当前位置: 仪器信息网 > 行业主题 > >

人血清白蛋白成分标准物质

仪器信息网人血清白蛋白成分标准物质专题为您提供2024年最新人血清白蛋白成分标准物质价格报价、厂家品牌的相关信息, 包括人血清白蛋白成分标准物质参数、型号等,不管是国产,还是进口品牌的人血清白蛋白成分标准物质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合人血清白蛋白成分标准物质相关的耗材配件、试剂标物,还有人血清白蛋白成分标准物质相关的最新资讯、资料,以及人血清白蛋白成分标准物质相关的解决方案。

人血清白蛋白成分标准物质相关的资讯

  • 胶原蛋白企业亮出检测报告自证清白 各自执行企业标准
    10月8日,有媒体声称其自行送检的7款口服胶原蛋白产品中3款并未检出胶原蛋白的特征氨基酸&mdash &mdash 羟脯氨酸。对于这一结果,相关企业均强烈否认并亮出检测报告自证清白。据了解行业内一直未形成对于胶原蛋白产品的统一标准,各大公司执行自己的企业标准。   胶原蛋白产品不含胶原蛋白? 涉事企业强烈否认   胶原蛋白可谓命运多舛,日前又被爆成分争议&ldquo 不含胶原蛋白&rdquo 。昨日,有媒体声称其自行送检的7款口服胶原蛋白产品中,汤臣倍健胶原蛋白粉、颜如玉胶原蛋白口服液、无限极美姿力胶原蛋白果味饮料等3款产品中,并未检出胶原蛋白的特征氨基酸&mdash &mdash 羟脯氨酸。另外Fancl、Lumi、丸美、安婕妤4款产品胶原蛋白含量则远低于宣称的含量。不过,报道未披露具体数据,也未交代其送检机构。对于这一结果,相关企业均强烈否认并亮出检测报告&ldquo 自证清白&rdquo 。   记者了解到,目前胶原蛋白产品始终未有统一标准,特异性指标也未能明确,造成行业频频陷入舆论危机。   从成本看似无造假必要   汤臣倍健昨日在给本报的声明说,其胶原蛋白采购自法国罗赛洛公司,检测显示羟脯氨酸含量为9.33%,并能提供检测报告。该公司指,一直严守法律法规以及食品安全标准。   无限极声明表示,报道提及的产品其生产标准在广东省卫生厅备案,原料经第三方权威机构检测完全符合国家相关法律法规和标准,昨日已再次送检,结果会及时公布。   而广州颜如玉医药科技有限公司的声明则称,上述口服液取得国家保健食品批准证书,标志性成分为低聚肽而非羟脯氨酸。此外,有关产品是海洋鱼皮胶原低聚肽口服液,而不是胶原蛋白口服液,用评价胶原蛋白的方法来评价低聚肽是不专业的,&ldquo 被检产品未经我们公司确认,是否属实,不得而知。&rdquo   羟脯氨酸是胶原蛋白18种氨基酸中的一种,为胶原蛋白特有,但从成本角度看,企业似乎并无造假必要。南海水产研究所一位研究员昨日对本报说,只要采用一般鱼类的&ldquo 边角料&rdquo 进行水解就能提取,&ldquo 甚至不法之徒用皮革的下脚料,也能得到羟脯氨酸。&rdquo   记者翻查资料发现,乳业之前曾热炒&ldquo 皮革奶&rdquo ,即添加皮革下脚料来&ldquo 增加&rdquo 蛋白质,科研人员就是通过检测奶中是否含有羟脯氨酸来辨别的。&ldquo 普通猪皮中就能弄出羟脯氨酸。&rdquo 上述研究员说。   各公司执行自己的标准   不过,胶原蛋白近期先后被质疑功效、涉嫌违法宣传,还是让这种在近年被不断应用于食品、保健品、化妆品中的成分受到了高度关注。记者了解到,事实上目前胶原蛋白仍未有国标,消费者对其作用也是&ldquo 蒙查查&rdquo 。   目前,我国已认可胶原蛋白、胶原肽的保健功效只有保护皮肤水分、增加骨密度、增强免疫力三项。但市民麦小姐说,她选购胶原蛋白的理由是冲着它&ldquo 可以修复肌肤、保持弹性,人变得更年轻。&rdquo   据记者昨日获得的一份由中国食品科学技术学会在2011年撰写的胶原蛋白标准研讨会摘要显示,在2010年国内胶原蛋白年产值保守估计已经达到100亿元,产能在600多吨或日本的十分之一。   该学会指出,在胶原蛋白生产过程中都存在水解或酶解过程,最终很多产品已经以多肽的形式存在,因此行业内一直未形成对于胶原蛋白产品的统一标准。此外,行业也需要明确胶原蛋白的特异性指标,例如羟脯氨酸的含量比例,或者是甘氨酸、脯氨酸和羟脯氨酸的总含量占到蛋白质的50%左右。   记者还了解到,《水解胶原蛋白》国标曾在2007年对外征求意见,但该稿一度被业内指出&ldquo 操作性不够好&rdquo ,而且最终版本始终未能落地。目前各大公司执行自己的企业标准。   胶原蛋白或将   禁止以口服液形式销售   国庆长假期间,国家食品药品监督管理总局在官方网站征求对保健食品监管新规的意见,提出拟于2014年1月1日起,禁止食品以片剂、胶囊、口服液、丸剂等形状生产销售,&ldquo 如仅取得食品生产许可(QS标志),国家食药总局拟于2014年1月1日起,禁止其以片剂、胶囊、口服液、丸剂等形状生产销售 禁止营养补充剂宣称有保健功能。&rdquo   而据记者走访药店、超市、便利店以及从业界了解得知,目前市面上充斥的大量胶原蛋白产品刚好就处于此政策&ldquo 打击&rdquo 范围内:基本上既属于普通食品,又主要以口服液形式存在。&ldquo 不少消费者将胶原蛋白口服液当美颜饮料喝,而且相信了其铺天盖地宣传的保健功效,但实际上它作为普通食品,功效推广属于违法,而且口服液形式也会暗示和催眠消费者,其具有不错的保健功效甚至药效。&rdquo 一位行业观察人士表示,胶囊和口服液暗示产品的药用性太强,的确应进行规范整顿。
  • 高分辨非变性质谱绘制人血清蛋白全貌图
    大家好,本周为大家介绍的是一篇发表在Analytical Chemistry上的文章Charting the Proteoform Landscape of Serum Proteins in Individual Donors by High-Resolution Native Mass Spectrometry1,文章通讯作者是来自荷兰乌得勒支大学的Albert J. R. Heck教授。  血清中大多数蛋白都是糖基化蛋白,这些糖蛋白对疾病诊断有着重要意义,基于质谱的糖链释放后分析和糖肽分析是目前普遍使用的糖蛋白分析方法,但仍存在一些局限,例如可能遗漏同时发生的翻译后修饰、缺乏对O-糖的研究、遗漏某些糖肽覆盖不到的糖基化位点等。高分辨非变性质谱为完整糖蛋白的分析提供了新的思路,本文开发了一种基于离子交换色谱的分离纯化方法,能够从150μL血清中分离和分析20多种血清(糖)蛋白,质量范围在30-190 kDa之间。  图1为血清糖蛋白的分离和分析方法。150μL血清首先经过亲和柱以快速去除大量的白蛋白、IgG和血清转铁蛋白等,这一步骤使用的是作者内部制造的机器人,可以加快过柱子的速度。接着血清被送入离子交换(IEX)色谱,使用40分钟的梯度时,大多数蛋白在14-27分钟内洗脱,故作者在13-30分钟内每隔0.5分钟收集一次级分,并将每个级分缓冲液换为乙酸铵溶液,最后进行Thermo Exploris Orbitrap质谱仪分析。    图1.血清糖蛋白非变性质谱分析方法  作者使用该方法分离了大约24种血清蛋白,并在文中详细介绍了其中4种蛋白的分析过程:α-1抗胰蛋白酶、补体C3、血红素结合蛋白、铜蓝蛋白。  (1)α-1抗胰蛋白酶(A1AT)是一种丝氨酸蛋白酶抑制剂,在呼吸系统的功能中起重要作用,作者使用唾液酸酶和PNGase F确认了蛋白上的糖型,又通过TCEP的还原处理发现大部分血清样品的A1AT都是半胱氨酸化的,也确认了A1AT存在N端截短的特征,综上,作者共统计出了13个A1AT异质体。针对捐献者提供的血清,作者区分出了携带V237A和E400D突变的A1AT蛋白的供体。  (2)补体C3蛋白在免疫调节过程中发挥作用,在血清中浓度相对较高,分子量为187kDa。与该蛋白共流出的还有两种约137kDa和80kDa的蛋白,在唾液酸酶处理后,只有80kDa的蛋白质量减少很多,证明其存在唾液酸,而C3和137kDa蛋白的糖型上无唾液酸。通过对级分的糖肽分析确定N糖位点在Asn 63和Asn 917。137kDa蛋白鉴定为C3缺失α链后降解而成。  (3)血红素结合蛋白(HPX)在血清中的主要功能是结合和运输游离的血红素,进行血红素和铁的再循环。非变性质谱显示HPX质量范围在58-63 kDa,而蛋白质主链质量仅50 kDa。本文首次解析了血清HPX的蛋白型谱,证明了4-5个N-糖和1个O-聚糖的存在,共17种独特的糖型。  (4)铜蓝蛋白(CER)负责在人体内转运大部分的铜,分子量132kDa,每个CER分子可以携带6-7个铜离子。CER在非变性质谱检测后的分子量比理论质量多409±5Da,作者将其归为6个铜离子和1个钙离子的结合所致,并发现了CER完全去糖后失去结合金属离子的能力。    图2.绘制血清糖蛋白组的全貌图。观察到的血清蛋白质量范围为30-190 kDa,浓度范围为0.2-50g/L  总结:本文开发了一种从少量人血清中分离多种糖蛋白的方法,并通过高分辨非变性质谱表征了蛋白型谱,为蛋白全貌提供完整视图。该方法的优势在于非变性质谱需要的样品处理步骤少,最大程度的还原了蛋白的生理状态,劣势在于目前通过完整质量只解析了20余种蛋白中的8种,后续需要结合自下而上或自上而下的蛋白质组学方法进行辨别。在未来的研究中,作者建议联用分子排阻色谱和离子交换色谱,实现高通量在线血清蛋白分离分析。  撰稿:英语佳 编辑:李惠琳  原文:Charting the Proteoform Landscape of Serum Proteins in Individual Donors by High-Resolution Native Mass Spectrometry
  • 如何使用反向移液技术更精准的移取蛋白溶液
    每支移液器的液程通常都用纯水和正向移液技术校准过。因此我们推荐使用正向移液技术移取水性溶液,如缓冲液,稀释酸或碱。当移取不同于水的液体时,由于具有不同的液体特性,其移液量可能偏离所选的量程。比如一些生物溶液的移液,可能会在移液器尖端或试管中产生气泡或泡沫,这将使移液量产生偏差。在这种情况下,我们推荐使用反向移液技术移取高粘度或者容易产生泡沫的液体。反向移液技术减少了喷溅,泡沫和气泡形成。这种方法尤其适用于移取小体积的液体。 下面先介绍一下正向移液和反向移液技术的操作。 1.将按钮压至第一停点。 2.将吸头浸入液面下1cm处,缓慢释放按钮使其滑回原位。将吸头从液体中移出,接触容器边缘除去多余的液体。 3.排液时,吸头紧贴容器壁先轻按按钮至第一停点,略作停顿后, 将按钮按至第二停点(这个操作会将吸头内的液体彻底排尽),将吸头从容器中沿容器壁移出。 4.松开按钮至准备位置。 1.将按钮压至第二停点。 2.将吸头浸入液面1cm处,缓慢释放按钮使其滑回原位。这将时液体充满吸头。将吸头从液体中取 出,接触容器边缘去掉多余液体。 3.放液到接收容器时平稳地轻按按钮至第一停点。保持在这个位置。一些液体会残留在吸头中不能被放出。 4.残留在吸头内的液体能够被吹回原溶剂中或者同吸头一起丢弃。 5.松开按钮到准备位置。 选择合适的移液器对于微量移液的精准性也很重要,Thermo Scientific F系列移液器的超强吹出设计则满足了微量移液对精准性的需求。低于50&mu l液程的Thermo F系列移液器均采用双活塞设计,与其它普通移液器相比,其空气吹出能力增大50%-60%,因此在小体积的液体吹出时会非常干净完全,大大提高了移液的精准性。 我们使用Thermo Scientific Finnpipette F2 1-10 &mu l移液器,配合Thermo Scientific Finntip Flex 10吸头,同时分别使用正向移液和反向移液,移取1%牛血清白蛋白(BSA,Sigma A7030)进行移液精准性测试。 图1 表明当使用反向移液技术时,移液量的变化比使用正向移液技术处于更狭窄的一个范围。 图2 表明使用两种移液方式的不精确度。不精确度是估量移液的重复性的。反向移液技术可以使不精确度相对于正向移液技术降低50%。 这是因为,BSA溶液含有易被疏水移液器吸头壁吸附的疏水成分。当使用正向移液技术时,每次移液后少量的液体易残留在吸头中。这种趋势会增加吹出液体体积之间的偏差,因为当重复移液时吸头中累积的残余液体可能增加下一次移液的移液量。而反向移液技术中有额外的液体被吸入吸头中,这些额外的液体作用似一个蓄水池它使连续移液的移液量均等。这个蓄水池也能阻止空气在吹出液体的最后从吸头口进入,这样可以降低液体起泡的可能性。这使反向移液技术在移取小液量液体时尤其有用。由此可见,选择Thermo Scientific F2移液器,同时配合反向移液技术,可较好的提高移取蛋白溶液的精确度和重复性。 这是个移液器的王国,每个人都能找到最适合自己的移液器。这是一个富于创新的品牌,传承40年移液器的深厚底蕴。&ldquo 先锋源于创新,全新精准体验&rdquo 是赛默飞世尔科技移液器的真实写照。Thermo Scientific Finnpipette的历史可追溯到1971年,凭借着以人为本的设计理念,坚持不断创新,缔造了许许多多世界&ldquo 第一&rdquo 的记录。我们推出了全球第一支连续可调微量移液器、第一支多道移液器、第一支可整支高压消毒的移液器、第一支彩色标记移液器。Finnpipette特别重视客户反馈,不断努力改善产品。我们始终追求提高性能、精准性和客户满意度。更多Thermo Scientific移液解决方案请查看:Thermo移液器。
  • 重磅!赛多利斯4.15亿英镑收购重组白蛋白公司Albumedix
    仪器信息网讯 8月8日,德国生命科学集团赛多利斯(Sartorius)宣布其法国上市子公司Sartorius Stedim Biotech从私人投资者手中收购Albumedix Ltd.公司100%的股份。此次收购价格约为4.15亿英镑。该交易预计将于2022年第三季度末前完成。Albumedix总部位于英国诺丁汉,致力于重组人白蛋白产品和技术。重组人白蛋白是生物制药行业各种应用所需的重要成分,例如作为细胞培养基的无动物添加剂以及用于稳定疫苗和病毒疗法。该公司成立于1984年,拥有100多名员工,2022年预计将产生约3300万英镑的收入,EBITDA利润率可观达到两位数。Albumedix将成为赛多利斯生物工艺解决方案部门的一部分,Albumedix在英国诺丁汉现有的72,000平方英尺的场地将成为创新和符合GMP要求的关键原材料生产的卓越中心。
  • 基于镜像酶正交酶切的蛋白质复合物规模化精准分析新方法
    蛋白质作为生命活动的执行者,通过自身结构的动态改变,以及与其他蛋白质相互作用组装为蛋白质复合物,调控各种生物学过程。因此,如何实现蛋白质复合物的精准解析已成为当前生命科学的研究热点。化学交联结合质谱(CXMS)技术作为蛋白质复合物解析的新兴技术,利用化学交联剂将空间距离足够接近的蛋白质分子内或分子间的氨基酸残基以共价键连接起来,再利用液相色谱-质谱联用对交联肽段进行鉴定,实现蛋白质复合物的组成、界面和相互作用位点的解析。该技术具有分析通量高、灵敏度高、可提供蛋白质间相互作用的界面信息、普遍适用于不同种类和复杂程度的生物样品等优势,已成为X射线晶体衍射、低温冷冻电镜、免疫共沉淀等蛋白质复合物研究技术的重要补充。化学交联位点的鉴定覆盖度和准确度决定着该技术对于蛋白质复合物结构的解析能力。目前,为了实现蛋白质复合物的高覆盖度交联,研究人员发展了可用于共价交联赖氨酸(K)的氨基、谷氨酸(E)/天冬氨酸(N)的羧基、精氨酸(R)的胍基以及半胱氨酸(C)的巯基等多种活性基团的新型交联剂。进而,为了提高低丰度交联肽段的鉴定灵敏度,体积排阻色谱法、强阳离子交换色谱法,及亲和基团富集策略被提出用于交联肽段的高选择性富集,如可富集型化学可断裂交联剂——Leiker,与不具备富集功能的交联剂相比,通过亲和富集可以将交联位点鉴定数目提高4倍以上。胰蛋白酶镜像酶(LysargiNase)的酶切位点与胰蛋白酶互为镜像,可特异地切割赖氨酸和精氨酸的N端。由于LysargiNase的N端酶切特点,电荷主要分布在交联肽段的N端,在碰撞诱导裂解(CID)和高能诱导裂解(HCD)模式下产生以b离子为主的碎片离子,与胰蛋白酶酶切肽段以y离子为主的碎片离子互为镜像补充,为胰蛋白酶酶解肽段在质谱鉴定中b离子缺失严重的问题提供了很好的解决办法。由于具有较高的酶切特异性和酶活性,镜像酶已经成功地应用于蛋白质C末端蛋白质组鉴定、磷酸化蛋白质组研究、甲基化蛋白质组鉴定等方面,然而在CXMS中的应用仍未见报道。为进一步提高对蛋白质复合物结构及相互作用位点的解析能力,本文发展了LysargiNase与胰蛋白酶联合酶切的方法,基于镜像酶正交切割的互补特性,通过产生赖氨酸及精氨酸镜像分布的交联肽段,以增加特征碎片离子数量和肽段匹配连续性,从而提升交联肽段的谱图鉴定质量,达到提高交联位点的鉴定覆盖度和准确度的目的。通过分别对牛血清白蛋白及大肠杆菌全蛋白样品的交联位点鉴定结果的考察,评价该策略对单一蛋白样品和复杂细胞裂解液样品蛋白质复合物表征的应用潜力。蛋白质样品制备称取牛血清白蛋白粉末,以20 mmol/L 4-(2-羟乙基)-1-哌嗪乙磺酸(HEPES, pH 7.5)作为缓冲体系,配制0.1 mmol/L牛血清白蛋白溶液。大肠杆菌细胞(种属K12)在37 ℃下采用Luria-Bertani(LB)培养基培养24 h,然后于4 ℃以4000 g离心2 min,收集细胞沉淀。细胞沉淀采用磷酸盐缓冲液(PBS)清洗3遍后,悬浮于细胞裂解液(含20 mmol/L HEPES和1%(v/v)蛋白酶抑制剂)中,冰浴超声破碎180 s(30%能量,10 s开,10 s关)。匀浆液于4 ℃以20000 g离心40 min,收集上清,采用BCA试剂盒测定所得蛋白质含量。稀释大肠杆菌蛋白裂解液至蛋白质含量为0.5 mg/mL。化学交联样品制备以20 mmol/L HEPES(pH 7.5)为溶剂配制浓度为20 mmol/L 的BS3交联剂母液 将交联剂母液加入牛血清白蛋白的缓冲溶液及大肠杆菌蛋白裂解液中,使交联剂的终浓度为1 mmol/L,在室温条件下反应15 min 通过添加终浓度为50 mmol/L的淬灭溶液NH4HCO3进行交联反应淬灭,并在室温下孵育15 min 在冰浴条件下,将交联样品逐渐滴入8倍体积的预冷丙酮中,于-20 ℃静置过夜 在4 ℃条件下,以16000 g转速离心,去除丙酮,然后将交联蛋白用预冷丙酮清洗2次,去除上清液后,于室温挥发掉残余的丙酮 以8 mol/L尿素溶液复溶蛋白质沉淀 将牛血清白蛋白交联样品以5 mmol/LTCEP作为还原剂,于25 ℃下反应1 h进行变性和还原 将大肠杆菌样品以5 mmol/LDTT作为还原剂,于25 ℃下反应1 h进行变性和还原,避免大肠杆菌蛋白在酸性条件下发生变性 添加终浓度为10 mmol/L的碘乙酰胺(IAA),在黑暗中,于室温下反应30 min 以50 mmol/LNH4HCO3稀释样品至尿素浓度为0.8 mol/L后,将样品均分为两份,一份以蛋白样品与蛋白酶的质量比呈50:1的比例加入胰蛋白酶,于37 ℃酶解过夜,另一份加入终浓度为20 mmol/L的CaCl2,以蛋白样品与蛋白酶的质量比呈20:1的比例加入LysargiNase,并在37 ℃温度下酶解过夜。液相色谱-质谱鉴定及数据搜索上述所有样品经过除盐,使用0.1%甲酸(FA)溶液复溶,用超微量分光光度计测定肽段浓度,进行反相高效色谱分离和质谱分析。牛血清白蛋白样品采用Easy-nano LC 1000系统偶联Q-Exactive质谱仪平台进行质谱分析。流动相A: 2%(v/v)乙腈水溶液(含0.1%(v/v)FA) 流动相B: 98%(v/v)乙腈水溶液(含0.1%(v/v)FA)。梯度洗脱程序:0~10 min, 2%B~7%B 10~60 min, 7%B~23%B 60~80 min, 23%B~40%B 80~82 min, 40%B~80%B 82~95 min, 80%B。Q-Exactive质谱仪采用数据依赖性模式,Full MS扫描在Orbitrap上实现,扫描范围为m/z 300~1800,分辨率为70000(m/z=200),自动增益控制(AGC)为3×106,最大注入时间(IT)为60 ms,母离子分离窗口为m/z 2。MS/MS扫描的分辨率为17500(m/z=200),碎裂模式为HCD,归一化碰撞能量(NCE)为35%, MS2从m/z 110开始采集,MS2的AGC为5×104, IT为60 ms,仅选择电荷值为3~7且强度高于1000的母离子进行碎裂,并将动态排除时间设置为20 s。每个样品分析3遍。大肠杆菌样品采用EASY-nano LC 1200系统偶联Orbitrap Fusion Lumos三合一质谱仪平台进行质谱分析。流动相A: 0.1%(v/v)甲酸水溶液 流动相B: 80%(v/v)乙腈水溶液(含0.1%(v/v)FA)。梯度洗脱程序:0~28 min, 5%B~16%B 28~58 min, 16%B~34%B 58~77 min, 34%B~48%B 77~78 min, 48%B~95%B 78~85 min, 95%B。Orbitrap Fusion Lumos三合一质谱仪采用数据依赖性模式,Full MS扫描在Orbitrap上实现,扫描范围为m/z 350~1500,分辨率为60000(m/z=200), AGC为4×105, IT为50 ms,母离子分离窗口为m/z 1.6。MS2扫描的分辨率为15000(m/z=200),碎裂模式为HCD, NCE为30%, MS2从m/z 110开始采集,MS2的AGC为5×104, IT为60 ms。仅选择电荷值为3~7且强度高于2×104的母离子进行碎裂,并将动态排除时间设置为20 s。每个样品分析3遍。质谱数据文件(*.raw)采用pLink 2软件(2.3.9)对交联信息进行检索和鉴定。使用从UniProt于2019年4月27日下载的牛血清白蛋白序列和大肠杆菌序列,搜索参数如下:酶切方式为胰蛋白酶(酶切位置:K/R的C端)、LysargiNase(酶切位置:K/R的N端) 漏切位点个数为3 一级扫描容忍(precursor tolerance)2.00×10-5 二级扫描容忍(fragment tolerance)2.00×10-5 每条肽段的质量范围为500~1000 Da 肽段长度的范围为5~100个氨基酸 固定修饰为半胱氨酸还原烷基化(carbamidomethyl [C]) 可变修饰为甲硫氨酸氧化(oxidation [M])、蛋白质N端乙酰化(acetyl [protein N-term]) 肽段谱图匹配错误发现率(FDR)≤5%。映射胰蛋白酶与LysargiNase酶解样品的交联位点在牛血清 白蛋白晶体结构(PDB: 3V03)的映射 LysargiNase与胰蛋白酶酶解样品的交联位点对及单一交联位点的互补性LysargiNase与胰蛋白酶酶解样品共同得到的交联位点鉴定打分比较b+/++与y+/++离子碎片分别在α/β-肽段的碎片覆盖度LysargiNase与胰蛋白酶酶解的交联肽段质谱图大肠杆菌样品中LysargiNase与胰蛋白酶酶切鉴定蛋白质复合物信息互补性带点击了解原文:https://www.chrom-china.com/article/2022/1000-8713/1000-8713-40-3-224.shtml
  • Xevo G2-S QTof和TransOmics:用于蛋白质组学、 代谢组学和脂质组学的LC/MS差异组学分析系统
    Ian Edwards、JayneKirk和Joanne Williams沃特世公司(英国曼彻斯特)应用优势■ 简化了工作流程、验证和数据解析 ■ 设计用于大规模代谢组学和蛋白质组学数据集■ 集成式组学平台可用于各种各样的全面定性和定量分析沃特世解决方案包括TransOmics信息学软件的组学研究平台解决方案ACQUITY UPLC I-Class 系统nanoACQUITY UPLC 系统Xevo G2-S QTofTransOmics 信息学软件MassPREP 蛋白质酶解标准品 关键词组学,代谢组学,脂类组学,蛋白质组学,MSE,主成分分析,无标记LC/MS 简介近年来,包括基于LC-MS的代谢组学、脂质组学和蛋白质组学仪器等组学技术的进步实现了以高通量的方式对多种生物分子的丰度进行定量监测,从而测定它们在不同生物状态下的变化。我们的最终目标是增进对生物过程的理解,从而改善对于疾病的疗效,更有效地开发药物或维持作物生长的最佳农业环境,同时最大程度地减少传染和其它副作用。就此而言,不同分析学科的研究结果可提供正交的观点,通常可以互相作为补充。开发和应用能够将多个研究领域的结果进行整合的灵活信息学解决方案具有重大意义。本研究介绍了一种多组学解决方案,可用于对代谢组学和蛋白质组学数据集中的MS数据进行大规模分析。其中采用了包括TransOmics信息学软件的沃特世(Waters?)组学研究平台解决方案,并结合Xevo G2-S QTof系统进行技术和生物学重复分析。 结果与讨论执行的代谢组学实验包括相对于对照/质控样品,鉴定低剂量和高剂量样品。根据实验设计,样品应当划分为3个不同的组,并使用标记离子进行不同组的识别。用于代谢组学和脂类组学的TransOmics(TOIML)流程包括以下步骤: 1. 导入原始的MSE连续数据集(六个技术重复样/组)2. 峰对齐,纠正不同分析运行间的保留时间偏移3. 色谱峰归一化,以便在不同样品运行间进行比较4. 色谱峰检测(峰选择)5. 离子去卷积,按化合物将离子分组6. 利用已有的定制数据库进行化合物鉴定7. 执行数据分析,找出用以将化合物分为QC(质控)、空白(基质)和分析物(高剂量)的离子(特征) 基质背景包括系统评估基质,其中加入了不同的镇痛标准品混合物A,从而得到低剂量(QC和高剂量(空白)样品。质控样品(QC)通过混合等量的低剂量和高剂量样品而制成。 采用ACQUITY UPLC I-Class系统结合Xevo G2-S QTof,在正电喷雾模式下以大于30k FWHM的质量分辨率,分离和分析代谢物。在UPLC/MSE模式下采集数据,该模式是一种无监督的采集方法,其中当进行交替扫描时质谱仪在低能量和高能量之间切换。使用TOIML和专业化合物数据库进行处理、搜索和定量。 其中TOIML流程的步骤1,2和3在别处有详细描述(TransOmics信息学软件由Nonlinear Dynamics提供技术支持)。鉴定前,通过主成分分析对所检测离子进行分组,如图1所示,显示了综合得分图和载荷图。从中可知,离子主要聚集在技术重复水平,并且样品实现了清晰分离。 图1. 分析物(镇痛标准品混合物A高剂量;紫色),空白(系统评估基质;浅蓝色)和QC(质控样品;深蓝色)的主成分分析接着,采用集成式搜索工具进行化合物鉴定,以正确鉴定四种镇痛标准品混合物中可在正离子电喷雾模式下检测到的标准品。图2展示了TOIML化合物搜索结果页面的概览,其中突出显示了基于精确质量数、保留时间(可选)和理论同位素模式分布对咖啡因的鉴定。除了先前描述的PCA之外,TOIML中还整合了其它多变量统计工具,包括相关性和趋势分析。图3为一个示例,示出了四个加标标准品的归一化趋势图,表明每个标准品的六个技术重复样之间有着良好的一致性,并且相对丰度与实验设计一致。此外,TOIML还便于科学家将分析结果与其它组学数据关联,或为诸如EZinfo的独立统计软件包提供输入数据。下游生物信息学(即Umetrics软件)的结果可重新导入分析实验中,以将所有化合物数据合并为单个表格以供审查或分享。图2. TOIML化合物鉴定页面。图3.镇痛标准品的归一化丰度分析。在蛋白质组学实验中,分析了两个10ng大肠杆菌样品的三个重复样,分别加入了牛血清白蛋白(BSA)、乙醇脱氢酶(ADH),烯醇酶和糖原磷酸化酶B。第一个样品(混合物1)中的加标蛋白质的柱上进样量均为1飞摩尔,而第二个样品(混合物2)中的加标蛋白质柱上进样量分别为8、1、2和0.5飞摩尔。因此,额定预期比值(混合物2:混合物1)应为8:1、1:1、2:1和0.5:1。在本研究中,使用nanoAC-QUITY UPLC系统结合Xevo G2-S QTof,在LC/MSE采集模式下对肽进行分离和分析。采用用于蛋白组学的TransOmics(TOIP)以及含有加标蛋白质序列信息的种属特异性数据库进行处理、搜索和定量。 TOIP流程包括以下步骤:1. 导入原始的MSE连续数据集(每个样品有三个技术重复样)2. 峰对齐,纠正不同分析运行间的保留时间偏移3. 色谱峰归一化,以便在不同样品运行间进行比较4. 色谱峰检测(峰选择)5. 利用集成数据库搜索算法鉴定蛋白质和肽6. 多变量统计分析7. 绝对和相对定量 TOIP提供了与TOIML相同的多变量分析工具。图4显示了所检测特征的PCA示例,即电荷态组。可明显看出,特征主要聚集在技术重复水平。其中一种加标蛋白质消化物的肽定性鉴定结果示于图5中,该蛋白质中鉴定出的所有肽的归一化表达谱如图6所示。对后者的定量精确度类型进行了确证,此类型可通过无标记MS研究及基于LC/MSE的采集策略获得。 图4.大肠杆菌中加入的混合物1(深蓝色)和混合物2(浅蓝色)的特征(电荷态组)PCA图。图5显示了差异加标样品中一个分析物的LC/MSE采集的定性结果概览。在本例中,BAS的柱上进样量为8 fmol,而大肠杆菌消化物的量为10 ng。结果如图6所示,展示了相关的相对定量结果。图5.大肠杆菌中加入的不同浓度牛血清白蛋白肽的定性LC/MSE鉴定结果。顺时针显示的依次是鉴定相关指标(得分和误差)、具体的轮廓线图以及标注的产物离子谱图。图6.牛血清白蛋白中鉴定出的肽的定量分析。结论■TransOmics信息学软件为多组学研究提供了一个简单易用、可扩展的系统■UPLC/MSE(LC结合数据独立型采集MS)可在单次实验中提供全面的定性和定量数据集■通过代谢物、脂质和蛋白质分析可快速获取补充信息并进行关联
  • MFI专注蛋白聚集分析,助力药物稳定性研究
    近日,美国明尼苏达大学药学院药理学科学家,利用MFI,在权威杂志Journal of ControlledRelease(IF:7.901)发表文章:Freezing-induced ProteinAggregation - Role of pH Shift and Potential Mitigation Strategies, J Control Release. 2020 Jul 10 323:591-599. --研究背景--在设计用于肠胃外给药的蛋白质药物产品中,聚集体的产生,除了在外观上引起不适之外,最重要的是它们具有细胞毒性作用,或是引起机体免疫原性应答。美国和欧洲药典对肠胃外药物产品中的不溶性聚集物有规定:对于小剂量的肠胃外药物,通过光阻法测量的小颗粒(≥10μm)和大颗粒(≥25μm)的推荐药典规范分别为≤6000/container和≤600/container。因此,预防和减轻蛋白质聚集对于维持蛋白质药物产品的安全性,功效和质量至关重要。药品加工步骤中,如纯化,搅动,冻融,填充,冻干,制剂成分,运输压力,都有可能将天然蛋白质转化为聚集体。而蛋白质溶液在配制为药物产品之前,通常以冷冻状态保存很长一段时间,所以,因反复冻融而产生的蛋白聚集体更应引起关注。蛋白质制剂如缓冲液可确保制剂的pH值在整个保质期内都保持在所需范围内。但在低温过程中,某些缓冲区的有效性可能会受到影响。例如,当冷冻含有磷酸二氢钠和磷酸二钠的水溶液(即磷酸钠缓冲液)时,磷酸氢二钠的选择性结晶导致冷冻浓缩液的pH降低,从而引起蛋白聚集体的产生。因此,本文旨在研究,在不同缓冲溶液的冻融循环过程中,两种模型蛋白质(牛血清白蛋白(BSA)和β-半乳糖苷酶(β-gal))聚集体的产生,以及这两种蛋白对缓冲液pH值变化的影响。同时,评价了添加的非结晶溶质对pH值变化的影响,以及pH改变对蛋白质聚集行为的影响。--研究结果--使用MFI表征冷冻和解冻后蛋白颗粒的形成利用MFI检测发现,无论何种缓冲液,BSA(10mg/mL)在制备和立即分析时均显示出较低的颗粒数。当这些溶液经受五个冻融循环时,在许多系统中颗粒数量都有小幅增加。但冻融循环在磷酸钠缓冲液(100mM)中导致的颗粒计数增加显著。加入纤维二糖(纤维二糖(一种还原糖)被用作模型非结晶溶质,一种冷冻保护剂)后,在磷酸钠缓冲液(100mM)中导致的颗粒数有明显缓解。利用MFI检测发现,β-gal(10mg/mL)在水中冻融后的颗粒数(?100,000)急剧增加,表明该蛋白质对PH值的极端敏感性。同样,β-gal在磷酸钠缓冲液(100mM)中导致的颗粒计数增加显著。加入纤维二糖后,在磷酸钠缓冲液(100mM)中导致的颗粒数有明显缓解。低温pH测定将PBS和磷酸钠(100mM)冷却后,发现pH值变化幅度相似。当磷酸钠浓度为10mM时,冷却时的pH值变化不明显。而蛋白质的添加(10mg/mL)可以降低了PBS和磷酸钠(10mM)中pH值变化的幅度。当磷酸钠浓度很高(100mM)时,蛋白质的作用就不那么明显了,这表明,低蛋白浓度(10mg/mL)似乎不足以抑制缓冲盐的结晶和随之而来的pH偏移。低温XRD测定研究结果发现,当将磷酸钠缓冲溶液(10和100mM)冷却时,在-15°C时Na2HPO4• 12H2O结晶明显(分别参见图4B和4C)。而BSA的添加,可以使Na2HPO4• 12H2O的峰强度降低,特别是在较低的缓冲液浓度(10mM)下更为明显。这与观察到的BSA对缓冲溶液pH值变化幅度的影响密切相关。此外,纤维二糖的添加完全抑制了缓冲盐的结晶(图4D),以及冰峰的强度也受到了抑制。这些结果揭示了非结晶溶质在蛋白质制剂中的附加作用。通过抑制缓冲盐的结晶和随之而来的pH值变化,这些赋形剂可防止蛋白质不稳定性。热分析结果显示,当将BSA添加到PBS中时,在-54.4℃出现玻璃化转变温度(Tg′),随后在-22.4和0.1℃出现两个吸热峰。玻璃化转变温度反映了冷冻浓缩物组成发生了改变。BSA仅对100mM缓冲液的热行为有明显影响,导致Tg’(-47°C)和结晶温度(-30°C)降低。同时,纤维二糖的添加有望改变冷冻浓缩物的成分,这在Tg’(-34°C)中有所体现。结论:磷酸盐缓冲液被广泛用于肠胃外蛋白质制剂中。但在冷冻过程中,磷酸氢二钠(十二水合物)的选择性结晶会降低冷冻浓缩液的pH值,从而导致蛋白质聚集。可以通过降低缓冲液浓度来减小pH偏移。同时,BSA和β-gal可以通过对缓冲液结晶的抑制,减少pH的变化,但其作用程度要取决于缓冲液浓度。其它非结晶性赋形剂(纤维二糖)的添加,可通过抑制缓冲盐结晶,来提高蛋白质的稳定性。
  • N端封闭蛋白序列分析进行时——台式MALDI-8020
    胰蛋白酶消化,质谱法轻松鉴定蛋白质,已经是非常成熟的工作流程。即使是刚接触MS的使用者也可以很快掌握。在质谱法鉴定蛋白的工作流程中,蛋白质鉴定是通过使用搜索引擎,例如 Mascot或Matrix Science进行简单的数据库搜索来实现的。然而,对于数据库中未列出的蛋白质鉴定需求,或需要进行蛋白质末端序列分析的这两种情况,通常采用更昂贵的高端仪器和更复杂的工作流程,需要熟练的操作员。此外,蛋白质测序仪也通常用作蛋白质末端序列分析的方法,但遇到 N 端封闭的蛋白质,去封闭是必要的。作为样品序列分析前的预处理,预处理效果取决于蛋白质类型,可能效果不佳,对操作人员有一定要求,需要一定程度的技能和经验,这些可能会限制其使用。 近年来,利用MALDI-TOF离子源(ISD:In-Source Decay)中发生的蛋白质碎裂离子,可以分析N末端被封闭或未在数据库中登记的蛋白质序列MS图谱。此外,ISD理论上不受每个样品质量的限制,因此无需胰蛋白酶消化即可直接对高质量蛋白质进行测序。结合电泳胶提取蛋白和岛津台式机MALDI-8020,通过N端封闭蛋白的分子量测定和序列分析的例子,让我们来了解下大蛋白分子直接测序技术MALDI-ISD。 将模型样品N 端被乙酰化的牛碳酸酐酶 (Sigma-Aldrich)溶解在缓冲溶液中进行电泳, 95 °C 下加热 5 分钟,然后在聚丙烯酰胺凝胶(ATTO 12.5 %,预制 e-PAGEL)上进行电泳。所得聚丙烯酰胺凝胶用考马斯亮蓝染色以检测蛋白质斑点。使用含有表面活性剂的提取缓冲溶液,我们从凝胶分离的碳酸酐酶的条带中提取蛋白质。使用氯仿/甲醇在提取缓冲溶液中沉淀蛋白质以去除表面活性剂和盐,并使用 MALDI-TOF 质谱仪进行测量。芥子酸用作 MALDI 基质用于蛋白质分子量测量,1,5-二氨基萘 (DAN) 用于 ISD 的序列分析。 图1、碳酸酐酶电泳图图2、从凝胶中提取的碳酸酐酶MS图(基质芥子酸) 接下来,从25 pmol凝胶蛋白条带中提取碳酸酐酶,与基质DAN混合,MALDI-8020线性模式进一步分析。结果如图3所示,主要检测到c离子(从蛋白质N段产生的片段)质量一致的峰。通过使用免费软件Mass++ TM和蛋白质氨基酸序列比对工具Basic Local Alignment Search Tool (BLAST),我们对从检测到的峰中获得的氨基酸序列进行了同源性搜索。 图3、MALDI-ISD鉴定结果 鉴定结果显示匹配结果最高的是碳酸酐酶。通过检测到的c离子片段质量和数据库中已有的碳酸酐酶氨基酸序列,我们可以推断出N段序列是SHHWGYGKH...,并且是N-乙酰化的。 MALDI-8020线性模式MALDI-ISD技术,无需复杂的工作流程,无需胰蛋白酶消化即可直接对高质量蛋白质(如本文所述m/z 29030示例)进行N端测序。 该方法在岛津应用专家与美国佛罗里达州立大学、日本爱媛大学高级研究支持中心生物医学分析部、利物浦大学生化与系统生物学系等共同发表的一篇文献中也有应用到。PEPPI-MS基于聚丙烯酰胺凝胶的预分馏,实现质谱法鉴定完整蛋白或蛋白复合物。凝胶分离回收14种人血清蛋白,提取后,用MALDI-8020的MALDI-ISD产生的产物离子鉴定人血清白蛋白N端氨基酸序列。 MALDI-8020是岛津MALDI家族一款体积小巧,性能卓越的特色产品。荣获2018 IBO工业设计大奖银奖。 主要特点:● 线性台式MALDI-TOF● 200Hz固态激光器,355nm波长● 进样速度快● TrueClean™ 自动源清洁功能。配备大口径离子光学系统,使仪器长期使用中源的污染风险降到最低。配备基于紫外激光器的源清洁功能,可自动快速实现源自清洁。● 静音(参考文献:岛津应用新闻 No.B83J. Proteome Res. 2020, 19, 3779−3791
  • 863计划分子医药农业取得重大进展
    p   把动植物组织器官当做生物反应器工厂用来生产蛋白或者代谢物,是现代生物技术的一个重要应用方向。动植物作为高等生物在蛋白产物和代谢产物的修饰上更为完善,因而在生产人源蛋白药物以及代谢类物质方面具有微生物发酵不可比拟的天然优势。发达国家利用动植物组织作为生物反应器,已经研发了百余种抗体、疫苗、细胞因子、医用蛋白等产品,绝大部分已经进入临床试验,重组人抗凝血酶Ⅲ(ATryn)、单克隆抗体药物 Ruconest等产品已经进入市场,创造了巨大的经济效益,催生了分子医药农业这一战略性新兴产业。 /p p   日前,863计划现代农业技术领域长期支持,武汉大学以及武汉禾元生物科技股份有限公司研发的水稻种子生物反应器平台生产的人血清白蛋白产品获得了国家食品药品监督管理局颁发的临床批件。这标志着该项成果已经完成了实验室研发和中试扩大,将迈入临床试验阶段,项目取得了重要突破。 /p p   “十二五”期间,在863计划现代农业技术领域的支持下,该项目组利用分子标记辅助选择技术,获得了重组人血清白蛋白表达量比原有水平提高 20-50%的水稻品系, 建立重组人血清白蛋白单批次纯品达 1 公斤的提取纯化工艺,根据《药品注册管理办法》、《新药临床前指导原则》等标准规程对水稻种子表达的人血清白蛋白进行了动物试验,完成重组人血清白蛋白的临床前研究,为产品进入临床试验和后期产业化打下了坚实基础。 /p p   人血清白蛋白可以运输脂肪酸、胆色素、氨基酸、类固醇激素、金属离子和许多治疗分子等,是维持血液正常渗透压的重要成分 在临床上人血清白蛋白可用于治疗休克与烧伤,用于补充因手术、意外事故或大出血所致的血液丢失,也可以作为血浆增容剂,具有重要的医药价值。传统的生产方式主要来源于血浆分离,但是具有传播疾病和供应不稳定的缺点,利用基因工程水稻的规模化种植生产重组人血清白蛋白,大幅度降低了成本并获得了稳定的来源。该项成果曾获得国家技术发明二等奖、中国专利优秀奖,引领了我国分子医药农业这一崭新业态。 /p p /p
  • 江苏省卫生健康委员会关于废止《食品安全地方标准 婴幼儿配方乳粉中α-乳白蛋白的测定 凝胶色谱法》等2项食品安全地方标准的通告
    根据《中华人民共和国食品安全法》及其实施条例有关规定,经第二届江苏省食品安全地方标准审评委员会审查通过,废止《食品安全地方标准 婴幼儿配方乳粉中α-乳白蛋白的测定 凝胶色谱法》(DBS 32/011—2016)等2项食品安全地方标准。其编号和名称如下:DBS 32/011-2016 食品安全地方标准 婴幼儿配方乳粉中α-乳白蛋白的测定 凝胶色谱法DBS 32/012-2016 食品安全地方标准 食品中喹啉黄的检测 高效液相色谱法、液相色谱-质谱/质谱法特此通告。江苏省卫生健康委员会2023年12月29日
  • 案例分享 | Monolith分子互作仪助力蛋白质脂化修饰研究
    研究背景蛋白质脂化在几乎所有与膜相关的生物学途径中都起着核心作用,例如细胞信号传导、蛋白质分泌、细胞死亡和免疫。然而,由于脂化是高度可变的,可逆的,并且经常与其他蛋白质翻译后修饰相互交叉影响,大多数蛋白脂化的生理功能仍然不明确,常见的功能缺失诱变方法对于探索蛋白质脂化往往效果不佳。研究内容2023年8月,浙江大学生研院林世贤课题组在 Nature Chemical Biology(自然化学生物学)杂志发表了题为“Computational design and genetic incorporation of lipidation mimics in living cells”的研究成果,报告了一种设计脂化模拟的计算方法。研究团队建立了一个工程系统,用于将这些脂化模拟物整合到大肠杆菌和哺乳动物细胞中几乎任何所需的蛋白质位置。这项研究策略能够实现数百种蛋白质脂化的功能获得研究,促进了卓越治疗候选药物的创造。在该研究中,为了证明基因编码脂质模拟物在设计和合成治疗候选药物中的效用,研究人员使用Monolith分子互作仪检测了人血清白蛋白HSA和脂质模拟改造的多肽药物GLP-1变体之间的相互作用。GLP-1-K20-4HexyF和GLP-1-K20-4OctyF对HSA的Kd值分别为2.31 μM和0.58 μM,分别比GLP-1-K20-HepoK的15 μM增加了6.5倍和25.9倍。相比之下,野生型(WT) GLP-1未检测到结合,表明增强的结合是由脂质模拟介导的。图:MST分析多肽药物GLP-1变体对人血清白蛋白HSA的亲和力https://doi.org/10.1038/s41589-023-01400-8IF: 14.8 Q1技术优势Monolith系列仪器可以直接检测带有荧光标记(如CY5)的多肽与其他分子间的相互作用,也可以检测经过荧光标记的蛋白与无荧光的多肽分子间的相互作用。检测不依赖于分子量的改变,样品用量少,仅需10分钟就可获得精确的Kd值。
  • 胶原蛋白市场混乱催生标准出台
    近日,有关胶原蛋白争议日渐白日化,就连学术界也观点不一,但不可否认的是胶原蛋白产品销售却是"畅销",众多知名企业也纷纷踏入胶原蛋白市场。但是,在"火爆"的销售市场背后也隐藏着概念混淆、物质来源、提取技术和夸大宣传等诸多问题。   针对乱象丛生的胶原蛋白市场,各国纷纷出台标准使市场有序竞争,有法可循。2005年由国家三胶检测中心及胶原蛋白研究的权威单位北京华达杰瑞生物技术有限公司起草了胶原蛋白的国家标准,经轻工业部校验之后在2006年1月1日发布,作为全国各生产单位可参照的行业标准。对胶原蛋白的定义和市场标准、检验方法做出了明确规定。除了国家标准,我国还要求每一个胶原蛋白制品企业都制定相应的企业标准,美国的ASTM标准化委员会也于2002年推出了《关于I型胶原蛋白作为外科手术用植入材料及作为组织工程基质》的标准指南。   由于存在对胶原蛋白中胶原肽效果的模糊认识,导致相关产品在物质功效、提取工艺等方面存在根本的概念混淆。胶原蛋白的市场混乱主要包括产品定性、物质来源、提取技术等介绍不明确。产品属于胶原蛋白、胶原肽还是明胶,提取自猪皮、牛皮还是鱼皮(三文鱼、鳕鱼等),这些关键信息在产品包装上没有明确标识,导致出现问题时企业打太极,消费者也一头雾水。胶原蛋白、胶原肽可能具有的功效研究覆盖19个项目,我国政府已验证其中3项,分别是保护皮肤水分、增加骨密度、增强免疫力。   中国食品发酵工业研究院院长蔡木易指出,许多企业在生产和品牌宣传中,没有厘清这些基本内涵,将胶原蛋白与胶原肽混为一谈,造成了市场的混乱和消费者认识不清。他认为,生产者应明确标识,消费者要合理选择,政府再加强监管力度,澄清混乱的认识,还给胶原蛋白产业一个清白。   有专家学者认为,市场混乱不仅需要政府出台标准,专家、学者在专业研究领域也要做好科普,引领企业规范生产和宣传,引领消费者正确选用合适的产品。
  • 蛋白分子质谱诊断先行者许洋:蛋白质谱目前有三种临床应用
    p   用于生物样品分析的蛋白指纹法,该专利技术被国际顶级科学杂志《科学》以及医学界权威杂志《柳叶刀》评为世界蛋白指纹图谱和蛋白质芯片排名第一的技术。针对这项技术的一些问题,火石创造对许洋博士进行了深度的专访。 /p p style=" text-align: center " img width=" 300" height=" 385" title=" 001.png" style=" width: 300px height: 385px " src=" http://img1.17img.cn/17img/images/201711/insimg/ebf3be8e-c0c2-49d6-9891-a76d207d183f.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong   许洋博士 /strong /p p   许洋博士一直致力于蛋白质组学研究开发,怀揣近五十项蛋白分子质谱诊断技术的自主发明专利。2009年他创办了湖州赛尔迪生物医药科技有限公司,凭借专利产品蛋白指纹图谱仪成为行业领头羊,也成为此类器械行业标准的起草者。 /p p strong   火石:请问您为什么做蛋白质谱? /strong /p p   许洋博士:我研究蛋白质谱是偶然也是必然。在美国纽约著名的Sloan-Kettering研究所单克隆抗体实验室早期研究治疗白血病时,我们制造了全世界第一枚人源化单克隆抗体(抗CD33人源化单抗)。后来我又和顶尖美国公司合作第一个将人源化单克隆抗体做成了靶向药。有了扎实的基础,必然能在更窄的蛋白质谱领域做的更好。 /p p   strong  火石:蛋白质谱当前的临床应用情况如何? /strong /p p   许洋博士:只有拿到医疗器械注册证才算进入临床,蛋白质谱目前只有三种临床应用:对肿瘤的筛查 对早期肾脏疾病的分析 在细菌上的鉴定应用。蛋白质谱在国内仍处于非常早期的阶段,且具有垄断性,极少人能做且在做。 /p p strong   火石:作为国家“千人计划”医疗器械特聘专家,您认为蛋白指纹图谱仪在医疗器械中的角色是什么? /strong /p p   许洋博士:蛋白指纹图谱仪分析的大数据可以生动地比喻为人体疾病的健康地图。 /p p   蛋白指纹究竟是什么?把质谱仪的显示屏中的每一个蛋白质都用一个分子量来表达,这些分子量组合起来就叫蛋白指纹。就像每个人的指纹都是不同的,每种疾病的特定蛋白质表达物也不同,称之为指纹图谱。蛋白指纹图谱技术是由蛋白质芯片及分析仪器——表面加强激光解析电离飞行时间质谱仪两部分组成,可以将病人血清中蛋白质成分的变化记录下来,绘制成蛋白指纹质谱图,并显示样品中各种蛋白的分子量、含量等信息。将这张图谱与正常人、某种疾病病人的谱图或基因库中的谱图进行对照,就能最终发现和捕获新的特异性相关蛋白及其特征。这种方法具有微量、精确、简易、快速的特点,适应于基础和临床等各个领域。 /p p   之所以将蛋白指纹图谱仪分析的大数据比喻为人体疾病的健康地图(MAP),是因为既然β2—微球蛋白是11731、人绒毛膜促性腺激素是37580、转甲状腺素蛋白是13761(数字对于计算机的应用更好管理),而每个蛋白质在质谱仪分析中都是数字,它本身就是大数据。任何物质在质谱底下都是数字,综合起来就是大数据。我把大数据串联起来,就能将分子在身体的MAP做出来。譬如一位吸烟的男士来体检,能发现他吸了烟数年之后肺部出现影像学病理性位点,结合质谱仪分析发现相关的疾病标志物,我们能够模拟出肺部疾病的健康地图,即通过质谱仪检测的健康大数据,可以模拟出该患者肺部出现了数个小红点,点击每个红点后都会解释原因,如显示铅、铬等数据是否超标,以及告诉你相应的对策。这样的技术开启了全智能健康4.0时代。 /p p   Tips:β2—微球蛋白(β2—MG)被认为是诊断早期肾功能损伤的敏感指标,尤其对于糖尿病肾病、高血压肾病、红斑狼疮肾炎的早期诊断具有重要参考价值,因此β2—微球蛋白的测定在临床上是有多种价值的。 /p p    strong 火石:您和您的团队在蛋白质组学研究的技术或者方法上有什么突破吗? /strong /p p   许洋博士:蛋白质作为标志物对肿瘤的诊断,确实没有太大的进展。 /p p   一直以来蛋白质组学研究面临的重大瓶颈是蛋白质分离问题:人体内有十万种蛋白质与衍生物,多数可能与疾病有关联,但这十万种蛋白质与衍生物只有分开后,质谱才能分析清楚。此前蛋白质组学技术中最流行、最通用的蛋白质分离方法是双向电泳,基本上能分离近二千种血浆蛋白质,远远不及十万种,所以成为了瓶颈。 /p p   2006年我提出了一个设想:和蛋白有关的抗体至少有一万多种,那为什么不用抗体来分离蛋白质?这件事一直有人在做,但之前都没有人想到用抗体组把一千个蛋白质一次性快速、实时地分离出来。之后就诞生了免疫质谱分析方法(专利号ZL 200610140652.0),可以在一个抗体组基质上同时捕获多个生物标志,并对捕获的变异的或修饰的生物标志进行质谱精确分析,还可以同时检测多个生物标志群。用免疫组质谱技术能测定抗原变异片段的分子量。另外,还可以将多种疾病特异性抗原的抗体同时标在一个基质点上。 /p p   Tips:免疫质谱分析方法:质谱与抗体分离技术联合应用即为免疫组质谱(Immunomic mass spectrometry,IMS)。免疫组质谱检测为一组多种(类)抗体与质谱联合来精确地鉴别变异或修饰生物标志群的方法。在一个抗体组基质上同时捕获多个生物标志,并对捕获的变异的或修饰的生物标志进行质谱精确分析。可以同时检测多个生物标志群(biomarkers)。 /p p   双向电泳(Two-dimensional electrophoresis):是一种等电聚焦电泳与SDS-PAGE相结合,分辨率更高的蛋白质电泳检测技术。目前是快速成长的蛋白质组学技术中最流行最通用的蛋白质分离方法。目前2D-PAGE能够在同一块凝胶上同步检测和定量数千个蛋白质。 /p p   从整个2015年的政策看,医疗器械行业是受到国家大力扶持的,行业地位与重要性大幅提升,法规向国际化看齐,行业监管不断趋严,医疗器械正成为与药物齐头并进的新兴产业。 /p p    strong 火石:是什么驱动着行业的高增长? /strong /p p   许洋博士:一是需求,老龄化加剧,家庭支付能力增强,导致医疗需求高增长 二是政府加大医疗卫生投入,《医疗器械科技产业“十二五”专项规划》表示,“十二五”期间将扶植形成8~10家产值超过50亿元的大型医疗器械产业集团 三是为配合新医改完善基层医疗建设的目标 四是国内生物技术研发应用进入突破期。 /p p    strong 火石:您认为接下来医疗器械未来发展的特点和前景会是怎么样的? /strong /p p   许洋博士:未来5年,医疗器械和制药占比将会达到1:1。近十年,我国医疗器械市场规模快速增长,国内医疗器械工业总产值从2003年的189亿人民币上升到2013年的1889亿,2013年同比增长21%,增长速度远快于药品。预计在未来5年左右,我国医疗器械行业仍然将保持高速增长。医疗器械行业涉及到医药、机械、电子、塑料等多个行业,中高端医疗器械更是多学科交叉、知识密集、资金密集的高技术产业,研发成本高,决定了只有大型厂商才能在大中型医疗器械方面有所作为。此外,器械“国产化”也会成为必然趋势。 /p p    strong 火石:赛尔迪当前开展的业务、研发的产品有哪些?公司部署战略是怎么样的? /strong /p p   许洋博士:我们现在正在做一张人类的大健康MAP。通过精准医疗计划,基于环境健康大数据,通过蛋白指纹图谱仪完成健康管理。现在的疾病市场最关注的问题分别是:检测0~6岁儿童智力、优生优育(为什么生不出聪明宝宝)、高达5千万的肿瘤人群以及3.5亿的高血压、糖尿病人群。 /p p   其中糖尿病肾病是糖尿病最常见且严重的并发症之一,是糖尿病所致的肾小球微血管病变而引起的蛋白排泄和滤过异常那个渐进性肾功能损害。而微量白蛋白尿即早期糖尿病肾病是可逆的,这不同于大量白蛋白尿即临床糖尿病肾病,因此积极防治早期糖尿病肾病就显得尤为重要。去年底,赛尔迪公司与中国医学科学院北京协和医院签署协议,承担国家对糖尿病肾病体内铅、镉毒素的临床大样本检测。全新升级的蛋白指纹图谱仪,是目前唯一获国家药监局批准、能检测含微量白蛋白、β2—微球蛋白以及泛素3项指标的医疗器械。这对糖尿病肾病的早发现、早治疗具有重大意义。 /p p   赛尔迪接下来将按照个体化精准检测所附带的信息,由这些信息与大数据库交流,提出符合个体化治疗的方案,向个体化精准医学管理方式转变。 /p p   随着大数据时代的来临,“互联网+”概念的提出让医疗健康事业呈现出了新的发展势态和特征。医学知识体系正被大数据、精准医疗所重构,信息化进程提高了知识传递速度与医疗协同效率。 /p p strong   火石:蛋白质组学技术如何助推精准医疗? /strong /p p   许洋博士:常识知道铅、镉会引起糖尿病性肾病。但铅、镉指标不是医院常规检测的项目。如果采取个体化精准治疗,每年常规检查一次体内铅与镉的指标,发现异常就能进行针对性的从尿液排泄的治疗。已经得了肾病正在透析的病人,检测铅与镉指标后进行针对性排泄也会增强治疗效果。利用蛋白指纹图谱仪能够发现早期的肿瘤和心血管标志物,这就会对疾病的治疗带来极大的希望。随着质谱技术在精准医疗的应用,越来越多的个体化标志物将会被发现,人体的蛋白指纹图谱测定将会成为医院的常规工作。 /p p   精准医疗,即考虑每一个体健康的差异,制定个性化的预防和治疗方案。正确的选中一个工具,解决关键问题,这就是精准医疗。基于基因组测序技术、生物医学工具以及大数据工具逐步成熟和完善,精准医疗能够为个体基因特征、环境以及生活习惯进行疾病干预及治疗,但如何尽快与大数据结合才是发展重点。日前我与北京协和医院合作,创立了中国特色的首个百万人疾病与环境毒素数据库与IMS(爱睦世)特检中心:HZIMS2008,首次在复杂疾病系统中构建了基于环境毒素大数据的移动网络数据库的质量控制体系,使我国重大疾病,如高血压、糖尿病、肿瘤的大数据病因学研究处于世界领先。 /p p /p
  • 蛋白质测序技术发展漫谈(上)
    本期中国科学院大连化物所单亦初老师将分享蛋白质测序技术的发展,本次分享将以连载形式以飨读者。蛋白质一级结构是组成蛋白质的氨基酸序列。蛋白氨基酸序列分析是确定蛋白质全部氨基酸序列的过程。通过蛋白质测序获得的信息有许多用途,包括:蛋白质的鉴定;合成可用作免疫原的肽段;用于治疗的抗体仿制产品的研发;以市场上销售的抗体试剂为基础进行抗体药物研发。目前的蛋白质测序方法主要分为三类:基于PCR扩增的蛋白质测序、Edman降解测序以及基于质谱的蛋白质测序。基于PCR扩增的蛋白质测序是利用细胞中表达的DNA或者RNA进行基因测序,然后再按照氨基酸密码子表转换为蛋白质的氨基酸序列,本质上属于基因测序技术。Edman降解测序是较早发展的蛋白质测序技术,利用化学方法从蛋白质的N端将氨基酸依次降解,再使用高效液相色谱对氨基酸进行鉴定。但是这种方法只能用于鉴定蛋白质和多肽的N-末端氨基酸残基(通常是几个-十几个残基,最多不超过四十个残基),无法对大的蛋白质进行全序列测定。此外,Edman降解法也有一定的局限,例如N末端封闭或有化学修饰的情况下将不能使用Edman降解法对蛋白质序列进行分析。目前使用最广的蛋白质测序方法是质谱法,较Edman降解法而言,其优点在于,质谱法更敏感,可以更快地裂解肽,可以识别末端封闭或修饰的蛋白质。基于质谱的蛋白质测序策略可分为两大类:自上而下策略(Top-Down)和自下而上(Bottom-Up)策略。自上而下的策略无需对蛋白质进行降解,直接使用LC-MS对完整蛋白质进行分析,根据谱图中碎片离子确定其序列;自下而上策略是先将蛋白质水解成肽段,通过LC-MS对肽段检测,再对肽段从头测序以及序列拼接从而得到完整蛋白质序列。图 :蛋白质序列测定原理Kira Vyatkina[1]通过自上而下的策略发展了一种Twister测序算法对单克隆抗体测序,虽然不需要使用蛋白酶酶解,减少了蛋白质预处理的步骤,但仅可以鉴定到抗体的序列片段。Liu[2]结合自上而下和自下而上两种策略发展了TBNovo测序算法对蛋白质进行测序,将自上而下的质谱数据作为抗体序列的骨架,再将胰蛋白酶酶解肽段的质谱数据对骨架的序列进行补充覆盖。由于特异性蛋白酶酶解后肽段种类少、覆盖率低,对抗体的轻链和CAH2区的测序覆盖率为86.9%和75.2%。Sen[3]发展了一种基于同源数据库搜索与从头测序结合的Supernovo测序算法,通过4种蛋白酶对单克隆抗体分别酶解,该测序方法仅可实现对抗体重链的可变区测序,无法对抗体全序列进行测定。Savidor[4]发展了一种蛋白质全序列从头测序的方法。将蛋白质在微波辅助下快速酸解,得到了种类丰富的肽段,使用其发展的肽段序列拼接算法——“肽段标签组装”(Peptide Tag Assembler,PTA),对从头测序的肽段进行序列拼接,但由于酸解的消化方式会使谷氨酰胺和天冬酰胺发生脱酰胺化,分别变为谷氨酸和天冬氨酸,降低了对蛋白质序列测定的准确度。为了解决蛋白质测序覆盖度低、准确度低的问题,我们发展了一种蛋白质全序列测定新方法[5]:该方法使用多种非特异性蛋白酶对蛋白质连续酶解,提高蛋白质酶解肽段种类和重叠度,从而提高蛋白质测序的覆盖度;此外,发展了一种序列拼接算法,根据从头测序得到的肽段序列中每个氨基酸的得分值和出现次数,对蛋白质序列进行组装和拼接,显著提高了蛋白质全序列测定的准确度。利用该测序方法对牛血清白蛋白的多种非特异性蛋白酶酶解后的肽段序列进行测序和拼接,实现了对牛血清白蛋白全序列100%准确度的测定。此外,将该方法应用于对乳腺癌药物单克隆抗体赫赛汀的全序列测定,重链和轻链的测序准确度分别达到99.6%和100%。参考文献[1] K V. De Novo Sequencing of Top-Down Tandem Mass Spectra: A Next Step towards Retrieving a Complete Protein Sequence [J]. Proteomes, 2017, 5(1), https://doi.org/10.3390/proteomes5010006[2] LIU X, DEKKER L J M, WU S, et al. De novo protein sequencing by combining top-down and bottom-up tandem mass spectra [J]. J Proteome Res, 2014,13(7): 3241-3248.[3] KI S, WH T, S N, et al. Automated Antibody De Novo Sequencing and Its Utility in Biopharmaceutical Discovery [J]. J Am Soc Mass Spectrom, 2017, 28(5): 803-810.[4] SAVIDOR A, BARZILAY R, ELINGER D, et al. Database-independent Protein Sequencing (DiPS) Enables Full-length de Novo Protein and Antibody Sequence Determination [J]. Mol Cell Proteomics, 2017, 16(6): 1151-1161.[5]杨超,单亦初,张玮杰等,基于非特异性蛋白酶连续酶解的蛋白质全序列测定方法,化学学报,修稿中。作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn)。
  • 绘云生物质谱试剂盒获医疗注册证,创始人为代谢组学专家、欧洲科学院院士贾伟
    7月3日,深圳市绘云生物科技有限公司的同型半胱氨酸测定试剂盒(液相色谱—串联质谱法)正式获得广东省药品监督管理局二类医疗器械注册证(注册证编号:粤械注准20232401152)。本产品用于体外定量测定人血清中同型半胱氨酸的浓度,临床上主要用于高同型半胱氨酸血症的辅助诊断及心血管病风险的评价。试剂盒由校准品1~4、质控品1~2、内标准品、还原剂、沉淀剂、稀释液、96孔深孔板和96孔V底板、96孔板铝式覆膜、96孔板硅胶垫组成。其中校准品1~4:含同型半胱氨酸和牛血清白蛋白的冻干粉 质控品1~2:含同型半胱氨酸和牛血清白蛋白的冻干粉 内标准品:含氘代同型半胱氨酸和氢氧化钠的水溶液 还原剂:含二硫苏糖醇的固体粉末 沉淀剂:含甲醇 稀释液:含抗坏血酸的水溶液。  仪器信息网进一步查询到绘云生物的相关信息,2017年,贾伟教授创立深圳绘云生物科技有限公司,瞄准大健康及慢病管理的全新领域,运用现代生物技术,开发慢病诊断、预警及干预的创新技术产品。绘云生物曾于2017年获天使轮融资,2021年完成A轮融资。公司专注于医学健康,开展精准医疗和大健康产业相关产品的研发,着力推动个体化医疗服务进展,是一家集科技服务、健康检测及产品研发为一体的高新科技企业。绘云生物科技有限公司致力于研制和生产在医疗领域、研究领域以及商业实验中使用的体外诊断试剂。除了体外诊断试剂,绘云生物科技有限公司还提供诊断检测以及代谢组学技术服务。
  • 最新发现:世界上第一个单分子高精度蛋白质图像出炉
    在人体内,有数千不同的蛋白质。每个蛋白质都有独特的形状,这样决定了它们独特的功能。科学家们至今都有很难捕捉单个蛋白的图像。问题在于,高功率成像工具往往会抹导致脆弱的蛋白质结构发生破坏,因此研究人员拍摄数以百万计的照片,来全面地了解一种蛋白质的晶体结构。这些工具所产生的图像,通常是模糊的,并且一些蛋白质不能被拍照,因为它们无法形成晶体。  现在,一个研究团队已经可以用新的石墨烯材料来采集单个蛋白的图像。根据最近公布的arXiv上的一项研究,这种使用全新材料石墨烯获得的蛋白质图像是第一个针对单个蛋白质的高分辨率图像。  捕捉单个蛋白质的图像时,研究人员将蛋白质的溶液雾化,并混合到非常薄的石墨烯片上。然后他们使用了低能量的全息电子显微镜,通过弹跳电子束来撞击蛋白质,然后记录这些电子与其它电子的如何相互作用产生的图像。这种低能量的电子束可以保证蛋白质结构不会出现太大的破坏。不同于以前其他成像方法,研究人员使用全息电子显微镜可以保证蛋白质结构的完整性和可靠性。利用计算机技术,研究人员使用了全息电子显微镜产生的图像来重建蛋白质的原始结构。  细胞色素C图像。A)从全息电子显微镜获取的细胞色素C蛋白的图像。B)三种不同的蛋白质观察角度的重建。C)使用电子计算机技术来数字重建的蛋白质的不同角度的模型。  (图片来自:Jean-Nicolas Longchamp et al, 2015, arXiv)  研究人员试图将自己解析的结构与几种已经广为人知的蛋白质结构做对比,比如血红蛋白(在红血球中携带氧气的蛋白),牛血清白蛋白(在实验室常用的蛋白)和细胞色素C(细胞内的电子转移在他)。他们比较了所得图像,并与其他成像技术获得的图像做对比,并发现,他们的照片有更高的清晰度。研究人员接下来希望获取其他未解析过的蛋白质图像。如果科学家更好地了解蛋白质结构,他们可以找可能存在的错误折叠的蛋白、如阿尔茨海默氏症,帕金森氏和亨廷顿氏病相关的蛋白质,这对于人类健康和基础生物学的研究大有益处。
  • PeproTech无动物成分蛋白大促销
    细胞治疗的福音--PeproTech多种无动物成分(Animal Free)蛋白大促销细胞治疗是将人体细胞经体外培养、诱导增殖活化后回输入人体的一种治疗肿瘤等疾病的方法,因安全、有效,并能提高生活质量而广为人们所关注和采用。细胞治疗离不开细胞培养,而培养过程中细胞因子或活性蛋白的加入不可或缺,这些细胞因子或活性蛋白目前基本上都是重组表达而来。左图显示细胞因子和活性蛋白的传统表达法。在该法的表达阶段,对于原核细胞表达,培养时需在培养基中加入蛋白胨;而真核细胞表达时,则需在培养液中加入牛血清。蛋白胨和牛血清都是动物成分,因此用传统表达法表达出来的细胞因子或活性蛋白不可避免的会混入动物成分。举个简单的例子,如果想用传统方法表达人IL-2,则最后得到的重组人IL-2中可能会有牛的IL-2或其它成分,这样的人IL-2用于临床时可能会给患者带来安全问题,治疗效果也可能会受到影响。无动物成分(Animal Free)的细胞因子和蛋白则是在传统表达法的基础上,对原核和真核细胞的培养体系进行了改进,其中不加入蛋白胨和牛血清,因此最后所得的细胞因子和蛋白中不会含有动物成分,这样也就具有了以下几个突出的优势:1. 传统蛋白可能会给患者引入疯牛病病毒或其他未知病原体,而无动物成分(Animal Free)蛋白不会。2. 传统蛋白中的动物抗原可能会引起临床使用时的异种排斥和过敏反应,而无动物成分(Animal Free)蛋白不会。3. 传统蛋白中的痕量动物激素或其它活性成分可能会给患者带来副作用,而无动物成分(Animal Free)蛋白不会。为给国内的细胞治疗,无论是免疫细胞治疗,还是干细胞治疗提供更安全的、更经济实惠的蛋白产品,PeproTech公司推出无动物成分(Animal Free)蛋白促销活动,与传统蛋白同价。抓住这次机会,以更优惠的价格获得PeproTech高端产品。 阅读原文:http://www.liankebio.com/ProductCenterShow/articleID/2014040008.html
  • 内江市某公司通过仪器信息网成功订购远慕KIM-1蛋白和人L-FABP蛋白
    上海远慕是国内elisa试剂盒优质供应商,本司代理销售不同elisa试剂盒品牌的进口/国产elisa试剂盒,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询! 内江市某公司通过仪器信息网成功订购远慕KIM-1蛋白和人L-FABP蛋白: ELISA的样本实验准备 在收集样本前都必须有一个完整的计划,必须清楚要检测的成份是否足够稳定。对收集后当天就进行检测的样本,及时储存在4℃备用。对于隔天再检测的样本,及时分装后冻存在-20℃备用,有条件的,最好-71℃冻存备用。标本反应(此时蓝色立转黄色)。终止液的加入顺序应尽量与底物液的加入顺序相同。为了保证实验结果的准确性,底物反应时间到后应尽快加入终止液。 8.用酶联仪在450nm波长依序测量各孔的光密度(OD值)。 在加终止液后15分钟以内进行检测。 注: 1. 用户在初次使用试剂盒时,应将各种试剂管离心数分钟,以便试剂集中到管底。 2. 每次实验留一孔作为空白调零孔,该孔不加任何试剂,只是最后加底物溶液及2N H2SO4。测量时先用此孔调OD值至零。 3. 为防止样品蒸发,试验时将反应板放于铺有湿布的密闭盒内,酶标板加上盖或覆膜。 4. 未使用完的酶标板或者试剂,请于2-8℃保存。标准品、生物素标记抗体工作液、辣根过氧化物酶标记亲和素工作液请依据所需的量配置使用。请勿重复使用已稀释过的标准品、生物素标记抗体工作液或、辣根过氧化物酶标记亲和素工作液。 5. 建议检测样品时均设双孔测定,以保证检测结果的准确性。 洗板方法 手工洗板方法:吸去(不可触及板壁)或甩掉酶标板内的液体;在实验台上铺垫几层吸水纸,酶标板朝下用力拍几次;将推荐的洗涤缓冲液至少0.3ml注入孔内,浸泡1-2分钟。根据需要,重复此过程数次。 自动洗板:如果有自动洗板机,应在熟练使用后再用到正式实验过程中。 计算 以标准物的浓度为横坐标(对数坐标),OD值为纵坐标(普通坐标),在半对数坐标纸上绘出标准曲线,根据样品的OD值由标准曲线查出相应的浓度;再乘以稀释倍数;或用标准物的浓度与OD值计算出标准曲线的直线回归方程式,将样品的OD值代入方程式,计算出样品浓度,再乘以稀释倍数,即为样品的实际浓度。 注意事项 1. 当混合蛋白溶液时应尽量轻缓,避免起泡。 2. 洗涤过程非常重要,不充分的洗涤易造成假阳性。 3. 一次加样时间最好控制在5分钟内,如标本数量多,推荐使用排枪加样。 4. 请每次测定的同时做标准曲线,最好做复孔。 5. 如标本中待测物质含量过高,请先稀释后再测定,计算时请最后乘以稀释倍数。 6. 在配制标准品、检测溶液工作液时,请以相应的稀释液配制,不能混淆。 7. 底物请避光保存。 8. 不要用其它生产厂家的试剂替换试剂盒中的试剂。 我们给这位客户介绍了该产品并报完价格发去产品说明书,客户和我们沟通的非常顺畅,了解我们的产品后,客户对我们非常有信心,当即就下了订单,下面是和客户的沟通记录: 远慕生物,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询与订购!
  • 用亲和色谱法和四维蛋白质组学法系统鉴定血液中与顺铂结合的蛋白质
    大家好,本周为大家分享一篇发表在J Proteome Res.上的文章,Systematic Identification of Proteins Binding with Cisplatin in Blood by Affinity Chromatography and a Four-Dimensional Proteomic Method,该文章的通讯作者是华中科技大学药学院的杜支凤教授。以顺铂为代表的铂类抗癌药物广泛应用于治疗多种癌症肿瘤,如胃肠道癌、头颈部癌和卵巢癌等。在静脉滴注后,这些药物水解形成活性分子,与DNA结合并抑制DNA链的合成与复制,最终致使细胞死亡。然而,由于铂与硫醇的高亲和力,大多数铂在静脉注射后会与血液中的蛋白质结合;例如,人血清白蛋白 (HSA) 是含量最丰富的血清蛋白,也是血液中铂类药物的主要结合蛋白;另外,在红细胞中负责运输氧气的血红蛋白 (HB) 也被发现与铂结合,因此,有必要研究铂类药物在血液中的蛋白结合行为。先前的研究已经证明,利用质谱方法可以实现对高丰度蛋白质的可靠鉴定;然而,由于高丰度蛋白的干扰,占总蛋白的 80% 以上的低丰度蛋白则很少被鉴定。此外,由于缺乏足够信息,以及在胰蛋白酶消化过程中还原和烷基化剂的使用导致蛋白上的铂化位点无法被确定。更重要的是,目前排除假阳性结果的唯一方法是根据铂化肽的特征同位素模式,人工对比理论同位素和实验同位素,从而导致鉴定过程非常耗时并且具有较强的主观性。因此,有必要开发一种可靠、高效的方法来鉴定血液中铂类药物的结合蛋白质组。在血液蛋白质组学研究中,免疫亲和层析常用于消耗高丰度蛋白并富集低丰度蛋白。它有利于低丰度蛋白的鉴定和定量,从而可以提高血液中的蛋白质组覆盖范围。除了色谱分离外,离子淌度质谱 (IM−MS) 根据离子的迁移率差异进行分离,同样有助于低丰度蛋白质的分析。在金属化蛋白的鉴定中,金属化肽和游离肽的同位素分布模式明显具有差异,这有助于确定这些肽是否与金属药物结合。已经开发了一些数据处理软件程序来自动分配金属药物在已知蛋白质上的结合位点,如智能数字注释程序 (SNAP) 算法和 Apm2s 。本文结合高丰度蛋白分离和4D蛋白质组学方法 (IM-MS) ,系统、全面地鉴定了血液中顺铂的结合蛋白,并利用铂化肽的特征同位素模式和相似性算法来消除假阳性的识别。如图1所示,首先用超滤去除游离药物,然后使用多亲和去除柱分离血液样本中的高丰度和低丰度蛋白;用FAIMS Pro界面的nano-LC−MS/MS进行消化和分析;用MaxQuant对铂化的多肽和蛋白进行鉴定,用相似性算法Apm2s排除假阳性结果。在此基础上,采用基于平行反应监测 (PRM) 的方法测定了血浆中多肽与顺铂的结合率。本研究为系统鉴定血液中金属药物的结合蛋白提供了一种新方法,鉴定出的蛋白可能有助于了解铂类抗癌药物的毒性。图1 铂化蛋白的分离和鉴定以及用蛋白质组学方法测定顺铂与多肽之间的结合率的示意图本研究采用顺铂与人血浆的反应混合物建立了一种分析方法。为了与文献进行比较,样品的制备方法与文献中的制备方法相同1。选择CID作为碎裂方式,结果表明,从低丰度部分共鉴定出212个蛋白,从高丰度部分共鉴定出169个蛋白。在低丰度部分,共鉴定出1192个游离肽和208个铂化肽。其中,154个铂化肽被排除为假阳性结果,如文中表S1所示。高丰度部分的游离肽数和铂化肽数分别为1124个和169个,其中,144个铂化肽被排除为假阳性,如表S2所示。低丰度结合蛋白的鉴定在以往的研究中,由于高丰度蛋白的干扰,很少发现低丰度蛋白与铂的结合。本研究在高丰度蛋白被消耗后,从29个蛋白中共鉴定出54个铂化肽。APOA4中铂化肽的理论和实际质谱如图2所示,前体离子和铂化产物离子表现出特征的同位素峰。图片显示了关键的碎片离子的质谱图,用于分配铂化位点。在鉴定出的铂化蛋白中,CERU、FETUA、ITIH1和B4E1Z4有4个或更多的含铂肽,这表明铂可以与这些蛋白质的多条肽段结合。虽然低丰度蛋白只占血液中蛋白的一小部分,但它们具有非常重要的功能,对于维持正常生理活动不可或缺。例如,CERU可以将Fe2+氧化为Fe3+,并在铁代谢中发挥重要作用;B4E1Z4与补体激活相关。顺铂与这些蛋白的结合是否会对其功能产生影响仍有待进一步研究。图2 从低丰度蛋白部分鉴定出的铂化蛋白APOA4。(A)铂化肽的理论(左)和实验质谱(右);(B)铂化肽的MS/MS和指示铂化位点的关键碎片离子的质谱图高丰度结合蛋白的鉴定IGHG1中一个铂化肽的理论和实验质谱如图3所示,其前体离子和铂化产物离子表现出特征同位素峰。根据关键的碎片离子确定了铂化位点。在已鉴定的蛋白中,ALBU(白蛋白)和CO3(补体C3)有4个或更多的含铂多肽。HSA负责血液中药物和小分子的运输,CO3在补体系统的激活中起着重要作用。高丰度蛋白与顺铂的结合已被用于提高肿瘤化疗的疗效和选择性,而新发现的高丰度结合蛋白有助于相关研究。与低丰度组分鉴定的铂化蛋白相比,大部分与低丰度组分蛋白不同,两个组分中仅共同检测到FETUA和CFAH作为铂化蛋白,这表明亲和层析对高丰度蛋白和低丰度蛋白的分离效果较好。图3 从高丰度蛋白部分鉴定出铂化蛋白IGHG1。(A)铂化肽的理论(左)和实验质谱(右);(B)铂化肽的MS/MS和指示铂化位点的关键碎片离子的质谱图IM−MS分离铂化肽异构体如图4所示,通过nano-LC−IM−MS/MS成功分离了低丰度蛋白组分中FETUA的铂化肽异构体。同分异构体a和b是典型的铂化肽,由质谱图的同位素模式显示,它们被很好地分离。它们的MS/MS不同,根据关键碎片离子,异构体a和b的铂化位点分别被划分为M和H/T。这个例子显示了IM−MS对复杂样品的分辨能力。图4 用nanoLC−IM−MS/MS分离的低丰度蛋白组分中FETUA的铂化肽异构体。(A)m/z=764.67提取离子色谱和异构体a、b的质谱,理论质谱见中间;(B)异构体的MS/MS和关键碎片离子的质谱图结合蛋白的铂化位点在本文的两项研究中,His 和 Met 是首选的铂结合位点。此外,D、E、S和Y也被发现是铂结合位点。这也是合理的,因为血清蛋白的供氧氨基酸已被证明是顺铂的动力学首选结合位点。很少有Cys残基被鉴定为结合位点,这可能是由于没有还原和烷基化。肽的半胱氨酸常形成二硫键,不经还原和烷基化就无法识别,因此,序列覆盖率会很低。在未来的研究中,应使用替代还原剂来提高肽序列覆盖率。生物信息学分析 为了揭示铂化蛋白质的定位、功能和途径,将从高丰度和低丰度部分中鉴定的蛋白质组合起来并通过生物信息学工具进行分析。如图5A所示,GO分析表明大部分结合蛋白位于细胞外区域,发挥蛋白结合、金属离子结合、酶抑制剂等功能;因此,镀铂蛋白的定位证实了鉴定的可靠性。此外,这些蛋白质参与内肽酶活性、免疫系统过程、补体激活、炎症反应和凝血的负调节。为了阐明所涉及的途径,对鉴定的蛋白质进行了KEGG途径富集分析,结果表明最显着的富集途径是补体和凝血级联途径(图5B)。补体和凝血级联途径已被证明在造血干/祖细胞的动员中发挥关键作用,这对造血具有重要意义。顺铂的血液学毒性与其在补体和凝血级联途径中与血液蛋白的结合之间的相关性值得进一步研究。图5 (A)通过GO 分析确定的铂化蛋白的定位、分子功能和生物学过程;(B)铂化蛋白的富集途径血液蛋白与顺铂的结合率 由于未检测到一些铂化肽的游离形式,因此仅使用高丰度组分中的13种肽进行亲和力研究。可靠地计算了属于五种蛋白质的六种铂化肽的结合率。PRM分析中这些肽的信息见表S5,定量结果见图6。其中,富含组氨酸的糖蛋白的一种肽与顺铂的结合率最高,这可能是由于顺铂对含组氨酸和带负电荷的生物分子的高亲和力。Apoa1 蛋白的一个肽与顺铂的结合率最低。在本研究中可以确定结合率的铂化肽数量较少,这主要是由于某些肽的质谱响应低以及某些肽存在氧化形式。因此,这些肽的结合比率不能通过 PRM 方法确定。然而,与以往的研究相比,根据属于同一蛋白质的肽的质谱计数粗略估计某种蛋白质的丰度,这种方法可以更准确地确定高丰度肽与铂的结合率。图6 根据PRM分析多肽与顺铂的结合亲和力顺铂与血液蛋白的结合与其药代动力学、活性、毒性和副作用密切相关。然而,血液蛋白质组的复杂性限制了低丰度结合蛋白的鉴定。在本研究中,基于亲和色谱和nanoLC-IM-MS/MS 的 4D 蛋白质组学方法被用于分离低丰度和高丰度蛋白质并分析这两个部分。基于铂化肽的特征同位素分布和相似性算法,排除了假阳性鉴定。结果,共有 39 种蛋白质被鉴定为铂化蛋白质,这比之前研究中的数量要高得多。随后的生物信息学分析表明,这些结合蛋白位于细胞外区域,主要参与内肽酶活性、免疫系统过程、补体激活、炎症反应和凝血的负调控。最显着的富集途径是补体和凝血级联,这可能与顺铂的血液学毒性有关。高丰度部分的 PRM 分析表明,富含组氨酸的糖蛋白中的肽与高丰度组分中的顺铂的结合率最高。综上所述,本研究揭示了人类血液中与顺铂结合的蛋白质组,并计算了顺铂与血液蛋白的结合率。这种方法虽然在数据分析方面比较耗时,但它可以识别复杂系统中金属药物的低丰度结合蛋白,并且可以准确测量药物与血液蛋白的结合率。
  • 蛋白质测序技术发展漫谈(下)
    前文回顾(点击查看):蛋白质测序技术发展漫谈(上篇);蛋白质测序技术发展漫谈(中篇)前面讨论了基于质谱的蛋白质测序技术的一般流程及基于质谱的肽段序列测定方法。在组成蛋白质的20种氨基酸中,亮氨酸和异亮氨酸互为同分异构体,具有相同的分子质量,无法通过二级质谱产生的同系列离子的质量差异被区分。然而亮氨酸/异亮氨酸对单克隆抗体药物的功能影响巨大,典型的单克隆抗体在互补决定区(CDR)中含有至少3个亮氨酸/异亮氨酸,在复杂的样品中可以存在多达9个。单克隆抗体中CDR的错误识别,会导致抗原结合亲和力与抗体的特异性大量丧失。因此,对单克隆抗体中的全部亮氨酸或异亮氨酸进行准确测定意义重大[1-2]。亮氨酸和异亮氨酸的侧链分别是异丁基和仲丁基,通过质谱的多级碎裂产生的特征离子可以对亮氨酸和异亮氨酸进行区分。一种方法是通过不同系列的碎片离子质量差来区分,其原理是肽段在ETD-HCD或EThcD碎裂模式下可产生z离子,含有异亮氨酸和亮氨酸肽段分别失去一个乙基自由基(C2H5)和一个丙基自由基(C3H7),产生质量分别减少29 Da和43 Da的w离子,因此通过质谱产生的z/w离子质量差,可区分肽段中的亮氨酸和异亮氨酸[2-5]。Zhokhov[3]对人血清白蛋白(HSA)、gp188蛋白两种蛋白质的43条胰蛋白酶酶解肽段中的93个亮氨酸和异亮氨酸进行鉴定,准确区分了其中的83个,但由于z/w离子分别产生在ETD和HCD谱图中,在鉴定过程中需要人工筛选含有z/w离子的谱图。Tatiana[4]等通过EThcD的碎裂模式对蛙皮肤分泌的14条肽段进行鉴定,使肽段的z/w离子出现在同一张谱图中,区分鉴定了这些肽段中的61/75个亮氨酸和异亮氨酸。由于不能保证每个含有亮氨酸或异亮氨酸的肽段在质谱中碎裂一定会产生相应的z/w离子,因此通过z/w离子质量差的方法无法对蛋白序列中全部的亮氨酸和异亮氨酸准确测定。另一种方法是通过亮氨酸和异亮氨酸的亚胺离子的三级碎片离子区分,其原理是亮氨酸或异亮氨酸质子化的离子(132 Da)容易损失甲酸而形成相应的亚胺离子(86 Da),它们的亚胺离子在三级碎裂中分别会产生m/z 69和m/z 43的特征离子。Nakamura[6]使用嗜热菌蛋白酶对人钙降素进行酶解,得到以亮氨酸或异亮氨酸为N端的肽段,通过该方法确定钙降素的第4和9个氨基酸为亮氨酸,第27个氨基酸为异亮氨酸,但此方法的缺点是当一条肽段中含有不止一个亮氨酸或异亮氨酸时,特征离子峰相会互干扰,无法对其判断。Bagal[5]将亚胺离子的三级碎片离子的方法和z/w离子质量差的方法结合,并将该策略用于两个单克隆抗体CDR中的亮氨酸和异亮氨酸的鉴定,由于使用胰蛋白酶酶解产生的肽段长度过长,对鉴定造成影响,仅对6条肽段中的亮氨酸和异亮氨酸的准确鉴定,无法区分CRD区全部亮氨酸和异亮氨酸。Sheila[7]使用4种蛋白酶对单克隆抗体进行酶解,对二级质谱产生的a1离子进行三级碎裂,排除了肽段内部亮氨酸或异亮氨酸的干扰,根据每个三级谱图中特征峰强度的比值对亮氨酸和异亮氨酸区分,由于谱图中噪音干扰以及肽段的共碎裂,会使一些含有特征离子的谱图不能用于准确区分亮氨酸和异亮氨酸,最终对单克隆抗体中的71.1%-94.1%亮氨酸和异亮氨酸进行区分。我们借鉴该方法,结合非特异酶连续酶解技术,以及基于碎片离子质量校正和多谱图共同打分策略,实现了对单克隆抗体药物赫赛汀轻链中7个异亮氨酸和18个亮氨酸,重链中9个异亮氨酸和33个亮氨酸的鉴定,准确度100%,轻链鉴定的覆盖度为100%,重链鉴定的覆盖度为97.67%。鉴定蛋白质中亮氨酸和异亮氨酸的流程图[1] Hurtado P P, O' Connor P B. Differentiation of isomeric amino acid residues in proteins and peptides using mass spectrometry [J]. Mass Spectrom Rev, 2012, 31(6): 609-25.[2] Xiao Y, Vecchi M M, Wen D. Distinguishing between Leucine and Isoleucine by Integrated LC-MS Analysis Using an Orbitrap Fusion Mass Spectrometer [J]. Anal Chem, 2016, 88(21): 10757-66.[3] Zhokhov S S, Kovalyov S V, Samgina T Y, et al. An EThcD-Based Method for Discrimination of Leucine and IsoleucineResidues in Tryptic Peptides [J]. J Am Soc Mass Spectrom, 2017, 28(8): 1600-11.[4] Samgina T Y, Kovalev S V, Tolpina M D, et al. EThcD Discrimination of Isomeric Leucine/Isoleucine Residues in Sequencing of the Intact Skin Frog Peptides with Intramolecular Disulfide Bond [J]. J Am Soc Mass Spectrom, 2018, 29(5): 842-52.[5] Bagal D, Kast E, Cao P. Rapid Distinction of Leucine and Isoleucine in Monoclonal Antibodies Using Nanoflow LCMS(n) [J]. Anal Chem, 2017, 89(1): 720-7.[6] Nakamura T, Nagaki H, Ohki Y, et al. Differentiation of leucine and isoleucine residues in peptides by consecutive reaction mass spectrometry [J]. 1990, 62(3): 311-3.[7] Maibom-Thomsen S, Heissel S, Mortz E, et al. Discrimination of Isoleucine and Leucine by Dimethylation-Assisted MS3 [J]. Anal Chem, 2018, 90(15): 9055-9.作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn)。
  • 蛋白质测序技术发展漫谈(中)
    前文回顾(点击):蛋白质测序技术发展漫谈(上)前面提到,基于质谱的蛋白质测序主要流程为:首先对蛋白质酶解得到肽段,经过LC-MS/MS分析得到相应的质谱数据,再使用测序软件根据质谱数据对肽段测序,最后对测序得到的肽段序列进行拼接。其中根据肽段的二级质谱图进行从头测序是其核心内容。目前已发展的肽段从头测序算法有三十余种,主要可以分为三类:图方法、穷举法和动态规划法,包括PEAKS[ 1]、pNovo系列[2]、Pepnovo[3]、Novor[4]等。 Muth[5]评估了Novor、PEAKS和PepNovo三种测序软件在实验数据集上测序的准确度,这三款软件对肽段的测序准确度最高只有35%。这是由于质谱谱图中存在着噪声和干扰离子,无法有效的区分谱图中可用于肽段测序的碎片离子[6],使得精准解析谱图的难度增加且耗费大量的时间。基于碎片离子的蛋白质组稳定同位素标记定量方法通过在细胞培养或样品处理的过程中引入不同种类的同位素标记,混合后进行LC-MS分析。不同稳定同位素标记的相同序列肽段质量相同或相近,可在质谱中同时碎裂,形成成对的碎片离子[7]。借鉴该方法,可更好的区分并提取用于测序的碎片离子,用于肽段的序列测定。Nie[8]在细胞培养时加入同位素标记的精氨酸和赖氨酸,再利用Lys-N和Arg-C对提取的蛋白质酶解,形成N端为精氨酸、C端为赖氨酸的等重肽段,在二级谱中可形成成对的b离子和成对的y离子,但这种标记方法只能在细胞水平标记,且通过两种蛋白酶酶解后只有少部分肽段质量相等并被鉴定到。Zhang[9]发展了部分等重肽段末端标记方法,使用Lys-C酶解后,肽段的C端为含有氨基的赖氨酸,再通过对两末端使用不同同位素标记,使得相同序列的肽段质量差为2 Da,在二级谱中产生了质量差为4 Da的成对b离子和质量差为6 Da的成对y离子,为使肽段能够碎裂在同一张谱图中,质谱的分离窗口需要被放大到4 m/z甚至更多[10],但放大分离窗口会导致更多的质量相近的肽段发生共碎裂,谱图会变得更加复杂难以解析,增加了从头测序的难度。为此,我们开发了一种基于二甲基化标记和胰蛋白酶催化18O标记的肽段末端准等重标记(Pseudo Isobaric Peptide Termini Labelling,PIPTL)从头测序方法 [11](图1)。经该方法进行同位素标记后,序列相同的肽段质量仅相差0.0166 Da,这些准等重肽段无需扩大质谱分离窗口即可在质谱中同时碎裂,产生成对的b离子和成对的y离子;基于发展的PIPTL-Novo测序算法,根据不同系列碎片离子质量差可快速准确提取并区分b/y离子,再对b/y离子进行测序分析,从而实现对肽段的准确测序。以牛血清白蛋白为研究对象,对肽段从头测序的准确度进行评价,测序准确率为95.5%;最后将此从头测序方法应用于对单克隆抗体赫赛汀重链和轻链的序列测定,对赫赛汀的酶解肽段从头测序准确率为93.6%。图1 基于二甲基化和胰蛋白酶催化18O标记的PIPTL-Novo策略参考文献[1] Ma B, Zhang K, Hendrie C, et al. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom, 2003, 17(20): 2337-42.[2] Yang H, Chi H, Zhou W-J, et al. Open-pNovo: de novo peptide sequencing with thousands of protein modifications. J Proteome Res, 2017, 16(2): 645-54.[3] Frank A M, Savitski M M, Nielsen M L, et al. De novo peptide sequencing and identification with precision mass spectrometry. J Proteome Res, 2007, 6(1): 114-23.[4] Ma B. Novor: real-time peptide de novo sequencing software. J AmSoc Mass Spectrom, 2015, 26(11): 1885-94.[5] Muth T, Renard B Y. Evaluating de novo sequencing in proteomics: already an accurate alternative to database-driven peptide identification? . Brief Bioinform, 2018, 19(5): 954-70.[6] Lu B, Chen T. A suboptimal algorithm for de novo peptide sequencing via tandem mass spectrometry. Journal of Computational Biology, 2003, 10(1): 1-12.[7] Merrill A E, Coon J J. Quantifying proteomes and their post-translational modifications by stable isotope label-based mass spectrometry. Curr Opin Chem Biol, 2013, 17(5): 779-86.[8] Nie A-Y, Zhang L, Yan G-Q, et al. In vivo termini amino acid labeling for quantitative proteomics. Anal Chem, 2011, 83(15): 6026-33.[9] Zhang S, Shan Y, Zhang S, et al. NIPTL-Novo: Non-isobaric peptide termini labeling assisted peptide de novo sequencing. J Proteomics, 2017, 154(40-8.[10] Hennrich M L, Mohammed S, Altelaar A M, et al. Dimethyl isotope labeling assisted de novo peptide sequencing. J Am Soc Mass Spectrom, 2010, 21(12): 1957-65.[11] 杨超,刘健慧,张玮杰等,基于末端准等重同位素标记的肽段从头测序方法. 分析化学, 2021, 49 (03), 366-376.作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn)。中国临床质谱产业化发展论坛(点击报名)仪器信息网联合浙江省先进质谱技术与分子检测重点实验室、宁波大学质谱技术与应用研究院,共同举办“第六届中国质谱产业化发展论坛——临床质谱产业化发展”,在2021年第十五届中国科学仪器发展年会(ACCSI 2021)召开同期,邀请临床质谱业内专家、国内质谱企业、第三方医学实验室、医院专家代表,共同就中国临床质谱技术与产业化发展等话题展开探讨、答疑解惑,为中国临床质谱产业链上中下游三方搭建互动交流平台,助力中国临床质谱产业发展,进一步优化和拓展临床质谱产业市场,共同促进中国质谱产业健康快速发展。
  • 威斯康星大学葛瑛教授荣获HUPO2021蛋白质组学临床转化奖
    仪器信息网讯 HUPO国际大会(Human Proteome Organization World Congress)是全球蛋白质组领域的盛会。日前,HUPO 2021颁布了蛋白质组学的五大奖项,澳大利亚麦考瑞大学Nicolle H. Packer获蛋白质组学杰出成就奖、瑞士苏黎世联邦理工学院Paola Picotti获蛋白质组学科学发现奖、威斯康星大学葛瑛获蛋白质组学临床转化奖、丹麦Evosep公司Nicolai Bache and Ole Vorm共同获得科学技术奖、爱尔兰都柏林大学的Stephen Pennington获杰出服务奖。其中蛋白质组学临床转化奖的获得者,美国威斯康星大学的葛瑛教授曾获2020年美国质谱年会Biemann奖,也当选为2020年度最具影响力分析化学家。葛瑛博士,威斯康星大学麦迪逊分校细胞与再生生物学和化学教授葛瑛博士过去十年致力于临床和转化蛋白质组学研究,以更好地理解和诊断心脏疾病。她通过创造性地将质谱/蛋白质组学与心脏生物学/医学相结合,在精准医学的基础研究和转化/临床研究之间架起桥梁。她的研究是高度跨学科的,跨越了化学、生物学和医学的传统边界,以期实现真正的“从实验室到临床”。葛教授团队使用基于高分辨率质谱技术的自上而下蛋白质组学分析肥厚型心肌病患者的手术心脏组织样本,发现许多不同的基因突变会导致相似的心肌蛋白变化,并详细分析了患者和正常人的心脏蛋白质特征。研究团队从梗阻性肥厚型心肌病患者接受矫正手术以修复心脏血流受损的患者中收集了患病心脏组织的样本。尽管潜在的遗传突变有所不同,葛瑛团队发现患者心脏的许多关键肌肉蛋白有非常近似的蛋白质指纹图谱,表明这些梗阻性肥厚型心肌病患者具有共同的信号途径。虽然具体机制尚需进一步研究,但这些关键肌肉蛋白质磷酸化改变很可能导致心脏失调,从而导致心肌增厚。这对心脏病医生来说是个好消息,因为这证明可以用研发一种共通的疗法治疗这种梗阻性肥厚型心肌病,而不是针对患者个别基因突变的治疗方法。该研究也进一步证明了基因突变并不总是足以解释疾病。这些基因编码的蛋白质对健康有最终影响,但在疾病期间,人体的蛋白质可能会以微妙但相应的方式改变。蛋白质水平的变化可能比其基因更好地反映了患者的疾病,并且如果我们可以在蛋白质水平上检查患者的样本,则可以帮助我们提供精准医学治疗。葛瑛教授近期重磅科研成果:2021年7月,威斯康星大学葛瑛教授团队在《美国化学会志》(Journal of the American Chemical Society, JACS)上发表了最新的成果,题为“Structural O‑Glycoform Heterogeneity of the SARS-CoV‑2 Spike Protein Receptor-Binding Domain Revealed by Top-Down Mass Spectrometry”。该研究利用自上而下蛋白质组学方法,提供了刺突糖蛋白不同O-糖型的高分辨率蛋白质解析图,为揭示其 O-聚糖的功能作用奠定了强大的分子基础。这种蛋白质解析方法可用于揭示新出现的 SARS-CoV-2 S-RBD 变体以及其他O-糖蛋白的结构O-糖型异质性。(点击了解更多)2020年9月23日,葛瑛教授的一项新研究成果“Distinct hypertrophic cardiomyopathy genotypes result in convergent sarcomeric proteoform profiles revealed by top-down proteomics”发布在《美国科学院院报》(PNAS),该团队使用基于高分辨率质谱技术的自上而下蛋白质组学分析肥厚型心肌病患者的手术心脏组织样本,发现许多不同的基因突变会导致相似的心肌蛋白变化,并详细分析了患者和正常人的心脏蛋白质特征。(点击了解更多)2020年8月6日,葛瑛教授团队和化学系金松(Song Jin)教授团队合作的最新研究成果“Nanoproteomics enables proteoform-resolved analysis of low-abundance proteins in human serum”发表于自然子刊《自然通讯》(Nature Communications)。研究团队开发了基于纳米材料的蛋白质组学新方法,将功能化的超顺磁性纳米颗粒(NPs)与自上而下蛋白组学质谱分析结合,在有效地从血清中富集心脏肌钙蛋白I(cTnI)(cTnI是一种心脏疾病的生物标志物)的同时也能很好的去除血清白蛋白。该研究成果将在蛋白组学研究上得到广泛的应用,有助于揭示cTnI的分子指纹图谱,便于精准医疗研究。(点击了解更多)点击下方图片即可了解更多葛瑛教授团队的研究近况:http://ge.crb.wisc.edu/
  • 胶原蛋白乱象折射标准缺失 监管缺失
    胶原蛋白行业在国外已有数十年的历史,国内,这个行业也正在兴起,其中不乏众多上市公司的身影。然而,一些非专门研究胶原蛋白的人士却对其功效提出质疑。近日,针对胶原蛋白而起的一系列风波,不仅相关行业上市公司纷纷发布公告或通过投资者关系平台解答,中国保健协会更是高度重视,他们组织多名对胶原蛋白有研究的专家学者,在北京召开专门研讨会,从胶原蛋白概念、分子结构、来源以及用途等多个方面,对胶原蛋白到底对人体有什么作用?有没有实验支持等多个角度,深入分析探讨胶原蛋白。记者整理专家发言录音,为读者揭开胶原蛋白&ldquo 神秘面纱&rdquo 。   某些正规产品俗称的胶原蛋白实为胶原蛋白肽   专家们提出,其实,市面上一些上市公司出售的正规胶原蛋白产品,实质上应该叫做胶原蛋白肽。之所以被俗称为胶原蛋白,缘于一般老百姓对&ldquo 肽&rdquo 是什么很陌生,所以许多厂家为了便于产品被理解,笼统地称作胶原蛋白。这才使得一些对胶原蛋白行业没有研究的外界人士发出了&ldquo 蛋白质到消化过程中都要变为氨基酸,所以胶原蛋白无用&rdquo 的说法。   为了便于老百姓了解,中国海洋大学食品科学与工程学院李八方对胶原蛋白和胶原蛋白肽做了详细的阐述。   已有的科学研究表明:胶原蛋白(collagen)是一种生物性高分子物质,是一种白色、不透明、无支链的纤维性蛋白质。它是动物结缔组织重要的蛋白质,主要是在于皮肤、肌肉、骨骼、牙齿、内脏、血管和眼球等部位。因为有了胶原蛋白的存在,结缔组织才具有了一定的结构与机械力学性质,如张力、拉力、弹力等,以达到支撑、保护功能。随着年龄的增长,人体中胶原蛋白的结构在不断发生变化,新生成的胶原蛋白接近于IV型,呈螺旋型,具有可溶性,后来逐渐转变成互相交织的不溶胶原蛋白。与此同时,纤维细胞进行性的合成能力下降,再加上环境污染,紫外线照射,精神紧张等各种原因,结果使皮肤变得干燥,变薄,失去弹性,脸上的皱纹也逐渐增多,这就是为什么皮肤老化会失去青春光彩的主要原因。在骨骼中的胶原蛋白也会发生流失,降低骨骼的韧性。骨质疏松的不仅仅是缺少钙的问题,胶原蛋白流失更是一个重要原因。   研究人员目前已经发现了29种胶原蛋白,其中数量最大的是一型胶原,主要存在于人的皮肤和骨骼当中,胶原二型主要存在于软骨组织之中,胶原三型主要存在于婴幼儿皮肤或者血管内膜等等这些内脏器官当中,胶原四型主要各种器官的(基底膜)、胎盘、(经脏器)等等这些部位。   什么叫肽?它跟蛋白质有什么区别?李八方教授介绍说:肽是由两个或者两个以上的氨基酸以肽键相连构成的化合物。一种肽含有的氨基酸少于10个称为寡肽,超过10个的就称为多肽 50个以上的氨基酸组成的多肽就是我们平时所熟知的蛋白质,在人体当中自然存在的胶原蛋白是由三条肽链形成的螺旋形纤维状蛋白质。因此多肽、寡肽、蛋白质在物质构成上是相同的,也就是说他们的物质基础是相同的,只是它们的分子量不同,构成肽的氨基酸的数量有差异,由于这种差异就造成了蛋白质多肽寡肽在生理上很多的不同。   胶原蛋白可以以多肽或寡肽的形式存在并起作用。就产品而言,胶原蛋白多肽指那些分子量在1000道尔顿以上,胶原蛋白寡肽则是指1000道尔顿以下。   小分子胶原蛋白肽可以被吸收 且比氨基酸吸收快   肽相对于蛋白质和氨基酸来讲,它有什么样的优势?李八方教授进一步解释:肽在许多活性方面它首先是优于蛋白质,两者在功能上有很大区别,首先肽是许多生命信息的携带者,能够调节各种各样的生命活动和生化反应,其次生物活性高,在微量和低浓度的情况下,肽都能发挥其独特的生理作用。第三分子太小,更容易人体吸收利用。   肽相对于氨基酸来讲,也有一些优势。第一它较氨基酸吸收快,氨基酸分子小于肽,但是在吸收方面肽要快于氨基酸,第二肽的吸收以完整的形式被集体利用,也就是说一串一串氨基酸被吸收,第三肽是主动吸收,很多氨基酸是被动吸收,肽通过十二指肠吸收后直接进入血液,输送到人体各个部位加以利用,第四个方面是耗能低,与氨基酸相比肽吸收具有低能耗和不消耗能量的特点,因此吸收比较快,第五个方面,肽吸收较氨基酸具有不饱和的特点,不会造成返回的这种现象,第六个方面是各种肽之间的运转没有竞争性,不存在抑制性。   与李八方教授的观点相同,北京大学公共卫生学院营养与食品卫生学系教材《肽营养学》明确提出, 小分子胶原蛋白无需分解可被人体直接吸收,在口服吸收及外用护肤方面效果明显。书中表示:大分子胶原蛋白进入人体后需要降解为小分子的胶原蛋白肽、氨基酸才能被人体吸收,真正有效吸收的成分并不多。因此,口服含胶原蛋白的食物,比如多喝富含胶原蛋白的骨肉汤、口服胶原蛋白补品等。但由于会被人的消化系统过滤掉很大一部分,且真正能到达肌肤并起作用的量非常有限。所以,最好是口服是纯天然无添加的小分子胶原蛋白肽,才能真正进入真皮层帮助修护肌肤,重建胶原蛋白层。   在整理专家发言的过程中,记者也搜寻了相关资料,有关资料显示:北京大学公共卫生学院营养与食品卫生学系主任李勇曾指出,小分子肽在吸收上有以下特点:(1)不需要消化,直接吸收:其表面有一层保护膜,不会受到人体的胃蛋白酶、胰酶、淀粉酶、消化酶及酸碱物质二次水解,它以完整的形式直接进入小肠,被小肠吸收,进入人体循环系统,发挥其功能 (2)吸收特别快:吸收进入循环系统的时间,如同静脉针剂注射一样,快速发挥作用 (3)具有100%吸收的特点:吸收时,没有任何废物及排泄物,能被人体全部利用 (4)主动吸收 (5)零负担:吸收时,不需耗费人体能量或消耗能量很少,不增加胃肠道负担 (6)起载体的作用:它可将人所食的各种营养物质运载送到人体的各细胞、组织、器官。因此,分子量越小,越容易为人体吸收。   现有的资料表明:国内外学术界已拿到充分的临床试验证据,证明小分子胶原蛋白在口服吸收及外用护肤方面都有明显的效果。空军总医院皮肤科、北京军区总医院、西苑中医院等权威医院都专门的临床研究表明,小分子的胶原蛋白吸收利用率可达90%以上。   据李八方教授介绍:目前胶原蛋白胶原肽已经广泛应用到各个方面,主要是应用在食品,特别是保健食品,应用比较多,而且胶原蛋白可以作为我们保健食品的基料来使用。当初日本研究胶原蛋白比较多,正是由于日本渔业较发达。我国是水产来料加工和出口贸易的大国,水产品的加工当中很多都是优良的胶原蛋白的,它们都是生产胶原蛋白和胶原肽很好的原料,我们应该充分注意到这些资源,开发优质的胶原蛋白产品。   所有的蛋白质进入体内都变成氨基酸是站不住脚的   对于胶原蛋白肽可以起到正面的作用,中国食品方向研究院院长、教授蔡木易进一步通过大量的实证例子提供了支持的根据。   据了解,胶原蛋白行业在国外兴起了数十年,最初以欧美国家研究为多,后来日本更是进行了大量的研究。   蔡木易教授介绍:在日本曾用大狗做实验,他们用小肽和游离氨基肽给大狗吃,做出来的效果小肽的吸收率明显高于游离氨基肽,这是个经典的实验,而且在医学上是可信的。另外关于胶原肽能不能吸收在日本找到有些文献,他们把低聚肽用同类素速成方法,进入体内之后,它在各个器官的表现,同肝脏、肾脏、脾脏,软骨,大脑,肌肉,皮肤芥蒂组织都找到同类适中的结果。而且对于皮肤来讲,14天之后,仍然发现了百分之七十。在国内外都有对低聚肽的研究,低聚肽可以直接吸收。国内做了下用整蛋白和肽的对照实验,发现实验结果跟国外相同,而且蛋白质吸收率非常有帮助,比整蛋白高很多。   蔡木易教授明确说:&ldquo 实际上,在药上用的胰岛素本来就是一种肽。 如果按照有些说法,所有的蛋白质进入体内都变成氨基酸的话,那么所有的多肽药物在体内都是没用的,所以我觉得这是站不住脚的。&rdquo   骨关节病与胶原蛋白密切相关 国内缺少用于治疗的胶原蛋白制剂   &ldquo 胶原蛋白对关节软骨的保护和恢复非常重要。&rdquo 研讨会上,来自北京航天731医院首席骨科医师、医学博士曲龙教授表示,骨关节病应该是骨科和胶原蛋白关系最为密切的一个疾病,骨关节病跟骨质疏松都是一种因老化而引起的疾病,其中骨关节病主要发生在关节部位,主要是软骨。而胶原蛋白是关节软骨组织的主要成分,占近60%,软骨中胶原蛋白的缺乏就会产生关节软骨组织变形、变薄,不能负重并引发病痛。   据了解,中国人口普查刚完,大概60岁以上老人已经超过1.75亿人,其中老年人口中有1亿人患骨关节病,骨质疏松有8000万。曲龙博士比喻说:在骨头里面主要是钙和胶原蛋白,比例大约是2:1,但胶原蛋白是骨骼中的骨,它在骨骼中起的作用,就好比是要进行水土保持一定要先植树造林,有了树根才能保证水土不流失,同样,如果胶原蛋白少的话,就起不到保护钙的作用,钙就会流失。在治疗过程中,骨关节病大概像一个做一个生态工程,主要是植树,补充胶原蛋白,防止水土流失。 &ldquo 现在很多患者都在服用含胶原蛋白的药或保健品来治疗骨关节病。&rdquo 据曲教授介绍,由于胶原蛋白对关节软骨的保护和恢复非常重要,现在不少患者在服用日本的一种保健品,它里面的成分有二级胶原蛋白,而目前国内临床并没有胶原蛋白制剂。正因如此,曲教授他们一直在关注胶原蛋白的研究。   胶原蛋白乱象折射标准缺失 监管缺失   根据现有可以查到的中研普华出具的《2010-2015年胶原蛋白行业发展前景分析及投资风险预测报告》,从2001年到2009年,世界胶原蛋白的市场需求量增长了近三倍,年均复合增长率超过了17.25%,表现出强劲的增长趋势。   西方发达国家由于胶原蛋白市场较为成熟,在全球胶原蛋白市场中所占份额较高,欧洲和美国的胶原蛋白市场最大,分别占全球市场总量的31.20%和28.00%, 亚洲市场仅次于美国,占14.60%,亚洲市场主要是日本、台湾及东南亚等地。   蔡木易教授介绍:其实,就胶原蛋白的安全性来说,大家应该不用质疑。目前卫生部门规定胶原蛋白是来源于食用蛋白质,用安全的食用酶制剂制成的物质,是普通食品,这一规定对行业规范是非常有帮助的。原料是用的鱼皮、猪皮,能多有毒?对此,中国保健协会保健品市场工作委员会秘书长王大宏曾告诉过媒体记者,没有政府部门在胶原蛋白类产品抽检中发现激素,也没有人举报类似问题。他欢迎相关质疑的人拿出证据去相关部门举报,如果能够查证,还有高额资金呢。   蔡木易教授说,胶原蛋白如果作为食品,根据法规要求,食品是不允许宣传的。但是客观来讲,老百姓吃食品是有选择的,食品应该是有功能的,但是不能进行宣传。   国内之所以对胶原蛋白提出质疑,本质上在于市场上胶原蛋白类产品混杂,标准缺失。虽然国家发改委在2005年公布了《水解胶原蛋白》的国家行业标准,但该标准规定胶原蛋白分子量的分布范围是500-20,000道尔顿,过于宽松(根据行业的公认,平均分子量为2000-5000道尔顿的胶原蛋白方易为人体吸收,目前在售的进口胶原蛋白其平均分子量基本在这一水平)。大多数企业利用国家行业标准中分子量范围过大的情况,将不易为人体吸收的大分子量胶原蛋白也宣称为易于人体吸收的胶原蛋白产品对外进行销售。   蔡木易教授表示,造成行业混乱的另一个主要原因则在于:由于行业内不企业不愿透露胶原蛋白的来源,产品没有明确标识,造成企业想申报标准却没有依据。这其中,有一些关键性的指标,肽作为一种蛋白质,首先蛋白质是应该有纯度的,我们国家的分离蛋白的标准就很宽泛,而且没有规定蛋白纯度。另外,作为肽必须要标明准确的分子量。
  • SPE应用文集004:从稀释水溶液中萃取和浓缩蛋白质
    J.T.Baker做为SPE(固相萃取)技术的发源地,拥有庞大的应用文献库,为了使得广大客户更好的使用SPE这项越来越被广泛应用的样品前处理技术,自2011年5月开始,J.T.Baker将定期翻译这些应用文献,陆续上传,敬请广大客户点击阅读,如有任何疏忽错漏,恳切的希望可以得到您的指正,一经核实,有精美礼品赠送。 《从稀释水溶液中萃取和浓缩蛋白质》(Extraction and Concentration of Protein from Dilute Aqueous Solution) 应用领域:生物/生物科技 目标分析物:牛血清白蛋白BSA 样品基质:水 萃取柱:BAKERBOND spe&trade Wide-Pore Butyl (C4), 500 mg, 6 mL 安全防护设备:护目镜和防护面罩,手套,实验服,B型灭火器,通风橱 样品制备:配置20mL BSA溶液(1mg/1mL),以0.025M pH=7磷酸缓冲溶液为溶剂 小柱活化:加入10mL甲醇活化,5mL 0.5M pH=7磷酸盐缓冲溶液活化,6mL 0.025M pH=7磷酸盐缓冲溶液平衡,保持过程中小柱始终处于润湿状态 上样与清洗:关闭真空泵,加入5mL 0.025M pH=7磷酸盐缓冲溶液,装上75mL储液器,缓慢抽出20mL的样品,用4mL0.025M pH=7磷酸盐缓冲溶液淋洗,移去储液器 洗脱:用2 X 0.5mL 异丙醇:水:三氟乙酸 60:40:0.1,收集洗脱液 分析方法:UV 以上即为固相萃取步骤,相关产品信息如下: B7216-06 BAKERBOND spe&trade Wide-Pore Butyl (C4), 500 mg, 6 mL B7120-00 75mL储液器及适配器 B3246-01 磷酸二氢钾, ' BAKER ANALYZED' ® B9093-03 甲醇, ' BAKER ANALYZED' ® HPLC B9095-03 异丙醇, ' BAKER ANALYZED' ® HPLC B9470-00 三氟乙酸, ' BAKER ANALYZED' ® HPLC B4218-03 水, ' BAKER ANALYZED' ® HPLC 您也可以点击下载英文原版应用文献:http://jtbaker.instrument.com.cn/down_172268.htm 关于J.T.Baker :   杰帝贝柯化工产品贸易(上海)有限公司(JTBs)于2009年正式成立,是美国Avantor&trade Performance Materials的全资子公司。Avantor&trade Performance Materials拥有的J.T.Baker和Macron&trade 两大品牌有140多年的历史,其化学品领域的高品质产品,最优化的应用方案和功能性检测可以满足客户的高端应用需求,并确保高精度和高重现性的结果。
  • 超微量分光光度计在核酸定量和分析中的应用
    超微量分光光度计在核酸定量和分析中的应用分光光度测定法是一项定量和分析生物成分的成熟技术。其中,核酸是生物实验室最常检测的生物成分之一。确定这些样品的浓度和纯度对许多下游实验至关重要。核酸主要吸收260nm下的紫外光,其浓度可以应用朗伯比尔定律通过它们的相关消光系数和样品光程计算出来。首先,260nm的紫外光直接照射样品,并且穿过样品,而另一边的光电检测器则测定有多少光被吸收。通过对照参比(一般是样品稀释液),可以定量样品中的核酸浓度。样品纯度是核苷酸定量的一个重要指标。尽管不是确定纯度最准确的方法,A260/A280和A260/A230依然可以用来粗略估计蛋白和化学成分的污染程度。超微量分光光度计是一款多用途的紫外-可见(UV-Vis)超微量分光光度计,尤其是在分析核酸样品方面。在这一应用指南中,我们展示了超微量紫外分光光度计是如何以高准确度和高一致性来定量(浓度)和定性(样品纯度)分析核酸样品的。接下来让我们一起走进我们实验室的几个实验?(1)样品交叉污染:实验过程:样品交叉污染通过使用我们NanoBio200超微量分光光度计滴样交替检测鲑鱼精(dsDNA)和胎牛血清白蛋白(BSA)进行评价。超纯水作为参比。超微量基座在每次读数完成后用不起毛的纸擦拭干净。实验结果如下:图一:样品交叉污染。鲑鱼精(dsDNA)和胎牛血清白蛋白(BSA)在NanoBio200超微量分光光度计上滴样交替检测。表一:“样品交叉污染”实验中包含的数据从图1和表1中的结果我们可以看出,经过擦镜纸简单擦拭后,后续实验中没有明显的样品交叉污染。(2)样品体积比较:实验过程:鲑鱼精(dsDNA)采用超TE稀释,分别是1.0μL, 2.0μL和2.5 μL,在超微量中滴样检测(n = 5)。TE作为参比。参比体积与样品体积相同。实验结果:图二:体积再现性。1ul、2ul、2.5ul体积的鲑鱼精(dsDNA)在NanoBio200超微量分光光度计上读数。表二:不同体积比较数据从图二和表二中,我们可以看出不同体积显示出非常一致的计算浓度(n = 5),说明我们体积的多少对样品的浓度测定影响几乎没有,只要形成完美的液柱即可。为了得到zui好的结果,我们建议使用2ul体积,因为其更易加样。(3)标准曲线的线性:实验过程:鲑鱼精DNA溶于在TE缓冲溶液(PH=8.0)中起始浓度为2000ng/μL的双链DNA(dsDNA)经两倍系列稀释。TE作为空白,每个样品浓度都在0.5mm超微量基座上样读3次。利用预设好的DNA定量方法自动计算出dsDNA浓度,CdsDNA=50[A260(10mm)-A340(10mm)]ng/ul。之后,数据可以使用Excel导入绘制图表,曲线拟合用于显示标准曲线的线性。实验结果:图三:计算的DNA浓度vs稀释因子。起始浓度为2154ng/μl鲑鱼精DNA经过两倍系列稀释所显示出的稀释因子和DNA浓度之间的关系,结果来源于NanoBio200。这一曲线展示了R2值为0.9991的完美线性关系。从图三中,我们可以看出NanoBio200展示出DNA浓度和稀释因子之间的线性关系。从这个实验中,我们可以得出此台NanoBio200的zui低检测浓度为5ng/μL DNA。总结:NanoBio200超微量分光光度计能够进行非常灵敏的核酸样品定量及分析。如以上所示,低至1 μL的样品也能在超微量中得到一致性很高的读数。同时, 还具有非常宽的检测范围(5 ng/μL to 2154 ng/μL)。并且,自带7寸电容触摸屏为研究者提供了重要信息。从图四我们可以很直观的看到样品浓度和纯度。小巧灵活的体积,加上它不需电脑联机,单机即可检测,检测数据可打印,还可以通过USB等方式输出等优点。使得NanoBio200超微量分光光度计将成为在任何实验室环境下进行核酸定量和分析的理想选择。
  • C-反应蛋白准确测量溯源体系的建立
    p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " C-反应蛋白(CRP)是监测心血管疾病和全身炎症状况的重要临床标志物之一。为了保证测量结果的准确可靠,ISO17511要求测量结果应从血清基质的二级参考物质溯源至纯品的一级参考物质,并通过高等级的测量方法保证测量结果准确、可靠。建立高等级(higher-order)的CRP参考测量程序,可为检验医学提供更加准确、可靠的测量结果。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/8918216b-4c47-4f02-8930-d1caacd17b5c.jpg" title=" 图片3.png" alt=" 图片3.png" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " 图1. C-反应蛋白结构图(图片来源于网络) /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 由于CRP是五聚体构成,每个单体分子量2.3万道尔顿,五聚体的分子量达到了11.5万道尔顿,其定值技术一直以来是各国计量院的研究热点和难点。目前国际上的纯品标准物质只有美国国家标准和技术研究院(NIST)研制的SRM2921和日本计量院(NMIJ)研制的6201-b。但是这两个标准物质的原料都是由大肠杆菌表达,是单体结构,与血清中CRP的天然结构有区别,所以并不是最理想的CRP溯源材料。血清基体的二级参考物质由于血清基质的复杂性,定值难度大,现在国际上只有欧盟参考物质与测量研究所(IRMM)研制的ERM-DA474,但是该标准物质采用试剂盒多家定值,且只有一个浓度,无法满足溯源的需求。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 600px " src=" https://img1.17img.cn/17img/images/202010/uepic/e86edeb0-de2f-4bd8-8a3a-d8397fb98e4f.jpg" title=" 图片4.png" alt=" 图片4.png" width=" 600" height=" 600" border=" 0" vspace=" 0" / span style=" text-indent: 0em " & nbsp /span /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " 图2. C-反应蛋白的临床诊断溯源途径 span style=" text-indent: 2em " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 中国计量科学研究院研制的来源于人体的五聚体结构纯品CRP一级标准物质GBW09228,采用了氨基酸水解同位素稀释质谱法和特征肽段酶切同位素稀释质谱法两种不同原理的方法定值,不确定度优于美国NIST标物SRM2921,定值结果可溯源至SI单位。基于此基础,NIM于2020年研制出了四个浓度的血清中CRP标准物质(GBW09865-09868),采用免疫磁珠富集结合特征肽段酶切同位素稀释质谱法定值,经过验证,该标准物质具有良好的互通性。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 中国计量院研制的纯品和血清基体的标准物质以及血清中CRP的准确定量方法建立了从纯品到血清基体标准物质的完整溯源链,为CRP的准确测量建立了良好的溯源体系,可以为CRP临床测量提供可靠的溯源保障。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 2020年11月10-12日,中国计量科学研究院和国际计量局拟联合举办第三届 “药物及诊断试剂研发与质控——测量与标准,质量与安全(TD-MSQS 2020)” 国际研讨会,以期进一步促进该领域的学术交流和技术发展,提升企业的研发水平和产品质量。本次会议将在南京市政府的支持下,在江苏省南京市举行。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 本次会议可通过官方网站 a href=" http://tdmsqs.ncrm.org.cn" target=" _blank" http://tdmsqs.ncrm.org.cn /a 注册或扫描二维码注册,注册成功后请填写参会回执发送至会议邮箱pptd@nim.ac.cn。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " & nbsp /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/9671ca98-9121-4510-9a6e-9332e5b364c9.jpg" title=" 图片5.png" alt=" 图片5.png" / /p p style=" text-align: center " strong span style=" text-indent: 0em " 欢迎各位专家、同仁报名参会! /span /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 更多信息请关注会议官方网站: a href=" http://tdmsqs.ncrm.org.cn" target=" _blank" http://tdmsqs.ncrm.org.cn /a 。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 作者:宋德伟 中国计量科学研究院 /p
  • 中国计量院研制出新冠病毒核衣壳蛋白和包膜蛋白亚基因组RNA(sgRNA)标准物质
    特异性检测新冠病毒复制过程中的亚基因组RNA(sgRNA),对于确定疫苗、单克隆抗体和抗病毒药物的保护和治疗效果至关重要。通过检测新冠病毒sgRNA,可有效区分具有感染性的活病毒和灭活病毒。sgRNA是在进入细胞后产生的,与成熟的病毒粒子结合较差,因此可作为活跃复制的病毒的标记。近日中国计量院研制了新冠病毒核衣壳蛋白和包膜蛋白亚基因组RNA标准物质,可以作为测量标准,用于新冠病毒核衣壳蛋白基因(N)和包膜蛋白基因(E)的亚基因组RNA的定性和定量测量,以及测量方法的确认和质量控制。标准物质定值方法为针对核衣壳蛋白和包膜蛋白亚基因组序列设计的特异性数字PCR方法,同时采用经过国际比对验证的另一独立的数字PCR方法对量值进行了核验。该标准物质包括了5个不同水平的新冠病毒核衣壳蛋白基因(N)和包膜蛋白基因(E)的亚基因组RNA。特性量值为每管溶液中含有的核衣壳蛋白和包膜蛋白亚基因组RNA的拷贝数浓度。具体量值见表1。表1.新型冠状病毒核衣壳蛋白和包膜蛋白亚基因组RNA标准物质特性量值NIM-RM5223 新型冠状病毒核壳蛋白和包膜蛋白亚基因组RNA标准物质截至目前,中国计量院共研制了核酸、抗原和抗体等24种新冠病毒标准物质。这些标准物质可应用于方法建立、方法验证、质量控制、试剂性能评估、验证与评价等多方面,截止11月,已经广泛应用于全国30个省市的近700家单位,为保障核酸检测结果准确、可比、可溯源,提供了重要支撑。
  • 【质谱文献】超高效液相色谱-串联质谱法同时快速检测微量血清中6种脂溶性维生素
    本文来源: 柯瑞斯质谱平台摘 要目的  建立超高效液相色谱-串联质谱法(UPLC-MS/MS)同时快速检测微量血清中维生素A、维生素D(25-OH-VD2、25-OH-VD3)、维生素E(α-、β-和γ-生育酚)的方法。 方法  血清中脂溶性维生素经甲醇-乙腈(50:50, v/v)沉淀蛋白、正己烷萃取,以Phenomenex Kinetex F5色谱柱为分离柱,2.5mmol/L甲酸铵-0.1%甲酸水溶液和甲醇为流动相,梯度洗脱,电喷雾电离(ESI~+)、多反应监测(MRM)模式下检测,同位素内标法定量。结果  血清中6种脂溶性维生素线性范围内线性关系良好,相关系数r0.995;6种脂溶性维生素的检测限为0.20~1.25ng/mL,定量限为0.39~3.88ng/mL;加标回收率为86.6%~107.7%,日内精密度9.6%,日间精密度9.3%。NIST标准参照品SRM 968f验证方法准确度,结果偏差均在5%以内。结论  本方法准确度高、重现性好、用血量少,适于婴幼儿等采血困难者微量血样中多种脂溶性维生素的同时快速检测。正 文维生素在人体生长代谢过程中发挥着重要作用,是人体必须的微量营养素,缺乏或过量都会对人体健康产生不利影响。维生素A、D、E是脂溶性维生素,研究表明缺乏这些维生素会增加患夜盲症、骨质疏松、心血管疾病及免疫系统相关疾病的风险[1],婴幼儿及未成年人缺乏其对生长发育的影响则更为明显[2-4]。目前维生素检测的方法主要有高效液相色谱法[5-7]、液相色谱-串联质谱法[8-14]等,其中液相色谱-串联质谱法因其灵敏度高、重现性好、可同时快速检测多种维生素已成为很多临床实验室的首选方法。但是目前的液相色谱-串联质谱方法血液需求量较大[10,13],检测项目单一[8-9,14]或检测时间较长[11],不能满足临床同时快速检测多个项目的需求,特别是婴幼儿采血困难采血量很难满足需求。虽然已有部分学者建立微量检测方法用于维生素检测,但是这些方法需要衍生化过程,前处理复杂耗时较长[8-9,14]。因此,建立能够用微量血液同时快速检测多种维生素的方法满足临床不同年龄段的检测需求显得尤为必要。此外,视黄醇,维生素D的代谢产物25-OH-VD2、25-OH-VD3,α-生育酚是脂溶性维生素A、D、E在血液循环中的主要存在形式,常作为脂溶性维生素检测的首选指标[15-18]。γ-生育酚是维生素E主要的饮食摄入形式,但其与α-生育酚转移蛋白(α-TTP)的亲和力较低,在体内含量较α-生育酚低,但是,近年来文献报道其在人体健康活动中也扮演着重要角色[19]。本文建立超高效液相色谱-串联质谱法(UPLC-MS/MS)同时快速检测微量血清中视黄醇,维生素D(25-OH-VD2、25-OH-VD3)和α-、β-、γ-生育酚的方法,满足临床各年龄段尤其是对婴幼儿同时快速检测多种维生素的需求。1实验部分1.1  仪器与试剂 液质联用仪;高速冷冻离心机;涡旋振荡仪;超声波振荡器;氮吹仪(Agela);紫外分光光度计。视黄醇、25-OH-VD2、25-OH-VD3、α-生育酚、β-生育酚、γ-生育酚均购自美国Sigma-Aldrich;视黄醇-d6标准品购自上海谱芬生物;25-OH-VD2-d3购自美国IsoSciences、25-OH-VD3-d6、α-生育酚-d6标准品购自加拿大TRC 血清质控样品购自美国NIST 收集安徽省第二人民医院近期健康体检正常儿童血液样本17份,避光保存。LC-MS级甲醇,色谱级乙腈、正已烷及甲酸均购自美国Fisher;甲酸铵、牛血清白蛋白(BSA)购自美国Sigma-Aldrich;色谱级乙醇购自国药集团。实验用水由Milipore纯水仪(美国密理博)提供。1.2  标准溶液和内标溶液的配制  用无水乙醇配制视黄醇标准品储备液100μg/mL;α-生育酚、β-生育酚、γ-生育酚标准品储备液各1000μg/mL,并用紫外分光光度计对其浓度进行校正[18,20]。用甲醇配制25-OH-VD2标准品储备液25μg/mL和25-OH-VD3标准品储备液100μg/mL,视黄醇-d6标准品储备液100μg/mL,25-OH-VD2-d3标准品储备液50μg/mL,25-OH-VD3-d6标准品储备液50μg/mL,α-生育酚-d6标准品储备液1000μg/mL。将各目标化合物标准储备液用复溶液(初始流动相)稀释混匀,配制成混合标准溶液(视黄醇2.50μg/mL、25-OH-VD2 0.20μg/mL、25-OH-VD3 0.40μg/mL、α-生育酚50.00μg/mL、β-生育酚5.00μg/mL、γ-生育酚 5.00μg/mL);将各同位素标品储备液用甲醇稀释混匀,配制成混合内标工作液(视黄醇-d6 2.00μg/mL、25-OH-VD2-d3 0.10μg/mL、25-OH-VD3 0.20μg/mL、α-生育酚-d6 20.0μg/mL)。取4g BSA溶解于100mL水中配成4% BSA溶液。1.3  样本前处理  取血清样品20μL至2mL离心管中,加入10μL同位素内标工作液,80μL水,2000r/min涡旋振荡30s后加入200μL甲醇-乙腈(50∶50,v/v),2000r/min混匀60s;加入800μL正己烷,2000r/min,混匀5min,然后4℃,12000r/min离心5min;吸取600μL上清液至1.5mL离心管中,室温下氮气吹干;加100μL初始流动相复溶,涡旋振荡60s,4℃,12000r/min离心5min,上清液转移至进样瓶中待分析。1.4  色谱 - 质谱条件  采用Phenomenex Kinetex F5(100mm × 2.1mm, 2.6μm)色谱柱,柱温35℃,流动相A含2.5mmol/L甲酸铵和0.1%甲酸的水溶液;流动相B含2.5mmol/L甲酸铵和0.1%甲酸的甲醇溶液,梯度洗脱程序:0~2.0min,70%B,2.0~2.5min,70%~88% B,2.5~3.5min,88% B,3.5~3.51min,88%~81%B,3.51~11.0min,81% B,11.0~12.0min,81%~70%B,流速0.5mL/min。进样量:20μL。采用多反应监测(MRM)、电喷雾正离子模式(ESI+),离子源温度 150℃,脱溶剂温度500℃,毛细管电压3kV,脱溶剂气流速1000L/h;6种脂溶性维生素的MRM 离子参数见表1。2  结果与讨论2.1  前处理条件优化  对血清前处理过程中蛋白沉淀剂(甲醇、乙腈、乙醇)的选择及萃取溶剂正己烷的用量(400μL、600μL、800μL)进行了优化,结果表明,甲醇-乙腈(50∶50,v/v),沉淀效果最好,色谱图杂峰明显减少;正己烷用量较大时萃取更完全,信号值更高。另外,考察了不同复溶液体系:甲醇-水(50∶50,v/v)、甲醇-水(70∶30,v/v)、甲醇均含2.5mmol/L甲酸铵和0.1%甲酸对色谱分离的影响,结果如图1所示,使用b组复溶液即初始流动相时视黄醇响应值较a组增加1倍以上,c组视黄醇峰宽变大且峰形不对称。同时b组中25-OH-VD3和25-OH-VD2响应值是a组的2倍、c组的4倍以上,且峰形明显改善有利于25-OH-VD3和 25-OH-VD2的分离检测。最终,采用血清样加水混匀后用200μL沉淀剂(甲醇:乙腈(50∶50,v/v)沉淀蛋白,800μL正已烷液液萃取,取600μL上清液氮吹,初始流动相复溶进样。2.2   液 相 色 谱 条 件 优 化   Kinetex F5色谱柱可以实现所有组分包括β、γ-生育酚的分离。此外,25-OH-VD3同分异构体3-epi-25-OH-VD3在婴幼儿体内含量较高,对维生素D含量测定影响较大[21],该色谱柱可以实现25-OH-VD3和3-epi-25-OH-VD3的分离,减少3-epi-25-OH-VD3对检测结果的影响。故采用Kinetex F5色谱柱进行所有组分的分离(见图2)。研究发现在流动相中加入甲酸铵后其促进目标化合物离子化的效果较加入乙酸铵好,响应值增加明显,故在水相和有机相中均加入2.5mmol/L甲酸铵。2.3  线性范围、检出限和定量限  将混合标准溶液用复溶液逐级稀释,得到一系列标准工作液,各取20μL,分别加入10μL内标工作液和80μL 4% BSA溶液,其余操作同样本前处理。由于人血中存在内源性脂溶性维生素,故在标曲制作中加入4% BSA。以各目标化合物的色谱峰与其相对应的同位素内标色谱峰的峰面积比值-浓度比值作图,得到各目标化合物的标准系列工作溶液的直线拟合方程,并计算相应的线性相关系数。6种脂溶性维生素的标准曲线和线性范围见表2。结果表明,6种脂溶性维生素在对应的浓度范围内线性关系良好,相关系数0.995,标准溶液色谱图如图3所示。每个浓度重复检测6次,满足相对标准偏差20%且信噪比S/N≥3的最低浓度值定为检测限,满足相对标准偏差20%且信噪比S/N≥10的最低浓度值定为定量限。6种脂溶性维生素检测限为0.20~1.25ng/mL,定量限为0.39~3.88ng/mL(见表2)。2.4  方法精密度 将低、中、高三个浓度标准品溶液加入4% BSA混合血清样本经本法处理后进行检测,每个浓度重复6次,连续检测三天,计算日内精密度为0.9%~9.6%,日间精密度为3.0%~9.3%(见表3)。该方法同时测定6种脂溶性维生素的日内精密度和日间精密度均在15%以内,方法精密度满足检测需求。2.5  方法准确度  将低、中、高浓度的标准品溶液加入混合血清样本中按本法进行前处理后进行检测,每个浓度重复6次,计算加标回收率,3个水平的加标回收率为86.6%~107.7%,相对标准偏差(RSD)为1.46%~9.39%(见表4)。该方法加标回收率均在80%~120%以内,方法准确度高满足检测需求。2.6  方法验证  采用建立的UPLC-MS/MS方法对美国国家标准技术研究所(NIST)制定的标准参照品SRM 968f进行检测,每个水平重复2次取平均值,验证方法准确度。结果表明,除25-OH-VD2含量较低未能检出外,其它检测结果与靶值偏差均在5%以内,该方法检测结果准确可靠(表5)。2.7  实际样品测定  使用本方法对17份健康儿童血液样本进行检测,其中视黄醇含量为0.22~0.43μg/mL,25-OH-VD2含量为未检出~5.19ng/mL,25-OH-VD3含量为6.83~49.21ng/mL,α-生育酚含量为5.63~12.73μg/mL,β-生育酚含量为0.03~1.37μg/mL,γ-生育酚含量为0.11~1.68μg/mL。本法适用于微量临床血液样本6种脂溶性维生素的同时快速检测。3结  论本研究建立了超高效液相色谱串联质谱法同时测定微量血清样本中多种脂溶性维生素的方法,并对前处理过程中的蛋白沉淀试剂、萃取液用量,复溶液等进行了优化,以减少色谱图中噪音干扰,改善色谱峰形,提高检测灵敏度。并比较了不同色谱柱对多种脂溶性维生素尤其是不同类型维生素E的分离效果,最终选择Phenomenex Kinetex F5色谱柱,该色谱柱可以实现β-生育酚和γ-生育酚的有效分离。本研究中只需20μL血清就能够快速完成6种脂溶性维生素的测定。该方法测定样本需求量少、操作简单、检测结果准确快速可实现大量临床样本的同时检测,尤其对采血较为困难的婴幼儿可以实现少量血液样本检测多数项目的需求。参考文献(略)本文引用来源: 李雪梅,吴慧慧,陈竞,赵盼,唐玉菲.超高效液相色谱-串联质谱法同时快速检测微量血清中6种脂溶性维生素[J].现代预防医学,2022,49(07):1297-1302.
  • 首台(套)用于血清多肽及蛋白指纹图谱检测的飞行时间质谱仪ClinMS-Plat® I获得NMPA二类
    质谱技术在体外诊断中发挥着重要的作用,其中基于LC-MS/MS的三重四级杆质谱主要用于药物、维生素D、新生儿遗传代谢物、氨基酸等小分子的定量生化检测,国内外多款型号的LC-MS/MS获得了医疗器械注册证。另一方面,用于大分子检测的基质辅助激光解吸电离飞行时间质谱(MALDI-TOF)也逐渐应用于临床,多款用于微生物蛋白指纹图谱检测的MALDI-TOF质谱获医疗器械注册证,并在临床微生物鉴定中发挥着重要的作用。此外,用于核酸分析的MALDI-TOF系统也逐渐进入体外诊断领域。人体血清多肽和蛋白指纹图谱与疾病的发生和发展密切相关,国际上大量的研究机构一直在致力于该领域的研究和临床应用。近日,汇健科技首台(套)用于血清多肽和蛋白指纹图谱检测的ClinMS-Plat® I飞行时间质谱仪正式获得NMPA医疗器械注册证(浙械注准20242221307)。此次获批的ClinMS-Plat® I飞行时间质谱仪由质谱仪主机(离子源模块、检测器模块、飞行管、机架模块、外壳、真空泵)和软件组成,产品基于MALDI-TOF方法,结合配套试剂可用于人体血清样本中多肽或蛋白指纹图谱的采集,是国内首台(套)用于血清多肽或蛋白指纹图谱分析的临床质谱仪。仪器针对性地根据血清多肽分子量进行了检测区域内(m/z680~18600Da) 信噪比、分辨率、出峰谱型的调校,严格控制仪器台间变异系数。该质谱仪在注册审评前经过了严格的临床研究。临床试验采用随机、盲法、配对的临床试验设计。收集受试者促凝全血分离的血清样本并进行编盲,受试者血清样本经配套试剂预处理后用ClinMS-Plat® I飞行时间质谱仪进行多肽及蛋白指纹图谱检测,输出分析结果。三家临床试验机构对受试者样本在待考核仪器上的检测结果与金标准相比,统计分析结果显示灵敏度为91.94%(P=0.95,置信区间87.48%-94.91%),特异度91.14%(P=0.95, 置信区间 86.83%~94.13%),诊断符合率91.52%(P=0.95, 置信区间 88.57%~93.76%);Kappa值为0.8300。由于多肽与蛋白组学信息在疾病诊断中具有重要的价值,因此,ClinMS-Plat® I的获批在体外诊断领域具有重要的意义。ClinMS-Plat® I质谱仪与配套试剂盒(Bio-pSi® 系列)使用,单次检测可获得包含数百个血清多肽分子的指纹图谱。汇健科技结合人工智能算法构建了包含数万例肿瘤人群队列样本、数十万例次检测数据的人工智能判别模型(汇健智云® )。未来,该款型号的质谱仪将与诊断试剂、AI分析软件三者共同组成一整套体外诊断分析系统(下图),可用于各种肿瘤、泌尿系统疾病,神经系统疾病等多种疾病筛查、辅助诊断和复发转移评估等领域。ClinMS-Plat® I 是一款具有卓越性能和创新功能的高端医用质谱,具有如下优势:快速:独特的多肽富集技术,自动化批量检测,96个样本全流程仅需2小时;精准:多肽及蛋白指纹谱检测多个标志物,相比单一或少量标志物组合,结果更可靠;稳定:通过质控技术有效控制多肽及蛋白质谱峰强度变异系数,结果稳定性、重复性高;灵敏:相关多肽检测限可达fmol/μL级别。ClinMS-Plat® I曾入选工信部人工智能医疗器械(智能辅助诊断产品方向)创新任务榜单,是2022年质谱领域唯一进入榜单的项目;同年入选了浙江省首台(套)产品工程化攻关重点项目的高端医疗装备;2023 年入选“浙江省制造业首台(套)重点领域(高端医疗器械)关键技术指标清单”。汇健科技也与省内多家知名临床医院合作研究多肽组学技术在临床诊断中的应用,获得了多项浙江省重点研发计划和浙江省“尖兵领雁”计划的支持。我们相信,ClinMS-Plat® I的推出将推动多肽和蛋白组学在体外诊断领域的应用。我们将竭诚为临床机构、研究机构和IVD企业提供优质的创新质谱产品和服务,并期待与行业友商携手合作,在ClinMS-Plat® I平台上开发具有重要临床价值的诊断试剂,共同开创组学技术在精准医学中的应用,为人类健康做出贡献!延伸阅读1. 血液循环多肽(BCP)是目前液体活检最理想的标志物之一多肽是分子量为0.2~20KD的蛋白,主要由RNA上短的开放阅读框(Open Reading Frame, ORF)翻译或者组织蛋白在蛋白酶的作用下切割产生,处于基因调控网络和蛋白作用网络下游。其种类以及包含的生物学信息更加丰富,能迅速反应生物体内“正在发生的变化”。大量研究表明:在肿瘤发生发展过程及肿瘤细胞的迁移过程中,肿瘤微环境的多肽会发生片段长度、片段种类、糖基化修饰、磷酸化修饰等变化,通过质谱仪的检测可敏感地指示多肽指纹图谱的变化。此外,肿瘤组织高压和血管的高通透性,促使产生的低分子量肿瘤相关特异性多肽可快速、高效进入血液循环系统,使得血液循环多肽(Blood circulating peptides, BCP)包含了组织癌变信息,通过检测分析BCP指纹图谱可早期发现癌症的发生和发展。此外,BCP检测技术在阿兹海默症、呼吸道感染、泌尿系统疾病、内分泌系统疾病中也将发挥重要的应用。血液样本中,多肽含量极其微量,在质谱检测中容易受到高丰度蛋白的干扰,此前SELDI® 芯片,ClinProt® 磁珠等产品也曾用于血液多肽的提取和捕获。汇健科技创始团队从2012年开始发明了Bio-pSi® 微纳颗粒,实现了血清多肽的高效捕获,并在MALDI-TOF上呈现高稳定高灵敏的血清多肽指纹谱信号。2.飞行时间质谱工作原理飞行时间质谱(TOFMS)是一种高分辨率的质谱技术,广泛应用于物质分析领域。TOFMS工作原理可以分为离子化、加速和飞行三个步骤。具体来说,它基于不同化合物的质量-电荷比(m/z)的差异,通过高电压脉冲使其形成离子,然后引入到一个带有电场的追加管道中。在追加管道内,各种离子被加速并飞行到检测器处,到达时间取决于其质量和速度。检测器收集到的信号产生一个质谱图,其中离子信号的强度与m/z值呈正比。此外TOFMS还需要配合数据处理软件来分析和解读得到的质谱图。这些软件将质谱图转化为离子的m/z值和相对强度,从而识别不同的化合物。质谱图中每一个峰都对应着一个化合物的离子,通过比较不同样品之间的质谱图,可以确定它们之间的差异和相似性。参考文献Julia Tait, Lathrop,Douglas A, Jeffery,Yvonne R, Shea et al. US Food and Drug Administration Perspectives on Clinical Mass Spectrometry.[J] .Clin Chem, 2016, 62: 141-147.
  • 科学家发现端粒酶新蛋白成分
    美国科学家近日发现了一种功能极似端粒酶的蛋白质,它能四处运送至关重要的蛋白质块来修复在正常复制中被丢失的染色体末端。如果没有这样的日常维护,干细胞将很快停止分裂,胚胎也将无法发育。   这是10年来首次发现端粒酶的新蛋白组分,这也许将成为抗癌疗法的一个有价值靶标。该项研究成果刊登在1月30日出版的《科学》杂志上。   端粒酶可在成体干细胞、免疫细胞和正在发育的胚胎细胞中正常表达。在这些细胞中,端粒酶附着在新复制的染色体末端,从而使细胞的分裂不受约束。如果没有端粒酶,细胞将停止分裂,或在有限数目的分裂后死亡。不幸的是,这种酶在许多癌细胞中也很活跃。研究人员发现,阻止这种称为TCAB1蛋白的不恰当表达,也许能限制端粒酶到达其DNA靶标(端粒),并限制细胞的寿命。   研究人员表示,目前还没有有效的端粒酶抑制剂。多年来,端粒酶一直是研究热点,但科学家们困扰于其大尺寸和极其少量。成人体内的少数细胞可制作出这种巨型蛋白复合物,但制作量非常之少,因此只有端粒酶的部分成分已被确定。研究人员称,要找出端粒酶的所有蛋白成分是一项难以置信的巨大挑战,端粒酶中的未知成分甚至被称为“暗物质”。   美国斯坦福大学医学院的研究人员使用高灵敏的蛋白鉴别技术(质谱),找到了端粒酶中TCAB1的存在。去年年初,研究人员曾利用相同的技术首次确定了另两种蛋白pontin和reptin,这两种蛋白对端粒酶这种巨型复合物的形成非常重要。此次,研究人员则确定了TCAB1蛋白具有以前未知的功能。   与pontin和reptin不同的是,TCAB1是端粒酶的一个真正组成部分。但它对酶的活性来说并不是必需的,它只是给称为卡哈尔体(Cajalbodies)的细胞核中的处理和保持区域补充端粒酶复合物。卡哈尔体将对各种使用RNA小分子来引领其活性的蛋白进行修饰,譬如,端粒酶使用RNA分子作为嵌在染色体末端的DNA链的模板。在适当的时候,TCAB1将端粒酶复合物运送到新复制染色体的等待端。   研究人员表示,TCAB1对端粒酶完成从卡哈尔体到端粒的跳跃是绝对必需的。一旦抑制其在人类癌细胞中的活性,端粒就会变短,这也意味着癌细胞会更快地死亡。研究人员认为,TCAB1蛋白可能是一种负责将各种分子运往其目的地的普通生物运输器。下一步,研究人员将继续对TCAB1进行研究,并寻找端粒酶的其他组成部分。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制