:1613–161860C18卤代乙酸J Chromaogr A,2013,1318:35–4261MIP局部麻醉剂:利多卡因,甲哌卡因和布比卡因Biomed Chromatogr,2013,27:1481–148862C8心脏药物J Chromatogr B,2013,938:86–9563C8和强阳离子交换剂5-羟色胺再摄取抑制剂,抗抑郁药J Braz Chem Soc,2013,24:1635–164164C18麝香酮Anal Bioanal Chem,2013,405:7251–725765C8利多卡因Biomed Chromatogr,2013,27:1188–119166C18非甾体类抗炎药J Chromatogr A,2013,1304:1–967C2、C8、C18,SIL,M1苯基黄酮J Chromatogr A,2013,1304:42–5168C18大麻类J Chromatogr A,2013,1301:139–14669C18氯苯Anal Bioanal Chem,2013,405:6739–6748.70CMK-3纳米碳迷迭香酸Chromatographia,2013, 76:857–86071C2,C8,C18,SIL,M1氧化应激生物标记物Talanta,2013, 116:164–17272CMK-3纳米碳橄榄生物酚73 Anal Sci,2013,29:527–5327380% C8 20% SCX抗精神病药物Anal Bioanal Chem,2013,405:3953–396374C18多环芳烃和硝基麝香75C8氧化损伤DNA尿中的生物标记物PLoS ONE 8 (2013)e5836676C18抗精神病药物Anal Chim Acta,2013, 773:68–7577C2、C8、C18和C8,SIL / SCX羟基苯甲酸和羟基酸Microchem J,2013,106:129–138.78C2抗精神病药齐拉西酮J Pharm Biomed Anal,2014,88:467–47179C8可的松,皮质酮,acortisolJ Pharm Biomed Anal,2014,88:643–64880多孔石墨化碳颗粒恩替卡韦J Pharm Biomed Anal,2014,88:337–34481C18和 C8/SCX,莱克多巴胺Food Chem,2014,145:789–79582DVB芳香胺Talanta,2014, 119:375–38483SIL, C2, C8, C18, and M1氨基甲酸乙酯Anal Chim Acta, 2014,818:29–3584聚苯乙烯β -受体阻滞剂美托洛尔和醋丁洛尔M.M. Moein (Ph.D. thesis), Stockholm University, 201485C8多环芳香族碳氢化合物J Chromatogr A,2006, 1114:234–238.86C18布比卡因,利多卡因,罗哌卡因Bioanalysis,2010, 2:197–20587C18卤乙酸J Chromatogr A,2013, 1318:35–4288C8/SCX三环类抗抑郁药 Chromatogr A,2014, 1337:9–1689C18氯酚J Chromatogr A,2014, 1359:52–5990C18溴联苯醚J Chromatogr A,2014, 1364:28–3591C18非甾体类抗炎药物J Chromatogr A 1367 (2014) 1–892MIP瘦肉精,J Pharm.Biomed Anal. 91 (2014) 160–16893C18卡马西平、拉莫三嗪,奥卡西平,苯巴比妥,苯妥英和活性代谢物环氧化卡马西平和利卡西平J Chromatogr B 971 (2014) 20–2994C8千金藤素J Anal Methods Chem,2014,2014:1–695C8磺胺类药物J Liq Chromatogr Relat Technol,2014,37:2377–238896氨丙基杂化硅胶整体柱五种抗精神病药(奥氮平、奎硫平、氯氮平、氟哌啶醇、氯丙嗪)和七中抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰,氯丙咪嗪,丙咪嗪、氟西汀)Talanta1,2015,40:166–17597C2,C8,C18,M1肉碱和酰基肉碱J Pharmaceu Biomed Anal,2015,109:171–17698C18儿茶酚胺类(如去甲肾上腺素、肾上腺素和多巴胺)J Pharmaceu Biomed Anal,2015,104:122–12999M1氯胺酮及其代谢物J Chromatogr B, 2015,1004:67–78100Carbon-XCOSβ -受体阻滞剂美托洛尔,醋丁洛尔J Chromatogr B, 2015,992:86–902. 新型、选择性固相微萃取吸着剂  目前被分析物基体十分复杂,如生物样品、食品,含有多种化合物及多种异构体,使用传统萃取吸着剂对其缺乏选择性。由于很难消除基体中杂质的影响,导致后续的色谱、质谱分析受到严重干扰。因此出现了许多新的、选择性吸着剂,如分子印迹聚合物、免疫亲和吸着剂、核酸适配体功能化吸着剂、磁性固相萃取吸着剂、分子印迹介孔材料吸着剂、金属有机骨架材料吸着剂、树枝状大分子材料吸着剂、各种纳米材料吸着剂(富勒烯、石墨烯、碳纳米管等)。下表2列出近年新型选择性微固相萃取吸着剂的应用实例。  表 2 新型选择性微固相萃取吸着剂吸着剂被分析物样品基质检测回收率/%LOD文献1石墨烯, Pb环境水和蔬菜火焰原子吸收光谱(FAAS)95.3–100.40.61 ug/LAnal Chim Acta,2012,716:112–1182石墨烯谷胱甘肽人血浆荧光分光光度计92-1080.01 nMSpectrochim Acta,2011,79:860–1863氧化石墨烯氯苯氧酸除草剂河水与海水CE93.3- 102.40.3–1.5ng/LJ Chromatogr A,2013,1300:227–2354RGO-silica(氧化石墨烯衍生物-硅胶)氟喹诺酮自来水和河水LC-FLR72–118未报道J Chromatogr A,2015,1379:9–155磺化石墨烯多环芳烃河水GC-MS81.6 -113.50.8–3.9 ng/LJ Chromatogr A,2012,1233:16–216富勒烯-二硫代氨基甲酸钠(C60-NaDDC)Pb雨水GC-MS92 -100 415 ng/LAnal Chem,2002, 74:1519–15247富勒烯C60Cd水,牡蛎组织,猪肾牛肝AAS未报道0.3-0.3 ng/mLJ Anal At Spectrom,1997,12 :453–4578富勒烯C60汞(II)、甲基汞(I) 与乙基汞(I)海水,废水和河水GC-MS80–1051.5 ng/LJ Chromatogr A,2004,1055:185–1909富勒烯C60有机金属化合物水溶液GC-MS未报道5–15 ng/mLJ Chromatogr A,2000, 869:101–11010富勒烯C60金属二硫代氨基甲酸盐粮FAAS92–981–5 ng/mLAnalyst,2000,125:1495–149911富勒烯C60BTEX海水,废水,地表水,雨水,湖水,饮用水和河水GC-MS94–1040.04–0.05 ug/LJ Sep Sci,2006,29:33–4012富勒烯C60,C70芳烃和非芳烃,亚硝化单胞菌游泳池水,废水,饮用水和河水GC-MS95–1024–15 ng/LJ Chromatogr A,2009,1216 :1200–120513富勒烯C60-键合硅胶阿马多瑞多肽人血清MALDI-TOF MS未报道未报道Anal Biochem,2009,393: 8–2214氧化单层碳纳米管,氧化多层碳纳米管有机磷农药海水GC-FID79–1020.07–0.12 ug/LJ Environ Monit,2009, 11 : 439–444.15多层碳纳米管磺酰脲类除草剂土壤HPLC-DAD76–930.5–1.2 ng/g J Chromatogr A ,2009,1216:5504–551016多层碳纳米管莠去津和西玛津水GC-MS未报道2.5–5.0 pg/mL17 Microchem J, 2010,96 : 348–351.17氧化和改性碳纳米管,Ni (II), Pb (II)湖泊沉积物 污泥ETAAS(电热原子吸收光谱)92.1–102.010–30 ng/L Talanta,2011,85:245–25118改性多层碳纳米管Fe (III), Cu (II) Mn (II), Pb (II)矿泉水FAAS96–1003.5–8.0 ug/LFood Chem Toxicol,2010 ,48:2401–240619碳纳米锥,纳米盘,纳米纤维和纳米角 碳纳米锥/磁盘氯酚水GC-MS98.8–100.90.3–8 ng/mL J Chromatogr A, 2009,1216 : 5626–5633.20碳纳米锥/纳米盘甲苯、乙苯、二甲苯同分异构体和苯乙烯水GC-MS920.15 ng/mLJ Chromatogr A,2010, 1217 :3341–334721单壁碳纳米管PAHs水GC-TOF-MS21–9630–60 ng/LAnal Chim Acta,2012,714 :76–81.22碳纳米纤维氯三嗪,和去烷基化代谢产物粗土、水(自来水、井水、河水)LC-DAD83.5–1050.004–0.03 ng/mLAnal Chem,2011,83:5237–5244.23尼龙6纳米纤维垫多西他赛兔血浆HPLC-UV852 ng/mLJ Chromatogr B,2010,878:2403–2408.24PFSPE(PS)填充纤维固相萃取(聚苯乙烯)曲唑酮人血浆HPLC-UV94.6–105.58 ng/mL74顾忠泽,Anal Chim Acta,2007,587:75–81.25PS/G NF(聚苯乙烯/石墨烯纳米纤维)醛人呼出气冷凝液HPLC-VWD79.8–105.64.2–19.4 nmol/L Anal Chim Acta,2015,878:102–108(徐辉)26NFS(从烟灰得到的碳纳米纤维)芳香胺烟灰HPLC-UV70–1080.009–0.081 ug/LJ Chromatogr A,2011,1218:3581–3587.27树枝状大分子的功能化KIT-6(介孔材料)酸性药物尿HPLC-UV85.7–113.90.4–4.6 ng/mLJ Chromatogr A,2015,1392 :28–36.28改性硅胶(DPS)碱基核苷标准溶液LC-DAD未报道未报道J Chromatogr A,2014, 1337: 133–139.29聚丙烯亚胺树枝状大分子改性硅胶(PID-SG)铂,镍合金FAAS未报道0.014 ug/mL Ann Chim, 2005,95:695–701.30磁纳米颗粒Fe3O4@SiO2-C18葛根素大鼠血浆HPLC-UV85.2–92.30.05 ug/mLJ Chromatogr B,2013,912 :33–3731CTAB 涂渍 Fe3O4甲芬那酸血浆、尿液HPLC-UV92–990.087– 0.097 ng/mLJ Chromatogr B,2014,945–946:46–52.32磁性多层碳纳米管聚乙烯醇(PVA)复合凝胶邻苯二甲酸酯包装食品GC-FID70–11826.3–36.4 ng/mL Food Chem,2015,166:275–28233Fe3O4@SiO2-C18利多卡因大鼠血浆HPLC-UV-VIS-DAD89.4–92.30.01 ug/mLJ Chromatogr A, 2011, 1218:7248–725334免疫吸附剂单克隆抗体的琼脂糖凝胶活化单克隆抗体:吡唑醚菌酯苹果汁和红葡萄汁HPLC-UV98.5–101.6250 ug/LJ Chromatogr A,2011, 1218 : 4902–490935从内吗啡肽1和2 (End1 和 End2)的多克隆IgG抗体得到Fab片段,通过2-琥珀酰亚胺把它键合到硅胶上得到的吸着剂阿片肽人血浆CE-MS未报道End1: 0.5 ng/mL End2: 5 ng/mLAnal Chim Acta,2013, 789 : 91–99.36把苯基乙胺A 的多克隆抗体接枝到CNBr活化的交联琼脂糖(Sepharose )4B 上苯乙醇胺饲料,肉及肝HPLC-UV89.48–104.8948.7 ng/mL J Chromatogr B ,2014,945–946: 178–18437核酸适配体功能化吸附剂——链霉亲和素活化的琼脂糖,溴化氰活化的琼脂糖可卡因死后血液HPLC-DAD90未报道Talanta ,2011, 85:616–62438核酸适配体功能化吸附剂——单链DNA四环素抗体四环素尿液和血浆ESI-IMS82.8–86.5%0.019–0.037 ug/mL J ChromatogrB: Anal Technol Biomed. Life Sci,2013,925:26–32.39核酸适配体功能化吸附剂——链霉亲和素聚(TRIM-co-GMA)凝血酶人血清HPLC-UV-VIS未报道4 nm [Anal Chem,80,2008 (8) :7586–759340离子印迹聚合物---铁(Ⅲ)-印迹氨基功能化硅胶吸附剂铁(Ⅲ)标准溶液ICP-AES950.34 ug/LTalanta,2007 ,71 : 38–4341离子印迹聚合物--铑(Ⅲ)离子印迹聚合物铑(Ⅲ)地球化学参照样品RLS900.024 ng/mLTalanta,2013 ,105:124–130.42离子印迹聚合物--Pb(II)印迹聚合物颗粒Pb(II)食品FAAS97.6–100.70.42 ng/mL Food Chem. 138 (2013) 2050–2056.43分子印迹聚合物---功能单体MAA---交联剂:乙二醇二甲基丙烯酸酯,致孔剂:丁酮和正庚烷,聚合类型:沉淀聚合烯酰吗啉人参GC-u-ECD89.2–91.60.002 mg/kg J Chromatogr B,2015, 988 :182–18644分子印迹聚合物---功能单体:DEAEMA,交联剂: EDMA,聚合化类型:本体极化生物活性的萘醌植物提取物HPLC-UV-VIS未报道未报道J Chromatogr A,2013, 1315 : 15–2045分子印迹聚合物---功能单体:接枝PMAA/ SiO2,交联剂:EGGE,模板:肌酐,肌酐肌酐标准溶液UV/vis未报道未报道Anal Bioanal Chem,2015, 407 :2685–271046金属有机框架化合物-- MOF MIL-101(Cr)PAHs环境水HPLC-PDA81.3–105.02.8–27.2 ng/LAnalyst, 137,2012:3445–345147金属有机框架化合物-- MOF MIL-53, MIL-100, 和 MIL-101肽,蛋白生物样品MALDI-TODF-MS未报道未报道Chem Commun,2011 ,47: 4787–478948金属有机框架化合物-- MOF MIL-53(Al)Fe水溶液XRD98.2–106.20.9 uMAnal Chem,2013, 85: 7441–744649金属有机框架化合物-- MOF MIL-101有机氯农药水样GC-MS87.6–98.60.0025/0.016 ng/mL J Chromatogr A, 2015,1401: 9–1650限进性材料—RAMs-MIPs, 模板分子:马拉硫磷有机磷农药蜂蜜GC-FPD90.9–97.60.0005–0.0019 ug/mLFood Chem,2015,187: 331–337.51亲水性共聚单体:GMA XDS-RAM碱性药物人血浆LC-UV-VIS94.2–98.2未报道J Chromatogr A ,2002,975:145–15552亲水性共聚单体:GMA C-WCX-RAM碱性药物人血浆LC-UV96.7–104.9未报道J Chromatogr A, 2008,1190 : 8–13.  AAS--原子吸收光谱 CE--毛细管电泳 CTAB--十六烷基三甲基溴化铵 DEAEMA--二乙基氨基乙基-2-甲基丙烯酸酯 DPS--聚合物改性二氧化硅 EDMA--乙二醇二甲基丙烯酸酯 EGGE--乙二醇缩水甘油醚 ESI-IMS-- 电喷雾电离离子迁移谱 ETAAS--电热原子吸收光谱法 FAAS--火焰原子吸收光谱法 FLR--荧光,荧光检测器 G--石墨烯 GMA--甲基丙烯酸缩水甘油酯 GO--氧化石墨烯 GSH--谷胱甘肽 ICP-AES-- 电感耦合等离子体原子发射光谱法 MAA--甲基丙烯酸 mAbs--单克隆抗体 MC-WCXRAM, 甲基纤维素固定化弱阳离子交换硅基限进性材料 OMWCNT--氧化多壁碳纳米管 OSWCNT--氧化碳纳米管 PAHs--多环芳烃 PFSPE, 填充纤维固相萃取 PPID-SG--G4.0聚(亚胺)树枝状大分子的固定化硅胶 PS--聚苯乙烯 PS/G--聚苯乙烯/石墨烯 PVA--聚乙烯醇 RGO--还原氧化石墨烯 RLS--共振光散射法, VWD--可变波长检测器, XDS--阳离子交换限进性吸着剂材料(文献:Tr Anal Chem, 2016, 77: 23–43)3. 小结  由于篇幅限制,这一篇主要介绍了常规和新型、选择性固相微萃取剂的应用实例,从这些应用中可以看出:常规吸着剂使用的以烷基键合硅胶居多。在新型、选择性微固相萃取吸着剂中各种碳类纳米材料为多。下一篇将详细讨论这些新型、选择性微固相萃取吸着剂。
  • 2024年3月6日!78项食品安全国家标准正式实施(附下载链接)
    2023年9月25日,国家卫生健康委员会与市场监管总局联合发布了第6号公告,发布了85项新的食品安全国家标准和3项。《茶叶》等3项食品产品标准、《婴幼儿配方食品良好生产规范》等5项生产经营规范标准、《食品接触用塑料材料及制品》等6项食品相关产品标准、《化学分析方法验证通则》等46项理化检验方法标准和1项修改单、《微生物检验方法验证通则》等3项微生物检验方法标准、《动物性水产品及其制品中颚口线虫的检验》等6项寄生虫检验方法标准,以及《食品添加剂β-胡萝卜素》等16项食品添加剂、食品营养强化剂质量规格标准和2项修改单。其中78项新标准将于2024年3月6日开始生效。剩余7项食品接触材料新标准将于2024年9月6日正式实施。小编已将7项食品接触材料新标准进行整理解读:多项食品接触材料新标准将于2024年9月正式实施! 以下是3月6日正式实施的78项食品国家标准及其涉及到的检测方法。标准名称(可点击下载)备注理化检验方法标准(35项)GB 5009.8- 2023 食品安全国家标准   食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定增加离子色谱为第二法GB   5009.9- 2023 食品安全国家标准   食品中淀粉的测定GB   5009.12- 2023 食品安全国家标准   食品中铅的测定第一法:石墨炉原子吸收光谱;第二法:电感耦合等离子体质谱法 ICP-MS为新增方法GB   5009.15- 2023     食品安全国家标准   食品中镉的测定GB   5009.16- 2023     食品安全国家标准   食品中锡的测定GB   5009.123- 2023   食品安全国家标准   食品中铬的测定GB   5009. 297 - 2023  食品安全国家标准 食品中钼的测定GB   5009.36- 2023     食品安全国家标准   食品中氰化物的测定增加了GC-MS、离子色谱、流动注射/连续流动-分光光度法GB   5009.43- 2023     食品安全国家标准   味精中谷氨酸钠的测定GB   5009.88- 2023     食品安全国家标准   食品中膳食纤维的测定新增HPLC方法GB   5009.89- 2023     食品安全国家标准   食品中烟酸和烟酰胺的测定GB   5009.97- 2023     食品安全国家标准   食品 中环己基氨基磺酸 盐的测定GB   5009.26- 2023     食品安全国家标准   食品中 N- 亚硝胺类化合物的测定新增水蒸气蒸馏-gc-ms/ms、QuEChERS-gc-ms/ms、水蒸气蒸馏-Lc-ms/ms、GB   5009.129- 2023   食品安全国家标准   食品中乙氧基 喹 的测定新增HPLC方法GB   5009.140- 2023   食品安全国家标准   食品中乙酰磺胺酸钾的测定GB   5009.154- 2023   食品安全国家标准   食品中维生素B 6 的测定新增LC-MS、LC-MS/MS方法GB   5009.189- 2023   食品安全国家标准   食品中米 酵菌酸 的测定新增LC-MS/MS方法GB   5009.210- 2023   食品安全国家标准   食品中泛酸的测定新增LC-MS方法GB   5009.225- 2023   食品安全国家标准   酒和食用酒精中乙醇浓度的测定GB   5009.227- 2023   食品安全国家标准   食品中过氧化值的测定GB   5009.240- 2023   食品安全国家标准   食品 中伏马菌素 的测定GB   5009.259- 2023   食品安全国家标准   食品中生物素的测定新增LC-MS方法GB   5009.270- 2023   食品安全国家标准   食品中肌醇的测定GB   5009. 295 - 2023   食品安全国家标准   化学分析方法验证通则GB 5009.294-2023 食品安全国家标准 食品中色氨酸的测定GB   5009. 293 - 2023   食品安全国家标准   食品中单辛酸甘油酯的测定第一法:GC;第二法:GC-MSGB   5009. 292 - 2023   食品安全国家标准   食品中β-阿朴-8 ’ -胡萝卜素醛的测定HPLC方法GB   5009. 289 - 2023   食品安全国家标准   食品 中低聚半乳糖 的测定HPLC方法GB   5009. 291 - 2023   食品安全国家标准   食品中氯酸盐和高氯酸盐的测定LC-MS方法GB   5009. 290 - 2023   食品安全国家标准   食品中维生素K 2 的测定GB   5009.35- 2023     食品安全国家标准   食品中合成着色剂的测定GB   5009. 288 - 2023   食品安全国家标准   食品中 胭脂虫红的 测定GB   5009. 296 - 2023   食品安全国家标准   食品中维生素D的测定新增二维液相色谱法GB   31614 .1- 2023     食品安全国家标准   食品中唾液酸的测定GB   5009. 298 - 2023   食品安全国家标准   食品中三氯蔗糖(蔗糖素)的测定新增LC-MS方法食品接触材料(10项)GB   31604.7- 2023     食品安全国家标准   食品接触材料及制品脱色试验  GB   31604.46- 2023   食品安全国家标准   食品接触材料及制品游离 酚 的测定和迁移量的测定GB   31604.47- 2023   食品安全国家标准   食品接触材料及制品纸、纸板及纸制品中荧光性物质的测定  GB   31604. 58 - 2023   食品安全国家标准   食品接触材料及制品   9 种抗氧化剂迁移量的测定检测方法:液相/液质方法GB   31604. 29 - 2023   食品安全国家标准   食品接触材料及制品丙烯酸和甲基丙烯酸及其酯类迁移量的测定增加了检测方法,针对分析目标物种类较多、性质差异较大等问题,新增“液相色谱法”。GB   31604. 49 - 2023   食品安全国家标准   食品接触材料及制品多元素的测定和多元素迁移量的测定新增电感耦合等离子体发射光谱方法GB   31604. 57 - 2023   食品安全国家标准   食品接触材料及制品二苯甲酮类物质迁移量的测定检测方法:液相/液质方法GB   31604. 56 - 2023   食品安全国家标准   食品接触材料及制品月桂内酰胺迁移量的测定检测方法:液相/液质方法GB   31604. 54 - 2023   食品安全国家标准   食品接触材料及制品双酚F和双酚S迁移量的测定检测方法:液相/液质方法GB   31604. 55 - 2023   食品安全国家标准   食品接触材料及制品   异噻唑 啉 酮类化合物迁移量的测定检测方法:液相/液质方法水产品(6项)GB   31610 .1- 2023     食品安全国家标准   动物性水产品及其制品中 颚口线虫 的检验方法一:肺囊检查法(显微镜镜检);方法二:胃蛋白酶消化法(显微镜镜检);方法三:PCR方法;GB   31610 .2- 2023     食品安全国家标准   动物性水产品及其制品 中异尖线虫 的检验GB   31610 .3- 2023     食品安全国家标准  动物性水产品及其制品中 广州管圆线虫 的检验GB   31610 .4- 2023     食品安全国家标准   动物性水产品及其制品中华支 睾 吸虫的检验GB   31610 .5- 2023     食品安全国家标准   动物性水产品中及其制品中并 殖 吸虫的检验GB   31610 .6- 2023     食品安全国家标准   动物性水产品及其制品中 曼氏迭宫绦虫 裂头蚴的检验产品标准(3项)GB   31608 - 2023 食品安全国家标准 茶叶GB   31639 - 2023 食品安全国家标准   食品加工用菌种制剂GB   31611 - 2023 食品安全国家标准   食品加工用植物蛋白肽食品添加剂(10项)GB   1886.231- 2023   食品安全国家标准   食品添加剂   乳酸链球菌素GB   1886. 373 - 2023   食品安全国家标准   食品添加剂甲醇钠GB   1886. 372 - 2023   食品安全国家标准   食品添加剂L-蛋氨酰基甘氨酸盐酸盐GB   1886. 371 - 2023   食品安全国家标准   食品添加剂ε-聚赖氨酸盐酸盐GB   1886. 370 - 2023   食品安全国家标准   食品添加剂辛烯基琥珀酸淀粉钠GB   1886. 369 - 2023   食品安全国家标准   食品添加剂   蓝锭果红GB   1886. 368 - 2023   食品安全国家标准   食品添加剂   (2S,5R)-N-[4-(2-氨基-2- 氧代乙 基)苯基]-5-甲基-2-(丙基-2-)环己烷甲酰胺GB   1886. 367 - 2023   食品安全国家标准   食品添加剂   6-甲基辛醛GB   1886. 366 - 2023   食品安全国家标准   食品添加剂   β-胡萝卜素GB   1886. 365 - 2023   食品安全国家标准   食品添加剂   5-甲基-2-呋喃甲硫醇食品营养强化剂(6个)GB   1903. 61 - 2023     食品安全国家标准   食品营养强化剂碳酸铜GB   1903. 64 - 2023     食品安全国家标准   食品营养强化剂氯化锰GB   1903. 63 - 2023     食品安全国家标准   食品营养强化剂甘油磷酸钙GB   1903. 62 - 2023     食品安全国家标准   食品营养强化剂还原铁GB   1903. 59 - 2023     食品安全国家标准   食品营养强化剂氯化铬GB   1903. 60 - 2023     食品安全国家标准   食品营养强化剂L-肉碱酒石酸盐方法通则(3个)GB   4789.26- 2023     食品安全国家标准   食品微生物学检验商业无菌检验GB   4789.35- 2023     食品安全国家标准   食品微生物学检验乳酸菌检验GB   4789. 45 - 2023     食品安全国家标准   微生物检验方法验证通则生产规范(5个)GB   12693- 2023 食品安全国家标准   乳制品良好生产规范GB   19303- 2023 食品安全国家标准   熟肉制品生产卫生规范GB   22923- 2023 食品安全国家标准   特殊医学用途配方食品良好生产规范GB  23790- 2023 食品安全国家标准 婴幼儿配方食品良好生产规范GB   31612 - 2023 食品安全国家标准   食品加工用菌种制剂生产卫生规范
  • 371项行业标准、1项行业标准修改单及6项行业标准外文版报批公示
    371项行业标准、1项行业标准修改单及6项行业标准外文版报批公示根据行业标准制修订计划,相关标准化技术组织已完成《再生磷酸铁》等63项化工行业标准、《工业用轻质烯烃 痕量氮的测定 化学发光法》等31项石化行业标准、《回转窑处理冶金尘泥技术规范》等22项黑色冶金行业标准、《铝合金建筑型材行业绿色工厂评价要求》等25项有色金属行业标准、《木塑制品行业绿色工厂评价要求》等5项建材行业标准、《稀土荧光粉绿色工厂评价要求》1项稀土行业标准、《输油齿轮泵》等132项机械行业标准、《运输类飞机重量与平衡设计要求》1项航空行业标准、《木家具绿色工厂评价要求》等91项轻工行业标准的制修订工作,《工业用异丙苯》1项石化行业标准的修改工作及《圆块孔式不透性石墨换热器》等6项行业标准外文版的编制工作。在以上标准、标准修改单及标准外文版发布之前,为进一步听取社会各界意见,现予以公示,截止日期2024年2月8日。以上标准报批稿请登录“标准网”(www.bzw.com.cn)“行业标准报批公示”栏目阅览,并反馈意见。公示时间:2024年1月8日—2024年2月8日工业和信息化部科技司2024年1月8日序号标准编号标准名称化工行业 1HG/T 6262-2024再生磷酸铁  2HG/T 6263-2024电石渣脱硫剂   3HG/T 6264-2024废电池处理中铁、铝、 钙渣的 处理处置方法   4HG/T 6265-2024含铬酸洗废液处理处置方法   5HG/T 6266-2024废弃化学品处置废液中 9 种酯类测定 气相色谱 - 质谱联用法   6HG/T 6267-2024含铜蚀刻废液中氟含量的测定方法   7HG/T 6268-2024硝态氮废液(水)处理处置方法   8HG/T 6269-2024钛铁矿酸解废渣处置方法   9HG/T 6182-2024物理回收再生塑料行业绿色工厂评价要求   10HG/T 6293-2024绿色设计产品评价技术规范 磷酸 一 铵、磷酸二铵   11HG/T 6270-2024防雾涂料  12HG/T5367.6-2024轨道交通车辆用涂料 第 6 部分:耐高温电机涂料  13HG/T 6271-2024耐指纹涂料   14HG/T 4143-2024工业用一正丁胺   15HG/T 4144-2024工业 用二正丁 胺   16HG/T 4145-2024工业用三正丁胺   17HG/T 4146-2024工业用一正丙胺   18HG/T 4147-2024工业 用二正丙胺   19HG/T 4148-2024工业用三正丙胺   20HG/T 2691-2024分子筛动态二氧化碳吸附测定方法   21HG/T 6272-2024分子筛活化粉吸油值测定方法  22HG/T 6273-2024分子筛活化粉粘度测定方法   23HG/T 4339-2024机械设备用涂料   24HG/T 3655-2024紫外光( UV )固化木器涂料   25HG/T 6274-2024C.I. 颜料蓝 15 : 4   26HG/T 6275-2024塑料 覆铜板用异氰酸 酯 改性环氧树脂   27HG/T 6276-2024双酚 F 型环氧树脂  28HG/T 3873-2024增塑剂 己二酸二( 2- 乙 基己基 )酯( DOA )   29HG/T 3047-2024橡胶或塑料涂覆织物 透气性的测定   30HG/T 6277-2024甲醇制烯烃( MTO )级甲醇   31HG/T 6278-2024氰 氨基甲酸甲酯钠(钙)盐溶液   32HG/T 6279-2024水处理剂 单过硫酸 氢钾泡腾 片   33HG/T 6280-2024水处理剂 有机复合聚氯化铝   34HG/T 6281-2024丙烯氧化制丙烯醛催化剂活性试验方法   35HG/T 6282-2024催化裂化催化剂一氧化碳指数的测定   36HG/T 6283-2024催化裂化低碳烯烃助催化剂   37HG/T 6284-2024环状烯烃聚合用钌卡宾催化剂活性试验方法   38HG/T 6285-2024甲基丙烯醛氧化制甲基丙烯酸催化剂活性试验方法   39HG/T 6286-2024甲基异丁基甲醇脱氢制甲基异丁基甲酮催化剂   40HG/T 6287-2024脱单体烯烃中含氧化合物催化剂活性试验方法   41HG/T 2782-2024化工催化剂颗粒抗 压碎力 的测定   42HG/T 6288-2024聚酯树脂生产用催化剂 三异辛酸丁基锡   43HG/T 6289-2024分散黄 ECF   44HG/T 6290-2024分散黑 ECF   45HG/T 2552-2024C.I. 反应蓝 19 (活性艳蓝 KN-R )   46HG/T 3963-2024C.I. 反应蓝 222 (反应深蓝 M-2G )   47HG/T2058.2-2024搪 玻璃挡板式温度计套   48HG/T2055.1-2024搪 玻璃人孔   49HG/T 3217-2024搪 玻璃上展式放料阀   50HG/T 2433-2024搪 玻璃设备用液面计   51HG/T 3127-2024搪 玻璃塔节   52HG/T2058.1-2024搪 玻璃温度计套   53HG/T 3218-2024搪 玻璃 下展式 放料阀   54HG/T 3706-2024工业用金属孔网管骨架聚乙烯复合管   55HG/T 6291-20241,4- 二羟基蒽醌   56HG/T 6292-2024C.I. 溶剂 橙 107   57HG/T 6312-2024化工园区竞争力评价导则   58HG/T 6313-2024化工园区智慧 化评价导 则   59HG/T 20656-2024化工供暖通风与空气调节详细设计内容和深度规定   60HG/T 20524-2024化工企业循环冷却水处理加药装置设计规范   61HG/T 20686-2024化工企业电气设计图形符号和文字代码统一规定   62HG/T 22820-2024化工安全仪表系统工程设计规范   63HG/T 20593-2024钢制化工设备焊接与检验工程技术规范  石化行业 64SH/T 1843-2024工业用轻质烯烃 痕量氮的测定 化学发光法   65SH/T 1844-2024工业用乙烯、丙烯中痕量氢气、一氧化碳、二氧化碳的测定 气相色谱 - 氦离子化检测法   66SH/T 1845-2024塑料 聚丙烯中 1,2- 二氯苯 /1,2,4- 三氯苯 可溶级分含量 的测定 升温淋洗分级法   67SH/T 1846-2024合成树脂瓦用丙烯腈 - 苯乙烯 - 丙烯酸酯( ASA )共挤专用料   68SH/T 3003-2024石油化工合理利用能源设计导则   69SH/T 3045-2024石油化工管式炉热效率设计计算方法   70SH/T 3046-2024石油化工立式圆筒形钢制焊接储罐设计规范   71SH/T 3065-2024石油化工管式 炉急弯弯管 工程技术规范   72SH/T 3070-2024石油化工管式炉钢结构设计规范   73SH/T 3075-2024石油化工钢制压力容器材料选用规范   74SH/T 3078-2024立式圆筒 形料仓工程设计 规范   75SH/T 3109-2024石油化工油品添加剂设施设计规范   76SH/T 3115-2024石油化工管式炉轻质浇注料衬里工程技术规范   77SH/T 3120-2024石油化工喷射式混合器技术规范   78SH/T 3138-2024球形储罐整体补强凸缘   79SH/T 3158-2024石油化工管壳式余热锅炉   80SH/T 3416-2024石油化工用套管结晶器   81SH/T 3420-2024石油化工管式炉用空气预热器技术规范   82SH/T 3533-2024石油化工给水排水管道工程施工及验收规范  83SH/T 3551-2024石油化工仪表工程施工及验收规范  84SH/T 3223-2024石油化工给水排水泵站设计规范   85SH/T 3224-2024石油化工雨水监控及事故排水储存设施设计规范   86SH/T 3225-2024石油化工安全仪表系统安全完整性等级设计规范   87SH/T 3226-2024石油化工过程风险定量分析标准   88SH/T 3227-2024石油化工装置固定水喷雾和水(泡沫)喷淋灭火系统技术标准   89SH/T 3228-2024加氢反应 馏 出物 空冷器系统 ( REACS )设计导则   90SH/T 3229-2024石油化工钢制空冷式热交换器技术规范   91SH/T 3230-2024裂解炉对流段模块化建造技术规范   92
  • 关于发布《食品安全国家标准 食品接触材料及制品通用安全要求》(GB 4806.1-2016)等53项食品安全国家标准的公告(2016年第15号)
    p   根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品安全国家标准食品接触材料及制品通用安全要求》(GB 4806.1-2016)等53项食品安全国家标准。其编号和名称如下: /p p   GB 4806.1-2016 食品安全国家标准 食品接触材料及制品通用安全要求 /p p   GB 4806.3-2016 食品安全国家标准 搪瓷制品 /p p   GB 4806.4-2016 食品安全国家标准 陶瓷制品 /p p   GB 4806.5-2016 食品安全国家标准 玻璃制品 /p p   GB 4806.6-2016 食品安全国家标准 食品接触用塑料树脂 /p p   GB 4806.7-2016 食品安全国家标准 食品接触用塑料材料及制品 /p p   GB 4806.8-2016 食品安全国家标准 食品接触用纸和纸板材料及制品 /p p   GB 4806.9-2016 食品安全国家标准 食品接触用金属材料及制品 /p p   GB 4806.10-2016 食品安全国家标准 食品接触用涂料及涂层 /p p   GB 4806.11-2016 食品安全国家标准 食品接触用橡胶材料及制品 /p p   GB 4789.15-2016 食品安全国家标准 食品微生物学检验 霉菌和酵母计数 /p p   GB 5009.156-2016 食品安全国家标准 食品接触材料及制品迁移试验预处理方法通则 /p p   GB 9685-2016食品安全国家标准 食品接触材料及制品用添加剂使用标准 /p p   GB 14934-2016 食品安全国家标准 消毒餐(饮)具 /p p   GB 31604.11-2016 食品安全国家标准 食品接触材料及制品 1,3-苯二甲胺迁移量的测定 /p p   GB 31604.12-2016 食品安全国家标准 食品接触材料及制品 1,3-丁二烯的测定和迁移量的测定 /p p   GB 31604.13-2016 食品安全国家标准 食品接触材料及制品 11-氨基十一酸迁移量的测定 /p p   GB 31604.14-2016 食品安全国家标准 食品接触材料及制品 1-辛烯和四氢呋喃迁移量的测定 /p p   GB 31604.15-2016 食品安全国家标准 食品接触材料及制品 2,4,6-三氨基-1,3,5-三嗪(三聚氰胺)迁移量的测定 /p p   GB 31604.16-2016 食品安全国家标准 食品接触材料及制品 苯乙烯和乙苯的测定 /p p   GB 31604.17-2016 食品安全国家标准 食品接触材料及制品 丙烯腈的测定和迁移量的测定 /p p   GB 31604.18-2016 食品安全国家标准 食品接触材料及制品 丙烯酰胺迁移量的测定 /p p   GB 31604.19-2016 食品安全国家标准 食品接触材料及制品 己内酰胺的测定和迁移量的测定 /p p   GB 31604.20-2016 食品安全国家标准 食品接触材料及制品 醋酸乙烯酯迁移量的测定 /p p   GB 31604.21-2016 食品安全国家标准 食品接触材料及制品 对苯二甲酸迁移量的测定 /p p   GB 31604.22-2016 食品安全国家标准 食品接触材料及制品 发泡聚苯乙烯成型品中二氟二氯甲烷的测定 /p p   GB 31604.23-2016 食品安全国家标准 食品接触材料及制品 复合食品接触材料中二氨基甲苯的测定 /p p   GB 31604.24-2016 食品安全国家标准 食品接触材料及制品 镉迁移量的测定 /p p   GB 31604.25-2016 食品安全国家标准 食品接触材料及制品 铬迁移量的测定 /p p   GB 31604.26-2016 食品安全国家标准 食品接触材料及制品 环氧氯丙烷的测定和迁移量的测定 /p p   GB 31604.27-2016 食品安全国家标准 食品接触材料及制品 塑料中环氧乙烷和环氧丙烷的测定 /p p   GB 31604.28-2016 食品安全国家标准 食品接触材料及制品 己二酸二(2-乙基)己酯的测定和迁移量的测定 /p p   GB 31604.29-2016 食品安全国家标准 食品接触材料及制品 甲基丙烯酸甲酯迁移量的测定 /p p   GB 31604.30-2016 食品安全国家标准 食品接触材料及制品 邻苯二甲酸酯的测定和迁移量的测定 /p p   GB 31604.31-2016 食品安全国家标准 食品接触材料及制品 氯乙烯的测定和迁移量的测定 /p p   GB 31604.32-2016 食品安全国家标准 食品接触材料及制品 木质材料中二氧化硫的测定 /p p   GB 31604.33-2016 食品安全国家标准 食品接触材料及制品 镍迁移量的测定 /p p   GB 31604.34-2016 食品安全国家标准 食品接触材料及制品 铅的测定和迁移量的测定 /p p   GB 31604.35-2016 食品安全国家标准 食品接触材料及制品 全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定 /p p   GB 31604.36-2016 食品安全国家标准 食品接触材料及制品 软木中杂酚油的测定 /p p   GB 31604.37-2016 食品安全国家标准 食品接触材料及制品 三乙胺和三正丁胺的测定 /p p   GB 31604.38-2016 食品安全国家标准 食品接触材料及制品 砷的测定和迁移量的测定 /p p   GB 31604.39-2016 食品安全国家标准 食品接触材料及制品 食品接触用纸中多氯联苯的测定 /p p   GB 31604.40-2016 食品安全国家标准 食品接触材料及制品 顺丁烯二酸及其酸酐迁移量的测定 /p p   GB 31604.41-2016 食品安全国家标准 食品接触材料及制品 锑迁移量的测定 /p p   GB 31604.42-2016 食品安全国家标准 食品接触材料及制品 锌迁移量的测定 /p p   GB 31604.43-2016 食品安全国家标准 食品接触材料及制品 乙二胺和己二胺迁移量的测定 /p p   GB 31604.44-2016 食品安全国家标准 食品接触材料及制品 乙二醇和二甘醇迁移量的测定 /p p   GB 31604.45-2016 食品安全国家标准 食品接触材料及制品 异氰酸酯的测定 /p p   GB 31604.46-2016 食品安全国家标准 食品接触材料及制品 游离酚的测定和迁移量的测定 /p p   GB 31604.47-2016 食品安全国家标准 食品接触材料及制品 纸、纸板及纸制品中荧光增白剂的测定 /p p   GB 31604.48-2016 食品安全国家标准 食品接触材料及制品 甲醛迁移量的测定 /p p   GB 31604.49-2016 食品安全国家标准 食品接触材料及制品 砷、镉、铬、铅的测定和砷、镉、铬、镍、铅、锑、锌迁移量的测定 /p p   特此公告。 /p p   国家卫生计生委 食品药品监管总局 /p p   2016年10月19日 /p p   附件:《食品安全国家标准 食品接触材料及制品通用安全要求》(GB 4806.1-2016)等53项食品安全国家标准 /p
  • 国家卫生健康委员会关于桃胶等15种“三新食品”的公告
    根据《中华人民共和国食品安全法》规定,审评机构组织专家对桃胶等4种物质申请新食品原料、丝氨酸蛋白酶等6种物质申请食品添加剂新品种、C.I.颜料黑7等5种物质申请食品相关产品新品种的安全性评估材料进行审查并通过。特此公告。附件:三新食品公告.pdf国家卫生健康委2023年9月22日一、新食品原料解读材料(一)桃胶桃胶是以蔷薇科李属植物桃树(Prunus persica(L.)Batsch)分泌的胶状物为原料,经采摘、分选、晾晒、清洗、干燥等工艺制成。主要营养成分为膳食纤维、多糖、水分、蛋白质和维生素等。桃胶在我国湖北、江苏及浙江等地区有一定的食用历史,食用方式主要有做汤、粥、羹、甜品等。本产品推荐食用量为≤30克/天。    根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对桃胶的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于桃胶在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。(二)油莎豆本产品的基源植物为莎草科莎草属植物油莎草(Cyperusesculentus L.var.sativus Boeck.),原产于中非洲,在地中海地区被广泛种植,于上世纪五十年代引入我国,目前在我国河北、甘肃和山东等地区种植。申报产品油莎豆为其地下块茎,主要营养成分为碳水化合物、脂肪、膳食纤维、水分和维生素等。欧洲将油莎豆作为普通食品管理;加拿大认为油莎豆奶具有作为食品安全食用的历史。    根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对油莎豆的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。该原料的食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。(三)肠膜明串珠菌乳脂亚种肠膜明串珠菌乳脂亚种主要存在于天然发酵的乳制品、干酪、泡菜等中。本产品使用的菌种是从乳制品分离得到的,该菌种已被列入欧洲食品安全局资格认定(QPS)名单的推荐生物制剂列表、国际乳品联合会公报(Bulletin of the IDF 514/2022)的“在发酵食品中证明安全的微生物品种目录”以及丹麦的《食品中使用的微生物菌种名单记录》。本次批准列入《可用于食品的菌种名单》,使用范围包括乳及乳制品、果蔬制品、谷物制品的发酵加工,不包括婴幼儿食品。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对肠膜明串珠菌乳脂亚种的安全性评估材料进行审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。待食品加工用菌种制剂的食品安全国家标准发布后,按照食品加工用菌种制剂的标准执行。(四)吡咯并喹啉醌二钠盐本产品以食葡萄糖食甲基菌(Methylovorus glucosotrophus)为发酵菌种,经发酵、提取、纯化、结晶、干燥等工艺制成。吡咯并喹啉醌二钠盐天然存在于多种食物如牛奶、鸡蛋、菠菜等中。我国已于2022年批准合成法制得的吡咯并喹啉醌二钠盐为新食品原料。吡咯并喹啉醌二钠盐在美国被作为“一般认为安全的物质(GRAS)”管理,可作为原料用于能量饮料、运动饮料、电解质饮料等食品;欧盟和加拿大作为膳食补充剂或天然保健食品。本产品推荐食用量为≤20毫克/天(即含量为98%的吡咯并喹啉醌二钠盐推荐食用量为≤20毫克/天,超过该含量的按照实际含量折算)。    根据《食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对吡咯并喹啉醌二钠盐的安全性评估材料进行审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于吡咯并喹啉醌二钠盐在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。二、食品添加剂新品种解读材料(一)丝氨酸蛋白酶    1.背景资料。地衣芽孢杆菌(Bacillusli cheniformis)来源的丝氨酸蛋白酶申请作为食品工业用酶制剂新品种。美国食品药品管理局、法国食品安全局、丹麦兽医和食品局、澳大利亚和新西兰食品标准局等允许其作为食品工业用酶制剂使用。    2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化胰凝乳蛋白的水解。其质量规格执行《食品安全国家标准食品添加剂食品工业用酶制剂》(GB 1886.174)。(二)乳酸镁    1.背景资料。镁作为食品营养强化剂已列入《食品安全国家标准食品营养强化剂使用标准》(GB 14880),允许用于调制乳粉、饮料类(14.01及14.06涉及品种除外)、固体饮料类等食品类别。本次申请的乳酸镁是镁的一种化合物来源,其使用范围和用量与GB 14880中已批准镁的规定一致。国际食品法典委员会、美国食品药品管理局、欧盟委员会等允许其用于婴幼儿配方食品等食品类别。    2.工艺必要性。该物质作为食品营养强化剂用于调制乳粉(食品类别01.03.02)、饮料类(14.01及14.06涉及品种除外)(食品类别14.0)和固体饮料类(食品类别14.06),强化食品中镁的含量。其质量规格按照公告的相关要求执行。(三)2’-岩藻糖基乳糖    1.背景资料。2’-岩藻糖基乳糖申请作为食品营养强化剂新品种。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局等允许2’-岩藻糖基乳糖用于婴幼儿配方食品等食品类别。    2.工艺必要性。该物质作为食品营养强化剂,是母乳中一种主要的母乳低聚糖。其质量规格按照公告的相关要求执行。(四)乳糖-N-新四糖1.背景资料。乳糖-N-新四糖申请作为食品营养强化剂新品种。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局等允许乳糖-N-新四糖用于婴幼儿配方食品等食品类别。    2.工艺必要性。该物质作为食品营养强化剂,是母乳中一种主要的母乳低聚糖。其质量规格按照公告的相关要求执行。(五)乳酸钙1.背景资料。乳酸钙作为酸度调节剂、抗氧化剂、乳化剂、稳定剂和凝固剂、增稠剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于加工水果、糖果、固体饮料、膨化食品等食品类别,本次申请扩大使用范围用于腌渍的蔬菜(食品类别04.02.02.03),蔬菜罐头(食品类别04.02.02.04)。国际食品法典委员会、美国食品药品管理局、欧盟委员会等允许其作为增稠剂、酸度调节剂用于加工蔬菜、蔬菜罐头。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。    2.工艺必要性。该物质作为稳定剂和凝固剂、酸度调节剂用于腌渍的蔬菜(食品类别04.02.02.03),蔬菜罐头(食品类别04.02.02.04),改善产品稳定性。其质量规格执行《食品安全国家标准食品添加剂乳酸钙》(GB 1886.21)。(六)三赞胶1.背景资料。国家卫生健康委2020年第4号公告批准食品添加剂新品种三赞胶作为增稠剂、稳定剂和凝固剂用于肉灌肠类、果蔬汁(浆)类饮料和植物蛋白饮料的食品类别。本次申请扩大使用范围用于调制乳(食品类别01.01.03),复合蛋白饮料(食品类别14.03.03)和风味饮料(食品类别14.08)。    2.工艺必要性。该物质作为增稠剂、稳定剂和凝固剂用于调制乳(食品类别01.01.03),复合蛋白饮料(食品类别14.03.03)和风味饮料(食品类别14.08),改善产品稳定性。其质量规格执行国家卫生健康委2020年第4号公告。三、食品相关产品新品种解读材料(一)C.I.颜料黑7;炭黑1.背景资料。该物质常温下为黑色粉末,不溶于水。《食品安全国家标准 食品接触材料及制品用添加剂使用标准》(GB 9685-2016)已批准该物质作为添加剂用于橡胶、涂料及涂层、纸和纸板、油墨以及聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)等多种塑料材料及制品。此次申请将其使用范围扩大到聚醚醚酮(PEEK)塑料材料及制品。美国食品药品管理局、欧盟委员会、日本厚生劳动省和南方共同市场均允许该物质用于食品接触用塑料材料及制品。    2.工艺必要性。该物质是一种常用的黑色颜料,具有较好的色强度。(二)丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸和N,N'-亚甲基双丙烯酰胺的共聚物1.背景资料。该物质为水溶性物质,在水溶液状态下为透明至琥珀色。国家卫生健康委2023年第1号公告中已批准该物质作为添加剂用于食品接触用纸和纸板材料及制品,最大使用量为1%,此次申请将其最大使用量扩大为1.5%。美国食品药品管理局和德国联邦风险评估研究所均允许该物质用于食品接触用纸和纸板材料及制品。    2.工艺必要性。该物质作为干强剂用于食品接触用纸和纸板材料及制品,可增强纸张强度、增加纤维和填料等的留着性能以及纸浆的滤水性能。(三)2-(乙烯氧基)-1,2,3-丙三羧酸三丁基酯1.背景资料。该物质在常温下为无色粘稠液体。GB 9685-2016已批准该物质作为添加剂用于塑料材料及制品,此次申请将其使用范围扩大到食品接触材料及制品用油墨。欧洲印刷油墨协会、瑞士联邦食品药品监督管理局和德国联邦食品和农业部均允许该物质用于食品接触材料及制品用油墨。    2.工艺必要性。该物质作为添加剂用于食品接触材料及制品用油墨,能增强油墨的热塑性能和耐水性能。(四)1,4-苯二甲酸与癸二酸和1,2-乙二醇的聚合物1.背景资料。该物质在常温下为乳白色固体,不溶于水。美国食品药品管理局和欧洲委员会均允许该物质用于食品接触用涂料及涂层。    2.工艺必要性。该物质用于聚对苯二甲酸乙二酯(PET)膜材表面涂层,具有较好的耐热性和耐化学性。(五)甲基丙烯酸与甲基丙烯酸丁酯、丙烯酸乙酯和甲基丙烯酸甲酯的聚合物和对苯二酚与4,4-亚甲基双(2,6-二甲基酚)和氯甲基环氧乙烷的聚合物与N,N-二甲基乙醇胺的反应产物1.背景资料。该物质不溶于水,分散在水中呈现为乳白色液体状态,也几乎不溶解于大多数有机溶剂。美国食品药品管理局和欧洲委员会均允许该物质用于食品接触用涂料及涂层。    2.工艺必要性。该物质为涂料的主要成膜物质,具有较强的附着力和耐腐蚀性。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制