当前位置: 仪器信息网 > 行业主题 > >

牛血清白蛋白相对分子质量

仪器信息网牛血清白蛋白相对分子质量专题为您提供2024年最新牛血清白蛋白相对分子质量价格报价、厂家品牌的相关信息, 包括牛血清白蛋白相对分子质量参数、型号等,不管是国产,还是进口品牌的牛血清白蛋白相对分子质量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合牛血清白蛋白相对分子质量相关的耗材配件、试剂标物,还有牛血清白蛋白相对分子质量相关的最新资讯、资料,以及牛血清白蛋白相对分子质量相关的解决方案。

牛血清白蛋白相对分子质量相关的资讯

  • 基于镜像酶正交酶切的蛋白质复合物规模化精准分析新方法
    蛋白质作为生命活动的执行者,通过自身结构的动态改变,以及与其他蛋白质相互作用组装为蛋白质复合物,调控各种生物学过程。因此,如何实现蛋白质复合物的精准解析已成为当前生命科学的研究热点。化学交联结合质谱(CXMS)技术作为蛋白质复合物解析的新兴技术,利用化学交联剂将空间距离足够接近的蛋白质分子内或分子间的氨基酸残基以共价键连接起来,再利用液相色谱-质谱联用对交联肽段进行鉴定,实现蛋白质复合物的组成、界面和相互作用位点的解析。该技术具有分析通量高、灵敏度高、可提供蛋白质间相互作用的界面信息、普遍适用于不同种类和复杂程度的生物样品等优势,已成为X射线晶体衍射、低温冷冻电镜、免疫共沉淀等蛋白质复合物研究技术的重要补充。化学交联位点的鉴定覆盖度和准确度决定着该技术对于蛋白质复合物结构的解析能力。目前,为了实现蛋白质复合物的高覆盖度交联,研究人员发展了可用于共价交联赖氨酸(K)的氨基、谷氨酸(E)/天冬氨酸(N)的羧基、精氨酸(R)的胍基以及半胱氨酸(C)的巯基等多种活性基团的新型交联剂。进而,为了提高低丰度交联肽段的鉴定灵敏度,体积排阻色谱法、强阳离子交换色谱法,及亲和基团富集策略被提出用于交联肽段的高选择性富集,如可富集型化学可断裂交联剂——Leiker,与不具备富集功能的交联剂相比,通过亲和富集可以将交联位点鉴定数目提高4倍以上。胰蛋白酶镜像酶(LysargiNase)的酶切位点与胰蛋白酶互为镜像,可特异地切割赖氨酸和精氨酸的N端。由于LysargiNase的N端酶切特点,电荷主要分布在交联肽段的N端,在碰撞诱导裂解(CID)和高能诱导裂解(HCD)模式下产生以b离子为主的碎片离子,与胰蛋白酶酶切肽段以y离子为主的碎片离子互为镜像补充,为胰蛋白酶酶解肽段在质谱鉴定中b离子缺失严重的问题提供了很好的解决办法。由于具有较高的酶切特异性和酶活性,镜像酶已经成功地应用于蛋白质C末端蛋白质组鉴定、磷酸化蛋白质组研究、甲基化蛋白质组鉴定等方面,然而在CXMS中的应用仍未见报道。为进一步提高对蛋白质复合物结构及相互作用位点的解析能力,本文发展了LysargiNase与胰蛋白酶联合酶切的方法,基于镜像酶正交切割的互补特性,通过产生赖氨酸及精氨酸镜像分布的交联肽段,以增加特征碎片离子数量和肽段匹配连续性,从而提升交联肽段的谱图鉴定质量,达到提高交联位点的鉴定覆盖度和准确度的目的。通过分别对牛血清白蛋白及大肠杆菌全蛋白样品的交联位点鉴定结果的考察,评价该策略对单一蛋白样品和复杂细胞裂解液样品蛋白质复合物表征的应用潜力。蛋白质样品制备称取牛血清白蛋白粉末,以20 mmol/L 4-(2-羟乙基)-1-哌嗪乙磺酸(HEPES, pH 7.5)作为缓冲体系,配制0.1 mmol/L牛血清白蛋白溶液。大肠杆菌细胞(种属K12)在37 ℃下采用Luria-Bertani(LB)培养基培养24 h,然后于4 ℃以4000 g离心2 min,收集细胞沉淀。细胞沉淀采用磷酸盐缓冲液(PBS)清洗3遍后,悬浮于细胞裂解液(含20 mmol/L HEPES和1%(v/v)蛋白酶抑制剂)中,冰浴超声破碎180 s(30%能量,10 s开,10 s关)。匀浆液于4 ℃以20000 g离心40 min,收集上清,采用BCA试剂盒测定所得蛋白质含量。稀释大肠杆菌蛋白裂解液至蛋白质含量为0.5 mg/mL。化学交联样品制备以20 mmol/L HEPES(pH 7.5)为溶剂配制浓度为20 mmol/L 的BS3交联剂母液 将交联剂母液加入牛血清白蛋白的缓冲溶液及大肠杆菌蛋白裂解液中,使交联剂的终浓度为1 mmol/L,在室温条件下反应15 min 通过添加终浓度为50 mmol/L的淬灭溶液NH4HCO3进行交联反应淬灭,并在室温下孵育15 min 在冰浴条件下,将交联样品逐渐滴入8倍体积的预冷丙酮中,于-20 ℃静置过夜 在4 ℃条件下,以16000 g转速离心,去除丙酮,然后将交联蛋白用预冷丙酮清洗2次,去除上清液后,于室温挥发掉残余的丙酮 以8 mol/L尿素溶液复溶蛋白质沉淀 将牛血清白蛋白交联样品以5 mmol/LTCEP作为还原剂,于25 ℃下反应1 h进行变性和还原 将大肠杆菌样品以5 mmol/LDTT作为还原剂,于25 ℃下反应1 h进行变性和还原,避免大肠杆菌蛋白在酸性条件下发生变性 添加终浓度为10 mmol/L的碘乙酰胺(IAA),在黑暗中,于室温下反应30 min 以50 mmol/LNH4HCO3稀释样品至尿素浓度为0.8 mol/L后,将样品均分为两份,一份以蛋白样品与蛋白酶的质量比呈50:1的比例加入胰蛋白酶,于37 ℃酶解过夜,另一份加入终浓度为20 mmol/L的CaCl2,以蛋白样品与蛋白酶的质量比呈20:1的比例加入LysargiNase,并在37 ℃温度下酶解过夜。液相色谱-质谱鉴定及数据搜索上述所有样品经过除盐,使用0.1%甲酸(FA)溶液复溶,用超微量分光光度计测定肽段浓度,进行反相高效色谱分离和质谱分析。牛血清白蛋白样品采用Easy-nano LC 1000系统偶联Q-Exactive质谱仪平台进行质谱分析。流动相A: 2%(v/v)乙腈水溶液(含0.1%(v/v)FA) 流动相B: 98%(v/v)乙腈水溶液(含0.1%(v/v)FA)。梯度洗脱程序:0~10 min, 2%B~7%B 10~60 min, 7%B~23%B 60~80 min, 23%B~40%B 80~82 min, 40%B~80%B 82~95 min, 80%B。Q-Exactive质谱仪采用数据依赖性模式,Full MS扫描在Orbitrap上实现,扫描范围为m/z 300~1800,分辨率为70000(m/z=200),自动增益控制(AGC)为3×106,最大注入时间(IT)为60 ms,母离子分离窗口为m/z 2。MS/MS扫描的分辨率为17500(m/z=200),碎裂模式为HCD,归一化碰撞能量(NCE)为35%, MS2从m/z 110开始采集,MS2的AGC为5×104, IT为60 ms,仅选择电荷值为3~7且强度高于1000的母离子进行碎裂,并将动态排除时间设置为20 s。每个样品分析3遍。大肠杆菌样品采用EASY-nano LC 1200系统偶联Orbitrap Fusion Lumos三合一质谱仪平台进行质谱分析。流动相A: 0.1%(v/v)甲酸水溶液 流动相B: 80%(v/v)乙腈水溶液(含0.1%(v/v)FA)。梯度洗脱程序:0~28 min, 5%B~16%B 28~58 min, 16%B~34%B 58~77 min, 34%B~48%B 77~78 min, 48%B~95%B 78~85 min, 95%B。Orbitrap Fusion Lumos三合一质谱仪采用数据依赖性模式,Full MS扫描在Orbitrap上实现,扫描范围为m/z 350~1500,分辨率为60000(m/z=200), AGC为4×105, IT为50 ms,母离子分离窗口为m/z 1.6。MS2扫描的分辨率为15000(m/z=200),碎裂模式为HCD, NCE为30%, MS2从m/z 110开始采集,MS2的AGC为5×104, IT为60 ms。仅选择电荷值为3~7且强度高于2×104的母离子进行碎裂,并将动态排除时间设置为20 s。每个样品分析3遍。质谱数据文件(*.raw)采用pLink 2软件(2.3.9)对交联信息进行检索和鉴定。使用从UniProt于2019年4月27日下载的牛血清白蛋白序列和大肠杆菌序列,搜索参数如下:酶切方式为胰蛋白酶(酶切位置:K/R的C端)、LysargiNase(酶切位置:K/R的N端) 漏切位点个数为3 一级扫描容忍(precursor tolerance)2.00×10-5 二级扫描容忍(fragment tolerance)2.00×10-5 每条肽段的质量范围为500~1000 Da 肽段长度的范围为5~100个氨基酸 固定修饰为半胱氨酸还原烷基化(carbamidomethyl [C]) 可变修饰为甲硫氨酸氧化(oxidation [M])、蛋白质N端乙酰化(acetyl [protein N-term]) 肽段谱图匹配错误发现率(FDR)≤5%。映射胰蛋白酶与LysargiNase酶解样品的交联位点在牛血清 白蛋白晶体结构(PDB: 3V03)的映射 LysargiNase与胰蛋白酶酶解样品的交联位点对及单一交联位点的互补性LysargiNase与胰蛋白酶酶解样品共同得到的交联位点鉴定打分比较b+/++与y+/++离子碎片分别在α/β-肽段的碎片覆盖度LysargiNase与胰蛋白酶酶解的交联肽段质谱图大肠杆菌样品中LysargiNase与胰蛋白酶酶切鉴定蛋白质复合物信息互补性带点击了解原文:https://www.chrom-china.com/article/2022/1000-8713/1000-8713-40-3-224.shtml
  • Xevo G2-S QTof和TransOmics:用于蛋白质组学、 代谢组学和脂质组学的LC/MS差异组学分析系统
    Ian Edwards、JayneKirk和Joanne Williams沃特世公司(英国曼彻斯特)应用优势■ 简化了工作流程、验证和数据解析 ■ 设计用于大规模代谢组学和蛋白质组学数据集■ 集成式组学平台可用于各种各样的全面定性和定量分析沃特世解决方案包括TransOmics信息学软件的组学研究平台解决方案ACQUITY UPLC I-Class 系统nanoACQUITY UPLC 系统Xevo G2-S QTofTransOmics 信息学软件MassPREP 蛋白质酶解标准品 关键词组学,代谢组学,脂类组学,蛋白质组学,MSE,主成分分析,无标记LC/MS 简介近年来,包括基于LC-MS的代谢组学、脂质组学和蛋白质组学仪器等组学技术的进步实现了以高通量的方式对多种生物分子的丰度进行定量监测,从而测定它们在不同生物状态下的变化。我们的最终目标是增进对生物过程的理解,从而改善对于疾病的疗效,更有效地开发药物或维持作物生长的最佳农业环境,同时最大程度地减少传染和其它副作用。就此而言,不同分析学科的研究结果可提供正交的观点,通常可以互相作为补充。开发和应用能够将多个研究领域的结果进行整合的灵活信息学解决方案具有重大意义。本研究介绍了一种多组学解决方案,可用于对代谢组学和蛋白质组学数据集中的MS数据进行大规模分析。其中采用了包括TransOmics信息学软件的沃特世(Waters?)组学研究平台解决方案,并结合Xevo G2-S QTof系统进行技术和生物学重复分析。 结果与讨论执行的代谢组学实验包括相对于对照/质控样品,鉴定低剂量和高剂量样品。根据实验设计,样品应当划分为3个不同的组,并使用标记离子进行不同组的识别。用于代谢组学和脂类组学的TransOmics(TOIML)流程包括以下步骤: 1. 导入原始的MSE连续数据集(六个技术重复样/组)2. 峰对齐,纠正不同分析运行间的保留时间偏移3. 色谱峰归一化,以便在不同样品运行间进行比较4. 色谱峰检测(峰选择)5. 离子去卷积,按化合物将离子分组6. 利用已有的定制数据库进行化合物鉴定7. 执行数据分析,找出用以将化合物分为QC(质控)、空白(基质)和分析物(高剂量)的离子(特征) 基质背景包括系统评估基质,其中加入了不同的镇痛标准品混合物A,从而得到低剂量(QC和高剂量(空白)样品。质控样品(QC)通过混合等量的低剂量和高剂量样品而制成。 采用ACQUITY UPLC I-Class系统结合Xevo G2-S QTof,在正电喷雾模式下以大于30k FWHM的质量分辨率,分离和分析代谢物。在UPLC/MSE模式下采集数据,该模式是一种无监督的采集方法,其中当进行交替扫描时质谱仪在低能量和高能量之间切换。使用TOIML和专业化合物数据库进行处理、搜索和定量。 其中TOIML流程的步骤1,2和3在别处有详细描述(TransOmics信息学软件由Nonlinear Dynamics提供技术支持)。鉴定前,通过主成分分析对所检测离子进行分组,如图1所示,显示了综合得分图和载荷图。从中可知,离子主要聚集在技术重复水平,并且样品实现了清晰分离。 图1. 分析物(镇痛标准品混合物A高剂量;紫色),空白(系统评估基质;浅蓝色)和QC(质控样品;深蓝色)的主成分分析接着,采用集成式搜索工具进行化合物鉴定,以正确鉴定四种镇痛标准品混合物中可在正离子电喷雾模式下检测到的标准品。图2展示了TOIML化合物搜索结果页面的概览,其中突出显示了基于精确质量数、保留时间(可选)和理论同位素模式分布对咖啡因的鉴定。除了先前描述的PCA之外,TOIML中还整合了其它多变量统计工具,包括相关性和趋势分析。图3为一个示例,示出了四个加标标准品的归一化趋势图,表明每个标准品的六个技术重复样之间有着良好的一致性,并且相对丰度与实验设计一致。此外,TOIML还便于科学家将分析结果与其它组学数据关联,或为诸如EZinfo的独立统计软件包提供输入数据。下游生物信息学(即Umetrics软件)的结果可重新导入分析实验中,以将所有化合物数据合并为单个表格以供审查或分享。图2. TOIML化合物鉴定页面。图3.镇痛标准品的归一化丰度分析。在蛋白质组学实验中,分析了两个10ng大肠杆菌样品的三个重复样,分别加入了牛血清白蛋白(BSA)、乙醇脱氢酶(ADH),烯醇酶和糖原磷酸化酶B。第一个样品(混合物1)中的加标蛋白质的柱上进样量均为1飞摩尔,而第二个样品(混合物2)中的加标蛋白质柱上进样量分别为8、1、2和0.5飞摩尔。因此,额定预期比值(混合物2:混合物1)应为8:1、1:1、2:1和0.5:1。在本研究中,使用nanoAC-QUITY UPLC系统结合Xevo G2-S QTof,在LC/MSE采集模式下对肽进行分离和分析。采用用于蛋白组学的TransOmics(TOIP)以及含有加标蛋白质序列信息的种属特异性数据库进行处理、搜索和定量。 TOIP流程包括以下步骤:1. 导入原始的MSE连续数据集(每个样品有三个技术重复样)2. 峰对齐,纠正不同分析运行间的保留时间偏移3. 色谱峰归一化,以便在不同样品运行间进行比较4. 色谱峰检测(峰选择)5. 利用集成数据库搜索算法鉴定蛋白质和肽6. 多变量统计分析7. 绝对和相对定量 TOIP提供了与TOIML相同的多变量分析工具。图4显示了所检测特征的PCA示例,即电荷态组。可明显看出,特征主要聚集在技术重复水平。其中一种加标蛋白质消化物的肽定性鉴定结果示于图5中,该蛋白质中鉴定出的所有肽的归一化表达谱如图6所示。对后者的定量精确度类型进行了确证,此类型可通过无标记MS研究及基于LC/MSE的采集策略获得。 图4.大肠杆菌中加入的混合物1(深蓝色)和混合物2(浅蓝色)的特征(电荷态组)PCA图。图5显示了差异加标样品中一个分析物的LC/MSE采集的定性结果概览。在本例中,BAS的柱上进样量为8 fmol,而大肠杆菌消化物的量为10 ng。结果如图6所示,展示了相关的相对定量结果。图5.大肠杆菌中加入的不同浓度牛血清白蛋白肽的定性LC/MSE鉴定结果。顺时针显示的依次是鉴定相关指标(得分和误差)、具体的轮廓线图以及标注的产物离子谱图。图6.牛血清白蛋白中鉴定出的肽的定量分析。结论■TransOmics信息学软件为多组学研究提供了一个简单易用、可扩展的系统■UPLC/MSE(LC结合数据独立型采集MS)可在单次实验中提供全面的定性和定量数据集■通过代谢物、脂质和蛋白质分析可快速获取补充信息并进行关联
  • 最新发现:世界上第一个单分子高精度蛋白质图像出炉
    在人体内,有数千不同的蛋白质。每个蛋白质都有独特的形状,这样决定了它们独特的功能。科学家们至今都有很难捕捉单个蛋白的图像。问题在于,高功率成像工具往往会抹导致脆弱的蛋白质结构发生破坏,因此研究人员拍摄数以百万计的照片,来全面地了解一种蛋白质的晶体结构。这些工具所产生的图像,通常是模糊的,并且一些蛋白质不能被拍照,因为它们无法形成晶体。  现在,一个研究团队已经可以用新的石墨烯材料来采集单个蛋白的图像。根据最近公布的arXiv上的一项研究,这种使用全新材料石墨烯获得的蛋白质图像是第一个针对单个蛋白质的高分辨率图像。  捕捉单个蛋白质的图像时,研究人员将蛋白质的溶液雾化,并混合到非常薄的石墨烯片上。然后他们使用了低能量的全息电子显微镜,通过弹跳电子束来撞击蛋白质,然后记录这些电子与其它电子的如何相互作用产生的图像。这种低能量的电子束可以保证蛋白质结构不会出现太大的破坏。不同于以前其他成像方法,研究人员使用全息电子显微镜可以保证蛋白质结构的完整性和可靠性。利用计算机技术,研究人员使用了全息电子显微镜产生的图像来重建蛋白质的原始结构。  细胞色素C图像。A)从全息电子显微镜获取的细胞色素C蛋白的图像。B)三种不同的蛋白质观察角度的重建。C)使用电子计算机技术来数字重建的蛋白质的不同角度的模型。  (图片来自:Jean-Nicolas Longchamp et al, 2015, arXiv)  研究人员试图将自己解析的结构与几种已经广为人知的蛋白质结构做对比,比如血红蛋白(在红血球中携带氧气的蛋白),牛血清白蛋白(在实验室常用的蛋白)和细胞色素C(细胞内的电子转移在他)。他们比较了所得图像,并与其他成像技术获得的图像做对比,并发现,他们的照片有更高的清晰度。研究人员接下来希望获取其他未解析过的蛋白质图像。如果科学家更好地了解蛋白质结构,他们可以找可能存在的错误折叠的蛋白、如阿尔茨海默氏症,帕金森氏和亨廷顿氏病相关的蛋白质,这对于人类健康和基础生物学的研究大有益处。
  • 案例分享 | Monolith分子互作仪助力蛋白质脂化修饰研究
    研究背景蛋白质脂化在几乎所有与膜相关的生物学途径中都起着核心作用,例如细胞信号传导、蛋白质分泌、细胞死亡和免疫。然而,由于脂化是高度可变的,可逆的,并且经常与其他蛋白质翻译后修饰相互交叉影响,大多数蛋白脂化的生理功能仍然不明确,常见的功能缺失诱变方法对于探索蛋白质脂化往往效果不佳。研究内容2023年8月,浙江大学生研院林世贤课题组在 Nature Chemical Biology(自然化学生物学)杂志发表了题为“Computational design and genetic incorporation of lipidation mimics in living cells”的研究成果,报告了一种设计脂化模拟的计算方法。研究团队建立了一个工程系统,用于将这些脂化模拟物整合到大肠杆菌和哺乳动物细胞中几乎任何所需的蛋白质位置。这项研究策略能够实现数百种蛋白质脂化的功能获得研究,促进了卓越治疗候选药物的创造。在该研究中,为了证明基因编码脂质模拟物在设计和合成治疗候选药物中的效用,研究人员使用Monolith分子互作仪检测了人血清白蛋白HSA和脂质模拟改造的多肽药物GLP-1变体之间的相互作用。GLP-1-K20-4HexyF和GLP-1-K20-4OctyF对HSA的Kd值分别为2.31 μM和0.58 μM,分别比GLP-1-K20-HepoK的15 μM增加了6.5倍和25.9倍。相比之下,野生型(WT) GLP-1未检测到结合,表明增强的结合是由脂质模拟介导的。图:MST分析多肽药物GLP-1变体对人血清白蛋白HSA的亲和力https://doi.org/10.1038/s41589-023-01400-8IF: 14.8 Q1技术优势Monolith系列仪器可以直接检测带有荧光标记(如CY5)的多肽与其他分子间的相互作用,也可以检测经过荧光标记的蛋白与无荧光的多肽分子间的相互作用。检测不依赖于分子量的改变,样品用量少,仅需10分钟就可获得精确的Kd值。
  • 蛋白质测序技术发展漫谈(上)
    本期中国科学院大连化物所单亦初老师将分享蛋白质测序技术的发展,本次分享将以连载形式以飨读者。蛋白质一级结构是组成蛋白质的氨基酸序列。蛋白氨基酸序列分析是确定蛋白质全部氨基酸序列的过程。通过蛋白质测序获得的信息有许多用途,包括:蛋白质的鉴定;合成可用作免疫原的肽段;用于治疗的抗体仿制产品的研发;以市场上销售的抗体试剂为基础进行抗体药物研发。目前的蛋白质测序方法主要分为三类:基于PCR扩增的蛋白质测序、Edman降解测序以及基于质谱的蛋白质测序。基于PCR扩增的蛋白质测序是利用细胞中表达的DNA或者RNA进行基因测序,然后再按照氨基酸密码子表转换为蛋白质的氨基酸序列,本质上属于基因测序技术。Edman降解测序是较早发展的蛋白质测序技术,利用化学方法从蛋白质的N端将氨基酸依次降解,再使用高效液相色谱对氨基酸进行鉴定。但是这种方法只能用于鉴定蛋白质和多肽的N-末端氨基酸残基(通常是几个-十几个残基,最多不超过四十个残基),无法对大的蛋白质进行全序列测定。此外,Edman降解法也有一定的局限,例如N末端封闭或有化学修饰的情况下将不能使用Edman降解法对蛋白质序列进行分析。目前使用最广的蛋白质测序方法是质谱法,较Edman降解法而言,其优点在于,质谱法更敏感,可以更快地裂解肽,可以识别末端封闭或修饰的蛋白质。基于质谱的蛋白质测序策略可分为两大类:自上而下策略(Top-Down)和自下而上(Bottom-Up)策略。自上而下的策略无需对蛋白质进行降解,直接使用LC-MS对完整蛋白质进行分析,根据谱图中碎片离子确定其序列;自下而上策略是先将蛋白质水解成肽段,通过LC-MS对肽段检测,再对肽段从头测序以及序列拼接从而得到完整蛋白质序列。图 :蛋白质序列测定原理Kira Vyatkina[1]通过自上而下的策略发展了一种Twister测序算法对单克隆抗体测序,虽然不需要使用蛋白酶酶解,减少了蛋白质预处理的步骤,但仅可以鉴定到抗体的序列片段。Liu[2]结合自上而下和自下而上两种策略发展了TBNovo测序算法对蛋白质进行测序,将自上而下的质谱数据作为抗体序列的骨架,再将胰蛋白酶酶解肽段的质谱数据对骨架的序列进行补充覆盖。由于特异性蛋白酶酶解后肽段种类少、覆盖率低,对抗体的轻链和CAH2区的测序覆盖率为86.9%和75.2%。Sen[3]发展了一种基于同源数据库搜索与从头测序结合的Supernovo测序算法,通过4种蛋白酶对单克隆抗体分别酶解,该测序方法仅可实现对抗体重链的可变区测序,无法对抗体全序列进行测定。Savidor[4]发展了一种蛋白质全序列从头测序的方法。将蛋白质在微波辅助下快速酸解,得到了种类丰富的肽段,使用其发展的肽段序列拼接算法——“肽段标签组装”(Peptide Tag Assembler,PTA),对从头测序的肽段进行序列拼接,但由于酸解的消化方式会使谷氨酰胺和天冬酰胺发生脱酰胺化,分别变为谷氨酸和天冬氨酸,降低了对蛋白质序列测定的准确度。为了解决蛋白质测序覆盖度低、准确度低的问题,我们发展了一种蛋白质全序列测定新方法[5]:该方法使用多种非特异性蛋白酶对蛋白质连续酶解,提高蛋白质酶解肽段种类和重叠度,从而提高蛋白质测序的覆盖度;此外,发展了一种序列拼接算法,根据从头测序得到的肽段序列中每个氨基酸的得分值和出现次数,对蛋白质序列进行组装和拼接,显著提高了蛋白质全序列测定的准确度。利用该测序方法对牛血清白蛋白的多种非特异性蛋白酶酶解后的肽段序列进行测序和拼接,实现了对牛血清白蛋白全序列100%准确度的测定。此外,将该方法应用于对乳腺癌药物单克隆抗体赫赛汀的全序列测定,重链和轻链的测序准确度分别达到99.6%和100%。参考文献[1] K V. De Novo Sequencing of Top-Down Tandem Mass Spectra: A Next Step towards Retrieving a Complete Protein Sequence [J]. Proteomes, 2017, 5(1), https://doi.org/10.3390/proteomes5010006[2] LIU X, DEKKER L J M, WU S, et al. De novo protein sequencing by combining top-down and bottom-up tandem mass spectra [J]. J Proteome Res, 2014,13(7): 3241-3248.[3] KI S, WH T, S N, et al. Automated Antibody De Novo Sequencing and Its Utility in Biopharmaceutical Discovery [J]. J Am Soc Mass Spectrom, 2017, 28(5): 803-810.[4] SAVIDOR A, BARZILAY R, ELINGER D, et al. Database-independent Protein Sequencing (DiPS) Enables Full-length de Novo Protein and Antibody Sequence Determination [J]. Mol Cell Proteomics, 2017, 16(6): 1151-1161.[5]杨超,单亦初,张玮杰等,基于非特异性蛋白酶连续酶解的蛋白质全序列测定方法,化学学报,修稿中。作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn)。
  • 高分辨非变性质谱绘制人血清蛋白全貌图
    大家好,本周为大家介绍的是一篇发表在Analytical Chemistry上的文章Charting the Proteoform Landscape of Serum Proteins in Individual Donors by High-Resolution Native Mass Spectrometry1,文章通讯作者是来自荷兰乌得勒支大学的Albert J. R. Heck教授。  血清中大多数蛋白都是糖基化蛋白,这些糖蛋白对疾病诊断有着重要意义,基于质谱的糖链释放后分析和糖肽分析是目前普遍使用的糖蛋白分析方法,但仍存在一些局限,例如可能遗漏同时发生的翻译后修饰、缺乏对O-糖的研究、遗漏某些糖肽覆盖不到的糖基化位点等。高分辨非变性质谱为完整糖蛋白的分析提供了新的思路,本文开发了一种基于离子交换色谱的分离纯化方法,能够从150μL血清中分离和分析20多种血清(糖)蛋白,质量范围在30-190 kDa之间。  图1为血清糖蛋白的分离和分析方法。150μL血清首先经过亲和柱以快速去除大量的白蛋白、IgG和血清转铁蛋白等,这一步骤使用的是作者内部制造的机器人,可以加快过柱子的速度。接着血清被送入离子交换(IEX)色谱,使用40分钟的梯度时,大多数蛋白在14-27分钟内洗脱,故作者在13-30分钟内每隔0.5分钟收集一次级分,并将每个级分缓冲液换为乙酸铵溶液,最后进行Thermo Exploris Orbitrap质谱仪分析。    图1.血清糖蛋白非变性质谱分析方法  作者使用该方法分离了大约24种血清蛋白,并在文中详细介绍了其中4种蛋白的分析过程:α-1抗胰蛋白酶、补体C3、血红素结合蛋白、铜蓝蛋白。  (1)α-1抗胰蛋白酶(A1AT)是一种丝氨酸蛋白酶抑制剂,在呼吸系统的功能中起重要作用,作者使用唾液酸酶和PNGase F确认了蛋白上的糖型,又通过TCEP的还原处理发现大部分血清样品的A1AT都是半胱氨酸化的,也确认了A1AT存在N端截短的特征,综上,作者共统计出了13个A1AT异质体。针对捐献者提供的血清,作者区分出了携带V237A和E400D突变的A1AT蛋白的供体。  (2)补体C3蛋白在免疫调节过程中发挥作用,在血清中浓度相对较高,分子量为187kDa。与该蛋白共流出的还有两种约137kDa和80kDa的蛋白,在唾液酸酶处理后,只有80kDa的蛋白质量减少很多,证明其存在唾液酸,而C3和137kDa蛋白的糖型上无唾液酸。通过对级分的糖肽分析确定N糖位点在Asn 63和Asn 917。137kDa蛋白鉴定为C3缺失α链后降解而成。  (3)血红素结合蛋白(HPX)在血清中的主要功能是结合和运输游离的血红素,进行血红素和铁的再循环。非变性质谱显示HPX质量范围在58-63 kDa,而蛋白质主链质量仅50 kDa。本文首次解析了血清HPX的蛋白型谱,证明了4-5个N-糖和1个O-聚糖的存在,共17种独特的糖型。  (4)铜蓝蛋白(CER)负责在人体内转运大部分的铜,分子量132kDa,每个CER分子可以携带6-7个铜离子。CER在非变性质谱检测后的分子量比理论质量多409±5Da,作者将其归为6个铜离子和1个钙离子的结合所致,并发现了CER完全去糖后失去结合金属离子的能力。    图2.绘制血清糖蛋白组的全貌图。观察到的血清蛋白质量范围为30-190 kDa,浓度范围为0.2-50g/L  总结:本文开发了一种从少量人血清中分离多种糖蛋白的方法,并通过高分辨非变性质谱表征了蛋白型谱,为蛋白全貌提供完整视图。该方法的优势在于非变性质谱需要的样品处理步骤少,最大程度的还原了蛋白的生理状态,劣势在于目前通过完整质量只解析了20余种蛋白中的8种,后续需要结合自下而上或自上而下的蛋白质组学方法进行辨别。在未来的研究中,作者建议联用分子排阻色谱和离子交换色谱,实现高通量在线血清蛋白分离分析。  撰稿:英语佳 编辑:李惠琳  原文:Charting the Proteoform Landscape of Serum Proteins in Individual Donors by High-Resolution Native Mass Spectrometry
  • 如何使用反向移液技术更精准的移取蛋白溶液
    每支移液器的液程通常都用纯水和正向移液技术校准过。因此我们推荐使用正向移液技术移取水性溶液,如缓冲液,稀释酸或碱。当移取不同于水的液体时,由于具有不同的液体特性,其移液量可能偏离所选的量程。比如一些生物溶液的移液,可能会在移液器尖端或试管中产生气泡或泡沫,这将使移液量产生偏差。在这种情况下,我们推荐使用反向移液技术移取高粘度或者容易产生泡沫的液体。反向移液技术减少了喷溅,泡沫和气泡形成。这种方法尤其适用于移取小体积的液体。 下面先介绍一下正向移液和反向移液技术的操作。 1.将按钮压至第一停点。 2.将吸头浸入液面下1cm处,缓慢释放按钮使其滑回原位。将吸头从液体中移出,接触容器边缘除去多余的液体。 3.排液时,吸头紧贴容器壁先轻按按钮至第一停点,略作停顿后, 将按钮按至第二停点(这个操作会将吸头内的液体彻底排尽),将吸头从容器中沿容器壁移出。 4.松开按钮至准备位置。 1.将按钮压至第二停点。 2.将吸头浸入液面1cm处,缓慢释放按钮使其滑回原位。这将时液体充满吸头。将吸头从液体中取 出,接触容器边缘去掉多余液体。 3.放液到接收容器时平稳地轻按按钮至第一停点。保持在这个位置。一些液体会残留在吸头中不能被放出。 4.残留在吸头内的液体能够被吹回原溶剂中或者同吸头一起丢弃。 5.松开按钮到准备位置。 选择合适的移液器对于微量移液的精准性也很重要,Thermo Scientific F系列移液器的超强吹出设计则满足了微量移液对精准性的需求。低于50&mu l液程的Thermo F系列移液器均采用双活塞设计,与其它普通移液器相比,其空气吹出能力增大50%-60%,因此在小体积的液体吹出时会非常干净完全,大大提高了移液的精准性。 我们使用Thermo Scientific Finnpipette F2 1-10 &mu l移液器,配合Thermo Scientific Finntip Flex 10吸头,同时分别使用正向移液和反向移液,移取1%牛血清白蛋白(BSA,Sigma A7030)进行移液精准性测试。 图1 表明当使用反向移液技术时,移液量的变化比使用正向移液技术处于更狭窄的一个范围。 图2 表明使用两种移液方式的不精确度。不精确度是估量移液的重复性的。反向移液技术可以使不精确度相对于正向移液技术降低50%。 这是因为,BSA溶液含有易被疏水移液器吸头壁吸附的疏水成分。当使用正向移液技术时,每次移液后少量的液体易残留在吸头中。这种趋势会增加吹出液体体积之间的偏差,因为当重复移液时吸头中累积的残余液体可能增加下一次移液的移液量。而反向移液技术中有额外的液体被吸入吸头中,这些额外的液体作用似一个蓄水池它使连续移液的移液量均等。这个蓄水池也能阻止空气在吹出液体的最后从吸头口进入,这样可以降低液体起泡的可能性。这使反向移液技术在移取小液量液体时尤其有用。由此可见,选择Thermo Scientific F2移液器,同时配合反向移液技术,可较好的提高移取蛋白溶液的精确度和重复性。 这是个移液器的王国,每个人都能找到最适合自己的移液器。这是一个富于创新的品牌,传承40年移液器的深厚底蕴。&ldquo 先锋源于创新,全新精准体验&rdquo 是赛默飞世尔科技移液器的真实写照。Thermo Scientific Finnpipette的历史可追溯到1971年,凭借着以人为本的设计理念,坚持不断创新,缔造了许许多多世界&ldquo 第一&rdquo 的记录。我们推出了全球第一支连续可调微量移液器、第一支多道移液器、第一支可整支高压消毒的移液器、第一支彩色标记移液器。Finnpipette特别重视客户反馈,不断努力改善产品。我们始终追求提高性能、精准性和客户满意度。更多Thermo Scientific移液解决方案请查看:Thermo移液器。
  • N端封闭蛋白序列分析进行时——台式MALDI-8020
    胰蛋白酶消化,质谱法轻松鉴定蛋白质,已经是非常成熟的工作流程。即使是刚接触MS的使用者也可以很快掌握。在质谱法鉴定蛋白的工作流程中,蛋白质鉴定是通过使用搜索引擎,例如 Mascot或Matrix Science进行简单的数据库搜索来实现的。然而,对于数据库中未列出的蛋白质鉴定需求,或需要进行蛋白质末端序列分析的这两种情况,通常采用更昂贵的高端仪器和更复杂的工作流程,需要熟练的操作员。此外,蛋白质测序仪也通常用作蛋白质末端序列分析的方法,但遇到 N 端封闭的蛋白质,去封闭是必要的。作为样品序列分析前的预处理,预处理效果取决于蛋白质类型,可能效果不佳,对操作人员有一定要求,需要一定程度的技能和经验,这些可能会限制其使用。 近年来,利用MALDI-TOF离子源(ISD:In-Source Decay)中发生的蛋白质碎裂离子,可以分析N末端被封闭或未在数据库中登记的蛋白质序列MS图谱。此外,ISD理论上不受每个样品质量的限制,因此无需胰蛋白酶消化即可直接对高质量蛋白质进行测序。结合电泳胶提取蛋白和岛津台式机MALDI-8020,通过N端封闭蛋白的分子量测定和序列分析的例子,让我们来了解下大蛋白分子直接测序技术MALDI-ISD。 将模型样品N 端被乙酰化的牛碳酸酐酶 (Sigma-Aldrich)溶解在缓冲溶液中进行电泳, 95 °C 下加热 5 分钟,然后在聚丙烯酰胺凝胶(ATTO 12.5 %,预制 e-PAGEL)上进行电泳。所得聚丙烯酰胺凝胶用考马斯亮蓝染色以检测蛋白质斑点。使用含有表面活性剂的提取缓冲溶液,我们从凝胶分离的碳酸酐酶的条带中提取蛋白质。使用氯仿/甲醇在提取缓冲溶液中沉淀蛋白质以去除表面活性剂和盐,并使用 MALDI-TOF 质谱仪进行测量。芥子酸用作 MALDI 基质用于蛋白质分子量测量,1,5-二氨基萘 (DAN) 用于 ISD 的序列分析。 图1、碳酸酐酶电泳图图2、从凝胶中提取的碳酸酐酶MS图(基质芥子酸) 接下来,从25 pmol凝胶蛋白条带中提取碳酸酐酶,与基质DAN混合,MALDI-8020线性模式进一步分析。结果如图3所示,主要检测到c离子(从蛋白质N段产生的片段)质量一致的峰。通过使用免费软件Mass++ TM和蛋白质氨基酸序列比对工具Basic Local Alignment Search Tool (BLAST),我们对从检测到的峰中获得的氨基酸序列进行了同源性搜索。 图3、MALDI-ISD鉴定结果 鉴定结果显示匹配结果最高的是碳酸酐酶。通过检测到的c离子片段质量和数据库中已有的碳酸酐酶氨基酸序列,我们可以推断出N段序列是SHHWGYGKH...,并且是N-乙酰化的。 MALDI-8020线性模式MALDI-ISD技术,无需复杂的工作流程,无需胰蛋白酶消化即可直接对高质量蛋白质(如本文所述m/z 29030示例)进行N端测序。 该方法在岛津应用专家与美国佛罗里达州立大学、日本爱媛大学高级研究支持中心生物医学分析部、利物浦大学生化与系统生物学系等共同发表的一篇文献中也有应用到。PEPPI-MS基于聚丙烯酰胺凝胶的预分馏,实现质谱法鉴定完整蛋白或蛋白复合物。凝胶分离回收14种人血清蛋白,提取后,用MALDI-8020的MALDI-ISD产生的产物离子鉴定人血清白蛋白N端氨基酸序列。 MALDI-8020是岛津MALDI家族一款体积小巧,性能卓越的特色产品。荣获2018 IBO工业设计大奖银奖。 主要特点:● 线性台式MALDI-TOF● 200Hz固态激光器,355nm波长● 进样速度快● TrueClean™ 自动源清洁功能。配备大口径离子光学系统,使仪器长期使用中源的污染风险降到最低。配备基于紫外激光器的源清洁功能,可自动快速实现源自清洁。● 静音(参考文献:岛津应用新闻 No.B83J. Proteome Res. 2020, 19, 3779−3791
  • 用亲和色谱法和四维蛋白质组学法系统鉴定血液中与顺铂结合的蛋白质
    大家好,本周为大家分享一篇发表在J Proteome Res.上的文章,Systematic Identification of Proteins Binding with Cisplatin in Blood by Affinity Chromatography and a Four-Dimensional Proteomic Method,该文章的通讯作者是华中科技大学药学院的杜支凤教授。以顺铂为代表的铂类抗癌药物广泛应用于治疗多种癌症肿瘤,如胃肠道癌、头颈部癌和卵巢癌等。在静脉滴注后,这些药物水解形成活性分子,与DNA结合并抑制DNA链的合成与复制,最终致使细胞死亡。然而,由于铂与硫醇的高亲和力,大多数铂在静脉注射后会与血液中的蛋白质结合;例如,人血清白蛋白 (HSA) 是含量最丰富的血清蛋白,也是血液中铂类药物的主要结合蛋白;另外,在红细胞中负责运输氧气的血红蛋白 (HB) 也被发现与铂结合,因此,有必要研究铂类药物在血液中的蛋白结合行为。先前的研究已经证明,利用质谱方法可以实现对高丰度蛋白质的可靠鉴定;然而,由于高丰度蛋白的干扰,占总蛋白的 80% 以上的低丰度蛋白则很少被鉴定。此外,由于缺乏足够信息,以及在胰蛋白酶消化过程中还原和烷基化剂的使用导致蛋白上的铂化位点无法被确定。更重要的是,目前排除假阳性结果的唯一方法是根据铂化肽的特征同位素模式,人工对比理论同位素和实验同位素,从而导致鉴定过程非常耗时并且具有较强的主观性。因此,有必要开发一种可靠、高效的方法来鉴定血液中铂类药物的结合蛋白质组。在血液蛋白质组学研究中,免疫亲和层析常用于消耗高丰度蛋白并富集低丰度蛋白。它有利于低丰度蛋白的鉴定和定量,从而可以提高血液中的蛋白质组覆盖范围。除了色谱分离外,离子淌度质谱 (IM−MS) 根据离子的迁移率差异进行分离,同样有助于低丰度蛋白质的分析。在金属化蛋白的鉴定中,金属化肽和游离肽的同位素分布模式明显具有差异,这有助于确定这些肽是否与金属药物结合。已经开发了一些数据处理软件程序来自动分配金属药物在已知蛋白质上的结合位点,如智能数字注释程序 (SNAP) 算法和 Apm2s 。本文结合高丰度蛋白分离和4D蛋白质组学方法 (IM-MS) ,系统、全面地鉴定了血液中顺铂的结合蛋白,并利用铂化肽的特征同位素模式和相似性算法来消除假阳性的识别。如图1所示,首先用超滤去除游离药物,然后使用多亲和去除柱分离血液样本中的高丰度和低丰度蛋白;用FAIMS Pro界面的nano-LC−MS/MS进行消化和分析;用MaxQuant对铂化的多肽和蛋白进行鉴定,用相似性算法Apm2s排除假阳性结果。在此基础上,采用基于平行反应监测 (PRM) 的方法测定了血浆中多肽与顺铂的结合率。本研究为系统鉴定血液中金属药物的结合蛋白提供了一种新方法,鉴定出的蛋白可能有助于了解铂类抗癌药物的毒性。图1 铂化蛋白的分离和鉴定以及用蛋白质组学方法测定顺铂与多肽之间的结合率的示意图本研究采用顺铂与人血浆的反应混合物建立了一种分析方法。为了与文献进行比较,样品的制备方法与文献中的制备方法相同1。选择CID作为碎裂方式,结果表明,从低丰度部分共鉴定出212个蛋白,从高丰度部分共鉴定出169个蛋白。在低丰度部分,共鉴定出1192个游离肽和208个铂化肽。其中,154个铂化肽被排除为假阳性结果,如文中表S1所示。高丰度部分的游离肽数和铂化肽数分别为1124个和169个,其中,144个铂化肽被排除为假阳性,如表S2所示。低丰度结合蛋白的鉴定在以往的研究中,由于高丰度蛋白的干扰,很少发现低丰度蛋白与铂的结合。本研究在高丰度蛋白被消耗后,从29个蛋白中共鉴定出54个铂化肽。APOA4中铂化肽的理论和实际质谱如图2所示,前体离子和铂化产物离子表现出特征的同位素峰。图片显示了关键的碎片离子的质谱图,用于分配铂化位点。在鉴定出的铂化蛋白中,CERU、FETUA、ITIH1和B4E1Z4有4个或更多的含铂肽,这表明铂可以与这些蛋白质的多条肽段结合。虽然低丰度蛋白只占血液中蛋白的一小部分,但它们具有非常重要的功能,对于维持正常生理活动不可或缺。例如,CERU可以将Fe2+氧化为Fe3+,并在铁代谢中发挥重要作用;B4E1Z4与补体激活相关。顺铂与这些蛋白的结合是否会对其功能产生影响仍有待进一步研究。图2 从低丰度蛋白部分鉴定出的铂化蛋白APOA4。(A)铂化肽的理论(左)和实验质谱(右);(B)铂化肽的MS/MS和指示铂化位点的关键碎片离子的质谱图高丰度结合蛋白的鉴定IGHG1中一个铂化肽的理论和实验质谱如图3所示,其前体离子和铂化产物离子表现出特征同位素峰。根据关键的碎片离子确定了铂化位点。在已鉴定的蛋白中,ALBU(白蛋白)和CO3(补体C3)有4个或更多的含铂多肽。HSA负责血液中药物和小分子的运输,CO3在补体系统的激活中起着重要作用。高丰度蛋白与顺铂的结合已被用于提高肿瘤化疗的疗效和选择性,而新发现的高丰度结合蛋白有助于相关研究。与低丰度组分鉴定的铂化蛋白相比,大部分与低丰度组分蛋白不同,两个组分中仅共同检测到FETUA和CFAH作为铂化蛋白,这表明亲和层析对高丰度蛋白和低丰度蛋白的分离效果较好。图3 从高丰度蛋白部分鉴定出铂化蛋白IGHG1。(A)铂化肽的理论(左)和实验质谱(右);(B)铂化肽的MS/MS和指示铂化位点的关键碎片离子的质谱图IM−MS分离铂化肽异构体如图4所示,通过nano-LC−IM−MS/MS成功分离了低丰度蛋白组分中FETUA的铂化肽异构体。同分异构体a和b是典型的铂化肽,由质谱图的同位素模式显示,它们被很好地分离。它们的MS/MS不同,根据关键碎片离子,异构体a和b的铂化位点分别被划分为M和H/T。这个例子显示了IM−MS对复杂样品的分辨能力。图4 用nanoLC−IM−MS/MS分离的低丰度蛋白组分中FETUA的铂化肽异构体。(A)m/z=764.67提取离子色谱和异构体a、b的质谱,理论质谱见中间;(B)异构体的MS/MS和关键碎片离子的质谱图结合蛋白的铂化位点在本文的两项研究中,His 和 Met 是首选的铂结合位点。此外,D、E、S和Y也被发现是铂结合位点。这也是合理的,因为血清蛋白的供氧氨基酸已被证明是顺铂的动力学首选结合位点。很少有Cys残基被鉴定为结合位点,这可能是由于没有还原和烷基化。肽的半胱氨酸常形成二硫键,不经还原和烷基化就无法识别,因此,序列覆盖率会很低。在未来的研究中,应使用替代还原剂来提高肽序列覆盖率。生物信息学分析 为了揭示铂化蛋白质的定位、功能和途径,将从高丰度和低丰度部分中鉴定的蛋白质组合起来并通过生物信息学工具进行分析。如图5A所示,GO分析表明大部分结合蛋白位于细胞外区域,发挥蛋白结合、金属离子结合、酶抑制剂等功能;因此,镀铂蛋白的定位证实了鉴定的可靠性。此外,这些蛋白质参与内肽酶活性、免疫系统过程、补体激活、炎症反应和凝血的负调节。为了阐明所涉及的途径,对鉴定的蛋白质进行了KEGG途径富集分析,结果表明最显着的富集途径是补体和凝血级联途径(图5B)。补体和凝血级联途径已被证明在造血干/祖细胞的动员中发挥关键作用,这对造血具有重要意义。顺铂的血液学毒性与其在补体和凝血级联途径中与血液蛋白的结合之间的相关性值得进一步研究。图5 (A)通过GO 分析确定的铂化蛋白的定位、分子功能和生物学过程;(B)铂化蛋白的富集途径血液蛋白与顺铂的结合率 由于未检测到一些铂化肽的游离形式,因此仅使用高丰度组分中的13种肽进行亲和力研究。可靠地计算了属于五种蛋白质的六种铂化肽的结合率。PRM分析中这些肽的信息见表S5,定量结果见图6。其中,富含组氨酸的糖蛋白的一种肽与顺铂的结合率最高,这可能是由于顺铂对含组氨酸和带负电荷的生物分子的高亲和力。Apoa1 蛋白的一个肽与顺铂的结合率最低。在本研究中可以确定结合率的铂化肽数量较少,这主要是由于某些肽的质谱响应低以及某些肽存在氧化形式。因此,这些肽的结合比率不能通过 PRM 方法确定。然而,与以往的研究相比,根据属于同一蛋白质的肽的质谱计数粗略估计某种蛋白质的丰度,这种方法可以更准确地确定高丰度肽与铂的结合率。图6 根据PRM分析多肽与顺铂的结合亲和力顺铂与血液蛋白的结合与其药代动力学、活性、毒性和副作用密切相关。然而,血液蛋白质组的复杂性限制了低丰度结合蛋白的鉴定。在本研究中,基于亲和色谱和nanoLC-IM-MS/MS 的 4D 蛋白质组学方法被用于分离低丰度和高丰度蛋白质并分析这两个部分。基于铂化肽的特征同位素分布和相似性算法,排除了假阳性鉴定。结果,共有 39 种蛋白质被鉴定为铂化蛋白质,这比之前研究中的数量要高得多。随后的生物信息学分析表明,这些结合蛋白位于细胞外区域,主要参与内肽酶活性、免疫系统过程、补体激活、炎症反应和凝血的负调控。最显着的富集途径是补体和凝血级联,这可能与顺铂的血液学毒性有关。高丰度部分的 PRM 分析表明,富含组氨酸的糖蛋白中的肽与高丰度组分中的顺铂的结合率最高。综上所述,本研究揭示了人类血液中与顺铂结合的蛋白质组,并计算了顺铂与血液蛋白的结合率。这种方法虽然在数据分析方面比较耗时,但它可以识别复杂系统中金属药物的低丰度结合蛋白,并且可以准确测量药物与血液蛋白的结合率。
  • 蛋白质测序技术发展漫谈(中)
    前文回顾(点击):蛋白质测序技术发展漫谈(上)前面提到,基于质谱的蛋白质测序主要流程为:首先对蛋白质酶解得到肽段,经过LC-MS/MS分析得到相应的质谱数据,再使用测序软件根据质谱数据对肽段测序,最后对测序得到的肽段序列进行拼接。其中根据肽段的二级质谱图进行从头测序是其核心内容。目前已发展的肽段从头测序算法有三十余种,主要可以分为三类:图方法、穷举法和动态规划法,包括PEAKS[ 1]、pNovo系列[2]、Pepnovo[3]、Novor[4]等。 Muth[5]评估了Novor、PEAKS和PepNovo三种测序软件在实验数据集上测序的准确度,这三款软件对肽段的测序准确度最高只有35%。这是由于质谱谱图中存在着噪声和干扰离子,无法有效的区分谱图中可用于肽段测序的碎片离子[6],使得精准解析谱图的难度增加且耗费大量的时间。基于碎片离子的蛋白质组稳定同位素标记定量方法通过在细胞培养或样品处理的过程中引入不同种类的同位素标记,混合后进行LC-MS分析。不同稳定同位素标记的相同序列肽段质量相同或相近,可在质谱中同时碎裂,形成成对的碎片离子[7]。借鉴该方法,可更好的区分并提取用于测序的碎片离子,用于肽段的序列测定。Nie[8]在细胞培养时加入同位素标记的精氨酸和赖氨酸,再利用Lys-N和Arg-C对提取的蛋白质酶解,形成N端为精氨酸、C端为赖氨酸的等重肽段,在二级谱中可形成成对的b离子和成对的y离子,但这种标记方法只能在细胞水平标记,且通过两种蛋白酶酶解后只有少部分肽段质量相等并被鉴定到。Zhang[9]发展了部分等重肽段末端标记方法,使用Lys-C酶解后,肽段的C端为含有氨基的赖氨酸,再通过对两末端使用不同同位素标记,使得相同序列的肽段质量差为2 Da,在二级谱中产生了质量差为4 Da的成对b离子和质量差为6 Da的成对y离子,为使肽段能够碎裂在同一张谱图中,质谱的分离窗口需要被放大到4 m/z甚至更多[10],但放大分离窗口会导致更多的质量相近的肽段发生共碎裂,谱图会变得更加复杂难以解析,增加了从头测序的难度。为此,我们开发了一种基于二甲基化标记和胰蛋白酶催化18O标记的肽段末端准等重标记(Pseudo Isobaric Peptide Termini Labelling,PIPTL)从头测序方法 [11](图1)。经该方法进行同位素标记后,序列相同的肽段质量仅相差0.0166 Da,这些准等重肽段无需扩大质谱分离窗口即可在质谱中同时碎裂,产生成对的b离子和成对的y离子;基于发展的PIPTL-Novo测序算法,根据不同系列碎片离子质量差可快速准确提取并区分b/y离子,再对b/y离子进行测序分析,从而实现对肽段的准确测序。以牛血清白蛋白为研究对象,对肽段从头测序的准确度进行评价,测序准确率为95.5%;最后将此从头测序方法应用于对单克隆抗体赫赛汀重链和轻链的序列测定,对赫赛汀的酶解肽段从头测序准确率为93.6%。图1 基于二甲基化和胰蛋白酶催化18O标记的PIPTL-Novo策略参考文献[1] Ma B, Zhang K, Hendrie C, et al. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom, 2003, 17(20): 2337-42.[2] Yang H, Chi H, Zhou W-J, et al. Open-pNovo: de novo peptide sequencing with thousands of protein modifications. J Proteome Res, 2017, 16(2): 645-54.[3] Frank A M, Savitski M M, Nielsen M L, et al. De novo peptide sequencing and identification with precision mass spectrometry. J Proteome Res, 2007, 6(1): 114-23.[4] Ma B. Novor: real-time peptide de novo sequencing software. J AmSoc Mass Spectrom, 2015, 26(11): 1885-94.[5] Muth T, Renard B Y. Evaluating de novo sequencing in proteomics: already an accurate alternative to database-driven peptide identification? . Brief Bioinform, 2018, 19(5): 954-70.[6] Lu B, Chen T. A suboptimal algorithm for de novo peptide sequencing via tandem mass spectrometry. Journal of Computational Biology, 2003, 10(1): 1-12.[7] Merrill A E, Coon J J. Quantifying proteomes and their post-translational modifications by stable isotope label-based mass spectrometry. Curr Opin Chem Biol, 2013, 17(5): 779-86.[8] Nie A-Y, Zhang L, Yan G-Q, et al. In vivo termini amino acid labeling for quantitative proteomics. Anal Chem, 2011, 83(15): 6026-33.[9] Zhang S, Shan Y, Zhang S, et al. NIPTL-Novo: Non-isobaric peptide termini labeling assisted peptide de novo sequencing. J Proteomics, 2017, 154(40-8.[10] Hennrich M L, Mohammed S, Altelaar A M, et al. Dimethyl isotope labeling assisted de novo peptide sequencing. J Am Soc Mass Spectrom, 2010, 21(12): 1957-65.[11] 杨超,刘健慧,张玮杰等,基于末端准等重同位素标记的肽段从头测序方法. 分析化学, 2021, 49 (03), 366-376.作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn)。中国临床质谱产业化发展论坛(点击报名)仪器信息网联合浙江省先进质谱技术与分子检测重点实验室、宁波大学质谱技术与应用研究院,共同举办“第六届中国质谱产业化发展论坛——临床质谱产业化发展”,在2021年第十五届中国科学仪器发展年会(ACCSI 2021)召开同期,邀请临床质谱业内专家、国内质谱企业、第三方医学实验室、医院专家代表,共同就中国临床质谱技术与产业化发展等话题展开探讨、答疑解惑,为中国临床质谱产业链上中下游三方搭建互动交流平台,助力中国临床质谱产业发展,进一步优化和拓展临床质谱产业市场,共同促进中国质谱产业健康快速发展。
  • SPE应用文集004:从稀释水溶液中萃取和浓缩蛋白质
    J.T.Baker做为SPE(固相萃取)技术的发源地,拥有庞大的应用文献库,为了使得广大客户更好的使用SPE这项越来越被广泛应用的样品前处理技术,自2011年5月开始,J.T.Baker将定期翻译这些应用文献,陆续上传,敬请广大客户点击阅读,如有任何疏忽错漏,恳切的希望可以得到您的指正,一经核实,有精美礼品赠送。 《从稀释水溶液中萃取和浓缩蛋白质》(Extraction and Concentration of Protein from Dilute Aqueous Solution) 应用领域:生物/生物科技 目标分析物:牛血清白蛋白BSA 样品基质:水 萃取柱:BAKERBOND spe&trade Wide-Pore Butyl (C4), 500 mg, 6 mL 安全防护设备:护目镜和防护面罩,手套,实验服,B型灭火器,通风橱 样品制备:配置20mL BSA溶液(1mg/1mL),以0.025M pH=7磷酸缓冲溶液为溶剂 小柱活化:加入10mL甲醇活化,5mL 0.5M pH=7磷酸盐缓冲溶液活化,6mL 0.025M pH=7磷酸盐缓冲溶液平衡,保持过程中小柱始终处于润湿状态 上样与清洗:关闭真空泵,加入5mL 0.025M pH=7磷酸盐缓冲溶液,装上75mL储液器,缓慢抽出20mL的样品,用4mL0.025M pH=7磷酸盐缓冲溶液淋洗,移去储液器 洗脱:用2 X 0.5mL 异丙醇:水:三氟乙酸 60:40:0.1,收集洗脱液 分析方法:UV 以上即为固相萃取步骤,相关产品信息如下: B7216-06 BAKERBOND spe&trade Wide-Pore Butyl (C4), 500 mg, 6 mL B7120-00 75mL储液器及适配器 B3246-01 磷酸二氢钾, ' BAKER ANALYZED' ® B9093-03 甲醇, ' BAKER ANALYZED' ® HPLC B9095-03 异丙醇, ' BAKER ANALYZED' ® HPLC B9470-00 三氟乙酸, ' BAKER ANALYZED' ® HPLC B4218-03 水, ' BAKER ANALYZED' ® HPLC 您也可以点击下载英文原版应用文献:http://jtbaker.instrument.com.cn/down_172268.htm 关于J.T.Baker :   杰帝贝柯化工产品贸易(上海)有限公司(JTBs)于2009年正式成立,是美国Avantor&trade Performance Materials的全资子公司。Avantor&trade Performance Materials拥有的J.T.Baker和Macron&trade 两大品牌有140多年的历史,其化学品领域的高品质产品,最优化的应用方案和功能性检测可以满足客户的高端应用需求,并确保高精度和高重现性的结果。
  • MFI专注蛋白聚集分析,助力药物稳定性研究
    近日,美国明尼苏达大学药学院药理学科学家,利用MFI,在权威杂志Journal of ControlledRelease(IF:7.901)发表文章:Freezing-induced ProteinAggregation - Role of pH Shift and Potential Mitigation Strategies, J Control Release. 2020 Jul 10 323:591-599. --研究背景--在设计用于肠胃外给药的蛋白质药物产品中,聚集体的产生,除了在外观上引起不适之外,最重要的是它们具有细胞毒性作用,或是引起机体免疫原性应答。美国和欧洲药典对肠胃外药物产品中的不溶性聚集物有规定:对于小剂量的肠胃外药物,通过光阻法测量的小颗粒(≥10μm)和大颗粒(≥25μm)的推荐药典规范分别为≤6000/container和≤600/container。因此,预防和减轻蛋白质聚集对于维持蛋白质药物产品的安全性,功效和质量至关重要。药品加工步骤中,如纯化,搅动,冻融,填充,冻干,制剂成分,运输压力,都有可能将天然蛋白质转化为聚集体。而蛋白质溶液在配制为药物产品之前,通常以冷冻状态保存很长一段时间,所以,因反复冻融而产生的蛋白聚集体更应引起关注。蛋白质制剂如缓冲液可确保制剂的pH值在整个保质期内都保持在所需范围内。但在低温过程中,某些缓冲区的有效性可能会受到影响。例如,当冷冻含有磷酸二氢钠和磷酸二钠的水溶液(即磷酸钠缓冲液)时,磷酸氢二钠的选择性结晶导致冷冻浓缩液的pH降低,从而引起蛋白聚集体的产生。因此,本文旨在研究,在不同缓冲溶液的冻融循环过程中,两种模型蛋白质(牛血清白蛋白(BSA)和β-半乳糖苷酶(β-gal))聚集体的产生,以及这两种蛋白对缓冲液pH值变化的影响。同时,评价了添加的非结晶溶质对pH值变化的影响,以及pH改变对蛋白质聚集行为的影响。--研究结果--使用MFI表征冷冻和解冻后蛋白颗粒的形成利用MFI检测发现,无论何种缓冲液,BSA(10mg/mL)在制备和立即分析时均显示出较低的颗粒数。当这些溶液经受五个冻融循环时,在许多系统中颗粒数量都有小幅增加。但冻融循环在磷酸钠缓冲液(100mM)中导致的颗粒计数增加显著。加入纤维二糖(纤维二糖(一种还原糖)被用作模型非结晶溶质,一种冷冻保护剂)后,在磷酸钠缓冲液(100mM)中导致的颗粒数有明显缓解。利用MFI检测发现,β-gal(10mg/mL)在水中冻融后的颗粒数(?100,000)急剧增加,表明该蛋白质对PH值的极端敏感性。同样,β-gal在磷酸钠缓冲液(100mM)中导致的颗粒计数增加显著。加入纤维二糖后,在磷酸钠缓冲液(100mM)中导致的颗粒数有明显缓解。低温pH测定将PBS和磷酸钠(100mM)冷却后,发现pH值变化幅度相似。当磷酸钠浓度为10mM时,冷却时的pH值变化不明显。而蛋白质的添加(10mg/mL)可以降低了PBS和磷酸钠(10mM)中pH值变化的幅度。当磷酸钠浓度很高(100mM)时,蛋白质的作用就不那么明显了,这表明,低蛋白浓度(10mg/mL)似乎不足以抑制缓冲盐的结晶和随之而来的pH偏移。低温XRD测定研究结果发现,当将磷酸钠缓冲溶液(10和100mM)冷却时,在-15°C时Na2HPO4• 12H2O结晶明显(分别参见图4B和4C)。而BSA的添加,可以使Na2HPO4• 12H2O的峰强度降低,特别是在较低的缓冲液浓度(10mM)下更为明显。这与观察到的BSA对缓冲溶液pH值变化幅度的影响密切相关。此外,纤维二糖的添加完全抑制了缓冲盐的结晶(图4D),以及冰峰的强度也受到了抑制。这些结果揭示了非结晶溶质在蛋白质制剂中的附加作用。通过抑制缓冲盐的结晶和随之而来的pH值变化,这些赋形剂可防止蛋白质不稳定性。热分析结果显示,当将BSA添加到PBS中时,在-54.4℃出现玻璃化转变温度(Tg′),随后在-22.4和0.1℃出现两个吸热峰。玻璃化转变温度反映了冷冻浓缩物组成发生了改变。BSA仅对100mM缓冲液的热行为有明显影响,导致Tg’(-47°C)和结晶温度(-30°C)降低。同时,纤维二糖的添加有望改变冷冻浓缩物的成分,这在Tg’(-34°C)中有所体现。结论:磷酸盐缓冲液被广泛用于肠胃外蛋白质制剂中。但在冷冻过程中,磷酸氢二钠(十二水合物)的选择性结晶会降低冷冻浓缩液的pH值,从而导致蛋白质聚集。可以通过降低缓冲液浓度来减小pH偏移。同时,BSA和β-gal可以通过对缓冲液结晶的抑制,减少pH的变化,但其作用程度要取决于缓冲液浓度。其它非结晶性赋形剂(纤维二糖)的添加,可通过抑制缓冲盐结晶,来提高蛋白质的稳定性。
  • 蛋白质测序技术发展漫谈(下)
    前文回顾(点击查看):蛋白质测序技术发展漫谈(上篇);蛋白质测序技术发展漫谈(中篇)前面讨论了基于质谱的蛋白质测序技术的一般流程及基于质谱的肽段序列测定方法。在组成蛋白质的20种氨基酸中,亮氨酸和异亮氨酸互为同分异构体,具有相同的分子质量,无法通过二级质谱产生的同系列离子的质量差异被区分。然而亮氨酸/异亮氨酸对单克隆抗体药物的功能影响巨大,典型的单克隆抗体在互补决定区(CDR)中含有至少3个亮氨酸/异亮氨酸,在复杂的样品中可以存在多达9个。单克隆抗体中CDR的错误识别,会导致抗原结合亲和力与抗体的特异性大量丧失。因此,对单克隆抗体中的全部亮氨酸或异亮氨酸进行准确测定意义重大[1-2]。亮氨酸和异亮氨酸的侧链分别是异丁基和仲丁基,通过质谱的多级碎裂产生的特征离子可以对亮氨酸和异亮氨酸进行区分。一种方法是通过不同系列的碎片离子质量差来区分,其原理是肽段在ETD-HCD或EThcD碎裂模式下可产生z离子,含有异亮氨酸和亮氨酸肽段分别失去一个乙基自由基(C2H5)和一个丙基自由基(C3H7),产生质量分别减少29 Da和43 Da的w离子,因此通过质谱产生的z/w离子质量差,可区分肽段中的亮氨酸和异亮氨酸[2-5]。Zhokhov[3]对人血清白蛋白(HSA)、gp188蛋白两种蛋白质的43条胰蛋白酶酶解肽段中的93个亮氨酸和异亮氨酸进行鉴定,准确区分了其中的83个,但由于z/w离子分别产生在ETD和HCD谱图中,在鉴定过程中需要人工筛选含有z/w离子的谱图。Tatiana[4]等通过EThcD的碎裂模式对蛙皮肤分泌的14条肽段进行鉴定,使肽段的z/w离子出现在同一张谱图中,区分鉴定了这些肽段中的61/75个亮氨酸和异亮氨酸。由于不能保证每个含有亮氨酸或异亮氨酸的肽段在质谱中碎裂一定会产生相应的z/w离子,因此通过z/w离子质量差的方法无法对蛋白序列中全部的亮氨酸和异亮氨酸准确测定。另一种方法是通过亮氨酸和异亮氨酸的亚胺离子的三级碎片离子区分,其原理是亮氨酸或异亮氨酸质子化的离子(132 Da)容易损失甲酸而形成相应的亚胺离子(86 Da),它们的亚胺离子在三级碎裂中分别会产生m/z 69和m/z 43的特征离子。Nakamura[6]使用嗜热菌蛋白酶对人钙降素进行酶解,得到以亮氨酸或异亮氨酸为N端的肽段,通过该方法确定钙降素的第4和9个氨基酸为亮氨酸,第27个氨基酸为异亮氨酸,但此方法的缺点是当一条肽段中含有不止一个亮氨酸或异亮氨酸时,特征离子峰相会互干扰,无法对其判断。Bagal[5]将亚胺离子的三级碎片离子的方法和z/w离子质量差的方法结合,并将该策略用于两个单克隆抗体CDR中的亮氨酸和异亮氨酸的鉴定,由于使用胰蛋白酶酶解产生的肽段长度过长,对鉴定造成影响,仅对6条肽段中的亮氨酸和异亮氨酸的准确鉴定,无法区分CRD区全部亮氨酸和异亮氨酸。Sheila[7]使用4种蛋白酶对单克隆抗体进行酶解,对二级质谱产生的a1离子进行三级碎裂,排除了肽段内部亮氨酸或异亮氨酸的干扰,根据每个三级谱图中特征峰强度的比值对亮氨酸和异亮氨酸区分,由于谱图中噪音干扰以及肽段的共碎裂,会使一些含有特征离子的谱图不能用于准确区分亮氨酸和异亮氨酸,最终对单克隆抗体中的71.1%-94.1%亮氨酸和异亮氨酸进行区分。我们借鉴该方法,结合非特异酶连续酶解技术,以及基于碎片离子质量校正和多谱图共同打分策略,实现了对单克隆抗体药物赫赛汀轻链中7个异亮氨酸和18个亮氨酸,重链中9个异亮氨酸和33个亮氨酸的鉴定,准确度100%,轻链鉴定的覆盖度为100%,重链鉴定的覆盖度为97.67%。鉴定蛋白质中亮氨酸和异亮氨酸的流程图[1] Hurtado P P, O' Connor P B. Differentiation of isomeric amino acid residues in proteins and peptides using mass spectrometry [J]. Mass Spectrom Rev, 2012, 31(6): 609-25.[2] Xiao Y, Vecchi M M, Wen D. Distinguishing between Leucine and Isoleucine by Integrated LC-MS Analysis Using an Orbitrap Fusion Mass Spectrometer [J]. Anal Chem, 2016, 88(21): 10757-66.[3] Zhokhov S S, Kovalyov S V, Samgina T Y, et al. An EThcD-Based Method for Discrimination of Leucine and IsoleucineResidues in Tryptic Peptides [J]. J Am Soc Mass Spectrom, 2017, 28(8): 1600-11.[4] Samgina T Y, Kovalev S V, Tolpina M D, et al. EThcD Discrimination of Isomeric Leucine/Isoleucine Residues in Sequencing of the Intact Skin Frog Peptides with Intramolecular Disulfide Bond [J]. J Am Soc Mass Spectrom, 2018, 29(5): 842-52.[5] Bagal D, Kast E, Cao P. Rapid Distinction of Leucine and Isoleucine in Monoclonal Antibodies Using Nanoflow LCMS(n) [J]. Anal Chem, 2017, 89(1): 720-7.[6] Nakamura T, Nagaki H, Ohki Y, et al. Differentiation of leucine and isoleucine residues in peptides by consecutive reaction mass spectrometry [J]. 1990, 62(3): 311-3.[7] Maibom-Thomsen S, Heissel S, Mortz E, et al. Discrimination of Isoleucine and Leucine by Dimethylation-Assisted MS3 [J]. Anal Chem, 2018, 90(15): 9055-9.作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn)。
  • 血清(浆)类固醇激素液相色谱-串联质谱检测质量保证专家共识发布
    液相色谱-串联质谱(LC-MS/MS)在人体血清(浆)类固醇激素检测中展现出优于传统免疫学方法的特异性高、分析测量范围宽、多标志物同时检测等特点,已成为国际内分泌学领域相关疾病实验室诊断的首选方法。目前,国内医学实验室开展血清(浆)类固醇激素LC-MS/MS检测多参考已发表学术论文和仪器厂家说明书提供的通用操作和检测程序。然而,血清(浆)类固醇激素LC-MS/MS检测的技术难度大,临床实验室检验人员大多数缺少质谱领域专业培训和实践经验,而通用程序缺乏针对性和实操性,尤其我国尚无针对该检测程序和质量保证的系统性文件,导致实验室间检测结果存在较大差异,阻碍了该技术的临床应用。为规范我国血清(浆)类固醇激素LC-MS/MS检测,共识从检验前、中、后程序及其质量保证进行详细说明,并提出针对性建议,为实验室开展该检测项目提供参考,以推动我国血清(浆)类固醇激素LC-MS/MS检测的临床应用和结果一致性。  类固醇激素是一类具有环戊烷多氢菲母核的脂肪烃化合物,根据化学结构及生理功能可分为肾上腺皮质激素(糖皮质激素、盐皮质激素)、性激素(雌激素、雄激素、孕激素)及维生素D [ 1 ] ,在人体生长发育、能量代谢、免疫调节、生育功能调节等方面发挥重要作用。血清(浆)类固醇激素异常与先天性肾上腺皮质增生(congenital adrenal hyperplasia,CAH)、原发性醛固酮增多症、库欣综合征、多囊卵巢综合征(polycystic ovary syndrome,PCOS)、儿童发育延迟或性早熟等多种内分泌疾病密切相关 [ 2 ] ,因此其检测广泛应用于多种内分泌疾病的临床研究、诊断以及健康评估。传统免疫学方法尽管自动化程度高,但特异性相对不足,且线性范围窄,难以实现精准检测。液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry,LC-MS/MS)具备特异性高、分析测量范围宽等性能优势,且能在短时间内同时准确测定多种类固醇激素及中间代谢产物,是目前精准、全面定量分析血清(浆)类固醇激素的首选方法 [ 3 , 4 ] 。  尽管已有众多研究报道多种类固醇激素的LC-MS/MS检测,包括方法开发和优化 [ 5 , 6 ] 、生物参考区间建立 [ 7 ] 等,国外已有针对血清(浆)雄激素、雌激素LC-MS/MS检测程序的指南 [ 8 ] ,国内有LC-MS/MS临床应用通用建议共识及25羟-维生素D和雄激素LC-MS/MS检测的共识 [ 9 , 10 , 11 ] ,但依然缺乏涵盖检验前、中、后阶段的LC-MS/MS检测操作程序和质量保证的指南和共识。基于此,为规范我国血清(浆)类固醇激素LC-MS/MS检测,中国质谱学会临床质谱专家委员会组织专家参阅国内外相关文献并结合临床应用经验,面向医学实验室临床质谱检验人员,针对肾上腺皮质激素和性激素LC-MS/MS分析全流程的质量保证进行详细说明并提出建议,为实验室开展血清(浆)类固醇激素检测项目提供参考,以推动我国血清(浆)类固醇激素检测的临床应用和结果一致性,提升我国类固醇激素异常相关疾病的精准诊断能力。  01血清(浆)类固醇激素LC-MS/MS检验前质量保证  (一)标本采集  人体类固醇激素浓度受多种因素影响,包括昼夜节律、生理周期、采血体位和药物等,应根据临床具体需求和激素水平影响因素,制定合理采样流程,并推荐给标本采集人员和患者。例如:皮质醇分泌通常在清晨6:00—8:00达到峰值浓度,因此峰值监测推荐清晨采集患者血液标本 连续监测则采样时间点应相对固定 [ 12 ] 醛固酮仰卧位采血比直立位采血检测结果低50% [ 13 ] 女性患者进行血清(浆)雌激素检测时需明确卵泡期、黄体期等信息,对于无规律月经周期女性,需明确绝经(特别是早绝经)原因,如自然绝经、外科手术、辐射、药物作用等 [ 14 , 15 ] 。  含有分离胶的促凝管中存在睾酮干扰峰,且分离胶可吸收类固醇激素,标本体积和储存时间也可不同程度影响检测结果 [ 16 ] 。新生儿CAH二级筛查中,EDTA采血管可导致17α-羟孕酮、雄烯二酮及11-脱氧皮质醇的LC-MS/MS检测结果偏高,造成假阳性 [ 17 ] 。另外,更换采血管品牌或批号也可能影响待测物色谱峰分离度,应制定包括峰分离度、保留时间漂移范围等色谱参数的可接受标准,以监测潜在干扰峰的影响强弱及变化。  建议1 针对有昼夜和/或周期节律的类固醇激素,实验室应根据其临床预期用途,指导患者和采血人员选择合适的采血时机,例如清晨采血检测皮质醇、睾酮水平,卵泡期采血检测雌激素水平。推荐采用不含分离胶的血清(浆)采血管采集标本,新生儿二级CAH筛查推荐采用肝素抗凝剂采血管。  (二)标本保存和运输  实验室应根据类固醇激素质谱检测的标本保存条件及检测频率进行标本的稳定性验证 [ 18 ] 。标本稳定性验证实验应至少包括环境温度、冷藏和/或冷冻条件下的稳定性,如果标本存在冻存后复查的可能,还需考察反复冻融对标本稳定性的影响。另外,标本采集、运输及前处理阶段的稳定性也需进行评估。标本稳定性实验均需使用新鲜血清(浆),通过比较新鲜采集和保存后的血清(浆)标本检测结果评估其稳定性。  如果实验室根据参考文献报道或试剂说明书设置标本保存条件,需包含明确的稳定性、标本类型、类固醇激素浓度、保存温度范围、保存时间以及保存后标本浓度较新鲜标本的变化百分比。为确保标本保存后类固醇激素检测结果“稳定”或“无明显变化”,需明确测量程序、含量计算程序及含量变化的可接受范围。如果这些信息缺失,实验室应自行建立标本稳定性的可接受条件。  建议2 实验室应根据标本保存的实际需求,使用新鲜标本对来自文献报道或试剂说明书的标本稳定性进行验证,或自建稳定性可接受的标本保存条件。建议血清(浆)标本中类固醇激素稳定保存的条件及时间见 表1 。  02 血清(浆)类固醇激素LC-MS/MS检验质量保证  (一)标本前处理  标本前处理方法取决于待测物的理化性质、灵敏度要求和分析方法。其目的是将待测物从血清(浆)及其他潜在干扰物质中分离、提取、纯化,并实现对待测物的浓缩。大多数糖皮质激素(如17α-羟孕烯醇酮、17α-羟孕酮、11-脱氧皮质醇、皮质醇、可的松)和盐皮质激素(如孕烯醇酮、孕酮、脱氧皮质酮、皮质酮)为疏水结构,均可与相应转运蛋白结合存在于血液中,游离形式约占1%。但血液中,约50%醛固酮以游离形式存在。睾酮和雌二醇与白蛋白结合力弱,与性激素结合球蛋白(sex hormone binding globulin,SHBG)结合力强,2%~4%睾酮呈游离形式,60%~75%睾酮与SHBG结合,20%~40%睾酮与白蛋白结合 [ 1 ] 。平衡透析可去除血中结合型类固醇激素进而检测游离型激素水平,但测量程序要求更高的灵敏度。如果结合型类固醇在水解前无法被直接检测,则需水解后进行检测,并明确结合型类固醇是否完全水解,且水解步骤不会导致类固醇降解,如硫酸雌酮在提取之前需通过水解酶获得游离型雌酮。亲脂性性激素(雄烯二酮、睾酮、双氢睾酮、雌酮、雌二醇、雌三醇)较亲水性性激素(硫酸脱氢表雄酮、硫酸雌酮)在血液中浓度低,因此亲脂性性激素的LC-MS/MS测量程序通常需要更复杂的标本前处理以消除基质干扰并浓缩待测物以达到理想的定量限(limit of quantification,LOQ)。  血清(浆)类固醇激素LC-MS/MS检测的标本前处理流程通常包括:(1)取等量临床标本、标准品、质控品和基质空白 (2)加入内标物 (3)提取 (4)纯化 [ 19 ] 。对易氧化的类固醇激素,前处理时需尽可能避免发生氧化以防待测物降解及产生干扰物。例如,在样品浓缩时使用惰性气体(如氮气),而非加热真空离心浓缩。去除可能干扰检测或影响前处理的物质后,宜将分析物转移到液相色谱流动相洗脱溶剂中,保持初始浓度比例,以备后续分析。推荐使用与待测物具有相似结构和离子化性质的同位素标记物(或结构类似物)作为类固醇激素LC-MS/MS检测内标物,例如氘代或 13C标记的类固醇。通过比较已知浓度内标物与待测物的信号,校正样本前处理、色谱分离、离子化过程及基质效应所产生的误差。类固醇激素的同位素内标物大多为商品化试剂,如无商品化试剂,应优先选择使用非内源性但与待测物结构类似的合成类固醇作为内标物,并确保内标物与待测物具有相同或相近保留时间。内标物的相对分子质量应至少比相应待测物大3,氘代或 13C标记数量控制在7,化学纯度应≥98%,同位素内标物纯度≥97%。  内标物需加入到所有校准品、质控品和待测标本中,且应在提取或纯化步骤之前或同时加入。加入内标物后需静置足够长的时间(通常15~30 min)以平衡内标物与结合蛋白的相互作用,抵消因蛋白结合导致的检测浓度偏低,如睾酮和睾酮-d 3需30 min完成平衡(22 ℃)。内标物的质谱信号强度应在不同分析批次中保持稳定,平衡时间不足可能会导致内标物信号强度不稳定。  建议3 使用与待测物有相同理化性质的商品化同位素标记物作为类固醇激素LC-MS/MS检测内标物( 表2 ),浓度设置在校准曲线的中浓度或医学决定水平附近,实验室应制定内标物信号强度波动的批间可接受范围。  血液中存在的大量蛋白质、多肽、小分子化合物等可引起LC-MS/MS的离子源和检测器饱和,导致离子抑制或分辨率不足,干扰检测结果。因此,LC-MS/MS分析前应提取待检测物,去除无机化合物(如盐)、蛋白质、脂质(如甘油三酯)和磷脂等物质的干扰,提高检测灵敏度、重复性和稳定性。  LC-MS/MS分析标本的提取方法包括蛋白沉淀(protein precipitation,PPT)、液液萃取(liquid-liquid extraction,LLE)、固相萃取(solid-phase extraction,SPE)等。PPT利用蛋白沉淀剂使蛋白变性沉淀,离心后直接取上清液进行检测,不适用于含量较低或有蛋白结合特性的类固醇激素。LLE利用溶剂的相似相溶原理,将目标化合物从液体混合物中分离出来,因操作繁琐且需要消耗大量有机溶剂,故临床常用固相支撑液液萃取(supported liquid extraction,SLE)替代传统LLE,降低有机溶剂消耗。而SPE采用固体颗粒色谱填料(通常填充于小柱型装置中)对样品不同组分进行化学分离,较SLE具有更优的去磷脂干扰能力,是类固醇激素标本提取的首选方法,但也具有操作步骤多、成本高等缺点。针对类固醇激素的不同极性,脂溶性激素通常选择亲脂基团填料的SPE方法萃取待测物,非脂溶性激素选择亲水基团或阴阳离子交换填料的SPE方法萃取待测物。为进一步去除与待测物共同洗脱的干扰物,可联合LLE和SPE,或吹干提取物后用不同溶剂重新提取。其中,通过高效液相色谱(high performance liquid chromatography,HPLC)可在线进行SPE,以减少手工操作,节省时间和人力成本,但目前尚无多种类固醇激素在线SPE提取解决方案。也有通过使用单个或多个提取柱串联色谱柱,如提取/上样柱、一次性SPE柱、二维色谱,提高色谱分离效率和检测灵敏度,使血清(浆)标本无需或只需经简单蛋白沉淀处理即可进行分析。  建议4 根据待测类固醇激素理化性质及测量灵敏度要求推荐使用SLE或SPE标本提取方法。  (二)类固醇激素LC-MS/MS定量分析  LC-MS/MS通过结合HPLC的高效分离浓缩能力与三重四极杆质谱的高特异性和高灵敏度定量性能,准确测量标本中浓度极低、理化性质相似的类固醇激素,其特异性较免疫学分析明显提高。  1. HPLC分离:HPLC是一种基于待测物在固定相和流动相中具有不同分配系数的分离技术。通常使用对非极性分子具有高亲和力的非极性固定相(如 18C、五氟苯基等)色谱柱分离类固醇激素 [ 20 ] ,通过流动相极性变化将吸附于色谱柱上的类固醇激素重新溶于流动相,从而实现逐步洗脱分离。通过开发精密的流动相梯度洗脱程序和使用适合的色谱柱可以分离结构非常相似的类固醇激素及其代谢物,包括一些同分异构体(如21-脱氧皮质醇、11-脱氧皮质醇)。通过依次洗脱标本中所有待测物,降低检测信号的复杂度,分离组分信号随时间出现一组近似高斯分布的色谱峰群,生成检测信号强度随时间变化的色谱图。另外,流动相中通常加入挥发性添加剂(如0.01 mol/L甲酸铵、0.1%甲酸),其浓度不应超过0.5%,以增强化合物离子化,而不应含非挥发性流动相添加剂。色谱柱可选择粒径较小的分离柱,实现短时间内更好的分离效果,也可根据文献综合选择。色谱柱应在寿命期限内使用,并根据检测量、峰型、保留时间、分离度、柱压等参数判断是否需要更换。实验室应做好色谱柱的日常维护,在每日检测结束后进行日常冲洗程序,并最终将色谱柱保持在95%及以上的甲醇或乙腈中,尽可能地延长色谱柱的使用寿命及使用质量。  建议5 为有效分离结构相似的类固醇激素及其代谢产物,推荐实验室使用 18C或五氟苯基填料,色谱柱粒径≤3 μm,有机相梯度洗脱程序:0.5~4.0 min,40%~55% 4.0~6.5 min,55%~75% 6.5~7.5 min,75%~99%。  2. 串联质谱检测:类固醇激素LC-MS/MS测量程序使用的离子源主要包括电喷雾电离(electrospray ionization,ESI)和大气压化学电离(atmospheric pressure chemical ionization,APCI)。在常规临床检测中,醛固酮、皮质醇、11-脱氧皮质醇、21-脱氧皮质醇、可的松、睾酮、孕酮、17α-羟孕酮、皮质酮、雄烯二酮、脱氢表雄酮可采用ESI或APCI离子源。与ESI相比,APCI离子源温度更高,脱溶剂更充分,因此基质效应更小。然而,APCI更适用极性较小的类固醇激素,如3β-羟基-5-烯类固醇 [ 21 ] ,在需同时检测多个类固醇激素的临床应用中具有局限性。  类固醇激素分子经离子源电离后进入三重四极杆质量分析器,根据质荷比进行分离,并采用多反应监测(multiple reaction monitoring,MRM)或选择反应监测(selected reaction monitoring,SRM)模式采集数据。最终借助质量分析器选择特定母离子和子离子,通过母离子/子离子对和各分析物及内标物的色谱图及峰面积对目标化合物进行定量。不同仪器,其离子对信息及检测参数并不完全相同,每个化合物通常选择2个离子通道分别作为定性离子和定量离子通道( 表3 )。基于定性离子、化合物极性及内标物分离峰综合判断目标化合物的分离峰。  建议6 类固醇激素LC-MS/MS检测选择ESI或APCI离子源,采用MRM或SRM模式,应在性能验证时优化质谱参数。  3. LC-MS/MS测量程序性能验证和/或确认:测量程序的性能要求取决于其预期临床用途、待测类固醇激素生物学变异及仪器灵敏度水平。如检测女性、儿童血清睾酮,测量程序的灵敏度需要达到0.02 ng/ml 同时检测浓度差异大的多个分析物,如雌二醇、雌酮、雄烯二酮,需验证测量程序对每个分析物的分析性能是否满足临床需求。值得注意的是,由于血清(浆)类固醇激素LC-MS/MS测量程序包含的人工操作步骤多,各实验室环境条件、仪器设备配置、人员水平相差大,因此即使实验室使用商品化试剂盒(Ⅰ、Ⅱ类),也应进行性能确认或验证。LC-MS/MS测量程序性能验证和/或确认程序可参考共识 [ 22 ] 或美国临床和实验室标准协会(Clinical and Laboratory Standards Institute,CLSI)C62-A [ 23 ] ,并根据生物变异、临床指南、政策法规等设定性能验证中每项参数的可接受标准。  (三)类固醇激素LC-MS/MS测量程序的分析性能指标  类固醇激素相关疾病的临床诊断对检测指标及灵敏度有不同需求,实验室应综合临床需求及仪器灵敏度确定LC-MS/MS测量程序分析性能。  1.肾上腺皮质激素:皮质醇是最主要的肾上腺皮质激素(约占75%~95%),血液中总皮质醇、游离皮质醇水平及昼夜节律变化常用于辅助诊断原发性和继发性肾上腺功能不全、库欣综合征、艾迪生病。正常成人清晨血清总皮质醇浓度通常在20~50 ng/ml,经平衡透析后的游离皮质醇浓度约占总皮质醇5%,可更准确反应皮质醇水平及节律,推荐检测血清(浆)游离皮质醇(LOQ≤1 ng/ml)。皮质醇联合17α-羟孕酮、雄烯二酮常用于筛查11-羟化酶或21-羟化酶缺乏型CAH。大多数(约90%)CAH由21-羟化酶基因变异导致,患者血清雄烯二酮水平通常升高5~10倍,17α-羟孕酮水平升高幅度更大,而皮质醇水平较低或无法检测。不同年龄、性别人群17α-羟孕酮及雄烯二酮水平差异较大,推荐实验室检测17α-羟孕酮(LOQ≤0.1 ng/ml),检测区间上限设定在参考区间上限10倍以上 [ 24 ] 。  硫酸脱氢表雄酮、孕烯醇酮、孕酮、17α-羟孕烯醇酮、11-脱氧皮质酮和18-羟皮质酮常用于已排除11-羟化酶、21-羟化酶缺乏型CAH,及确认3β-羟基类固醇脱氢酶缺乏和17α-羟化酶缺乏型CAH。在非常罕见的17α-羟化酶缺乏症中,雄烯二酮、所有雄激素前体(17α-羟孕烯醇酮、17α-羟孕酮、硫酸脱氢表雄酮)、睾酮、雌酮、雌二醇和皮质醇水平降低,而盐皮质激素(孕酮、11-脱氧皮质酮和18-羟皮质酮)水平明显升高。醛固酮是典型的盐皮质激素,常用于辅助诊断原发性醛固酮增多症(如肾上腺肿瘤、肾上腺皮质增生)和继发性醛固酮增多症(如肾血管疾病、盐耗竭、钾负荷、肝硬化腹水、心力衰竭、妊娠、Bartter综合征),以上情况醛固酮水平通常可升高10~100倍。因此,建议醛固酮LOQ≤0.02 ng/ml,检测区间上限设定在参考区间上限100倍( 表4 )。  2.雄激素:LC-MS/MS较易检测正常成年男性雄激素水平,但对低雄激素水平人群,如女性、儿童以及性腺功能减退的男性,则要求测量程序具有更高的灵敏度。对成年女性,睾酮水平通常用于评估由肾上腺合成异常和PCOS导致的高雄激素血症及相关的女性多毛症、月经紊乱、不孕等疾病。对儿童,睾酮水平通常用于评估外生殖器性别模糊、性早熟或发育延迟,以及用于CAH的诊断。建议女性或儿童的睾酮测量程序LOQ≤0.02 ng/ml,并需配置高灵敏度LC-MS/MS系统,并对样品进行离线或在线前处理,如LLE、SPE或多个提取步骤结合(如PPT结合SPE) [ 8 ] 。  双氢睾酮以及双氢睾酮/睾酮比值可用于诊断雄激素缺乏症、监测雄激素替代治疗或5α-还原酶抑制剂疗效,建议采用双氢睾酮非衍生化法LC-MS/MS检测(LOQ≤0.05 ng/ml)。雄烯二酮还可用于诊断和评估女性高雄激素血症、多毛症、不孕症,儿童性早熟、发育延迟、CAH,以及肾上腺、性腺肿瘤。在CAH、女性高雄激素血症等疾病中,雄烯二酮水平明显升高,但在3β-羟基类固醇脱氢酶缺乏症、17α-羟化酶缺乏症及类固醇合成急性调节蛋白缺乏症等罕见病及2岁以下儿童中,其水平较正常成人明显降低,建议其LOQ≤0.02 ng/ml。雄烯二酮检测的子离子与睾酮子离子具有相同的质荷比,因此实验室需验证睾酮和雄烯二酮的色谱分离度。  脱氢表雄酮和硫酸脱氢表雄酮除联合肾上腺皮质激素用于CAH辅助诊断以外,还可用于鉴别诊断肾上腺功能不全或亢进。与性激素联合可用于区分肾上腺功能初现与性早熟,诊断儿童CAH和女性PCOS。儿童脱氢表雄酮水平较低(通常1~8岁儿童2 ng/ml),为了准确诊断儿童肾上腺功能初现、性早熟,建议脱氢表雄酮LOQ≤0.02 ng/ml,硫酸脱氢表雄酮LOQ≤30 ng/ml。  3.雌激素:对低浓度雌激素的准确检测可用于儿童性发育延迟或性早熟的评估,以及绝经后女性乳腺癌发病风险或芳香酶抑制剂治疗效果评估。非衍生化前处理,ESI负离子模式下检测雌二醇、雌酮及雌三醇建议LOQ≤0.01 ng/ml [ 25 ] 。硫酸雌酮在体内的浓度是雌二醇和雌酮的10~50倍,且半衰期较长,因此可用于雌激素水平状况评估。  建议7 实验室应根据临床需求、待测类固醇激素生物学变异及仪器灵敏度水平,建立分析性能满足要求的类固醇激素LC-
  • 863计划分子医药农业取得重大进展
    p   把动植物组织器官当做生物反应器工厂用来生产蛋白或者代谢物,是现代生物技术的一个重要应用方向。动植物作为高等生物在蛋白产物和代谢产物的修饰上更为完善,因而在生产人源蛋白药物以及代谢类物质方面具有微生物发酵不可比拟的天然优势。发达国家利用动植物组织作为生物反应器,已经研发了百余种抗体、疫苗、细胞因子、医用蛋白等产品,绝大部分已经进入临床试验,重组人抗凝血酶Ⅲ(ATryn)、单克隆抗体药物 Ruconest等产品已经进入市场,创造了巨大的经济效益,催生了分子医药农业这一战略性新兴产业。 /p p   日前,863计划现代农业技术领域长期支持,武汉大学以及武汉禾元生物科技股份有限公司研发的水稻种子生物反应器平台生产的人血清白蛋白产品获得了国家食品药品监督管理局颁发的临床批件。这标志着该项成果已经完成了实验室研发和中试扩大,将迈入临床试验阶段,项目取得了重要突破。 /p p   “十二五”期间,在863计划现代农业技术领域的支持下,该项目组利用分子标记辅助选择技术,获得了重组人血清白蛋白表达量比原有水平提高 20-50%的水稻品系, 建立重组人血清白蛋白单批次纯品达 1 公斤的提取纯化工艺,根据《药品注册管理办法》、《新药临床前指导原则》等标准规程对水稻种子表达的人血清白蛋白进行了动物试验,完成重组人血清白蛋白的临床前研究,为产品进入临床试验和后期产业化打下了坚实基础。 /p p   人血清白蛋白可以运输脂肪酸、胆色素、氨基酸、类固醇激素、金属离子和许多治疗分子等,是维持血液正常渗透压的重要成分 在临床上人血清白蛋白可用于治疗休克与烧伤,用于补充因手术、意外事故或大出血所致的血液丢失,也可以作为血浆增容剂,具有重要的医药价值。传统的生产方式主要来源于血浆分离,但是具有传播疾病和供应不稳定的缺点,利用基因工程水稻的规模化种植生产重组人血清白蛋白,大幅度降低了成本并获得了稳定的来源。该项成果曾获得国家技术发明二等奖、中国专利优秀奖,引领了我国分子医药农业这一崭新业态。 /p p /p
  • 【质谱文献】超高效液相色谱-串联质谱法同时快速检测微量血清中6种脂溶性维生素
    本文来源: 柯瑞斯质谱平台摘 要目的  建立超高效液相色谱-串联质谱法(UPLC-MS/MS)同时快速检测微量血清中维生素A、维生素D(25-OH-VD2、25-OH-VD3)、维生素E(α-、β-和γ-生育酚)的方法。 方法  血清中脂溶性维生素经甲醇-乙腈(50:50, v/v)沉淀蛋白、正己烷萃取,以Phenomenex Kinetex F5色谱柱为分离柱,2.5mmol/L甲酸铵-0.1%甲酸水溶液和甲醇为流动相,梯度洗脱,电喷雾电离(ESI~+)、多反应监测(MRM)模式下检测,同位素内标法定量。结果  血清中6种脂溶性维生素线性范围内线性关系良好,相关系数r0.995;6种脂溶性维生素的检测限为0.20~1.25ng/mL,定量限为0.39~3.88ng/mL;加标回收率为86.6%~107.7%,日内精密度9.6%,日间精密度9.3%。NIST标准参照品SRM 968f验证方法准确度,结果偏差均在5%以内。结论  本方法准确度高、重现性好、用血量少,适于婴幼儿等采血困难者微量血样中多种脂溶性维生素的同时快速检测。正 文维生素在人体生长代谢过程中发挥着重要作用,是人体必须的微量营养素,缺乏或过量都会对人体健康产生不利影响。维生素A、D、E是脂溶性维生素,研究表明缺乏这些维生素会增加患夜盲症、骨质疏松、心血管疾病及免疫系统相关疾病的风险[1],婴幼儿及未成年人缺乏其对生长发育的影响则更为明显[2-4]。目前维生素检测的方法主要有高效液相色谱法[5-7]、液相色谱-串联质谱法[8-14]等,其中液相色谱-串联质谱法因其灵敏度高、重现性好、可同时快速检测多种维生素已成为很多临床实验室的首选方法。但是目前的液相色谱-串联质谱方法血液需求量较大[10,13],检测项目单一[8-9,14]或检测时间较长[11],不能满足临床同时快速检测多个项目的需求,特别是婴幼儿采血困难采血量很难满足需求。虽然已有部分学者建立微量检测方法用于维生素检测,但是这些方法需要衍生化过程,前处理复杂耗时较长[8-9,14]。因此,建立能够用微量血液同时快速检测多种维生素的方法满足临床不同年龄段的检测需求显得尤为必要。此外,视黄醇,维生素D的代谢产物25-OH-VD2、25-OH-VD3,α-生育酚是脂溶性维生素A、D、E在血液循环中的主要存在形式,常作为脂溶性维生素检测的首选指标[15-18]。γ-生育酚是维生素E主要的饮食摄入形式,但其与α-生育酚转移蛋白(α-TTP)的亲和力较低,在体内含量较α-生育酚低,但是,近年来文献报道其在人体健康活动中也扮演着重要角色[19]。本文建立超高效液相色谱-串联质谱法(UPLC-MS/MS)同时快速检测微量血清中视黄醇,维生素D(25-OH-VD2、25-OH-VD3)和α-、β-、γ-生育酚的方法,满足临床各年龄段尤其是对婴幼儿同时快速检测多种维生素的需求。1实验部分1.1  仪器与试剂 液质联用仪;高速冷冻离心机;涡旋振荡仪;超声波振荡器;氮吹仪(Agela);紫外分光光度计。视黄醇、25-OH-VD2、25-OH-VD3、α-生育酚、β-生育酚、γ-生育酚均购自美国Sigma-Aldrich;视黄醇-d6标准品购自上海谱芬生物;25-OH-VD2-d3购自美国IsoSciences、25-OH-VD3-d6、α-生育酚-d6标准品购自加拿大TRC 血清质控样品购自美国NIST 收集安徽省第二人民医院近期健康体检正常儿童血液样本17份,避光保存。LC-MS级甲醇,色谱级乙腈、正已烷及甲酸均购自美国Fisher;甲酸铵、牛血清白蛋白(BSA)购自美国Sigma-Aldrich;色谱级乙醇购自国药集团。实验用水由Milipore纯水仪(美国密理博)提供。1.2  标准溶液和内标溶液的配制  用无水乙醇配制视黄醇标准品储备液100μg/mL;α-生育酚、β-生育酚、γ-生育酚标准品储备液各1000μg/mL,并用紫外分光光度计对其浓度进行校正[18,20]。用甲醇配制25-OH-VD2标准品储备液25μg/mL和25-OH-VD3标准品储备液100μg/mL,视黄醇-d6标准品储备液100μg/mL,25-OH-VD2-d3标准品储备液50μg/mL,25-OH-VD3-d6标准品储备液50μg/mL,α-生育酚-d6标准品储备液1000μg/mL。将各目标化合物标准储备液用复溶液(初始流动相)稀释混匀,配制成混合标准溶液(视黄醇2.50μg/mL、25-OH-VD2 0.20μg/mL、25-OH-VD3 0.40μg/mL、α-生育酚50.00μg/mL、β-生育酚5.00μg/mL、γ-生育酚 5.00μg/mL);将各同位素标品储备液用甲醇稀释混匀,配制成混合内标工作液(视黄醇-d6 2.00μg/mL、25-OH-VD2-d3 0.10μg/mL、25-OH-VD3 0.20μg/mL、α-生育酚-d6 20.0μg/mL)。取4g BSA溶解于100mL水中配成4% BSA溶液。1.3  样本前处理  取血清样品20μL至2mL离心管中,加入10μL同位素内标工作液,80μL水,2000r/min涡旋振荡30s后加入200μL甲醇-乙腈(50∶50,v/v),2000r/min混匀60s;加入800μL正己烷,2000r/min,混匀5min,然后4℃,12000r/min离心5min;吸取600μL上清液至1.5mL离心管中,室温下氮气吹干;加100μL初始流动相复溶,涡旋振荡60s,4℃,12000r/min离心5min,上清液转移至进样瓶中待分析。1.4  色谱 - 质谱条件  采用Phenomenex Kinetex F5(100mm × 2.1mm, 2.6μm)色谱柱,柱温35℃,流动相A含2.5mmol/L甲酸铵和0.1%甲酸的水溶液;流动相B含2.5mmol/L甲酸铵和0.1%甲酸的甲醇溶液,梯度洗脱程序:0~2.0min,70%B,2.0~2.5min,70%~88% B,2.5~3.5min,88% B,3.5~3.51min,88%~81%B,3.51~11.0min,81% B,11.0~12.0min,81%~70%B,流速0.5mL/min。进样量:20μL。采用多反应监测(MRM)、电喷雾正离子模式(ESI+),离子源温度 150℃,脱溶剂温度500℃,毛细管电压3kV,脱溶剂气流速1000L/h;6种脂溶性维生素的MRM 离子参数见表1。2  结果与讨论2.1  前处理条件优化  对血清前处理过程中蛋白沉淀剂(甲醇、乙腈、乙醇)的选择及萃取溶剂正己烷的用量(400μL、600μL、800μL)进行了优化,结果表明,甲醇-乙腈(50∶50,v/v),沉淀效果最好,色谱图杂峰明显减少;正己烷用量较大时萃取更完全,信号值更高。另外,考察了不同复溶液体系:甲醇-水(50∶50,v/v)、甲醇-水(70∶30,v/v)、甲醇均含2.5mmol/L甲酸铵和0.1%甲酸对色谱分离的影响,结果如图1所示,使用b组复溶液即初始流动相时视黄醇响应值较a组增加1倍以上,c组视黄醇峰宽变大且峰形不对称。同时b组中25-OH-VD3和25-OH-VD2响应值是a组的2倍、c组的4倍以上,且峰形明显改善有利于25-OH-VD3和 25-OH-VD2的分离检测。最终,采用血清样加水混匀后用200μL沉淀剂(甲醇:乙腈(50∶50,v/v)沉淀蛋白,800μL正已烷液液萃取,取600μL上清液氮吹,初始流动相复溶进样。2.2   液 相 色 谱 条 件 优 化   Kinetex F5色谱柱可以实现所有组分包括β、γ-生育酚的分离。此外,25-OH-VD3同分异构体3-epi-25-OH-VD3在婴幼儿体内含量较高,对维生素D含量测定影响较大[21],该色谱柱可以实现25-OH-VD3和3-epi-25-OH-VD3的分离,减少3-epi-25-OH-VD3对检测结果的影响。故采用Kinetex F5色谱柱进行所有组分的分离(见图2)。研究发现在流动相中加入甲酸铵后其促进目标化合物离子化的效果较加入乙酸铵好,响应值增加明显,故在水相和有机相中均加入2.5mmol/L甲酸铵。2.3  线性范围、检出限和定量限  将混合标准溶液用复溶液逐级稀释,得到一系列标准工作液,各取20μL,分别加入10μL内标工作液和80μL 4% BSA溶液,其余操作同样本前处理。由于人血中存在内源性脂溶性维生素,故在标曲制作中加入4% BSA。以各目标化合物的色谱峰与其相对应的同位素内标色谱峰的峰面积比值-浓度比值作图,得到各目标化合物的标准系列工作溶液的直线拟合方程,并计算相应的线性相关系数。6种脂溶性维生素的标准曲线和线性范围见表2。结果表明,6种脂溶性维生素在对应的浓度范围内线性关系良好,相关系数0.995,标准溶液色谱图如图3所示。每个浓度重复检测6次,满足相对标准偏差20%且信噪比S/N≥3的最低浓度值定为检测限,满足相对标准偏差20%且信噪比S/N≥10的最低浓度值定为定量限。6种脂溶性维生素检测限为0.20~1.25ng/mL,定量限为0.39~3.88ng/mL(见表2)。2.4  方法精密度 将低、中、高三个浓度标准品溶液加入4% BSA混合血清样本经本法处理后进行检测,每个浓度重复6次,连续检测三天,计算日内精密度为0.9%~9.6%,日间精密度为3.0%~9.3%(见表3)。该方法同时测定6种脂溶性维生素的日内精密度和日间精密度均在15%以内,方法精密度满足检测需求。2.5  方法准确度  将低、中、高浓度的标准品溶液加入混合血清样本中按本法进行前处理后进行检测,每个浓度重复6次,计算加标回收率,3个水平的加标回收率为86.6%~107.7%,相对标准偏差(RSD)为1.46%~9.39%(见表4)。该方法加标回收率均在80%~120%以内,方法准确度高满足检测需求。2.6  方法验证  采用建立的UPLC-MS/MS方法对美国国家标准技术研究所(NIST)制定的标准参照品SRM 968f进行检测,每个水平重复2次取平均值,验证方法准确度。结果表明,除25-OH-VD2含量较低未能检出外,其它检测结果与靶值偏差均在5%以内,该方法检测结果准确可靠(表5)。2.7  实际样品测定  使用本方法对17份健康儿童血液样本进行检测,其中视黄醇含量为0.22~0.43μg/mL,25-OH-VD2含量为未检出~5.19ng/mL,25-OH-VD3含量为6.83~49.21ng/mL,α-生育酚含量为5.63~12.73μg/mL,β-生育酚含量为0.03~1.37μg/mL,γ-生育酚含量为0.11~1.68μg/mL。本法适用于微量临床血液样本6种脂溶性维生素的同时快速检测。3结  论本研究建立了超高效液相色谱串联质谱法同时测定微量血清样本中多种脂溶性维生素的方法,并对前处理过程中的蛋白沉淀试剂、萃取液用量,复溶液等进行了优化,以减少色谱图中噪音干扰,改善色谱峰形,提高检测灵敏度。并比较了不同色谱柱对多种脂溶性维生素尤其是不同类型维生素E的分离效果,最终选择Phenomenex Kinetex F5色谱柱,该色谱柱可以实现β-生育酚和γ-生育酚的有效分离。本研究中只需20μL血清就能够快速完成6种脂溶性维生素的测定。该方法测定样本需求量少、操作简单、检测结果准确快速可实现大量临床样本的同时检测,尤其对采血较为困难的婴幼儿可以实现少量血液样本检测多数项目的需求。参考文献(略)本文引用来源: 李雪梅,吴慧慧,陈竞,赵盼,唐玉菲.超高效液相色谱-串联质谱法同时快速检测微量血清中6种脂溶性维生素[J].现代预防医学,2022,49(07):1297-1302.
  • 重磅!赛多利斯4.15亿英镑收购重组白蛋白公司Albumedix
    仪器信息网讯 8月8日,德国生命科学集团赛多利斯(Sartorius)宣布其法国上市子公司Sartorius Stedim Biotech从私人投资者手中收购Albumedix Ltd.公司100%的股份。此次收购价格约为4.15亿英镑。该交易预计将于2022年第三季度末前完成。Albumedix总部位于英国诺丁汉,致力于重组人白蛋白产品和技术。重组人白蛋白是生物制药行业各种应用所需的重要成分,例如作为细胞培养基的无动物添加剂以及用于稳定疫苗和病毒疗法。该公司成立于1984年,拥有100多名员工,2022年预计将产生约3300万英镑的收入,EBITDA利润率可观达到两位数。Albumedix将成为赛多利斯生物工艺解决方案部门的一部分,Albumedix在英国诺丁汉现有的72,000平方英尺的场地将成为创新和符合GMP要求的关键原材料生产的卓越中心。
  • 超大孔填料在蛋白质分离纯化中的应用
    p & nbsp /p p   层析纯化技术由于其高选择性、灵活性、易放大性等优点,已经成为蛋白质药物纯化中不可或缺的技术。传统的层析填料为多糖基质,孔径一般在100 nm以下。1970年代出现了大孔和微孔无机材料硅填料,虽然增大了孔道、提高了层析的分辨率和流速,但只能在PH2-7.5范围内稳定,不利于分离纯化在碱性范围内稳定的蛋白质或是需要碱性层析条件的分离,从而限制了其在大规模快速分离蛋白质层析上的应用。多孔聚合物微球由于其高的比表面积、高的机械强度和多样的表面特征,常被用作层析分离纯化的填料。目前已发展出了多种表面基团、基质种类的层析填料,成功用于疫苗、病毒、抗体、酶、细胞因子等的分离纯化。 /p p   span style=" color: rgb(0, 176, 240) " strong  层析纯化病毒、病毒样颗粒等生物大分子的瓶颈问题 /strong /span /p p   随着病毒、病毒样颗粒在疫苗、肿瘤治疗、免疫治疗中的地位越来越重要,这类复杂生物大分子的分离纯化需求也逐渐增加。然而传统填料由于孔径较小,蛋白质只能以扩散方式通过填料,传质速率慢,处理量低,造成分离时间长、容易失活等问题[1]。当蛋白质体积较大时,填料表面在吸附一层蛋白后,由于体积位阻以及静电排斥作用,会阻碍其它的蛋白质进一步进入孔内,造成填料的载量下降。另一个限制是病毒或疫苗,尤其是带有包膜的病毒或疫苗,在狭窄的填料孔径内发生吸附时非常容易发生结构变化,破坏其整体结构。在乙肝病毒表面抗原(HBsAg)的纯化中发现这种病毒样颗粒在层析时会发生解聚[2],经过离子交换层析分离后,疫苗的回收率通常不到50%[3, 4]。而抗原的结构发生变化以后,就会对其免疫原性产生影响,所以需要在纯化过程中尽可能维持抗原的结构。 /p p   为了解决针对病毒及病毒样颗粒纯化的瓶颈问题,目前已有采用膜色谱、超大孔贯穿孔颗粒填料及整体柱的策略进行纯化的案例,成功纯化了包括人乳头瘤病毒、番茄花叶病毒、流感病毒、腺病毒、慢病毒及各种病毒样颗粒。 /p p span style=" color: rgb(0, 176, 240) " strong   病毒及病毒样颗粒的分离纯化 /strong /span /p p   根据文献报道,超大孔填料相比传统层析填料不仅在载量及处理速度上有极大的优势,还更有利于病毒及病毒样颗粒的结构保持。 /p p   例如,在重组乙肝病毒表面抗原的分离纯化中,采用具有120nm及280nm超大孔径的离子交换填料DEAE-AP-120 nm和DEAE-AP-280 nm(商品名为中科森辉的Giga系列)具有比传统填料DEAE-FF高7倍以上的动态载量[1]。此外,采用ELISA测定抗原收率,发现采用超大孔填料能够减少重组乙肝病毒表面抗原在层析过程中的裂解,从而显著提高活性抗原的收率。 /p p style=" text-align: center " img width=" 576" height=" 450" title=" 1.jpg" style=" width: 415px height: 282px " src=" http://img1.17img.cn/17img/images/201808/insimg/3b67db18-4291-4ab6-9874-209cd57644af.jpg" /    /p p style=" text-align: center " 重组乙肝病毒表面抗原在不同孔径离子交换填料上 /p p style=" text-align: center "   的吸附动力学[1] /p p style=" text-align: center " img width=" 497" height=" 345" title=" 2.jpg" style=" width: 387px height: 289px " src=" http://img1.17img.cn/17img/images/201808/insimg/07fdf233-77a5-4c30-8d20-faf7f044b54a.jpg" /   /p p style=" text-align: center "  重组乙肝病毒表面抗原从不同孔径的填料上洗脱下来的 /p p style=" text-align: center "   ELISA回收率[1] /p p   对病毒的分离纯化同样有类似的效果。例如在灭活口蹄疫病毒的纯化中,DEAE-FF导致严重的病毒裂解。而采用具有100nm以上孔径的超大孔填料,不仅载量提高10倍以上,还能显著提高病毒在填料上吸附时的热稳定性,从而减少病毒的裂解,具有更高的收率。最终的分离纯化单步收率达90%以上[5]。 /p p style=" text-align: center "    span style=" font-size: 14px " strong 灭活口蹄疫病毒在传统填料与超大孔填料上的吸附解离过程 /strong /span /p p   与商品填料的小孔道填料相比,超大孔结构可能从以下几方面提高对蛋白质构象的稳定性: /p p   1)增大孔道(受限空间):根据蛋白质折叠行为计算显示,蛋白质的折叠速率与空腔大小、形状密切相关,也即当填料孔道与蛋白的相对尺寸超过某一阈值后,蛋白的折叠行为将不受空腔大小影响。与数十纳米中孔结构的传统填料的相比,数百纳米超大孔结构会因孔道增大、与蛋白接触面积减小,从而对某一尺寸下蛋白质的变构行为有所改善。 /p p   2)界面曲率:小孔径填料孔道曲率大,填料与蛋白质接触面积大,因此受更大吸附力影响,蛋白质二级结构变化越严重。而曲率更大的超大孔孔道对蛋白二级结构的保护比狭窄孔道更有优势。 /p p style=" text-align: center "   span style=" font-size: 14px " strong  表面曲率变化对蛋白接触面积的影响 /strong /span /p p   3)改善配基与蛋白活性区域的接触面积:超大孔微球内部数百纳米孔道在修饰配基后可能会有效改善传统填料狭窄孔道内由于配基拥挤造成的蛋白质失活现象。 /p p   4)减少蛋白在孔道内的静电排斥作用:有研究者认为,在离子交换填料上蛋白质起初会在孔道入口处形成一圈静电层,这一静电层会对后来蛋白继续进入孔道产生排斥作用从而使孔道关闭,动态载量下降。如果将超大孔填料修饰为离子交换树脂,由于孔道尺寸显著扩大可能会有效改善蛋白吸附静电层对孔道的封闭作用,从而有效引导蛋白质进入超大孔道,提高回收率。 /p p span style=" color: rgb(0, 176, 240) " strong   快速分离蛋白质及pDNA /strong /span /p p   除了应用于病毒及病毒样颗粒的分离纯化的分离纯化,利用超大孔填料传质速度快的优势,将超大孔填料镀上亲水表层,再接上不同配基制成多种形式的层析填料,用于快速高分辨率的纯化蛋白混合物或质粒。超大孔填料制备成的亲和层析、反相层析和离子交换层析填料广泛的应用在蛋白质的分离纯化方向,显示出超大孔填料比传统分离填料高速高分辨率的蛋白质纯化优势。 /p p   例如以肌红蛋白、转铁蛋白和牛血清白蛋白的混合溶液为模拟体系,考察不同流速下超大孔聚苯乙烯阴离子交换介质(DEAE-AP,商品名为Giga系列)的分离效果,并与DEAE 4FF介质进行了对比。实验结果(图2)显示,作为对照的DEAE-4FF介质在流速达到361 cm/h时,分离效果已明显降低,而超大孔介质可以在流速高达1084 cm/h的条件下操作,分离效果良好,能够在6 min内实现三种生物大分子的快速分离。 /p p style=" text-align: center " img width=" 588" height=" 170" title=" 3.jpg" style=" width: 473px height: 144px " src=" http://img1.17img.cn/17img/images/201808/insimg/65df31ac-bd00-4a08-8a5a-feedfa1aa990.jpg" / /p p   span style=" color: rgb(0, 176, 240) " strong  超大孔填料应用前景与展望 /strong /span /p p   近年来,随着生命科学的发展,生物样品越来越复杂,如人的血样、尿样、组织样品等,对生物分离分析技术提出更高的要求。根据超大孔填料固有的诸多优点,通过合成不同种类的超大孔固定相及在固定相上做不同功能的衍生,超大孔填料已经被广泛应用于生物分离分析中,但也存在一些问题。因此,发展新的制备手段,优化制备条件和过程,探索制备和分离机理,对于开辟新的应用领域以及开展实际样品的分离分析有更大的理论和现实意义。 /p p   根据已有的文献报道,我们可以预测今后几年的相关工作仍会集中在以下几个方面: /p p   (1)规则的聚合物整体材料内部形态。如获得规则的3D网络骨架,可控的孔径尺寸和分布。 /p p   (2)继续在微分离系统中扩展其应用。如在加压电色谱、微流控芯片材料、微流色谱和纳流色谱系统,甚至纳米器件开发等诸多方面大显身手。 /p p   (3)表面物理化学性质的调控向功能化、智能化方向发展。如基于分子印迹技术、温度响应以及pH响应的表面智能化的整体材料。 /p p   (4)制备规模整体柱的开发及其在生物下游技术中的应用。 /p p   目前,已经有一部分整体柱实现了商品化,但种类有限,还无法与种类繁多的颗粒型填充柱相提并论,也远未能满足分离分析的需求。而颗粒型的超大孔填料,由于其制备较困难、批次间重复性较差、价格昂贵等,也没有得到广泛的应用。相对于超大孔填充柱,有机相整体柱存在因流动相变会发生溶胀或收缩、机械强度差、比表面积小、柱容量差以及聚合过程中产生的微孔不利于小分子样品的分析等问题,现有报道大都用于生物大分子的分离。硅骨架整体柱也存在必须预先聚合好装入套管中,制备繁琐,比表面积较小的问题。因此,如何以更简便、有效的方式制备高效新型的超大孔填料并将其应用于实际样品的分离分析仍然是今后工作的重心。在实际工作中所面临的层出不穷的问题也是推动新型超大孔填料制备技术和方法发展的源源不竭的动力,在诸多的尝试中很可能就会出现某些性质优良的超大孔填料,这也预示着将来商品化的超大孔会越来越多。 /p p span style=" color: rgb(0, 176, 240) " strong   部分商品化的超大孔层析介质 /strong /span /p p    strong 超大孔填料因其具有独特的多孔结构,与传统填料相比具有更加优良的渗透性和传质速率,可以在较低的操作压力下实现高效和快速的分离,已成为继多聚糖、交联与涂渍、单分散之后的第四代分离填料。可以预测,随着制备技术的不断提升,超大孔填料在生命科学、医药、环境和化学化工等领域必将大有可为。 /strong /p p   参考文献 /p p   [1] M.R. Yu, Y. Li, S.P. Zhang, X.N. Li, Y.L. Yang, Y. Chen, G.H. Ma, Z.G. Su, Improving stability of virus-like particles by ion-exchange chromatographic supports with large pore size: Advantages of gigaporous media beyond enhanced binding capacity, Journal of Chromatography A, 1331 (2014) 69-79. /p p   [2] P.M. Kramberger P, Boben J, Ravnikar M, ?trancar, A.S.m.c.a.b. in, p.a.f.q.o.t.m. virus., J. Chromatogr. A 1144(1). /p p   [3] W. Zhou, J. Bi, J.-C. Janson, A. Dong, Y. Li, Y. Zhang, Y. Huang, Z. Su, Ion-exchange chromatography of hepatitis B virus surface antigen from a recombinant Chinese hamster ovary cell line, Journal of Chromatography A, 1095 (2005) 119-125. /p p   [4] W. Zhou, J. Bi, J.C. Janson, Y. Li, Y. Huang, Y. Zhang, Z. Su, Molecular characterization of recombinant Hepatitis B surface antigen from Chinese hamster ovary and Hansenulapolymorpha cells by high-performance size exclusion chromatography and multi-angle laser light scattering, Journal of Chromatography B, 838 (2006) 71-77. /p p   [5] S.Q. Liang, Y.L. Yang, L.J. Sun, Q.Z. Zhao, G.H. Ma, S.P. Zhang, Z.G. Su, Denaturation of inactivated FMDV in ion exchange chromatography: Evidence by differential scanning calorimetry analysis, BiochemEng J, 124 (2017) 99-107. /p p /p
  • 威斯康星大学葛瑛教授荣获HUPO2021蛋白质组学临床转化奖
    仪器信息网讯 HUPO国际大会(Human Proteome Organization World Congress)是全球蛋白质组领域的盛会。日前,HUPO 2021颁布了蛋白质组学的五大奖项,澳大利亚麦考瑞大学Nicolle H. Packer获蛋白质组学杰出成就奖、瑞士苏黎世联邦理工学院Paola Picotti获蛋白质组学科学发现奖、威斯康星大学葛瑛获蛋白质组学临床转化奖、丹麦Evosep公司Nicolai Bache and Ole Vorm共同获得科学技术奖、爱尔兰都柏林大学的Stephen Pennington获杰出服务奖。其中蛋白质组学临床转化奖的获得者,美国威斯康星大学的葛瑛教授曾获2020年美国质谱年会Biemann奖,也当选为2020年度最具影响力分析化学家。葛瑛博士,威斯康星大学麦迪逊分校细胞与再生生物学和化学教授葛瑛博士过去十年致力于临床和转化蛋白质组学研究,以更好地理解和诊断心脏疾病。她通过创造性地将质谱/蛋白质组学与心脏生物学/医学相结合,在精准医学的基础研究和转化/临床研究之间架起桥梁。她的研究是高度跨学科的,跨越了化学、生物学和医学的传统边界,以期实现真正的“从实验室到临床”。葛教授团队使用基于高分辨率质谱技术的自上而下蛋白质组学分析肥厚型心肌病患者的手术心脏组织样本,发现许多不同的基因突变会导致相似的心肌蛋白变化,并详细分析了患者和正常人的心脏蛋白质特征。研究团队从梗阻性肥厚型心肌病患者接受矫正手术以修复心脏血流受损的患者中收集了患病心脏组织的样本。尽管潜在的遗传突变有所不同,葛瑛团队发现患者心脏的许多关键肌肉蛋白有非常近似的蛋白质指纹图谱,表明这些梗阻性肥厚型心肌病患者具有共同的信号途径。虽然具体机制尚需进一步研究,但这些关键肌肉蛋白质磷酸化改变很可能导致心脏失调,从而导致心肌增厚。这对心脏病医生来说是个好消息,因为这证明可以用研发一种共通的疗法治疗这种梗阻性肥厚型心肌病,而不是针对患者个别基因突变的治疗方法。该研究也进一步证明了基因突变并不总是足以解释疾病。这些基因编码的蛋白质对健康有最终影响,但在疾病期间,人体的蛋白质可能会以微妙但相应的方式改变。蛋白质水平的变化可能比其基因更好地反映了患者的疾病,并且如果我们可以在蛋白质水平上检查患者的样本,则可以帮助我们提供精准医学治疗。葛瑛教授近期重磅科研成果:2021年7月,威斯康星大学葛瑛教授团队在《美国化学会志》(Journal of the American Chemical Society, JACS)上发表了最新的成果,题为“Structural O‑Glycoform Heterogeneity of the SARS-CoV‑2 Spike Protein Receptor-Binding Domain Revealed by Top-Down Mass Spectrometry”。该研究利用自上而下蛋白质组学方法,提供了刺突糖蛋白不同O-糖型的高分辨率蛋白质解析图,为揭示其 O-聚糖的功能作用奠定了强大的分子基础。这种蛋白质解析方法可用于揭示新出现的 SARS-CoV-2 S-RBD 变体以及其他O-糖蛋白的结构O-糖型异质性。(点击了解更多)2020年9月23日,葛瑛教授的一项新研究成果“Distinct hypertrophic cardiomyopathy genotypes result in convergent sarcomeric proteoform profiles revealed by top-down proteomics”发布在《美国科学院院报》(PNAS),该团队使用基于高分辨率质谱技术的自上而下蛋白质组学分析肥厚型心肌病患者的手术心脏组织样本,发现许多不同的基因突变会导致相似的心肌蛋白变化,并详细分析了患者和正常人的心脏蛋白质特征。(点击了解更多)2020年8月6日,葛瑛教授团队和化学系金松(Song Jin)教授团队合作的最新研究成果“Nanoproteomics enables proteoform-resolved analysis of low-abundance proteins in human serum”发表于自然子刊《自然通讯》(Nature Communications)。研究团队开发了基于纳米材料的蛋白质组学新方法,将功能化的超顺磁性纳米颗粒(NPs)与自上而下蛋白组学质谱分析结合,在有效地从血清中富集心脏肌钙蛋白I(cTnI)(cTnI是一种心脏疾病的生物标志物)的同时也能很好的去除血清白蛋白。该研究成果将在蛋白组学研究上得到广泛的应用,有助于揭示cTnI的分子指纹图谱,便于精准医疗研究。(点击了解更多)点击下方图片即可了解更多葛瑛教授团队的研究近况:http://ge.crb.wisc.edu/
  • 胶原蛋白企业亮出检测报告自证清白 各自执行企业标准
    10月8日,有媒体声称其自行送检的7款口服胶原蛋白产品中3款并未检出胶原蛋白的特征氨基酸&mdash &mdash 羟脯氨酸。对于这一结果,相关企业均强烈否认并亮出检测报告自证清白。据了解行业内一直未形成对于胶原蛋白产品的统一标准,各大公司执行自己的企业标准。   胶原蛋白产品不含胶原蛋白? 涉事企业强烈否认   胶原蛋白可谓命运多舛,日前又被爆成分争议&ldquo 不含胶原蛋白&rdquo 。昨日,有媒体声称其自行送检的7款口服胶原蛋白产品中,汤臣倍健胶原蛋白粉、颜如玉胶原蛋白口服液、无限极美姿力胶原蛋白果味饮料等3款产品中,并未检出胶原蛋白的特征氨基酸&mdash &mdash 羟脯氨酸。另外Fancl、Lumi、丸美、安婕妤4款产品胶原蛋白含量则远低于宣称的含量。不过,报道未披露具体数据,也未交代其送检机构。对于这一结果,相关企业均强烈否认并亮出检测报告&ldquo 自证清白&rdquo 。   记者了解到,目前胶原蛋白产品始终未有统一标准,特异性指标也未能明确,造成行业频频陷入舆论危机。   从成本看似无造假必要   汤臣倍健昨日在给本报的声明说,其胶原蛋白采购自法国罗赛洛公司,检测显示羟脯氨酸含量为9.33%,并能提供检测报告。该公司指,一直严守法律法规以及食品安全标准。   无限极声明表示,报道提及的产品其生产标准在广东省卫生厅备案,原料经第三方权威机构检测完全符合国家相关法律法规和标准,昨日已再次送检,结果会及时公布。   而广州颜如玉医药科技有限公司的声明则称,上述口服液取得国家保健食品批准证书,标志性成分为低聚肽而非羟脯氨酸。此外,有关产品是海洋鱼皮胶原低聚肽口服液,而不是胶原蛋白口服液,用评价胶原蛋白的方法来评价低聚肽是不专业的,&ldquo 被检产品未经我们公司确认,是否属实,不得而知。&rdquo   羟脯氨酸是胶原蛋白18种氨基酸中的一种,为胶原蛋白特有,但从成本角度看,企业似乎并无造假必要。南海水产研究所一位研究员昨日对本报说,只要采用一般鱼类的&ldquo 边角料&rdquo 进行水解就能提取,&ldquo 甚至不法之徒用皮革的下脚料,也能得到羟脯氨酸。&rdquo   记者翻查资料发现,乳业之前曾热炒&ldquo 皮革奶&rdquo ,即添加皮革下脚料来&ldquo 增加&rdquo 蛋白质,科研人员就是通过检测奶中是否含有羟脯氨酸来辨别的。&ldquo 普通猪皮中就能弄出羟脯氨酸。&rdquo 上述研究员说。   各公司执行自己的标准   不过,胶原蛋白近期先后被质疑功效、涉嫌违法宣传,还是让这种在近年被不断应用于食品、保健品、化妆品中的成分受到了高度关注。记者了解到,事实上目前胶原蛋白仍未有国标,消费者对其作用也是&ldquo 蒙查查&rdquo 。   目前,我国已认可胶原蛋白、胶原肽的保健功效只有保护皮肤水分、增加骨密度、增强免疫力三项。但市民麦小姐说,她选购胶原蛋白的理由是冲着它&ldquo 可以修复肌肤、保持弹性,人变得更年轻。&rdquo   据记者昨日获得的一份由中国食品科学技术学会在2011年撰写的胶原蛋白标准研讨会摘要显示,在2010年国内胶原蛋白年产值保守估计已经达到100亿元,产能在600多吨或日本的十分之一。   该学会指出,在胶原蛋白生产过程中都存在水解或酶解过程,最终很多产品已经以多肽的形式存在,因此行业内一直未形成对于胶原蛋白产品的统一标准。此外,行业也需要明确胶原蛋白的特异性指标,例如羟脯氨酸的含量比例,或者是甘氨酸、脯氨酸和羟脯氨酸的总含量占到蛋白质的50%左右。   记者还了解到,《水解胶原蛋白》国标曾在2007年对外征求意见,但该稿一度被业内指出&ldquo 操作性不够好&rdquo ,而且最终版本始终未能落地。目前各大公司执行自己的企业标准。   胶原蛋白或将   禁止以口服液形式销售   国庆长假期间,国家食品药品监督管理总局在官方网站征求对保健食品监管新规的意见,提出拟于2014年1月1日起,禁止食品以片剂、胶囊、口服液、丸剂等形状生产销售,&ldquo 如仅取得食品生产许可(QS标志),国家食药总局拟于2014年1月1日起,禁止其以片剂、胶囊、口服液、丸剂等形状生产销售 禁止营养补充剂宣称有保健功能。&rdquo   而据记者走访药店、超市、便利店以及从业界了解得知,目前市面上充斥的大量胶原蛋白产品刚好就处于此政策&ldquo 打击&rdquo 范围内:基本上既属于普通食品,又主要以口服液形式存在。&ldquo 不少消费者将胶原蛋白口服液当美颜饮料喝,而且相信了其铺天盖地宣传的保健功效,但实际上它作为普通食品,功效推广属于违法,而且口服液形式也会暗示和催眠消费者,其具有不错的保健功效甚至药效。&rdquo 一位行业观察人士表示,胶囊和口服液暗示产品的药用性太强,的确应进行规范整顿。
  • 蛋白分子质谱诊断先行者许洋:蛋白质谱目前有三种临床应用
    p   用于生物样品分析的蛋白指纹法,该专利技术被国际顶级科学杂志《科学》以及医学界权威杂志《柳叶刀》评为世界蛋白指纹图谱和蛋白质芯片排名第一的技术。针对这项技术的一些问题,火石创造对许洋博士进行了深度的专访。 /p p style=" text-align: center " img width=" 300" height=" 385" title=" 001.png" style=" width: 300px height: 385px " src=" http://img1.17img.cn/17img/images/201711/insimg/ebf3be8e-c0c2-49d6-9891-a76d207d183f.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong   许洋博士 /strong /p p   许洋博士一直致力于蛋白质组学研究开发,怀揣近五十项蛋白分子质谱诊断技术的自主发明专利。2009年他创办了湖州赛尔迪生物医药科技有限公司,凭借专利产品蛋白指纹图谱仪成为行业领头羊,也成为此类器械行业标准的起草者。 /p p strong   火石:请问您为什么做蛋白质谱? /strong /p p   许洋博士:我研究蛋白质谱是偶然也是必然。在美国纽约著名的Sloan-Kettering研究所单克隆抗体实验室早期研究治疗白血病时,我们制造了全世界第一枚人源化单克隆抗体(抗CD33人源化单抗)。后来我又和顶尖美国公司合作第一个将人源化单克隆抗体做成了靶向药。有了扎实的基础,必然能在更窄的蛋白质谱领域做的更好。 /p p   strong  火石:蛋白质谱当前的临床应用情况如何? /strong /p p   许洋博士:只有拿到医疗器械注册证才算进入临床,蛋白质谱目前只有三种临床应用:对肿瘤的筛查 对早期肾脏疾病的分析 在细菌上的鉴定应用。蛋白质谱在国内仍处于非常早期的阶段,且具有垄断性,极少人能做且在做。 /p p strong   火石:作为国家“千人计划”医疗器械特聘专家,您认为蛋白指纹图谱仪在医疗器械中的角色是什么? /strong /p p   许洋博士:蛋白指纹图谱仪分析的大数据可以生动地比喻为人体疾病的健康地图。 /p p   蛋白指纹究竟是什么?把质谱仪的显示屏中的每一个蛋白质都用一个分子量来表达,这些分子量组合起来就叫蛋白指纹。就像每个人的指纹都是不同的,每种疾病的特定蛋白质表达物也不同,称之为指纹图谱。蛋白指纹图谱技术是由蛋白质芯片及分析仪器——表面加强激光解析电离飞行时间质谱仪两部分组成,可以将病人血清中蛋白质成分的变化记录下来,绘制成蛋白指纹质谱图,并显示样品中各种蛋白的分子量、含量等信息。将这张图谱与正常人、某种疾病病人的谱图或基因库中的谱图进行对照,就能最终发现和捕获新的特异性相关蛋白及其特征。这种方法具有微量、精确、简易、快速的特点,适应于基础和临床等各个领域。 /p p   之所以将蛋白指纹图谱仪分析的大数据比喻为人体疾病的健康地图(MAP),是因为既然β2—微球蛋白是11731、人绒毛膜促性腺激素是37580、转甲状腺素蛋白是13761(数字对于计算机的应用更好管理),而每个蛋白质在质谱仪分析中都是数字,它本身就是大数据。任何物质在质谱底下都是数字,综合起来就是大数据。我把大数据串联起来,就能将分子在身体的MAP做出来。譬如一位吸烟的男士来体检,能发现他吸了烟数年之后肺部出现影像学病理性位点,结合质谱仪分析发现相关的疾病标志物,我们能够模拟出肺部疾病的健康地图,即通过质谱仪检测的健康大数据,可以模拟出该患者肺部出现了数个小红点,点击每个红点后都会解释原因,如显示铅、铬等数据是否超标,以及告诉你相应的对策。这样的技术开启了全智能健康4.0时代。 /p p   Tips:β2—微球蛋白(β2—MG)被认为是诊断早期肾功能损伤的敏感指标,尤其对于糖尿病肾病、高血压肾病、红斑狼疮肾炎的早期诊断具有重要参考价值,因此β2—微球蛋白的测定在临床上是有多种价值的。 /p p    strong 火石:您和您的团队在蛋白质组学研究的技术或者方法上有什么突破吗? /strong /p p   许洋博士:蛋白质作为标志物对肿瘤的诊断,确实没有太大的进展。 /p p   一直以来蛋白质组学研究面临的重大瓶颈是蛋白质分离问题:人体内有十万种蛋白质与衍生物,多数可能与疾病有关联,但这十万种蛋白质与衍生物只有分开后,质谱才能分析清楚。此前蛋白质组学技术中最流行、最通用的蛋白质分离方法是双向电泳,基本上能分离近二千种血浆蛋白质,远远不及十万种,所以成为了瓶颈。 /p p   2006年我提出了一个设想:和蛋白有关的抗体至少有一万多种,那为什么不用抗体来分离蛋白质?这件事一直有人在做,但之前都没有人想到用抗体组把一千个蛋白质一次性快速、实时地分离出来。之后就诞生了免疫质谱分析方法(专利号ZL 200610140652.0),可以在一个抗体组基质上同时捕获多个生物标志,并对捕获的变异的或修饰的生物标志进行质谱精确分析,还可以同时检测多个生物标志群。用免疫组质谱技术能测定抗原变异片段的分子量。另外,还可以将多种疾病特异性抗原的抗体同时标在一个基质点上。 /p p   Tips:免疫质谱分析方法:质谱与抗体分离技术联合应用即为免疫组质谱(Immunomic mass spectrometry,IMS)。免疫组质谱检测为一组多种(类)抗体与质谱联合来精确地鉴别变异或修饰生物标志群的方法。在一个抗体组基质上同时捕获多个生物标志,并对捕获的变异的或修饰的生物标志进行质谱精确分析。可以同时检测多个生物标志群(biomarkers)。 /p p   双向电泳(Two-dimensional electrophoresis):是一种等电聚焦电泳与SDS-PAGE相结合,分辨率更高的蛋白质电泳检测技术。目前是快速成长的蛋白质组学技术中最流行最通用的蛋白质分离方法。目前2D-PAGE能够在同一块凝胶上同步检测和定量数千个蛋白质。 /p p   从整个2015年的政策看,医疗器械行业是受到国家大力扶持的,行业地位与重要性大幅提升,法规向国际化看齐,行业监管不断趋严,医疗器械正成为与药物齐头并进的新兴产业。 /p p    strong 火石:是什么驱动着行业的高增长? /strong /p p   许洋博士:一是需求,老龄化加剧,家庭支付能力增强,导致医疗需求高增长 二是政府加大医疗卫生投入,《医疗器械科技产业“十二五”专项规划》表示,“十二五”期间将扶植形成8~10家产值超过50亿元的大型医疗器械产业集团 三是为配合新医改完善基层医疗建设的目标 四是国内生物技术研发应用进入突破期。 /p p    strong 火石:您认为接下来医疗器械未来发展的特点和前景会是怎么样的? /strong /p p   许洋博士:未来5年,医疗器械和制药占比将会达到1:1。近十年,我国医疗器械市场规模快速增长,国内医疗器械工业总产值从2003年的189亿人民币上升到2013年的1889亿,2013年同比增长21%,增长速度远快于药品。预计在未来5年左右,我国医疗器械行业仍然将保持高速增长。医疗器械行业涉及到医药、机械、电子、塑料等多个行业,中高端医疗器械更是多学科交叉、知识密集、资金密集的高技术产业,研发成本高,决定了只有大型厂商才能在大中型医疗器械方面有所作为。此外,器械“国产化”也会成为必然趋势。 /p p    strong 火石:赛尔迪当前开展的业务、研发的产品有哪些?公司部署战略是怎么样的? /strong /p p   许洋博士:我们现在正在做一张人类的大健康MAP。通过精准医疗计划,基于环境健康大数据,通过蛋白指纹图谱仪完成健康管理。现在的疾病市场最关注的问题分别是:检测0~6岁儿童智力、优生优育(为什么生不出聪明宝宝)、高达5千万的肿瘤人群以及3.5亿的高血压、糖尿病人群。 /p p   其中糖尿病肾病是糖尿病最常见且严重的并发症之一,是糖尿病所致的肾小球微血管病变而引起的蛋白排泄和滤过异常那个渐进性肾功能损害。而微量白蛋白尿即早期糖尿病肾病是可逆的,这不同于大量白蛋白尿即临床糖尿病肾病,因此积极防治早期糖尿病肾病就显得尤为重要。去年底,赛尔迪公司与中国医学科学院北京协和医院签署协议,承担国家对糖尿病肾病体内铅、镉毒素的临床大样本检测。全新升级的蛋白指纹图谱仪,是目前唯一获国家药监局批准、能检测含微量白蛋白、β2—微球蛋白以及泛素3项指标的医疗器械。这对糖尿病肾病的早发现、早治疗具有重大意义。 /p p   赛尔迪接下来将按照个体化精准检测所附带的信息,由这些信息与大数据库交流,提出符合个体化治疗的方案,向个体化精准医学管理方式转变。 /p p   随着大数据时代的来临,“互联网+”概念的提出让医疗健康事业呈现出了新的发展势态和特征。医学知识体系正被大数据、精准医疗所重构,信息化进程提高了知识传递速度与医疗协同效率。 /p p strong   火石:蛋白质组学技术如何助推精准医疗? /strong /p p   许洋博士:常识知道铅、镉会引起糖尿病性肾病。但铅、镉指标不是医院常规检测的项目。如果采取个体化精准治疗,每年常规检查一次体内铅与镉的指标,发现异常就能进行针对性的从尿液排泄的治疗。已经得了肾病正在透析的病人,检测铅与镉指标后进行针对性排泄也会增强治疗效果。利用蛋白指纹图谱仪能够发现早期的肿瘤和心血管标志物,这就会对疾病的治疗带来极大的希望。随着质谱技术在精准医疗的应用,越来越多的个体化标志物将会被发现,人体的蛋白指纹图谱测定将会成为医院的常规工作。 /p p   精准医疗,即考虑每一个体健康的差异,制定个性化的预防和治疗方案。正确的选中一个工具,解决关键问题,这就是精准医疗。基于基因组测序技术、生物医学工具以及大数据工具逐步成熟和完善,精准医疗能够为个体基因特征、环境以及生活习惯进行疾病干预及治疗,但如何尽快与大数据结合才是发展重点。日前我与北京协和医院合作,创立了中国特色的首个百万人疾病与环境毒素数据库与IMS(爱睦世)特检中心:HZIMS2008,首次在复杂疾病系统中构建了基于环境毒素大数据的移动网络数据库的质量控制体系,使我国重大疾病,如高血压、糖尿病、肿瘤的大数据病因学研究处于世界领先。 /p p /p
  • 绘云生物质谱试剂盒获医疗注册证,创始人为代谢组学专家、欧洲科学院院士贾伟
    7月3日,深圳市绘云生物科技有限公司的同型半胱氨酸测定试剂盒(液相色谱—串联质谱法)正式获得广东省药品监督管理局二类医疗器械注册证(注册证编号:粤械注准20232401152)。本产品用于体外定量测定人血清中同型半胱氨酸的浓度,临床上主要用于高同型半胱氨酸血症的辅助诊断及心血管病风险的评价。试剂盒由校准品1~4、质控品1~2、内标准品、还原剂、沉淀剂、稀释液、96孔深孔板和96孔V底板、96孔板铝式覆膜、96孔板硅胶垫组成。其中校准品1~4:含同型半胱氨酸和牛血清白蛋白的冻干粉 质控品1~2:含同型半胱氨酸和牛血清白蛋白的冻干粉 内标准品:含氘代同型半胱氨酸和氢氧化钠的水溶液 还原剂:含二硫苏糖醇的固体粉末 沉淀剂:含甲醇 稀释液:含抗坏血酸的水溶液。  仪器信息网进一步查询到绘云生物的相关信息,2017年,贾伟教授创立深圳绘云生物科技有限公司,瞄准大健康及慢病管理的全新领域,运用现代生物技术,开发慢病诊断、预警及干预的创新技术产品。绘云生物曾于2017年获天使轮融资,2021年完成A轮融资。公司专注于医学健康,开展精准医疗和大健康产业相关产品的研发,着力推动个体化医疗服务进展,是一家集科技服务、健康检测及产品研发为一体的高新科技企业。绘云生物科技有限公司致力于研制和生产在医疗领域、研究领域以及商业实验中使用的体外诊断试剂。除了体外诊断试剂,绘云生物科技有限公司还提供诊断检测以及代谢组学技术服务。
  • 基于抗体和分子印迹构建HAS检测生物传感器
    该研究首次提出了一种聚合物多模波导,其特征在于开创性的匙形几何形状,用于设计表面等离子体共振(SPR)生化传感器。通过在匙形波导上层叠约60nm的金纳米膜来实现等离子体元激发。由于波导的特殊几何结构,确定了两个不同的传感区域:一个位于勺子颈部的平面传感区域和一个位于碗上具有倾斜表面的凹面传感区域。体感度(Sn)与传感器发射/收集光的方式(平行或垂直于波导的主轴)和被询问的感测区域(平面颈部或角碗)相关,表明传感器的性能可以根据所选的测量配置方便地调整。SPR传感器的特性表明,颈部的Sn为750nm/RIU,碗部的Sn为950nm/RIU。为了进一步检查特殊的传感特征并评估应用环境,这两种受体都对人血清白蛋白(HSA)具有特异性:碗区的抗体(高Sn);颈部区域(低Sn)上的分子印迹纳米颗粒(纳米MIP)。实验结果表明,免疫传感器的检测限(LOD)为280 pm,纳米MIP传感器的检测极限(LOD),为4.16fm。HSA多传感器的总体响应包含八个数量级,表明匙形波导提供多尺度检测,并具有设计多分析物传感平台的潜力。图1(A)匙形光波导的几何形状(B)碗面角度的细节(C)等离子体传感平台的设置(D)光导效应的变化可以在未涂覆波导上被理解为光散射的变化。图2基于匙形聚合物波导的实验SPR传感器配置。图3(A)共振波长变化。图4是(A)纳米MIP的功能化感测区域的表面形貌的原子力显微镜3D视图;(B)抗体功能化传感区。图5(A )具有抗体受体的等离子体光谱,获得的HSA浓度范围为0.53-5300nm。(B)相对于空白的共振波长变化的绝对值,绘制为HSA浓度的函数(半对数标度);(C)具有纳米MIPS受体的等离子体光谱,HSA浓度范围为0.53–530 fM。(D)相对于空白的共振波长变化的绝对值。原文题目:Spoon-shaped polymer waveguides to excite multiple plasmonic phenomena: A multisensor based on antibody and molecularly imprinted nanoparticles to detect albumin concentrations over eight orders of magnitude.原文链接:https://doi.org/10.1016/j.bios.2022.114707
  • 【NIFDC文献系列赏析】自发荧光iCIEF表征rhEPO技术新进展
    重组人红细胞生成素(rhEPO)是全球最重要的生物制品之一,可用于治疗由慢性肾脏病、肿瘤化放疗或骨髓增生症导致的贫血。rhEPO是一种高度糖基化的糖蛋白药物,几乎rhEPO分子量的一半是由翻译后修饰的多糖组成。这些多糖包括N端链接寡糖链,其末端为唾液酸残基。唾液酸残基在控制rhEPO在体内半衰期起重要作用,并且影响其稳定性和电荷异质性。 电荷异质性(电荷变异体),即蛋白质表面电荷的改变。改变可以是由于电荷数量增减的直接改变,也可以是由于蛋白构象改变而间接引起的改变。产生电荷异质性的原因有很多,例如异构化、氧化、聚合、末端改变、脱酰胺化和糖基化等。 rhEPO电荷变异体产生最主要的原因是其高度糖基化,尤其是高度唾液酸化。电荷异质性是反应糖基化水平的重要表征之一,属于关键质量属性(Critical Quality Attributes, CQA),监管机构要求必须在整个生产和贮存中对rhEPO的电荷异质性进行检测和表征。使用CZE方法表征rhEPO存在如下难点制剂中rhEPO含量相对较低,μg级别,需要浓缩样品提高检测灵敏度;制剂中含多种辅料组分,可能会对分析结果造成干扰。例如,促红素制剂中含有mg级别的人血白蛋白(HSA),使用CZE方法会对结果造成干扰;CEZ方法需对样品进行复杂前处理,去除辅料干扰。NIFDC解决方案 2021年,中国食品药品鉴定研究院(NIFDC)依据ICH(国际人用药品注册技术协调会)指导原则,利用全柱成像毛细管等电聚焦电泳技术(iCIEF)自发荧光通道表征8种商品化rhEPO电荷异质性,并评估该方法的精密度、准确性、线性、范围和耐用性。 紫外吸收UV280nm是经典icIEF等电聚焦电泳检测通道。而自发荧光(NIF:Native Fluorescence)是指利用芳香族氨基酸(色氨酸、酪氨酸、苯丙氨酸)的自发荧光来实现检测,无需添加染料,提高检测灵敏度。 结果表明,对比CZE-UV(毛细管区带电泳-紫外)方法,iCIEF方法自发荧光通道检测具有更高的分辨率和灵敏度,同时具有快速检测、无需样品前处理、消除辅料干扰等优势。结果展示图1. A:紫外通道检测 B:自发荧光通道检测 图1结果显示,紫外通道检测(A)的信号很低;自发荧光通道检测(B),可以明显看到信号增强,且各个变异体分离效果较好。表1. 紫外通道检测和自发荧光通道检测对比 研究结果表明,两种通道检测下各变异体峰面积比例含量完全一致(表1)。图2. 自发荧光通道检测不同浓度样品表2. 文献报道其它方法定量限 研究人员考察了利用自发荧光通道检测1.25μg/m至20μg/ml浓度范围内样品(图2),各变异体面积比例含量和浓度线性关系良好,R方均不低于0.99。该方法定量限(LOQ)为0.1ug/ml(表2),根据文献报道显示,本方法灵敏度为最高。图3. 不同稀释度下的回收率 研究人员配制了7个不同浓度的样品对该方法准确性进行验证(图3),通过实际测定总峰面积和理论总峰面积来计算回收率,回收率在80-105%之间。图4. 耐用性评估 研究人员对方法耐用性进行评估(图4),比较不同两性电解质浓度、尿素浓度、不同毛细管以及不同样品放置时间情况下的各变异体等电点和峰面积百分比的差异。结果表明,变异体等电点差异不超过0.1,峰面积百分比RSD%不超过5%,方法耐用性良好。图5. 自发荧光检测模式表征8种商品化rhEPO电荷变异体 为了证明该方法对商品化rhEPO表征的适用性,研究人员利用所建立方法,对不同企业的8种商品化rhEPO电荷变异体进行表征(图5)。DP1-6有相似峰型,在DP3和DP6中,有一额外明显的小峰。DP7峰形独特,可能由于与其他DP相比糖基化不同所造成。结论 NIFDC利用ProteinSimple全柱成像毛细管等电聚焦电泳技术自发荧光检测通道建立并证明了用于rhEPO电荷异质性表征的方法平台。该平台有如下特点:无需样品预处理,可直接表征rhEPO;自发荧光通道检测的rhEPO峰型与紫外吸收通道检测得到的峰型相同;与CZE-UV或icIEF紫外吸收通道检测相比,自发荧光检测灵敏度更高;不受高浓度辅料干扰(如人血清白蛋白和聚山梨酯,会干扰CZE分析,CZE 分析前,须通过多步分离步骤去除这些辅料);该平台方法快速且操作简易。扫描下方二维码,获取ProteinSimplerhEPO表征解决方案参考文献:1. Li, Xiang et al. “Capillary isoelectric focusing with UV fluorescence imaging detection enables direct charge heterogeneity characterization of erythropoietin drug products.” Journal of chromatography. A vol. 1643 (2021): 462043.关于我们ProteinSimple是美国纳斯达克上市公司Bio-Techne集团(NASDAQ:TECH)旗下行业领先的蛋白质分析品牌。我们致力于研发和生产更精准、更快速、更灵敏的创新性蛋白质分析工具,包括蛋白质电荷表征、蛋白质纯度分析、蛋白质翻译后修饰定量检测、蛋白质免疫实验如Western和ELISA定量检测蛋白质表达等技术,帮助疫苗研发、生物制药、细胞治疗、基因治疗、生物医学和生命科学等领域科学家解决蛋白质分析问题,深度解析蛋白质和疾病相互关系。联系我们地址:上海市长宁路1193号来福士广场3幢1901室 电话:021-60276091热线:4000-863-973邮箱:PS-Marketing.CN@bio-techne.com网址:www.bio-techne.com
  • 最新成果:黄超兰与郑敏团队合作揭示新冠康复患者血清蛋白分子图谱
    当前,新型冠状病毒肺炎(COVID-19)仍在全球范围内持续威胁着人类的健康,截止到2021年6月初,新冠肺炎确诊病例已多达1.72亿,死亡人数超过370万。新冠爆发早期的研究主要集中在探索流行病学和发病机制上,随着人们对新冠病毒的认识逐渐加强,越来越多的临床专家开始关注新冠康复患者的预后评估。此前有研究指出新冠肺炎康复患者会持续出现不同程度的症状和意想不到的实质性器官功能障碍,然而这些后遗症发生的分子机制尚未明确。  近日,北京大学医学部精准医疗多组学研究中心黄超兰教授团队,和浙江大学第一附属医院郑敏教授团队开展合作研究,首次关注新冠肺炎康复患者的血清蛋白表达变化。通过蛋白质组学数据与临床数据的整合分析,提出康复患者在1个月后仍会出现胆固醇代谢紊乱和心肌受损。该研究以“Proteomic analysis identifies prolongeddisturbances in pathways related to cholesterol metabolism and myocardiumfunction in the COVID-19 recovery stage”为题于2021年6月3日线上发表在Journal of Proteome Research期刊上。  图. 基于DIA-PASEF方法的定量蛋白质组学分析  研究者对来自健康志愿者,COVID-19中症及重症病人的患病期和康复期的血清样本开展了基于DIA-PASEF方法的定量蛋白质组学分析。结果显示,与健康对照组相比,康复期的中症和重症患者体内分别有243和163个蛋白质发生了显著变化,其中,与患病期重合的蛋白数量分别为113和88个。进一步的研究结果表明,康复患者体内未恢复至正常水平的蛋白主要参与了胆固醇代谢、转运、酯化,及心肌肥大、心肌组织发育、心肌细胞分化、心血管系统发育等相关通路。值得关注的是,通过系统地统计600名新冠肺炎患者、1177名甲型流感患者和522名H7N9感染患者的总胆固醇水平数据,研究者发现仅新冠肺炎患者的血清总胆固醇在发病后呈上升趋势。相关研究结果有助于进一步探索针对新冠肺炎康复患者的临床治疗决策设计,未来有效改善患者的预后。本研究基于前沿的高通量DIA定量蛋白质组学技术,用高质量的数据为全面开展新冠康复患者的预后评估提供了可靠的重要分子基础和机制信息。此前,黄超兰主任领衔的多组学中心团队还与高福院士领衔的多学科团队紧密合作,揭示早期的新冠感染患者存在显著的免疫抑制,并首次提出COVID-19的发病机制或存在“两阶段”模式。多组学中心在黄超兰教授的带领下,将继续基于临床,前沿技术和基础学科的深度交叉融合,开展协同创新研究,持续为抗击新冠病毒做出多方面的贡献。 北京大学医学部精准医疗多组学研究中心主任黄超兰教授,浙江大学第一附属医院郑敏教授为本文的共同通讯作者 北京大学医学部精准医疗多组学研究中心陈扬副研究员,浙江大学第一附属医院姚航平研究员,北京大学医学部精准医疗多组学研究中心博士研究生张楠,浙江大学第一附属医院吴杰副研究员为本文的共同一作。  原文链接:  https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00054
  • 超微量分光光度计在核酸定量和分析中的应用
    超微量分光光度计在核酸定量和分析中的应用分光光度测定法是一项定量和分析生物成分的成熟技术。其中,核酸是生物实验室最常检测的生物成分之一。确定这些样品的浓度和纯度对许多下游实验至关重要。核酸主要吸收260nm下的紫外光,其浓度可以应用朗伯比尔定律通过它们的相关消光系数和样品光程计算出来。首先,260nm的紫外光直接照射样品,并且穿过样品,而另一边的光电检测器则测定有多少光被吸收。通过对照参比(一般是样品稀释液),可以定量样品中的核酸浓度。样品纯度是核苷酸定量的一个重要指标。尽管不是确定纯度最准确的方法,A260/A280和A260/A230依然可以用来粗略估计蛋白和化学成分的污染程度。超微量分光光度计是一款多用途的紫外-可见(UV-Vis)超微量分光光度计,尤其是在分析核酸样品方面。在这一应用指南中,我们展示了超微量紫外分光光度计是如何以高准确度和高一致性来定量(浓度)和定性(样品纯度)分析核酸样品的。接下来让我们一起走进我们实验室的几个实验?(1)样品交叉污染:实验过程:样品交叉污染通过使用我们NanoBio200超微量分光光度计滴样交替检测鲑鱼精(dsDNA)和胎牛血清白蛋白(BSA)进行评价。超纯水作为参比。超微量基座在每次读数完成后用不起毛的纸擦拭干净。实验结果如下:图一:样品交叉污染。鲑鱼精(dsDNA)和胎牛血清白蛋白(BSA)在NanoBio200超微量分光光度计上滴样交替检测。表一:“样品交叉污染”实验中包含的数据从图1和表1中的结果我们可以看出,经过擦镜纸简单擦拭后,后续实验中没有明显的样品交叉污染。(2)样品体积比较:实验过程:鲑鱼精(dsDNA)采用超TE稀释,分别是1.0μL, 2.0μL和2.5 μL,在超微量中滴样检测(n = 5)。TE作为参比。参比体积与样品体积相同。实验结果:图二:体积再现性。1ul、2ul、2.5ul体积的鲑鱼精(dsDNA)在NanoBio200超微量分光光度计上读数。表二:不同体积比较数据从图二和表二中,我们可以看出不同体积显示出非常一致的计算浓度(n = 5),说明我们体积的多少对样品的浓度测定影响几乎没有,只要形成完美的液柱即可。为了得到zui好的结果,我们建议使用2ul体积,因为其更易加样。(3)标准曲线的线性:实验过程:鲑鱼精DNA溶于在TE缓冲溶液(PH=8.0)中起始浓度为2000ng/μL的双链DNA(dsDNA)经两倍系列稀释。TE作为空白,每个样品浓度都在0.5mm超微量基座上样读3次。利用预设好的DNA定量方法自动计算出dsDNA浓度,CdsDNA=50[A260(10mm)-A340(10mm)]ng/ul。之后,数据可以使用Excel导入绘制图表,曲线拟合用于显示标准曲线的线性。实验结果:图三:计算的DNA浓度vs稀释因子。起始浓度为2154ng/μl鲑鱼精DNA经过两倍系列稀释所显示出的稀释因子和DNA浓度之间的关系,结果来源于NanoBio200。这一曲线展示了R2值为0.9991的完美线性关系。从图三中,我们可以看出NanoBio200展示出DNA浓度和稀释因子之间的线性关系。从这个实验中,我们可以得出此台NanoBio200的zui低检测浓度为5ng/μL DNA。总结:NanoBio200超微量分光光度计能够进行非常灵敏的核酸样品定量及分析。如以上所示,低至1 μL的样品也能在超微量中得到一致性很高的读数。同时, 还具有非常宽的检测范围(5 ng/μL to 2154 ng/μL)。并且,自带7寸电容触摸屏为研究者提供了重要信息。从图四我们可以很直观的看到样品浓度和纯度。小巧灵活的体积,加上它不需电脑联机,单机即可检测,检测数据可打印,还可以通过USB等方式输出等优点。使得NanoBio200超微量分光光度计将成为在任何实验室环境下进行核酸定量和分析的理想选择。
  • 为什么胎牛血清比新生牛血清价格要高
    购买过牛血清的生产实验人员都知道,胎牛血清和新生牛血清价格有很大不同。胎牛血清价格很贵,新生牛血清相对便宜。同样是牛血清,为什么会产生这样大的差异呢?先来看看牛血清大体的分类:胎牛血清、新生牛血清和小牛血清,而划分三者之间的是根据对不同年龄段的牛采血所得到的不同的血清产品。胎牛血清(Fetal Bovine Serum)是在母牛怀孕5-8个月时,通过胎牛心脏穿刺采血获取的血清。新生牛血清(Newborn Calf Serum)是来自刚出生~出生后2周内的新生牛静脉取血。小牛血清(Calf Serum)采自出生后2周至1年内的小牛静脉取血。牛血清作为实验室广泛推崇的天然培养被应用于细胞培养。但这三种牛血清由于取血时间不同,其成分存在着一些差异。胎牛血清含有胚胎发育所必需的生长因子。而一些生长因子到胎牛10个月时就消失了。胎牛血清和新生牛血清相比,两者所含的促细胞生长因子、促贴附因子、激素及其他活性物质等组份与比例不同。胎牛血清因富含丰富的营养还有细胞生成必须的成分所以大多时候用来培养干细胞等一些珍贵难养的细胞,而新生牛血清和小牛血清由于其性价比高价格低廉等因素更适合大量采购使用,在生物工业和疫苗生产等领域应用更多。某些细胞必需胎牛血清才能生长,而有些细胞只需新生牛血清即可。使用浓度一般在5%-10%,有特殊要求的浓度在20%。另需要说明的是,不同牛血清除了来源不同,处理工艺和检测指标也有区别,因此也导致了成本和价格的不同。
  • 2015年版《中国药典》草案发布 或由三部变为四部
    2014年3月28日,国家药典委员会官网发布关于《中国药典》2015年版通则(草案)公开征求意见的通知。通知中称,目前国家药典委组织相关专业委员会已完成了通则(附录)编制及编码的研究工作,并于2014年1月通过国家药典委员会官网的药典论坛向全体药典委员征求意见。   《中国药典》2015年版总(草案)则征求意见稿显示,2010年版《中国药典》中药、化学药、生物制品三部分别收载的附录凡例、制剂通则、分析方法指导原则、药用辅料等三合一,独立成卷作为第四部。   2015版《中国药典》通则目录及增修订征求意见稿增订了多种仪器和方法,如电感耦合等离子体质谱法,(拟)新增了拉曼光谱法、超临界流体色谱法、临界点色谱法、农药残留量测定法、黄曲霉毒素测定法,(拟)新增了抑菌效力检查法、组胺类物质检查法、中药材DNA条形码分子鉴定法、元素形态及其价态测定法等。   通知原文如下: 关于对《中国药典》2015年版通则(草案)公开征求意见的通知   各有关单位:   根据《中国药典》2015年版编制大纲有关要求,我委组织相关专业委员会开展了药典一、二、三部附录整合、增修订及单独成卷工作。经过各相关专业委员会的努力和各有关单位的大力配合,目前已完成了通则(附录)编制及编码的研究工作,并于2014年1月通过我委网站的药典论坛向全体药典委员征求意见。根据反馈意见和建议,目前已形成了&ldquo 《中国药典》2015年版总则(草案)&rdquo 的整体框架和内容。现将有关事项通知并说明如下:   一、为进一步完善新版药典总则内容,我委将对药典总则(草案)整体框架和药典通则内容(征求意见稿)分批在网站公开征求意见,现将第一批征求意见稿予以公示,即日起公示期为三个月。   二、独立一卷的名称为&ldquo 《中国药典》2015年版总则&rdquo ,包括现有药典一部、二部、三部的附录内容和药用辅料品种正文(详见附件1)。   三、通则编码拟采用&ldquo XXYY&rdquo 两层四位罗马数字来表示,其中XX代表现有附录编码的大罗马字母(Ⅰ、Ⅱ、Ⅲ&hellip &hellip ),YY代表现有附录编码的英文字母(A、B、C&hellip &hellip )。新旧附录/通则编码对照表详见附件2。   四、根据文字整合和试验研究,已完成的增修订通则草案详见附件3。请相关单位认真研核,若有异议,可填写反馈意见表(见附件4.),并附相关说明及/或实验数据,以来文来函或电子邮件的方式反馈我委。未完成的增修订内容将在第二批进行公示。   五、为保证《中国药典》2015年版的顺利实施,我委对药典通则内容在网上公示的同时,也将其进行汇编成册,并于2014年4月份举办新版药典通则增修订内容的宣讲班,以便广大药品标准工作者更好地了解《中国药典》2015年版总则的编制情况,请予以关注。   六、联系人及联系方式:   许华玉(电话:010&ndash 67079521)   靳桂民(电话:010&ndash 67079527)   洪小栩(电话:010&ndash 67079593)   传 真:010&ndash 67152769   E-mail: ywzhc@chp.org.cn   附件:   1. 《中国药典》2015年版总则(草案)   2. 新旧附录/通则编码对照表   3. 《中国药典》2015年版通则目录及增修订内容   0100 制剂通则   0101 片剂   0102 注射剂   0103 胶囊剂   0104 颗粒剂   0105 眼用制剂   0106 鼻用制剂   0107 栓剂   0108 软膏剂   0109 乳膏剂   0110 糊剂   0111 吸入制剂   0112 喷雾剂   0113 气雾剂   0114 凝胶剂   0115 散剂   0116 滴丸剂   0117 糖丸   0118 糖浆剂   0119 搽剂   0120 涂剂   0121 涂膜剂   0122 酊剂   0123 贴剂   0124 贴膏剂   0125 口服溶液剂口服混悬剂口服乳剂   0126 植入剂   0127 膜剂   0128 耳用制剂   0129 洗剂   0130 冲洗剂   0131 灌肠剂   0181 丸剂   0182 合剂   0183 锭剂   0184 煎膏剂(膏滋)   0185 胶剂   0186 酒剂   0187 流浸膏剂与浸膏剂   0188 膏药   0189 露剂   0190 茶剂   0200 其他通则   0211 药材和饮片取样法(未修订)   0212 药材和饮片检定通则(第二增补本)   0213 炮制通则(未修订)   0251 药用辅料通则   0261 制药用水   0271 药包材通则(待定)   0272 玻璃容器(待定)   0291 国家药品标准物质通则(第二增补本)   0300   0301 一般鉴别试验(第二增补本)   0400 光谱法   0401 紫外-可见分光光度法   0402 红外分光光度法   0405 荧光分光光度法   0406 原子吸收分光光度法   0407 火焰光度法   0411 电感耦合等离子体原子发射光谱法   0412 电感耦合等离子体质谱法(增订)   0421 拉曼光谱法(新增)   0431 质谱法   0441 核磁共振波谱法   0451 X射线衍射法   0500 色谱法(未修订)   0501 纸色谱法   0502 薄层色谱法   0511 柱色谱法(未修订)   0512 高效液相色谱法   0513 离子色谱法   0514 分子排阻色谱法   0521 气相色谱法   0531 超临界流体色谱法(拟新增)   0532 临界点色谱法(拟新增)   0541 电泳法   0542 毛细管电泳法   0600 物理常数测定法   0601 相对密度测定法(未修订)   0611 馏程测定法   0612 熔点测定法   0613 凝点测定法   0621 旋光度测定法   0622 折光率测定法(未修订)   0631 pH值测定法   0632 渗透压摩尔浓度测定法   0633 黏度测定法   0661 热分析法(第二增补本)   0681 制药用水电导率测定法(未修订)   0682 制药用水中总有机碳测定法(未修订)   0700 其他测定法Other Assays   0701 电位滴定法与永停滴定法(未修订)   0702 非水溶液滴定法   0703 氧瓶燃烧法(未修订)   0704 氮测定法   0711 乙醇量测定法   0712 甲氧基、乙氧基与羟丙氧基测定法(未修订)   0713 脂肪与脂肪油测定法(未修订)   0721 维生素A测定法(未修订)   0722 维生素D测定法(未修订)   0731 蛋白质含量测定法   0800 限量检查法   0801 氯化物检查法(未修订)   0802 硫酸盐检查法(未修订)   0803 硫化物检查法(未修订)   0804 硒检查法(未修订)   0805 氟检查法(未修订)   0806 氰化物检查法   0807 铁盐检查法(未修订)   0808 铵盐检查法(第二增补本)   0821 重金属检查法(第一增补本)   0822 砷盐检查法(未修订)   0831 干燥失重测定法   0832 水分测定法   0841 炽灼残渣检查法(第二增补本)   0842 易炭化物检查法(未修订)   0861 残留溶剂测定法(未修订)   0871 甲醇量检查法   0872 合成多肽中的醋酸测定法(未修订)   0873 2-乙基己酸测定法(未修订)   0900 物理特性检查法   0901 溶液颜色检查法   0902 澄清度检查法   0903 不溶性微粒检查法   0904 可见异物检查法   0921 崩解时限检查法   0922 融变时限检查法(未修订)   0923 片剂脆碎度检查法(未修订)   0931 溶出度测定法(合并释放度测定法)   0941 含量均匀度检查法   0942 最低装量检查法   0951 吸入制剂微细粒子的空气动力学评价方法(原雾滴粒分布测定法)   0952 贴膏剂黏附力测定法   0981 结晶性检查法(未修订)   0982 粒度和粒度分布测定法(第一增补本)   0983 锥入度测定法   1000 分子生物学技术   1001 核酸分子鉴定法(待定)   1100 生物检查法   1101 无菌检查法   1105 非无菌产品微生物限度检查:微生物计数法   1106 非无菌产品微生物限度检查:控制菌检查法   1107 非无菌药品微生物限度标准   1121 抑菌效力检查法(第三增补本、新增)   1141 异常毒性检查法   1142 热原检查法   1143 细菌内毒素检查法   1144 升压物质检查法  1145 降压物质检查法(未修订)   1146 组胺类物质检查法(新增)   1147 过敏反应检查法(未修订)   1148 溶血与凝聚检查法   1200 生物活性测定法   1201 抗生素微生物检定法(未修订)   1202 青霉素酶及其活力测定法(未修订)   1205 升压素生物测定法   1206 细胞色素C活力测定法(未修订)   1207 玻璃酸酶测定法(未修订)   1208 肝素生物测定法(第三增补本)   1209 绒促性素生物测定法   1210 缩宫素生物测定法   1211 胰岛素生物测定法(未修订)   1212 精蛋白锌胰岛素注射液延缓作用检查法(未修订)   1213 硫酸鱼精蛋白生物测定法(未修订)   1214 洋地黄生物测定法(未修订)   1215 葡萄糖酸锑钠毒力检查法(未修订)   1216 卵泡刺激素生物测定法   1217 黄体生成素生物测定法   1218 降钙素生物测定法   1219 生长激素生物测定法(未修订)   1401 放射性药品检定法(未修订)   1421 灭菌法(未修订)   1431 生物检定统计法(未修订)   2000 中药相关检查方法   2001 显微鉴别法(第二增补本)   2002 中药材DNA条形码分子鉴定法(新增)   2101 膨胀度测定法(第二增补本)   2102 膏药软化点测定法(未修订)   2201 浸出物测定法(未修订)   2202 鞣质含量测定法(第二增补本)   2203 桉油精含量测定法(未修订)   2204 挥发油测定法(未修订)   2301 药材和饮片杂质检查法   2302 灰分测定法(未修订)   2303 酸败度测定法(未修订)   2321 铅、镉、砷、汞、铜测定法(未修订)   2322 元素形态及其价态测定法(拟新增)   2331 二氧化硫残留量测定法   2341 农药残留量测定法(第二增补本+增订)   2351 黄曲霉毒素测定法(第二增补本+增订)   2400 中药注射剂有关物质检查法(拟修订)   2401 中药注射剂蛋白质检查法(待定)   2402 中药注射剂鞣质检查法(待定)   2403 中药注射剂树脂检查法(待定)   2404 中药注射剂草酸盐检查法(待定)   2405 中药注射剂钾离子检查法(待定)   2406 中药注射剂高分子聚合物检查法(待定)   3000 生物制品相关检查方法(待定)   3100 含量测定法   3101 固体总量测定法   3102 唾液酸测定法   3103 磷测定法   3104 硫酸铵测定法   3105 亚硫酸氢钠测定法   3106 氢氧化铝(或磷酸铝)测定法   3107 氯化钠测定法   3108 枸橼酸离子测定法   3109 辛酸钠测定法   3110 乙酰色氨酸测定法   3111 苯酚测定法   3112 间甲酚测定法   3113 硫柳汞测定法   3114 对羟基苯甲酸甲酯、对羟基苯甲酸丙酯含量测定法   3115 O-乙酰基测定法   3116 己二酰肼含量测定法   3117 高分子结合物含量测定法   3118 人血液制品中糖及糖醇测定法   3119 人血白蛋白多聚体测定法   3120 人免疫球蛋白类制品IgG单体加二聚体测定法   3121 人免疫球蛋白类制品甘氨酸含量测定法   3122 重组人粒细胞刺激因子蛋白质含量测定法   3123 组胺人免疫球蛋白中游离磷酸组胺测定法   3124 IgG含量测定法   3200 化学残留物测定法   3201 乙醇残留量测定法   3202 聚乙二醇残留量测定法   3203 聚山梨酯80残留量测定法   3204 戊二醛残留量测定法   3205 磷酸三丁酯残留量测定法   3206 碳二亚胺(EDAC)残留量测定法   3207 游离甲醛测定法   3208 人血白蛋白铝残留量测定法   3300  微生物检查法   3301 支原体检查法   3302 病毒外源因子检查法   3303 鼠源性病毒检查法   3400  生物测定法   3401 免疫印迹法   3402 免疫斑点法   3403 免疫双扩散法   3404 免疫电泳法   3405 肽图检查法   3406 质粒丢失率检查法   3407 SV40核酸序列检查法   3408 外源性DNA残留量测定法   3409 抗生素残留量检查法(培养法)   3410 激肽释放酶原激活剂测定法   3411 抗补体活性测定法   3412 牛血清白蛋白残留量测定法   3413 大肠杆菌菌体蛋白质残留量测定法   3414 假单胞菌菌体蛋白质残留量测定法   3415 酵母工程菌菌体蛋白质残留量测定法   3416 类A血型物质测定法   3417 鼠IgG残留量测定法   3418 无细胞百日咳疫苗鉴别试验(酶联免疫法)   3419 抗毒素、抗血清制品鉴别试验(酶联免疫法)   3420 A群脑膜炎球菌多糖分子大小测定法   3421 伤寒Vi多糖分子大小测定法   3422 b型流感嗜血杆菌结合疫苗多糖含量测定法   3423 人凝血酶活性检查法   3424 活化的凝血因子活性检查法   3425 肝素含量测定法   3426 抗A、抗B血凝素测定法   3427 人红细胞抗体测定法   3428 人血小板抗体测定法   3429 猴体神经毒力试验   3500  生物活性/效价测定法   3501 重组乙型肝炎疫苗(酵母)体外相对效力检查法   3502 甲型肝炎灭活疫苗体外相对效力检查法   3503 人用狂犬病疫苗效价测定法   3504 吸附破伤风疫苗效价测定法   3505 吸附白喉疫苗效价测定法   3506 类毒素絮状单位测定法   3507 白喉抗毒素效价测定法   3508 破伤风抗毒素效价测定法   3509 气性坏疽抗毒素效价测定法   3510 肉毒抗毒素效价测定法   3511 抗蛇毒血清效价测定法   3512 狂犬病免疫球蛋白效价测定法   3513 人免疫球蛋白中白喉抗体效价测定法   3514 人免疫球蛋白Fc段生物学活性测定法   3515 抗人T细胞免疫球蛋白效价测定法(E玫瑰花环形成抑制试验)   3516 抗人T细胞免疫球蛋白效价测定法(淋巴细胞毒试验)   3517 人凝血因子Ⅱ效价测定法   3518 人凝血因子Ⅶ效价测定法   3519 人凝血因子Ⅸ效价测定法   3520 人凝血因子Ⅹ效价测定法   3521 人凝血因子Ⅷ效价测定法   3522 重组人促红素体内生物学活性测定法   3523 干扰素生物学活性测定法   3524 重组人白介素-2生物学活性测定法   3525 重组人粒细胞刺激因子生物学活性测定法   3526 重组人粒细胞巨噬细胞刺激因子生物学活性测定法   3527 重组牛碱性成纤维细胞生长因子生物学活性测定法   3528 重组人表皮生长因子生物学活性测定法   3529 重组链激酶生物学活性测定法   3600  特定生物原材料/动物   3601 无特定病原体鸡胚质量检测要求   3602 实验动物微生物学检测要求   3603 实验动物寄生虫学检测要求   3604 新生牛血清检测要求   3611 细菌生化反应培养基   8000 试剂和标准物质(待定)   8001 试药   8002 试液   8003 试纸   8004 缓冲液   8005 指示剂与指示液   8006 滴定液   8061 标准物质   9000 指导原则   9001 原料药与药物制剂稳定性试验指导原则(待定)   9011 药物制剂人体生物利用度和生物等效性试验指导原则(待定)   9012 生物样品定量分析方法指导原则(待定)   9013 缓释、控释和迟释制剂指导原则(未修订)   9014 微粒制剂指导原则(待定)   9015 注射剂制备指导原则(拟新增,待定)   9101 药品质量标准分析方法验证指导原则   9102 药品杂质分析指导原则   9103 药物引湿性试验指导原则(未修订)   9104 近红外分光光度法指导原则(未修订)   9105 多晶型药品的质量控制技术与方法指导原则(新增)   9106 基于基因芯片技术的药物安全性和有效性评价技术指导原则(新增)   9201 药品微生物检验替代方法验证指导原则(未修订)   9202 微生物限度检查法应用指导原则   9203 药品微生物实验室质量管理指导原则(第三增补本)   9204 微生物鉴定指导原则(新增)   9205药品洁净实验室微生物监测和控制指导原则(新增)   9206 无菌检查用隔离系统验证指导原则(新增)   9301 注射剂安全性检查法应用指导原则   9302 有害残留物限量制定指导原则(新增)   9401 中药生物活性测定指导原则   9501 正电子类放射性药品质量控制指导原则(未修订)   9502 锝[99mTc]放射性药品质量控制指导原则(未修订)   9701 药用辅料性能指标研究指导原则(第三增补本、拟新增)   9901 国家药品标准物质制备指导原则(第二增补本)   附表 原子量表(未修订)   附表 国际单位转换表(待定)   4. 《征求意见稿》反馈意见表 国家药典委员会 2014年3月28日
  • 2015版中国药典总则第二次公开征求意见
    根据《中国药典》2015年版编制工作进度安排,第一批拟增修订通则草案已于2014年3月在国家药典委员会网站面向社会各界公开征求意见。2014年6~7月国家药典委员会陆续组织召开各相关专业委员会对《中国药典》2015年版通则内容进行了全面审定,并对第一批公示内容的反馈意见和建议进行了研讨,根据会议讨论审核意见,经整理形成了第二次总则(草案)征求意见稿(详见附件)。   现将有关事项通知并说明如下:   一、为进一步完善2015年版药典总则内容,现将药典总则(草案)整体框架和药典通则第二次征求意见稿内容在我委网站公开征求意见,即日起公示期一个月。   二、独立一卷的名称为&ldquo 《中国药典》2015年版总则&rdquo ,包括现有药典一部、二部、三部的附录(现改为&ldquo 通则&rdquo )内容和药用辅料品种正文(详见附件1)。   三、通则编码按照&ldquo XXYY&rdquo 四位罗马数字表示,其中XX代表现有附录编码的大罗马字母(Ⅰ、Ⅱ、Ⅲ&hellip &hellip ),YY代表现有附录编码的英文字母(A、B、C&hellip &hellip )。新旧附录/通则编码对照表详见附件2。   四、拟增修订的通则草案详见附件3。请相关单位认真研核,若有异议,请附相关说明及/或实验数据,及时来文来函(见附件4)。   五、联系人及联系方式:   许华玉(电话:010&ndash 67079521)   尚 悦(电话:010&ndash 67079578)   靳桂民(电话:010&ndash 67079527)   传 真:010&ndash 67152769   E-mail: ywzhc@chp.org.cn   附件: 1. 《中国药典》2015年版总则(草案) 2. 新旧附录/通则编码对照表 3. 药典通则目录及增修订内容 《中国药典》2015年版通则目录 编号 通则名称 0100 制剂通则 0101 片剂 0102 注射剂 0103 胶囊剂 0104 颗粒剂 0105 眼用制剂 0106 鼻用制剂 0107 栓剂 0108 丸剂 0109 软膏剂、乳膏剂 0110 糊剂 0111 吸入制剂(第一次公示) 0112 喷雾剂 0113 气雾剂(第一次公示) 0114 凝胶剂 0115 散剂 0116 糖浆剂 0117 搽剂 0118 涂剂 0119 涂膜剂 0120 酊剂 0121 贴剂 0122 贴膏剂 0123 口服溶液剂 口服混悬剂 口服乳剂 0124 植入剂 0125 膜剂 0126 耳用制剂 0127 洗剂 0128 冲洗剂 0129 灌肠剂 0181 合剂 0182 锭剂 0183 煎膏剂(膏滋) 0184 胶剂 0185 酒剂 0186 膏药 0187 露剂 0188 茶剂 0189 流浸膏剂与浸膏剂 0200 其他通则 0211 药材和饮片取样法(未修订) 0212 药材和饮片检定通则(第二增补本) 0213 炮制通则(未修订) 0251 药用辅料 0261 制药用水 0291 国家药品标准物质通则(第二增补本) 0300 0301 一般鉴别试验(第二增补本) 0400 光谱法 0401 紫外-可见分光光度法 0402 红外分光光度法 0405 荧光分光光度法 0406 原子吸收分光光度法 0407 火焰光度法 0411 电感耦合等离子体原子发射光谱法 0412 电感耦合等离子体质谱法 0421 拉曼光谱法 0431 质谱法 0441 核磁共振波谱法 0451 X射线衍射法 0500 色谱法(未修订) 0501 纸色谱法0502 薄层色谱法 0511 柱色谱法(未修订) 0512 高效液相色谱法 0513 离子色谱法 0514 分子排阻色谱法 0521 气相色谱法(未修订) 0531 超临界流体色谱法 0532 临界点色谱法 0541 电泳法 0542 毛细管电泳法 0600 物理常数测定法 0601 相对密度测定法(未修订) 0611 馏程测定法 0612 熔点测定法 0613 凝点测定法 0621 旋光度测定法 0622 折光率测定法(未修订) 0631 pH值测定法 0632 渗透压摩尔浓度测定法 0633 黏度测定法 0661 热分析法(第二增补本) 0681 制药用水电导率测定法(未修订) 0682 制药用水中总有机碳测定法(未修订) 0700 其他测定法 0701 电位滴定法与永停滴定法(未修订) 0702 非水溶液滴定法 0703 氧瓶燃烧法(未修订) 0704 氮测定法 0711 乙醇量测定法 0712 甲氧基、乙氧基与羟丙氧基测定法(未修订) 0713 脂肪与脂肪油测定法(未修订) 0721 维生素A测定法(未修订) 0722 维生素D测定法(未修订) 0731 蛋白质含量测定法 0800 限量检查法 0801 氯化物检查法(未修订) 0802 硫酸盐检查法(未修订) 0803 硫化物检查法(未修订) 0804 硒检查法(未修订) 0805 氟检查法(未修订) 0806 氰化物检查法 0807 铁盐检查法(未修订) 0808 铵盐检查法(第二增补本) 0821 重金属检查法(第一增补本) 0822 砷盐检查法(未修订) 0831 干燥失重测定法 0832 水分测定法 0841 炽灼残渣检查法(第二增补本) 0842 易炭化物检查法(未修订) 0861 残留溶剂测定法(未修订) 0871 甲醇量检查法 0872 合成多肽中的醋酸测定法(未修订) 0873 2-乙基己酸测定法(未修订) 0900 物理特性检查法 0901 溶液颜色检查法 0902 澄清度检查法 0903 不溶性微粒检查法 0904 可见异物检查法 0921 崩解时限检查法 0922 融变时限检查法(未修订) 0923 片剂脆碎度检查法(未修订) 0931 溶出度测定法(合并释放度测定法) 0941 含量均匀度检查法 0942 最低装量检查法 0951 吸入制剂微细粒子空气动力学特性测定法 0952 粘附力测定法 0981 结晶性检查法(未修订) 0982 粒度和粒度分布测定法(第一增补本) 0983 锥入度测定法 1000 分子生物学技术 1100 生物检查法 1101 无菌检查法 1105 非无菌产品微生物限度检查:微生物计数法 1106 非无菌产品微生物限度检查:控制菌检查法 1107 非无菌药品微生物限度标准 1121 抑菌效力检查法 1141 异常毒性检查法 1142 热原检查法 1143 细菌内毒素检查法 1144 升压物质检查法 1145 降压物质检查法(未修订) 1146 组胺类物质检查法 1147 过敏反应检查法(未修订) 1148 溶血与凝聚检查法 1200 生物活性测定法 1201 抗生素微生物检定法(未修订) 1202 青霉素酶及其活力测定法(未修订) 1205 升压素生物测定法 1206 细胞色素C活力测定法(未修订) 1207 玻璃酸酶测定法(未修订) 1208 肝素生物测定法(第三增补本) 1209 绒促性素生物测定法 1210 缩宫素生物测定法 1211 胰岛素生物测定法(未修订) 1212 精蛋白锌胰岛素注射液延缓作用检查法(未修订) 1213 硫酸鱼精蛋白生物测定法(未修订) 1214 洋地黄生物测定法(未修订) 1215 葡萄糖酸锑钠毒力检查法(未修订) 1216 卵泡刺激素生物测定法 1217 黄体生成素生物测定法 1218 降钙素生物测定法 1219 生长激素生物测定法(未修订) 1401 放射性药品检定法(详见药典委网站:关于&ldquo 附录ⅩⅢ放射性药品检定法&rdquo 修订草案的公示) 1421 灭菌法(未修订) 1431 生物检定统计法(未修订) 2000 中药相关检查方法 2001 显微鉴别法(第二增补本) 2101 膨胀度测定法(第二增补本) 2102 膏药软化点测定法(未修订) 2201 浸出物测定法(未修订) 2202 鞣质含量测定法(第二增补本) 2203 桉油精含量测定法(未修订) 2204 挥发油测定法(未修订) 2301 药材和饮片杂质检查法 2302 灰分测定法(未修订) 2303 酸败度测定法(未修订) 2321 铅、镉、砷、汞、铜测定法(未修订) 2322 汞和砷元素形态及其价态测定法 2331 二氧化硫残留量测定法 2341 农药残留量测定法 2351 黄曲霉毒素测定法 2400 中药注射剂有关物质检查法(未修订) 3000 生物制品相关检查方法 3100 含量测定法 3101 固体总量测定法 3102 唾液酸测定法 3103 磷测定法 3104 硫酸铵测定法 3105 亚硫酸氢钠测定法 3106 氢氧化铝(或磷酸铝)测定法 3107 氯化钠测定法 3108 枸橼酸离子测定法 3109 辛酸钠测定法 3110 乙酰色氨酸测定法 3111 苯酚测定法 3112 间甲酚测定法 3113 硫柳汞测定法 3114 对羟基苯甲酸甲酯、对羟基苯甲酸丙酯含量测定法 3115 O-乙酰基测定法 3116 己二酰肼含量测定法 3117 高分子结合物含量测定法 3118 人血液制品中糖及糖醇测定法 3119 人血白蛋白多聚体测定法 3120 人免疫球蛋白类制品IgG单体加二聚体测定法 3121 人免疫球蛋白类中甘氨酸含量测定法 3122 重组人粒细胞刺激因子蛋白质含量测定法 3123 组胺人免疫球蛋白中游离磷酸组胺测定法 3124 IgG含量测定法 3200 化学残留物测定法 3201 乙醇残留量测定法 3202 聚乙二醇残留量测定法 3203 聚山梨酯80残留量测定法 3204 戊二醛残留量测定法 3205 磷酸三丁酯残留量测定法 3206 碳二亚胺(EDAC)残留量测定法 3207 游离甲醛测定法 3208 人血白蛋白铝残留量测定法 3209 羟胺残留量测定法 3300 微生物检查法 3301 支原体检查法 3302 病毒外源因子检查法 3303 鼠源性病毒检查法 3400 生物测定法 3401 免疫印迹法 3402 免疫斑点法 3403 免疫双扩散法 3404 免疫电泳法 3405 肽图检查法 3406 质粒丢失率检查法 3407 SV40核酸序列检查法 3408 外源性DNA残留量测定法 3409 抗生素残留量检查法 3410 激肽释放酶原激活剂测定法 3411 抗补体活性测定法 3412 牛血清白蛋白残留量测定法 3413 大肠杆菌菌体蛋白质残留量测定法 3414 假单胞菌菌体蛋白质残留量测定法 3415 酵母工程菌菌体蛋白质残留量测定法 3416 类A血型物质测定法 3417 鼠IgG残留量测定法 3418 无细胞百日咳疫苗鉴别试验 3419 抗毒素、抗血清制品鉴别试验 3420 A群脑膜炎球菌多糖分子大小测定法 3421 伤寒Vi多糖分子大小测定法 3422 b型流感嗜血杆菌结合疫苗多糖含量测定法 3423 人凝血酶活性检查法 3424 活化的凝血因子活性检查法 3425 肝素含量测定法 3426 抗A、抗B血凝素测定法 3427 人红细胞抗体测定法 3428 人血小板抗体测定法 3429 猴体神经毒力试验 3430 人血浆病毒核酸检测技术要求 3431 单抗纯度茨顶方法-CE-SDS毛细管电泳(还原和非还原) 3500 生物活性/效价测定法 3501 重组乙型肝炎疫苗(酵母)体外相对效力检查法 3502 甲型肝炎灭活疫苗体外相对效力检查法 3503 人用狂犬病疫苗效价测定法 3504 吸附破伤风疫苗效价测定法 3505 吸附白喉疫苗效价测定法 3506 类毒素絮状单位测定法 3507 白喉抗毒素效价测定法 3508 破伤风抗毒素效价测定法 3509 气性坏疽抗毒素效价测定法 3510 肉毒抗毒素效价测定法 3511 抗蛇毒血清效价测定法 3512 狂犬病免疫球蛋白效价测定法 3513 人免疫球蛋白中白喉抗体效价测定法 3514 人免疫球蛋白Fc段生物学活性测定法 3515 抗人T细胞免疫球蛋白效价测定法(E玫瑰花环形成抑制试验) 3516 抗人T细胞免疫球蛋白效价测定法(淋巴细胞毒试验) 3517 人凝血因子Ⅱ效价测定法 3518 人凝血因子Ⅶ效价测定法 3519 人凝血因子Ⅸ效价测定法 3520 人凝血因子Ⅹ效价测定法 3521 人凝血因子Ⅷ效价测定法 3522 重组人促红素体内生物学活性测定法 3523 干扰素生物学活性测定法 3524 重组人白介素-2生物学活性测定法 3525 重组人粒细胞刺激因子生物学活性测定法 3526 重组人粒细胞巨噬细胞刺激因子生物学活性测定法 3527 重组牛碱性成纤维细胞生长因子生物学活性测定法 3528 重组人表皮生长因子生物学活性测定法 3529 重组链激酶生物学活性测定法 3530 鼠神经生长因子生物学活性测定法 3531 尼妥珠单抗生物学活性测定法 3532 白介素-11-生物活性测定方法 3600 特定生物原材料/动物 3601 无特定病原体鸡胚质量检测要求 3602 实验动物微生物学检测要求 3603 实验动物寄生虫学检测要求 3604 新生牛血清检测要求 3611 细菌生化反应培养基 8000 试剂与标准物质(待定) 8001 试药 8002 试液 8003 试纸 8004 缓冲液 8005 指示剂与指示液 8006 滴定液 8061 标准物质 9000 指导原则 9001 原料药与药物制剂稳定性试验指导原则(未修订) 9011 药物制剂人体生物利用度和生物等效性试验指导原则(第一次公示) 9012 生物样品定量分析方法验证指导原则(第一次公示) 9013 缓释、控释和迟释制剂指导原则(未修订) 9014 微粒制剂指导原则(第一次公示) 9015 药品晶型研究及晶型质量控制指导原则 9101药品质量标准分析方法验证指导原则 9102 药品杂质分析指导原则 9103 药物引湿性试验指导原则(未修订) 9104 近红外分光光度法指导原则(未修订) 9105 中药生物活性测定指导原则 9106 基于基因芯片药物评价技术指导原则 9107 中药材DNA条形码分子鉴定法指导原则 9201 药品微生物检验替代方法验证指导原则(未修订) 9202 非无菌药品微生物限度检查指导原则 9203 药品微生物实验室质量管理指导原则 9204 微生物鉴定指导原则 9205 药品洁净实验室微生物监测和控制指导原则 9206 无菌检查用隔离系统验证指导原则 9301 注射剂安全性检查法应用指导原则 9302 中药有害残留物限量制定指导原则 9303 色素检测指导原则 9304 中药中铝、铬、铁、钡元素测定指导原则 9305 中药中真菌毒素测定指导原则 9401 生物制品定量分析方法指导原则 9501 正电子类放射性药品质量控制指导原则(未修订) 9502 锝[99mTc]放射性药品质量控制指导原则(未修订) 9601 药用辅料功能性指标研究指导原则(第三增补本) 9621 药包材通用要求指导原则(第一次公示) 9622 药用玻璃材料和容器指导原则(第一次公示) 9901 国家药品标准物质制备指导原则(第二增补本) 附表 原子量表 附表 国际单位转换表 一部正文品种后 成方制剂中本版药典未收载的药材和饮片 4. 反馈意见单 国家药典委员会 2014年7月30日
  • 赛默飞精彩亮相2016中国第三方检测产业高峰论坛
    2016年7月15-16日(南京)-- 2016中国第三方检测产业高峰论坛于2016年7月中旬在南京顺利举行。本次论坛由易贸主办,南京检验检测认证产业联盟、南京检验检测服务业集聚区联合举办,南京市产品质量监督检验院、南京新港国家高新技术产业园、中国仪器仪表学会分析仪器分会、江苏分析测试协会协办,并得到了南京市质量技术监督局、南京经济技术开发区、中国食源性微生物检测技术创新战略联盟的大力支持。2016中国第三方检测产业高峰论坛本次论坛以“聚焦产业整合,推动科技创新,探寻合作机遇”为主题,聚集主管单位、检测机构、科研院校、生产企业、供应商,集中探讨了检验检测行业政策走势、法规新政、医学检验和食品检测行业热点,共同推动中国检验检测行业的进一步发展。中国国家认证认可监督管理委员会实验室与检测监管部主任乔东、南京市质量监督局副局长张建平、SGS中国区总裁杜佳斌、中国标准科技集团总经理赵宏春,华测检测认证集团股份有限公司董事会秘书陈砚(从左起)等第三方检测行业领头单位齐聚南京共同参与了大会主题访谈,钛和资本管理有限公司董事长、创始合伙人潘晶担任主持人,共同探讨了检验检测产业整合与未来趋势。会上Thermofisher邀请到浙江清华长三角研究院国家食品安全风险评估中心任一平老师做大会报告,报告中任老师就Q Exactive系列质谱在蛋白定量检测中的应用的优势作出详细的阐述。本研究建立了一个新的高灵敏、准确、简便的乳与乳制品蛋白定量检测方法,该方法利用超高效液相色谱Q Exactive高分辨质谱在PRM模式下,通过测定定量目标蛋白的特异肽来检测婴儿配方奶粉和乳清蛋白原料等乳制品中的多种乳清蛋白和酪蛋白。本方法经过方法学验证,并成功应用于婴儿配方粉等乳制品中总牛α -乳白蛋白和β -乳球蛋白的定量测定。该方法策略也适用于牛和羊的其它乳蛋白的定量测定,例如:血清白蛋白、IgG、CGMP、CPP、乳铁蛋白等各种蛋白质。报告吸引了包括上海理工大学、江苏中普检测等单位,对Q Exactive系列质谱予以肯定并且表示希望进一步了解在物种溯源上的应用。整个会议成果达到预期的期望,实现参与的价值。浙江清华长三角研究院任一平老师赛默飞展位
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制