当前位置: 仪器信息网 > 行业主题 > >

乙酰化千里光菲灵碱氮氧化

仪器信息网乙酰化千里光菲灵碱氮氧化专题为您提供2024年最新乙酰化千里光菲灵碱氮氧化价格报价、厂家品牌的相关信息, 包括乙酰化千里光菲灵碱氮氧化参数、型号等,不管是国产,还是进口品牌的乙酰化千里光菲灵碱氮氧化您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙酰化千里光菲灵碱氮氧化相关的耗材配件、试剂标物,还有乙酰化千里光菲灵碱氮氧化相关的最新资讯、资料,以及乙酰化千里光菲灵碱氮氧化相关的解决方案。

乙酰化千里光菲灵碱氮氧化相关的论坛

  • 组蛋白乙酰化

    组蛋白乙酰化组蛋白修饰通过改变组蛋白与DNA的亲和性使染色质结构发生改变,进而影响转录因子与DNA序列的结合和基因表达,包括乙酰化、甲基化、磷酸化等,其中乙酰化是最重要的修饰方式之一,其主要发生在组蛋白H3赖氨酸(Lysine, Lys)的位点上,在癌症进展中发挥双重作用,既参与肿瘤抑制基因的沉默,又增强癌基因的表达[11],它受组蛋白乙酰转移酶(Histone acetyl transferase,HAT)和组蛋白去乙酰化酶(Histone deacetylase,HDAC)调控。HDAC可移去Lys残基上的乙酰基,增强组蛋白的正电性,DNA(本身带有负电荷)与组蛋白结合紧密,转录因子不易于DNA结合,抑制抑癌基因的转录,HAT作用则相反,二者动态平衡才能使组蛋白乙酰化维持在正常水平。表观遗传学改变通过调控基因转录平衡组蛋白乙酰化和去乙酰化,从而影响细胞周期、凋亡和分化相关蛋白的表达水平[12]。2.1 组蛋白乙酰化水平与SCLC发生发展密切相关 一项实验研究表明,乙酰化组蛋白H3在SCLC和NSCLC细胞中的表达有显著性差异,以前者表达较高。Notch信号通路是SCLC发生发展和化疗耐药的主要调节通路之一[13],具有肿瘤抑制作用。此研究中,Notch1在SCLC细胞系(除H69AR、SBC-3)中失活,其表达水平与组蛋白H3乙酰化有关。Notch1阳性表达的细胞系中乙酰化组蛋白H3富集在Notch1启动子区域,表达水平较高,Notch1阴性表达的细胞系中Notch1启动子周围的乙酰化组蛋白H3水平较低。这说明组蛋白去乙酰化是Notch1基因在SCLC中表观失活的原因[14]915-918。此外,组蛋白H3赖氨酸23(histone 3 lysine 23, H3K23)乙酰转移酶KAT6B在SCLC中失活,若其活性恢复可对SCLC产生抑制作用,它的乙酰化水平降低是SCLC发生的重要标志[15]。由此可见,组蛋白去乙酰化可以调控相关基因的表达从而促进SCLC发生发展。2.2 组蛋白去乙酰化酶抑制剂 HDAC在许多癌症中过表达,干扰其活性、抑制其功能是有效的治疗手段。组蛋白去乙酰化酶抑制剂(Histone deacetylase inhibitor, HDACI)是重要的表观调控药物,高效低毒,通过靶向阻断HDAC去乙酰化、促进组蛋白乙酰化发挥抗肿瘤作用。根据化学结构的不同,HDACIs分为异羟肟酸(异羟肟酸酯)、短链脂肪(脂肪族)酸、环状四肽、苯甲酰胺和Sirt抑制剂5类[16]。在单药和/或与传统化疗药物联合使用时,HDACI可阻滞细胞周期,抑制迁移和侵袭[17],诱导癌细胞分化、自噬[18]、凋亡,抗血管生成。当前,伏立诺他(Vorinostat ,SAHA)、罗米地辛(Romidepsin)、帕比司他(Panobinostat)等被批准用于血液系统恶性肿瘤的治疗[19]。丙戊酸(valproic acid ,VPA)作为HDACI可抑制SCLC细胞生长,诱导细胞凋亡,阻滞SCLC细胞周期于G1期。以上抑制作用是通过降低HDAC4表达,增加组蛋白H4乙酰化实现的。同时发现,VPA激活了SCLC中Notch1、Notch靶基因HES1和P21的Notch信号通路。此外,它还可以上调生长抑素受体II(somatostatinreceptor2,SSTR2)并增强受体靶向细胞毒素的抑制作用[20]。在经曲古抑菌素A (Trichostatin A ,TSA)处理后的SCLC细胞系中, Notch1启动子区域H3乙酰化水平增加,从而导致Notch1蛋白表达。此外,经TSA处理后,SCLC细胞黏附增加,上皮间质转化标志物表达减少,细胞增殖减少,细胞凋亡激活,可能与TSA诱导Notch1表达有关[14]916-918。这些研究成果为HDACI在 SCLC治疗中的应用提供了依据。为了达到最好治疗效果,药物用量、联合用药及使用顺序仍需深入研究。

  • 【原创大赛】组蛋白乙酰化

    [size=20px] [/size][size=20px]组蛋白乙酰化[/size][size=16px]组蛋白修饰通过改变组蛋白与[/size][size=16px]DNA[/size][size=16px]的亲和性使染色质结构发生改变,进而影响转录因子与[/size][size=16px]DNA[/size][size=16px]序列的结合和基因表达[/size][size=16px],[/size][size=16px]包括乙酰化、甲基化、磷酸化等,其中乙酰化是最重要的修饰方式之一,其主要发生在组蛋白[/size][size=16px]H3[/size][size=16px]赖氨酸([/size][size=16px]Lysine, Lys[/size][size=16px])的位点上,在癌症进展中发挥双重作用,既参与肿瘤抑制基因的沉默,又增强癌基因的表达[/size][font='times new roman'][size=16px][11][/size][/font][size=16px],它受组蛋白乙酰转移酶([/size][size=16px]Histone acetyl transferase[/size][size=16px],[/size][size=16px]HAT[/size][size=16px])和组蛋白去乙酰化酶[/size][size=16px](Histone deacetylase[/size][size=16px],[/size][size=16px]HDAC)[/size][size=16px]调控。[/size][size=16px]HDAC[/size][size=16px]可移去[/size][size=16px]Lys[/size][size=16px]残基上的乙酰基,增强组蛋白的正电性,[/size][size=16px]DNA[/size][size=16px](本身带有负电荷)与组蛋白结合紧密,转录因子不易于[/size][size=16px]DNA[/size][size=16px]结合,抑制抑癌基因的转录,[/size][size=16px]HAT[/size][size=16px]作用则相反,二者动态平衡才能使组蛋白乙酰化维持在正常水平。表观遗传学改变通过调控基因转录平衡组蛋白乙酰化和去乙酰化,从而影响细胞周期、凋亡和分化相关蛋白的表达水平[/size][font='times new roman'][size=16px][12][/size][/font][size=16px]。[/size][size=20px]1[/size][size=20px] [/size][size=20px]组蛋白乙酰化水平与[/size][size=20px]SCLC[/size][size=20px]发生发展密切相关[/size][font='黑体'][size=14px] [/size][/font][font='黑体'][size=14px] [/size][/font][size=14px] [/size][size=16px]一项实验研究表明,乙酰化组蛋白[/size][size=16px]H3[/size][size=16px]在[/size][size=16px]SCLC[/size][size=16px]和[/size][size=16px]NSCLC[/size][size=16px]细胞中的表达有显著性差异,以前者表达较高。[/size][size=16px]Notch[/size][size=16px]信号通路是[/size][size=16px]SCLC[/size][size=16px]发生发展和化疗耐药的主要调节通路之一[/size][font='times new roman'][size=16px][13][/size][/font][size=16px],具有肿瘤抑制作用。此研究中,[/size][size=16px]Notch1[/size][size=16px]在[/size][size=16px]SCLC[/size][size=16px]细胞系(除[/size][size=16px]H69AR[/size][size=16px]、[/size][size=16px]SBC-3[/size][size=16px])中失活,其表达水平与组蛋白[/size][size=16px]H3[/size][size=16px]乙酰化有关。[/size][size=16px]Notch1[/size][size=16px]阳性表达的细胞系中乙酰化组蛋白[/size][size=16px]H3[/size][size=16px]富集在[/size][size=16px]Notch1[/size][size=16px]启动子区域,表达水平较高,[/size][size=16px]Notch1[/size][size=16px]阴性表达的细胞系中[/size][size=16px]Notch1[/size][size=16px]启动子周围的乙酰化组蛋白[/size][size=16px]H3[/size][size=16px]水平较低。这说明组蛋白去乙酰化是[/size][size=16px]Notch1[/size][size=16px]基因在[/size][size=16px]SCLC[/size][size=16px]中表观失活的原因[/size][font='times new roman'][size=16px][14]915-918[/size][/font][size=16px]。此外,组蛋白[/size][size=16px]H3[/size][size=16px]赖氨酸[/size][size=16px]23(histone 3 lysine 23, H3K23)[/size][size=16px]乙酰转移酶[/size][size=16px]KAT6B[/size][size=16px]在[/size][size=16px]SCLC[/size][size=16px]中失活,若其活性恢复可对[/size][size=16px]SCLC[/size][size=16px]产生抑制作用,它的乙酰化水平降低是[/size][size=16px]SCLC[/size][size=16px]发生的重要标志[/size][font='times new roman'][size=16px][15][/size][/font][size=16px]。由此可见,组蛋白去乙酰化可以调控相关基因的表达从而促进[/size][size=16px]SCLC[/size][size=16px]发生发展。[/size][size=20px]2 [/size][size=20px]组蛋白去乙酰化酶抑制剂[/size][font='黑体'][size=14px] [/size][/font][font='黑体'][size=14px] [/size][/font][size=16px]HDAC[/size][size=16px]在许多癌症中过表达,干扰其活性、抑制其功能是有效的治疗手段。组蛋白去乙酰化酶抑制剂([/size][size=16px]Histone deacetylase inhibitor, HDACI[/size][size=16px])是重要的表观调控药物,高效低毒,通过靶向阻断[/size][size=16px]HDAC[/size][size=16px]去乙酰化、促进组蛋白乙[/size][size=16px]酰化发挥抗肿瘤作用。根据化学结构的不同,[/size][size=16px]HDACIs[/size][size=16px]分为异羟肟酸(异羟肟酸酯)、短链脂肪(脂肪族)酸、环状四肽、苯甲酰胺和[/size][size=16px]Sirt[/size][size=16px]抑制剂[/size][size=16px]5[/size][size=16px]类[/size][font='times new roman'][size=16px][16][/size][/font][size=16px]。在单药和[/size][size=16px]/[/size][size=16px]或与传统化疗药物联合使用时,[/size][size=16px]HDACI[/size][size=16px]可阻滞细胞周期,抑制迁移和侵袭[/size][font='times new roman'][size=16px][17][/size][/font][size=16px],诱导癌细胞分化、自噬[/size][font='times new roman'][size=16px][18][/size][/font][size=16px]、凋亡,抗血管生成。当前,伏立诺他([/size][size=16px]Vorinostat ,SAHA[/size][size=16px])、罗米地辛([/size][size=16px]Romidepsin[/size][size=16px])、帕比司他([/size][size=16px]Panobinostat[/size][size=16px])等被批准用于血液系统恶性肿瘤的治疗[/size][font='times new roman'][size=16px][19][/size][/font][size=16px]。[/size][size=16px]丙戊酸[/size][size=16px](valproic acid ,VPA)[/size][size=16px]作为[/size][size=16px]HDACI[/size][size=16px]可抑制[/size][size=16px]SCLC[/size][size=16px]细胞生长,诱导细胞凋亡,阻滞[/size][size=16px]SCLC[/size][size=16px]细胞周期于[/size][size=16px]G1[/size][size=16px]期。以上抑制作用是通过降低[/size][size=16px]HDAC4[/size][size=16px]表达,增加组蛋白[/size][size=16px]H4[/size][size=16px]乙酰化实现的。同时发现,[/size][size=16px]VPA[/size][size=16px]激活了[/size][size=16px]SCLC[/size][size=16px]中[/size][size=16px]Notch1[/size][size=16px]、[/size][size=16px]Notch[/size][size=16px]靶基因[/size][size=16px]HES1[/size][size=16px]和[/size][size=16px]P21[/size][size=16px]的[/size][size=16px]Notch[/size][size=16px]信号通路。此外,它还可以上调生长抑素受体[/size][size=16px]II[/size][size=16px]([/size][size=16px]somatostatinreceptor2[/size][size=16px],[/size][size=16px]SSTR2[/size][size=16px])并增强受体靶向细胞毒素的抑制作用[/size][font='times new roman'][size=16px][20][/size][/font][size=16px]。在经曲古抑菌素[/size][size=16px]A (Trichostatin A ,TSA)[/size][size=16px]处理后的[/size][size=16px]SCLC[/size][size=16px]细胞系中,[/size][size=16px] Notch1[/size][size=16px]启动子区域[/size][size=16px]H3[/size][size=16px]乙酰化水平增加,从而导致[/size][size=16px]Notch1[/size][size=16px]蛋白表达。此外,经[/size][size=16px]TSA[/size][size=16px]处理后,[/size][size=16px]SCLC[/size][size=16px]细胞黏附增加,上皮间质转化标志物表达减少,细胞增殖减少,细胞凋亡激活,可能与[/size][size=16px]TSA[/size][size=16px]诱导[/size][size=16px]Notch1[/size][size=16px]表达有关[/size][font='times new roman'][size=16px][14]916-918[/size][/font][size=16px]。这些研究成果为[/size][size=16px]HDACI[/size][size=16px]在[/size][size=16px] SCLC[/size][size=16px]治疗中的应用提供了依据。为了达到最好治疗效果,药物用量、联合用药及使用顺序仍需深入研究。[/size]

  • 乙酰化与脲基化壳聚糖衍生物手性固定相的制备与性能

    【序号】:2【作者】:熊金辉【题名】:乙酰化与脲基化壳聚糖衍生物手性固定相的制备与性能【期刊】:武汉工程大学【年、卷、期、起止页码】:2019【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3_cPGLZMhAlxcftlnVDan2L8n7j6j0SmwHyrTM1MSKw_ZnYJXei6bqu5yBYQ-wk_7Lg48Kyz8DwfxC87fgpif4Y_N8j9jkYDunYc1hZJbGxiH-0kl-4a3j9t4P6Lr3dncUH2tVe2fJvlE7sGhsMwzg==&uniplatform=NZKPT&language=CHS

  • 【讨论】棉酚的乙酰化衍生气质分析

    【讨论】棉酚的乙酰化衍生气质分析

    [size=4][font=KaiTi_GB2312] 游离棉酚是棉籽饼中含有的一种有毒物质,可以杀灭精子,用于男性避孕。因棉籽饼含大量蛋白质,常用作动物饲料,但其所含的棉酚对动物有抑制生长的作用。检测棉酚含量的标准方法一般为紫外分光光度检测和高效液相色谱法,目前也有用LC/MS/MS法进行检测的报道,但尚未见使用GC/MS法检测的报道。 因棉酚挥发性和稳定性较差,分子结构为含双萘环的多羟基化合物,所以我尝试使用衍生化进行检测。首先使用了硅烷化试剂进行衍生,结果出现多个色谱峰,谱图如下:[img]http://ng1.17img.cn/bbsfiles/images/2010/03/201003061118_204192_1608554_3.jpg[/img] 从图中可以看出在7.48、7.55和11.96min出现了三个峰,峰的质谱图如下:[img]http://ng1.17img.cn/bbsfiles/images/2010/03/201003061121_204193_1608554_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2010/03/201003061121_204194_1608554_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2010/03/201003061123_204196_1608554_3.jpg[/img]第三个峰的谱库检索显示为邻苯二甲酸酯。 其后我又使用乙酰化衍生,色谱图如下:[img]http://ng1.17img.cn/bbsfiles/images/2010/03/201003061125_204197_1608554_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2010/03/201003061125_204198_1608554_3.jpg[/img]11.95min的质谱检索显示仍为邻苯二甲酸酯。 而棉酚的分子量为578.6,我非常困惑,这是为什么?这个峰是污染的吗?可是我用纯溶剂并不能跑出这个峰啊![/font][/size]

  • 西达本胺促进SCLC细胞系组蛋白乙酰化

    西达本胺促进SCLC细胞系组蛋白乙酰化

    [align=left][size=18px]西达本胺促进[/size][size=18px]S[/size][size=18px]CLC[/size][size=18px]细胞系组蛋白乙酰化[/size][/align][align=left][size=18px] [/size][size=18px] [/size][size=16px]为验证西达本胺是否上调[/size][size=16px]SCLC[/size][size=16px]细胞系的乙酰化水平,我们使用[/size][size=16px]Western blot[/size][size=16px]检测了不同浓度([/size][size=16px]I[/size][size=16px]C10[/size][size=16px]、[/size][size=16px]IC20[/size][size=16px]、[/size][size=16px]IC50[/size][size=16px])西达本胺处理[/size][size=16px]4[/size][size=16px]8[/size][size=16px] [/size][size=16px]h[/size][size=16px]后,[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞系中乙酰化组蛋白[/size][size=16px]H[/size][size=16px]3[/size][size=16px]、[/size][size=16px]H[/size][size=16px]4[/size][size=16px]表达水平,并以组蛋白[/size][size=16px]H[/size][size=16px]3[/size][size=16px]、[/size][size=16px]H[/size][size=16px]4[/size][size=16px]表达水平为对照。结果如图所示。在四种亚型细胞系中,总组蛋白[/size][size=16px]H[/size][size=16px]3[/size][size=16px]、[/size][size=16px]H[/size][size=16px]4[/size][size=16px]表达水平无变化,乙酰化组蛋白[/size][size=16px]H[/size][size=16px]3[/size][size=16px]、[/size][size=16px]H[/size][size=16px]4[/size][size=16px]表达量随加药浓度增大而增多,这证明了西达本胺对[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞系组蛋白乙酰化的促进作用,这种作用呈剂量依赖性。[/size][/align][align=left][size=18px]A[/size][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211302350400898_8640_5887180_3.png[/img][/align][align=left][/align][align=left][/align][align=left][/align][align=center][/align][align=left][size=18px] [/size][size=18px]西达本胺通过线粒体凋亡途径诱导[/size][size=18px]S[/size][size=18px]CLC[/size][size=18px]细胞系凋亡[/size][/align][align=left][size=16px]我们的功能实验表明,西达本胺[/size][size=16px]可剂量依赖的[/size][size=16px]促进[/size][size=16px]SCLC[/size][size=16px]细胞[/size][size=16px]系[/size][size=16px]凋亡[/size][size=16px],但其机制尚未明确。[/size][size=16px]依据国内外报道,西达本胺主要通过线粒体凋亡途径诱导细胞凋亡[/size][size=16px]。除此之外,[/size][size=16px]西达本胺[/size][size=16px]能[/size][size=16px]使[/size][size=16px]线粒体[/size][size=16px]DNA[/size][size=16px]双链断裂,发生损伤。[/size][size=16px]为探究其是否通过此途径在[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞系中发挥作用,我们检测了加药[/size][size=16px]4[/size][size=16px]8[/size][size=16px] [/size][size=16px]h[/size][size=16px]后,[/size][size=16px]H69[/size][size=16px]、[/size][size=16px]H[/size][size=16px]446[/size][size=16px]、[/size][size=16px]H[/size][size=16px]526[/size][size=16px]、[/size][size=16px]DMS114[/size][size=16px]细胞中由线粒体介导的[/size][size=16px]C[/size][size=16px]aspase[/size][size=16px]信号通路相关蛋白[/size][size=16px]Bcl-2[/size][size=16px],[/size][size=16px]Bax[/size][size=16px],细胞色素[/size][size=16px]C[/size][size=16px],[/size][size=16px]Ca[/size][size=16px]spase 9[/size][size=16px],[/size][size=16px]c[/size][size=16px]leaved Caspase 9[/size][size=16px],[/size][size=16px]P[/size][size=16px]ARP[/size][size=16px],[/size][size=16px]c[/size][size=16px]leaved [/size][size=16px]PARP[/size][size=16px],[/size][size=16px]Ca[/size][size=16px]spase 3[/size][size=16px],[/size][size=16px]c[/size][size=16px]leaved Caspase 3[/size][size=16px]以及[/size][size=16px]D[/size][size=16px]NA[/size][size=16px]双链断裂标志物[/size][size=16px] [/size][size=16px]γH2AX[/size][size=16px]表达水平。[/size][size=16px]Western blot[/size][size=16px]结果显示,[/size][size=16px]Ca[/size][size=16px]spase 9[/size][size=16px],[/size][size=16px]P[/size][size=16px]ARP[/size][size=16px] [/size][size=16px],[/size][size=16px]Ca[/size][size=16px]spase 3[/size][size=16px]表达水平无明显变化,[/size][size=16px]Bcl-2[/size][size=16px]表达下调,其余蛋白表达均上调。这些结果表明,在[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞中,西达本胺可以通过线粒体凋亡途径诱导细胞凋亡。[/size][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][size=16px]A[/size][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211302350402755_79_5887180_3.png[/img][/align][align=left][size=18px] [/size][size=18px]西达本胺通过抑制[/size][size=18px]C[/size][size=18px]yclin-CDK[/size][size=18px]复合物活性阻滞[/size][size=18px]S[/size][size=18px]CLC[/size][size=18px]细胞系周期[/size][/align][align=left][font='宋体'][size=16px]据文献报道,[/size][/font][size=16px]不同[/size][size=16px]HDACI[/size][size=16px]对不同细胞阻滞时相不一致。为验证西达本胺对[/size][size=16px]SCLC[/size][size=16px]细胞周期的作用,我们检测了[/size][size=16px]经[/size][size=16px]西达本胺[/size][size=16px]处理[/size][size=16px]48[/size][size=16px] [/size][size=16px]h[/size][size=16px]后,[/size][size=16px]H69[/size][size=16px]、[/size][size=16px]H446[/size][size=16px]、[/size][size=16px]H526[/size][size=16px]、[/size][size=16px]DMS114[/size][size=16px]细胞中细胞周期相关蛋白的表达水平,如图所示。[/size][size=16px]在[/size][size=16px]H69[/size][size=16px]、[/size][size=16px]H526[/size][size=16px]、[/size][size=16px]D[/size][size=16px]MS114[/size][size=16px]细胞系中[/size][size=16px]P21[/size][size=16px]、[/size][size=16px]P27[/size][size=16px]表达上调,[/size][size=16px]C[/size][size=16px]yclin A2[/size][size=16px]与[/size][size=16px]C[/size][size=16px]DK[/size][size=16px]2[/size][size=16px]表达下调[/size][size=16px],[/size][size=16px]说明西达本胺阻滞[/size][size=16px]H69[/size][size=16px]、[/size][size=16px]H526[/size][size=16px]、[/size][size=16px]D[/size][size=16px]MS114[/size][size=16px]于[/size][size=16px]S[/size][size=16px]期。在[/size][size=16px]H446[/size][size=16px]细胞系中[/size][size=16px]C[/size][size=16px]yclin E1[/size][size=16px]与[/size][size=16px]C[/size][size=16px]DK2[/size][size=16px]表达下调[/size][size=16px],说明西达本胺阻滞其于[/size][size=16px]G[/size][size=16px]1[/size][size=16px]/S[/size][size=16px]期。[/size][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211302350422585_1956_5887180_3.png[/img][size=16px] [/size][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211302350405804_8826_5887180_3.png[/img][/align][align=left][size=18px]小结[/size][/align][size=16px]1[/size][size=16px].[/size][size=16px]西达本胺可以增强[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞系组蛋白乙酰化水平。[/size][size=16px]2.[/size][size=16px]西达本胺诱导[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞凋亡的机制可能与其激活线粒体介导的[/size][size=16px]caspase[/size][size=16px]凋亡途径有关。[/size][size=16px]3[/size][size=16px].[/size][size=16px]西达本胺可阻滞[/size][size=16px]S[/size][size=16px]CLC[/size][size=16px]细胞周期,可能与其上调细胞周期蛋白激酶抑制剂表达、从而抑制[/size][size=16px]C[/size][size=16px]yclin-CDK[/size][size=16px]复合物活性有关。[/size]

  • 水飞蓟宾靶向HDAC2调控组蛋白乙酰化改善非酒精性脂肪肝

    [size=15px][font=宋体][color=black]水飞蓟宾([/color][/font][font=&][color=black]silybin[/color][/font][font=宋体][color=black])是一种是一种从水飞蓟科植物水飞蓟的果实和种子中分离得到的类黄酮木脂素,它具有保护肝脏、抗氧化、抗肿瘤和维持肝细胞膜稳定等广泛的药理活性,据报道是治疗肝脏疾病,包括非酒精性脂肪性肝病([/color][/font][font=&][color=black]non-alcoholic fatty liver disease[/color][/font][font=宋体][color=black],[/color][/font][font=&][color=black]NAFLD[/color][/font][font=宋体][color=black])的最有效的黄酮类化合物[i][/i],而水飞蓟宾的作用机制仍有待进一步明确。[/color][/font][/size] [size=15px][font=宋体][color=black]口服水飞蓟宾通过直接结合并抑制组蛋白去乙酰化酶[i][/i][/color][/font][font=&][color=black]2[/color][/font][font=宋体][color=black]([/color][/font][font=&][color=black]HDAC2[/color][/font][font=宋体][color=black])活性,增强[/color][/font][font=&][color=black]FXR[/color][/font][font=宋体][color=black]启动子区组蛋白乙酰化,促进回肠中[/color][/font][font=&][color=black]FGF-15/19[/color][/font][font=宋体][color=black]的表达,[/color][/font][font=&][color=black]FGF-15/19[/color][/font][font=宋体][color=black]进入循环发挥抗[/color][/font][font=&][color=black]NAFLD[/color][/font][font=宋体][color=black]作用。[/color][/font][font=&][color=black][/color][/font][/size] [img=,690,504]https://ng1.17img.cn/bbsfiles/images/2024/09/202409101438482204_1516_6561489_3.png!w690x504.jpg[/img] [size=15px][b][font=&][color=#4472c4]1[/color][/font][font=宋体][color=#4472c4]、水飞蓟宾通过非肝脏途径缓解小鼠[/color][/font][font=&][color=#4472c4]HFD[/color][/font][font=宋体][color=#4472c4]诱发的[/color][/font][font=&][color=#4472c4]NAFLD[/color][/font][font=&][color=#4472c4][/color][/font][/b][/size] [size=15px][font=宋体][color=black]作者建立小鼠[/color][/font][font=&][color=black]HFD[/color][/font][font=宋体][color=black]诱发的[/color][/font][font=&][color=black]NAFLD[/color][/font][font=宋体][color=black]模型,探讨水飞蓟宾的治疗作用,发现灌胃水飞蓟宾治疗对[/color][/font][font=&][color=black]HFD[/color][/font][font=宋体][color=black]诱发的小鼠肝脏脂质堆积和损伤具有明确的恢复作用。随后采用[/color][/font][font=&][color=black][url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS[/color][/font][font=宋体][color=black]法测定了水飞蓟宾灌胃后的血清药物浓度和组织分布,发现其在肝脏和血清中的暴露量非常低,但在回肠中的暴露量相对较高。肝脏中分布的水飞蓟宾不足以减少肝细胞中的脂质蓄积,因此作者推测口服水飞蓟宾是通过肠道途径而不是吸收发挥抗[/color][/font][font=&][color=black]NAFLD[/color][/font][font=宋体][color=black]作用[/color][/font][/size] [size=15px][b][font=&][color=#4472c4]2[/color][/font][font=宋体][color=#4472c4]、水飞蓟宾促进[/color][/font][font=&][color=#4472c4]HFD[/color][/font][font=宋体][color=#4472c4]诱发的[/color][/font][font=&][color=#4472c4]NAFLD[/color][/font][font=宋体][color=#4472c4]小鼠回肠和结肠中[/color][/font][font=&][color=#4472c4]Fgf-15/19[/color][/font][font=宋体][color=#4472c4]表达[/color][/font][font=&][color=#4472c4][/color][/font][/b][/size] [size=15px][font=宋体][color=black]大量数据已证实,一些细胞因子从肠道分泌,包括[/color][/font][font=&][color=black] FGF-15/19[/color][/font][font=宋体][color=black]、[/color][/font][font=&][color=black]GLP-1 [/color][/font][font=宋体][color=black]和[/color][/font][font=&][color=black] HGF[/color][/font][font=宋体][color=black],具有预防[/color][/font][font=&][color=black] NAFLD [/color][/font][font=宋体][color=black]的潜力,这促使作者探索水飞蓟宾是否能够诱导这些细胞因子的表达。结果显示水飞蓟宾治疗显著上调[/color][/font][font=&][color=black]HFD[/color][/font][font=宋体][color=black]诱发的[/color][/font][font=&][color=black]NAFLD[/color][/font][font=宋体][color=black]小鼠回肠和结肠中[/color][/font][font=&][color=black]Fgf-15[/color][/font][font=宋体][color=black]表达[/color][/font][font=宋体][color=black],上调大鼠肠上皮细胞及人结肠上皮细胞[/color][/font][font=&][color=black]FGF-19[/color][/font][font=宋体][color=black]表达[/color][/font][font=宋体][color=black]。[/color][/font][font=&][color=black][/color][/font][/size] [align=center] [/align] [size=15px][b][font=&][color=#4472c4]3[/color][/font][font=宋体][color=#4472c4]、特异性敲低肠道[/color][/font][font=&][color=#4472c4] FGF-15 [/color][/font][font=宋体][color=#4472c4]表达可逆转水飞蓟宾在小鼠体内的抗[/color][/font][font=&][color=#4472c4] NAFLD [/color][/font][font=宋体][color=#4472c4]作用[/color][/font][font=&][color=#4472c4][/color][/font][/b][/size] [size=15px][font=宋体][color=black]为了更好地了解[/color][/font][font=&][color=black]FGF-15/19 [/color][/font][font=宋体][color=black]在水飞蓟宾治疗[/color][/font][font=&][color=black] NAFLD [/color][/font][font=宋体][color=black]中的作用和重要性,作者特异性地敲低小鼠肠道中[/color][/font][font=&][color=black]Fgf-15[/color][/font][font=宋体][color=black]的表达。结果显示敲低肠道中[/color][/font][font=&][color=black]Fgf-15[/color][/font][font=宋体][color=black]表达后,水飞蓟宾在小鼠体内的抗[/color][/font][font=&][color=black] NAFLD [/color][/font][font=宋体][color=black]作用消失,这些发现表明肠道来源的[/color][/font][font=&][color=black]FGF-15/19[/color][/font][font=宋体][color=black]在水飞蓟宾的抗[/color][/font][font=&][color=black]NAFLD[/color][/font][font=宋体][color=black]中起着至关重要的作用[/color][/font][font=宋体][color=black]。[/color][/font][font=&][color=black][/color][/font][/size] [align=center][img=图片,1,]data:image/svg+xml,%3C%3Fxml version='1.0' encoding='UTF-8'%3F%3E%3Csvg width='1px' height='1px' viewBox='0 0 1 1' version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink'%3E%3Ctitle%3E%3C/title%3E%3Cg stroke='none' stroke-width='1' fill='none' fill-rule='evenodd' fill-opacity='0'%3E%3Cg transform='translate(-249.000000, -126.000000)' fill='%23FFFFFF'%3E%3Crect x='249' y='126' width='1' height='1'%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E[/img][/align][align=center] [/align] [size=15px][b][font=&][color=#4472c4]4[/color][/font][font=宋体][color=#4472c4]、水飞蓟宾上调[/color][/font][font=&][color=#4472c4]NAFLD[/color][/font][font=宋体][color=#4472c4]小鼠回肠和结肠中[/color][/font][font=&][color=#4472c4]Fxr[/color][/font][font=宋体][color=#4472c4]([/color][/font][font=&][color=#4472c4]Fgf-15/19 [/color][/font][font=宋体][color=#4472c4]转录因子)表达[/color][/font][font=&][color=#4472c4][/color][/font][/b][/size] [size=15px][font=宋体][color=black]转录因子[/color][/font][font=&][color=black]FXR[/color][/font][font=宋体][color=black]可能参与[/color][/font][font=&][color=black]FGF-15/19[/color][/font][font=宋体][color=black]的表达,作者研究了水飞蓟宾促进回肠和结肠中[/color][/font][font=&][color=black]Fgf-15/19[/color][/font][font=宋体][color=black]表达的作用机制。结果发现水飞蓟宾治疗可增加回肠和结肠中[/color][/font][font=&][color=black] Fxr[/color][/font][font=宋体][color=black]的表达,但不会增加十二指肠、空肠、肝脏和肾脏中的表达。在[/color][/font][font=&][color=black] IEC-6 [/color][/font][font=宋体][color=black]和[/color][/font][font=&][color=black] NCM460 [/color][/font][font=宋体][color=black]细胞中,水飞蓟宾也显示出促进[/color][/font][font=&][color=black] FXR[/color][/font][font=宋体][color=black]表达[/color][/font][/size] [size=15px][b][font=&][color=#4472c4]5[/color][/font][font=宋体][color=#4472c4]、[/color][/font][font=&][color=#4472c4]FXR[/color][/font][font=宋体][color=#4472c4]在水飞蓟宾介导的[/color][/font][font=&][color=#4472c4]FGF15/19 [/color][/font][font=宋体][color=#4472c4]表达和抗[/color][/font][font=&][color=#4472c4] NAFLD [/color][/font][font=宋体][color=#4472c4]作用中起重要作用[/color][/font][font=&][color=#4472c4][/color][/font][/b][/size] [size=15px][font=宋体][color=black]为了进一步研究[/color][/font][font=&][color=black]FXR[/color][/font][font=宋体][color=black]在水飞蓟宾诱导肠上皮细胞[/color][/font][font=&][color=black]FGF-15/19[/color][/font][font=宋体][color=black]表达中的作用和重要性,作者用[/color][/font][font=&][color=black]siRNA[/color][/font][font=宋体][color=black]沉默[/color][/font][font=&][color=black]FXR[/color][/font][font=宋体][color=black]基因,结果显示敲低[/color][/font][font=&][color=black]FXR[/color][/font][font=宋体][color=black]后,水飞蓟宾促进[/color][/font][font=&][color=black]FGF-15/19[/color][/font][font=宋体][color=black]表达作用几乎消失[/color][/font][font=宋体][color=black],降低了水飞蓟宾对与[/color][/font][font=&][color=black] NAFLD [/color][/font][font=宋体][color=black]相关的参数的改善作用[/color][/font][font=宋体][color=black]。 [/color][/font][/size] [size=15px][b][font=&][color=#4472c4]6[/color][/font][font=宋体][color=#4472c4]、水飞蓟宾降低[/color][/font][font=&][color=#4472c4]HDAC2[/color][/font][font=宋体][color=#4472c4]活性促进小肠上皮细胞[/color][/font][font=&][color=#4472c4]FXR[/color][/font][font=宋体][color=#4472c4]和[/color][/font][font=&][color=#4472c4]FGF-15/19[/color][/font][font=宋体][color=#4472c4]的表达[/color][/font][font=&][color=#4472c4][/color][/font][/b][/size] [size=15px][font=宋体][color=black]有报道称水飞蓟宾可以通过抑制组蛋白去乙酰化酶([/color][/font][font=&][color=black]HDAC[/color][/font][font=宋体][color=black])的活性,促进基因启动子区组蛋白乙酰化,从而上调基因表达。[/color][/font][font=&][color=black][/color][/font][/size] [size=15px][font=宋体][color=black]作者研究水飞蓟宾上调肠上皮细胞[/color][/font][font=&][color=black] FXR [/color][/font][font=宋体][color=black]表达的机制,通过[/color][/font][font=&][color=black]ChIP[/color][/font][font=宋体][color=black]发现水飞蓟宾和[/color][/font][font=&][color=black]TSA[i][/i][/color][/font][font=宋体][color=black](泛抑制剂,可抑制[/color][/font][font=&][color=black]HDAC[/color][/font][font=宋体][color=black])上调了[/color][/font][font=&][color=black]IEC-6 [/color][/font][font=宋体][color=black]细胞中[/color][/font][font=&][color=black]FXR [/color][/font][font=宋体][color=black]启动子的组蛋白[/color][/font][font=&][color=black] H3K27 [/color][/font][font=宋体][color=black]乙酰化水平。接着研究发现水飞蓟宾处理显著抑制了[/color][/font][font=&][color=black] IEC-6 [/color][/font][font=宋体][color=black]细胞中[/color][/font][font=&][color=black] HDAC [/color][/font][font=宋体][color=black]的活性而不不影响[/color][/font][font=&][color=black] HDAC1-3 [/color][/font][font=宋体][color=black]的蛋白质表达。这些数据表明,水飞蓟宾上调[/color][/font][font=&][color=black] FXR [/color][/font][font=宋体][color=black]启动子区组蛋白乙酰化,并通过抑制[/color][/font][font=&][color=black] HDAC [/color][/font][font=宋体][color=black]的活性而不是蛋白质表达来促进[/color][/font][font=&][color=black] FXR [/color][/font][font=宋体][color=black]的转录。[/color][/font][font=&][color=black][/color][/font][/size] [size=15px][font=宋体][color=black]为了确定水飞蓟宾影响的主要[/color][/font][font=&][color=black]HDAC[/color][/font][font=宋体][color=black]亚型([/color][/font][font=&][color=black]HDAC1/2/3[/color][/font][font=宋体][color=black]),作者观察了这三种抑制剂对[/color][/font][font=&][color=black] IEC-6[/color][/font][font=宋体][color=

  • 【原创大赛】组蛋白去乙酰化酶(HDAC)在SCLC治疗中的作用

    [font='times new roman'][size=16px][color=#000000]组蛋白去乙酰化酶([/color][/size][/font][font='times new roman'][size=16px][color=#000000]HDAC[/color][/size][/font][font='times new roman'][size=16px][color=#000000])在[/color][/size][/font][font='times new roman'][size=16px][color=#000000]SCLC[/color][/size][/font][font='times new roman'][size=16px][color=#000000]治疗中的作用[/color][/size][/font][font='times new roman'][size=16px][color=#000000]自[/color][/size][/font][font='times new roman'][size=16px][color=#000000]20[/color][/size][/font][font='times new roman'][size=16px][color=#000000]世纪[/color][/size][/font][font='times new roman'][size=16px][color=#000000]80[/color][/size][/font][font='times new roman'][size=16px][color=#000000]年代起,肺癌逐步成为[/color][/size][/font][font='times new roman'][size=16px][color=#000000]威胁人类健康的第一大癌种,其[/color][/size][/font][font='times new roman'][size=16px][color=#000000]发病率和死[/color][/size][/font][font='times new roman'][size=16px][color=#000000]亡[/color][/size][/font][font='times new roman'][size=16px][color=#000000]率[/color][/size][/font][font='times new roman'][size=16px][color=#000000]常年位于第一[/color][/size][/font][font='times new roman'][size=16px][color=#000000]。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]据[/color][/size][/font][font='times new roman'][size=16px]2020[/size][/font][font='times new roman'][size=16px]年全球癌症报告统计,肺癌新发病例约[/size][/font][font='times new roman'][size=16px]224[/size][/font][font='times new roman'][size=16px]万,占所有新发癌症病例的[/size][/font][font='times new roman'][size=16px]11.7%[/size][/font][font='times new roman'][size=16px],死亡病例约[/size][/font][font='times new roman'][size=16px]180[/size][/font][font='times new roman'][size=16px]万,约占癌症总死亡人数的[/size][/font][font='times new roman'][size=16px]18%[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]SCLC[/size][/font][font='times new roman'][size=16px]约占所有肺癌的[/size][/font][font='times new roman'][size=16px]15%[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px][color=#000000]5[/color][/size][/font][font='times new roman'][size=16px][color=#000000]年生存率仅为[/color][/size][/font][font='times new roman'][size=16px][color=#000000]7%[/color][/size][/font][font='times new roman'][size=16px][color=#000000]。[/color][/size][/font][font='times new roman'][size=16px]它是一种神经内分泌瘤,具有早期转移、高度侵袭性、遗传不稳定性等特点。[/size][/font][font='times new roman'][size=16px][color=#000000]SCLC[/color][/size][/font][font='times new roman'][size=16px][color=#000000]目前的治疗方式主要有手术、化疗、放疗、靶[/color][/size][/font][font='times new roman'][size=16px][color=#000000]向治疗[/color][/size][/font][font='times new roman'][size=16px][color=#000000]和免疫治疗。[/color][/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]CLC[/size][/font][font='times new roman'][size=16px]初期对放化疗敏感,但易产生耐药,多复发。关于[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]CLC[/size][/font][font='times new roman'][size=16px]的治疗仍是一个难题。传统的化疗药物因其选择性低而易产生严重的毒副作用,不利于提高患者的生存质量。因此,为[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]CLC[/size][/font][font='times new roman'][size=16px]找到更多的治疗靶点和高效低毒的靶[/size][/font][font='times new roman'][size=16px]向药物[/size][/font][font='times new roman'][size=16px]成为亟待解决的问题。[/size][/font][font='times new roman'][size=16px]基因突变和调控异常往往导致肿瘤的发生。[/size][/font][font='times new roman'][size=16px]表观遗传学变化是指在细胞分裂中可以遗传的基因表达改变,[/size][/font][font='times new roman'][size=16px]DNA[/size][/font][font='times new roman'][size=16px]序列不发生变化[/size][/font][font='times new roman'][size=16px],基因的转录和翻译受到[/size][/font][font='times new roman'][size=16px]调控[/size][/font][font='times new roman'][size=16px],主要[/size][/font][font='times new roman'][size=16px]包括[/size][/font][font='times new roman'][size=16px]DNA[/size][/font][font='times new roman'][size=16px]甲基化[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]组蛋白修饰和染色质重塑等。[/size][/font][font='times new roman'][size=16px]组蛋白修饰通过[/size][/font][font='times new roman'][size=16px]改变[/size][/font][font='times new roman'][size=16px]组蛋白与[/size][/font][font='times new roman'][size=16px]DNA[/size][/font][font='times new roman'][size=16px]的亲和性[/size][/font][font='times new roman'][size=16px]使[/size][/font][font='times new roman'][size=16px]染色质的结构状态[/size][/font][font='times new roman'][size=16px]紧密或松弛[/size][/font][font='times new roman'][size=16px],进而影响基因表达[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]包括乙酰化、甲基化、磷酸化等,其中乙酰化是最重要的修饰方式之一。组蛋白乙酰化主要发生在组蛋白[/size][/font][font='times new roman'][size=16px]H3 Lys[/size][/font][font='times new roman'][size=16px]的[/size][/font][font='times new roman'][size=16px]位点[/size][/font][font='times new roman'][size=16px]上,[/size][/font][font='times new roman'][size=16px]在癌症进展中发挥双重作用,[/size][/font][font='times new roman'][size=16px]既[/size][/font][font='times new roman'][size=16px]参与肿瘤抑制基因的沉默,[/size][/font][font='times new roman'][size=16px]又[/size][/font][font='times new roman'][size=16px]增强癌基因的表达[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]它受[/size][/font][font='times new roman'][size=16px]HAT[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]HDAC[/size][/font][font='times new roman'][size=16px]共同调控。[/size][/font][font='times new roman'][size=16px]HDAC[/size][/font][font='times new roman'][size=16px]去[/size][/font][font='times new roman'][size=16px]除[/size][/font][font='times new roman'][size=16px]Lys[/size][/font][font='times new roman'][size=16px]残基上的乙酰基,[/size][/font][font='times new roman'][size=16px]DNA[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]本身带有负电荷[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px]与组蛋白[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]正电性[/size][/font][font='times new roman'][size=16px]增强)结合更加紧密[/size][/font][font='times new roman'][size=16px],转录调控蛋白不易[/size][/font][font='times new roman'][size=16px]与[/size][/font][font='times new roman'][size=16px]DNA[/size][/font][font='times new roman'][size=16px]结合[/size][/font][font='times new roman'][size=16px],从而抑制[/size][/font][font='times new roman'][size=16px]抑癌基因的[/size][/font][font='times new roman'][size=16px]转录[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]H[/size][/font][font='times new roman'][size=16px]AT[/size][/font][font='times new roman'][size=16px]作用则相反,二者动态平衡才能使组蛋白乙酰[/size][/font][font='times new roman'][size=16px]化维持[/size][/font][font='times new roman'][size=16px]在正常水平。[/size][/font][font='times new roman'][size=16px]H[/size][/font][font='times new roman'][size=16px]DAC[/size][/font][font='times new roman'][size=16px]在多种肿瘤中过表达,干扰其活性、抑制其功能[/size][/font][font='times new roman'][size=16px]是有效[/size][/font][font='times new roman'][size=16px]的治疗手段[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]HDACI[/size][/font][font='times new roman'][size=16px]是重要的表观调控[/size][/font][font='times new roman'][size=16px]药物,[/size][/font][font='times new roman'][size=16px]高效低毒,通过靶向阻断[/size][/font][font='times new roman'][size=16px]H[/size][/font][font='times new roman'][size=16px]DAC[/size][/font][font='times new roman'][size=16px]去乙酰化、促进组蛋白乙酰[/size][/font][font='times new roman'][size=16px]化发挥[/size][/font][font='times new roman'][size=16px]抗肿瘤作用。根据化学结构的不同,[/size][/font][font='times new roman'][size=16px]HDACI[/size][/font][font='times new roman'][size=16px]分为异羟肟酸(异羟肟酸酯)、短链脂肪(脂肪族)酸、环状四肽[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]苯甲酰胺和[/size][/font][font='times new roman'][size=16px]Sirt[/size][/font][font='times new roman'][size=16px]抑制剂[/size][/font][font='times new roman'][size=16px]五类。[/size][/font][font='times new roman'][size=16px]在单[/size][/font][font='times new roman'][size=16px]药[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]/[/size][/font][font='times new roman'][size=16px]或与传统化疗药物联合使用时,[/size][/font][font='times new roman'][size=16px]H[/size][/font][font='times new roman'][size=16px]DACI[/size][/font][font='times new roman'][size=16px]可[/size][/font][font='times new roman'][size=16px]阻滞细胞周期[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]抑制迁移和侵袭,诱导癌细胞分化[/size][/font][font='times new roman'][size=16px]、自噬[/size][/font][font='times new roman'][size=16px][[/size][/font][font='times new roman'][size=16px]7][/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]凋亡,[/size][/font][font='times new roman'][size=16px]抗血管生成等,对包括[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]CLC[/size][/font][font='times new roman'][size=16px]在内的多种肿瘤均有抑制作用。[/size][/font][font='times new roman'][size=16px]VPA[/size][/font][font='times new roman'][size=16px]作为[/size][/font][font='times new roman'][size=16px]HDAC[/size][/font][font='times new roman'][size=16px]I[/size][/font][font='times new roman'][size=16px]可降低[/size][/font][font='times new roman'][size=16px]HDAC4[/size][/font][font='times new roman'][size=16px]表达[/size][/font][font='times new roman'][size=16px],增加组蛋白[/size][/font][font='times new roman'][size=16px]H4[/size][/font][font='times new roman'][size=16px]乙酰化,激活[/size][/font][font='times new roman'][size=16px]Notch1[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]Notch[/size][/font][font='times new roman'][size=16px]靶基因[/size][/font][font='times new roman'][size=16px]HES1[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]P21[/size][/font][font='times new roman'][size=16px]的[/size][/font][font='times new roman'][size=16px]Notch[/size][/font][font='times new roman'][size=16px]信号通路,阻滞[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]CLC[/size][/font][font='times new roman'][size=16px]细胞周期[/size][/font][font='times new roman'][size=16px]于[/size][/font][font='times new roman'][size=16px]G1[/size][/font][font='times new roman'][size=16px]期,抑制细胞生长[/size][/font][font='times new roman'][size=16px],诱导细胞凋亡[/size][/font][font='times new roman'][size=16px][[/size][/font][font='times new roman'][size=16px]8][/size][/font][font='times new roman'][size=16px]。在丁酸钠作用下,[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]CLC[/size][/font][font='times new roman'][size=16px]细胞系[/size][/font][font='times new roman'][size=16px]H[/size][/font][font='times new roman'][size=16px]446[/size][/font][font='times new roman'][size=16px]的[/size][/font][font='times new roman'][size=16px]G1[/size][/font][font='times new roman'][size=16px]期细胞增多[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]而[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]期和[/size][/font][font='times new roman'][size=16px]G[/size][/font][font='times new roman'][size=16px]2/M[/size][/font][font='times new roman'][size=16px]期细胞相对减少[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]出现[/size][/font][font='times new roman'][size=16px]G[/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px]期阻滞现象[/size][/font][font='times new roman'][size=16px],可能与其上调[/size][/font][font='times new roman'][size=16px]P21[/size][/font][font='times new roman'][size=16px]表达有关[/size][/font][font='times new roman'][size=16px]。当前[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]美国食品药品监督管理局批准[/size][/font][font='times new roman'][size=16px]SAHA[/size][/font][font='times new roman'][size=16px]、罗米地辛、帕[/size][/font][font='times new roman'][size=16px]比司他[/size][/font][font='times new roman'][size=16px]等[/size][/font][font='times new roman'][size=16px]用于[/size][/font][font='times new roman'][size=16px]血液系统恶性肿瘤[/size][/font][font='times new roman'][size=16px]的治疗[/size][/font][font='times new roman'][size=16px]。[/size][/font]

  • 五氯苯酚乙酰化实验用分液漏斗做和摇床机做出来响应差很多

    五氯苯酚乙酰化实验,一种做法是用125mL分液漏斗做,一种做法是用60mL的反应瓶做,同浓度点的实验做出来响应差了一倍(125mL分液漏斗的响应高)。理论来说,不是应该摇床机的频率更高,反应越充分,响应会更高吗,但是实际做出来却是分液漏斗做出来的响应高,有人可以解释这个现象吗?关于振摇频率,125mL容量瓶的话大约100下/min,摇15min左右;60mL反应瓶是250转/min,摇30min。

  • 【实验】有机实验之乙酰二茂铁的合成

    乙酰二茂铁的合成目的原理实验目的 1 通过乙酰二茂铁的制备,了解用Friendel-Crafts酰基化反应制备非苯芳酮的原理和方法。2 学习柱色谱分离提纯产品和薄层色谱跟踪反应进程的原理和操作方法。实验原理 二茂铁又名双环戊二烯基铁,是由2个环戊二烯负离子和一个二价铁离子键合而成。一般认为,以乙酸酐为酰化剂,三氟化硼,氢氟酸,磷酸为催化剂,主要生成一元取代物;如用无水三氯化铝为催化剂,酰氯或酸酐为酰化剂,当酰化剂与二茂铁的摩尔比为2∶1时,反应产物以1,1′-二元取代物为主。二茂铁及其衍生物的分离最好是用层析法。本实验用柱色谱分离提纯产品,可用薄层色谱法跟踪反应进程,柱色谱和薄层色谱均属于吸附色谱,柱色谱分离提纯是根据二茂铁,乙酰二茂铁和1,1′-二乙酰基二茂铁对活性氧化铝吸附能力的差异而进行分离提纯。用薄层色谱跟踪反应进程,根据二茂铁和乙酰二茂铁的斑点大小可以了解乙酰化反应的进程。仪器药品 5ml圆底烧瓶,克莱森接头,干燥管,电磁加热搅拌器,30cm色谱柱(自制),30×100mm载玻片,离心试管50ml烧杯,玻璃钉漏斗,吸滤瓶,锥形瓶,氮气袋,250ml烧杯二茂铁,乙酸酐,85%H3PO4,25%NaOH,二氯甲烷,棉花,洗净的砂,Ⅲ级活性氧化铝,己烷,醇,硅胶,0.5%羚甲基纤维素,干燥氮气。过程步骤 一、乙酰二茂铁的制备称取100mg(0.54mmol)二茂铁,放入5ml圆底烧瓶中,加入2.0ml醋酸酐。装上带有干燥管的克莱森接头。水浴温热并搅拌使二茂铁溶解。移去水浴,打开塞子迅速加入3ml 85% H3PO4,使反应液变成深红色,室温下搅拌1.5h,在反应期间定期用毛细管在液面上吸取2滴左右反应液放入具塞小试管中,假如10滴二氯甲烷,所得溶液用薄层色谱法展开,以了解反应进程。当二茂铁的斑点很浅时,表示反应基本完成。将反应液滴入盛有1g碎冰5ml烧杯中,滴加25%NaOH中和恰至碱性,得到大量桔黄色沉淀。充分冷却后抽滤,1ml冷水分几次洗涤沉淀,抽干,干燥后称重约110~120mg。二、乙酰基二茂铁的柱色谱法分离(1)干法装柱将粗产品溶于0.5ml二氯甲烷加入300mgⅢ级活性氧化铝,振荡均匀得浆状物。在通风橱中,在干燥氮气下除去溶剂至恒重,得到松散的颗粒状物,精确称取1/2用作柱色谱分离。将自制的1.5×30cm色谱柱洗净,干燥,柱底铺一层玻璃棉或脱脂棉,再铺一层约5~8mm厚的砂,填平。称取5gⅢ级活性的中性氧化铝(60~80目),通过漏斗将氧化铝装入柱管内,轻敲柱管,使之填均匀。将精确称得含有1/2产品重的氧化铝装入柱内,顶部盖一层约5mm厚的砂子,使氧化铝顶端和砂子上层保持水平。(2)洗脱用己烷作洗脱剂从柱顶加入,缓慢滴入己烷逐渐展开得到黄色、橙色分离的色谱带。黄色的二茂铁带首先从柱下流出,用己称重的锥形瓶收集洗脱溶液。当黄色谱带完全洗脱下来时,改用体积比为1∶1的二氯甲烷己烷混合物洗脱,同时橙色带往下移动,逐渐改变溶剂的比例到体积比9∶1二氯甲烷己烷混合溶剂时,则将橙色色谱带完全洗脱下来,用另一只已称重的锥形瓶收集洗脱液。最后改用体积比为9∶1二氯甲烷甲醇洗脱时,可以看到很淡的,很少量的,棕色色带向下移动,将该洗脱液另行收集。(3)收集产品在通风橱内,各组分洗脱液分别在水浴上蒸馏,回收溶剂。浓缩后的溶液放置冷却析出结晶,将产品放在盛有石蜡片的干燥器内至恒重。可回收到未反应的二茂铁20~22mg;得到乙酰二茂铁80~90mg 1,1′-二乙酰基二茂铁少于2mg。分别测定熔点。注意事项1.二茂铁需经升华或用石油醚(30~60℃)重结晶纯化。2.仪器应是充分干燥的。3.乙酸酐是临用前经重新蒸馏的。4.吸附剂的活性与其含水量的关,含水量越低,活性越高。氧化铝放入高温炉中(300~400℃)烘3h得无水物即Ⅰ级氧化铝。Ⅲ级氧化铝可用Ⅰ级活性氧化铝加入重量的6%的水而得到。如所用氧化铝活性过强会使产品不易洗脱,浪费较多的溶剂。5.这里是考虑到柱色谱的容器。一般粗产品重75mg以上都仅取1/2作柱色谱分离。6.二茂铁易升华,故测熔点时要封管。熔点的文献值:二茂铁为173℃,乙酰二茂铁为85℃,1,1ˊ-乙酰基二茂铁为130℃。分析思考1. 二茂铁乙酰化反应的机理怎样?2. 怎样利用薄层层析判断乙酰化反应的进程?3. 乙酰二茂铁在石油醚和乙醚中溶解度哪个更大?为什么?4. 柱层析分离二茂铁衍生物时,如何选择展开的溶剂? [img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705162025_52002_1632583_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705162025_52003_1632583_3.gif[/img]

  • 【寻找隐藏的宝藏:迪马产品——2019年第14周(已完结)】GB 5009.111-2016 食品安全国家标准 食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定

    【寻找隐藏的宝藏:迪马产品——2019年第14周(已完结)】GB 5009.111-2016 食品安全国家标准 食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定

    [b]标准名称:GB 5009.111-2016 食品安全国家标准 食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定1.样品前处理产品[b][b]1.[b]样品前处理产品[/b][/b][/b][/b][img=,633,304]https://ng1.17img.cn/bbsfiles/images/2019/04/201904011012148030_8014_3389662_3.png!w633x304.jpg[/img][img=,645,181]https://ng1.17img.cn/bbsfiles/images/2019/04/201904011012279680_8032_3389662_3.png!w645x181.jpg[/img][b][color=#ff0000]答案:68012 ProElut PLS 200 mg / 6 mL 30/pk[/color]2.色谱分析产品[/b][img=,635,217]https://ng1.17img.cn/bbsfiles/images/2019/04/201904011012553177_4714_3389662_3.png!w635x217.jpg[/img][color=#ff0000][b]答案:87003 Endeavorsil 1.8μm C18, 100x2.1mm[/b][/color][align=center][color=#ff0000][b]恭喜活到九十 学到一百获得5钻石币[/b][/color][/align] ----------------------------------------------------------------------------------[color=#ff0000]【活动奖励】[/color]-----------------------------------------------------------------------------[color=#ff0000]1、从回答正确者中抽取奖励钻石币。[/color][color=#ff0000]2、每周随机抽取3个或5个回答正确的版友ID号(最后一个ID号,截止至每周日下午15:00)[/color][color=#ff0000]3、每人奖励5钻石币(抽奖人数≤10,抽取3个版友;抽奖人数>10,抽取5个版友)。[/color]

  • 气相色谱的柱前衍生化一般方法

    气相色谱的柱前衍生化一般方法

    衍生化技术是通过化学反应将样品中难于分析检测的目标化合物定量的转化为另一种易于分析检测的化合物,通过后者的分析检测可以对目标化合物进行定性和定量分析。衍生化在色谱分析上应用比较广泛的应该算是柱前衍生化了。今天我们就来说说关于柱前衍生化的条件和一般方法。 首先,如果要是想在色谱中使用柱前衍生化,其衍生化反应应该满足以下几个条件: 1、反应能迅速、定量的进行,反应重复性好,反应条件不苛刻,容易操作; 2、反应的选择性高,最好只与目标化合物反应,即反应具有专一性; 3、衍生化反应产物只有一种,反应的副产物和过量衍生化试剂不干扰目标化合物的分离与检测; 4、衍生化试剂方便易得,通用性好。 了解了柱前衍生化反应的条件,我们就来详细说说用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的几种常见的衍生化反应: 最为大家所熟知的就是酯化衍生化方法,多用于有机酸的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定。因为有机酸的极性较强,易产生严重的拖尾现象,而且大多数有机酸的挥发性差,热稳定性也较低,所以有机酸特别是长碳链的有机酸在进行[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析之前要衍生化为其相应的酯,常见的酯化方法有以下几种: 1、甲醇法:有机酸与甲醇在催化剂条件下加热,发生酯化反应,生成有机酸甲酯。一般采用三氟化硼作催化剂,通常将三氟化硼通入甲醇配制酯化剂,因为配置过程中以放热,有一定的危险性,现在也有商品化的三氟化硼甲醇溶液可直接购买使用。 [img=,322,44]http://ng1.17img.cn/bbsfiles/images/2017/07/201707041605_01_2384346_3.png[/img] 2、重氮甲烷法:重氮甲烷可以与有机酸反应生成有机酸甲酯放出氮气。此法简便有效,反应速度快,转化率高,较少副反应,不引入杂质,但是反应要在非水介质中进行。虽然反应条件温和,但是重氮甲烷不稳定,有爆炸性、有毒,制备与使用时要特别小心 。另外,酚羟基在常温下可以与重氮甲烷反应,但在0℃下可以避免酚羟基反应。 [img=,290,39]http://ng1.17img.cn/bbsfiles/images/2017/07/201707041616_01_2384346_3.png[/img] 3、三氟乙酸酐法: 在三氟乙酸酐的存在下有机酸和酸可以反应生成酯,比较适合空间位阻较大的有机酸和醇或酚的酯化。 [img=,291,34]http://ng1.17img.cn/bbsfiles/images/2017/07/201707041622_01_2384346_3.png[/img] 4、其他酯化法:有时为了提高方法的灵敏度和选择性,需要制备甲酯之外的酯,方法与甲酯化方法类似,可以用重氮乙烷、重氮丙烷、重氮甲苯代替重氮甲烷以制得相应的酯,且这些实际的稳定性好、爆炸性小。用三氟化硼的丙醇、丁醇或戊醇溶液与有机酸反应也可以制得相应的丙酯、丁酯或戊酯。 另外,比较常用的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱前衍生化方法则是酰化衍生化方法。酰化能降低羟基、氨基、巯基的极性,改善这些化合物的色谱性能,并提高这些化合物的挥发性,增加某些易氧化化合物的稳定性。当酰化时引入含有卤离子的酰基时,还可以提高使用ECD检测器的灵敏度。常用的酰化试剂有酰卤、酸酐和反应活性的酰化物。 [img=,510,98]http://ng1.17img.cn/bbsfiles/images/2017/07/201707041627_01_2384346_3.png[/img] 1、乙酰化法:标准乙酰化法是将样品溶于氯仿中,与乙酸酐和乙酸在50℃反应2-6h,真空出去剩余试剂。还可以乙酸钠为碱性催化剂,以乙酸酐为乙酰化试剂进行乙酰化反应,用于糖类分析。吡啶、三甲胺、甲基咪唑也可以作为碱性催化剂。乙酰化反应通常在非水介质中进行,但是胺类和酚类化合物乙酰化时可在水溶液中进行。 2、多氟酰化法:常用的多氟化试剂是三氟乙酰(TFA)、五氟丙酰(PFP)和七氟丁酰(HFB),其活性是TFAPFPHFB。TFA和PFP的衍生物挥发性较强,而HFB的衍生物ECD灵敏度较高。多氟酰化反应时间除了取决于多氟酰化试剂的活性,还取决于目标化合物的活性。多数情况下氟酰化反应不需溶剂,但有些情况下也是需要溶剂的,此外有时还需要加碱性催化剂。 最后一种常见的衍生化方法为卤化衍生化法。在目标化合物中引入卤原子后可使用ECD检测器,提高检测的灵敏度,同时可以改善挥发性和稳定性,常用的卤化衍生化方法如下: 1、卤素法:用卤素直接作为衍生化试剂处理样品,卤素的作用是加成或取代 [img=,467,142]http://ng1.17img.cn/bbsfiles/images/2017/07/201707041640_01_2384346_3.png[/img] 2、卤化氢法:常用HCl和HBr为衍生化试剂与不饱和链发生加成反应或与羟基发生置换反应 [img=,324,158]http://ng1.17img.cn/bbsfiles/images/2017/07/201707041645_01_2384346_3.png[/img] 3、N-溴代丁二酰亚胺(NBS)法:NBS是选择性很强的卤化衍生试剂,可使烯丙位的氢原子发生溴代反应 [img=,285,129]http://ng1.17img.cn/bbsfiles/images/2017/07/201707041644_01_2384346_3.png[/img]

  • 【分享】我国农田土壤减排潜力巨大

    记者今天从中科院大气物理研究所获悉,该所黄耀研究员课题组通过对大量数据的综合分析和模型模拟,研究了中国农田土壤固碳潜力和氧化亚氮减排潜力。  研究结果表明,通过大力推广秸秆还田和少耕免耕等保护性耕作措施,中国农田土壤未来可增加有机碳20—25亿吨,相当于将大气中73—92亿吨的二氧化碳固定到农田土壤中。中国三大作物水稻、小麦、玉米的氮肥利用率平均为30%左右,低于发达国家42%的水平,若中国能将氮肥利用率提高到40%,每年可减少化肥氮用量440万吨,削减农田氧化亚氮排放和氮肥生产过程中的二氧化碳排放共计4100万吨(CO2当量),削减约27%。据黄耀介绍,减排潜力最大的省份为江苏、安徽、河南、河北、山东、四川和湖北,约占总潜力的50%。  中国在控制温室气体排放方面面临着巨大压力和特殊困难。除了调整能源结构,增加可再生能源比例,提高森林蓄积量外,18亿亩农田在温室气体减排增汇的国家战略中就具有了特殊的重要性。  上述研究成果已分别在国际著名刊物《全球生物地球化学循环》和《全球变化生物学》上发表。

  • 葛根素增强SIRT5去琥珀酰化酶活性缓解急性肝损伤后的线粒体氧化应激

    [size=15px][font=&][font=宋体]对乙酰氨基酚([/font][font=&]APAP[/font][font=宋体])过量是药物性肝损伤的主要原因。[/font][font=&]Sirtuins 5[/font][font=宋体]([/font][font=&]SIRT5[/font][font=宋体])与各种肝脏疾病的发展有关。然而,其在[/font][font=&] APAP [/font][font=宋体]诱发的急性肝损伤([/font][font=&]AILI[/font][font=宋体])中的作用仍不清楚。[/font]SIRT5[/font][font=宋体]在[/font][font=&]AILI[/font][font=宋体]中显著下调,并且[/font][font=&]SIRT5[/font][font=宋体]耗竭加剧了体内和体外的线粒体氧化应激。从机制上讲,[/font][font=&]SIRT5[/font][font=宋体]在对乙醛脱氢酶[/font][font=&]2[/font][font=宋体]([/font][font=&]ALDH2[/font][font=宋体])的[/font][font=&]K385[/font][font=宋体]位点进行去琥珀酰化,从而保持[/font][font=&]ALDH2[/font][font=宋体]的酶活性,进而抑制炎症和线粒体氧化应激。此外,[/font][/size][font=宋体][size=15px]研究发现葛根素([/size][/font][font=&][size=15px]puerarin[/size][/font][font=宋体][size=15px])可促[/size][/font][size=15px][font=宋体]进[/font][font=&]SIRT5[/font][font=宋体]去琥珀酰化酶活性并缓解[/font][font=&]AILI[/font][font=宋体]。 [size=15px][b]1、AILI 中肝细胞SIRT5表达显著下调[/b][/size] [size=15px]作者首先通过RNA测序发现APAP[/size][font=宋体]处理[/font][size=15px]后,肝脏组织中 SIRT5 表达显著下调。进一步验证SIRT5参与AILI,发现APAP处理的小鼠血清ALT和AST水平均不同程度升高,且q[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]、Western blott和免疫组化检测显示APAP处理后肝脏中SIRT5下调,表明SIRT5是AILI发展的关键介质 [/size][/font][/size][b][font=&][color=#0070c0]2[/color][/font][font=宋体][color=#0070c0]、[/color][/font][font=&][color=#0070c0]SIRT5 [/color][/font][font=宋体][color=#0070c0]改善[/color][/font][font=&][color=#0070c0]APAP[/color][/font][font=宋体][color=#0070c0]诱导的肝毒性[/color][/font][/b][size=15px][font=宋体][size=15px] [/size] [size=15px]作者构建了SIRT5-KO小鼠和AAV介导的肝脏特异性SIRT5过表达小鼠,以进一步研究SIRT5在AILI中的作用。结果显示APAP处理后WT小鼠血清ALT和AST水平显著升高,且SIRT5-KO小鼠的血清ALT和AST水平升高更为明显,肝脏坏死显著加重,肝细胞死亡率更高,而SIRT5过表达显著改善APAP引起的肝脏损伤,肝细胞死亡率显著降低,结果表明 SIRT5 可减轻 APAP 诱导的肝毒性 [/size] [size=15px][b]3、SIRT5抑制APAP诱导的肝脏炎症[/b][/size] [size=15px]多项研究表明APAP 引起的肝毒性与炎症密切相关。作者发现接受APAP处理的SIRT5-KO小鼠CD11b和Ly6g阳性炎症细胞数量显著增加,肝脏中炎症细胞因子的水平显著升高,且NF-κB 信号的激活增加,而肝脏特异性SIRT5过表达小鼠则相反,这些结果表明SIRT5可抑制APAP诱导的AILI肝脏炎症 [/size] [size=15px][b]4、SIRT5 抑制AILI 中APAP诱导的线粒体氧化应激[/b][/size] [size=15px]在AILI过程中,细胞色素P450酶产生过量的毒性反应代谢物NAPQI,消耗GSH并与线粒体蛋白共价结合形成APAP加合物,导致线粒体功能障碍、ROS产生和线粒体细胞死亡因子的释放,最终导致肝细胞死亡。作者研究了SIRT5 KO或过表达对APAP诱导的线粒体氧化应激的影响,体内和体外实验结果表明SIRT5抑制了AILI期间的线粒体氧化应激 [/size] [size=15px][b]5、SIRT5缺乏导致AILI中蛋白质琥珀酰化全面增加[/b][/size] [size=15px]鉴于SIRT5在去琥珀酰化中的作用明确,作者采用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析了APAP处理的WT和SIRT5-KO小鼠肝脏中的琥珀酰化。结果显示共有465种蛋白质中的953个位点表现出差异琥珀酰化,其中359种蛋白质中的802个位点显示琥珀酰化水平增加,而106种蛋白质中的151个位点显示琥珀酰化水平降低,结果表明SIRT5缺陷导致AILI中蛋白质琥珀酰化整体增加,这在体内和体外得到了进一步的验证 [/size] [size=15px][b]6、SIRT5在K385残基处使ALDH2去琥珀酰化[/b][/size] [size=15px]SIRT5缺乏导致参与线粒体氧化应激的关键酶ALDH2的琥珀酰化显著上调。进一步探索SIRT5调控ALDH2琥珀酰化的具体分子机制,免疫荧光发现SIRT5与ALDH2共定位,免疫共沉淀实验表明SIRT5与ALDH2互作,且SIRT5敲除显著上调了体内和体外ALDH2的琥珀酰化水平,但对ALDH2的总蛋白浓度没有影响,相反SIRT5过表达显著降低ALDH2的琥珀酰化水平。进一步检测发现SIRT5缺乏会抑制ALDH2的酶活性,而SIRT5过表达会增加ALDH2的活性。[/size] [size=15px][url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS显示ALDH2中三个位点(K370、K377、K385)琥珀酰化显著增加,其中K370和K385在不同物种中高度保守,作者通过将赖氨酸(K)突变为谷氨酸(E)模拟琥珀酰化,将K突变为精氨酸(R)模拟去琥珀酰化,发现K385是ALDH2上的关键琥珀酰化位点,且K385而非K370的琥珀酰化影响ALDH2的酶活性。此外,SIRT5主要通过对ALDH2在K385残基上的去琥珀酰化来减轻AILI [/size] [size=15px][b]7、ALDH2在K385残基处的去琥珀酰化可保护小鼠免受 AILI的侵害[/b][/size] [size=15px]为了研究ALDH2-K385去琥珀酰化在AILI中的作用,作者建立了AAV-GFP、AAV-ALDH2-WT和AAV-ALDH2-385K-E过表达转染小鼠,并对其进行APAP处理。结果显示APAP 给药增加ALDH2的琥珀酰化,而ALDH2-385K-E小鼠肝脏中ALDH2的琥珀酰化程度低于ALDH2-WT小鼠。此外,在APAP给药后,ALDH2-385K-E小鼠的转氨酶水平、肝坏死面积和肝细胞死亡增加,线粒体氧化应激和炎症加重。数据表明ALDH2在K385的去琥珀酰化可保护小鼠免受AILI的侵害 [/size] [size=15px][b]8、[/b][/size][size=15px][b]K385 [/b][/size][size=15px][b]位点ALDH2去琥珀酰化介导SIRT5对AILI的保护作用[/b][/size] [size=15px]为了研究SIRT5对ALDH2去琥珀酰化在体内AILI中的作用,作者通过尾静脉注射表达 AAV-GFP、AAV-ALDH2-WT或AAV-ALDH2-385K-E的相关AAV,在SIRT5-KO小鼠中过表达各种形式的ALDH2,这些小鼠随后接受APAP治疗。结果显示SIRT5缺乏显著升高血清转氨酶水平,在APAP处理后引起坏死和肝细胞死亡,而 ALDH2-WT的过表达显著改善了肝损伤。此外,ALDH2-WT小鼠的肝脏氧化和炎症明显减少,但ALDH2-385KE小鼠的肝脏氧化和炎症没有减少,数据表明ALDH2在K385处的去琥珀酰化介导了SIRT5对AILI的保护作用 [/size][size=15px][b]9、葛根素促进SIRT5减轻AILI[/b][/size] [size=15px]为探究SIRT5激动剂对AILI的治疗作用,作者通过虚拟筛选寻找能与SIRT5结合的天然化合物。根据对接结果筛选出10个亲和能最低的化合物,进一步考察其对SIRT5去琥珀酰化酶活性的影响,其中葛根素对SIRT5去琥珀酰化酶活性的提高最为显著。分子对接分析显示SIRT5能与葛根素结合,分子动力学模拟在原子水平上证实了SIRT5-葛根素复合物的结合稳定性和动力学。接着在体内验证了葛根素对APAP诱导的肝损伤的影响,发现葛根素组在APAP刺激后血清AST和ALT水平降低,肝脏坏死和肝细胞死亡减少,APAP 诱导的氧化应激和炎症明显被抑制。结果表明葛根素通过药理学激活SIRT5减轻AILI,提示葛根素是临床治疗AILI的一种有前途的药物[/size][/font][/size]

  • 【原创大赛】增塑剂乙酰柠檬酸三丁酯的生产及研发工艺设计

    【原创大赛】增塑剂乙酰柠檬酸三丁酯的生产及研发工艺设计

    1.产品情况介绍 乙酸柠檬酸三丁酯,学名2-乙酰基-1,2,3丙烷三正丁酯,英文名称,Actyl Tri-n-ButylCitrate,简称ATBC,分子式C20H34O8,分子量402.472,为无色或微黄色油状液体,.相对密度1.046(25℃),粘度0.0427Pa·s(25℃),凝固点-80℃1沸173℃(133.3Pa),343℃(101324.72Pa),闪点(开杯法)20℃,折射率1.4408(25.5℃),挥发速度0.000009g/(cm·h)(105℃),水解速度=5%的溶液中和残余的酸性物质,并将中和后的物料送至静置釜内以除去大量的水及生成的盐(ATBC在水中溶解度极小)。为尽可能除去中和生成的盐,将中和后的物料送入水洗釜,用物料量1.2倍的水分三次洗涤,水洗后的物料送入水洗静置釜,分离出废水和盐分后,再次进入水洗釜水洗,反复三次,随后将ATBC送入干燥塔脱去残余的微量水分,干燥后的产品经脱色釜用活性炭脱去其中大部分杂质后,经过滤机除去活性炭,即可得成品ATBC. 合成乙酯柠檬酸三丁酯的工艺流程框图如图2-1所示。http://ng1.17img.cn/bbsfiles/images/2016/09/201609051953_608497_3005330_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/09/201609051955_608503_3005330_3.png3 可行性分析3工艺可行性分析 通过对乙酰柠檬酸三丁酯性质、用途及应用前景的分析,看到了无毒增塑剂乙酰柠檬酸三丁酯的发展前景。综合比较目前国内外研究乙酰柠檬酸三丁酯的各种方法,在考虑了工艺成熟程度、产品收率、环境保护与安全生产等因素的基础上,确定了以浓硫酸为酯化和乙酰化催化剂的工艺设计。在考虑设计方案时,考虑到中小企业的需要,确定了年产500吨的设计规模,具有投资少、见效快的优点。而且在设计酯化与乙酰化工序中,兼顾未来改用固体酸催化剂时,留有一定改造余地。 通过物料衡算,确定了各操作单元的进出物料量及原料消耗定额,其中主要原料消耗定额(每吨乙酰柠檬酸三丁lb)如下:无水柠檬酸510kg,正丁醇617kg,酯酸-f248.2kg,硫酸4kg,碳酸钠86.5kg,活性炭50.9kg。同时也确定了工艺用水量和废水排放量。 通过热量衡算解决了加热蒸气消耗量及最大消耗量,冷却水、冷冻水用量及最大用量,并确定了各换热器的换热面积。 在物料衡算和热量衡算的基础上选择了主要设备,结合所输送介质的特性确定了各设备的材质,根据各设备所储存或处理物料量,确定了各设备的型号,规格。 结合各设备所控制的温度和压力,为使操作控制方便,在考虑经济、实用的基础上对所用仪表进行了选型。 通过工艺流程图设计,解决了各个设备的前后顺序,各设备的相对位置,各个管路上阀门的控制方式,各操作参数的控制方式等问题,并在设计中考虑了各工艺管道的规格、材质。 结合带控制点工艺流程工艺流程和设备布置,对第三层的管道也进行了布置设计。 考虑到安全生产和环境保护,对危险性较大的场所按要求采取相应防护措施,减少对人的伤害和财产损失,对于排放的废物,在经过处理后尽可能达到国家排放标准。 本设计工艺与传统生产方法相比,具有下列优点:①乙酰柠檬酸三丁酯的传统生产工艺是将精制的柠檬酸三丁酯作为乙酰化的原料经乙酰化反应而制得,该工艺路线与传统工艺路线相比缩短了工艺路线,省去了脱醇前的碱洗、水洗等工序,减少了设备投资和加工费用。②该工艺与传统工艺相比,采用非精制的柠檬酸三丁酯作为乙酰化的原料,同时乙酰化过程不需再添加催化剂,即可生产出合格产品,降低了生产成本。③该工艺省去了碱洗、水洗等工序,减少的柠檬酸三丁酯的损失,提高了乙酰柠檬酸三丁酯的收率,降低了原料的消耗,并减少了废水的排放,降低了废水处理的难度。

  • 有机固废具有双面性,如何利用资源化的巨大潜力?

    根据《中国沼气行业双碳发展报告》中相关数据显示,全国城乡有机固体废弃物总产量约为近50亿吨。其中,城市有机废弃物总量约为2.6亿吨,农村有机废弃物约为44.3亿吨。可见无论是城市还是农村,有机废弃物领域都存在很大的发展空间。如此大的体量,所带来的环境问题也是不言而喻的。[align=center][img=640 (1).png]https://imgs.h2o-china.com/news/2024/02/1708656638102637.png[/img][/align]“有机固废是有双面性的,一方面会对环境造成污染问题,另一方面具有能源潜力和营养潜力。好好利用就是资源,不好好处理就是污染。”李彩斌介绍道。[url=http://www.chndaqi.com/news/field?fid=65]碳减排[/url]潜力方面,沼气提纯为天然气为1921亿立方米,2020年全国天然气消费量为 3280亿立方米,可替代比例可达58.6%;如果沼气全部用于发电,可发电6400亿千瓦时,相当于2020年全国用电量的9%,减排5.54亿吨二氧化碳当量。[align=center][img=640 (2).png]https://imgs.h2o-china.com/news/2024/02/1708656660432683.png[/img][/align]有机废弃物的资源化是减污降碳的重要任务。李彩斌指出,目前,我国有机废弃物处理面临着诸多挑战。[align=center][img=640 (3).png]https://imgs.h2o-china.com/news/2024/02/1708656682632205.png[/img][/align]能源化和肥料化是减污降碳和资源回收的核心技术手段。回收清洁能源,助力绿色低碳发展,推动有机质还田,助力农业可持续发展。李彩斌介绍,双碳背景下的有机废弃物处理利用的解决方案主要包括以下三方面:新型环境基础设施:城乡物质循环的节点,由小循环走向大循环;区域生态发展的动力,重构环境、能源和农业要素;[url=http://www.h2o-china.com/news/field?fid=83]生态环境[/url]科普互动教育基地。城乡融合发展的价值载体:构建以工促农,以城带乡的新型城乡关系;助力乡村振兴,提高资源效率;三生融合,统筹生产、生活、生态。区域高质量发展的生态引擎:功能延伸,将资源禀赋转化为经济优势;绿色转型,建设无废城市;土壤健康,促进区域可持续发展。基于区域统筹和全过程、全生命周期管理理念,中持绿色提出了城乡有机废弃物区域解决方案,以区域为服务单元,建立“收储运、转化和利用”体系,综合解决区域内有机废弃物的污染问题,生产生物天然气、电力和有机肥料等产品,进行资源化利用,实现城乡融合,促进区域高质量发展。

  • 糖的三氟乙酰化什么情况?

    正在做糖苷,用吡啶和MBTFA(N-甲基双三氟乙酰胺)衍生,GCMS为什么没有出峰的什么情况啊?直接用单糖标准品做了一下,也是这样,只看到了吡啶和N-甲基三氟乙酰胺,是哪里出现问题了的?eg.我过程中没有用到水的,请大神支支招

  • 【金秋计划】常见的蛋白质修饰总结

    [font=system-ui, -apple-system, &][size=16px][color=#333333](1)磷酸化修饰。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质磷酸化是由蛋白激酶催化的磷酸基转移反应,是最常见、最重要的蛋白质修饰方式之一。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质磷酸化修饰的具体生物效应包括:改变被修饰蛋白质的活性、改变蛋白的亚细胞内定位、改变蛋白与其他蛋白或其他生物分子的相互作用。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]①催化蛋白质磷酸化的蛋白激酶,根据底物的磷酸化位点可分为三大类,蛋白质丝氨酸/苏氨酸激酶、蛋白质酪氨酸激酶、双专一性蛋白激酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]②催化蛋白质去磷酸化的蛋白磷酸酶,根据磷酸化的氨基酸残基不同可分为两类,蛋白质丝氨酸/苏氨酸磷酸酶和蛋白质酪氨酸磷酸酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333](2)甲基化修饰。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质甲基化是指在甲基转移酶催化下,甲基基团由S-腺苷甲硫氨酸转移至相应蛋白质的过程。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质甲基化修饰可产生多种不同的生物效应,包括影响蛋白质间的相互作用、蛋白质和RNA间的相互作用、蛋白质的定位、RNA加工、细胞信号转导等。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]催化蛋白质甲基化的酶:甲基转移酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333](3)乙酰化修饰。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质乙酰化是指在乙酰基转移酶的催化下,在蛋白质特定的位置添加乙酰基的过程。蛋白质乙酰化修饰所产生的生物效应,主要包括促进基因转录、诱导细胞自噬、调节代谢酶的活性及代谢通路。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]催化蛋白质乙酰化的酶:组蛋白乙酰基转移酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333](4)类泛素化修饰。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]小泛素相关修饰物(SUMO)是类泛素蛋白家族的重要成员之一,可与多种蛋白结合发挥相应的功能。SUMO化修饰可参与转录调节、核转运、维持基因组完整性及信号转导等多种细胞内活动。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]①SUMO的分类:SUMO蛋白分布广泛,人类基因组编码了4种不同SUMO蛋白,分别为:SUMO1、SUMO2、SUMO3和SUMO4。其中,SUMO1-3在各种组织中均有表达,而SUMO4则主要在肾脏、淋巴结和脾脏中表达。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]②催化蛋白质SUMO化修饰的酶。SUMO化修饰需要一系列酶的参与,包括E1活化酶,E2结合酶以及E3连接酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333](5)巴豆酰化修饰。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]作为一种新型组蛋白翻译后修饰方式,蛋白质巴豆酰化是一种进化上高度保守,且在细胞生物学功能上完全不同于组蛋白赖氨酸乙酰化的蛋白质修饰方式。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质巴豆酰化是指在巴豆酰基转移酶的催化下,在蛋白质特定的位置添加巴豆酰基的过程。组蛋白赖氨酸巴豆酰化修饰与基因的活化密切相关。此外,催化蛋白质巴豆酰化的酶是巴豆酰基转移酶。[/color][/size][/font]

  • 包装中遮光剂二氧化钛的迁移

    我主要是想了解 直接接触药品的包装材料 中遮光剂二氧化钛的迁移检测,我没有查到相关的标准,望各位前辈赐教。是迁移到药液中的遮光剂含量的检测方法,或者有类似色粉的迁移含量检测也行。

  • HDAC通过信号通路调节与SCLC的关系

    HDAC通过信号通路调节与SCLC的关系自20世纪80年代起,肺癌逐步成为威胁人类健康的第一大癌种,其发病率和死亡率常年位于第一。据2020年全球癌症报告统计,肺癌新发病例约224万,占所有新发癌症病例的11.7%,死亡病例约180万,约占癌症总死亡人数的18%。SCLC约占所有肺癌的15%,5年生存率仅为7%。它是一种神经内分泌瘤,具有早期转移、高度侵袭性、遗传不稳定性等特点。SCLC目前的治疗方式主要有手术、化疗、放疗、靶向治疗和免疫治疗[3]。SCLC初期对放化疗敏感,但易产生耐药,多复发。关于SCLC的治疗仍是一个难题。传统的化疗药物因其选择性低而易产生严重的毒副作用,不利于提高患者的生存质量。因此,为SCLC找到更多的治疗靶点和高效低毒的靶向药物成为亟待解决的问题。基因突变和调控异常往往导致肿瘤的发生。表观遗传学变化是指在细胞分裂中可以遗传的基因表达改变,DNA序列不发生变化,基因的转录和翻译受到调控,主要包括DNA甲基化、组蛋白修饰和染色质重塑等。组蛋白修饰通过改变组蛋白与DNA的亲和性使染色质的结构状态紧密或松弛,进而影响基因表达,包括乙酰化、甲基化、磷酸化等,其中乙酰化是最重要的修饰方式之一。组蛋白乙酰化主要发生在组蛋白H3 Lys的位点上,在癌症进展中发挥双重作用,既参与肿瘤抑制基因的沉默,又增强癌基因的表达[4],它受HAT和HDAC共同调控。HDAC去除Lys残基上的乙酰基,DNA(本身带有负电荷)与组蛋白(正电性增强)结合更加紧密,转录调控蛋白不易与DNA结合,从而抑制抑癌基因的转录,HAT作用则相反,二者动态平衡才能使组蛋白乙酰化维持在正常水平。HDAC在多种肿瘤中过表达,干扰其活性、抑制其功能是有效的治疗手段。HDACI是重要的表观调控药物,高效低毒,通过靶向阻断HDAC去乙酰化、促进组蛋白乙酰化发挥抗肿瘤作用。根据化学结构的不同,HDACI分为异羟肟酸(异羟肟酸酯)、短链脂肪(脂肪族)酸、环状四肽、苯甲酰胺和Sirt抑制剂五类。在单药和/或与传统化疗药物联合使用时,HDACI可阻滞细胞周期,抑制迁移和侵袭,诱导癌细胞分化、自噬[7]、凋亡,抗血管生成等,对包括SCLC在内的多种肿瘤均有抑制作用。VPA作为HDACI可降低HDAC4表达,增加组蛋白H4乙酰化,激活Notch1、Notch靶基因HES1和P21的Notch信号通路,阻滞SCLC细胞周期于G1期,抑制细胞生长,诱导细胞凋亡。在丁酸钠作用下,SCLC细胞系H446的G1期细胞增多,而S期和G2/M期细胞相对减少,出现G1期阻滞现象,可能与其上调P21表达有关[9]。当前,美国食品药品监督管理局批准SAHA、罗米地辛、帕比司他等用于血液系统恶性肿瘤的治疗。

  • 解秘男女有别的人类诱导多能干细胞

    7月6日,Cell Stem Cell杂志报道,来源于男性和女性的人类诱导多能干细胞,在表观遗传稳定性和癌基因的表达方面均有较大的差异。  虽然人类诱导多能干细胞(hiPSCs)在再生医学中具有巨大潜力,他们的表观遗传变异性表明,有些hiPSCs细胞系可能不适合人类治疗。目前对hiPSCs进行质量评估的基准很有限。  本研究表明,X染色体失活标记可以用来将表观遗传学上独特的hiPSCs和表型上独特的hiPSCs区分开来。XIST(X-inactive specific transcript)是一个X染色体上的胎盘哺乳动物的X染色体失活过程中发挥主要效应的RNA基因。Xist表达的缺失与X-连锁癌基因的表达上调、细胞在体外加速增长,在体内较差的分化密切相关。  在X染色体失活潜力的差异可导致女性hiPSC细胞系在表观遗传学上的差异,而男性hiPSC细胞系一般彼此相似,并且不过度表达癌基因。  生理水平的氧气含量和组蛋白去乙酰化酶(HDAC)抑制剂均不能促进女性hiPSC细胞系的培养。  在X染色体失活潜力的差异可导致女性hiPSC细胞系在表观遗传学上的差异,而男性hiPSC细胞系一般彼此相似,并且不过度表达癌基因。推荐关注:磷酸化特异性ELISA试剂盒 反义寡核苷酸类  生理水平的氧气含量和组蛋白去乙酰化酶(HDAC)抑制剂均不能促进女性hiPSC细胞系的培养。  据此,研究者得出这样的结论:在培养条件下,女性hiPSCs的表观遗传稳定性比男性的较差;Xist的丢失可能导致质量不理想的干细胞系。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制