当前位置: 仪器信息网 > 行业主题 > >

甲醇中二乙二醇丁醚醋酸酯

仪器信息网甲醇中二乙二醇丁醚醋酸酯专题为您提供2024年最新甲醇中二乙二醇丁醚醋酸酯价格报价、厂家品牌的相关信息, 包括甲醇中二乙二醇丁醚醋酸酯参数、型号等,不管是国产,还是进口品牌的甲醇中二乙二醇丁醚醋酸酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甲醇中二乙二醇丁醚醋酸酯相关的耗材配件、试剂标物,还有甲醇中二乙二醇丁醚醋酸酯相关的最新资讯、资料,以及甲醇中二乙二醇丁醚醋酸酯相关的解决方案。

甲醇中二乙二醇丁醚醋酸酯相关的资讯

  • 日本制修订食品添加剂醋酸钙和异丙醇的相关标准
    2013年12月4日,日本厚生劳动省医药食品局发布食安发1204第3号:部分修订食品卫生法实施规则(省令)及食品、添加剂等规格标准(告示)。内容包括:   1. 省令:   根据食品卫生法第10条规定,在食品卫生法实施规则附表1中追加醋酸钙。   2. 告示:   (1)根据食品卫生法第11条第1项的规定,设定醋酸钙的成分规格。   (2)根据食品卫生法第11条第1项的规定,修订异丙醇的成分规格和使用标准。   该修订自发布之日起实施。
  • 我国工业排放气制乙二醇技术获突破
    开创乙二醇生产新原料路径 降低投资30%   记者从西南化工研究设计院获悉,该院开发的“回收和利用工业排放气制乙二醇技术”,日前通过由四川省科技厅组织的专家鉴定。新技术不仅开创了乙二醇生产的新原料路径,降低投资30%,还有效解决工业排放气的污染问题,已具备成熟工业化条件。   西南化工院自1986年在国内率先开展合成气制乙二醇技术研究,并承担“十一五”国家科技支撑计划重点项目“非石油路线制备大宗化学品关键技术开发”。经过25年不懈努力,科研人员先后完成该技术的关键催化剂及配套工艺集成开发,开发了具有工业应用价值的两个核心催化剂,实现转化率100%、选择性90%条件下,6000小时以上长周期考核 通过减去复杂的“煤气化”设备和工艺,每吨产品节省甲醇消耗0.16吨、蒸汽消耗2.5吨 形成加氢反应器、聚酯级乙二醇产品精制等五大关键工艺技术,目前已获4项国家发明专利。   专家介绍,与传统石油路线、煤制路线制备乙二醇相比,采用黄磷尾气或电石炉尾气等工业排放气生产乙二醇的新技术,成本仅为4000元/吨,分别节省3500元和1000元。而从环保效益分析,按国内每年产100万吨黄磷计算,每年可减排3750吨磷化物、7500吨硫化物、200吨砷化物和1250吨氟化物。   乙二醇作为用于溶剂、防冻剂以及合成涤纶的主要原料,今年年底在我国产能将达到每年450万吨,消费量则为每年800万吨。若近400万吨产能缺口采用工业排放气为原料替代生产,每年可节约外汇30多亿美元,同时减少200多万吨乙烯消耗。
  • PEN聚萘二甲酸乙二醇酯的粘度测量
    聚萘二甲酸乙二醇酯简称PEN,是聚酯家族中重要成员之一,是由2,6-萘二甲酸二甲酯(NDC)或2,6-萘二甲酸(NDA)与乙二醇(EG)缩聚而成,是一种新兴的优良聚合物。目前主要应用于磁带的基带、柔性印刷电路板、电容器膜、F级绝缘膜等方面,也开始逐渐延伸至碳酸饮料瓶、酸性饮料瓶等包装领域和工业电缆料、过滤器介质用单丝等工业用纤维领域。PEN化学结构与PET相似,其各项特性也与PET类似,但在分子链中PEN由刚性更大的萘环代替了PET中的苯环。使PEN比PET具有更高的物理机械性能、气体阻隔性能、化学稳定性及耐热、耐紫外线、耐辐射等性能。国标GB/T 1632.5-2008中对聚萘二甲酸乙二醇酯特性黏度的测量方法给出了详细的说明:对于无定型的PEN采用苯酚四氯乙烷作为溶剂,结晶PEN采用苯酚三氯苯酚作为溶剂,再通过相关辅助设备测试PEN溶液的黏度。在PEN的黏度测试流程中,传统的手动测试方式是使用乌氏粘度管在温控精准度较高的恒温水浴槽中进行黏度测试,采用传统的手动测试方法会存在:测试精度低,测试流程繁琐等诸多弊端。随着生产企业以及研发机构等对于实验数据高标准、高精度、高效率的要求,自动化的乌氏粘度仪已逐步取代传统手动测试方法。以杭州卓祥科技有限公司的IV3000系列全自动乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例:实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV3000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV3000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表和外推分析等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV3000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥过程的自动化,告别粘度管是耗材的时代。
  • 世界首创万吨级“煤制乙二醇”成套技术通过鉴定
    世界首创万吨级“煤制乙二醇”工业化示范获得成功   5月7日,中国科学院“世界首创万吨级煤制乙二醇工业化示范”新闻发布会在北京人民大会堂隆重举行。全国人大常委会副委员长、中国科学院院长路甬祥出席会议。科学技术部、工业和信息化部、国土资源部、自然科学基金委、中国石油化工协会等相关部门领导,福建省人民政府领导、江苏省人民政府领导、内蒙古自治区领导以及技术成果鉴定专家组组长何鸣元院士等共同出席了发布会。会上获悉:中国科学院福建物质结构研究所依托20多年的技术积累与江苏丹化集团、上海金煤化工新技术有限公司联手合作,成功开发了“万吨级CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇”(简称“煤制乙二醇”)成套技术。该成套技术已通过中国科学院组织的成果鉴定。   “世界首创万吨级煤制乙二醇工业化示范”新闻发布会举行      全国人大常委会副委员长、中国科学院院长路甬祥讲话   鉴定委员会专家一致认为,此项成果标志着我国领先于世界实现了全套“煤制乙二醇”技术路线和工业化应用,是一项拥有完全自主知识产权的世界首创技术。该技术的推广应用将有效缓解我国乙二醇产品供需矛盾,对国家的能源和化工产业产生重要积极影响,具有重要的科学意义、突出的技术创新性和显著的社会经济效益。   乙二醇是重要的化工原料和战略物资,用于制造聚酯(可进一步生产涤纶、饮料瓶、薄膜)、炸药、乙二醛,并可作防冻剂、增塑剂、水力流体和溶剂等。“煤制乙二醇”即以煤代替石油乙烯生产乙二醇。专家指出,此类技术路线符合我国缺油、少气、煤炭资源相对丰富的资源特点。中国科学院福建物质结构研究所通过长期基础研究、应用研究和产业化获得的该项成果,拥有多项技术专利和自主知识产权 该成套技术符合循环经济 “减量化、再利用、资源化”三原则,其显著特点还在于全部采用工业级的CO、NO、H2、O2和醇类为原料,对形成规模化产业极为有利。鉴定委员会专家在现场考察后认为,万吨级工业试验装置运行稳定,具备了进一步建设大规模工业化生产装置的条件。据专家测算,用石油乙烯路线每生产一吨乙二醇约耗2.5吨石油。目前全世界用石油乙烯生产的2000多万吨乙二醇,若都以煤为原料进行生产,那么,节省下来的石油相当于新开发一个年产5000万吨石油的大庆油田。   煤制乙二醇技术是国家“八五”、“九五”重点科技攻关项目。中科院福建物构所自1982年起经过多年前期研究,获得了一系列具有完全自主知识产权的小试技术和模试技术 江苏丹化集团技术团队拥有化工新技术产业化的长期积淀,曾在国内首创“碳化法制碳酸氢铵”、“羰基化合成醋酐”和“变压吸附分离CO”等多项化工新工艺。2005年起,由上海盛宇企业投资有限公司投资约1.8亿元,与中科院福建物构所、丹化集团、上海金煤化工新技术有限公司等强强联手启动了“CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇”的产业化试验,经过3年多的艰苦努力,在国家发改委、科技部、中科院、福建省、上海市和江苏省政府的大力支持下,相继在丹化集团建成年产300吨中试和1万吨工业化试验两套装置,在多项关键技术领域取得突破,2007年12月万吨装置顺利开车打通全流程,经过一年多的实际运行检验,并经专家组鉴定,证明全球首套“万吨级煤制乙二醇”技术已完全取得成功。   经中国科学院和国家财政部批准,中科院福建物构所和上海金煤化工新技术有限公司已将全部煤制乙二醇技术入股通辽金煤化工有限公司,该企业正在内蒙古通辽市建设全球首套年产20万吨煤制乙二醇示范装置,该项目是我国煤化工五大重点示范工程之一,预计今年年底前即可建成投产,未来五年内将建成120万吨生产规模,有望成为国内最大的乙二醇生产企业,实现部分替代进口。   关于该项目的合作模式,全国人大常委会副委员长、中国科学院院长路甬祥认为:在学习实践科学发展观、建设创新型国家进程中,中国科学院实施创新工程,构建了知识创新、技术创新和工程产业化的“金三角”并发挥三者互动的科技创新体系,在推动科技创新、科技成果转移转化与产业化、创建高新技术企业等方面谋划了独具特色的创新机制。在应对国际金融危机的新形势下,它将为企业通过科技成果转移转化,提升自主创新能力提供一些宝贵的经验,为实现我国国民经济的平稳快速发展,探索出一条合作共赢的创新之路。
  • 电力设备蒸汽冷凝水中乙二醇泄漏的早期探测
    背景矿物燃料与核电力设施使用换热器,使工艺蒸汽冷凝回到液体形态。热交换器的工作原理是,通过从一种介质(蒸汽)中转移热量至另一种介质(空气、水、或乙二醇)中。很多新近的封闭式冷却水系统、电力设施使用乙二醇(C2H6O2)作为热传递液体,因为乙二醇有很高的热传递效率。虽然乙二醇是超级好的热传递流体,但如果它从冷却器中泄漏并进入冷凝蒸汽中时,会造成严重问题。在升高的温度与压力下,水中乙二醇会降解为有机酸,会酸化冷凝液,导致系统内快速的腐蚀。有机酸的增长也会严重破坏离子交换树脂床与矿物质脱除塔。发现早期针孔大的热交换器泄漏,对于保持维护电力设施与工艺设备的完整性,非常重要。虽然很多工厂使用痕量水平的胺来中和,来控制回路的pH,但这些胺常规地都是按照控制来自二氧化碳溶解产生的碳酸,来给药的。乙二醇泄漏造成的有机酸的大量流入,很容易压垮这种pH控制,并造成冷凝液明显的酸化。问题电厂通常检测pH与阳离子电导率来监测蒸汽回路水的纯度。然而,那些参数并不总是足够。充分早地探测乙二醇的早期泄漏以预防显著的下游问题十分重要。因为pH与阳离子电导率的偏离,仅仅在乙二醇分解之后才产生,这些检测对于探测泄漏来说,经常已经太晚了。水中乙二醇在热的高压蒸汽回路中降解。如果热交换器中发生泄漏,这种泄漏的现象在乙二醇降解之前,可能无法通过pH与电导率探测到。在这一点上,工艺设备(例如:矿物质脱除塔、树脂床、冷凝液抛光器、锅炉、涡轮机等)可能已经暴露在酸性的冷凝液或蒸汽中。乙二醇是一种含碳38.7%的有机分子,因此能够使用在线、连续的总有机碳(TOC)分析来探测到。Sievers® M系列在线TOC分析仪能够在乙二醇在冷凝液蒸汽中降解之前,更早地检测到乙二醇的泄漏。解决方案在Sievers分析仪进行的实验室研究中,Sievers M系列TOC分析仪表现出对乙二醇的回收率在97.3%-99.1% ,对于碳含量在0.5-25 ppm 碳 (1.3-64.7ppm 乙二醇)。Sievers M系列TOC分析仪的回收率总结如下表:在图2中,分析仪显示出对检测乙二醇有高的线性响应。基于定量回收率(≥97.3%),与高度的线性(R2=1.0000),Sievers M系列TOC分析仪很适用于检测冷凝液蒸汽中宽广范围的乙二醇浓度。几个著名的组织(EPRI、VGB、与 Eskom)建议100-300 ppb作为蒸汽循环补给水的合适的背景TOC水平。水或蒸汽循环中的这个TOC背景很好地位于Sievers M系列TOC分析仪的检测水平0.03 ppb之上,同时这个TOC背景也足够低,可以轻松检测背景TOC浓度之上的乙二醇泄漏造成的TOC偏移。由于乙二醇泄漏造成的事故的成本,从设备维修与更换、以及停产期间损失的能量产出等方面,可能是成百上千美元。由于乙二醇有毒并有危险,额外的缓和被污染的冷凝水也非常关键。使用Sievers M系列在线TOC分析仪,冷凝蒸汽每2分钟被分析一次,提供给设备操作者高解析度的数据,使用这些数据,可以快速识别并解决使用乙二醇溶液的热交换器的泄漏。◆ ◆ ◆联系我们,了解更多!参考文献1.Berry, D. and Browning, A. Guidelines for SelectingandMaintaining Glycol Based Heat Transfer Fluids.2011. Chem-Aqua, Inc.2.EPRI Lead in Boiler Chemistry R&D. PersonalCommunication. January 28, 2015.3.Ethylene vs. Propylene Glycol. www.dow.com.Accessed January4.22,2015.http://www.dow.com/heattrans/support/selection/ethylene-vs-propylene.htm.5.Heijboer, R., van Deelen-Bremer, M.H., Butter, L.M.,Zeijseink, A.G.L. The Behavior of Organics in aMakeup Water Plant. PowerPlant Chemistry. 8(2006):197-2026.Faroon, O., Tylenda, C., Harper, C.C., Yu, Dianyi,Cadore, A., Bosch, S., Wohlers, D., Plewak, D.,Carlson-Lynch, H. Toxicological Profile for EthyleneGlycol. 2010. US Agency for Toxic Substances andDisease Registry (ASTDR).7.Maughan, E.V., Staudt, U. TOC: The ContaminantSeldom Looked for in Feedwater Makeup and OtherSources of Organic Contamination in the Power Plant.PowerPlant Chemistry. 8(2006): 224-233.8.Rossiter, W.J. Jr., Godette, M., Brown, P.W., Galuk,K.G. An Investigation of the Degradation of AqueousEthylene Glycol and Propylene Glycol Solutions usingIon Chromatography. Solar Energy Materials. 11(1985): 455-467.9.Vidojkovic, S., Onjia, A., Matovic, B., Grahovac, N.,Maksimovic, V., Nastasovic, A. Extensive FeedwaterQuality Control and Monitoring Concept forPreventing Chemistry-related failures of Boiler Tubesin a Subcritical Thermal Power Plant. Applied ThermalEngineering. 59(2013): 683-694.
  • 坛墨标样-甲醇中16种挥发性有机物-TVOC混标(含乙酸正丁酯)/GB50325-2020
    坛墨标样-甲醇中16种挥发性有机物-TVOC混标(含乙酸正丁酯)/GB50325-2020产品编号BWT900637-100-ACAS号规格1mL标准值100μg/mL序号名称CAS号1正己烷110-54-32苯71-43-23三氯乙烯79-01-64甲苯108-88-35辛烯111-66-06乙酸丁酯123-86-47乙苯100-41-48对二甲苯106-42-39间二甲苯108-38-310邻二甲苯95-47-611苯乙烯100-42-512壬烷111-84-213异辛醇104-76-714十一烷1120-21-415十四烷629-59-416十六烷544-76-3
  • 电位循环策略优化乙二醇电化学转化!
    【研究背景】随着可再生能源需求的增加,乙二醇(EG)作为一种重要的有机化学品,其高效氧化反应(EGOR)引起了广泛关注。EG广泛用于聚酯和其他化学品的合成,但其氧化过程中的低反应效率和选择性成为了研究中的主要挑战。因此,开发高效、稳定的催化剂以提升EGOR性能显得尤为重要。在此背景下,研究者们探索了贵金属催化剂的潜力,尤其是钯(Pd)催化剂在电化学氧化反应中的应用。近期的研究表明,使用钯基催化剂(如Pd/NF)在电流和电位循环策略下,能够显著提高EG的转化率和选择性。为了解决催化剂在反应过程中的失活问题,上海交通大学物质科学原位中心陈立桅课题组以及化学化工学院徐鹏涛、Xi Liu等人携手采用了电位循环和原位表面增强拉曼光谱(SERS)等技术,深入探讨了催化剂表面的变化及其影响。实验结果显示,优化的电化学条件不仅改善了催化剂的稳定性,还增强了反应的法拉第效率。进一步的表征分析,如X射线光电子能谱(XPS)和X射线吸收精细结构(XAFS),揭示了催化剂在反应过程中结构和电子特性的演变。这些研究不仅为EG的高效氧化反应提供了新的理论基础和技术路径,也为其他有机化合物的电化学转化研究提供了借鉴,推动了绿色化学的进步。【表征解读】本文通过多种先进的表征手段对Pd/NF的结构特性及其在电化学氧化反应中的表现进行了深入分析,揭示了其在乙二醇氧化反应中的优异性能。具体而言,使用日立HF5000显微镜获取的扫描透射电子显微镜(STEM)图像,展现了Pd/NF的纳米结构特征,这为理解其高催化活性提供了重要依据。此外,利用克拉托斯Axis Ultra DLD进行的X射线光电子能谱(XPS)分析,确定了Pd/NF表面的化学状态和组成,进一步揭示了其催化反应中的反应位点。针对Pd/NF在电化学反应中表现出的优异催化特性,本文通过原位表征手段揭示了电化学氧化反应(EGOR)的微观机理。高效液相色谱(HPLC)分析了乙二醇的电化学氧化产物,提供了催化过程中的关键反应路径数据。这一过程的研究,揭示了Pd/NF在不同电位下催化反应的选择性和效率,为设计更高效的催化剂提供了理论基础。在此基础上,结合扫描电子显微镜(SEM)和能谱分析(EDS),对Pd/NF电极在不同电化学条件下的表面形态变化进行了观察。结果显示,在电位循环和持续电流的作用下,Pd的表面结构发生了显著变化,这与其催化性能的衰退密切相关。这一发现为理解贵金属催化剂的失活机制提供了新的视角,有助于开发更为稳定的电催化材料。【图文速递】图1:Pd/NF的结构特征及其在恒电位下的EGOR性能。图2:贵金属在CP-EGOR下的失活机制。图3:Pd/NF在电位循环策略下的EGOR性能。图4:EPC-EGOR下贵金属表面的演变。图5:EPC-EGOR的参数控制与稳定性。图6:流动池系统中CP模式与EPC模式下的EGOR比较。【科学启迪】本文的研究为电化学氧化反应(EGOR)提供了新的思路,展示了在催化剂设计与性能优化方面的重要进展。通过对Pd/NF电极的表征与性能评估,揭示了其在乙二醇氧化过程中的优越表现,并分析了不同电化学条件对催化活性的影响。这些发现不仅有助于理解贵金属催化剂的去活化机制,也为提高电催化效率提供了指导。特别是在采用循环电位策略(EPC)时,Pd/NF显示出显著的稳定性与可逆性,表明优化电化学条件能够有效延长催化剂的使用寿命。此外,本文通过高效液相色谱(HPLC)和原位表面增强拉曼光谱(SERS)等先进技术,实现了对反应产物的精准分析,进一步深化了对反应机制的认识。整体而言,研究不仅为贵金属催化剂在能源转化领域的应用提供了新思路,也为未来的催化剂设计与优化提供了理论基础,推动了电化学领域的进一步发展。参考文献:Zhao, G., Lin, J., Lu, M. et al. Potential cycling boosts the electrochemical conversion of polyethylene terephthalate-derived alcohol into valuable chemicals. Nat Commun 15, 8463 (2024). https://doi.org/10.1038/s41467-024-52789-2
  • 铝蚀刻液成分分析—磷酸、硝酸、醋酸有多少?
    -----铝蚀刻液成分分析—磷酸、硝酸、醋酸有多少?一、背景介绍蚀刻是将材料使用化学反应或物理撞击作用而移除的技术。最早可用来制造铜版、锌版等印刷凹凸版,也广泛地被使用于仪器镶板,铭牌等的加工;经过不断改良和工艺设备发展,亦可以用于航空、机械、化学工业中电子薄片零件精密蚀刻产品的加工,特别在半导体制程上,蚀刻更是不可或缺的技术。铝是半导体工艺中最主要的导体材料。它具有低电阻、易于淀积和刻蚀等优点。铝蚀刻液主要成分是磷酸、硝酸、醋酸及水,其中磷酸、硝酸、醋酸及水的组成比例会影响到蚀刻的速率,故需要对这种混酸溶液的成分进行分析。 二、测试原理1、硝酸:在样品中加入适量乙醇做溶剂,用四丁基氢氧化铵(TBAOH)滴定至终点,即可计算硝酸的含量。TBAOH+HNO3 → NO3-+TBN++H2O2、醋酸和磷酸:在样品中加入适量饱和氯化钠溶液做溶剂,用氢氧化钠溶液做滴定剂,出现两个滴定终点。第|一个终点是H3PO4和HNO3被耗尽时的终点,第二个终点是H2PO4-和HAc被耗尽时的终点,根据已知的硝酸含量,即可计算出磷酸及醋酸的含量。H3PO4+HNO3+2OH- → NO3-+ H2PO4-+ 2H2OH2PO4-+HAc+2 OH- → Ac-+ HPO42-+ 2H2O 三、混酸分析方法(1)硝酸含量测试:在滴定杯内加入50mL无水乙醇,准确称取一定质量的样品置于滴定杯内,用 0.01mol/L TBAOH溶液做滴定剂进行电位滴定,终点电位突跃设置为20mV/mL。图1 硝酸含量滴定曲线图2 醋酸和磷酸含量滴定曲线 (2)醋酸和磷酸含量测试:在滴定杯内加入50mL饱和氯化钠溶液。准确称取一定质量的样品置于滴定杯内,用0.5mol/L氢氧化钠溶液做滴定剂进行电位滴定,终点电位突跃设置为100mV/mL。 四、注意事项1、TBAOH标定时需要使用纯水做邻苯二钾酸氢钾的溶剂,而使用TBAOH测定硝酸时必须使用无水乙醇做溶剂,不要在滴定杯内加入水,否则不会出现显著的滴定终点。2、使用氢氧化钠测定醋酸和磷酸时,需使用饱和氯化钠溶液做溶剂,若使用纯水做溶剂会出现假终点。 五、仪器推荐ZDJ-5B型自动滴定仪 ● 7寸彩色触摸电容屏,导航式操作● 支持电位滴定● 实时显示测试方法、滴定曲线和测量结果● 可定义计算公式,直接显示计算结果● 支持滴定剂管理功能● 支持pH的标定、测量功能● 支持USB、RS232连接PC,双向通讯● 可直接连接自动进样器实现批量样品的自动测量
  • 使用表面增强拉曼光谱检测瓶装水中的聚对苯二甲酸乙二醇酯纳米塑料
    近日,挪威科技大学与南开大学合作在Environmental Science & Technology上发表了题为“Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy”的研究论文。研究合成了一种新型的表面拉曼增强光谱(SERS)衬底,该衬底可增强纳米颗粒的拉曼光谱信号,通过对不同粒径的聚苯乙烯(PS)纳米颗粒测试发现,粒径越小拉曼光谱信号增强因子越高。使用该SERS衬底,对经100 纳米滤膜过滤后瓶装水进行了检测,通过与标准谱图比对,发现瓶装水中的纳米塑料为聚对苯二甲酸乙二醇酯,浓度高达108 个/毫升。全文速览微纳塑料作为新型污染物,引起了全球范围的广泛关注。而作为微纳塑料研究的基石,检测分析方法一直是该领域的重点和难点,尤其是粒径更小的纳米塑料。本研究合成了一种新型三角孔隙阵列SERS衬底,该衬底可增强纳米塑料的拉曼信号。通过对不同粒径(50,200,500,1000 nm)的PS纳米塑料测试,发现粒径越小,拉曼光谱信号的增强因子越高。对于50 nm的PS纳米塑料检测限为0.001%,约为1.5×1011 个/毫升。使用该衬底,检测了市售的瓶装水,瓶装水经100 nm滤膜过滤后,滴加在衬底上,可直接检测到拉曼光谱信号,经过与标准谱图的比对,发现为聚对苯二甲酸乙二醇酯,该塑料主要为瓶身材质,浓度约为108 个/毫升。该研究提供了一种快速且灵敏的纳米塑料检测方法。引言微纳塑料由于其独特物化性质,分析检测一直是微纳塑料研究领域的重点和难点。拉曼增强由于其可对小分子有机化合物以及纳米颗粒的拉曼光谱信号进行增强,近年来也逐渐应用于纳米塑料的检测。但目前关于SERS测试纳米塑料多集中于实验室内的加标样品,对于实际样品的检测的研究仍然很少。本研究通过合成一种新型的三角孔隙阵列衬底,测试了其对PS纳米塑料的增强效果,并检测分析了市售瓶装水中纳米塑料的赋存。图文导读阵列合成Figure 1. A schematic illustration of fabrication process for the triangular cavity arrays (TCAs). First, close-packed polystyrene (PS) nanospheres are self-assembled on a silicon substrate (i). A thin silver (Ag) film is deposited over the nanospheres (ii), which are then tape stripped away, leaving Ag nanotriangle arrays (iii). A gold (Au) film is then deposited over the entire substrate (iv). An adhesive epoxy is applied on the top of Au and then peeled off, transferring two metals Ag and Au sitting in a complementary arrangement side-by-side on epoxy (v). Simply removing of the Ag parts using chemically etching, revealed gold triangular cavity arrays as shown in (vi).图1展示了该拉曼衬底的合成示意图,首先将一层500 nm的PS纳米微球平铺在硅胶板上,然后在表面添加一层Ag,去除掉纳米微球后,形成了Ag纳米三角阵列,再添加一层150 nm的Au薄膜,之后添加一层粘合剂环氧树脂,在紫外线照射下固化后剥离掉带着两层金属的环氧树脂,再去除孔隙中的Ag后,形成最终的三角阵列衬底。阵列表征Figure 2. Scanning electron micrographs (SEMs) of the corresponding processing steps in Figure 1 to fabricate gold TCAs substrate: (a) Close-packed PS nanospheres that corresponds to step i in Figure 1 (b) Ag triangle arrays after removing of PS nanospheres that corresponds to step iii in Figure 1 (c) Top-view of morphology after depositing Au layer that corresponds to step iv in Figure 1 (d) Au TCAs arrays after removing of Ag parts that corresponds to step vi in Figure 1. Scale bar in a-d: 250 nm. (e) Patterned gold TCAs over large area, scale bar in e: 1 µm.图2为经过图1合成的衬底的扫描电镜图,分别表示了衬底在不同合成阶段的扫描电镜图。从图中可清楚的表明于实际合成的衬底与图1中的示意图完全吻合。PS纳米颗粒测试Figure 3. (a) Raman spectra of PS nanoplastics with different sizes on Au TCAs substrates at concentration of 1%. (b) Enhancement factor (EF) as a function of PS size. (c) Raman spectra of 50 nm PS nanoplastics with concentrations varying from 1% to 0.001% on TCAs substrates and on plain glass substrate at the concentration of 1% (control line). (d-g) Raman mapping images of 50 nm PS nanoplastics on Au TCAs substrates with different concentrations from 1% to 0.001%. Scale bar in d-g: 200 nm.图3展示了不同粒径的PS纳米微球的增强测试,在50、200、500和1000 nm四个粒径中,50 nm的PS微球增强因子最高,随着粒径增加,增强因子变低。此外,还对50 nm的PS微球的不同浓度做了分析测试,发现在0.001%仍可检测到清晰的信号,特征峰1003 cm-1的信噪比为88。瓶装水前处理Figure 4. (a) Schematic of sample preparation from commercially bottled drinking water. (b-d) SEM images of an extracted sample that drop-casted on a silicon wafer after drying under ambient conditions. Scale bar: (b) 300 µm (c) 5 µm (d) 200 nm.图4为瓶装水的处理过程和SEM结果。在采购瓶装水后,取100 mL过100 nm的滤膜,对过滤后的水样进行SEM检测,从图中可看出,在扫描电镜下,存在大量的颗粒物,经过不同倍数的放大,粒径小的可低至几十纳米。同时,采用去离子水做了过程空白对照,在扫描电镜下,无颗粒物检出,排除了实验过程中外部的污染。瓶装水检测Figure 5. (a)Schematic of sample preparation from bottled drinking water. (b) Raman mapping image of sample extracted from bottled drinking water on TCAs substrate. Scale bar: 500 nm. (c) Raman spectra of sample extracted from bottled drinking water on TCAs substrate (red line) and plain glass substrate (brown line), and PET film (purple line). (d) Finite track length adjustment (FTLA) concentration/size image for NTA of sample extracted from bottled drinking water on TCAs substrate: indicating mean size of nanoplastics is ca. 130.8 ± 58.0 nm.图5为瓶装水的拉曼检测结果,将过滤后的瓶装水直接滴加在衬底上,经过拉曼检测后,可鉴别出1620和1760 cm-1两个峰,与PET纳米塑料标准品和PET膜进行对比,可知瓶装水中的颗粒物为PET,在检测空白和过程空白中均无信号。此外,水样还进行了NTA测试,平均粒径约为88.2 nm(三个平行样品的平均值),浓度为1.66×108 个/毫升。小结通过合成新的SERS衬底,可实现对纳米塑料的拉曼信号的增强,纳米塑料的粒径越小增强因子越高,且该衬底的灵敏度高,可对过滤后的水样直接检测,同时还可重复使用。瓶装水的检测结果表明塑料瓶身是水样中纳米塑料的主要来源。
  • 粘度测定仪用毛细管法测定PET(聚对苯二甲酸乙二醇酯)树脂稀溶液的特性黏度
    PET又名聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate)是由对苯二甲酸二甲酯与乙二醇酯交换或以对苯二甲酸与乙二醇酯化先合成对苯二甲酸双羟乙酯,然后再进行缩聚反应制得,为乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽,是生活中常见的一种树脂。PET分为纤维级聚酯切片和非纤维级聚酯切片。①纤维级聚酯用于制造涤纶短纤维和涤纶长丝,是供给涤纶纤维企业加工纤维及相关产品的原料。涤纶作为化纤中产量最大的品种。②非纤维级聚酯还有瓶类、薄膜等用途,广泛应用于包装业、电子电器、医疗卫生、建筑、汽车等领域,其中包装是聚酯最大的非纤应用市场,同时也是PET增长最快的领域。众所周知,聚酯生产过程中,产品粘度是影响产品质量的一项重要指标,特别是热灌级聚酯产品生产过程中,由于该品种粘度指标范围窄,一旦受原料、生产过程控制等因素影响,未及时判断出原因进行调整,基础切片粘度无论是下降还是升高,若未及时将该部分切片进行有效隔离,直接进入到后续系统,将对后续固相增粘造成极大影响,致使调整困难,导致产品质量降等。聚酯生产过程中影响聚酯产品质量的因素很多,从纺丝的角度出发,主要有色相、端羧基、二甘醇含量及黏度等,其中以黏度对可纺性的影响最为显著。目前,绝大多数聚合装置都与直接纺长丝或短纤维的装置街接,并且越来越多的纺丝装置采用高速纺和细旦的品种,这就对熔体的质量特别是熔体的特性黏度稳定提出了更高的要求。 乌氏毛细管法是PET(聚对苯二甲酸乙二醇酯)材料质量控制中常用的分析方法之一,由乌氏毛细管法测量得出的特性粘度也是PET(聚对苯二甲酸乙二醇酯)材料的核心指标之一。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:苯酚、四氯乙烷、三氯甲烷、丙酮或无水乙醇。1、溶剂的配置选择:根据PET材料分类所选溶剂配比不同,纤维级聚酯切片可选择苯酚/1,1.2,2-四氯乙烷(质量比3:2)亦可选苯酚/1,1.2,2-四氯乙烷(质量比1:1),瓶级聚酯切片选择苯酚/1,1.2,2-四氯乙烷(质量比3:2); 2、溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入苯酚/1,1.2,2-四氯乙烷,软件中启动测试任务待结束。3、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。4、PET树脂稀溶液样品的制备:在万分之一天平上精准称量精确到0.0001g,通过ZPQ-50自动配液器将溶液浓度精准配制到0.005g/ml,再将样品瓶放置到MSB-15多位溶样器中(纤维级90~100℃,瓶级110℃~120℃),待半小时内溶解完毕后取出冷却到室温待用。5、样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。6、粘度管的清洗:再次启动卓祥自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。苯酚/1.1.2.2—四氯乙烷(质量比50:50)作溶剂的试验,按公式(1)、(2)、(3)计算相对黏度(ηr)、增比黏度(ηsp)和特性黏度([η]):式中:ηr——相对黏度;t1——溶液流经时间,单位为秒(s);to——溶剂流经时间,单位为秒(s);ηsp——增比黏度;[η]——特性黏度;c——溶液浓度,单位为克每百毫升(g/100mL)苯酚/1.1.2.2一四氯乙烷(质量比60:40)作溶剂的试验,其结果按公式(4)计算:本文章为原创作品,无原作者授权同意,不得随便转载拷贝,侵权必究!
  • 脂肪酸分析用三氟化硼甲醇溶液
    下载:脂肪酸分析用三氟化硼甲醇溶液.pdf 关键词:三氟化硼甲醇 脂肪酸 甲酯化 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 全自动乌氏粘度计-用毛细管法测定PEN(聚萘二甲酸乙二醇酯)树脂稀溶液的黏数
    聚萘二甲酸乙二醇酯的简称。聚萘二甲酸乙二醇酯(PEN)是聚酯家族中重要成员之一,是由2,6-萘二甲酸二甲酯(NDC)或2,6-萘二甲酸(NDA)与乙二醇(EG)缩聚而成,是一种新兴的优良聚合物。其化学结构与PET相似,不同之处在于分子链中PEN由刚性更大的萘环代替了PET中的苯环。萘环结构使PEN比PET具有更高的物理机械性能、气体阻隔性能、化学稳定性及耐热、耐紫外线、耐辐射等性能。近年来,PEN薄膜主要应用于磁带的基带、柔性印刷电路板、电容器膜、F级绝缘膜等方面,而PEN薄膜新的用途仍然在不断开发中。如数据磁带,数据磁盘的种类有DDS(数字、数据、储存),8MM数据磁带,1/4英寸磁带,DDS的需求量较大。根据DDS的记忆容量公别为Ⅰ、Ⅱ、Ⅲ型。Ⅱ、Ⅲ型为聚芳酰胺膜,Ⅰ型为PEN与PET共用型。记忆容量为2G,90MM的PEN薄膜代替。从记忆容量来考虑,Ⅰ型几乎全部被PEN占领。随着手机及小型携带机械的发展,对薄膜电容器的需求也不断增大。目前,虽然这方面市场规模虽小,但将是一个很有发展前途的领域。众所周知,聚酯生产过程中,产品粘度是影响产品质量的一项重要指标,乌氏毛细管法是PEN树脂质量控制中常用的分析方法之一,由乌氏毛细管法测量得出的黏数也是PEN树脂的核心指标之一。按国标规定的中描述的步骤测定聚合物的黏数,测试温度为25℃。实验方法如下:实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:苯酚、四氯乙烷、三氯甲烷、丙酮或无水乙醇。1、溶剂的配置选择:苯酚/1,1.2,2-四氯乙烷溶剂,在25℃下2、溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入苯酚/1,1.2,2-四氯乙烷,软件中启动测试任务待结束。3、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。4、PEN树脂稀溶液样品的制备:在万分之一天平上称量到0.0001g,通过自动配液器将溶液浓度配制到0.005g/ml,再将样品瓶放置到多位溶样器中,待溶解完毕后取出冷却到室温待用。5、样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。6、粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。
  • pvc(糊树脂)难溶甲醇,听听禾工技术员怎么说
    pvc糊树脂是一种特殊的pvc,外观为白色细微粉末,主要用于制造人造革、纱窗、汽车胶、壁纸、地板卷材、玩具等。生产过程中,pvc糊树脂中水分含量是一项重要的测量指标,对生产具有重要的指导意义。 国家标准GB-T2914-20008《塑料 氯乙烯均聚合共聚树脂挥发物(包括水)的测定》方法中主要测定树脂本身所含有的水分及挥发性有机杂质,这些组分在加工过程中将成为气泡含于制品中,影响制品的强度、外观等性能,是衡量糊树脂产品质量的一项重要指标。但是由于国家标准分析方法采用烘箱法,且糊树脂具有颗粒小、质量轻、有静电等特点,所以环境条件和设备条件对分析结果影响很大,分析结果准确度和可靠度不高。卡尔费休法在测定物质水分的各类化学方法中,是世界公认的测定物质水分含量的最为专一和准确的经典方法。使用卡尔费休水分测定仪可快速的测出糊树脂中的水分含量,但是由于糊树脂不溶于甲醇,不能直接与卡尔费休试剂反应,因此我们需要卡尔费休水分测定仪与卡式加热炉一起使用。使用禾工AKF-PL2015C卡氏水分仪(配有卡式加热炉)把糊树脂样品称重后放入样品瓶,样品瓶在卡式加热炉中均匀加热,蒸发后的水分在高纯惰性气体作为载气引导下,进到滴定池内进行水分含量分析。 使用禾工AKF-PL2015C卡氏水分仪的优势:AKF-PL2015C塑料粒子专用水分测定采用瓶式加热技术,既能避免反应杯和加热炉膛污染问题,也能减少载气消耗。无需穿刺隔垫,样品瓶洗净可反复利用,耗材损耗小。 管路设计死体积小,无残留,无记忆效应,配备加热伴管防止水汽凝结 操作简单,自动扣除漂移,简化计算操作,测试结束自动计算含水量。 塑料粒子(树脂)含水量专用卡尔费休水分测定仪测定范围: 适用多种塑料粒子的生产及注塑,实现塑料粒子的水分含量检测。可测定abs、聚丙烯酰胺(pam)、聚酰胺(pa)、聚氯乙烯(pvc)聚碳酸酯(pc)、聚乙烯(pe)。聚对苯二甲酸乙二醇酯(pet)、聚甲基丙烯酸甲酯(亚克力、pmma)、聚丙烯(pp)、聚苯乙烯(ps)、聚乙烯醇缩丁醛(pvb)、硅橡胶塞等等。禾工将为首次申请样品检测的客户,免费检测两个样品,并承诺在7天内提供检测服务报告!您得到的不仅仅是一份报告,更可能是一份行业专业的解决方案!
  • 7项新规严控涂料质量,蓝天白云指日可待!
    导读 2020年3月4日,国家市场监督管理总局、国家标准化管理委员会联合发布《中华人民共和国国家标准公布(2020年第2号)》,批准公布了7项国家强制性标准:GB 18581-2020《木器涂料中有毒物质限量》、GB 18582-2020《建筑用墙面涂料中有害物质限量》、GB 24409-2020《车辆涂料中有害物质限量》、GB 30981-2020《工业防护涂料中有害物质限量》、GB 33372-2020《胶粘剂挥发性有机物限量》、GB 38507-2020《油墨中可挥发性有机物(VOCs)含量的限值》、GB 38508-2020《清洗剂挥发性有机物含量限值》。这些标准的发布,以制定产品质量标准的角度综合考虑环境保护,开辟了大气污染源头防控的路径,进一步明确了《大气污染防控治法》及《打赢蓝天保卫战三年行动计划》关于低挥发性有机物含量的胶粘剂、涂料、油墨、清洗剂的定义,这7项标准中除GB 38507-2020于2021年4月1日实施外,其余6个标准均将于2020年12月1日正式实施。 7项新发布国家标准中,VOCs的指标比之前的法规更为严格,重金属的指标整体变化不大,个别指标提高,同时增加了一些SVOCs的项目和指标,如多环芳烃、邻苯二甲酸酯、乙二醇醚及醚酯类化合物等。这一系列的措施反映了国家严抓涂料的质量的坚定决心。“为了人类和地球的健康”,岛津也在行动,在国家标准正式实施前推出了《涂料中有毒有害物质检测解决方案》,供涂料相关检测工作者参考,一起来看看我们的方案吧! 挥发性有机物分析 涂料在生产及使用过程中会释放出各种各样的挥发性有机物(VOCs)。目前岛津用于涂料中VOCs分析的仪器主要有GC和GCMS,外围附件有顶空进样器和热脱附仪。 GC-2010 ProNexis GC-2030 典型案例1:GC法测定车辆涂料中苯、甲苯、乙苯和二甲苯含量1、叔丁基甲醚(内标) 2、苯 3、甲苯 4、乙苯 5、间/对-二甲苯 6、邻-二甲苯 典型案例2:顶空-GCMS法测定水性涂料中23种挥发性有机物含量1、1,1-二氯乙烯 2、二氯甲烷 3、反-1,2-二氯乙烯 4、氯丁二烯 5、顺-1,2-二氯乙烯 6、三氯甲烷7、四氯化碳 8、苯 9、1,2-二氯乙烷 10、三氯乙烯 11、环氧氯丙烷 12、甲苯 13、四氯乙烯14、氯苯 15、乙苯 16、邻二甲苯 17、对二甲苯 18、苯乙烯 19、三溴甲烷 20、异丙苯21、1,4-二氯苯 22、1,2-二氯苯 23、六氯丁二烯 典型案例3:热脱附-GCMS法测定涂料中挥发性有机物含量1、异丁醇 2、苯 3、三乙胺 4、正丁醇 5、甲苯 6、1,2-丙二醇 7、乙苯 8、间/对-二甲苯9、邻二甲苯 10、1,3-丙二醇 11、乙二醇单丁醚 12、二乙二醇 13、二乙二醇乙醚醋酸酯14、二乙二醇单丁醚 15、2,2,4-三甲基-1,3-戊二醇 16、二乙二醇丁醚醋酸酯 半挥发性有机物分析 涂料中在生产及使用过程中也会释放出各种各样的半挥发性有机物(SVOCs)。 SVOCs GCMS-QP2020 NXGCMS-QP2020 NX 典型案例:GCMS法检测涂料中16种多环芳烃含量 1、萘 2、苊烯 3、苊 4、芴 5、菲 6、蒽 7、荧蒽 8、芘 9、苯并[a]蒽 10、屈 11、苯并[b]荧蒽12、苯并[k]荧蒽 13、苯并[a]芘 14、茚并[1,2,3-cd]芘 15、二苯并[a,h]蒽 16、苯并[g,h,i]苝 重金属分析 涂料中重金属的来源主要是其采用的颜料,颜料起着色与遮盖作用。目前岛津用于涂料中重金属分析的仪器主要有AA-6880/7000、ICPE-9820、ICPMS-2030等。 ICPE-9820ICPMS-2030 典型案例:ICP-AES法测定涂料中17种重金属元素含量 小结 2020年是我国打赢蓝天保卫战三年行动计划的收官之年,严格控制VOCs,把好涂料质量关,岛津已经为您做好了准备,您准备好了吗?让我们为了未来持续的蓝天白云一起努力!想了解更多涂料中有毒有害物质的检测,请关注岛津《涂料中有毒有害物质检测解决方案》。 识别二维码下载解决方案
  • 泰坦科技特种酯化溶剂工厂投产
    转载自 2015-12-20 《化工资讯》 国内领先的特种溶剂综合提供商之一的泰坦科技,(以下称“泰坦”)已经设立了一个新的酯类溶剂工厂。新工厂位于江苏仪征,是泰坦特种溶剂服务持续扩张的组成部分,旨在更好地为客户服务。工厂将采用进口为主的优质原料,能够生产二丙二醇甲醚醋酸酯(DPMA)、二乙二醇丁醚醋酸酯(DBA)、3-乙氧基丙酸乙酯(EEP)、3-甲氧基乙酸丁酯(MBA)等高沸程环保用酯类溶剂,一期产能5000吨。这些酯类溶剂适合生产那些对气味、酸度、环保需求较高的产品。 该公司特种化学品部门负责人表示:“这个新工厂是泰坦利用国外优质供应原料,推动本土化深加工和销售的的重要一步。新工厂进一步增强了我们在特种溶剂市场的独特地位。并将为进一步引入更多酯化产品本土化生产,打下基础。” 查询泰坦化学溶剂产品的详情,请登录 www.titanchem.com 关于泰坦 上海泰坦科技股份有限公司(以下简称泰坦科技)由在读博士生创办的高科技企业,一直得到科技部、教育部和上海市政府的重点扶持。公司产品分为高端试剂、通用试剂、分析试剂、特种化学品、仪器设备、安防耗材、实验室建设和科研信息化软件八大业务板块,为生物医药、新材料、新能源、化工化学、精细化工、食品日化、分析检测等领域提供全方位的产品与服务。公司已成功搭建具有国际化视野、全球供应链整合、专业化咨询的国内首家科学一站式服务平台,真正实现“有实验室的地方就有专业的产品和服务”,成为“中国科学服务首席提供商”。 泰坦科技总部设在上海,目前在北京、广州、重庆、成都、南京、杭州、香港、欧洲和北美等地设有分支机构或销售网点。公司汇聚了200名科学服务及相关领域的精英加入,其中博士、硕士研究生数十名,得到了东方汇富(证券“教父”阚治东先生和尉文渊先生创立)、上海市大学生科技创业基金会(国内首家支持大学生科技创业的公益性组织)和上海市科技投资股份公司的多轮风险投资。经过六年多的快速发展,泰坦科技已经成为上海市科技创业领军企业, 2011年入选上海市“创新驱动、转型发展”经典案例,2012年成为“上海市创新型企业”、“上海市科技小巨人培育企业”,2013年被上海市股权投资协会评为“2012年度最具成长价值企业”(全国十家)。泰坦人将继续在服务我国结构调整和科技创新事业上奋力拼搏、不断进取。 联系方式:泰坦 张经理 021-51701617 / 18964538285 jie.zhang@titanchem.com
  • 甲醇中16种挥发性有机物混合-16种TVOC(含乙酸正丁酯)(GB50325-2020)
    81073KACAS号规格2mL库存≥50有效期2021-06-01标准值2000μg/mL1正己烷110-54-32苯71-43-23三氯乙烯79-01-64甲苯108-88-35辛烯111-66-06乙酸丁酯123-86-47乙苯100-41-48对二甲苯106-42-39间二甲苯108-38-310邻二甲苯95-47-611苯乙烯100-42-512壬烷111-84-213异辛醇104-76-714十一烷1120-21-415十四烷629-59-416十六烷544-76-3
  • 应用解读|光伏组件封装用乙烯-醋酸乙烯酯共聚物(EVA)胶膜的热分析标准解读
    1. 技术背景图1. 晶体硅太阳能电池结构晶体硅太阳能电池结构由钢化玻璃板/EVA膜/太阳能电池板/EVA膜/背板构成,如图1所示。其中,太阳能电池封装用EVA是以乙烯/醋酸乙烯共聚物(醋酸乙烯含量为30%-33%)为基料,辅以数种改性剂,经成膜设备热轧成薄膜型产品,厚度约0.4 mm。封装过程中EVA受热,交联剂(通常为过氧化物)分解产生自由基,引发EVA分子之间的结合,形成三维网状结构,导致EVA胶层交联固化,交联机理如图2 所示。固化后的胶膜具有相当高的透光率、粘接强度、热稳定性、气密性及耐老化性能。图2. EVA加热过程中在交联剂过氧化物下的交联机理EVA固化不足可直接导致光伏组件在其近20年的使用中性能恶化,这将意味着重大的经济风险。因此为实现经济有效的层压,快速可靠的EVA交联度分析方法至关重要。以往的化学法测交联度耗时长(30小时左右),结果重复性差,并且使用有毒的溶剂(甲苯或二甲苯),无法准确测试较低交联度和较高交联度的EVA。根据国家标准:1)GB/T 29848-2018:光伏组件封装用乙烯-醋酸乙烯酯共聚物(EVA)胶膜2)GB/T 36965-2018:光伏组件用乙烯-醋酸乙烯共聚物交联度测试方法--差示扫描量热法(DSC)采用差示扫描量热法(DSC)是目前较为可靠的分析方法,应用DSC测定光伏组件在层压过程中已交联的EVA的交联度,仅需1小时时间即可获得重复性良好的结果,是一种快速简便的产品质量控制方法。2.方法设计1)DSC:称取未交联和交联EVA样品5~10mg至40μL铝坩埚内,以10 K/min从−60℃加热到250°C,后以20 K/min的速度从250℃冷却至-60℃,再以10 K/min进行第二次升温,全程惰性氩气氛围。交联EVA的交联度可由以下方程计算获得:梅特勒-托利多差示扫描量热仪 DSC2)此外,醋酸乙烯组分的分解机理如下所示:根据上述计算公式,可通过热重法(TGA)分析计算得到EVA中VA的百分含量,从而帮助对EVA来料进行质检,以判定EVA的优劣。TGA/DSC:称取优质和劣质的交联EVA样品至陶瓷坩埚内,以10 K/min从30℃加热到600°C,全程惰性氩气氛围。3.数据分析1)DSC分析计算EVA的交联度图3为未交联EVA样品的升降升循环DSC测试曲线。在第一次升温曲线上可观察到明显的三个热效应,从低温至高温,依次是未交联EVA的玻璃化转变、结晶部分的熔融以及高温处的固化交联放热峰,所呈现的固化放热焓值为ΔH1(17.49 J/g)。由第二次升温曲线在高温处所表现处的平直基线可以得出结论,ΔH1为未交联EVA完全固化所释放出的热焓。图3. 未交联EVA样品的DSC测试曲线图4为交联EVA样品的DSC第一次升温曲线,第二次升温在高温处同样为平直的基线,故未呈现。温度从室温开始,可观察到结晶部分的熔融以及高温处的后固化交联放热峰,所呈现的后固化放热焓值为ΔH2(8.47 J/g)。因此,该交联EVA样品的交联度根据上述计算公式为51.55%。图4. 交联EVA样品的DSC第一次升温曲线1)TGA分析计算EVA中VA的百分含量图5为优质与劣质EVA的TGA/DSC测试曲线。根据EVA的分解机理,TGA曲线上的第一个失重台阶为醋酸乙烯分解产生醋酸的过程,因此失重量为醋酸的质量。第二个失重台阶为EVA中原有的乙烯组分和醋酸乙烯分解产生的乙烯的分解。因此,EVA中醋酸乙烯的含量可由第一个失重台阶即醋酸的失重百分含量的1.43倍计算而得。如图所示,优质EVA的VA含量为29.5%(太阳能电池封装用EVA的醋酸乙烯含量为30-33%),劣质EVA的VA含量仅为16.6%。与此同时,同步的DSC曲线上亦可找到相关判断依据。由于劣质EVA含有更高含量的乙烯组分,因此其结晶能力更强,所呈现的结晶熔融过程表现在更高的温度范围。图5. 优质与劣质EVA的TGA/DSC测试曲线4.小结由此可见,光伏组件封装用EVA胶膜的相关热性能的鉴定可由DSC、TGA或同步热分析TGA/DSC快速给出判断依据。此外,工艺上EVA固化通常采用层压实现,而层压的温度和时间作如何优化可由DSC动力学模块给出科学且精准的预测,为层压工艺提供数据和理论指导。
  • 甲醇汽油国家标准亟待出台
    “我们将恪守职业道德,不做误导消费者或虚假不实的广告宣传 严格执行国家标准,不将未经时效检验,未经省级以上政府主管部门正式评审鉴定的产品及技术推入市场 不做假、不制假,绝不在醇醚燃料调配过程中超比例任意勾兑,不在添加剂中夹杂苯、酚等芳烃类物质。”这是醇醚燃料及醇醚清洁汽车专业委员会第二次会员代表大会近日向社会发出的庄严承诺,也是醇醚专委会140个会员企业的自律宣言。   据了解,近两年,石油价格的大幅上涨,拉大了甲醇与汽柴油价格的差距。即便在目前甲醇价格相对高位、石油价格相对低位的情况下,93#汽油的价格也比精甲醇高出3000元/吨,甲醇掺烧汽油的利润十分可观。虽然《M15甲醇汽油》国家标准尚未出台,但受利益驱使,各地加油站私自向汽油中掺加甲醇的现象十分普遍。   根据醇醚专委会通报的情况,2008年我国甲醇燃料替代汽油达300万吨。2009年上半年,全国用于车用燃料的甲醇已经达到300万吨,全年可能超过600万吨。由于低比例甲醇汽油无须改动发动机,只需添加一定的防溶胀、防腐蚀、防醇油相分层等助剂,就可将甲醇掺混于汽油中使用。而目前包括低比例甲醇汽油的掺混标准、调和标准、产品质量标准、储存与使用标准均未出台,致使甲醇汽油生产、使用环节十分混乱。在一些省区,使用含有苯、酚等有害物质的添加剂,随意向汽油中勾兑甲醇的事件时有发生,不仅损害了消费者权益,也严重影响了甲醇燃料的声誉,为甲醇燃料下一步在全国推广埋下了隐患,增加了阻力。   醇醚专委会名誉会长何光远、谭竹洲等告诫说,在人们对醇醚燃料的认识还未完全统一、醇醚燃料尚未获得全面推广的情况下,少数甲醇汽油添加剂生产企业和甲醇汽油生产销售企业,不讲诚信地向汽油中超量掺加甲醇,或者生产、销售、使用对人体和环境有害的添加剂,无异于“自毁长城”,最终将阻碍甲醇燃料的推广。因此,应加强行业自律,整顿市场秩序,为消费者提供安全可靠的产品,不断扩大甲醇汽油的消费群体和消费区域,最终实现大面积推广。   国家化工行业生产力促进中心副总工程师孙振苓在接受记者采访时表示:目前全国甲醇汽油添加剂生产厂家上百家,由于没有统一的标准,导致鱼龙混杂,消费者经常上当受骗。这种状况如果不能很快改变,别说《M15甲醇汽油》没有出台,就是出台了,消费者也会因产品真假难辨、质量良莠不齐而不敢问津。届时,即便有政策支持,恐怕也很难推广。   陕西延长中立新能源有限公司总经理唐琛向记者透露:延长中立公司目前正在建设7个累计150万吨/年M15低比例甲醇汽油调配中心,计划于今年6月底全部建成,为陕西省今年10月1日推广M15甲醇汽油提供质优量足的油品保证。   “为确保甲醇汽油质量,我们将采用优质的汽油原料和甲醇汽油添加剂,采用先进工艺技术,全流程封闭生产。同时严格登记产品的批次、流向,加贴防伪标识,防止不法分子假冒。”唐琛说。他同时建议:所有甲醇汽油生产企业应加强信息共享与沟通,做好产品防伪与追溯工作,不给不法分子假冒之机。   国务院参事石定寰、中国工程院院士倪维斗等专家则建议:在制定、审核、出台《M15甲醇汽油》标准的同时,应制定、审核、出台甲醇汽油添加剂、甲醇汽油生产、运输、储存、加注、使用等配套标准和规范,明确政府、醇醚燃料生产企业、甲醇汽油储存与销售企业的职责,严格市场监管,确保甲醇汽油的推广使用有法可依。必要时,可制定并提高甲醇汽油生产销售企业准入门槛,实行行业准入,将那些没有规模、没有实力、没有信誉的小企业拒之门外,促进醇醚燃料产业健康发展。
  • 默克氘代甲醇成本价促销
    默克光谱级氘代甲醇成本价促销 促销价:180元/包装 市场价:533元/包装 先买先得,售完为止 产品名称 甲醇-D4 品牌 MERCK 包装 10*0.5ml 氘代率 =99.8% 用途 核磁共振谱 货号 1.06028.0005 陈燕 021-51693889-11 chenyan@hq17.com QQ:2830218935 www.hq17.com 上海恒奇仪器仪表有限公司 上海市金钟路658弄1号楼甲4层
  • 珀金埃尔默洗手液分析仪可在30秒内完成甲醇检测
    致力于为创建更健康的世界而持续创新的全球技术领导企业,珀金埃尔默日前宣布其洗手液分析仪可用于检测含酒精的洗手液产品中是否存在甲醇,并在30秒内给出产品合格与否的检测结果。美国食品药品监督管理局(FDA)最近发布的警告和实施的产品召回,表明含有毒性的甲醇若经皮肤被人体吸收可能对消费者有害,若不慎摄入,还会危及生命。这款仪器于2020年4月上市,还可检测洗手液中乙醇和异丙醇等目标醇类物质的浓度水平,有助于按照世卫组织(WHO)、美国药典(USP)或美国食品药品监督管理局(FDA)的指南确保产品功效。这款设计紧凑的便携式分析仪是在珀金埃尔默的Spectrum Two™ 傅里叶变换红外(FT-IR)光谱仪解决方案基础上研发的。利用这项基础技术,可快速检出浓度低至0.03%(或300ppm)的甲醇,检测灵敏度高于FDA规定的检出限。珀金埃尔默应用市场事业部副总裁兼总经理Suneet Chadha谈到:“目前,新冠疫情仍在全球蔓延,流感爆发季又即将来临。在这种环境下,含酒精的洗手液产品必须能让消费者充分信任其安全性与功效。珀金埃尔默洗手液检测仪能助力这些高需求量产品的生产企业和供应商快速获得可靠的检测结果,从而保护消费者,避免消费者使用假冒产品,杜绝产品召回事件。”洗手液分析仪是珀金埃尔默助力抗击新冠疫情综合解决方案的一部分。从病毒检测到发现药品和疫苗乃至在整个保护性产品检测过程中,都能发现珀金埃尔默的创新成果,包括各种试剂、仪器、信息科学服务、自动化和工作流程解决方案及服务。珀金埃尔默还致力于向世界各地捐赠仪器和试剂,以帮助重点疫区开展疾病的筛查和诊断。欲了解更多信息,敬请访问: www.perkinelmer.com.cn。关于珀金埃尔默珀金埃尔默助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。我们始终致力于为创建更健康的世界而持续创新,我们为诊断、生命科学、食品及应用市场推出独特的解决方案,我们与客户建立战略合作关系,凭借深厚的市场知识和技术专长,助力客户更早地获得更准确的洞察。在全球,我们拥有13,000名专业技术人员,服务于全球190多个国家和地区,时刻专注于帮助客户创造更健康的家庭,改善生活质量,并维持全球人民的健康和长寿命。2019年,珀金埃尔默年营收达到约29亿美元,客户遍及190个国家,并为标准普尔500指数中的一员。了解更多信息,请通过纽交所上市代号1-877-PKI-NYSE或访问www.perkinelmer.com.cn。
  • 快来看啊~氯丙醇及其脂肪酸酯测定的解决方案新出炉了!
    氯丙醇是甘油(丙三醇)中的羟基被氯离子取代后形成的一类物质,共有4种物质,包括3-氯-1,2-丙二醇(3-MCPD)、2-氯-1,3-丙二醇(2-MCPD)、1,3-二氯-2-丙醇(1,3-DCP)和2,3-二氯-1-丙醇(2,3-DCP),具有肾脏毒性、生殖毒性,并可能具有致癌性。氯丙醇在许多食品中都存在,如面包、香肠、焦糖色素、方便面调味料等,但动植物蛋白在盐酸催化水解作用下最容易产生,通常含量也最高。此外,变性淀粉、纸质食品接触材料(袋泡茶的过滤纸、咖啡过滤纸等)、生活饮用水可能由于环氧氯丙烷树脂或者工艺的使用,而带来氯丙醇的污染。2000年初我国酱油出口一度因为氯丙醇问题而受阻,之后污染得到了较好的控制。氯丙醇酯、缩水甘油酯是近10年来国际上备受关注的新型食品污染物,氯丙醇酯是氯丙醇与各类脂肪酸作用后形成的一大类物质的总称,主要分为3-氯-1,2-丙二醇酯(3-MCPD酯)和2-氯-1,3-丙二醇酯(2-MCPD酯),氯丙醇与氯丙醇酯虽然仅一字(酯)之差,但它们的化学性质和形成机理差别很大,氯丙醇容易在脂肪的酸水解中形成,而氯丙醇酯和缩水甘油酯容易在食用油高温精炼或脂肪类食品在煎、炸、烧、烤等烹调过程中产生。Detelogy参考GB 5009.191-2016提供测定食品中氯丙醇及其脂肪酸醋含量的测定推出以下前处理解决方案一、食品中氯丙醇脂肪酸酯含量的测定气相色谱-质谱法1、试样提取植物油、动物油等油脂类试样:称取试样0.1 g,加入氘代氯丙醇脂肪酸酯混合溶液20μL,D5-1,3-DCP和D5-2,3-DCP溶液各20 μL。其他试样:称取试样2 g,加入氘代氯丙醇脂肪酸酯混合标准工作液20 μL。加入4 mL正已烷,充分振摇混匀,超声提取20 min,静置分层后,转移出上层正己烷。再重复提取2次,合并正已烷相(约12 mL),加入D5-1,3-DCP和D5-2,3-DCP溶液各20 μL,置于FV32Plus全自动高通量智能平行浓缩仪中浓缩至约1 mL。注:对于乳粉、咖啡等固体粉末试样,需先加2 mL水溶解后再用正已烷提取。对于香肠等动物性食品试样,可采用经乙睛饱和的正已烷作为提取液。2、酯键断裂反应向试样提取液中加0.5 mL甲基叔丁基醚-乙酸乙酯溶液(8 2)和1 mL甲醇钠-甲醇溶液(0.5 mol/L),盖紧盖子,MultiVortex涡旋振荡30 s。室温反应4 min,加入100 μL冰乙酸终止反应。加入3 mL溴化钠溶液(20%)和3 mL正已烷,MultiVortex涡旋振荡30 s,静置1 min,弃去上层正已烷相,再用3 mL 正已烷萃取一次,弃去上层正已烷相,下层的水相溶液待净化。注:此步骤中如采用氯化钠溶液(20%)萃取,则经后续步骤测定得到的是氯丙醇脂肪酸和缩水甘油醋的总含量。3、样品净化硅藻土小柱固定于QSE-12/24固相萃取装置,将水相溶液倒入硅藻土小柱中,平衡10 min后,用15 mL乙酸乙酯洗脱,收集洗脱液,在洗脱液中加入4 g无水硫酸钠,放置10 min后过滤,FV32Plus全自动高通量智能平行浓缩仪浓缩至0.5 mL切忌浓缩至全干。以2 mL正己烷溶解残渣,并转移具塞透明玻璃管中,待衍生化。4、衍生化向正已烷复溶液中加入40 μL七氟丁酰基咪唑,立即盖上盖子,MultiVortex涡旋混合30 s,于7℃保温20 min。取出放至室温,加入2 mL氯化钠溶液(20%),MultiVortex涡旋1 min,静置后移出正已烷相,加入约0.3 g无水硫酸钠干燥,将溶液转移至进样小瓶中,供气相色谱-质谱测定。二、食品中氯丙醇多组分含量的测定同位素稀释-气相色谱-质谱法1、样品提取液态试样:称取试样4 g于15 mL玻璃离心管中,加入氘代氯丙醇混合溶液20μL,超声混匀5 min,待净化。半固态及固态试样:称取试4 g于15 mL玻璃离心管中,加入氘代氯丙醇混合溶液20 μL,加入4 g氯化钠溶液(20%),超声提取10 min后5 000 r/min离心10 min,移取上清液,再重复提取1次,合并上清液,待净化。2、样品净化硅藻土小柱固定于QSE-12/24固相萃取装置,将上清液全部转移至硅藻土小柱中,平衡10 min。以10 mL正已烷淋洗,弃去流出液,以15 mL乙酸乙酯洗脱氯丙醇,收集洗脱液于玻璃离心管中,使用FV32Plus全自动高通量智能平行浓缩仪浓缩至约0.5 mL切忌浓缩至全干。以2 mL正己烷溶解残渣,并转移具塞透明玻璃管中,待衍生化。3、衍生化同上述食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法三、食品中3-氯-1,2-丙二醇含量的测定同位素稀释-气相色谱-质谱法1、样品提取样品类型液体试样称取试样4 g于50 mL烧杯中加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)4 g,超声混5 min待净化提取后无明显残渣的半固态及固态试样加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)6 g,超声 10 min提取后有明显残渣的半固态及固态试样称取试样 4 g于15 mL 离心管中加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)15 g,超声提取10 min5 000 r/min离心10 min,移取上清液,待净化。2、样品净化取硅藻土5 g,加入提取液,充分混匀,放置 10 min。取5 g硅藻土装入层析柱中(层析柱下端填充少量玻璃棉)。将提取液与硅藻土混合装入层析柱中,上层加1 cm高度的无水硫酸钠。用40 mL正已烷-无水乙醚溶液(9 1)淋洗,弃去流出液。用150 mL无水乙醚洗脱3-MCPD,收集流出液,加入15 g无水硫酸钠,混匀以吸收水分,放置10 min后过滤。滤液于FlexiVap-12/24全自动智能平行浓缩仪35℃下浓缩至近干(约0.5 mL),2 mL正已烷溶解残渣,保存于具塞玻璃管中,待衍生化。3、衍生化同上述食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法Detelogy优选仪器
  • 美国麦克仪器公司助CO2制甲醇工业化
    二氧化碳是来源丰富、价格低廉的化学原料。甲醇,基本有机原料之一,多种有机产品的重要砌块,也是汽油的替代燃料。工业上合成甲醇几乎全部采用来自石油的合成气生产甲醇。如果能将CO2作为原料生产甲醇,将具有划时代的意义,化学家们也一直在尝试。但是,这些成果想要实现工业化,还需要面对成本、稳定性、反应条件等等挑战。化学家早些时候已经可以在实验室中实现氧化铟(indium oxide)催化CO2直接氢化(hydrogenation)得到甲醇,瑞士苏黎世联邦理工学院(ETH)教授Javier Pérez-Ramírez及其同事更进一步,使用氧化锆(ZrO2)负载的氧化铟(In2O3)催化剂在类似于工业生产的条件下催化CO2直接氢化制甲醇。该研究发表于《Angewandte Chemie International Edition》。(Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO2 Hydrogenation. Angew. Chem. Int. Ed., DOI: 10.1002/anie.201600943)在近乎工业生产的条件下,这种氧化铟催化剂催化CO2直接氢化制甲醇具有高活性、100%的甲醇选择性以及极高的稳定性(可连续使用1,000 h),性能远胜于工业上现有的无选择性且容易失活的Cu/ZnO/Al2O3非均相催化体系(在高温高压条件下氢化CO2制甲醇)。Javier Pérez-Ramírez教授。图片来源:ETH机理研究证明,催化剂表面的氧空位(oxygen vacancies)是反应发生的关键所在(如下图),也证实了南伊利诺伊大学葛庆峰(Qingfeng Ge)教授团队2013年通过理论计算所预测的氧化铟催化CO2氢化制甲醇的反应机制(ACS Catal., 2013, DOI: 10.1021/cs400132a)。催化剂的表面空位对CO2氢化制甲醇十分重要。图片来源:ACS C&ENETH的研究人员还通过向初始原料中添加CO以及改变反应温度来优化该反应,这两个策略都能调整氧空位的数量。Pérez-Ramírez等人与道达尔公司(Total)已经为该技术申请了专利,并对该过程进行了试点研究,也许CO2制甲醇的工业化就在眼前。Javier Pérez-Ramírez教授是美国麦克仪器公司的忠实用户,与美国麦克仪器公司有过多次合作,文中氧化铟催化剂表征采用的是美国麦克仪器公司的三站全功能型多用气体吸附仪3Flex。这说明,美国麦克仪器公司的3Flex仪器可为客户提供稳定可靠的催化剂表征数据,为CO2制甲醇的工业化研究提供强有力数据的保障。1. http://onlinelibrary.wiley.com/doi/10.1002/anie.201600943/abstract2. http://cen.acs.org/articles/94/i13/Carbon-dioxide-hydrogenated-methanol-large.html——部分内容来自X-MOL资讯
  • 江苏省计量院研制的甲醇中胆固醇溶液标准物质通过定级鉴定
    近日,全国标准物质管理委员会召开国家二级标准物质评审会,江苏省计量院化学所研制的甲醇中胆固醇溶液标准物质(2种)通过专家评审。   评审会上,项目负责人就此次申报的溶液标准物质的制备过程、定值方法、均匀性及稳定性考察、不确定度评定等方面内容进行了汇报。最终,专家组一致同意江苏省计量院研制的甲醇中胆固醇溶液标准物质(2种)通过国家二级标准物质的定级鉴定。   液相色谱仪作为一种常见的分析仪器,广泛应用于食品医药、环境化学、石油化工等行业相关产品的分析,台件保有量巨大。本次通过的甲醇中胆固醇溶液标准物质可用于液相色谱仪示差折光检测仪和蒸发光散射检测器的检定和校准工作。   近5年来,江苏省计量院化学所在各类科研项目的支持下,研制并获批国家有证标准物质19种,包括气体、有机溶液、无机溶液等多个品种。通过总结研制经验和专家指导意见,江苏省计量院将加大标准物质研制投入力度,为提升检测技术和科研能力,拓宽产业计量业务维度贡献更多力量。
  • 低比例甲醇汽油将出国家标准
    中国石油和化学工业联合会副秘书长胡迁林日前透露,低比例甲醇汽油国家标准(M15)的相关实验工作已经完成,目前正在做补充、完善和标准修订的工作,今年下半年或明年上半年将有望出台。   据中国石油和化学工业联合会副会长周竹叶介绍,目前我国醇醚燃料产品滞销严重,甲醇、二甲醚开工率不足。   我国甲醇的生产能力已突破3000万吨,但由于甲醇制烯烃项目仍在示范中,M15标准尚未出台,再加上国外低价甲醇的倾销,目前甲醇行业整体开工率不到50%,全国二甲醚装置平均开工率已降至20%左右,生产运行困难。   胡迁林认为,标准的缺失是制约醇醚燃料发展的突出问题。他认为,在新兴能源产业发展的背景下,醇醚燃料等洁净煤利用技术将和风能、太阳能一样,成为重要的替代能源。他表示,一方面,醇醚燃料的资源能够得到保证,生产甲醇二甲醚用劣质煤,我国12亿亿吨的煤炭储量中有20%是劣质煤,通过现代煤化工技术可以实现洁净转化,技术上也没有瓶颈 另一方面,实践证明,醇醚燃料的经济性、清洁型、车用适应性都没有问题。   此前,我国2007年立项,2009年正式颁布了车用燃料甲醇汽油标准和高比例甲醇汽油国家标准(M85)。胡迁林表示,只有这三个标准还不够,要推广醇醚燃料是一个系统工程,除了三个产品标准外,配套的加注系统、输配系统等的标准也应当及时出台。
  • 高纯试剂中杂质检测专题——工业甲醇中铵离子的测定
    01 引言 离子色谱法测定甲醇中铵离子 监测甲醇中铵离子含量在煤基合成甲醇工艺中具有重要作用。在煤基合成甲醇过程中,会产生一系列杂质气体 ,如 CO 、NH3 以及有机硫化物、氮的氧化物、煤焦油等,而铵离子会引起合成过程中的催化剂中毒失效,致催化剂效率严重下降;同时铵离子含量较高时会降低低温甲醇洗脱硫效率、对工艺设备有严重影响。因此,通过控制甲醇中铵离子的含量 ,可以防止催化剂中毒,提高转化率,降低成本。工艺控制中工业用甲醇中铵离子含量不得大于0.05mg/L.制定工业用甲醇中铵离子测定方法,是为工业甲醇的杂质检测提供一个试验方法,对指导甲醇为原料的相关生产过程的检测具有重要意义。目前甲醇中NH4+的测定都是采用离子色谱法,2022年3月1日开始实施国标《工业用甲醇中铵离子的测定离子色谱法》,下面小编分享下甲醇中NH4测定的离子色谱法。02 相关标准 GB/T 40395-2021《工业用甲醇中铵离子的测定离子色谱法》03 皖仪科技应对方案 皖仪仪器设备 试剂耗材 甲醇:色谱纯;铵根离子:ρ=1000mg/L;一次性注射器(0.5-2mL);有机系针式过滤器(0.22μm) 测试结果 标曲线性测试NH4+标曲重叠谱图NH4+线性说明:由于所有胺类物质一次线性范围均较窄,本次按照标准要求配置的标准曲线系列梯度范围较宽,因此,标准曲线采用二次曲线拟合,本次测试铵离子线性相关系数为R2=0.99996,线性良好。------ 重复性测试 ------ NH4+0.05mg/L连续3针测试谱图NH4+0.2mg/L连续3针测试谱图NH4+2.0mg/L连续3针测试谱图 ------ 重复性结果 ------ 说明:根据谱图及测试结果可见,所有组分定量重复性均小于1%,定性重复性均小于0.2%,测试重复性良好。------ 检出限 ------ 注:标准中规定,在进样体积为50μL下,测定下限为0.01mg/L,本测试以NH4+0.05mg/L进样,考察其峰高,取测试最大噪声,以3倍信噪比对应峰高为检出限。------ 测试结果 ------ 经计算,本次测试 NH4+检出限为 0.434μg/L,小于标准要求的 0.01mg/L。04 总结 结果表明 本文采用离子色谱法,对甲醇中 NH4+进行测定,准确度高,灵敏性好,精密度好,该法可用于甲醇中 NH4+的测定。05 注意事项 — END —扫描二维码 |
  • 中石化汽油再曝质量门 或因甲醇代乙醇
    中石化再一次陷入汽油“质量门”,不过,这次“受害者”由香港车主变为河南车主。   昨日,中石化办公厅有关负责人接受《每日经济新闻》采访时表示,中石化总部正在等待河南安阳当地工商局和技术监督局对油品进行抽样检验的报告。而中石化安阳公司有关人士也称,目前已停止出售这批疑因导致部分车辆故障的93#汽油。   各方等待抽样检验报告   据报道,2010年3月中下旬开始,河南省安阳市内许多4S店突然接到大批送修车辆。这些故障车辆都有着同样的“病症”:轻则会出现加油不顺、冒黑烟、尾气刺鼻的情况,重则排气管不断喷出红或黑色液体、无法启动,最严重的会出现一些零件损坏的情况。   对此,《每日经济新闻》向中石化方面进行了求证。   中石化办公厅有关负责人士说:”此事件还没有上升到中石化北京总部这个层面解决,具体情况要问中石化河南安阳分公司,由他们具体负责处理,中石化总部也在等待检测报告的出来。估计就这几天会出来,到时会对外公布。”   “对不起,我只是一个负责加油的员工,关于车辆故障的问题我不太清楚。”中石化河南安阳分公司旗下加油站的一位员工在电话中说道。   安阳分公司负责油品零售业务有关人士也对《每日经济新闻》表示,4月1日起,当地加油站已经全部更换了一批新的93#汽油,上批油已经停止销售了。4月初,中石化河南安阳分公司在安阳市电视台也发表了公开声明,表示将对车主损失的油费和清洗费进行理赔。   中石化河南石油分公司目前也声明表示,已组成调查组,在前期组织有关专家赴现场进行调查的基础上,责成安阳石油分公司主动邀请当地工商局和技术监督局对油品进行抽样检验,同时将邀请车友代表和关注此事的网友、媒体记者对抽检过程进行监督,最终调查结果待专家及权威机构拿出意见后及时公布。如果调查证实下属企业确实存在内部管理问题,其将对有关责任人问责。   甲醇代替乙醇所导致?   一位不愿署名的汽车业内专家称在最终抽样检验没有出来之前,无法确定事故的最终原因。不过,他担心或许是汽油中加入甲醇代替乙醇导致。   国家发改委和财政部之前曾联合下发紧急通知,要求各地暂停核准玉米加工乙醇项目。乙醇汽油最大的问题就是会占用耕地和粮食,而且发酵乙醇价格高。上述专家说,国内乙醇限产,没那么多已乙醇添加,一些加油站为了追求利润,甲醇代替乙醇。而全国每年有几十万吨甲醇不知去向,特别是在山西、河南地区。   与乙醇汽油相比,甲醇汽油的生产成本具有绝对优势。甲醇生产成本在每吨1000元左右,而每吨乙醇的生产成本在4500元左右。   据专业人士介绍,甲醇汽油M15标准,是汽油里面加入15%左右的甲醇,以及一定量的添加剂,以此类推M30和M50则是分别加入30%和50%的甲醇。目前,只有山西省在全面推广甲醇汽油。
  • 国标委发布89项分析测试方法国家标准
    国家质量监督检验检疫总局、国家标准化管理委员会批准《工业硝酸 浓硝酸》等179项国家标准,其中相关分析方法标准89项。 国家标准编号 国  家  标  准  名  称 代替标准号 实施日期 GB/T 2383-2014 粉状染料 筛分细度的测定 GB/T 2383-2003 2014-12-01 GB/T 2386-2014 染料及染料中间体 水分的测定 GB/T 2386-2006 2014-12-01 GB/T 2391-2014 反应染料 固色率的测定 GB/T 2391-2006 2014-12-01 GB/T 2392-2014 染料 热稳定性的测定 GB/T 2392-2006 2014-12-01 GB/T 2399-2014 阳离子染料 染色色光和强度的测定 GB/T 2399-2003 2014-12-01 GB/T 2403-2014 阳离子染料 染腈纶时染浴pH适应范围的测定 GB/T 2403-2006 2014-12-01GB/T 2792-2014 胶粘带剥离强度的试验方法 GB/T 2792-1998 2014-12-01 GB/T 3517-2014 天然生胶 塑性保持率(PRI)的测定 GB/T 3517-2002 2014-12-01 GB/T 4851-2014 胶粘带持粘性的试验方法 GB/T 4851-1998 2014-12-01 GB/T 5211.15-2014 颜料和体质颜料通用试验方法 第15部分:吸油量的测定 GB/T 5211.15-1988 2014-12-01 GB/T 5275.1-2014 气体分析 动态体积法制备校准用混合气体 第1部分:校准方法 2014-12-01 GB/T 5275.2-2014 气体分析 动态体积法制备校准用混合气体 第2部分:容积泵 2014-12-01 GB/T 5275.4-2014 气体分析 动态体积法制备校准用混合气体 第4部分:连续注射法 2014-12-01 GB/T 5275.5-2014 气体分析 动态体积法制备校准用混合气体 第5部分:毛细管校准器 2014-12-01 GB/T 5275.6-2014 气体分析 动态体积法制备校准用混合气体 第6部分:临界锐孔 2014-12-01 GB/T 5275.7-2014 气体分析 动态体积法制备校准用混合气体 第7部分:热式质量流量控制器 2014-12-01 GB/T 5275.8-2014 气体分析 动态体积法制备校准用混合气体 第8部分:扩散法 2014-12-01 GB/T 5275.9-2014 气体分析 动态体积法制备校准用混合气体 第9部分:饱和法 2014-12-01 GB/T 5275.11-2014 气体分析 动态体积法制备校准用混合气体 第11部分:电化学发生法 2014-12-01 GB/T 6435-2014 饲料中水分的测定 GB/T 6435-2006 2015-01-09 GB/T 7125-2014 胶粘带厚度的试验方法 GB/T 7125-1999 2014-12-01 GB/T 7791-2014 防污漆降阻性能试验方法 GB/T 7791-1987 2014-12-01 GB/T 8657-2014 苯乙烯-丁二烯生橡胶 皂和有机酸含量的测定 GB/T 8657-2000 2014-12-01 GB/T 9339-2014 反应染料 染料与纤维素纤维结合键 耐酸耐碱性的测定 GB/T 9339-2006 2014-12-01 GB/T 10663-2014 分散染料 移染性的测定 高温染色法 GB/T 10663-2003 2014-12-01 GB/T 11141-2014 工业用轻质烯烃中微量硫的测定 GB/T 11141-1989 2014-12-01 GB/T 12701-2014 工业用乙烯、丙烯中微量含氧化合物的测定 气相色谱法 GB/T 12701-1990 2014-12-01 GB/T 13289-2014 工业用乙烯液态和气态采样法 GB/T 13289-1991 2014-12-01 GB/T 13290-2014 工业用丙烯和丁二烯液态采样法 GB/T 13290-1991 2014-12-01 GB/T 14420-2014 锅炉用水和冷却水分析方法 化学耗氧量的测定 重铬酸钾快速法 GB/T 14420-1993 2014-12-01 GB/T 15893.1-2014 工业循环冷却水中浊度的测定 散射光法 GB/T 15893.1-1995 2014-12-01 GB/T 16422.2-2014 塑料 实验室光源暴露试验方法 第2部分:氙弧灯 GB/T 16422.2-1999 2014-12-01 GB/T 16422.3-2014 塑料 实验室光源暴露试验方法 第3部分:荧光紫外灯 GB/T 16422.3-1997 2014-12-01 GB/T 16422.4-2014 塑料 实验室光源暴露试验方法 第4部分:开放式碳弧灯 GB/T 16422.4-1996 2014-12-01 GB/T 18175-2014 水处理剂缓蚀性能的测定 旋转挂片法 GB/T 18175-2000 2014-12-01 GB/T 18397-2014 预混合饲料中泛酸的测定 高效液相色谱法 GB/T 18397-2001 2015-01-10 GB/T 19281-2014 碳酸钙分析方法 GB/T 19281-2003 2014-12-01 GB/T 24148.7-2014 塑料不饱和聚酯树脂(UP-R) 第7部分: 室温条件下凝胶时间的测定 2014-12-01 GB/T 24148.8-2014 塑料 不饱和聚酯树脂(UP-R)第8部分:铂-钴比色法测定颜色 GB/T 7193.7-1992 2014-12-01 GB/T 24148.9-2014 塑料 不饱和聚酯树脂(UP-R) 第9部分:总体积收缩率测定 2014-12-01 GB/T 29493.9-2014 纺织染整助剂中有害物质的测定 第9部分: 丙烯酰胺的测定 2014-12-01 GB/T 30773-2014 气相色谱法测定 酚醛树脂中游离苯酚含量 2014-12-01 GB/T 30774-2014 密封胶粘连性的测定 2014-12-01 GB/T 30776-2014 胶粘带拉伸强度与断裂伸长率的试验方法 2014-12-01 GB/T 30787-2014 数字印刷材料用成膜树脂 平均分子量及其分布的测定 凝胶渗透色谱法 2014-12-01 GB/T 30790.6-2014 色漆和清漆 防护涂料体系对钢结构的防腐蚀保护 第6部分:实验室性能测试方法 2014-12-01 GB/T 30791-2014 色漆和清漆 T弯试验 2014-12-01 GB/T 30792-2014 罐内水性涂料抗微生物侵染的试验方法 2014-12-01 GB/T 30793-2014 X-射线衍射法测定二氧化钛颜料中锐钛型与金红石型比率 2014-12-01 GB/T 30794-2014 热熔型氟树脂涂层(干膜)中聚偏二氟乙烯(PVDF)含量测定 熔融温度下降法 2014-12-01 GB/T 30795-2014 食品用洗涤剂试验方法 甲醇的测定 2014-10-10 GB/T 30796-2014 食品用洗涤剂试验方法 甲醛的测定 2014-11-01 GB/T 30797-2014 食品用洗涤剂试验方法 总砷的测定 2014-11-01 GB/T 30798-2014 食品用洗涤剂试验方法 荧光增白剂的测定 2014-11-01 GB/T 30799-2014 食品用洗涤剂试验方法 重金属的测定 2014-11-01 GB/T 30902-2014 无机化工产品 杂质元素的测定 电感耦合等离子体发射光谱法(ICP-OES) 2014-12-01 GB/T 30903-2014 无机化工产品 杂质元素的测定 电感耦合等离子体质谱法(ICP-MS) 2014-12-01 GB/T 30904-2014 无机化工产品 晶型结构分析 X射线衍射法 2014-12-01 GB/T 30905-2014 无机化工产品 元素含量的测定 X射线荧光光谱法 2014-12-01 GB/T 30906-2014 三聚磷酸钠中三聚磷酸钠含量的测定 离子色谱法 2014-12-01 GB/T 30907-2014 胶鞋 运动鞋减震性能试验方法 2014-12-01 GB/T 30908-2014 摄影 加工废液 硼的测定 2014-12-01 GB/T 30909-2014 胶鞋 丙烯腈迁移量的测定 2014-12-01 GB/T 30910-2014 胶鞋 2-巯基苯并噻唑、二硫化二苯并噻唑迁移量的测定 2014-12-01 GB/T 30911-2014 汽车齿轮齿条式动力转向器唇形密封圈性能试验方法 2014-12-01 GB/T 30913-2014 工业射线胶片系统分类标准试验方法 2014-12-01 GB/T 30914-2014 苯乙烯-异戊二烯-丁二烯橡胶(SIBR)微观结构的测定 2014-12-01 GB/T 30917-2014 天然胶乳橡胶避孕套中可迁移亚硝胺的测定 2014-12-01 GB/T 30919-2014 苯乙烯-丁二烯生橡胶 N-亚硝基胺化合物的测定 气相色谱-热能分析法 2014-12-01 GB/T 30925-2014 塑料 乙烯-乙酸乙烯酯共聚物(EVAC)热塑性塑料 乙酸乙烯酯含量的测定 2014-12-01 GB/T 30926-2014 化妆品中7种维生素C衍生物的测定 高效液相色谱-串联质谱法 2014-11-01 GB/T 30927-2014 化妆品中罗丹明B等4种禁用着色剂的测定 高效液相色谱法 2014-11-01 GB/T 30929-2014 化妆品中禁用物质2,4,6-三氯苯酚、五氯苯酚和硫氯酚的测定 高效液相色谱法 2014-11-01 GB/T 30930-2014 化妆品中联苯胺等9种禁用芳香胺的测定 高效液相色谱-串联质谱法 2014-11-01 GB/T 30931-2014 化妆品中苯扎氯铵含量的测定 高效液相色谱法 2014-11-01 GB/T 30932-2014 化妆品中禁用物质二噁烷残留量的测定 顶空气相色谱-质谱法 2014-11-01 GB/T 30933-2014 化妆品中防晒剂二乙氨基羟苯甲酰基苯甲酸己酯的测定 高效液相色谱法 2014-11-01 GB/T 30934-2014 化妆品中脱氢醋酸及其盐类的测定 高效液相色谱法 2014-11-01 GB/T 30935-2014 化妆品中8-甲氧基补骨脂素等8种禁用呋喃香豆素的测定 高效液相色谱法 2014-11-01 GB/T 30936-2014 化妆品中氯磺丙脲、甲苯磺丁脲和氨磺丁脲3种禁用磺脲类物质的测定方法 2014-11-01 GB/T 30937-2014 化妆品中禁用物质甲硝唑的测定 高效液相色谱-串联质谱法 2014-11-01 GB/T 30938-2014 化妆品中食品橙8号的测定 高效液相色谱法 2014-11-01 GB/T 30939-2014 化妆品中污染物双酚A的测定 高效液相色谱-串联质谱法 2014-11-01 GB/T 30940-2014 化妆品中禁用物质维甲酸、异维甲酸的测定 高效液相色谱法 2014-11-01 GB/T 30942-2014 化妆品中禁用物质乙二醇甲醚、乙二醇乙醚及二乙二醇甲醚的测定 气相色谱法 2014-11-01 GB/T 30945-2014 饲料中泰乐菌素的测定 高效液相色谱法 2015-01-08 GB/T 30955-2014 饲料中黄曲霉毒素B1、B2、G1、G2的测定 免疫亲和柱净化-高效液相色谱法 2015-01-10 GB/T 30956-2014 饲料中脱氧雪腐镰刀菌烯醇的测定 免疫亲和柱净化-高效液相色谱法 2015-01-10 GB/T 30957-2014 饲料中赭曲霉毒素A的测定 免疫亲和柱净化-高效液相色谱法 2015-01-10
  • 江苏醋酸纤维素工程技术研究中心引进徕卡显微镜
    2008年11月24日,工程技术中心投入30万元人民币,引进德国徕卡Leica仪器公司DM2500P型偏光显微镜正式投入使用。   DM 2500P 技术参数   1. 偏光专用三目镜筒,可0/100% 50/50% 100/0%三档分光   2. 目镜:10X/22mm视域   3. 一套透反共用物镜:其中 1.25X的NA≧0.04 2.5X的NA≧0.07 5X的NA≧0.12 10X的NA≧0.25 20X的NA≧0.50 50X的NA≧0.75 100X的NA≧0.90 100X油镜的NA≧1.25   4. 可调中的360度旋转载物台,带2个微分尺,精度0.1度   5. 三级同轴(粗、中、细) 调焦旋纽,最小精度1um   6. 可双向调中孔位的物镜转盘,5孔位   7. 配180度旋转带刻度偏光检偏镜、圆偏光观察的四分之一波长补偿片、目镜测微尺、测微标尺   8. 透射光路包括:偏光专用聚光镜、暗场环、起偏器、全波长补偿片、四分之一波长补偿片、蓝色滤片、绿色滤片、灰度片、100W透射光灯箱   9. 反射光路包括:反射光光路架、带全波长补偿片起偏器、日光转换滤片、蓝色滤片、绿色滤片、灰度片、100W反射光灯箱   DM 2500P 主要特点   1. 无限远光学校正系统,图像清晰,高反差   2. 内置透反射卤素灯电源,透反射照明都是12V-100W,透、反射光转换方便,可加配荧光光源,荧光与卤素灯转换时不用拆换灯箱   3. 物镜透反共用,反射光、透射光观察转换时不用换物镜,省时省力   4. 检偏镜可180度旋转   5. 360度旋转专业偏光载物台,带2个微分尺,可加配带XY移动尺样品夹,移动样品夹有0,1mm,0.2mm0.3mm,0.5mm,1.0mm,2.0mm五档步距,调焦旋钮的扭力可调,物台高度限位可调整   7. 特有保护锁设计,使更换样品后无需重新调焦,实现样品与物镜双重保护   8. 调节工具可放在镜体上方便随时取用   9. 聚光镜架调中后,即便卸掉反光镜,调中位置也不改变   10. 各种滤片都经过防热处理   11. 专利的热补偿焦距稳定技术,即双金属片反向膨胀抵消技术,抵消机体由于长时间热效应带来的调焦面移动   江苏省醋酸纤维素工程技术研究中心(简称工程技术中心)依托南通醋酸纤维有限公司。工程技术中心的建立将进一步提升中国在醋酸纤维素领域的研发和自主创新能力,确保中国醋纤工业在日趋激烈的国际市场竞争中不断发展壮大。   工程技术中心大楼于2005年11月17日正式破土动工,2006年12月12日竣工并通过整体验收,2007年1月8日正式启用。工程技术中心占地总面积33000平方米,中心大楼建筑面积4000平方米,两层建筑加辅楼,分试验区和办公区两部分,试验区主要包括仪器分析实验室、烟气测试分析室、综合实验室、滤棒成型研究室、醋片小试室、丝束试验室、木浆粕研究室、油剂试验室。办公区主要包括:情报资料室、办公室、会议室、报告厅等,并预留部分面积作为发展之用。同时建成国内唯一的丝束中试和醋片中试线。   摘自南通醋酸纤维素工程技术研究中心网站
  • 在线气体分析仪在煤化工中的应用—甲醇合成
    甲醇合成的原料主要是气化煤气、焦炉煤气、天然气等,经过净化(变换,脱硫,脱碳),然后调整其压力进合成塔,出来后冷却,然后在经过醇分进精馏塔提纯。在线分析仪器的主要用量在煤气化工段,而对于净化和合成工段所使用的仪器数量较少。针对相同制煤气工艺而言,甲醇工艺所需要的分析仪器数量要少于合成氨工艺。煤气化技术是发展煤基化学品(如甲醇,氨、二甲醚),煤基液体燃料,先进的IGCC发电技术,多联产系统,制氢,燃料电池,直接还原炼铁等过程工业的基础,是这些行业的共性技术,关键技术和龙头技术,可以说是工业领域许多行业发展的“引擎”。航天炉煤气化工艺主要技术路线:干煤粉作原料,采用激冷流程,主要特点是技术先进,具有较高的热效率(可达95%),碳转化率高(可达99%) 气化炉为水冷壁结构结构,气化温度能到1500-1700℃的高温 对煤种要求低,可实现原料本地化 拥有自主知识产权 关键设备全部国产化,投资少,生产成本低。(图源网络,侵删)不同的设计院、以上数据有差异
  • 从“牛奶检出丙二醇”事件,来看看丙二醇检测都用哪些仪器及方法
    近日,麦趣尔纯牛奶检测出丙二醇问题引起社会广泛关注。据了解,浙江省庆元县市场监督管理局公示了2022年第4期食品抽检情况,结果显示,麦趣尔集团生产的2批次纯牛奶抽检不合格,被检出丙二醇,该项目标准值为“不得使用”。序号样品名称被抽样单位名称生产单位名称抽样时间检测结果不合格项目检验结果标准值1纯牛奶庆元县宸瑾食品商行麦趣尔集团股份有限公司2022-05-26不符合丙二醇0.318g/kg不得使用2麦趣尔纯牛奶庆元县宸瑾食品商行麦趣尔集团股份有限公司2022-05-26不符合丙二醇0.321g/kg不得使用数据来源于网络那么,丙二醇到底为何物,对人体危害性如何? 丙二醇可分为两种稳定的同分异构体:1,2-丙二醇和1,3-丙二醇。基本特征是无色、无味和无臭,易燃烧,吸水性很强,能够与水、乙醇以及其他多种有机溶剂任意混溶。 根据GB 2760-2014《食品安全国家标准 食品添加剂使用标准》、GB30616-2020《食品安全国家标准 食品用香精》的规定,丙二醇是批准使用的食品添加剂,也是允许使用的食品用合成香料和食品用香精中允许使用的溶剂。食品添加剂丙二醇在生湿面制品、糕点中的最大使用量分别为1.5g/kg、3.0g/kg。但是,丙二醇不得在纯牛奶中使用。 有专家表示,长期过量食用丙二醇可能引起肾脏障碍。然而,笼统的说“长期大量”是没有意义的。世卫专家给出丙二醇的ADI值是25mg/kg,按一个成年人60公斤计算,每天喝5升检出丙二醇含量为0.32g/kg的奶,才达到这个每日容许摄入量,所以即使喝过含丙二醇牛奶的朋友们也不用太过焦虑。那么,丙二醇为什么会出现在牛奶中? 我们先来介绍下丙二醇的作用,丙二醇常用作稳定剂和凝固剂、抗结剂、增稠剂等,在塑料、服装、合成树脂、化妆品、食品等众多领域有着广泛的应用。 对于麦趣尔牛奶中检测出丙二醇,有专家提出了以下可能性:第一,在挤牛奶时一般会对牛的乳房进行消杀,杀菌剂中会添加丙二醇起到溶解的作用;第二,乳制品生产过程中会清洗管道,管道中会添加大量清洗剂,而清洗剂中会添加丙二醇;第三,该牛奶与其他使用丙二醇的产品共用生产设备,切换产品时没有清洗;第四,有可能是饲料中添加了丙二醇,进而转移到了牛奶中。根据以上内容,丙二醇在日常生活中几乎无处不在,那么丙二醇检测都用什么仪器及方法呢?GB 5009.251-2016《食品安全国家标准 食品中1,2-丙二醇的测定》中规定了,用气相色谱和气相色谱-质谱法测定食品中1,2-丙二醇。此外,小编这儿还为大家整理了几种常见样品中丙二醇的检测方法,一起来学习一下吧~~1、GC/GCMS法测定进出口食用动物、饲料中的丙二醇含量使用仪器:气质联用仪气质联用仪方法简介:本文建立了进出口食用动物、饲料中丙二醇含量的气相色谱分析方法,并采用气相色谱-质谱联用法进行确证,本方法操作简单、灵敏度高,可为进出口食用动物、饲料中丙二醇含量测定提供参考。2、电子雾化液中丙二醇、丙三醇检测方案(气相色谱仪)使用仪器:气相色谱仪气相色谱仪方法简介:采用岛津公司气相色谱仪GC-2010 Pro建立了电子雾化液中1,2-丙二醇和丙三醇含量的检测方法。在100-2000 mg/L浓度范围内,1,2-丙二醇和丙三醇标准曲线的线性相关系数均在0.999以上。取浓度100 mg/L标准溶液6次平行测定,峰面积的相对标准偏差(RSD%)小于2%,重复性良好。加标试验中,丙二醇和丙三醇的平均加标回收率分别为100.8%和99.4%,回收率良好。该方法可为电子雾化液中1,2-丙二醇和丙三醇含量的测定提供参考。3、气相色谱酒中风味物质—— 1,2-丙二醇使用仪器:气相色谱仪气相色谱系统方法简介:采用配备自动进样器和FID的8860GC进行分析,系统对醇、醛、有机酸和酯类物质均实现了优异的分离度和峰形,为白酒中风味物质的研究提供了可靠的参考依据。4、烟草中1,2-丙二醇和丙三醇检测方案(气相色谱仪)使用仪器:气相色谱仪气相色谱仪方法简介:本文采用 Thermo Scientific 模块化气相色谱 Trace1310 配置 FID 检测器,以含1,4-丁二醇做内标的甲醇溶剂对烟丝中的 1,2-丙二醇和丙三醇进行震荡提取,并测定。该方法的操作步骤简单,对 1,2-丙二醇和丙三醇的检出限分别为 88.25 ug/g 和 288.25 ug/g,定量限均为1.25mg/g, 体现了其较高的检测灵敏度;同时以3种不同浓度水平对烟丝样品进行加标回收试验,其回收率对1,2-丙二醇为105~110%、对丙三醇为96.0~112%,能够很好地符合对烟丝样品中1,2-丙二醇和丙三醇的日常检测要求。5、牙膏中丙二醇、二甘醇、甘油等二醇类化合物检测方案(毛细管柱)使用仪器:气质联用仪气质联用仪方法简介:通过GC/MSD分析牙膏样品中的二醇类物质,采用超高惰性气相色谱柱,按照US FDA方法进行,样品中的待测物均表现出良好的峰形。以上就是小编为大家整理的部分样品中丙二醇的检测方案,更多内容,请查看【行业应用】栏目。同时,也欢迎广大厂商积极上传相应的解决方案,为更多用户提供参考,更能展示公司技术实力! 【行业应用】是仪器信息网专业行业导购平台,汇聚了行业内国内外主流厂商的优质分析方法及相应的仪器设备。栏目建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、农/林/牧/渔、石化、汽车、建筑、医疗卫生等二十余个使用仪器相对集中的行业领域,目前,已经收录行业解决方案5万+篇。 选靠谱仪器,就上仪器信息网【仪器优选】栏目。它是科学仪器行业专业导购平台,旨在帮助仪器用户快速找到需要的仪器设备。栏目囊括了分析仪器、实验室设备、物性测试仪器、光学仪器及设备等14大类仪器,1000余个仪器品类,收录数十万台优质仪器。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制