当前位置: 仪器信息网 > 行业主题 > >

胰蛋白胨葡萄糖酵母浸膏肉

仪器信息网胰蛋白胨葡萄糖酵母浸膏肉专题为您提供2024年最新胰蛋白胨葡萄糖酵母浸膏肉价格报价、厂家品牌的相关信息, 包括胰蛋白胨葡萄糖酵母浸膏肉参数、型号等,不管是国产,还是进口品牌的胰蛋白胨葡萄糖酵母浸膏肉您都可以在这里找到。 除此之外,仪器信息网还免费为您整合胰蛋白胨葡萄糖酵母浸膏肉相关的耗材配件、试剂标物,还有胰蛋白胨葡萄糖酵母浸膏肉相关的最新资讯、资料,以及胰蛋白胨葡萄糖酵母浸膏肉相关的解决方案。

胰蛋白胨葡萄糖酵母浸膏肉相关的资讯

  • 酵母粉、酵母提取物、酵母浸粉和酵母浸膏的区别您知道吗?
    在给许多客户介绍酵母浸粉时,很多人都会将其与酵母粉混为一谈,经常会问:“酵母浸粉不就是酵母粉吗?”“酵母浸膏和酵母浸粉哪个好呢?” 首先我们了解一下什么是酵母粉、酵母浸粉和酵母浸膏吧! 酵母粉含义:一般是指灭活的酵母,产品成分主要是失去活性的酵母菌体,营养成分包括仍然包裹在菌体内部的粗蛋白、胞壁多糖以及丰富的维生素、生长素、微量元素等。 酵母粉分类:分糖蜜酵母粉与啤酒渣酵母粉两大类,前者专门发酵生产并干燥制成,以糖蜜为主要原料,品质好且质量稳定;后者采用啤酒生产的废料-废啤酒酵母泥为原料,一般采取滚筒干燥制成,成本较低,但杂质较多,酵母细胞较老化,微生物不易吸收利用,品质不稳定。酵母粉主要在传统的抗生素等发酵行业应用较广泛。 酵母粉特点:微生物对酵母粉的营养物质利用率与利用速率较低,发酵完毕后不能利用的残留物(粗蛋白与菌体细胞壁)较多,难以处理。 酵母浸粉含义:又称酵母提取物,是采用新鲜酵母经酵母自溶、过滤、 浓缩、喷雾干燥而得到的一种浅黄色至类白色 干燥粉末。有酵母自然 香味,易溶于水,水溶 液呈淡黄色。酵母浸粉吸湿性,请放阴凉干燥处保存。酵母浸粉当中含有氨基酸类、肽类、水溶性维生素、及酵母多糖、酵母核酸组成的一种混合物,酵母浸粉当中含有丰富的B族维生素和各种氨基酸。核苷酸类、有机酸类、矿物质类及维生素类的水溶性物质。在当中它起的主要作用是补充氮源和提供细菌生长的各种维生素及氨基酸。 酵母浸粉分类:同样可以采取糖蜜发酵的糖蜜酵母和啤酒生产的废啤酒酵母泥为原料生产。 糖蜜酵母生产的酵母浸粉一般品质较高,这一方面是糖蜜酵母发酵经过专业的生产控制,原料品质就比较高,另外啤酒酵母粉为原料也有利于酵母积累更丰富的天然营养成分。另外一方面是以糖蜜酵母为原料的酵母浸粉生产规模可以做的很大,生产厂家可以充分采用先进的生产工艺设备与技术,从生产技术的角度保证酵母浸粉产品的高品质。 酵母浸粉特点:酵母浸粉的生物利用度高,微生物的利用速率快,特别有利于对发酵培养基比较挑剔的营养缺陷型、基因重组工程菌的吸收利用,有助于缩短发酵周期,提高微生物发酵效价;同时发酵残留非常少,有利于发酵废液的环保处理。 酵母浸粉主要用于微生物培养基制备的基础原材料以及生物制药发酵。 酵母浸膏以酵母为原料,采用自溶法或加酶水解法工艺,经分离、脱色精制浓缩而成的,含氨基酸、肽、多肽及酵母细胞水溶性成分的膏状产品。 废啤酒酵母泥生产的酵母浸粉品质一般要大大差于糖蜜酵母浸粉,这主要是因为废啤酒酵母泥本身是啤酒生产的副产物,不存在什么质量控制;另外一方面是废啤酒酵母泥不能长途运输,生产厂家一般只能依赖周边啤酒厂的有限供应,生产规模难以扩大,因此限制了厂家的投资规模,一般只能土法上马,难以把生产技术装备以及所能采取的技术手段提升到理想的状态,导致产品色泽较深、不溶性杂质较多,维生素、生长素等微量营养物质的含量也比较欠缺。 酵母粉和酵母浸粉是完全不一样的产品,更不能混为一谈。 酵母浸粉和酵母浸膏的区别在于酵母浸粉经过高温瞬时干燥所损失的营养成分比酵母浸膏长时间浓缩所损失的营养要少得多,所以酵母浸粉在实际使用中用量更经济,且使用方便,也更易于运输和保存。 酵母浸粉和酵母浸膏应用领域食:品饲料领域、动物营养领域、生物发酵领域、营养保健领域、发酵工业领域:可用于抗生素新药、多肽、核苷酸、B族维生素、生长因子、氨基酸、有机酸、酶制剂、生物防腐剂、原料药、VC及肌苷、生物材料、维生素、微量元素、基因工程等生物工程产业。为微生物发酵培养提供全面均衡的营养 、微生物培养基:假单胞杆菌、醋酸杆菌、葡萄糖酸杆菌、大肠杆菌、枯草杆菌、乳酸链球菌、葡萄球菌、酵母及支原体。
  • 酵母实现葡萄糖变鸦片 我们如何应对?
    每年,世界著名的合成生物学竞赛iGEM( International Genetically Engineered Machine)都会吸引数以千计来自全球各地的学生,就&ldquo 组装生命系统&rdquo 的创意与技术一较高下。Jerome Sessini/Magnum为了探讨合成生物学给社会安全和人类健康带来的潜在风险,2014年11月,FBI特工爱德华· 尤(Edward You)假设了这样一个场景:如果经过遗传改造的酵母能将糖&ldquo 加工&rdquo 成鸦片,我们该怎么办?曾经的假想现在已经成真。就在2014年iGEM大赛结束一周后,两位专门研究如何用酵母制造鸦片的科学家找到了我们。那时他们还没有发表论文,希望听听我们作为生物技术政策研究人员的意见。他们想知道,如何能在论文中将研究的益处最大化,并且缓和由此带来的风险的尖锐性。如今,加利福尼亚大学伯克利分校的约翰· (John Dueber)、肯高迪亚大学的文森特· 马丁(Vincent Martin)和同事已经将这篇论文公诸于众。经他们改造的酵母具有将葡萄糖转换成吗啡的完整生化反应通路(见&ldquo &lsquo 酿造&rsquo 鸦片的酵母&rdquo );而卡尔加里大学的研究人员更是给这架&ldquo 鸦片机器&rdquo 添上了最后一块零件。我们现有的吗啡都提取自罂粟(Papaver somniferum)。而通过改造酵母,寻找更简单、更可控的生物合成途径,可以帮助我们获得更便宜、成瘾性更低、更安全,以及更有效的镇痛药物。酵母可以自我复制、容易生长、貌不显眼,还能轻易地播撒四方。因此,这一研究还会为鸦片制品的违禁交易提供便利。鸦片制品可以由此实现分散化、本地化生产,普通人可以轻而易举地得到它们。这些年来,合成生物学家利用改造过的酵母、细菌和真核植物,制造了许多&ldquo 友好&rdquo 的物质,例如抗疟疾药物、香氛、调味料、工业化学品和燃料。制造吗啡的酵母菌株,是我们研究出的第一种可以合成管制镇痛药的生物系统;然而,它肯定不会是最后一种可能&ldquo 惹麻烦&rdquo 的生物合成系统。合成生物学界应该和监管者合作,积极评估这类具有&ldquo 两面性&rdquo 的技术的风险与收益。本文列出了一些最需要优先讨论的问题,它们不仅关乎公共卫生与安全,也与合成生物学的前景密切相关。这些问题包括:只允许持有相关执照的机构、获得授权的研究人员和技术人员使用能够合成鸦片制品的酵母菌株;减小这种酵母菌株对鸦片违禁交易市场的吸引力;贯彻灵活、灵敏的监管措施,以应对我们对这一技术在认识上的转变,以及技术本身的变化。&ldquo 酿&rdquo 鸦片的酵母葡萄糖需要经过若干个生物化学反应才能变成吗啡,研究人员花费了7年时间才赋予了酵母合成吗啡的能力。参与这一研究的3个团队分别将罂粟、甜菜根,以及土壤中一种细菌的遗传物质转移到酵母中,使其获得发生其中一个或几个反应的能力。第4个团队则为这条反应链接上了最后一环,在酵母中实现了(S)-网状番荔枝碱[ (S)-reticuline] 到(R)-网状番荔枝碱的转化:一种能够实现&ldquo 葡萄糖&rarr 吗啡&rdquo 全转化的酵母由此诞生。理论上,只要懂得一些基本的发酵操作,任何人都能使用家用的啤酒发酵工具养殖这种酵母。如果你用发酵罐&ldquo 酿&rdquo 出了10g吗啡,只需喝下1~2ml发酵液,你就能摄入一个标准的处方剂量。现有的工程酵母菌株并没有这么高的产能,然而,其他一些相关的商业化发酵产物,已经达到了此种产出率,有些物质的产出率甚至比这还高10倍以上。尽管研究人员的初衷是制造合法的镇痛药,这一新技术还是带来了不少麻烦。生物合成的吗啡要么比现有吗啡具有更高的费-效比(即在成本相等的情况下效果更好)、更为监管者所接受,要么成瘾性更小、更安全。然而,现有的吗啡在制造、管理,以及运输环节上,成本都不高。2001到2007年间,高产罂粟的成功培育使得罂粟制品(又叫&ldquo 罂粟杆浓缩物&rdquo ,一般以大批量形式销售)的成本降低了20%(约为每公斤300~500美元)。合成生物学家、神经科学学家、药物化学家等不同领域从业人员必须通力合作,并且进行旷日持久、所费不赀的临床试验,才能设计出更具商业价值的鸦片类镇痛药。此外,为了防止更多人对鸦片上瘾,全球鸦片制品的供需都处于严格的管控之下。法律保障为了防止罂粟制品流向非法市场,国际社会、各个国家均制定了多种条约与法律。鸦片制造国往往会采用有安保措施的大型设施生产鸦片制品。为了加强安全性,澳大利亚甚至专门选种了一种含有大量二甲氢吗啡的罂粟品种。二甲氢吗啡很难转变成吗啡,直接口服还会导致中毒。我们很难预测全球最大的麻醉品管制机构&mdash &mdash 国际麻醉品管制局(International Narcotics Control Board,INCB))&mdash &mdash 会对这种新型吗啡合成系统作何反应。INCB不大可能因此削减目前鸦片类镇痛药的生产定额,也不大可能对目前合法的鸦片交易模式进行调整。这就阻碍了酵母菌株进入鸦片制造市场。这种新型酵母菌株很可能对鸦片的违禁交易市场产生巨大影响。如今,鸦片有两个主要的非法交易渠道。首先是药物处方。非法交易者会窃取氧可酮(oxycodone)或氢可酮(hydrocodone)等镇痛药处方、开具不合理处方,或将合法处方非法销售出去。其次是毒品犯罪网络。阿富汗、缅甸、老挝、墨西哥等国家非法种植的罂粟制成的海洛因会通过犯罪网络流入市场,并以几十上百倍于成本的价格出售。新型菌株为毒品犯罪网络(特别是对毒品有高需求的北美和欧洲)提供了一个新&ldquo 选项&rdquo 。使用酵母制毒极易掩人耳目。酵母生长迅速、运输方便,不论犯罪组织还是执法机构都很难对这种酵母的流向进行控制。总之,由此带来的&ldquo 分散化&rdquo 与&ldquo 本地化&rdquo 生产,必然会降低非法鸦片制品的生产成本,增加其易得性,对全球的鸦片问题起到持续的恶化作用。目前,全世界有超过1 600万人正在非法使用鸦片制品。理论上讲,有了这种酵母,你只需家用的啤酒酿造工具,就能制造吗啡。(How Hwee Young/EPA/Corbis)四点建议若要对这一研究进行灵活、合理的监管,我们需要克服两个主要障碍。首先,目前我们对&ldquo 工程微生物&rdquo 的监管,主要集中在病原微生物(例如炭疽杆菌和天花病毒)上;酵母本不在监管的范畴中。其次,要实现有效监管,各国与国际的药物监管部门、执法机构需要通力合作,然而他们的行为规范与准则各不相同。公共卫生专家、科学家、监管者和执法机构必须加强沟通与协调。INCB,以及其他研究生物安全与生物安保监管的专业组织,就可以担负起组织这类国际对话的责任。以下四点,是为四个亟待解决的问题敲响警钟。技术层面 我们在设计酵母菌株时,应该尽可能降低它们对犯罪分子的&ldquo 吸引力&rdquo 。例如,我们可以用它制造对毒贩无甚价值的麻醉药(比如二甲氢吗啡);另外,我们可以弱化工程菌株,使其只能在既定的实验室环境内发挥作用,这样一来,一般人就很难利用它在其他地方生产和收集鸦片制品;最后,我们还可以设计需要特殊的营养成分,才能正常生长的酵母菌株。我们已经将以上&ldquo 生物遏制手段&rdquo (methods of biocontainment)应用在了大肠杆菌(Escherichia coli)上。我们也可以给这种菌株打上DNA水标记(DNA watermark)之类的&ldquo 烙印&rdquo ,方便执法机构对其进行识别。加强审查 鉴于犯罪组织可能利用公开的DNA序列制造自己的菌株(尽管这种可能性不大),那些专门提供DNA片段定制服务的公司,也需要提高警惕。制造此种酵母菌株的基因序列必须被列入DNA片段供应商的审查列表。目前,这一审查列表由两个自发性组织&mdash &mdash 国际合成生物学学会(International Association of Synthetic Biology)与国际基因合成联合会(International Gene Synthesis Consortium)&mdash &mdash 负责监管, 而审查的对象仅限于病原体的基因片段。健全安保 我们应该对此种酵母的使用环境进行严格管控,只有经监管者许可、受到控制的场所,才能利用它生产麻醉剂。上锁、安警报、实验室与实验原料监控系统等物理性质的生物安保措施可以防止酵母被盗。实验室的工作人员需要通过安保审查,方能上岗。同样,研究人员要承担相应的权责,不能向未经合法授权的单位或个体提供酵母菌种。法律监管 监管麻醉剂的现有法律,例如《美国管制药物法案》(US Controlled Substance Act)以及其他国家的类似法律,应该将监管触角延伸至此类酵母,保证其产物在生产与销售上的合法性。生物技术的发展日新月异,如果我们能够对这种具有两面性的技术采取有力、有效的监管,就能给以后的类似情况树立榜样。事实上,参与此项研究的生物学家,已经在最关键问题上做出了表率:他们愿意,也正在为他们的&ldquo 造物&rdquo 担负责任。然而,这篇文章的写作对象并不是他们。其他基因组工程师也在沿着这条道路前进。参与研发基因组编辑工具CRISPR/Cas9的科学家已经对学术界和监管机构发出呼吁,对CRISPR/Cas9进行积极的风险评估;而在此之前,我们不能利用这一工具编辑野生动植物基因,或修改人生殖细胞基因组。合成生物学已经日臻成熟,这要求我们必须拿出负责的态度,做出负责的行动。(撰文:肯尼思· A· 奥耶(Kenneth A. Oye) J· 查普尔· H· 劳森 (J. Chappell H. Lawson) 塔尼亚· 布贝拉(Tania Bubela)。
  • 我国科学家实现二氧化碳到葡萄糖和油脂的人工合成
    此前,我国科学家在国际上首次实现了二氧化碳到淀粉的从头合成。那么,二氧化碳除了可以“变”淀粉,还能“变”其他东西吗? 答案是肯定的! 4月28日,《自然催化》以封面文章的形式发表了一项最新研究成果。经过一年半的努力,我国科研人员通过电催化结合生物合成的方式,将二氧化碳高效还原合成高浓度乙酸,并进一步利用微生物合成葡萄糖和脂肪酸(油脂)。 这一成果由电子科技大学夏川课题组、中国科学院深圳先进技术研究院于涛课题组与中国科学技术大学曾杰课题组共同完成。 先把二氧化碳变成“食醋” 或许有人会问,人造的葡萄糖和油脂可以直接吃吗?好吃吗? 对此,曾杰回应:“经过后续纯化处理,可以食用。” 那么,二氧化碳究竟是如何变成葡萄糖和油脂的? “首先,我们需要把二氧化碳转化为可供微生物利用的原料,方便微生物发酵。”曾杰说,在常温常压条件下,清洁、高效的电催化技术是实现这个过程的理想选择,他们就此已经发展了成熟的电催化剂体系。 至于要转化为哪种原料,研究人员将目光瞄准了乙酸。因为它不仅是食醋的主要成分,也是一种优秀的生物合成碳源,可以转化为葡萄糖等其他生物物质。 “二氧化碳直接电解可以得到乙酸,但效率不高,所以我们采取‘两步走’策略——先高效得到一氧化碳,再从一氧化碳到乙酸。”曾杰说。 研究人员发现,一氧化碳通过脉冲电化学还原工艺形成的晶界铜催化合成乙酸的效率可高达52%。 不过,常规电催化装置生产出的乙酸混合着很多电解质盐,无法直接用于生物发酵。 所以,为了“喂饱”微生物,不仅要提升转化效率,保证“食物”的数量,还要得到不含电解质盐的纯乙酸,保证“食物”的质量。 “我们利用新型固态电解质反应装置,使用固态电解质代替传统电催化技术中的电解质盐溶液,直接得到了无需进一步分离的纯乙酸水溶液。”夏川介绍。 微生物“吃醋”产葡萄糖 得到乙酸后,研究人员尝试利用酿酒酵母这一微生物来合成葡萄糖。 “酿酒酵母主要用于奶酪、馒头、酿酒等发酵行业,同时也因其优秀的工业属性,常被用作微生物制造与细胞生物学研究的模式生物。”于涛说,利用酿酒酵母通过乙酸来合成葡萄糖的过程,就像是微生物在“吃醋”,酿酒酵母通过不断地“吃醋”来合成葡萄糖。 “然而,在这过程中,酿酒酵母本身也会代谢掉一部分葡萄糖,所以产量并不高。”于涛表示。 对此,研究团队通过敲除酿酒酵母中代谢葡萄糖的三个关键酶元件,废除了酿酒酵母代谢葡萄糖的能力。之后,实验中的工程酵母菌株在摇瓶发酵的条件下,合成的葡萄糖产量达到1.7g/L。 “我们利用这种生物酿酒酵母‘从无到有’地在克级水平合成了葡萄糖,这代表了该策略较高的生产水平与发展潜力。”于涛说,为进一步提升合成葡萄糖的产量,不仅要废除酿酒酵母的能力,还要加强它本身积累葡萄糖的能力。 于是,研究人员又敲除了两个疑似具备代谢葡萄糖能力的酶元件,同时插入来自泛菌属和大肠杆菌的葡萄糖磷酸酶元件。 于涛表示,泛菌属和大肠杆菌的葡萄糖磷酸酶元件可以“另辟蹊径”,将酵母体内其他通路中的磷酸分子转化为葡萄糖,增加了酵母菌积累葡萄糖的能力。经过改造后的工程酵母菌株的葡萄糖产量达到2.2g/L,产量提高了30%。 新型催化方式有坚实根基 更重要的是,近年来,随着新能源发电的迅速崛起,电力成本下降,二氧化碳电还原技术已经具备与依赖化石能源的传统化工工艺竞争的潜力。 同时,微生物作为活细胞工厂,其优点是产物多样性很高,能够合成许多无法通过人工生产或人工生产效率很低的化合物,是非常丰富的“物质合成工具箱”。比如,在人们常见的白酒、馒头、抗生素等食品药品的加工中,微生物就发挥着重要作用。 “这样,合成葡萄糖和油脂所需要的电力和微生物就有了保障,通过电催化结合生物合成的新型催化方式就有了坚实的根基。”夏川说。 对此,中国科学院院士、中国催化专业委员会主任李灿研究员评价,这项工作耦合了人工电合成与生物合成,发展了一条由水和二氧化碳到含能化学小分子乙酸,然后经工程改造的酵母微生物催化合成葡萄糖和游离的脂肪酸等高附加值产物的新途径,为人工和半人工合成“粮食”提供了新的技术。 “该工作开辟了电化学结合活细胞催化制备葡萄糖等粮食产物的新策略,为进一步发展基于电力驱动的新型农业与生物制造业提供了新范例,是二氧化碳利用方面的重要发展方向。”中国科学院院士、上海交通大学教授邓子新说道。 同时,曾杰也强调,这项成果尚处于实验室的基础研究阶段,如果要推向实用,还需要进一步提高能量效率和产率,降低生产成本。 曾杰表示,接下来,研究团队将进一步研究电催化与生物发酵这两个平台的同配性和兼容性。未来,如果要合成淀粉、制造色素、生产药物等,只需保持电催化设施不改变,更换发酵使用的微生物就能实现。
  • 葡萄糖中钠、钾元素对人体的作用
    什么是钠、钾元素?钠是细胞外液中带正电的主要离子,参与水的代谢,保证体内水的平衡,调节体内水分与渗透压;维持体内酸和碱的平衡;钠对ATP的生产和利用,肌肉运动,心血管功能,能量代谢都有关系,此外糖代谢,氧的利用也需要钠的参与;同时钠可以维持血压正常,增强神经肌肉兴奋性。与钠相对,人体中的钾主要(95%以上)在细胞内部,是细胞液中主要的正离子。钾参与糖类、蛋白质的正常代谢。葡萄糖和氨基酸经过葡萄细胞膜进入细胞合成糖原和蛋白质是必须有适量的钾离子参与;维持细胞内正常渗透压,由于钾主要存在于细胞内,因此钾在细胞内渗透压的维持中起着主要作用;维持细胞内外正常的酸碱平衡,钾代谢紊乱时,可影响细胞内外酸碱平衡。钾和钠一起作用,维持体内水分的平衡和心律的正常(钾在细胞内起作用,钠在细胞外起作用);钾和钠平衡失调时会损害神经和肌肉的机能。 实验 本实验根据中国药典2020年版四部通则0406来进行,采用日立ZA3000原子吸收分光光度计进行测试。实验过程:1.复方乳酸钠葡萄糖注射液中钠元素测定配置0μg/ml,2μg/ml,2.5μg/ml,3μg/ml,3.5μg/ml,4μg/ml浓度的标准溶液,同时提取注射液样品中的钠元素,标准溶液及样品液制备完成后,上机进行测试。喷入空气-乙炔火焰,在高温火焰中形成的钠基态原子对钠特征谱线进行吸收,在一定吸光值范围内,其吸光度值和钠的浓度成正比。测试结果: 2.葡萄糖氯化钠钾注射液中钠元素测定配置0μg/ml,0.9μg/ml,1.35μg/ml,1.8μg/ml,2.25μg/ml,2.7μg/ml浓度的标准溶液,同时提取注射液样品中的钠元素,标准溶液及样品液制备完成后,上机进行测试。喷入空气-乙炔火焰,在高温火焰中形成的钠基态原子对钠特征谱线进行吸收,在一定吸光值范围内,其吸光度值和钠的浓度成正比。测试结果: 3.复方葡萄糖电解质MG3注射液中钾元素测定配置 0μg/ml,1.5μg/ml,2.25μg/ml,3μg/ml,3.75μg/ml,4.5μg/ml浓度的标准溶液,同时提取注射液样品中的钾元素,标准溶液及样品液制备完成后,上机进行测试。 喷入空气-乙炔火焰,在高温火焰中形成的钾基态原子对钾特征谱线进行吸收,在一定吸光值范围内,其吸光度值和钾的浓度成正比。 测试结果:结论本次实验对注射液中提取的钠、钾元素进行测试。结果表明,日立ZA3000可以对特征波长589nm的钠元素和766.5nm的钾元素进行准确稳定的分析,测试结果不受注射液中其它共存物质的背景影响,方法稳定可靠。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • IVIS 视角 | 使用生物发光成像实时监测体内葡萄糖摄取
    在活体成像技术中,一些新的光学探针及光调控技术的出现,拓展了该技术的应用领域。上期给大家分享了检测活性氧的探针,能够在活体水平监测局部炎症中活性氧自由基(ROS)的释放,以及基于肿瘤微环境中高ROS水平介导的自发光动力效应,实现肿瘤诊疗一体化。今天给大家分享一篇2019年发表在《Nature Methods》杂志上的文章。作者设计了一种生物发光的探针BiGluc,利用该探针即可在体内、体外实时、无创的长期监测葡萄糖的摄取。葡萄糖是大多数生物体能量的主要来源,其异常摄取与许多病理条件有关,如肿瘤、糖尿病、神經退行性疾病、非酒精性脂肪性肝炎等。到目前为止,基于18FDG的正电子发射断层成像(PET)仍然是测量葡萄糖摄取的金标准。还没有光学成像技术能够很好的检测该指标。文章中作者设计了一种可以可视化和定量葡萄糖吸收的光学探针。该探针是基于结合笼状萤光素技术与生物正交‘点击’反应,即可激活的笼状萤光素三芳基膦酯(CLP)与全氟苯基叠氮基修饰的葡萄糖(GAz4)分子之间产生的生物正交点击反应,该反应导致游离萤光素的释放,此时在萤光素酶的存在下,即可产生可量化的生物发光信号,其信号强度与葡萄糖的代谢水平相关。在活体成像中,首先是表达萤光素酶的动物注射CLP, 24小时后注射GAz4,注射后即可使用IVIS 小动物活体成像系统进行成像,如下图所示。图1. BiGluc.探针的设计策略点击查看视频:https://v.qq.com/x/page/y0897ftpwnc.html为了研究BiGluc探针在活体水平的应用,文中使用基因工程鼠FVB-luc+/+【该小鼠通过β-actin启动子广泛的表达萤光素酶】来进行评价。在三组FVB-luc+/+小鼠中,首先尾静脉注射CLP溶液,24h后分别灌胃GAz4(BiGluc组)、GAz4+d-葡萄糖(BiGluc+d-葡萄糖组)或PBS(背景组)。结果显示,d-葡萄糖(1:300 ratio with the GAz4 probe)的竞争能够对BiGluc信号进行抑制,使得信号值下降至背景值。从而成功证明BiGluc探针与天然底物存在竞争(下图a-c)。为了进一步研究BiGluc和d-葡萄糖的在体内的选择性,作者进行了胰岛素耐受性试验。高水平的胰岛素会导致GLUT4易位到细胞膜,随后组织对d-葡萄糖摄取的增加。因此实验中FVB-luc+/+小鼠静脉注射CLP,24h后注射GAz4 结合 PBS溶液(对照组)或者胰岛素,随后进行生物发光成像,结果显示胰岛素处理组小鼠的信号增加了三倍(下图d)。图2. 转基因小鼠(FVB-luc+/+)中d-葡萄糖摄取的成像和定量这些实验结果表明,BiGluc探针可以可靠地用于可视化研究活体水平d-葡萄糖的摄取,并且可以进行定量,从而也提示该探针可用于糖尿病等代谢疾病的研究。同样,该探针可用于肿瘤葡糖糖摄取的研究。葡萄糖转运蛋白,特别是GLUT1,在多种类型肿瘤发展中起着至关重要的作用。实验中使用裸鼠接种4T1-luc或4 T1-luc-GLUT1?/?细胞,肿瘤生长至体积65mm3,所有的动物注射等量的萤光素,以确保肿瘤的大小和萤光素酶的表达量相同。如前所示,进行BiGluc探针成像实验。实验结果表明,与对照组相比,4T1-luc-GLUT1?/?发光强度降低38%。同样文中还研究了BiGluc信号是否可以通过化学抑制GLUT1转运体来调节。众所周知,WZB-117是一种小分子的GLUT1可逆抑制剂,能够在不同的癌症中有效地阻止葡萄糖的摄取。结果显示WZB-117处理组,葡萄糖摄取信号减少50%(下图c,d)。同样文中比较了BiGluc 探针和18F-FDG-PET在肿瘤移植体中的应用效果。结果显示 4T1-luc-GLUT1?/-细胞对葡萄糖的摄取量降低,与BiGluc探针成像结果一致(下图e,f)。图3. 使用BiGluc和18F-FDG探针对肿瘤异种移植模型中d-葡萄糖的摄取进行成像和定量这些结果都证明了BiGluc探针在研究机体葡萄糖摄取中强大的功能。相信这项技术可以广泛应用于药物研发以及监测与葡萄糖摄取异常相关疾病的发生和进展,如癌症、糖尿病和肥胖等。此外,BiGluc技术扩大了生物发光成像技术可检测的生物分子的范围。在未来,利用新的红移萤光素-萤光素酶组合技术可以进一步提高BiGluc探针灵敏度,将进一步扩大其应用范围。文章来源https://www.nature.com/articles/s41592-019-0421-z关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 【瑞士步琦】喷雾干燥制备鼠李糖乳杆菌微胶囊研究
    喷雾干燥技术微囊化鼠李糖乳杆菌ATCC 7469益生菌是一种活的微生物,当摄入足够的量时会对健康有益,只有在生存能力(107-1010 CUF m/L)得到保护的情况下才能发挥其作用。益生菌通常是乳杆菌和双岐杆菌,它们常与胃肠道有关;它们通常以冻干培养物的形式供应,或者被雾化并直接添加到食物中。益生菌功能食品在市场上需求量很大,酸奶和发酵乳制品通常被用作这类生物活性微生物的载体;然而,人们对在其他类型的非乳制品基质中掺入益生菌菌株越来越感兴趣,尤其是对于患有乳糖不耐受症、对酪蛋白过敏或与乳制品有关的其它问题的消费者。一些研究报告了微胶囊益生菌的应用。例如,将益生菌菌株掺入奶酪、巧克力涂层和巧克力中,以及掺入果汁、蛋黄酱、黄油、肉类和烘焙产品等非乳制品中。益生菌菌株对胃肠道健康很重要,因为它们可以预防肠道炎症,为上皮细胞提供保护,并调节抗体。它们可以产生细胞因子或趋化因子,改善乳糖不耐受,增加对结直肠癌的保护,抑制幽门螺杆菌活性,并用于治疗食物过敏和预防急性腹泻。然而,这些微生物有不幸的缺陷,特别是在菌株存活方面。喷雾干燥是微胶囊化最广泛使用的方法之一,因为其成本低,在最佳干燥条件下具有高存活率,并且在配方中加入了保护剂。近年来,乳清蛋白作为益生菌保护剂的使用获得了越来越多的兴趣,因为这些蛋白是提高益生菌活性的天然载体,并且由于结构和理化特征,可以作为胃肠道中的递送系统。蛋白质可以在干燥过程中增加益生菌的存活率,因为它们能够形成降低热应力的保护膜。糖的添加也会影响干燥的益生菌制剂的存活。研究人员肯定了糖(如肌醇、山梨醇、果糖、乳糖、葡萄糖和海藻糖)对脱水细菌细胞的保护作用。研究发现,海藻糖等糖是一种能够通过氢键与蛋白质分子相互作用的二糖;它可以在脱水和再水化过程中替代蛋白质周围的水分子,形成一种玻璃状基质,稳定生物大分子。科学家研究了使用奶酪乳清与淀粉、阿拉伯胶、麦芽糖糊精和乳清蛋白浓缩物联合干燥鼠李糖乳杆菌 64 的载体剂选择。另一方面,干燥温度是影响存活率的因素。例如,喷雾干燥的植物乳杆菌 WCFS1 再低干燥温度下表现出较高的存活率。在此背景下,本研究以 WPC、麦芽糊精和海藻糖为原料,采用喷雾干燥的方法对鼠李糖乳杆菌 ATCC 7469 进行微囊化,并评估微囊化对细胞活力和干粉性能的影响。以喷雾干燥条件(包括进口温度、空气流量和进料泵)为自变量,益生菌存活率、水分含量、水分活性和有效产量为因变量。采用响应面法对喷雾干燥包裹的鼠李糖乳杆菌的存活率进行了优化,并对粉末的稳定性进行了评估。1样品制备按最佳稳定性配方乳清浓缩蛋白:麦芽糊精:海藻糖(75:10:15)的比例采用超滤的方法制备乳制品悬浮液。将冻干的鼠李糖乳杆菌 ATCC 7469 菌株悬浮于 2ml 培养基中,在 MRS 肉汤(蛋白胨:10.0g,牛肉浸粉:10.0g,酵母浸粉:5.0g,葡萄糖:20.0g,吐温80:1.0g,磷酸氢二钾:2.0g,醋酸钠:5.0g,柠檬酸铵:2.0g,硫酸镁:0.1g,硫酸锰:0.05g,pH6.2±0.2,25℃)中重新激活制备细菌悬浮液。2实验过程在磁力搅拌下将鼠李糖乳杆菌 ATCC 7469 菌株悬浮液添加到每个乳悬浮液中,在微囊化过程期间使所述分散液保持在恒定的搅拌状态。喷雾干燥仪选用瑞士步琦 B-290,通过改变进口温度(120℃-180℃)、干燥空气流量(70%-90%,即:28-35m3/h)和进料量(10%-55%,即 3-17mL/min)来进行工艺摸索。▲S-300工艺探索采用响应面法和二次复合中心设计对益生菌微囊化进行了优化,其自变量有进口温度、空气流速和进料流量。在最优理论条件下进行了三次实验验证。图1 考察了菌株存活率的响应面变化。由图可知存活率与出口温度呈反比,低温时存活率在 69%、高温时存活率在 23%。其他科学家在使用含益生元的脱脂乳制备鼠李糖乳杆菌 GG(ATCC 53,103),70℃ 时的存活率为 76%。也跟我们的研究结果相吻合。图2 考察了水分含量的响应面变化。从图可得到进口温度与水分含量之间呈反比关系,当进口温度与进料量较高时,粉末的水分含量较低,结合存活率考虑,水分含量在 3.0%-5.8% 之间,与其他报道的数值相接近。图3 考察了水活度的响应面变化。在较高的进口温度下,进料量和气体流量得到了较低的水活度值,因素与结果之间呈反比关系。其他使用麦芽糊精、乳清蛋白浓缩物和葡萄糖的相关研究中,水活度的值与本研究中活性最高的粉末报告结果一致。3实验结果确定益生菌的包封中壁材的最佳比例对于提高微生物对抗整个胃肠道条件的稳定性很重要。在干燥过程中指定最佳条件以最大限度地提高作为壁材的蛋白质-海藻糖-麦芽糊精混合物的保护能力并因此提高鼠李糖的存活值也是重要的。因此,使用响应面方法确定干燥过程的最佳条件。表2显示了鼠李糖乳杆菌微囊化的最佳操作参数,结果表明,理论模型可以很好地近似实验值(差异<10%)。得到的最佳喷雾干燥条件是进口温度、空气流量和进料泵流量分别为169℃、33m3/h和16ml/min,存活率为70%,吸气率为84%,出口温度为52℃,总体满意度为0.96。物理性质评价如图4所示,得到的粉末水活性动力学显示了较高的吸水能力,这可能是海藻糖作为低分子量碳水化合物,表现出的分子运动和扩散效应,与用于包封基质的典型吸水行为一致。吸湿性随着储存时间的延长有增加的趋势,直到达到某种程度的平衡。因此加入了 WPC 来降低吸湿性,因为它的表面活性和形成具有较高 Tg 膜的能力。粒径和形态结果如图5显示。(a)在最佳工艺参数上制备的粉体,其微胶囊紧凑,类球形形状,具有不同的大小和不规则的表面与压痕,外表面显示无裂缝或破坏的墙壁,这是确保更高的保护和更低的气体渗透性的基础。4结论结果表明,蛋白质-海藻糖-麦芽糊精混合物是包裹鼠李糖乳杆菌的良好壁材,在干燥过程中表现出重要的热保护作用,并提高了其存活率;通过响应面方法优化的喷雾干燥工艺条件生产的微胶囊具有可接受的理化性质——水分、水活性、吸湿性和粒径等,为益生菌的微囊化提供了思路。5文献来源Microencapsulation of Lactobacillus rhamnosus ATCC 7469 by spray drying using maltodextrin, whey protein concentrate and trehalose.
  • 标准解读 | GB 5009.8-2023 《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》
    近日,国家卫生健康委员会、国家市场监管总局联合发布了2023年第6号文件,关于85项食品安全国家标准和3项修改单的公告,其中包括了GB 5009.8-2023《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》(以下称新标准)。新标准将替代GB 5009.8-2016 《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》和GB 5413.5-2010 《食品安全国家标准 婴幼儿食品和乳品中乳糖、蔗糖、乳糖的测定》,并于2024年3月6日正式实施。那么,新标准与GB 5009.8-2016、GB 5413.5-2010比较,有哪些变化呢?增加方法数量新标准在GB 5009.8-2016高效液相法和酸水解-莱茵-埃农氏法的基础上,增加了离子色谱法和莱茵-埃农氏法,即新标准共有4种测定方法。扩大方法适用范围新标准第一法高效液相色谱法保留了饮料类,新增了糖果样品中5种糖的测定,且将GB 5009.8-2016中的谷物类、乳制品、果蔬制品、蜂蜜、糖浆等扩大至粮食及粮食制品、乳及乳制品、果蔬及果熟制品、甜味料范畴。新增的第二法离子色谱法则适用于食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定。离子色谱法利用糖类物质在碱性溶液总中呈离子状态的原理,在糖类检测中的应用越来越多。其中,离子色谱-脉冲安培法检测糖类具有灵敏度高、样品无需衍生处理等优点。仪器参考条件:新标准中第三法酸水解-莱茵-埃农氏法与GB 5009.8-2016中第二法适用范围一致,适用于食品中蔗糖的测定。新增的第四法莱茵-埃农氏法与GB 5413.5-2010 第二法适用范围一致,但是新标准仅保留了婴幼儿食品和乳品中乳糖的测定。试样经除去蛋白质后,在加热条件下,以次甲基蓝为指示剂,直接滴定已标定过的费林氏液,根据样液消耗的体积,计算乳糖含量。果糖、葡萄糖、麦芽糖和低聚半乳糖等会对乳糖的测定产生干扰。由此可见,新标准的适用范围更广。修改高效液相色谱法的标液储存时间和浓度新标准将混合标准储备液的保存时间由GB 5009.8-2016的4℃密封储存一个月延长至0℃~4℃密封条件下储存三个月。同时,新标准增加了更低浓度点的(0.200 mg/mL)混合标准工作液,且规定可根据待测液浓度适当调整混合标准工作液浓度。这条内容的修改,使得糖含量的测定更加灵活便捷。完善高效液相色谱法和酸水解-莱茵-埃农氏法试样制备和提取过程新标准取消了GB 5009.8-2016中关于固体、半固体和液体试样要取代表性样品200 g(mL)的要求,新增了对于冷冻饮品、巧克力、胶基糖果等难溶解试样的制备和提取条件,填补了GB 5009.8-2016中此类样品前处理过程的空缺。检出限、定量限修改GB 5009.8-2016高效液相色谱法仅对于检出限作出规定,新标准在此基础上,增加了定量限。因此,在测定低糖含量的样品时,应注意该要求。此外,GB 5413.5-2010和GB 5009.8-2016的滴定法规定了检出限、定量限,而新标准的滴定法删除了检出限和定量限的要求。修改滴定原理新标准第三法酸水解-莱茵-埃农氏法为食品中蔗糖的测定方法。该方法原理特别指出,棉子糖、水苏糖、低聚半乳糖、果聚糖、聚葡萄糖和抗性糊精等会对蔗糖的测定产生干扰。新标准第四法莱茵-埃农氏法为婴幼儿食品和乳品中乳糖的测定方法,该方法原理也特别指出,果糖、葡萄糖、麦芽糖、低聚半乳糖等会对乳糖的测定产生干扰。因此,在使用第三法和第四法进行测定时,要特别注意样品中是否含有上述种类的糖,注意方法适用性。点击获取更多食品新标准解读
  • 欧盟发布氢化葡萄糖浆作为食品添加剂的科学意见
    近日,应欧盟委员会的要求,欧盟食品安全局食品添加剂和营养源科学专家组(ANS Panel)发布氢化葡萄糖浆作为食品添加剂的安全性评估意见。  氢化葡萄糖浆属于氢化淀粉水解产物,主要由麦芽糖醇、山梨糖醇和更高分子量的多羟基化合物组成。对所有年龄段的人来说,早餐的谷物食品、饼干和糕点是氢化葡萄糖浆最重要的潜在来源。对此,专家组进行了一系列的小鼠饲喂试验和人体学试验研究。以个人体重级别来分类,专家组评估了来源于所有推荐的食物中氢化葡萄糖浆的每日最高暴露量。其中,成人对氢化葡萄糖浆的暴露最少。  专家组指出,氢化葡萄糖浆饮食暴露的最高水平小于13周小鼠试验得到的无害作用剂量,其所评估的暴露水平是基于氢化葡萄糖浆应用于所有食物中后存在的假设。专家组认为,从推荐的食物用法和用量水平的角度来说,人体试验中服用的剂量和案例中报道的剂量的暴露水平已经接近于肠胃紊乱的剂量。因此,应该考虑添加其他允许使用的多羟基化合物类食品添加剂来起到通便作用。另外,氢化葡萄糖浆现有的毒理学数据不足以建立其每日允许摄入量(ADI),但是基于现有的资料,可以断定氢化葡萄糖浆目前所推荐的用法和用量不存在安全方面的担忧。
  • 【瑞士步琦】白酒酿造,酒醅中可溶性淀粉转化葡萄糖有多少?
    酒醅中可溶性淀粉转化葡萄糖有多少?酒曲生产需要一定的发酵周期,发酵过程不便调控,因此酒曲的化学成分分析对于制曲生产起着相当重要的作用。衡量大曲质量的优劣主要是根据大曲的水分、酸度、淀粉、发酵力、酯化力、糖化力等理化指标的大小,再辅以感官来进行综合评判。其中大曲糖化力是一个重要指标,是表征大曲将酒醅中可溶性淀粉转化为葡萄糖的能力。检测大曲糖化力的传统方法为斐林试剂法,存在耗时长、样品前处理过程繁琐等不足,因此建立一种快速、高效的大曲糖化力检测方法具有重要意义。本实验采用步琦的近红外光谱仪 NIRMaster 对大曲糖化力的快速检测。近红外光谱技术结合偏最小二乘法检测大曲糖化力 1仪器设备瑞士 Buchi 公司的 NIRMaster 傅里叶变换近红外光谱仪。光谱谱区范围为 4000~10000 cm-1,光谱分辨率为 8 cm-1,扫描次数为 48 次,测量序列个数为 3。 2样品酒厂酿酒周期的现用大曲 200 个 3实验方法3.1大曲糖化力化学方法测定大曲糖化力的化学测定法采用斐林试剂法。大曲中的糖化酶能将淀粉水解为还原糖,还原糖可以将斐林试剂中的二价铜离子还原为一价铜离子,反应终点由次甲基蓝指示。根据还原一定量的斐林试剂所需的还原糖量,可计算大曲样品的糖化酶活力,即 1g 大曲在 35 ℃、pH4.6 条件下,反应 1h,将可溶性淀粉分解为葡萄糖的能力。每个样品的检测均取 2 个平行样。3.2大曲样品的近红外光谱测量方法将大曲样品平铺于培氏培养皿样品杯底部,样品量约占样品杯 2/3,并用样品勺压紧,避免出现缝隙,然后将样品杯放置于测量池上进行测量。 4结果实验数据处理方法采集的光谱数据用 NIRCal 化学计量学分析软件处理和计算。▲ 大曲糖化力化学值与预测值的散点图上图可直观的看出模型的光谱预测值与原始值的相关性较好。其中,建模集的相关系数为 r 为 0.9613,验证集的相关系数 r 为 0.9528;建模集标准偏差 SEC 与验证集标准偏差 SEP 的比值为 29.6099/29.7088=0.9967,模型稳定性较好,具有很好的预测能力。▲ 未知样品含量预测值与化学值的比较模型的验证结果可以看出,大曲糖化力近红外模型预测值的平均相对误差为 5.27 %,说明该近红外模型有较好的预测能力。为考察两种方法检测结果之间的差异性,采用 SPSS 软件对 50 组大曲样品进行差异显著性分析。结果见下表。从分析结果可以看出,在 0.05 水平上,两种方法差值的显著性结果为 0.830,大于 0.05,说明两种方法的检测结果的差异性并不显著,均可以反映大曲糖化酶活力大小,该模型可以用于大曲糖化力的预测。 5讨论本试验采用近红外光谱技术结合偏最小二乘法建立了预测大曲糖化力的定量模型。通过对模型的预测结果与传统方法检测结果的对比分析可以看出,该模型的准确度可以满足实际生产中大曲糖化力的预测。近红外光谱分析具有以下特点:操作简单分析速度较快,适合大批量重复测试测试过程中无需使用化学试剂、无污染样品可以重复使用可用于生产线等在线检测6参考文献王军凯,王卫东,蒋明,韩瑶,等. 近红外光谱技术结合偏最小二乘法检测大曲糖化力[J].酿酒,2018(3):116-118.
  • 检测超低浓度葡萄糖 仿生离子通道布满“摄像头”
    记者28日从杭州医学院获悉,该校许秋然研究员团队联合华中科技大学科研人员,研发出一种基于亚微米通道异质膜的固态纳米通道生物传感器,实现了对不同pH值和线性范围为1皮摩/升—0.1微摩/升的超低浓度葡萄糖的无酶检测。相关研究论文近期发表于国际期刊《化学工程杂志》。活体细胞进行新陈代谢,会与周围环境进行物质交换,细胞膜上由特殊蛋白质组成的离子通道,就是这种物质交换的重要途径。在免疫反应、病原体感染等人体生理、病理变化活动中,细胞膜对糖类的识别起到重要作用。通过离子通道对糖类的分析检测,可以深入了解细胞间糖的选择性跨膜吸收和转运,作为生命科学、临床医学等领域研究的关键参数。此前,糖类检测技术均是基于100纳米孔径以下的纳米通道有可识别的电化学信号,但纳米通道空间有限,电阻较高,目标分子响应信号弱。科研人员持续追求高灵敏度、低检测限的糖类检测技术。本次研究中,该团队设计了一种仿生离子通道,选择具有耐高温、良好吸附性和透水性等特性的阳极氧化铝多孔通道膜AAO,作为这一通道的基底;通过聚多巴胺—金纳米颗粒多层组装的方法,在AAO通道内壁上原位生成并固定了大量可调节大小和密度的金纳米颗粒;通过将大量的糖分子探针修饰在金纳米颗粒的表面,制得了具有ICR特性,并对糖类响应良好的亚微米通道孔径的异质膜。“通俗地讲,修饰探针分子,相当于在仿生离子通道墙壁上安装了摄像头。AAO孔径269纳米,具有更大的修饰空间和流体运输通道,可输出更强的目标分子响应信号。”许秋然解释道,具有ICR特性,相当于给摄像头输入识别程序,更易识别细胞中糖类的电化学信号特征。许秋然表示,这一方法具有通用性,可据此研发出检测仪器,糖类检测仅是抛砖引玉,提供一个具体的检测案例。异质膜作为基底具有普适性,可拓展检测范围,通过修饰分子探针,对氨基酸、蛋白质、DNA等物质进行检测,好比给摄像头输入不同的程序,让它识别不同的对象。
  • 全国工具酶标准化工作组发布国家标准《葡萄糖氧化酶活性检测方法》征求意见稿
    国家标准计划《葡萄糖氧化酶活性检测方法》由 SWG11(全国工具酶标准化工作组)归口 ,主管部门为国家标准化管理委员会。 拟实施日期:发布即实施。主要起草单位 福建南生科技有限公司 、夏禾(杭州)生物技术有限公司 、夏禾(深圳)生物技术有限公司 、宁夏夏盛实业集团有限公司 、厦门银祥集团有限公司 、深圳市新产业生物医学工程股份有限公司 、武汉新华扬生物股份有限公司 、廊坊诺道中科医学检验实验室有限公司 、天津博菲德科技有限公司 、广州市进德生物科技有限公司 、山西大禹生物工程股份有限公司 、河北省微生物研究所有限公司 、武汉瀚海新酶生物科技有限公司 、深圳市海拓华擎生物科技有限公司 。主要起草人 黄发灿 、郑登忠 、郑恬烨 、沈涛 、张志刚 。附件:国家标准《葡萄糖氧化酶活性检测方法》征求意见稿.pdf国家标准《葡萄糖氧化酶活性检测方法》编制说明.pdf
  • 葡萄酒酿造过程中,何时采摘?如何控制发酵?何时罐装?
    葡萄酒起源于公元前6世纪的欧洲大陆,是西方酒中普及程度很高的一种传统酒类,主要产区在欧洲的西班牙、法国、意大利等。传统的葡萄酒生产,尽管感知始终是生产决策的核心,但随着科技的发展,快速的质量分析为葡萄酒的生产过程控制提供了质量、风味参数可量化的新视角,提高生产标准化和精准度,帮助酿酒商掌控和控制酿造过程,保持产品质量稳定和独一无二的风味特性。葡萄酒生产过程中,何时采摘?如何控制发酵?何时罐装?20年欧洲葡萄酒酿造行业经验与分析数据相结合,福斯OenoFoss&trade 2 葡萄酒质量分析方案,10ml样品回答所有问题!采用傅里叶变换红外(FTIR)技术。多年与欧洲葡萄酒酿造企业合作,超过20年来自世界各地的葡萄生长季节和品种代表性数据库适用于葡萄酒成品和未发酵的葡萄汁,无需对发酵中的葡萄汁或起泡葡萄酒进行脱气处理2分钟同时获得多项关键参数:葡萄糖、苹果酸、pH、挥发酸、总酸、总糖、果糖、密度、乙醇、酒石酸、乳酸等自动分析工作,自动备份和报告,确保数据安全、可追溯和可使用何时采摘?OenoFoss&trade 2帮您做出最佳采摘决策对葡萄的快速分析让您能够从观察期开始一直到采摘期,跟踪葡萄成熟度。通过跟踪葡萄糖浆中的果糖、葡萄糖、总糖等参数,获得糖和酸之间的平衡,指导在葡萄最佳成熟期进行采摘。通过不同阶段的数据分析,全面掌握葡萄的生理成熟度以及影响葡萄酒最终质量的参数特性。关键参数:果糖、葡萄糖、酒石酸、苹果酸、总酸筛查劣果,优化种植快速分析有助于跟踪微生物与葡萄之间的相互作用。通过日常的分析数据,可及时筛查出劣质葡萄,避免劣质葡萄进入后续生产环节。例如:乙醇等代谢物的分析追踪。关键参数:甘油、葡萄糖酸、乙酸、乙醇如何控制发酵过程?可量化的感官参数,OenoFoss&trade 2对发酵有独到的见解在酿造发酵过程中,跟踪酒精与苹果酸乳酸发酵。酿造商可以检查酵母是否具有生长所需且适当的营养的物质。在发酵初期,通过检测酵母可同化氮,及时指导向缺氮葡萄汁中调整补充氮源,保障发酵充分进行。对苹果酸乳酸发酵,通过快速分析,跟踪苹果酸向乳酸的转化,掌握和控制发酵进程。关键参数:酒精、同化氮、苹果酸、乳酸、乙醇、总糖何时罐装?可靠的分析数据实现理想的混合和装瓶确保装瓶时葡萄酒质量稳定性和一致性。2分钟完成所需参数的快速检测,以最少的管理工作对成品葡萄酒进行适宜的混合、装瓶和质量合格记录。关键参数:葡萄糖、果糖、pH、乙酸、乙醇、苹果酸、总酸点击左下角阅读原文进入福斯官网观看西班牙葡萄酒酿造商采访视频,来了解一下Tofterup兄弟在西班牙葡萄酒家族产业是如何使用福斯OenoFoss&trade 2葡萄酒分析方案进行葡萄酒生产质量控制。
  • 远慕MRS琼脂培养基促销中
    上海远慕生物科技有限公司为了回馈广大科研工作者特此做出培养基促销优惠活动啦,培养基均现货促销!价格绝对出乎你的意外,望有需要的老师赶快联系我们吧! 培养基是远慕公司自主研发的项目之一,产品质量有保证!说明书都会随货发给您!我们我是符合国家标准的,我们也可以按照客户提供的要求给您配制,我们承诺产品有任何质量问题都是免费退换的! 远慕生物严格遵守“质量优先、客户优先、技术优先、服务优先”“四项优先”原则;产品已被广泛应用于化学、化工、生命科学的基础研究和开发应用、制药、疾病诊断与控制、人口与健康、生物技术等诸多领域,并销往全国各地,公司客户遍布国内各大学、研究所、卫生防疫、制药公司、生物公司等单位,得到广大客户的一致好评。我们的宗旨是“为客户提供最优质的产品和服务”。 远慕欢迎您!培养基促销其他产品:结晶紫中性红胆盐葡萄糖琼脂(VRBGA) 250g/瓶 胰蛋白胨大豆琼脂(TSA) 250g/瓶 胰蛋白胨大豆琼脂 90mm×10个/包 革兰氏染色液 10ml×4支/盒 氧化酶试纸 10片/瓶 氧化酶试剂 1g/瓶 阪崎肠杆菌显色培养基(DFI琼脂) 1000ml/瓶 鸟氨酸脱羧酶试验 1ml×10支/盒 赖氨酸脱羧酶试验 1ml×10支/盒 精氨酸脱羧酶试验 1ml×10支/盒 氨基酸脱羧酶试验对照 1ml×10支/盒 无菌液体石蜡 2ml×10支/盒 氰化钾(KCN)培养基 1ml×10支/盒 氰化钾(KCN)对照培养基 1ml×10支/盒 D-蔗糖发酵管 1ml×10支/盒 D-山梨醇发酵管 1ml×10支/盒 阿拉伯糖发酵管 1ml×10支/盒 卫矛醇半固体琼脂 1ml×10支/盒 棉子糖发酵管 1ml×10支/盒 产品名称 规格 采样袋/均质袋 100个/袋 SCDLP液体培养基基础 250g/瓶 SCDLP增菌肉汤 10ml×20支/箱 磷酸盐缓冲液(pH7.2) 250g/瓶 磷酸盐缓冲液(pH7.2) 225ml×20瓶/箱 磷酸盐缓冲液(pH7.2) 9ml×20支/箱 生理盐水 225ml×20瓶/箱 生理盐水 9ml×20支/箱 假单胞菌CFC选择性培养基基础 250g/瓶 假单胞菌CFC选择性培养基基础添加剂 1ml×10支/盒 假单胞菌琼脂基础培养基基础/CN琼脂基础 250g/瓶 萘啶酮酸 1.5mg×10支/盒 甘油 1ml×10支/盒 营养琼脂斜面(限供汽运) 10ml×20支/箱 营养琼脂(NA) 250g/瓶 氧化酶试纸 10片/瓶 氧化酶试剂 1g/瓶 革兰氏染色液 10ml×4支/盒 乙酰胺培养基 1ml×10支/盒 葡萄糖酸钾培养基 1ml×10支/盒 精氨酸脱羧酶试验 1ml×10支/盒 赖氨酸脱羧酶试验 1ml×10支/盒 氨基酸脱羧酶试验对照 1ml×10支/盒 液体石蜡 2ml×10支/盒 硝酸盐蛋白胨水培养基 250g/瓶 明胶培养基(营养明胶培养基) 250g/瓶 山梨醇麦康凯(SMAC)琼脂 250g/瓶 亚碲酸钾溶液 0.25mg×10支/盒 头孢克肟溶液 0.005mg×10支/盒 改良山梨醇麦康凯(CT-SMAC)琼脂 90mm×10个/包 月桂基硫酸盐胰蛋白胨肉汤-MUG(LST-MUG) 1000ml/瓶 含新生霉素的缓冲胰蛋白胨大豆肉汤(BTSB+N)基础 250g/瓶 三糖铁(TSI)琼脂 250g/瓶 三糖铁(TSI)琼脂斜面 4ml×10支/盒 革兰氏染色液 10ml×4支/盒 氧化酶试纸 10片/瓶 半固体琼脂 250g/瓶 半固体琼脂管 1ml×10支/盒 营养琼脂(NA) 250g/瓶 营养琼脂(NA) 90mm×10个/包 蛋白胨水 1ml×10支/盒 Kovacs氏靛基质试剂 10ml×4支/盒 鸟氨酸脱羧酶试验 1ml×10支/盒 赖氨酸脱羧酶试验 1ml×10支/盒 氨基酸脱羧酶试验对照 1ml×10支/盒 无菌液体石蜡 2ml×10支/盒 山梨醇发酵管 1ml×10支/盒 棉子糖发酵管 1ml×10支/盒 纤维二糖发酵管 1ml×10支/盒 缓冲葡萄糖蛋白胨水(MR-VP培养基) 1ml×10支/盒 甲基红试剂 10ml×4支/盒 V-P试剂 10ml×4支/盒 西蒙氏柠檬酸盐琼脂斜面 4ml×10支/盒 大肠杆菌O157:H7套装生化鉴定管(10种)(SN0973) 12支/套×10套 无菌脱纤维绵羊血 100ml/瓶 肝浸液培养基 250g/瓶 胰蛋白胨琼脂培养基 250g/瓶 精氨酸脱羧酶试验 1ml×10支/盒 氨基酸脱羧酶试验对照 1ml×10支/盒 无菌液体石蜡 2ml×10支/盒 3%过氧化氢溶液 2ml×10支/盒 氧化酶试纸 10片/瓶 氧化酶试剂 1g/瓶 阿拉伯糖发酵管 1ml×10支/盒 葡萄糖发酵管 1ml×10支/盒 半乳糖发酵管 1ml×10支/盒 硝酸盐肉汤 250g/瓶 硝酸盐肉汤 5ml×10支盒 硝酸盐还原试剂 10ml×4支/盒
  • 一种检测葡萄糖对映体的表面增强拉曼散射光谱策略
    近期,上海师范大学杨海峰教授、刘新玲博士课题组报道了一种用于检测葡萄糖对映体的SERS策略,相关成果以“Chiral Detection of Glucose: An Amino Acid-Assisted Surface Enhanced Raman Scattering Strategy Showing Opposite Enantiomeric Effects on SERS Signals”为题发表在国际化学权威杂志Analytical Chemistry上(DOI: 10.1021/acs.analchem. 2c02340)。 研究背景: 在手性环境中(如人体内),由于分子间手性相互作用的差异性,手性分子和其对映体可表现出不同的性质和功能。因而,手性分子检测是一个非常重要的研究课题。圆二色(CD)光谱是一种常用的手性光谱检测技术,其检测原理是基于手性分子对于左旋和右旋圆偏振光具有不同的吸收系数,使得对映体产生符号相反的CD信号,从而可以直观地区分手性构型(图1)。然而,对于不含生色团的手性分子而言,其CD信号很弱、或者超出仪器检测波长范围。因此,发展灵敏的光谱分析技术用于手性分子构型鉴定和含量测定具有重要意义。表面增强拉曼光谱(SERS)分析方法灵敏度高,SERS信号可以反映出分子间相互作用机制,但是如何将SERS技术优势应用于手性检测仍有待于深入研究。 研究内容: 人体对氨基酸和葡萄糖具有特殊的对映体选择性,分别以L-氨基酸和D-葡萄糖为主,上述手性选择性起因仍是一个未解的科学难题。受此启发,如图2所示,该课题组制备了L-苯丙氨酸(L-Phe)修饰的“核-卫星”金纳米结构作为SERS基底。该基底与D-葡萄糖(D-Glu)混合后,L-Phe的SERS信号强度会增加(“signal on”);反之,L-葡萄糖(L-Glu)会降低L-Phe的SERS信号强度(“signal off”)。若以上述基底的SERS信号为参考,通过差值计算法,则可以获得和CD光谱类似的SERS信号强度差值曲线,即D-Glu和L-Glu表现出符合相反的SERS差值信号,从而直观地区分D-Glu和L-Glu手性构型。根据上述signal on和signal off效应,该方法可以测定葡萄糖对映体过量值(ee)及浓度,并可拓展到唾液中葡萄糖浓度检测(10-8~10-4 mol/L)。 图一示例: 圆二色光谱法区分对映体示意图(来源:Anal. Chem.) 图二示例:用于葡萄糖对映体检测的SERS分析策略示意图(来源:Anal. Chem.) 本研究通过氨基酸和葡萄糖对映体之间的差异化手性相互作用,导致氨基酸的SERS信号变化具有对映体选择性,实现葡萄糖对映体的区分及其含量测定,从而提供了一种基于SERS的手性分析策略。
  • 全国畜牧业标准化技术委员会发布农业行业标准《蜂产品中果糖、葡萄糖、蔗糖和麦芽糖含量的测定 高效液相色谱法》(公开征求意见稿)
    相关附件下载:《蜂产品中果糖、葡萄糖、蔗糖和麦芽糖含量的测定 高效液相色谱法》(公开征求意见稿)编制说明.doc公开征求意见反馈表.doc《蜂产品中果糖、葡萄糖、蔗糖和麦芽糖含量的测定 高效液相色谱法》标准文本(公开征求意见稿).doc
  • 清华大学重大成果:酵母核糖体组装前体的高分辨冷冻电镜结构
    核糖体是一种广泛存在于细胞中的分子机器。所有生物,包括微小的细菌直至人类个体,都依赖核糖体对各种各样的蛋白质进行生物合成。作为一个分子量巨大的复合物,核糖体本身是如何在细胞中由多条RNA链及超过70种蛋白分子装配而成?这一问题已困扰相关领域科学家近30年。  核糖体自身是一个由核糖核酸(RNA)和蛋白质组成的超大复合物(半径20纳米),其三维结构和分子机制的研究一直是生命科学基础研究中的重要方向。2009年的诺贝尔化学奖即授予了首次解析出细菌核糖体原子分辨率的三位结构生物学家。  真核细胞核糖体装配过程是个高度复杂的动态过程,有超过300种不同功能的辅助装配因子(蛋白质或者RNA)参与其中。然而绝大多数装配因子的结构及其行使功能的分子机理完全未知。此外,核糖体的组装与细胞的生长调控通路密切相关,某些装配因子的遗传突变会导致核糖体生物生成的失调,引起一系列的人类遗传性疾病(称为ribosomopathies)。某些特定的装配因子(例如eIF6)不正常表达也在多种人类癌症细胞中被发现。因此,针对核糖体装配过程的研究不仅具有重要的科学意义,还具有潜在的临床应用潜力。  图1酵母核糖体大亚基组装中间体的3.08埃冷冻电镜结构。a,3.08 埃冷冻电镜密度图,核糖体蛋白颜色为米色,核糖体RNA颜色为灰色。b,19个装配因子的原子模型。  清华大学生命科学学院高宁研究组自2009年一直致力于研究各种生物的核糖体装配过程。2013年,高宁研究组和美国卡内基梅隆大学的约翰伍尔福德(John L. Woolford Jr)教授研究组携手合作,利用清华大学的高端冷冻电镜平台,以真核生物酵母菌为材料,开展真核核糖体的装配研究工作。2015年,合作研究获得重大突破,课题组得到了酵母细胞核内的一系列组成上和结构上不同的核糖体60S亚基前体复合物的冷冻电镜结构。其中一种状态的三维结构分辨率达到3.08埃,其核心部分的分辨率可达2.8埃,是国际在核糖体组装研究领域迄今为止分辨率最高的结构。基于这一冷冻电镜结构,课题组确定了超过20种不同装配因子在核糖体60S前体上的结合位置,并获得了19种装配因子的原子模型。课题组所提供的丰富结构信息为详细阐释真核核糖体装配过程中的多种装配因子功能和分子机制提供了重要基础。  2016年5月25日,报道这一重大突破的研究论文在线发表于《自然》(Nature)期刊,题目为《细胞核内的核糖体组装前体结构揭示了装配熟因子的功能多样性》(Diverse roles of assembly factors revealed by structures of late nuclear pre-60S particles)。高宁研究员和卡内基梅隆大学约翰伍尔福德(John L. Woolford Jr)教授为论文共同通讯作者,清华大学生命学院2013级博士生吴姗为第一作者。北京生命科学研究所董梦秋教授及谭丹博士提供了化学偶联交联质谱数据。论文中冷冻电镜数据收集和处理工作获得了国家蛋白质科学(北京)设施清华大学冷冻电镜平台及高性能计算平台支持。课题组得到了中国科技部、国家自然科学基金委、清华大学自主科研、北京高精尖结构生物学中心的经费支持。  论文链接
  • CFDA发布《持续葡萄糖监测系统注册技术审查指导原则》
    p style="text-indent: 2em "3月21日,国家食品药品监督管理总局(CFDA)发布了《持续葡萄糖监测系统注册技术审查指导原则》(2018年第56号),旨在加强医疗器械产品注册工作的监督和指导,进一步提高注册审查质量。/pp style="text-indent: 2em "附件:a href="http://img1.17img.cn/17img/files/201803/ueattachment/4780f084-c8b6-4137-ad80-3a57e443a08d.doc"持续葡萄糖监测系统注册技术审查指导原则.doc/a/p
  • 食品安全国家标准审评委员会发布《食品安全国家标准 食品营养强化剂 (6S)-5-甲基四氢叶酸,氨基葡萄糖盐》等5项食品安全国家标准(征求意见稿)
    各有关单位:根据《食品安全法》及其实施条例规定,我委组织起草了《食品安全国家标准食品营养强化剂(6S)-5-甲基四氢叶酸,氨基葡萄糖盐》等5项食品安全国家标准和修改单(征求意见稿),现向社会公开征求意见。请于2023年6月30日前登录食品安全国家标准管理信息系统(https://sppt.cfsa.net.cn:8086/cfsa_aiguo)在线提交反馈意见。 附件:征求意见的食品安全国家标准目录 食品安全国家标准审评委员会秘书处2023年5月6日相关标准如下:序号标准名称制定/修订营养与特殊膳食食品1项1.食品安全国家标准 食品营养强化剂 (6S)-5-甲基四氢叶酸,氨基葡萄糖盐制定食品添加剂2项2.食品安全国家标准 食品添加剂 聚乙烯醇修订3.食品安全国家标准 食品添加剂 氧化亚氮(GB 1886.350-2021)第1号修改单修改单理化检验方法与规程 1项4.食品安全国家标准 食品中蛋白质的测定修订食品产品1项5.食品安全国家标准 乳粉和调制乳粉修订
  • 农产品所系统报道了血糖仪结合信号放大技术定量检测非葡萄糖靶标在食品安全领域的最新进展与挑战
    近日,农产品所肉类加工创新团队在《Journal of Pharmaceutical Analysis》(中科院一区TOP期刊,IF=14.026)在线发表题为“Personal glucose meters coupled with signal amplification technologies for quantitative detection of non-glucose targets: Recent progress and challenges in food safety hazards analysis”的综述文章。该文章系统报道了血糖仪结合信号放大技术定量检测非葡萄糖靶标在食品安全领域的最新进展与挑战。   血糖仪凭借购买成本低、测试量小、操作简单和定量结果可靠的优势,已成为数百万糖尿病患者不可或缺的一部分,也是当下医疗诊断领域最成功的即时检测设备之一。当前研究者们发现通过血糖仪与纳米材料负载多酶标记、核酸扩增、DNA酶催化、响应性纳米材料包封及其他信号放大技术结合,可有效应对食品基质效应、危害物痕量、检测时间长和资源匮乏等快检问题。血糖仪在食品安全危害分析领域展现出巨大潜力。   本文系统报道了基于血糖仪传感策略的基本检测原理,包括目标识别、信号转导和信号输出。根据其结合不同信号放大技术对其进行了分类并讨论了血糖仪在食品安全领域中的未来前景和潜在机遇与挑战,为食品安全领域的现场快速检测提供了有价值的参考。农产品加工与营养研究所为论文第一通讯单位,肉类加工团队硕士研究生贺锋为论文第一作者,杜鹏飞博士为论文共同通讯作者。该研究获得了国家现代农业(肉羊)产业体系建设专项、山东省羊产业技术体系和山东省自然科学青年基金等项目资助。(撰写:杜鹏飞 核稿:刘丽娜)   文章亮点:   1. 血糖仪是检测食品危害物的有效工具   2. 描述了基于血糖仪生物传感策略的原理   3. 讨论了血糖仪在生物传感应用中的优缺点   4. 展望了血糖仪在食品安全领域的未来挑战和前景
  • 贝克曼库尔特 | 高通量筛选大肠杆菌重组蛋白生产用酵母营养素
    随着重组DNA技术的迅猛发展,外源基因在不同宿主中的表达使得各种重组蛋白的工业生物生产成为可能。选择合适的宿主是生物工艺设计中的关键步骤之一,具体取决于:1.上游培养效率2.易于基因编辑和分子工具的可用性3.翻译后修饰的能力,如糖基化4.蛋白质(用于下游加工和作为生物制药成分等)的分泌能力目前,多种生物已被应用于重组蛋白的生产,尤其是大肠杆菌,易于基因改造,具有在酵母水解物等多种基质上快速生长并产生高蛋白滴度的优势。已成为迄今为止业界追捧的主力军。典型的生物工艺优化通常需要进行一些初步试验,以发现适用于宿主菌株并提高目的重组蛋白表达的培养基成分(特别是氮基营养素)。对于此类应用需求,能够提高实验效率和参数准确度的高通量筛选平台成为热门工具。贝克曼库尔特BioLector通过在线测量关键培养参数提供可放大的高通量分析。本案例为通过BioLector对多种酵母营养素就生物量生长和重组蛋白的形成进行评估和比较,筛选出了适合大肠杆菌重组蛋白生产和诱导时间的理想培养基。方法培养菌株:大肠杆菌BL21(DE3)pET-28a(+)EcFbFP。培养基:以标准TB培养基(Carl Roth)为参照物,对多个TB 样(Terrific 液)培养基进行比较。不同的TB 样培养基使用不同的酵母提取物。BioLector培养条件:在接种至微孔板之前,先在250 mL摇瓶中进行预培养, 37°C培养6小时。然后使用48孔梅花板(MTP-BOH2)在 BioLector中进行培养。温度 37°C ,振摇速度:1400 rpm。分别在每个培养孔中填充800μL培养液用于非诱导实验,填充790μL用于诱导实验。诱导实验中,在诱导时间点上添加 10μL 50μM 的 IPTG。环境氧气浓度保持在35%,避免培养物缺氧。BioLector在线测量:培养过程中对生物量、EcFbFP(黄素荧光蛋白)、pH以及 DO进行在线测量。结果不同TB样培养基的生物量生长情况:培养实验中,不同酵母营养素的培养基中生物量的生长情况如上图所示:培养基不同,最终的光密度和生长速率也会不同。ProCel 6 中的大肠杆菌OD最高,培养基 ProCel 3 中的大肠杆菌的OD低。ProCel 6为本特定工艺的最高生长速率。上图为培养过程的DO值。培养基 ProCel 3 和 ProCel 4 中的培养物未达到0%的氧饱和度,这表明由于耗氧量有限,该培养基中的菌株代谢活性较低。相反,其他培养物包括TB标准培养基,均在短时间内达到0%的氧饱和度,表明菌株代谢活性高。不同酵母营养素TB样培养基的产物生成:通过将IPTG 添加到培养物中来诱导 T7 聚合酶的表达促进黄素荧光蛋白的生成。BioLector使用梅花板为48个培养物提供了独立的培养空间,因此可测试不同的诱导时间点。使用自动化工作站整合BioLector后的 RoboLector 系统还可以自动进行培养诱导。首先选择一个固定的诱导时间点。分别为培养启动后的3小时、3.75小时和4.5小时。下图所示为每种TB样培养基在诱导时间下所测荧光的平均值。荧光动力学清晰地表明不同培养基有不同的EcFbFP(黄素荧光蛋白)表达水平。表现出最强荧光信号的两个样本为:ProCel 2,诱导点为3.75小时;ProCel 5,诱导点为 3 小时。经过 7.7 小时的培养,ProCel 5 的荧光值达到102.94a.u.,而ProCel 2 的荧光值达到 101.82 a.u.。本方法的不足之处在于未比较不同样本的生物量对蛋白质产量的影响。经过3小时的培养,一些培养物的OD已达到6,而其他培养物仅达到3。当诱导具有不同光密度的培养物时,可能会对在每种酵母营养素上生长的实验大肠杆菌的蛋白质生产性能造成误解。鉴于此,我们采用了一种新方法,将诱导点与生物量信号耦合。使用BioLector的信号驱动RoboLector,依赖于特定生物量的诱导对于每个单独的孔都是可行的。为自动化工作站设置3、6或8的OD目标值,以根据孔内培养物的生长动力学自动添加IPTG以诱导蛋白质生产。如下图所示,ProCel 2表现最佳,最终值为 146.23 a.u.,培养时间是 12.3 小时;ProCel 5表现次之,最终值为138.1 a.u.。与之前进行的一系列实验相比,本实验中的排名与在特定时间点进行诱导的实验不同。这一观察证明了最佳工艺条件的重要性,并使这些条件具有可比性。此处数据表明:与之前的实验相比,本实验中的荧光值更高。正如该领域诸多论文中所强调的那样,诱导时间确实是一个关键参数。同样,在优化大肠杆菌重组蛋白生产的过程中,也必须评估诱导剂的浓度。另外,与对照TB培养基相比,这里测试的一些酵母氮源产生了更高的重组蛋白产量。这些结果凸显了选择培养基成分的重要性,这些成分能够在特定的生物工艺中实现高而稳定的产量。结论通过BioLector系统,贝克曼库尔特可为用户提供适用于各种应用领域的高通量筛选平台。其独特的梅花形微孔板尤其适用于好氧培养,如同实验室生物反应器,BioLector系统通过非侵入式传感器使客户能够获取更多的在线测量参数。正如本应用,通过BioLector系统可轻松实现培养基的筛选,整合自动化工作站的RoboLector,还可实现更多功能。补料、pH调控以及文中所述的诱导功能,所有这些均可在小规模实验中实现,帮助客户同时兼顾成本和效率。RoboLector高通量自动化微型生物培养平台欲了解该应用详情,请扫描下方二维码下载应用指南《利用BioLector进行大肠杆菌重组蛋白生产用酵母营养素的筛选》
  • 生物试剂的分类
    ELISA试剂盒生物试剂涉及到化学试剂分类。我国的试剂规格基本上按纯度(杂质含量的多少)划分,共有高纯、光谱纯、基准、分光纯、优级纯、分析和化学纯等7种。国家和主管部门颁布质量指标的主要优级纯、分级纯和化学纯3种。 (1)优级纯(GR:Guaranteed reagent),又称一级品或保证试剂,99.8%,这种试剂纯度最高,杂质含量最低,适合于重要精密的分析工作和科学研究工作,使用绿色瓶签。(2)分析纯(AR),又称二级试剂,纯度很高,99.7%,略次于优级纯,适合于重要分析及一般研究工作,使用红色瓶签。(3)化学纯(CP),又称三级试剂,≥ 99.5%,纯度与分析纯相差较大,适用于工矿、学校一般分析工作。使用蓝色(深蓝色)标签。ELISA试剂盒(4)实验试剂(LR:Laboratory reagent),又称四级试剂。 除了上述四个级别外,ELISA试剂盒目前市场上尚有:基准试剂(PT:Primary Reagent):专门作为基准物用,可直接配制标准溶液。光谱纯试剂(SP:Spectrum pure):表示光谱纯净。但由于有机物在光谱上显示不出,所以有时主成分达不到99.9%以上,使用时必须注意,特别是作基准物时,必须进行标定。纯度远高于优级纯的试剂叫做高纯试剂(≥ 99.99%)。玉米粉琼脂 Corn Meat Medium 250 用于真菌培养沙氏琼脂培养基 Sabouraud’s Agar250用于真菌检测(GB标准)沙氏BHI琼脂Sabouraud BHI Agar250用于真菌检测(Acumedia 方法)沙门氏菌显色培养基Salmonella Chromogenic Medium1000ml用于沙门氏菌的显色培养三糖铁琼脂(TSI) Triple Sugar Iron Agar250生化培养基,用于肠杆菌科细菌的生化反应筛选(GB、SN标准)噻孢霉素 A1.25μg/支*5添加于100ml HB0121中乳糖肉汤 Lactose Broth250用于食品中沙门氏菌检验前增菌乳糖莫能霉素葡萄糖醛酸琼脂LMG Agar250用于滤膜MUG法检测食品中大肠菌群数(SN/T1059.2)乳糖复发酵培养基 Lactose Broth250用于大肠菌群,粪大肠菌群,大肠杆菌的测定(GB标准)乳糖蛋白胨培养液 Lactose Peptone Broth250用于饮用水,水源水中总大肠菌群的测定(GB标准)乳糖胆盐发酵培养基 Lactose Bile Broth250用于大肠菌群,粪大肠菌群,大肠杆菌的测定(GB标准)去氧胆酸盐琼脂 Desoxycholate Lactose Agar250用于大肠杆菌固体平板测定,肠道菌选择性分离庆大霉素琼脂 Gentamycin Agar250用于霍乱弧菌选择性分离培养茜素-β-半乳糖苷琼脂Aliz-gal Agar250用于食品、饮料和饮用水中大肠菌群快速检测和计数(GB/T)普通肉汤培养基 Broth Medium250用于金黄色葡萄球菌的增菌培养(SN标准)葡萄糖胰蛋白胨琼脂Glucose Tryptone Agar250用于嗜热菌芽孢(需氧芽孢总数、平酸芽孢和厌氧芽孢)分离培养(SN标准)葡萄糖琼脂Dextrose Agar250用于细菌的综合生化试验葡萄糖半固体培养基 Dextrose Semisolid Medium250用于志贺氏菌的复合生化试验(GB标准)葡萄糖铵培养基  Ammonium Dextrose Medium250用于志贺氏菌的葡萄糖铵试验(GB标准)葡萄球菌增菌肉汤 Staphylococcus Enrichment Broth250用于凝固酶阳性葡萄球菌的选择性增菌葡萄球菌选择性琼脂110(CHAPMAN 琼脂)Staphylococcus Selective Agar NO.110 250用于金黄色葡萄球菌的分离培养
  • 华粤瑞科--Oxoid&Remel品牌2013年全国总代理
    华粤瑞科科学器材有限公司成为ThermoFisher旗下Oxoid&Remel微生物实验室产品2013年全国总代理。Oxoid 公司是全球领先的微生物培养和诊断产品的供应商之一。Oxoid最初起源于欧洲,其历史可以追溯到微生物科学开始的年代。自1860年Justus von Liebig 首次提出&ldquo Extractum carnis&rdquo (肉精) 至今,Oxoid已经是世界微生物学领域的重要组成部分。Oxoid公司一直遵循着&ldquo 致力于微生物&rdquo 的宗旨,其产品涵盖整个微生物科学领域,为临床检验、工业生产领域和基础学术研究的微生物诊断提供优质的解决方案。Oxoid公司在全球多个地方设有制造厂,如加拿大、德国、澳大利亚等,2006年在中国北京设立了一条新的微生物制成培养基生产线,这条生产线的投产是Oxoid历史上首次在亚洲地区进行直接生产。它的运营使中国的微生物工作者在微生物培养基产品上可以与世界标准接轨,并大幅度减少了微生物实验室操作的工作量,有效地提高了微生物实验室检验的标准化程度。2006年Oxoid正式成为全球科学服务领域的领导者Thermo Scientific旗下的品牌之一,与另一微生物品牌Remel组成微生物产品部,2011年又收购另一品牌Trek,资源整合优化后,为全球的微生物工作者提供更全面的产品与更专业的服务!2013年2月,ThermoFisher 正式授权华粤瑞科科学器材有限公司成为其中国地区Oxoid&Remel品牌总代理商,为其工业、科研以及政府单位提供优质的产品和服务。华粤瑞科科学器材有限公司于2009年由华粤企业集团广州市华粤行仪器有限公司试剂耗材部独立而成为华粤企业集团子公司,主要为生命科学领域的广大研究者、生物制药及食品饮料的企业客户提供高品质的产品与服务。目前我们是Oxoid&Remel,Corning,Merck,Kimble,greiner,Saint-gobain,Wheaton等生产厂家的总代理和一级代理,拥有自主Reacon品牌,成立自己的生产基地和研发中心。微生物实验室整体解决方案供应商----我们为全国各地的制药/日化/食品工业企业、CDC、CIQ、SFDA等政府机构以及第三方检测实验室的提供完整的微生物实验室解决方案。 Oxoid&Remel产品线:培养基原材料:我们为培养基生产商、发酵工业客户以及广大科研院校客户提供全套培养基原材料产品。如:酵母浸出物(LP0021)、胰蛋白胨(LP0042)、植物蛋白胨(VG0100)、酪蛋白水解物(LP0041)、琼脂糖(LP0028)等。干粉培养基:我们为全球制药/食品/日化工业客户、政府科研客户、第三方检测客户提供符合各类标准配方的干粉培养基产品。如:胰蛋白胨大豆琼脂(CM0131)、营养琼脂(CM0003)、哥伦比亚血琼脂(CM0331)、平板计数琼脂(CM0325)等。成品平板培养基:我们为全球洁净空间环境控制客户、各类微生物实验室用户,提供制成的成品平板培养基产品。如:胰蛋白胨大豆琼脂平板(PO0480B)、胰蛋白胨大豆琼脂接触碟(PO0262D)、沙保氏葡萄糖琼脂平板(PO0410B)等厌氧环境生成系统:我们专为需要厌氧或微需氧环境培养的微生物,生产提供Oxoid气体生成系统。如:2.5L厌氧产气袋(AN0025A)、2.5L厌氧产气罐(AG0025A)、厌氧指示剂刃天青(BR0055B)RapID快速生化鉴定板条:我们为微生物生化鉴定提供全球最快速、最准确的解决方案。如:肠杆菌鉴定板条RapID One(R8311006),4小时内鉴定出超过70种重要的氧化酶阴性、革兰氏阴性细菌。ATCC标准菌株:我们为全球微生物实验室,提供ATCC授权的Remel公司生产商业化包装ATCC标准菌株产品。产品操作方便,可溯源,可定性,可定量。空气浮游菌采样仪:我们为制药工业环境监控部门,提供专业的ThermoFisher品牌空气浮游菌采样仪。 Oxoid&Remel产品将为华粤瑞科科学器材有限公司在中国市场的迅猛发展添砖加瓦,我们将致力于提供更全面完整的行业解决方案。我们将在2013年为中国客户创造更有专业水准的服务,取得更卓越的成就。欢迎全国各类用户、经销商,来电咨询。华粤瑞科科学器材有限公司http://www.huayueco.com.cn/ 联系方式:Tel:020-34821111 Fax:020-34820098广州市华粤瑞科科学器材有限公司广州市番禺区兴南大道483号华粤大厦邮编:511442
  • 苏州市计量测试学会发布《人唾液中葡萄糖浓度的测定 离子色谱法》团体标准
    各有关单位:根据《苏州市计量测试学会团体标准管理办法(试行)》等相关规定,由苏州市计量测试学会提出并归口的《人唾液中葡萄糖浓度的测定 离子色谱法》(T/SZJL 4-2023)团体标准已按规定程序审查、审批通过,现予以发布,标准自2023年10月10日起实施。特此公告!苏州市计量测试学会2023年10月08日苏州市计量测试学会关于发布《人唾液中葡萄糖浓度的测定 离子色谱法》团体标准的通知.PDF
  • 苏州市计量测试学会关于《人唾液中葡萄糖浓度的测定 离子色谱法》等2项团体标准的立项公告
    各有关单位:根据《苏州市计量测试学会团体标准管理办法(试行)》的有关规定,学会对《人唾液中葡萄糖浓度的测定 离子色谱法》》、《洁净室服装及织物空气粒子过滤效率检测方法》2项团体标准组织了立项评审会议,经专家评审,符合立项要求,现予以立项。特此公告!同时欢迎与本标准有关的高校、科研机构、技术机构及相关企业单位或个人加入本标准的起草制定工作,有意参与本团体标准起草制定工作的请与学会联系。 联系人及电话:胡学刚 0512-66587060电 子 邮 箱:huxg@szjl.com.cn 苏州市计量测试学会2023年04月17日关于《人唾液中葡萄糖浓度的测定 离子色谱法》团体标准的立项通知.PDF关于《洁净室服装及织物空气粒子过滤效率检测方法》团体标准的立项通知.PDF
  • 离子色谱-积分脉冲安培法检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖
    目的:建立了离子色谱-积分脉冲安培法同时检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖,并对这几种糖的含量进行探讨。方法:色谱分离选用CarboPacTM10(250 mm×4 mm)分析柱,以氢氧化钠和无水乙酸钠为淋洗液进行梯度洗脱,流速为 1.0 mLmin-1,柱温为30℃的色谱条件,在20 min内实现6种糖的分离,利用建立的方法对26个黄酒样品中的单糖含量进行了测定。结果:该方法的重现性(RSD)≤3.70%,相关系数R2≥0.9990,加标回收率为91.6%~109.1%,最低检出限为2.99×10-3 ~1.38×10-3 μgmL-1。结论:黄酒中主要存在的单糖是葡萄糖,阿拉伯糖、半乳糖、甘露糖、核糖和乳糖的含量较低;半甜型黄酒中单糖的含量高于加饭酒,其含量的差异可能与酿造工艺有关。 离子色谱_积分脉冲安培法检测黄酒_省略_乳糖_甘露糖_葡萄糖_核糖_乳糖_徐诺.pdf
  • 安东帕助力葡萄酒产区高质量发展
    2021年4月20日,第十二届国际葡萄与葡萄酒学术研讨会暨黄河故道葡萄酒产区高质量发展论坛在河南省民权县隆重开幕。大会以“强化风格、提高质量、降低成本、节能减排”为主题,旨在讨论交流国内外葡萄与葡萄酒新思路、新成果、新举措以及新技术。奥地利安东帕作为西北农林科技大学葡萄酒学院理事会理事单位之一,受邀参加此论坛,面向葡萄酒行业的用户介绍了安东帕的葡萄酒酿造全流程质控解决方案,该方案不仅包括了实验室分析仪器,还包含了在线过程分析仪器,而这种实验室与在线仪器相互联动的解决方案,得到了参会专家与企业用户的充分肯定。安东帕精彩一览作为关键原料的葡萄,是酿造出优质葡萄酒的基础。由于葡萄的成熟会极大地受到种植环境因素的影响,因此在葡萄收获季,对于葡萄中的糖含量(°Brix)和相应的酸含量都需要进行测试。安东帕葡萄酒解决方案DMA 35 + Abbemat 3100安东帕为葡萄糖含量(°Brix)的测量提供了两种方法,一种是基于U型振荡管的便携式手持密度计DMA 35,另一种是基于折光原理的Abbemat 3X00系列折光仪。无论使用哪种设备,均可以在现场快速测定葡萄汁中的糖含量,以确保酿酒师在最何时的时刻收获葡萄,并且对葡萄汁的发酵过程进行监控。 Lyza 5000 Wine安东帕的Lyza 5000 Wine葡萄酒分析仪作为一款能够涵盖葡萄酒酿造全流程链的仪器,不仅能够对葡萄中的糖含量(°Brix)和苹果酸、酒石酸的含量进行测定,同时还可以分析葡萄汁压榨过程中的pH,酚类化合物、酵母可吸收氮,乃至成品的密度、酒精度、可挥发酸等累计达到17种参数。可以说通过一台Lyza 5000 Wine葡萄酒分析仪,几乎可以同时得出葡萄酒酿造酿造过程中的所有关键性质量参数。同时,配合安东帕在二氧化碳以及氧气分析方面的成熟应用方案,可以轻松实现整个葡萄酒酿造过程中二氧化碳和氧气浓度的精确测量,在有效改善葡萄酒口感的同时,也进一步确保了合适的投入产出比。在线饮料分析仪:Wine Monitor 5500/5600安东帕Wine Monitor 5500/5600 在线饮料分析仪,可用于连续监测所有葡萄酒(包括红葡萄酒、白葡萄酒、玫瑰葡萄酒以及葡萄酒混合饮料)的酒精含量、浸出物、密度以及 CO2 浓度。检查您的标准或低热量香槟、含气葡萄酒、普洛赛克酒、起泡酒或卡瓦酒的起泡情况。也可以选择测定色度和溶解氧含量。Wine Monitor在线红酒监测使用数字信号处理和新的机械设计以提供稳定、无漂移的测量结果,同时帮助您保持高生产效率。安东帕将持续助力国内葡萄酒行业的振兴与发展,为各科研机构以及企业提供葡萄酒酿造过程中的多种精密测量仪器与解决方案,量化葡萄与葡萄酒品质的关键性参数,以保障最终的葡萄酒具有良好的口感与稳定的品质!
  • 安东帕发布葡萄酒分析仪FTIR Lyza 5000 Wine新品
    FTIR 葡萄酒分析仪:Lyza 5000 Wine葡萄酒分析的优选Lyza 5000 Wine 是用于葡萄酒生产、葡萄酒实验室和灌装工厂进行快速葡萄酒分析的高级解决方案。将傅里叶变换红外 (FTIR) 光谱与化学统计模型结合使用,可同时测定葡萄酒必要参数,包括酒精含量、糖和有机酸。与现有测量系统连接、自动化和短测量时间可保证立即得到结果。通过创新型集成软件,可立即操作 Lyza 5000 Wine,无需经过任何培训。Lyza 5000 Wine:安东帕专为葡萄酒市场定制的 FTIR 仪器。安东帕是您在葡萄酒行业可信赖的仪器提供商。创新点:适用于葡萄酒的FTIR多参数分析仪——测量参数包括乙醇,葡萄糖+果糖,果糖,葡萄糖,滴定酸度,酒石酸,挥发性酸,苹果酸,乳酸,甘油,浸出物,密度,pH,酵母可吸收氮,葡萄汁重量等葡萄酒市场上的高精度测量仪器——经过12次反射的ATR测量池(高强度,受浊度影响小);密封的测量单元;精确的测量池温度控制(± 0.03°C)连接自动进样器——通过Xsample520(可选24位进样盘)实现自动化,测量过程中样品顺序可调主要特点Lyza 5000 Wine 兼具操作简单和功能强大的特点直观设置和不到 1 分钟的最短测量时间,可获得即时结果使用受现代智能手机界面外观启发的用户界面浏览您的日常操作通过最直观的 Xsample 设置复杂测量程序参考值测量和仪器运行状况综合测定的指导工作流程可确保结果始终可靠Lyza 5000 Wine 配备 10.1 英寸高分辨率触摸屏,无需外部电脑,可自动执行所有数据分析用途最广的葡萄酒分析系统手动进样使其可以在小型葡萄酒实验室快速轻松地进行独立操作。通过 Xsample 进样器实现的自动化,提高样品处理量。Lyza 5000 Wine 可连接到葡萄酒实验室的基准仪器上:从 DMA M 密度计到全套 Alcolyzer Wine 分析系统。由于这些设置可同时进行测量,因此可获得超过 15 个参数,而不延长总体测量时间。将一份显示所有连接仪器结果的综合报告导出到 LIMS 或直接从 Lyza 5000 Wine 中打印出来。专为葡萄酒市场设计Lyza 5000 Wine 的 ATR 样品槽专为葡萄酒市场进行的质量控制而量身定制。与常用的传输单元相比,12 跳设计提供的信号强度较少受到混浊或气体样品的影响,可达到理想状态。对任何葡萄酒分析仪均可实现最准确的测量池温度控制 (±0.03 K),为您提供优佳再现性。密封的 FTIR 光谱仪核心将环境影响降低,实现无与伦比的重复性。检查和校正只需要水和二元乙醇溶液 – 无需专门的专用参考标准物质。通过遵循指导工作流程,可将全球实施的有效葡萄酒模型轻松适应于您的本地需求 – 这使所有用户组都可进行模型校正。创新点:- 12 次 ATR 测量池能够提供理想的信号强度,结果几乎不受混浊或含气样品的影响,精准半导体控温,结果更可靠。- 一次测量便可快速获取包括乙醇、糖和酸类含量在内的超过 13 个参数数据。- Lyza 5000 Wine 内置红酒模型课直接测量!可快速进行模型修正并可导出另存。中文操作多种传输方式,能够自动执行数据分析。- 内置工作流程指导,操作简便且无需专用参考标准物质。葡萄酒分析仪FTIR Lyza 5000 Wine
  • 宁夏化学分析测试协会立项《葡萄酒中布鲁塞尔德克酵母的检测 实时荧光PCR法》等3项团体标准
    各会员及相关单位:宁夏化学分析测试协会对团体标准申报材料进行审核后,经研究决定对宁夏回族自治区食品检测研究院申报的《葡萄酒中布鲁塞尔德克酵母的检测 实时荧光PCR法》等3项团体标准批准立项,现予以公示。欢迎与该团体标准有关的科研、生产单位加入该标准的编制工作,有意者请与协会秘书处联系。联系人:张小飞电话: 13995098931地址:宁夏银川市金凤区新田商务中心413室邮箱:1904691657@qq.com 序号拟立项团标名称1《葡萄酒中布鲁塞尔德克酵母的检测 实时荧光PCR法》2《调味料中常见动物源性成分的检测 实时荧光PCR法》3《食用植物油中常见植物源性成分的检测 实时荧光PCR法》 宁夏化学分析测试协会2023年12月4日 2023团标立项公示12.4.pdf
  • PNAS|沈庆涛团队引入“退火”技术提高冷冻电镜解析蛋白分辨率
    退火——在冶金学中很常见——将金属或合金加热到设定温度,保持该温度,然后将金属冷却到室温,以改善材料的物理性质,有时还改善材料的化学性质。退火材料倾向于采用同质状态并容易组装成三维 (3D) 或二维 (2D) 晶体。人们可以通过原子力显微镜 (AFM)、X 射线衍射 (XRD) 或电子显微镜 (EM) 轻松地观察到这种规则堆积。退火是否对生物大分子,尤其是蛋白质表现出类似的影响,是一个迷人的科学问题。2022年2月22日,上海科技大学沈庆涛研究员团队等在PNAS发表题为Annealing synchronizes the 70S ribosome into a minimum-energy conformation的研究论文,将退火技术引入冷冻电镜解析蛋白质结构,在模拟退火中引入了一个类似的概念,以预测生物大分子的最小能量构象。通过实验验证,在自由能分析中,以快速冷却速率退火可以将 70 S核糖体同步到具有最小能量的非旋转状态。此结果不仅提供了一种简单而可靠的方法来稳定蛋白质以进行高分辨率结构分析,而且有助于理解蛋白质折叠和温度适应。与金属和有机聚合物不同,蛋白质和蛋白质复合物通常是由化学上不同的亚基以不同的几何形状结合在一起的离散实体。这种显着的结构异质性阻碍了通过 AFM 或 XRD 直接确定结构。相比之下,cryo-EM 分辨率的最新进展为在单分子水平上获得高分辨率蛋白质结构提供了绝佳机会。通过使用冷冻电镜比较退火前后的详细结构,可以获得退火影响蛋白质构象的直接实验证据。退火提高了局部分辨率研究中,选择来自大肠杆菌的载脂蛋白状态 70 S核糖体作为模型,其中 30 S亚基经历热驱动的亚基间旋转并表现出显着的结构灵活性以及明显的自由能。在 0°C 下将纯化的脱基态 70 S核糖体培养 5 分钟,然后立即将核糖体快速冷冻以进行低温 EM 分析,这可能保留了与玻璃化之前相同的构象(描绘为未退火状态)。筛选了收集到的 70 S核糖体颗粒通过 2D 和 3D 分类丢弃明显的垃圾和拆卸的核糖体。根据金标准傅里叶壳相关性,从 200,000 个随机选择的粒子中重建得到最终分辨率为 2.6 Å 的结构。由于缺乏稳定因素,例如信使 (mRNA) 和转移 RNA (tRNA),对未退火的 70 S核糖体的局部分辨率估计表明,在 2.6 至 7.2 埃范围内的整个密度图上存在可变分辨率(图 1A )。相对于 50 S亚基,30 S亚基——尤其是它的头部结构域——没有得到很好的解析,这在其他脱辅基态核糖体中很常见。图1 退火提高了 70 S核糖体的局部分辨率为了量化不同区域的分辨率变化,通过平均选定区域内的局部分辨率值来计算局部分辨率。分析表明,50 S亚基的平均局部分辨率为 3.1 Å,而 30 S亚基的分辨率要低得多——只有 5.2 Å。此外,30 S头域的分辨率更低——平均分辨率为 6.1 Å(图 1 B )。50 S和 30 S亚基之间的亚基间棘轮是分辨率差的主要原因;30 S的亚基内漩涡亚基是次要的,这会降低头部域的分辨率。为简单起见,使用 30 S亚基的局部分辨率作为标记来监测退火对 70 S核糖体的影响。未退火的、加热的和退火的核糖体结构变化退火使柔性区域稳定退火诱导的分辨率改善在整个 70 S核糖体中并不均匀。相对于 30 S亚基的 1.5-Å 分辨率提高,良好分辨的 50 S亚基在退火后仅提高了 0.3 Å(即从 3.1 Å 值到 2.8 Å 值)(图 1 B ) . 因此,退火对具有更大结构灵活性的低分辨率区域特别有益。为了进一步验证这一推论,我们对未退火和退火 70 S之间相同子区域的平均局部分辨率进行了综合统计分析核糖体。例如,退火将不同区域的平均局部分辨率提高到 0.1、0.6、0.8、1.2 和 2.0 Å 的水平;未退火核糖体中相应区域的局部分辨率范围为 2.5 至 3.0、3.0 至 3.5、4.0 至 4.5、5.0 至 5.5 和 5.5 至 6.0 Å(图 2 A ) 。指数曲线与数据非常吻合,表明未退火的 70 S核糖体具有更大的灵活性,对应于退火后局部分辨率的更大提高。图 2 退火稳定了 70 S核糖体的柔性区域讨论不限于金属、合金或半导体,我们通过实验证明退火还可以使 70 S核糖体同步到具有窄构象分布的最小能量状态(图 3)。核糖体/核小体的结晶具有类似退火的处理,其中研究人员通常将核糖体/核小体加热到 37 °C 和 55 °C 之间,然后将它们降低到室温 (19 °C)。对 70 S核糖体进行严格退火以进行结晶将有助于探索退火对 70 S核糖体的物理和化学影响,如在冶金学中。除了 70 S核糖体,在其他生物大分子上退火,特别是那些具有动态结构的大分子,将有助于验证该方法的普遍性。图3 模型说明退火可以使核糖体同步到最小能量状态并提高局部分辨率。显示了自由能曲线(实线)和粒子分布概率(浅绿色峰)。结构灵活性虽然对蛋白质功能至关重要,但阻碍了研究人员应用结构研究在分子水平上阐明功能的能力。持续的努力——例如关键残基的突变,引入额外的二硫键,添加抗体/结合蛋白 ,或在溶液中或甘油内交联/葡萄糖梯度——对于优化样品以提高结构稳定性很有用。然而,这样的努力耗时且缺乏明确的方向,最终的结构仅限于固定状态,有时甚至会在额外的操作后发生扭曲。退火——适当加热和冷却的组合——对蛋白质没有破坏性,是一种简便而可靠的高分辨率冷冻电镜方法。有趣的是,与通过戊二醛交联的 70 S核糖体相比,退火提高了 50 S和 30 S亚基的局部分辨率。研究人员还尝试通过在低温 EM 图像处理期间对柔性区域进行局部细化来提高局部分辨率。我们对未退火和退火核糖体的灵活 30 S亚基进行了局部改进。在局部细化后,未退火核糖体的 30 S亚基的平均局部分辨率提高了 ~1 Å,达到 4.2 Å。与通过退火提高分辨率不同,局部细化本身仍然导致 30 S亚基头部域的平均分辨率不足 5.5 Å 。显然,退火和局部细化通过不同的机制提高了局部分辨率。退火可以将生物大分子驱动到最小能量状态,并且无论区域大小如何,都可以全局提高整个地图的分辨率。作为对照,局部细化在算法级别上起作用,并且仅适用于大小合理的区域。当我们对退火核糖体应用局部细化时,30 S亚基的主体和头部结构域分别提高到 2.9 和 3.9 Å。这表明退火与柔性区域的局部细化兼容,并且可以进一步优化局部分辨率以进行详细的结构分析。可以使用退火将蛋白质同步到最低能量状态,这可能有利于许多单分子方法,例如光镊和单分子荧光共振能量转移 。人们还可以使用退火来研究温度适应和蛋白质折叠,并促进分子动力学模拟中的算法开发。因此,研究人员应彻底研究退火机制并进一步优化退火条件以提高分辨率。本研究由国家重点研发计划项目2017YFA0504800(Q.-TS)、2021YFF1200403(Q.-TS)和2018YFC1406700(Q.-TS)和国家自然科学基金项目31870743(Q. .-TS)等支持。论文链接:https://www.pnas.org/content/119/8/e2111231119#sec-6
  • 国科大发表蛋白质糖基化与人类重大疾病发生机制综述文章
    蛋白质糖基化是目前在高等真核生物中发现的最普遍、最重要的蛋白质翻译后修饰方式之一,该类修饰涉及聚糖与蛋白质分子的连接,是蛋白质分子正确折叠、维持稳定、参与互作和细胞黏附等活动所必需的。异常的糖基化修饰会导致多种人类重大疾病的发生,如白血病(leukemia)、胰腺功能障碍(pancreatic dysfunction)、阿尔茨海默病 (Alzheimer’s disease, AD)等。由于糖基化的复杂性,研究难度大,相关领域研究起步较晚,研究结果还不尽完善。中国科学院大学博士生导师、教授郎明林课题组发表了蛋白质糖基化与人类重大疾病发生机制综述,该研究通过探索葡萄糖的调控角色,突出了葡糖转移酶的功能结构特性及其对人类健康和疾病的影响,有利于学界认识葡萄糖修饰的重要性。  在动物胚胎神经系统的发育过程中,Notch蛋白对决定细胞未来命运发挥重要作用;其在成人大脑,特别是海马组织等高突触可塑性区域表达。多种证据表明,Notch1参与了神经元凋亡、轴突回缩和缺血性脑卒引起的神经退行性病变。葡萄糖基化是调控Notch受体S2切割,细胞表面展示、转运,以及EGF重复序列稳定性的重要修饰。由于Notch受体发挥正常功能需要糖基化修饰,其修饰缺陷会引起γ分泌酶(该酶参与淀粉样前体蛋白APP切割形成Aß分子)对Notch的切割,可能参与AD发病的机制。Notch蛋白保守的表皮生长因子EGF-like重复序列的葡萄糖基化由O-葡糖基转移酶POGLUTs催化完成,该酶通过KDEL-like信号驻留于内质网中。POGLUTs不仅具有葡萄糖基转移酶活性,还具有连接木糖至EGF保守重复序列的木糖基转移活性,而这些酶活特性的实现取决于内质网内糖的浓度水平和酶的构象变化。此外,POGLUTs通过Notch蛋白和转化生长因子β1(TGF-β1)信号,操纵了正常细胞周期循环或增殖所需的周期蛋白依赖性激酶CDKIs的表达。已有研究发现,POGLUTs异常过度或下调表达均会导致一些严重的并发症发生,如肌肉萎缩症、白血症、肝功能障碍等。POGLUTs通过控制不同CDKIs的表达,可发挥对细胞增殖诱导和抑制的双重作用。该研究评述有利于学界更深入地了解葡萄糖在当前糖生物学、癌症和细胞通信等研究领域中扮演的角色。  相关研究成果以Structure, Function, and Pathology of Protein O-Glucosyltransferases为题,在线发表在Nature子刊Cell Death & Disease上。国科大生命科学学院博士生Muhammad Zubair Mehboob为论文第一作者,郎明林为论文通讯作者。研究工作得到生物互作卓越创新中心、国家自然科学基金、北京市自然科学基金、河北省应用基础研究计划重点基础研究项目和河北省百名创新人才计划项目的支持。  论文链接
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制