当前位置: 仪器信息网 > 行业主题 > >

脱氧腺嘌呤核苷一磷酸纯度

仪器信息网脱氧腺嘌呤核苷一磷酸纯度专题为您提供2024年最新脱氧腺嘌呤核苷一磷酸纯度价格报价、厂家品牌的相关信息, 包括脱氧腺嘌呤核苷一磷酸纯度参数、型号等,不管是国产,还是进口品牌的脱氧腺嘌呤核苷一磷酸纯度您都可以在这里找到。 除此之外,仪器信息网还免费为您整合脱氧腺嘌呤核苷一磷酸纯度相关的耗材配件、试剂标物,还有脱氧腺嘌呤核苷一磷酸纯度相关的最新资讯、资料,以及脱氧腺嘌呤核苷一磷酸纯度相关的解决方案。

脱氧腺嘌呤核苷一磷酸纯度相关的资讯

  • 沃特世推出更快速可靠的自动化解决方案,助力生物药物分子量和纯度分析
    沃特世公司(纽约证券交易所代码:WAT)近日推出全新软件和分析柱产品,旨在助力生物分子药物发现和开发。使用waters_connect平台新增的Waters Intact Mass应用程序,科学家们能够在BioAccord LC-MS系统上快速确认合成或重组工艺生成的生物分子和杂质分子量,其分析速度可达市场上其他产品的近两倍 i。图. Waters BioAccord LC-MS系统的完整分子量分析在几分钟内为生物工艺工程师提供有关药物和工艺质量的关键信息沃特世公司高级副总裁Jon Pratt表示:“采集生物分子的质量数和纯度数据相当耗时。复杂的质谱数据需要由具备一定技能水平的人员来分析,因此这项工作通常会交给远程专业分析实验室。借助这款新的Waters Intact Mass应用程序,生物工程师和生物化学家使用简单的技术就可以加快药物发现和开发,在几分钟或几小时内即可自行生成质量数确认数据,不再需要花费长达数天乃至数周的时间。”完整分子量分析是在蛋白质、肽、寡聚核苷酸治疗药物和偶联药物等生物药物开发的各个阶段都会开展的一项常规分析。在药物发现的早期阶段,生物化学家每周需要分析数百甚至数千个不同的样品。为了加快分析速度,Waters Intact Mass应用程序提供了一套快速可靠的自动化解决方案,旨在助力新型生物治疗药物的质量数确认和纯度测定。这款应用程序特有的智能自动解卷积功能让用户在减少指令输入的情况下,在采集样品数据后几分钟内即可完成处理。沃特世推出MaxPeak Premier BEH C4 300Å蛋白分析专用柱,助力完整蛋白和亚基分析与Intact Mass应用程序一同推出的还有全新分析柱系列,将在完整生物分子及其亚基分析中发挥关键作用。用于BioAccord LC-MS系统的ACQUITY Premier和XBridge Premier BEH C4 300Å蛋白分析专用柱采用MaxPeak高性能表面(HPS)技术,能阻止样品中的磷酸化和羧基化分子被LC系统和色谱柱的金属表面吸附,进而避免样品分析物损失。得益于此,低浓度完整分子量分析的灵敏度可提高达3倍,磷酸化蛋白完整分子分析和低浓度单克隆抗体亚基分析的灵敏度则可提高达2倍ii 。目前,新购BioAccord LC-MS系统的waters_connect平台已预置Intact Mass应用程序,已安装的系统可通过版本升级获取此应用程序。沃特世现已面向全球供应MaxPeak Premier BEH C4 300Å蛋白分析专用柱。其他参考资料- 阅读博客文章:Automating Intact Mass Deconvolution: It' s About Time(《完整分子量的自动化解卷积:时机已到》)- 阅读沃特世应用纪要:Intact Mass - A Versatile waters_connect Application for Rapid Mass Confirmation and Purity Assessment of Biotherapeutics(《Intact Mass - 用于生物治疗药物快速质量数确认和纯度评估的多功能waters_connect应用程序》)- 欢迎您通过www.waters.com关注和联系沃特世。关于沃特世公司(www.waters.com)沃特世公司(纽约证券交易所代码:WAT)是全球知名的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。公司在全球35个国家和地区直接运营,下设14个生产基地,拥有约7,400名员工,旗下产品销往100多个国家和地区。关于沃特世中国自上世纪80年代进入中国以来,沃特世的规模与实力与日俱增,在大陆及香港、台湾均设有运营中心,拥有近700名本地员工,并在上海、北京、广州、成都设立实验中心和培训中心。自2003年成立沃特世科技(上海)有限公司以来,今天的中国已成为沃特世全球营收仅次于美国的第二大市场。作为分析科学家的理想合作伙伴,沃特世始终坚持提高本地技术能力、支持本地技术人才培育,并推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善。凭借出众的人才与全球布局,沃特世已经为其商业合作伙伴创造了显著的价值,并致力于满足广大中国消费者对更美好生活的需求。 i“两倍”估计值基于96个样品的分析,比较了Waters BioAccord系统配合Intact Mass运行“并行采集和处理”工作流程与市场上其他产品运行“先采集后处理”工作流程的速度。 ii基于MaxPeak Premier BEH C4 300Å蛋白分析专用柱与ACQUITY 300Å蛋白分析专用不锈钢柱的比较结果。
  • 恒创立达发布急速脱氧在线随时膜脱气仪新品
    恒创立达产品介绍: 急速脱氧在线随时膜脱气仪和排液,没有容量限制,最小250ml,主要对纯水、蒸馏水进行脱气。主要特点:1.设计简便界面:高分辨率液晶屏显示和触控操作,交互界面简单直观。单人即可独立完成溶出介质脱气和加注工作。2.在线加热功能:溶出介质在进行脱气前进行预加热(极限可达45℃ ) ,提高了脱气效率。同时节约了溶出介质在溶出仪中的加热等待时间。3.高精度供液系统:溶出介质加注体积精度为设定体积的±3%4.可处理多种溶出介质:溶出实验常用的纯水、蒸馏水。6.可变温度设定功能:温度调节范围为室温到45℃7.易于维护和保养,机内所有配件可快速更换及维护。 技术指标:定量分配体积容量:无容积限制,设定精度0.1L体积分配精度值:±3%加热功率:1500W可大加热能力:极限可达45°C的供液温度(视初始温度而定)温度精确度值:±1°C极大真空度:-96.0KPa脱气效果:目标含氧量≤2.8mg/l过滤器:前置40um/25um/20um金属丝网过滤器可选外型尺寸:主机500*340*295( mm)创新点:1.设计简便:高分辨率液晶屏显示和触控操作,交互界面简单直观。单人即可独立完成溶出介质脱气和加注工作。 2.在线加热:溶出介质在进行脱气前进行预加热(最高可达45℃ ) ,提高了脱气效率。同时节约了溶出介质在溶出仪中的加热等待时间。 3.高精度供液:溶出介质加注体积精度为设定体积的± 3% 急速脱氧在线随时膜脱气仪
  • 【飞诺美色谱】罕见遗传性疾病的救星——寡核苷酸药物
    新冠疫情促使mRNA技术快速发展的同时也使人们开始高度关注核酸药物这一领域。核酸药物包括反义核酸(ASO)、小干扰RNA(siRNA)、微小RNA(miRNA)、小激活RNA(saRNA)、信使RNA(mRNA)、适配体(aptamer)、核酶(ribozyme)、抗体核酸偶联药物(ARC)等,是基因治疗的一种形式。除mRNA药物外,其他几种核酸药物,基本上都是由100个以内的核糖核苷酸或脱氧核糖核苷酸单链或双链组成,所以也称为寡核苷酸药物。与mRNA药物编码产生目的蛋白不同的是,寡核苷酸药物主要是通过碱基互补配对原则与DNA、mRNA或者pre-mRNA配对,通过基因沉默、非编码RNA抑制、基因激活等一系列机制来调节基因表达。已上市寡核苷酸药物化学结构(Nature reviews drug discovery)寡核苷酸药物对比于小分子药物及蛋白药物,具有多方面的优势,首先可根据目标靶点设计碱基序列,靶点明确、特异性强;其次寡核苷酸药物从转录后水平进行治疗,可选择的靶点丰富,特别是能覆盖蛋白质不可成药的靶点以及开发由基因缺陷导致的遗传性疾病的相关靶点;另外寡核苷酸药物由于序列短,可采用化学合成方法,完成目标序列的装配,并结合生物学测试筛选有效序列,能够避免盲目开发,节省研发时间。但是寡核苷酸药物在研发中也面临着诸多挑战。寡核苷酸在细胞外稳定性低,易被核酸酶降解,加上分子量及负电荷的因素,难以进入细胞,因此在研发过程中,使其保持稳定的结构以及能够有效递送的传递载体是主要考虑的两个因素。寡核苷酸核酸分子的改造主要包括磷酸骨架,碱基以及糖环的修饰,在改造中需要考虑多个因素,包括稳定性、药代动力学、碱基配对的亲和力等,最重要的是能够保留被功能酶及功能蛋白所识别的功能。因此,在前期研发过程中,需要对寡核苷酸进行精确的结构表征及定量。丹纳赫生命科学旗下SCIEX 的高分辨质谱ZenoTOF&trade 7600系统具有一系列对寡核苷酸进行分析的方案,可进行寡核苷酸的分子量分析并进行杂质检测,可对寡核苷酸进行碱基序列鉴定。由于Zeno TOF 7600具有EAD和CID两种互补的碰撞模式,不但能产生丰富的离子碎片信息,还会保留完整的核酸低丰度修饰信息。寡核苷酸分子量及碱基序列的检测高分辨质谱ZenoTOF&trade 7600系统另外,高分辨质谱ZenoTOF&trade 7600系统还能实现对寡核苷酸的定量分析,线性范围可达 5 ng/mL – 10000 ng/mL,可以完成寡核苷酸药物在研发阶段的药代及多种代谢产物同时鉴定及定量分析。在研发阶段,对于采用同一种仪器进行鉴定及定量,可避免定量方法转移时造成的方法优化时间浪费,可帮助用户加快研发进度。艾杰尔-飞诺美寡核苷酸定量分析前处理试剂盒高分辨质谱对寡核苷酸进行定量分析在寡核苷酸药物种类中,反义寡核苷酸由于是单链,分子量小,递送较其他寡核苷酸容易,且反义寡核苷酸功能多样,可上调或下调基因表达,成为研发罕见遗传性疾病药物中最关注的种类。为了帮助研究人员开发这类针对罕见遗传性疾病患者的ASO疗法,FDA还发布了指导这类ASO疗法非临床检测的指南。在已上市的寡核苷酸药物中,大部分都是用于治疗罕见遗传性疾病的反义寡核苷酸药物,特别是杜氏型肌营养不良,已经上市了针对不同基因位点的四款产品。药品名治疗疾病药物种类上市时间Fomivirsen巨细胞病毒视网膜炎反义寡核苷酸1998.8(已退市)Pegaptanib年龄相关性黄斑变性核酸适配子2004.12Mipomersen纯合性家族性高胆固醇血症(hoFH)反义寡核苷酸2013.1(已退市)Defibrotide肝静脉闭塞反义寡核苷酸2016.3Eteplirsen杜氏型肌营养不良(DMD基因外显子51)反义寡核苷酸2016.9Nusinersen脊髓性肌萎缩症 (SMN2基因外显子7)反义寡核苷酸2016.12Patisiran遗传性甲状旁腺素淀粉样变性小干扰RNA2018.8Inotersen遗传性甲状旁腺素淀粉样变性反义寡核苷酸2018.10Waylivra家族性乳糜微粒血症综合征反义寡核苷酸2019.5Givosiran急性肝卟啉症小干扰RNA2019.11Golodirsen杜氏型肌营养不良(DMD基因外显子53)反义寡核苷酸2019.12Viltolarsen杜氏型肌营养不良(DMD基因外显子53)反义寡核苷酸2020Lumasiran原发性高草酸尿症I型小干扰RNA2020Inclisiran成人高胆固醇血症及混合性血脂异常小干扰RNA2020Casimersen杜氏型肌营养不良(DMD基因外显子45)反义寡核苷酸2021.2.25已上市的寡核苷酸药物(根据网上资料整理)由此可见,对罕见病的诊断也非常重要,很多罕见遗传病是由几十甚至上百种突变引起的,而且不同区域的患者可能存在不同的基因变异位点,NGS是现在进行高通量基因检测的重要手段。丹纳赫生命科学旗下Integrated DNA Technologies(IDT)公司(中文名称:埃德特)是全球领先的NGS试剂供应商,其外显子捕获产品Exome Research Panel V2特别适合进行遗传性疾病的全外显子组测序,助力遗传性疾病的诊断。V2由 415,115 条单独合成且经过质控检验的 xGen Lockdown 探针组成。探针组跨越人基因组的 34 Mb 目标区域(19,433 个基因),并且覆盖 39 Mb 的探针空间(即由探针覆盖的基因组区域)。探针是使用全新的“捕获感知”(capture-aware) 算法进行设计的,并进行了专有的脱靶分析,确保实现完整的设计覆盖度。探针组中的所有探针均严格按照 ISO 13485 标准进行生产。每条探针均经过质谱法和双定量测量检验,确保探针的质量及在探针库中具有适当的代表性。IDT Exome Research Panel试剂盒
  • 技术分享 | 如何准确测试含脱氧剂的包装氧气透过率
    脱氧剂主要应用于食品、饮料和药品等行业,它帮助提高包装的性能及提供所需的保质期。脱氧剂吸收包装中的氧气,使包装内呈无氧状态,因此产品得以保持保鲜。另外脱氧剂可以有效地抑制霉菌和需氧菌的生长,延长产品货架期。作为产品保鲜的材料,脱氧剂与产品装在同一包装中,测试这种状态下的包装材料的透氧性会非常耗时,必须在常规消耗脱氧剂和无脱氧剂两种状态下测量氧气传输率 (OTR),以全面了解产品在整个生命周期内的包装性能。含脱氧剂包装材料检测确保包装性能符合预期的货架期在实践中,脱氧剂可以以多孔小袋、包装内涂层的形式出现,也可以内置于聚合物中,如瓶壁或瓶盖衬里。无论是哪种形式,都必须在消耗脱氧剂之前和之后测试氧气透过率,以确定与没有脱氧剂的原始包装相比的有效脱氧能力。这种类型的渗透测试需要更长的时间来完成,因为他们必须等待脱氧剂完全的被耗尽。这通常会在实验室中造成瓶颈。有三种方法可以帮助缓解这类包装测试的瓶颈。 01.更高的温度下测试高温加速氧气和脱氧剂之间的化学反应。通常温度每升高10°C,估计的OTR就增加一倍,从而减少脱氧剂耗尽所有氧气的总时间。 02.较高的氧气浓度下测试扁平样品如果使用100%的氧气代替室内空气 (20.9% 氧气) 进行测试,则可以消耗更多的氧气分子。与使用室内空气测试所需的时间相比,这将导致测试时间缩短约20%。 03.离线预处理系统以上两种方法都可以“加速”脱氧剂的消耗以减少整体测试时间,在比较不同的涂层、涂层方法或脱氧剂材料层时,它们可以提供有用的数据。但是对于实际产品来说,这两种方法都有实施的限制性。MOCON离线预处理系统提供真实的测试条件,可与仪器同步运行。仪器用于测试,而消耗脱氧剂所需的时间可以离线完成,这提高了实验室的测试效率。MOCON提供可离线预处理的包装测试解决方案离线预处理系统提供了最真实的测试条件,同时缓解了仪器测试瓶颈。可按照下列步骤操作:• 测试完全相同的不含脱氧剂的包装作为参考样品,这将提供基本的OTR水平和测试时间• 对使用脱氧剂的包装进行初始OTR评估。由于包装内含脱氧剂,测试数据可能低于检测限• 当到达参考样品的测试时间时停止测试• 相同条件下开始离线预处理• 定期将包装重新连接到仪器并检查OTR水平• 直到OTR与参考样品测试结果相同或接近(向上滑动可查看)延迟渗透曲线显示脱氧剂的效果注:了解脱氧剂的吸收能力有助于估计离线预处理的时间。另外,许多脱氧剂会被水分激活,在指定的RH条件下进行OTR测试至关重要。 方案优势:• 在没有加速条件的情况下,离线预处理进行真实的脱氧剂包装样品测试• 当样品离线预处理时,仪器可以测试其他样品,提高实验室效率• MOCON OX-TRAN 2/40包装件测试分析仪带有可选的预处理架或PackRack夹具,满足不同形状的包装的离线预处理MOCON OX-TRAN 2/40包装件OTR分析仪带预处理架选项对带有脱氧剂的包装进行渗透测试整个过程需要很长的测试时间。MOCON提供离线预处理的包装测试解决方案:不仅提升仪器测试效率,还满足提供准确和一致的测试结果,提高了实验室的经济效率。
  • 生物惰性液相质谱联用系统提升寡核苷酸定量分析性能
    样品流路中分析物与金属表面相互作用引起的金属吸附是寡核苷酸分析中的主要问题之一。使用传统的 LC系统(基于不锈钢材质)通常会导致峰形不佳、灵敏度和定量性能受损。本文介绍了使用为解决金属吸附问题而开发的 Nexera XS inert系统分析寡核苷酸的示例。对灵敏度、定量性能和残留进行了评估,结果显示,与在流路中使用不锈钢的 HPLC 系统相比,该生物惰性系统在整体性能上明显改善。Nexera XS inert系统对金属配位化合物表现出优异的分析性能。通常用于 HPLC 流路的不锈钢 (SUS) 具有出色的耐压性,但含有磷酸基团的化合物可以通过金属配位作用与润湿不锈钢表面吸附。金属吸附会对峰形、检测灵敏度和重现性产生负面影响,并降低定量分析的性能。一般通过重复注入高浓度样品来抑制吸附,但这种方法既费时又昂贵。另一种方式是使用含有螯合剂的溶液来抑制吸附。但是此方法不适用于 LC/MS 分析,因为它可能导致污染和灵敏度降低。为了评估金属吸附抑制效果,采用常规HPLC系统(Nexera XR)和生物惰性UHPLC系统(Nexera XS inert)进行分析,并分别使用不锈钢色谱柱和无金属色谱柱。寡核苷酸的反相色谱分析中通常采用离子对试剂,本实验中使用HFIP(1, 1, 1, 3, 3, 3-六氟-2丙醇)和DIPEA(N, N-二异丙基乙胺)。样品信息:序列:5'-dG-dC*-dC*-dT-dC*-dA-dG-dT-dC*-dT-dG-dC*-dT-dT-dC*-dG-dC*-dA-dC* -dC*-3',(*) 表示 5-C 或 5-U 甲基化 (d) 2'-脱氧核苷分子量:6431.72色谱及质谱条件:略。图 1 显示了使用 Nexera XR 和不锈钢色谱柱以及 Nexera XS inert和无金属色谱柱分析的 10 ng/mL 标准寡核苷酸溶液的色谱图。与 Nexera XR 相比,Nexera XS inert 的峰强度增加了约 1.7 倍。图1 寡核苷酸标准溶液(10 ng/mL)的MRM色谱图图2 (a) Nexera XR,(b)Nexera XS inert 交叉污染比较分析浓度为1000 ng/mL的寡核苷酸溶液后,立即将样品溶剂水作为空白进样以评估残留情况。图2(a)显示了Nexera XR空白分析的色谱图,图2(b)显示了Nexera XS inert空白分析的色谱图,可以看到两者的残留水平分别为0.0790%和0.0033%。这些结果表明,Nexera XS inert系统显著抑制了金属吸附并最大限度地减少了交叉污染。样品流路中分析物与金属表面相互作用引起的金属吸附是寡核苷酸以及其他金属敏感化合物分析中的主要问题之一。Nexera XS inert在样品接触流路中使用生物惰性材料,对易被吸附的化合物具有出色的峰形、分离度、灵敏度、重现性和定量性能。而且,该系统耐压超过100MPa,适用于超快速分析,显著提高实验室分析通量。Nexera XS inert系统与MS的结合是分析金属敏感化合物的理想解决方案。本应用中使用的仪器(Nexera XS inert+LCMS-8060)参考文献:1、LCAV-0001-0274,Improvement of Quantitative Performance in LC/MS Analysis of Oligonucleotides using Nexera XS inert本文内容非商业广告,仅供专业人士参考。
  • 我国科学家揭示特殊DNA的合成机制
    脱氧核糖核酸(DNA)是生命体的遗传物质,决定生物的特征和多样性。生命的遗传信息存储在由腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)四种碱基组成的DNA序列中。1977年前苏联科学家在感染蓝细菌的一株噬菌体中发现由2,6-二氨基嘌呤(Z)、G、C、T组成的DNA,该类特殊DNA中的Z完全取代了正常的A,且Z与T配对形成更稳定的三个氢键,极大地改变了DNA的物理化学特征。长期以来,特殊DNA的合成机制及存在的普遍性和生理意义一直是未解之谜。  国家重点研发计划“合成生物学”重点专项“新天然与人工产物的定向挖掘和高效合成的平台技术”项目在该特殊DNA的合成机制研究上取得重大进展。天津大学研究团队联合上海科技大学、美国伊利诺伊大学等研究团队,解析了该特殊DNA的合成机制,其中包括关键酶参与的2,6-二氨基嘌呤脱氧核糖核苷酸(dZTP)的生成和脱氧腺苷三磷酸(dATP)的消除,并发现这种特殊DNA遍布全球,大量能感染细菌的噬菌体都含有这种DNA。该研究还发现该特殊DNA可以规避识别位点中含有A的限制性内切酶的切割,因此含有该种特殊DNA的噬菌体可以逃避宿主的免疫防御从而具有进化优势。  该项重大发现对生命起源、物种进化、系统生物学的研究具有重要理论意义,在超级耐药菌感染的治疗、绿色无抗生素畜牧饲料和食品保存技术开发、新型纳米材料制备、DNA信息存贮等领域具有潜在应用价值。该研究成果近期发表在《Science》杂志上。   论文链接:https://science.sciencemag.org/content/372/6541/512.full  注:此研究成果摘自《Science》杂志,文章内容不代表本网站观点和立场,仅供参考。
  • 新一代二氧化碳纯度在线监控解决方案
    新一代二氧化碳纯度在线监控解决方案用于测量CO2气体中O2的新解决方案安东帕(Anton Paar)推出了新的二氧化碳纯度监测仪,用于监测发酵产生的二氧化碳气体中的氧气。在线氧气传感器Oxy 5100与集成的压力传感器相结合,可在线监测发酵后加压CO2中的O2含量,带自动压力补偿功能,使二氧化碳纯度监测仪成为紧凑,且精确的独立解决方案。此仪表无需气体调节。而对于非加压的测量点,Oxy 5100和其灵巧的传感器盖在气体调节系统之后即可安装。二氧化碳纯度监测仪的组成:一台Oxy 5100&用于自动压力补偿的压力传感器主要特性功能:• 为了快速启动,独特的Toolmaster™ 技术可确保轻松更换瓶盖。所有必需的校准参数都存储在传感器盖中。盖上盖子后,所有校准参数都会自动传输,并且可以立即开始在线测量。• 内置先进的寿命估算器估算光学帽的寿命,并连续监控剩余寿命(以天为单位)。当需要更换时,Oxy 5100便会提示您。Oxy 5100是作为独立解决方案开发的,用于测量啤酒,CSD和DAW等液体中的溶解氧。安东帕在技术上向前迈进,通过增加气相中的O2浓度来扩大覆盖流体的范围。此外Anton Paar特定的适配器或调节系统还可满足用户的定制化需求。适用行业+啤酒厂和苹果酒制造商在啤酒厂中,发酵产生的二氧化碳(CO2)会被收集和纯化,以提高啤酒的可持续性并确保CO2的自给自足。用于O2在线测量的二氧化碳纯度监测器可提供有效处理和高质量CO2的关键信息。在CO2回收工厂中,将发酵产生的CO2收集,过滤,压缩,干燥并从诸如氧气(O2)和氮气(N2)的气体中纯化。在回收的CO2中,O2含量不应超过〜5ppmv。为了减少O2摄入量,确保啤酒稳定性和较长的保质期,必须对O2含量进行可靠且准确的监控,以确保回收的CO2的高纯度且经济性。测量解决方案+用于CO2回收工厂中的O2监测方案全新的二氧化碳纯度监测仪可进行准确可靠,连续的氧气含量和温度在线监测。如果发酵产生的CO2进入限值以内,全自动的O2监测可提供关键信息,以确保高质量和有效的CO2回收。工艺压力的影响会得到补偿, 测量并不受外来气体和湿度的影响。在去除泡沫之后和压缩之前,可安装二氧化碳纯度监测器(上图)。这样可以避免液体完全覆盖传感器的风险,确保测量结果的准确性。使用Pico 3000的CO2纯度监测仪(VARIVENT® 法兰直接安装在管线中)二氧化碳纯度监测器由一个Oxy 5100在线溶氧传感器和一个压力传感器组成,二氧化碳纯度监测仪符合国际卫生标准并获得EHEDG认证。特定于应用程序的计算由mPDS 5或Pico 3000评估单元执行。一个mPDS 5最多可以连接8个CO2纯度监控器,结果可以显示并传输到PLC或通过Davis 5数据采集和可视化软件在电脑上读取。另外,也可以将二氧化碳纯度监测仪连接至Pico 3000 RC外壳,以进行远程控制。带有Toolmaster™ 的传感器盖Oxy 5100的所有传感器帽均配备了Toolmaster™ 技术,可自动检测每个帽的所有所需配置和校准参数。无需通过HMI进行手动干预,从而减少了停机时间和人为错误,从而可以快速轻松地更换光学帽。产品优势+可靠,准确的二氧化碳纯度监测仪可实现• 实时在线监测氧气含量• 改善了CO2处理的质量和效率• 检测任何违规行为并实时控制过程• 可预测,快速且容易地更换传感器盖• 选择性测量(不受湿度影响)
  • 核酸降解知多少
    导语在实验过程中,最心累的莫过于好不容易提取的核酸却降解了。那么核酸为什么会发生降解呢,我们又该如何预防呢?关于核酸降解,你了解多少呢?让我们一起对核酸降解一探究竟吧。 什么是核酸 核酸是一种高分子化合物,核苷酸是构成核酸的基本单位。核酸水解后得到许多核苷酸,核苷酸是组成核酸的基本单位,即组成核酸分子的单体。一个核苷酸分子是由一分子含氮的碱基、一分子五碳糖和一分子磷酸组成的。根据五碳糖的不同可以将核苷酸分为脱氧核糖核苷酸和核糖核苷酸。如果5-碳糖是核糖,则形成的聚合物是RNA;如果5-碳糖是脱氧核糖,则形成的聚合物是DNA。 核酸降解本质 核酸降解是DNA/RNA分子中的碱基和戊糖间的氮糖苷键,或磷酸二酯键在物理因素、化学因素和生物因素等作用下发生水解,使DNA/RNA链发生断裂。核苷磷酸化酶:能分解核苷生成含氨碱基和戊糖的磷酸酯酶。广泛存在于生物体内,催化的反应可逆。可在核苷水解酶作用下继续分解核苷成嘌呤碱、嘧啶碱和戊糖。核苷水解酶:主要存在于植物和微生物体内,只水解核糖核苷。 核酸降解原因 DNA降解的因素很多,主要分为物理因素,化学因素和生物因素。一、物理因素:温度,机械剪切力、核酸的反复冻融、高温煮沸及辐射等。二、化学因素:PH值,水解反应,氧化反应等。三、生物因素:酶解及微生物侵染等作用。一、物理因素的影响★ 温度:高温条件下,RNA不稳定,易加速磷酸二酯键的水解,使核酸降解;★ 机械剪切力:包括剧烈震荡、搅拌、细胞突然至于低渗溶液中,以及让溶液快速通过狭长的孔道;★ 核酸的反复冻融、高温煮沸及辐射等,均会导致核酸的降解。二、化学因素影响水解★ PH值:氢离子参与催化磷酸二酯键、糖苷键的水解,但糖苷键比磷酸二酯键更易被酸水解。过高或过低的PH值都易破坏复键。核酸(特别是RNA)在碱性溶液中十分容易降解;★ 氧化反应:会氧化碱基中的含氨杂环,使其变性,从而改变一级与二级的核酸构象;★ 苯酚在空气中被氧化生成醌,它能够产生自由基,直接用于DNA的分离,会使磷酸酯键断裂,造成DNA的降解。三、生物因素影响★ 酶解:核酸酶可以催化水解多聚核苷酸链中的磷酸二酯键,直接破坏核酸的一级结构,使其降解。1.核酸酶(磷酸二酯酶)核酸内切酶:在环境或生物体内具有识别双链DNA分子中特定核苷酸序列,并由此切割DNA双链的核酸内切酶统称为限制性核酸内切酶。作用方式从多聚核苷酸链中间开始,在某一个位点切断磷酸二酯键。如DNase,RNase等。核酸外切酶:核酸外切酶的作用方式是从多聚核苷酸链的一端(3' -端或5' -端)开始,逐个水解切除核苷酸。如蛇毒磷酸二酯酶,牛脾磷酸二酯酶等。2.核苷酸酶(磷酸单酯酶)专一性的磷酸单酯酶:3' -核苷酸酶,5' -核苷酸酶非专一性磷酸单酯酶。★ 微生物侵染:微生物会将DNA作为营养物质或是其分泌的化学物质含酶。 预防降解的方法 预防RNA降解的方法:★ 去除环境中RNase酶的污染或强有力地抑制其活性。★ 获取样品后最好立即提取RNA,若无条件立即实验,应于-80℃液氮中保存样品,提取时取出样品后立即在低温下研磨裂解细胞,以防RNA降解。★ 在总RNA提取分离的最初阶段,联合使用Rnase的特异抑制剂,尽可能的灭活胞内的Rnase的活性。★ 避免样品的反复冻融。★ 保证裂解液的质量,裂解液的用量不足,也会导致RNA降解。★ RNA提取后,放入-80℃保存,防止降解。预防DNA降解的方法:★ 简化操作步骤,缩短提取过程,以减少各种有害因素对核酸的破坏;★ 减少化学物质对DNA的降解,为避免过酸、过碱对DNA双链中磷酸二酯键的破坏;★ 防止基因组DNA的生物降解,主要是DNase降解基因组DNA,Dnase需要二价金属阳离子Mg2+等的激活,可用EDTA等金属离子整合剂整合Mg2+以抑制Dnase的活性;★ 减少物理因素对DNA的降解,物理降解因素主要包括机械剪切力(如剧烈震荡、搅拌等);★ 避免样品的反复冻融,可将DNA分装保存于缓存液中;★ 所有试剂应用无菌水配制,耗材经高温灭菌;★ 避免DNA的过高温处理等。
  • Orbitrap高分辨质谱助力mRNA疫苗表征
    今日看点mRNA疫苗在新冠疫情中得到了广泛关注,Moderna及Pfizer/BioNTech的mRNA疫苗获得FDA的紧急使用授权,掀起新一轮的mRNA疫苗研发热潮。与依靠抗原或减毒病毒刺激免疫系统产生免疫反应的传统疫苗不同,mRNA疫苗本身并不含有抗原,而是以编码抗原的mRNA为主要成分。这些编码抗原的mRNA能在细胞内被翻译为抗原蛋白,从而引发免疫反应。相比传统疫苗,mRNA疫苗成本低、研发灵活性高、生产效率高,且具有相对较高的安全性,应用前景广阔[1]。对于此类新型疫苗,需严格的质量控制以确保产品的安全性尤为重要。其质量属性包括稳定性、完整性、纯度和同质性等。如图1所示,从mRNA构造、体外翻译及转染,到体内免疫,色谱、质谱、qPCR、电泳等多种表征手段被用于质量评估[2]。其中高分辨质谱技术对于mRNA的深入表征(加帽效率、修饰、测序等)、杂质分析(siRNA、DNA、宿主残留蛋白)有着重要应用。图1:mRNA疫苗的质量控制和基于细胞的功能评估的工具(点击查看大图)01mRNA的加帽反应效率评估mRNA前体的加工包括了在其5' 端加上7-甲基鸟苷(m7G),称之为“帽”。这种加帽步骤可增加mRNA稳定性,使其避免被核糖核酸酶降解。加帽步骤会产生多种结构(如图2a),最常见的被称为“Cap0结构”(只含m7G),即鸟嘌呤环上的N-7位置甲基化;而如果下游邻位核苷酸上的核糖也被甲基化,则为“Cap1”,再下游的则为Cap2”(甲基化均发生在核糖的2' 羟基上)。在脱磷酸的过程中,也会产生单磷酸、双磷酸、三磷酸等多种相关杂质。图2a.加帽反应(点击查看大图)Oribitrap高分辨质谱由于其高分辨率、高灵敏度及高质量精度可以准确地对mRNA加帽效率进行评估。全长的mRNA直接通过LC-MS分析往往由于分子量太大而无法得到精确表征,通常会使用RNAse酶切结合磁珠分离的方法获得5’端的加帽短链,如图2b所示[3]。图2b.mRNA分离纯化步骤(点击查看大图)RNAseH酶切及磁珠纯化分离后,所得的5’端mRNA酶解片段经过Orbitrap高分辨质谱分析,结果检测到未加帽组分、加帽1组分及少量在第二个A酶切位点得到的加帽1组分,包括单磷酸、二磷酸及三磷酸修饰杂质,且得到同位素基线分离的高质量谱图(如图3a、3b所示)。图3a.5’端mRNA 酶解片段TIC及质谱图(点击查看大图)图3b.5’端mRNA 酶解片段理论及实测质量(点击查看大图)通过加入内标未加帽三磷酸mRNA,确认了质谱定量方法的可行性及准确性。对各加帽组分及未加帽组分形态进行质谱峰面积定量,从而得到5’加帽比例(图3c)。图3c.质谱非标定量法计算mRNA加帽比例(点击查看大图)MRM方法用于mRNA加帽定量分析质谱MRM方法可用于组织及细胞培养基中的mRNA加帽修饰检测,具有高通量及高灵敏等优势。组织或细胞培养基中的mRNA经过nucleaseP1酶解及磁珠纯化,可得到加帽二核苷酸,(m7)GpppN(m)[4]。对11个帽二核苷酸修饰变异体建立MRM方法(图4a),可实现每种变异体的色谱分离及质谱定量(图4b)。图4a.MRM质谱方法参数(点击查看大图)图4b.11个帽二核苷酸修饰变异体的提取离子流图(点击查看大图)其中,对于m7GpppG及GpppGm形式的同分异构体,在液相及一级质谱上均无法分辨,而m7GpppG的特征子离子m/z635.9可将其区别于GpppGm,从而建立MRM方法定量分析,且方法灵敏度高(图5)。图5:(a)连续稀释的合成帽二核苷酸的峰面积测量;(b)连续稀释的合成帽二核苷酸GpppA的峰面积;(c) m7GpppG和GpppGm子离子信息;(d)连续稀释的合成帽二核苷酸m7GpppG的峰面积;(e)补偿m7GpppG和GpppGm的共享离子.(点击查看大图)该方法可快速准确定量细胞中存在的mRNA帽结构,评估不同的加帽结构形态在不同组织或细胞中的含量变化(图6)。Orbitrap的定量能力可与三重四极杆相媲美,其PRM定量灵敏度高、准确性好,也可用于mRNA帽结构的定量分析中。图6:从小鼠肝脏、活化的CD8T细胞、心脏和大脑分离的mRNA帽二核苷酸的丰度(点击查看大图)02mRNA末端多聚腺苷酸Poly A 尾检测真核mRNA通常在其3' 末端带有一段多聚腺苷酸尾(PolyA tail),根据种类的不同,其长度可能在20到200多个碱基之间变化。PolyA tai会被多聚腺苷酸结合蛋白(poly(A)+ tail-binding protein,PABP)辨识并保护住,因此在mRNA的翻译和稳定性中也起着重要的调节作用。通常是在体外转录过程中直接从编码DNA模板或通过使用polyA聚合酶将最jia长度的polyA添加到mRNA中。PolyA的提纯方法类似5’加帽核酸片段,具体步骤可参考文献[5]。纯化后的polyA通常是含有不同长度腺苷酸的混合物,随着碱基个数的增加,HPLC液相方法的分辨率很难将不同长度的polyA完全分开,而Orbitrap高分辨质谱可以准确对其长度分布进行表征和相对定量。图7a.不同碱基长度的PolyA色谱图(b)理论100-merPloy A质谱解卷积结果(点击查看大图)相比二代测序,高分辨质谱作为互补表征技术,能够快速准确地分析RNA序列,同时对于翻译后修饰的种类、位点及含量进行深入表征。此外,也能对RNA代谢产物进行定性及定量分析。
  • 气相色谱仪使用气体的纯度分析
    操作气相色谱仪如何选用不同气体纯度的气源做载气和辅助气体,虽然是一个老的技术问题,但是对于刚刚接触气相色谱仪的用户,目前很难找到有关这方面的综合资料,所以他们总是到处询问究竟选择什么样的气体纯度zui好的这类问题。根据每一家用户具体使用的那一类仪器,选择什么样纯度的气体,确实是一个比较复杂的问题。原则上讲,选择气体纯度时,主要取决于①分析对象;②色谱柱中填充物;③检测器。我们建议在满足分析要求的前提下,尽可能选用纯度较高的气体。这样不但会提高仪器的高灵敏度,而且会延长色谱柱,整台仪器的寿命。实践证明,作为中仪器,长期使用较低纯度的气体气源,一旦要求分析低浓度的样品时,要想恢复仪器的高灵敏度有时十分困难。对于低档仪器,作常量或半微量分析,选用高纯度的气体,不但增加了运行成本,有时还增加了气路的复杂性,更容易出现漏气或其他的问题而影响仪器的正常操作。另外,为了某些特殊的分析目的要求特意在载气中加入某些“不纯物”,如:分析极性化合物添加适量的水蒸气,操作火焰光度检测器时,为了提高分析硫化物的灵敏度,而添加微量硫。操作氦离子化检测器要氖的含量必须在5~25ppm,否则会在分析氢,氮和氩气时产生负峰或“W”形峰等。本文就不在此做详细讨论了。 气体纯度低的不良影响 根据分析对象,色谱柱的类型,操作仪器的挡次和具体检测器,若使用不合要求的低纯度气体,不良影响有以下几种可能: 1)样品失真或消失:如H2O气使氯硅样品水解; 2)毛细管色谱柱失效:H2O,CO2使分子筛柱失去活性,H2O气使聚脂类固定液分解,O2使PEG断链。 3)有时某些气体杂质和固定液相互作用而产生假峰; 4)对柱保留特性的影响:如:H2O对聚乙二醇等亲水性固定液的保留指数会有所增加,载气中氧含量过高时,无论是极性或是非极性固定液柱的保留特性,都会产生变化,使用时间越长影响越大 5)检测器: TCD:信噪比减小,无法调零,线性变窄,文献中的校正因子不能使用,氧含量过大,使元件在高温时加速老化,减少寿命。 FID:特别是在Dt≤1Ⅹ10ˉ⒒/秒下操做时,CH4等有机杂质,会使基流激增,噪声加大不能进行微量分析。 ECD:载气中的氧和水对检测器的正常工作影响zui大,在不同的供电工作方式中,脉冲供电比直流电压供电影响大,固定基流脉冲调制式供电比脉冲供电影响大。这就是为什么目前诸多在操作固定基流脉冲调制式ECD时,在载气纯度低时必须把载气纯度选择开关从“标准氮”拨到“一般氮”位置的原因。大家会发现在此情况下操作,不但灵敏度变低,而且线性亦变窄了。实践证明:在操作ECD时,载气中的水含量低于0.02ppm,氧低于1ppm时可达到较理想的性能。值得指出的是,我们多次发现由于仪器的调节气路系统被污染而造成的对载气的二次污染至使ECD基频大幅度增加使信燥比减小。FPD和NPD等常用检测器,由于他们属于选择性检测器,操做时要根据分析要求,特别注意被测敏感物质中杂质的去除。 6)在做程序升温操作时,载气中的某些杂质,在低温时保留在色谱柱中,当拄温升高时不但引起基线漂移还可能在谱图上出现比较宽的"假峰"。 7)仪器影响 a. 各类过滤器加速失效 b. 调节阀(稳压阀,稳流阀,针形阀)被污染,气阻堵塞,调节精度降低或失灵; c.气路系统被污染,若要恢复仪器在高灵敏度情况下操做,有时要吹洗很长时间(可能一周以上)污染严重时有时再也无法恢复。 d.检测器的寿命,实践表明,对ECD和TCD的寿命影响zui明显,应引起用户特别注意。------ 责任编辑:瑞利祥合--色谱仪采购顾问版权所有(瑞利祥合)转载请注明出处
  • TMstandard——坛墨质检新品牌
    TMstandard品牌介绍TMstandard专业致力于研发生产食品、环境检测领域标准品。TMstandard的技术负责人来自美国印第安纳州大学科学家Dr. zhiqunxie,产品形态包含固标和液标,检测范围涵盖食品、保健品、化妆品检测、水质、土壤、大气等领域。 Dr. zhiqunxie简介:化学博士,曾就职日本东京fujirebio inc.中央实验室先端研究部、中国科学院上海研究所,现任美国印第安纳州大学学者、科学家。TMstandard新品固标第一期编号名称规格纯度70076辛酸甲酯0.1g99.5%70095十八碳三烯酸甲酯0.1g99.5%70091二十烷酸甲酯0.1g99.5%70089十八碳烯酸甲酯0.1g99.5%70085十七烷酸甲酯0.1g99.5%70081十五酸甲酯0.1g99.5%70062二十碳二烯酸0.1g99.5%70050十七烷酸0.1g99.5%70100二十碳五烯酸甲酯0.05g99.5%70094二十一烷酸甲脂0.1g99.5%70048十六酸/棕榈酸0.1g99.5% 706756-苄氨基嘌呤0.1g99.4%70488脱氢乙酸0.05g98.3%70487山梨酸标准品0.25g99.5%70352纽甜0.1g98%70177腺苷5' -单磷酸一水合物0.25g99.9%70166腺苷0.1g99.9%70165尿苷5' -单磷酸二钠盐0.1g99.7%70164尿嘧啶核苷0.1g99.2%70162肌苷5' -单磷酸二钠盐水合物0.1g99.9%70161胞嘧啶5' -磷酸盐0.1g98.0%70160胞嘧啶核苷0.1g99.9%70159半胱氨酸0.1g98.6%70154d-异抗坏血酸0.1g99%70153维生素c0.1g99% 70500维生素b50.1g99.9%70077癸酸甲酯1ml99.5%70040癸酸0.1g99%70038丁酸1ml99%70016赤藓红b0.25g80.0%70014溶剂黄560.1g96.2%70029孟加拉红0.25g91.0%70353亮蓝0.25g99.5%70013酸性红0.1g99.5%70360l-(+)-酒石酸0.25g99.9%TMstandard在北京拥有1200㎡专业研发和生产基地,国际水平的研发、检测和包装设备,专业的生产和检测人员,保证生产标准物质的全部过程都按照规定流程进行。TMstandard 按照标准物质生产各环节检测标准,配置有高级别超净间(万级超净间以及百级超净台)、恒湿天平室,按照标准物质生产规范要求,实验室购置有岛津液相、安捷伦气相、安捷伦气质、斯派克icp、梅特勒差示扫描量热仪、梅特勒卡尔费休水分测定仪等分析仪器共计37台套;2-8°c冷库二个,共计180㎡,-18°c冷柜8个,常温库房800㎡。专业的生产和检测技术人员经过相应的技术和法规培训,并考核合格。按iso27034要求撰写的管理体系文件,保证生产标准物质的全部过程都按照规定流程进行。 TMstandard标准物质符合国际国内检测法规和满足用户使用习惯,是TMstandard追求的目标。产品和规格的设计都参考国际国内检测标准要求和方法流程需要,能够更高效地完成认证和日常检测工作。同时,产品从研发到生产过程中积累的大量数据,能协助公司的销售人员做好售前和售后工作。
  • 岛津分析技术助力小核酸药质控步步升“花”
    寡核苷酸药物(又称小核酸药物)是由人工化学合成的核苷酸单链或双链组成的一类药物,通过碱基互补配对作用于mRNA,干扰基因的解旋、复制、转录、mRNA 的剪接加工乃至输出和翻译等各个环节,使编码异常的基因丧失功能,进而阻止“错误”蛋白质的表达,发挥基因水平上调控疾病基因转录翻译过程的独特机制(核酸适体通过其三维结构识别靶标蛋白进而调节蛋白质功能),从而达到治疗疾病的目的。[1]治疗性寡核苷酸作用于病理性基因表达的不同阶段[1]截至2024年2月,全球共上市 19 款小核酸药物,ASO 11 款、siRNA 6 款,Aptamer 2 款,大部分是近五年上市,21年至23年上市 7 款,在已获批药品中,罕见病是主要的适应症类别。全球已上市小核酸药物信息信息来源:FDA, EMA, PMDA从获批上市情况看小核酸药研究迎来了新的发展热潮,然而小核酸药的发展并不是一帆风顺的,此前由于寡核苷酸在血液中不稳定、半衰期短、主动靶向差、细胞内吞和逃逸内涵体能力差等天然缺陷使得小核酸药经历了两次泡沫破灭的低谷。化学修饰和递送技术的出现成为了对于小核酸药而言的划时代技术,解决了寡核苷酸的一系列缺陷,小核酸药终于迎来了蓬勃发展。小核酸药主要通过固相合成法合成,分为四步:脱保护、活化和偶联、氧化和加帽。在合成过程中会存在多种不同的杂质,常见杂质包括缺失或增加序列的寡核苷酸、未完全去保护基团的产物、缺失嘌呤碱基的寡核苷酸以及其他降解产物,其中很多杂质与全长产物性质相似,给小核酸药的质量分析和控制带来了挑战,因此合适的分析方法至关重要。单/双链小核酸原料药建议检测项目及推荐分析方法如下图所示(译自Drug Information Journal, 46(5), 611-626 DOI: 10.1177/0092861512445311)。单链小核酸原料药建议检测项目及推荐分析方法双链小核酸原料药建议检测项目及推荐分析方法岛津始终关注药物开发全过程,为小核酸药的质量控制提供全面解决方案。下文中将简要列举小核酸药关键质量控制项目的分析方法。小核酸药关键质量控制项目分子量与序列分子量测定是贯穿药物研发—生产全过程的研究内容,可用于验证和监测在不同的阶段中是否成功合成目标小核酸药。序列的准确性与小核酸药的有效性和安全性紧密相关。岛津质谱LCMS-SQ、LCMS-QTOF、MALDI-TOF助力大家从容应对。杂质及纯度小核酸药在化学合成过程中,很容易产生n-1的杂质,该杂质通常比目标序列少一个碱基,因此它的化学性质与目标化合物是非常相似的,这就容易造成分离困难,特别是对于较长序列的药物,据文献报道,序列越长,杂质越难被分离。且小核酸药大部分为磷酸骨架,负电性强,易发生非特异性吸附从而进一步导致分析困难。岛津生物惰性液相Nexera Inert LC可以针对性解决此问题。小核酸药分析液相色谱柱推荐原辅料及Tm值递送系统是小核酸药物研究的重点项目之一,递送系统关系到药物的安全性和有效性,对于不同疾病不同药物类型可能千变万化,岛津色谱和质谱助力小核酸药原辅料分析。除关键质量属性外,岛津丰富的分析仪器、耗材及应用方案期待为您提供更多帮助。岛津小核酸药物及原辅料分析解决方案参考文献:[1] Takakura K, Kawamura A, Torisu Y, Koido S, Yahagi N, Saruta M. The Clinical Potential of Oligonucleotide Therapeutics against Pancreatic Cancer. Int J Mol Sci. 2019 Jul 6 20(13):3331. doi: 10.3390/ijms20133331.本文内容非商业广告,仅供专业人士参考。
  • 中国计量院为贵金属纯度鉴定建立了实物溯源标准,助力黄金纯度鉴定
    黄金具有重要的货币属性及装饰与保值功能,在人类几千年的历史中始终是财富和华贵的象征。黄金相关国家标准对杂质元素规定了明确的限量,例如,《金条》(GB/T 26021)对银(Ag)、铜(Cu)等十余种杂质元素进行了限量,《高纯金》(GB/T 25933)规定了更多杂质(21种)的限量要求。由于黄金价格的高昂,时有黄金掺假的报道出现,然而,魔高一尺,道高一丈,纯度计量的完善使贵金属纯度鉴定不再成为难题。中国计量科学研究院针对高纯金属纯度精准测量的需求,在重点研发计划“国家质量基础设施体系(NQI)”重点专项的支持下,综合利用多种高分辨测量手段,通过“地毯式”扫描,测量元素周期表中全部天然杂质元素,建立了基于全杂质扣除的高纯金属纯度测量方法,并在国际计量比对中取得优异成绩。在此基础上,创新研制了金、银、铂等高纯金属纯度国家一级标准物质(GBW02793~GBW02796),纯度定值大于99.999%,达到国际领先水平,为贵金属纯度鉴定建立了实物溯源标准。同时,为了助力黄金检测国家标准GB/T 25933和GB/T 38145的实施,研制金溶液中无机痕量杂质成分分析国家一级标准物质(GBW02797-GBW02800),使标准的使用更加便捷,测量结果更加一致和可靠。纯度计量作为“一双慧眼”,从计量学角度为黄金等贵金属纯度鉴定提供了科学的计量溯源标准,使造假行为无所遁形。
  • 色谱分离技术制造高纯度益生元
    日前,广东江门量子高科生物股份有限公司(以下简称量子高科)采用色谱分离技术成功产出纯度达95%以上的高纯度益生元,各项技术指标均达到国际领先水平。   在国内率先采用色谱分离技术,成功实现纯度达到95%以上的高纯度低聚果糖的工业化生产,在国内尚属首创。量子高科的高纯度低聚果糖色谱项目的投产成功,标志着我国益生元产业的高纯度低聚果糖的核心技术的“瓶颈”宣告打通,不仅填补了中国益生元产业的技术空白,还打破了国外的垄断局面,替代进口产品满足国内市场需求,大大推动我国益生元行业的发展进程,同时对全国功能食品行业的发展产生积极作用。   量子高科在引进、消化和吸收世界最先进的益生元技术基础上,通过自主创新,投资建成了国内第一套千吨级采用色谱分离技术制造高纯度益生元的生产系统,生产流程通过PLC(可编程逻辑自动控制器)控制,生产线的运行流程和技术规范都在全自动化模式下进行,最大化减少人员接触产品,更进一步提高产品的卫生和安全性。整个生产系统不仅流程全封闭、全循环,而且产量高、能耗低,绿色环保。与过往从55%纯度的低聚果糖中再次提取精制而取得高纯度低聚果糖的生产工艺相比,不仅简化了操作工序,缩短了生产时间,还保证了产品的品质,确保与国际先进水平同步。今年11月,工程主工艺系统设备安装完毕,经过1个多月的系统调试,工艺装置全部达到设计要求。12月,工厂全部工艺流程打通,投料试产,日前以色谱分离技术成功生产出优质的高纯度低聚果糖产品。   量子高科首创的高纯度低聚果糖色谱项目的成功,对益生元行业的发展是一大推进。开发高纯度低聚果糖产品在生理学功能、营养研究及加强农产品综合利用、延长农业产业链、提高产品附加值方面都具有非常重要的意义。
  • 微型光纤光谱仪可以应用于哪些领域?
    从1992年Mike Morris发明世界上第一个微型光纤光谱仪至今已经24年了,各个行业已经开发了数以千计的应用。广阔的市场前景吸引了越来越多的公司,包括仪器仪表行业的大公司都开始参与到这个领域的竞争。  微型光纤光谱仪可以应用于哪些领域?  第一, 光谱仪可以分析各种光源发出的光,这些光源包括太阳,LED, 激光,平板显示器件,等离子体,气体放电,火焰燃烧,受激发光,化学发光等等基于各种原理的发光体。  第二, 光谱仪可以分析光与各种物质相互作用后的光,相互作用后的光一般都含有与物质微观结构有关的丰富信息。在这里光可以看成是探索物质微观结构的“探针”,因此,微型光谱仪通常被列为光学传感类(optical sensing)。  第三, 由于微型光谱仪的体积小,所以适合于便携,手持,现场,在线,原位,活体,非破坏性应用场合。由于光纤的使用,所以适合在有害环境下(包括化学,生物,放射性)进行远程测量。由于微型光谱仪内无移动部件,可靠性高,因此,适合于工作在环境恶劣的工业现场。由于采用探测器陈列,可一次获得全光谱,测试速度快,因此适合需要高速测量的应用,例如工业在线检测,化学反应动力学监测。  由于微型光谱仪应用领域非常广,在如此短的篇幅内无法详细列举所有的应用。以下,我们就当今社会最关注的领域中比较成功的应用案列进行分析:  环保行业:  -燃煤电厂烟气排放监测系统用于监测电厂在脱硫和脱硝之后对于大气的排放废气中SO2,NOx的含量。  这基于气体紫外吸光度测量的原理,看似简单,但是在解决实际问题时,必须要克服一些具体困难。由于实际应用中的待测气体样品中有颗粒物存在,如何将颗粒物对光的散射引起光的能量损耗扣除掉,以获得准确的浓度值?1970年代德国科学家Ulrich Platt在研究大气紫外吸收时,发现颗粒物散射谱随波长变化慢,气体分子紫外吸收谱随波长变化陡峭,因此对光谱进行微分,再进行数字滤波,将低频分量滤去,就可以将散射的影响扣除,这就是著名的DOAS技术(Differential Optical Absorption Spectroscopy)。由此可见,应用研究的重要性。  -对于地表水的有机物综合指标的监测  有机物综合指标是指化学需氧量(COD),生化需氧量(BOD),总有机碳(TOC),高锰酸盐指数(CODMn),总磷(TP),总氮(TN),多环芳烃(PAHs)。分析地表水的有机物综合指标的困难在于,第一,这不是由单一化学组分决定的,而是由水中大量化学组分的综合效果 第二,水体中除了有机物之外,还有许多其它的干扰因素,譬如泥沙,会影响测量结果的准确度。  不少地方仍然采用化学滴定方法检测,这种方法虽然准确度高,由于需要采用化学试剂会对水体造成二次污染,而且设备复杂,测试所需时间长,运行费用高。  采用紫外吸收光谱技术,通过对大量水样建模和多变量化学计量学分析,可以获得有机物综合指标。但是实际的水样中总会含有泥沙,泥沙含量较高时,这些无机物也会使透光量减少,探测器无法区分透射光强度减少,究竟是被有机物吸收了,还是泥沙的散射引起透光量的减少,从而带来误差。而且,在有机物含量较少时,测量误差较大。浙江大学的吴铁军教授发现如果加用荧光光谱测试,由于无机物是不会产生荧光的,因此,融合荧光光谱和紫外吸收光谱的数据,就可以扣除无机物的影响。这种创新的方法可以用一台仪器同时测量出上述七个水的有机物污染的综合指标。  这个案例告诉我们,在分析复杂体系时,基于多变量化学计量学的算法和建模是极端重要的。  食品安全  -水,土壤和鱼的汞超标  由于环境污染体现在地表水和土壤的汞超标,汞又特别容易在生物组织中积累,譬如鱼类。摄入过量的汞会影响人的神经系统,儿童的发育生长。全球140个国家都对食品中汞的含量有规定。现有的分析方法非常耗时并只能在实验室使用。  美国Jackson州立大学发明了一种基于纳米材料表面能量转移技术NSET(Nanomaterial Surface Energy Transfer)的检测微量汞的便携式仪器。NSET技术原理如下,当罗丹明B(RhB)分子吸附在胶体金纳米颗粒时,胶体金纳米颗粒会使RhB荧光焠灭,当有Hg2+离子存在时,RhB会从纳米金颗粒表面释放,与汞离子结合,并在532nm激光激发下开始发荧光,荧光的强度与Hg2+离子浓度成正比。(见图2)这种方法检测灵敏度很高,汞的检测线0.8ppb,美国环境署水中汞含量的标准为2ppb.并能检测鱼组织中的汞,达到美国环保署0.55ppm的要求。图1 吸附在纳米金颗粒表面的罗丹明RhB,它的荧光强度与待测样品中汞的浓度成正比  这个案例中检测汞的原理就不那么直截了当,待测物汞本身并不能受激发荧光,而当汞离子与罗丹明RhB结合时,RhB充当标记物(marker)的角色,另一方面,利用了纳米金颗粒能使RhB荧光焠灭的特性。  -检测奶粉中的微量三聚氰胺  采用表面增强拉曼光谱技术SERS(Surface Enhanced Raman Spectroscopy),在785nm激光的激发下,待测的三聚氰胺的分子在基于纳米金颗粒的SERS芯片上,在激光强电磁场的作用下,与纳米颗粒表面的等离子激元发生谐振,拉曼光谱的强度被大大增强。(见图2)采用便携式拉曼光谱仪和SERS芯片三聚氰胺的检测限可达到12ppm。图2在打印的SERS芯片表面增强拉曼光谱与三聚氰胺浓度的线性关系  拉曼光谱技术,由于拉曼信号特别微弱,所以只适合应用于分析浓度较高的物质主成分。由于纳米材料科学,表面物理科学,激光技术的发展,才使SERS技术逐步进入应用阶段,用于分析痕量物质。不断提高测量的重复性,稳定性,降低SERS芯片的价格,使更多的应用领域用得起SERS技术。  -鉴别假冒的初榨橄榄油  常用的方法是观察油的颜色,但是在不同光线下显示的颜色是不同的,而且造假者会用叶绿素或b胡萝卜素去调节油的颜色去靠近真品的颜色。用低档橄榄油或者葵瓜子油,菜油稀释初榨橄榄油都可以用便携仪器进行吸光度测量方法鉴别。  正是由于光纤光谱仪的便携性和快速,使其得以应用在仓库,海关现场快速验货。图3 不同比例的低档橄榄油稀释初榨橄榄油对于吸光度的影响  -对食品内黄曲霉素的快速检测  发霉和变质的粮食,花生,坚果含有致癌的黄曲霉素。现用的主流技术有液相色谱仪HPLC,  液相-质谱联用仪LC-MS。这些技术只能在实验室用,并且设备昂贵,分析时间长,还要用大量化学溶剂,污染环境,操作和维护保养麻烦,需专业人员操作。也有用酶联免疫分析技术(ELISA),这种方法测量精度不如HPLC,并经常会报告假阳性。  因此,急需一种可以在现场快速筛检的设备。英国的Ray Coker博士发明了一种基于紫外荧光光谱的技术,先将样品进行预处理,使待测毒素分离,富集,然后用紫外荧光光谱分析,在365nm LED光源激发下,测量其荧光,并采用专利的算法,一次同时测得4种黄曲霉素(B1,B2,G1,G2,M1)和赭曲霉素A,其检测限1ppb,即零点几ppb,满足最严格的欧盟标准,可与HPLC比拟。这种方法其实还可以成为快速检测的平台,包括病原体检测,贝类毒素检测,兽药残留检测,动物饲料中真菌毒素检测,假药甄别检测,农药残留检测,MRSA(Methicillin-resistant Staphylococcus aureus)耐甲氧西林金黄色葡萄球菌检测。  该案例的技术难点在于样品预处理,如何从成分复杂的待测食品样品中将微量待测物萃取,分离,富集,第二,如何挑选出具有高度特异性的抗体,使自身不会发荧光的毒素与标记物(marker)可以用荧光技术来检测 第三,如何从光谱数据提取出有用信息的算法。  -食源性致病菌的快速检测  检测食品中的致病微生物,现行的方法,譬如检测细菌的金标准方法“平板计数法”(Culture Plating),虽然准确,但是分析所需时间太长,需要2-3天。其它的方法,例如酶联免疫吸附测定法ELISA,虽然速度快了,但是灵敏度不高。聚合酶链式反应法PCR方法,虽然速度快了,灵敏度也高一些,但需要复杂的核酸提取过程。总之,需要一种快速,灵敏,准确,特异性强的检测方法。  食品是一个成分复杂的物质,我们需要分析其中微量的细菌,首先要解决的问题是如何从复杂的背景中提取并富集这些待测的细菌 第二,按照国家标准,允许存在的细菌浓度必须很低,因此要求检测方法的灵敏度很高 第三,实际上,食物中很可能同时存在多种细菌,因此检测方法一定能够同时,分别检测出多种目标物。  美国阿肯色大学生物与农业工程系Yanbin Li教授团队近年来利用免疫纳米磁珠与免疫量子点对食源性致病菌进行快速检测。同时检测李斯特菌,沙门氏菌,大肠杆菌,检测下限可达到101 CFU/ml。(见图4) 图4(a)纯细菌样本的荧光光谱 (b)含致病菌的牛肉样本的荧光光谱  其基本原理是利用免疫检测方法,即先用第一抗体去修饰纳米磁珠,形成细菌-免疫磁珠复合体,在与样品均匀混合时,抗体就会与样品中的目标细菌进行免疫反应,在强磁场作用下,这些被免疫磁珠抓住的细菌就会被吸附到磁极,从而实现了细菌从复杂的背景物中分离。但是抓住细菌的磁珠不会受激发射荧光。我们知道量子点是可以受激发光的,如果用被第二抗体修饰的量子点作细菌的标记物,就可以通过测量量子点发出的荧光强度来间接测量细菌的浓度。利用抗体的特异性,即不同的抗体专门去抓不同的细菌。再利用量子点发光的波长取决于量子点的大小的特点。就可以通过对于荧光光谱相应的波峰强度测量,同时测量不同细菌的浓度。  生命科学和医疗诊断  -核酸,蛋白质分析  对核酸和蛋白质进行定量分析是现代生命科学实验中最基本的工具。  紫外吸光度方法是测量核酸浓度最常用的方法之一。核酸包括:DNA(脱氧核糖核酸)和RNA(核糖核酸)。它的基本组成是核苷酸。核苷酸又是以含氮的碱基,戊糖和磷酸组成。五种碱基包括嘌呤和嘧啶。碱基上苯环的共轭双键在紫外波段有强吸收,最强的吸收峰在260nm。核酸浓度与波长260nm的吸光度成线性关系,这就是用紫外吸光度方法测量核酸浓度的基本原理。核酸样品中如果含有蛋白质,蛋白质的紫外吸收峰在波长280nm,但是蛋白质在280nm的吸光度只有核酸在260nm的吸光度的1/10,利用样品在这两个波长的吸光度比值,可以得到核酸的纯度。  核酸,蛋白质这类生物样品的量常常很小,甚至在mL量级,微量样品的采样在技术上是一个难点。美国热电公司的NanoDrop2000型紫外/可见分光光度计巧妙地利用表面张力的原理,将待测样品液滴置于连接光源的光纤端头和连接微型光谱仪的光纤端头之间,形成待测样品液柱。利用这种采样技术,可以不用稀释样品就可以测量高浓度的DNA样品,对于双链DNA样品,可测的浓度可高达15000ng/ml。  该仪器还可以利用蛋白质在280nm的吸收来测量蛋白质的浓度。这是由于蛋白质分子结构中含有芳香族氨基酸,而芳香族氨基酸(主要是酪氨酸和色氨酸)的紫外吸收的峰值位于280nm。  蛋白质实际测量中遇到的问题是待测样品中常常含有其它化学试剂的残余,而这些杂质对紫外吸光度测量有干扰,影响测量的准确性。因此就在对蛋白质的各种性质研究的基础上,发展了各种其它的测量方法,以摆脱杂质对测量的干扰。例如蛋白质和染料的结合,蛋白质和铜离子的络合反应?  同样这一台工作在紫外/可见波段的分光光度计NanoDrop,基于不同的原理,还可以在不同的波长用于蛋白质定量分析。譬如,Bradford法测蛋白质,这是基于让染料分子(考马斯亮蓝G250)与蛋白质结合成复合体,该复合体在595nm有最大吸收峰,这种方法的好处是待测蛋白质样品中可能含有的K+,Na+,Mg2+,(NH4)2SO4,乙醇等杂质不会干扰蛋白质测定。BCA法则是利用蛋白质的化学性质,即在碱性条件下蛋白质可以与Cu2+发生络合反应,并将Cu2+还原为Cu+,而BCA (bicinchoninic acid)则会与Cu+反应形成稳定的复合物,它的吸收峰在562nm。这就是BCA法测量蛋白质的原理。  -紫外荧光光谱是研究蛋白质组分,构象的强大工具。  实验发现大部分蛋白质中有三种氨基酸残基具有内源性荧光的特性,它们分别是:色氨酸tryptophan (Trp), 酪氨酸tyrosine (Tyr) and 苯丙氨酸phenylalanine (Phe)。但是,实验中常用的是Trp和Tyr的内源性荧光,主要是因为这两种氨基酸的残基的荧光的量子效率比较高,所发出的荧光信号较强。Phe受激荧光的量子效率较低,激发波长在257nm。如果采用波长为280nm的激发光,由于Trp和Tyr的激发波长比较接近(分别为280nm,274nm),因此Trp和Tyr会同时有荧光信号。如果想选择性地只激发Trp,则可以采用295nm激发光源。  实验进一步发现,氨基酸残基的內源荧光的强度,峰位对于氨基酸的组分和构象状态十分敏感。这是因为在蛋白质分子处于自然折叠状态时,Trp和Tyr被包裹在蛋白质的中心位置。而当采用升高温度,采用尿素,盐酸胍,或者调解pH值等方法,使得蛋白质展开(图6A)。原先在折叠状态下埋在里面的疏水核心就暴露在溶剂中。Trp和Tyr就暴露在周围的环境中,它的荧光发光特性发生变化(图5B)  图5 用Trp的荧光来监测蛋白质的构象状态。图6A中Trp是用红点和红色字母w表示,在蛋白质处于自然折叠的状态下Trp被埋藏在疏水的环境中,展开后则暴露在溶剂的环境中。图5B,在自然折叠状态下Trp处于疏水状态下,荧光强 反之,在展开状态下,Trp暴露在溶剂中,荧光强度下降。  实验还发现Trp残基的荧光峰值的波长与周围的溶剂有关,发生Stoke位移。  研究蛋白质的分子折叠和展开有什么应用价值?有些疾病与人体内蛋白质分子的构象状态有关. 譬如, 有些退行性神经病变,就与蛋白质分子的展开有关,因此蛋白质的荧光光谱有时可用于退行性神经病变的诊断。  -医学诊断  一般而论, 采用光纤光谱仪作为医学诊断的手段有两个优点. 一个优点是非侵入性, 第二个优点是体积小, 仪器方便携带, 因此, 可以部署在病床边上, 县以下的基层诊所, 战地,出诊.  以下举一些例子.  基于吸光度和荧光技术的血样,尿样在生化分析仪器在医院的分析实验室几乎处处可见,现在可以做得更小,更便宜.  对于皮肤癌,乳腺癌可以对人体组织活体(in vivo)用拉曼光谱或反射光谱技术进行诊断.  黄疸病对于新生儿是常见的,而且无害,但是,对于早产婴儿则有造成大脑损伤的危险。因此,需要密切监测血液中胆红素的浓度。现行的方法是针刺婴儿的脚跟取血样,然后送实验室进行生化分析,大约需要一个小时,每日三次。如果对新生儿脚底皮肤用光学方法,通过反射谱测量,立即可以分析得到血液中胆红素的浓度,可以比现行的方法更快地诊断黄疸病,并使婴儿免受脚跟针刺之苦,这就是非侵入性带来的好处。  脉搏血氧仪是用红光和近红外透射测量技术连续监测血氧饱和度。慢性阻塞性肺病,哮喘等呼吸性疾病,病人的血氧饱和度是表征病的严重程度的非常重要的指标。  在线检测:  -为了得到辛烷值(RON)合乎标准的92号,95号汽油,石油炼化厂需要将重整催化工艺所得到的高辛烷值油与低辛烷值的催化裂化汽油按适当比例进行调和,以最终获得辛烷值符合国家标准,而且产率足够高的汽油。生产工艺需要在线测量汽油的辛烷值,并根据测量值去控制重整反应器的温度。  浙江大学戴连奎教授采用在线拉曼光谱系统测量重整汽油的辛烷值。其辛烷值主要取决于待测油品中直链烷烃、侧链烷烃、环烷烃与芳烃含量。拉曼光谱可以很好地显示直链烷烃、侧链烷烃、环烷烃与芳烃等物质的特征峰,因此可以很好的计算各种芳烃和其它烷烃等物质的含量。由于不同的烃类物质对辛烷值的影响不同,需要综合考虑每类物质对辛烷值的影响。通过含量高低建立相应的预测模型可以很好地测量汽油样品的辛烷值。相比于红外光谱,拉曼光谱特征峰明显,建立模型所需的样品数量也大为减少。相比色谱,拉曼光谱测量速度较快,使用和维护成本较低。图6 重整汽油的拉曼光谱(经过数据的预处理)  在此应用案例中,待测的汽油辛烷值并不是由单一物质的分子的光谱所决定的,而是由多种烃类的分子的综合作用所决定。因此,有了光谱之后,如何得到辛烷值,建模就是关键。
  • LC-MS 和氮气发生器纯度的关系—是时候一探究竟了!
    概述本文阐述了LCMS仪器对氮气的要求,以及设计和选择氮气发生器时应考虑的问题,包括氮气纯度和氮气质量,以及氮气发生器的选择对LC-MS运行的影响。介绍杜瓦罐和钢瓶高纯氮的纯度一般是99.999%,也可采购到更高纯度的氮气,例如GC载气(是的,发生器也可用于提供载气!)纯度高达99.9999%。工业上传统的深冷空分制氮法,以空气为原料,利用液氧和液氮的沸点不同,采用低温蒸馏的方式,使它们分离来获得氮气。氮气是一种惰性气体,无法直接测试,氮气纯度主要指非氧化气体的含量,其中包括氮气和其他惰性气体等。通常我们会看到LC-MS适配的氮气发生器显示纯度在98-99.5%之间,为什么不提供99.999%的纯度呢?为什么所有LC-MS仪器制造商都建议氮气发生器产气的纯度大于95%就足以满足质谱的要求?(本文中所提到的LC-MS用气指的是离子源部分用的雾化干燥气,作为碰撞气用的高纯氮气,耗气量很少,一般由钢瓶提供)让我们先来看看LCMS的技术特点:简单来说,氧气并不会影响LCMS信号强度。事实上无碳氢化合物、无颗粒、干燥的空气是完全可以用于LC-MS分析的。我们选用氮气的原因是,在电离阶段,有机溶剂+氧气+高热+高压会导致爆炸,这不仅是一个巨大的安全风险,而且会对昂贵精密的LC-MS造成极大的损害。纯度实际上只是我们评估氮气的一个参数。仅仅因为一种气体纯度高,并不意味着其中没有像碳氢化合物(实验室溶剂挥发产生的VOC)、邻苯二甲酸酯类、硅氧烷类和其他影响灵敏度和基线的有机化合物,以及水份和会污染离子源的灰尘颗粒等,这些会造成昂贵的仪器清洁、维护和维修的成本。LC-MS离子源部分需要一个低氧环境,且不含颗粒和有机污染物,以防止发生爆炸,减少维护和离子源的清洁操作,以保证仪器本身的性能。
  • 遗传发育所在植物磷酸化蛋白质组学技术研发方面获进展
    蛋白质磷酸化是在激酶催化下将磷酸基团转移到底物蛋白质上的可逆过程,是能够调控蛋白质结构与功能且参与细胞内信号转导的重要翻译后修饰,在植物的生长、发育、环境适应以及作物的产量和品质调控中发挥着重要作用。深度解析磷酸化蛋白质组,是探讨磷酸化如何参与这些生物学过程以及筛选与作物重要农艺性状相关的关键磷酸化靶点的有效手段。然而,与动物相比,植物磷酸化蛋白质组的深度解析在技术上更具挑战性。这是由于植物细胞具有致密的细胞壁和大量的色素以及其他次生代谢物。前者增加了蛋白质提取的难度,而后者干扰了磷酸肽富集的效率和特异性。 中国科学院遗传与发育生物学研究所汪迎春研究组通过探索一系列的实验条件,研发出高效的植物磷酸化蛋白质组学新技术。该技术的主要特点是利用脱氧胆酸钠高效抽提植物蛋白,同时消除常规方法中导致样品损失和灵敏度降低的两个步骤,即在蛋白酶消化前的样品净化和在磷酸肽富集前的脱盐处理,在色素与其他干扰分子共存的情况下进行高特异性、高灵敏度地磷酸肽富集。 科研人员应用这一方法,在拟南芥、水稻、番茄和衣藻等绿色生物的组织中高效纯化磷酸化蛋白质组(单针质谱可鉴定约11,000个磷酸位点)。由于该技术主要面向高等植物及其他绿色生物(如衣藻),且操作简便,降低了实验所需的人力和试剂费用,因此命名为GreenPhos。GreenPhos可定量分析不同植物的磷酸化蛋白组,分析深度深、定量重复性高,有望成为植物磷酸化蛋白组学的通用技术。研究人员应用该技术,深度解析了拟南芥响应不同时长盐胁迫的差异磷酸化蛋白质组,发现了包括剪接体蛋白和一些激酶响应盐胁迫的磷酸化事件。 11月27日,相关研究成果在线发表在《分子植物》(Molecular Plant,DOI:10.1016/j.molp.2023.11.010)上。研究工作得到国家重点研发计划与中国科学院战略性先导科技专项的支持。中国科学院植物研究所的科研人员参与研究。GreenPhos工作流程及多种绿色生物磷酸化蛋白质组鉴定结果
  • 突破色纯度极限,科学家在深蓝色OLED的光谱特性上取得进展!
    【科学背景】随着超高清显示技术的快速发展,对有机发光二极管(OLEDs)中高效深蓝光发射器的需求引起了广泛关注。深蓝光发射器不仅在色彩饱和度和显示质量方面起着至关重要的作用,还直接影响着OLEDs未来的发展前景。在此背景下,开发具有高效率和超纯发光的深蓝色发射器成为当前OLED技术面临的核心挑战。深蓝光发射器的设计面临诸多问题,尽管蓝色磷光和供体-受体型热激活延迟荧光(TADF)发射器可以实现接近100%的内部量子效率,但由于结构弛豫和第一单线态激发态(S1)与基态(S0)之间的振动耦合,难以保持发光颜色的纯度。此外,为了满足最新的BT.2020蓝色标准,发射器不仅需要优化发射峰,还需减少半高宽(FWHM)并限制光谱拖尾。然而,现有的深蓝色发射器在实现这些目标时,常面临光谱展宽和颜色纯度不达标的问题,且装置效率常出现严重滚降。为了解决这些问题,深圳大学杨楚罗教授提出了一种基于高度扭曲的双硼MR-TADF核心的分子设计策略,通过引入线性扩展的π骨架,实现了大自旋轨道耦合和小ΔEST值,从而显著加快了RISC速率(达到2.29 × 106 s&minus 1)。此外,通过合理选择元素组合,成功地将发射波长精确控制在458 nm,FWHM低至12 nm。这种设计不仅解决了传统深蓝光发射器在颜色纯度和效率上的矛盾,还通过优先的水平发光偶极取向(Θ∥达到97%),进一步提高了装置的光输出效率。最终,在OLED器件中实现了接近BT.2020标准的深蓝色光发射,并达到了世界领先的外量子效率(EQE),为超高清显示应用提供了新的技术路径和理论依据。【科学亮点】1. 实验首次设计了扭曲的多硼基MR-TADF框架,并将其集成到线性扩展的π骨架中,从而实现了深蓝色发光体在光谱特性上的突破。此设计策略使得发射器具备了极其狭窄的发射带(FWHM为12 nm)和接近100%的量子产率(ФPL),主要归因于扩展核心的高结构刚性、非键合特性以及合理的元素组合。2. 实验通过优化三重态上转换过程(RISC),实现了kRISC值达到106 s–1的快速上转换,这得益于扭曲结构引起的大自旋轨道耦合(SOC)矩阵元,以及由线性扩展MR-TADF骨架带来的小ΔEST。通过这一优化,发光体在OLED器件中的性能显著提升。3. 采用双元发光层的OLED器件达到了BT.2020蓝色标准,并展现了优异的性能,最高外量子效率(EQEmax/1,000)分别为39.2%/28.7%,且FWHM仅为14 nm。进一步整合TADF敏化剂后,器件性能进一步提升,EQEmax/1,000分别达到44.6%/38.8%,并保持了窄的发射光谱。4. 在串联器件架构下,实现了深蓝区域内的最高效率,EQEmax/1,000分别为74.5%/65.3%。这些结果表明,该设计策略在深蓝色MR-TADF分子的色纯度和自旋翻转过程方面取得了显著进展,为超高清显示应用的高效OLED提供了有力的解决方案。【科学图文】图1: 分子设计。图2:DPA-B2 、 DPA-B3 、 DPA-B4和Cz-B4的光物理性质。图3:基于DPA-B2 、 DPA-B3 、 DPA-B4和Cz-B4的非敏化OLED的EL性能。图4: 基于 DPA-B4 的 HF 器件和两单元串联 HF 器件的 EL 性能。【科学启迪】本文利用扭曲的多硼基框架与线性扩展的π骨架相结合的策略,突破了以往发射器的光谱限制,实现了超窄发射带(FWHM为12 nm)和接近100%的量子产率。这一创新设计展示了如何通过调节分子结构来优化光学性能,从而满足高色纯度的需求。其次,优化的三重态上转换过程(kRISC值达106 s–1)显示了大自旋轨道耦合(SOC)矩阵元对提高发射效率的关键作用。这一发现表明,结构设计对于加速三重态到单重态的转换至关重要,有助于提升器件的整体效率。进一步的应用研究表明,该策略在OLED器件中不仅达到了BT.2020蓝色标准,还实现了高外量子效率(EQEmax/1,000达74.5%/65.3%)。这些成果表明,通过系统的分子设计和结构优化,可以显著提升深蓝色OLED的性能,为未来高解析度显示技术的发展奠定了坚实基础。参考文献:Hua, T., Cao, X., Miao, J. et al. Deep-blue organic light-emitting diodes for ultrahigh-definition displays. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01508-w
  • 日本岛津推出塑料纯度自动化检测技术
    &mdash 岛津与三菱电机共同开发回收塑料的高精度材料识别技术&mdash 三菱电机株式会社与株式会社岛津制作所共同开发出「回收塑料高精度材料识别技术」,该技术能够以99%以上的精度瞬间识别在废弃家电产品回收工程中分选回收的塑料种类。以往以手工作业的回收塑料的纯度检测实现了自动化。 塑料高精度材料识别装置全景 塑料高精度材料识别装置概念图 <开发特长> 1.高速・ 高精度识别回收塑料的种类 ・ 无论着色剂、添加剂的含量有多少,都可识别回收塑料的种类 ・ 基于识别算法,用时约1秒钟完成向传输板上的塑料片照射中红外光以及反射光解析,实 现99%以上的高精度识别 2.自动传输・ 连续识别塑料片 ・ 可将尺寸各异的塑料片自动传输到识别位置上进行连续识别 ・ 按种类自动分选识别的塑料片 <今后工作> 三菱电机株式会社正基于本技术争取提高回收塑料的纯度检测效率,扩大高纯度自循环回收量。株式会社岛津制作所正推进塑料回收装置产品化,以应用于家电回收等中。 ※本技术开发获得经济产业省2011年度产业技术实用化开发事业费补助金[资源循环实证事业(塑料的高度材料识别技术及回收材料化技术)]并实施。 <开发背景> 三菱电机株式会社以降低地球环境负荷、有效利用资源为目的,不断致力于废弃家电产品的再资源化与再利用的「自循环回收」工作,已于株式会社HYPER CYCLE SYSTEMS实施了铁、铜、铝以及单一材料塑料的回收工作,并开发了难以分选的「混合破碎塑料」的回收技术,于2010年在株式会社Green Cycle Systems Corporation启动业界首家大规模塑料材料化工厂,扩大了家电产品的主要塑料(PP、PS、ABS)的回收量。 为了提高以往手工作业的回收塑料纯度检测的效率和高精度化,接受经济产业省2011年度产业技术实用化开发事业费补助金,与日本著名分析仪器厂家株式会社岛津制作所共同开发了回收塑料的高精度识别技术。为基于纯度检测自动化的回收塑料纯度检测高速化与高精度化做出了贡献。 <特长详细内容> 1.高速・ 高精度地识别回收塑料的种类 传统的近红外光塑料分选装置由于受到从废弃家电产品回收的「混合破碎塑料」所含着色剂的干扰,无法识别浓色塑料。 此次开发出使用波长长于近红外光的中红外光,不受着色剂、添加剂影响,高速・ 高精度地识别包括浓色塑料在内的塑料种类的技术。采用不易受到塑料片形状差异影响的光学系统以及高灵敏度识别反射光的检测器,并应用根据1秒钟内多次测定同一塑料片内反射光而获得的数据综合识别塑料种类的算法,达到了99%以上的精度。 2.自动传输・ 连续识别塑料片 倾斜开孔的圆盘状传输板,利用自重将每一塑料片逐一吸附在开孔上,然后自动传输到识别位置上,实现连续识别。使用空气枪自动分选已识别的塑料片,实现了塑料纯度检测的自动化。 在株式会社Green Cycle Systems Corporation,将试制装置应用于分选回收的破碎塑料的纯度检测,结果可知,获得了与传统的手工检测同等的精度。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 探寻国产试剂之光:99.9%纯度的坚守——光华科技品牌故事
    广东光华科技股份有限公司(以下简称“光华科技”)成立于1980年,是一家以“客户为中心,为客户创造价值”为经营理念的先进专业化学品服务商,致力成为国际高端专用化学品创新与整体技术服务方案领跑者。四十三年来,光华科技保持稳健成长,从粤东走向广州再走向全国,辐射海外。2015年在深交所上市(002741),2016年开始布局新能源和生物医药领域,到2022年,营收总额达到了33亿元。抓紧机遇——布局生物医药市场近年来,政府投入了大量资金和人力来支持生物医药行业的发展,并采取了一系列政策措施来鼓励研发和创新。随着国家大健康的发展战略和政策制度的快速推进,生物医药逐渐发展成为朝阳行业。光华科技发挥自身优势,紧抓时代机遇,通过良好的服务和扎实的产品,成功进入生物医药市场。生物医药行业客户对产品稳定性和纯度等都有较高要求,光华科技正是挖掘了客户的痛点,从产品本身的理化指标及客户端的性能应用测试等多个维度入手,解除客户疑惑,为客户解决问题。实现本土化供应——定制化服务光华科技拥有四十多年的合成与分离纯化技术,并拥有国家级研发创新平台,从原料端的质量控制、纯化工艺的选定,到合成反应的制程控制都经过层层的把控。光华科技在提高生产效率的同时,把产品纯度推向更高的层次,突破行业技术瓶颈。硫氰酸胍作为核酸检测用到的重要试剂,纯度要求较高。光华科技的硫氰酸胍纯度高达99.9%,产品技术指标在行业水平领先,满足客户对技术指标的高要求。光华科技将定制化服务作为优势服务,根据客户需求,在新产品的联合开发、产品纯度的定制、产品的规格和包材等方面提供产品的定制化服务。助力行业发展——高端试剂进口替代生物医药产业作为未来的新兴产业,光华科技聚焦进口高端产品的替代,同时将医药产业进行国产化和本土供应。目前国家某些技术存在卡脖子难题,鉴于此,光华科技希望结合自身的技术经验,为国家贡献一份力量!光华科技始终坚定“客户为中心,为客户创造价值”之道,专注高品质专用化学品,不断根据客户技术差异及应用场景提供定制化服务,为客户的研发生产保驾护航,助力中国化学试剂行业高质量发展。第二十届中国国际检验医学暨输血仪器试剂博览会(CACLP) &第三届中国国际 IVD 上游原材料制造暨流通供应链博览会(CISCE)定于2023年5月28-30日在南昌绿地国际博览中心召开。光华科技也将作为展商参与此次博览会。展位号:B4号馆B4-1824欢迎莅临展位现场参观交流。
  • 前沿合作 | 基于岛津MALDI-TOF技术平台检测7种人冠状病毒及新型冠状病毒分型与重要突变位点的方法研究
    SARS-CoV-2变异株的出现,使全球面临第二波冠状病毒疾病大流行的危机 目前,已知可以感染人的冠状病毒共有7种,分别为20世纪60年代发现的人冠状病毒HCoV-229E和HCoV-OC43,2003年新出现的SARS冠状病毒SARS-CoV,2004年发现的人冠状病毒HCoV-NL63,2005年新发现的人冠状病毒HCoV-HKU1,2012年7月在中东地区出现的MERS冠状病毒MERS-CoV以及2019年12月下旬爆发的严重性呼吸系统综合征冠状病毒(Severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)。其中,2019冠状病毒病(Coronavirus disease 2019,COVID-19)引起了全球持续地大流行。尽管全球采取了许多干预和控制措施,截至2022年1月4日,已有200多个国家受到该病毒的影响,实验室确诊的COVID-19病例人数已超过2.9亿,死亡人数超过540万。 本次研究基于岛津AXIMA Performance MALDI-TOF质谱检测平台,旨在提供一种特异性强、灵敏度高的用于检测7种人冠状病毒(人冠状病毒229E、NL63、HKU1、OC43、SARS-CoV、MERS-CoV、SARS-CoV-2),及新型冠状病毒(SARS-CoV-2)分子分型与重要变异株的检测方法。 岛津应对策略及解决方案通过合理选择设计位点、适当添加修饰碱基,可以将延伸探针的质量加以区分,均匀分布于检测范围之内,从而达到多重检测的目的。整个检测反应流程分为五步(图1):图1 岛津AXIMA Performance MALDI-TOF用于7种人冠状病毒及新型冠状病毒分型与重要突变位点的检测流程示意图 第一步是一步法多重PCR反应,根据待检测位点两端的侧翼序列来设计引物与探针,在一个反应体系中实现逆转录PCR与多重PCR扩增反应,从而达到扩增待测位点的目的。第二步应用虾碱性磷酸酶(Shrimp alkaline phosphatase,SAP)对上一步PCR的反应产物进行处理,消化掉剩余的脱氧核酸核苷三磷酸(Deoxy-ribonucleoside triphosphate,dNTP)。第三步是单碱基延伸反应。事先针对每个检测位点设计一条短探针,探针可以结合到第一步PCR的扩增子上,同时令探针结合之后,延伸的第一个碱基就是要检测的多态性位点。向第二步的产物中加入这些探针,使用经修饰的双脱氧三磷酸核苷(ddNTP)作为反应底物,再配合专用的扩增酶进行反应。第四步是树脂纯化。第五步是质谱检测。将第四步的反应产物转移到包被基质的点样靶板上,待样本结晶之后,使用飞行时间质谱仪检测延伸的单碱基质量大小,来判定检测靶基因的有无,从而进一步判定样本中目标病原体的有无。 本方法经特异度评估、灵敏度评估以及稳定性评估,结果如下:l 使用28种常见呼吸道病原进行本方法特异度检测,测试结果显示,该方法与常见呼吸道病原均无交叉反应,说明该方法具有良好的特异度;l 梯度稀释核酸样本,测试本方法的灵敏度,测试结果显示本方法检出限为250copies/mL;l 使用多个样本检测本方法的稳定性,检测结果显示,不同检测样本的检测结果一致,该方法表现出良好的稳定性。 方法 特点创新性地使用一步法多重PCR技术与核酸质谱检测分析方法联用,实现从临床样本核酸提取后直接进行检测和分型,不需要额外进行RNA的逆转录,很大程度上缩短检测时间和减小试剂的消耗; 与高通量测序技术相比,该方法一次性可处理和分析96或384份样本,且可在一天内获得7种人冠状病毒的检测结果,及SARS-CoV-2基因组中重要的突变信息,并对其进行分型,特别适用于大规模的流行病学研究和重要型别的监测; 该方法具有灵活易用的特点,随着SARS-CoV-2病毒的不断地进化和基因组新突变的产生,新出现的重要突变位点可以被纳入用来设计更全面的检测方法。 结论岛津中国创新中心与中国医学科学院病原生物学研究所合作开发了一种基于MALDI—TOF平台检测7种人冠状病毒及新型冠状病毒分型与重要突变位点的检测方法。利用一步法多重PCR与MOLDI-TOF质谱技术联用来鉴定7种人冠状病毒与新型冠状病毒的重要突变位点。我们通过对包含新型冠状病毒在内的7种人冠状病毒的每一种目标病原体,选择种间特异且种内保守的基因作为检测靶基因,同时根据GISAID公布的用于新型冠状病毒分型与重要突变位点检测的重要突变位点作为靶点。针对上述检测靶点,设计相应检测试剂,旨在开发和评估一种可直接用于7种人冠状病毒检测和新型冠状病毒分型的快速、简便、无须测序的方法。该方法的建立为动态监测SARS-CoV-2病毒的感染和主要型别的全球流行情况提供强有力的手段。 *文中推荐技术方法方案仅用于医学及科研人员技术交流,不作为临床诊断依据。*本研究的相关成果已申请国家专利(申请号:202111084113.0)。
  • iCMR 2017特邀报告:有机物纯度定值的定量核磁共振法新技术
    p style=" TEXT-ALIGN: center" strong 第一届磁共振网络会议(iCMR 2017)特邀报告 /strong /p p style=" TEXT-ALIGN: center" strong 有机物纯度定值的定量核磁共振法新技术 /strong /p p style=" TEXT-ALIGN: center" strong img title=" 黄挺.jpg" src=" http://img1.17img.cn/17img/images/201710/insimg/7d156904-0e46-4200-8c68-a87e5c61c327.jpg" / /strong /p p style=" TEXT-ALIGN: center" strong 黄挺 研究员 /strong /p p style=" TEXT-ALIGN: center" strong 中国计量科学研究院 /strong /p p & nbsp /p p strong   报告摘要: /strong /p p   准确测定有机化合物的纯度将从根本上提高有机化学分析的能力。定量核磁共振(qNMR)是对有机化合物纯度定值的重要手段,广泛用于化学计量学有机化合物的纯度测定。 /p p   对于纯度较低或者分子量大于500的化合物,由于杂质峰可能与主要组分的峰不完全分离,因此qNMR具有较大的误差风险。我们近年来建立了五种新的方法来解决这个问题。 /p p   (1)扣减杂质的直接qNMR法:应用于缬氨酸的纯度测定,结果的日内RSD=0.050%,八个月的日间RSD=0.071%,为当时文献报告中最高精度。[1] /p p   (2)氢氘交换qNMR法:应用于重要肿瘤标志物hCG蛋白质的特征肽T5肽的纯度测定。与传统的水解反应方法相比,qNMR操作简单,分析时间更短(3天降为1小时),CV小(从0.93%降为0.36%)。首次将qNMR的应用范围扩展至1800分子量的化合物。[1] /p p   (3)采用双信号抑制法的高效液相色谱-核磁共振(HPLC-qNMR):使用非氘代溶剂(CH3CN和H2O)作为HPLC流动相。测定了分子量873的阿维菌素B1a的纯度,排除了其中7个结构非常类似的杂质的干扰,与基于多种仪器的质量平衡法结果一致。偏差不超过1%。该方法具有分离效率高、定性定量能力强、成本低、操作快速、准确度高等特点。[2] /p p   (4)纯化样品的qNMR与HPLC测定法:测定了人C肽(hCP)的纯度,结果与传统方法一致,首次将qNMR的应用范围扩展至3200分子量的化合物。[3] /p p   (5)内标回收率校正-高效液相色谱-定量核磁共振(ISRC-HPLC-qNMR)方法:使用非氘代溶剂作为流动相。应用于阿维菌素B1a的纯度测定。结果表明,即使杂质的NMR峰与主成分不分离,甚至杂质的HPLC峰与主成分只是部分分离,该方法也可以简单且低成本地准确测定杂质的含量。[4] /p p   这些方法消除了杂质峰对qNMR测定结果正确度的潜在影响,将进一步推动qNMR成为国际计量体系的基准定值方法。 /p p   strong  致谢: /strong /p p   国家自然科学基金(21275134),国家科技支撑计划项目(2013BAK10B01)。 /p p    strong 参考文献: /strong /p p   1. T. Huang, W. Zhang. X. Dai, X. Zhang, C. Quan, H. Li, Y. Yang. Talanta. 125:94-101 (2014) /p p   2. T. Huang, W. Zhang. X. Dai, N. Li, L. Huang, C. Quan, H. Li, Y. Yang. Anal. Meth., 8:4482-4486 (2016) /p p   3. W. Zhang, T. Huang, H. Li, D. Song. Int. J. Pept. Res. Ther. 2017, online published [https://doi.org/10.1007/s10989-017-9620-6] /p p   4. W. Zhang. T. Huang, H. Li, X. Dai, C. Quan, Y. He. Talanta, 172:78–85 (2017) /p p & nbsp /p p strong   报告人简介: /strong /p p   黄挺,中国计量科学研究院研究员,2001年于中山大学化学院获得学士学位;2006年于北京大学化学院获得分析化学专业博士学位。同年到中国计量科学研究院化学计量与分析科学研究所工作。近年一直致力于高纯有机物纯化与准确定值、定量核磁共振法、以及有机小分子与生化大分子纯度的化学计量及标准物质研究。通过有机溶剂纯化制备技术研究实现了农残级溶剂的制备,打破了进口垄断。通过将氢氘交换法用于定量核磁共振研究,实现了多肽的定量核磁共振法纯度定值方法,支撑了生化分子的化学计量研究。通过双信号抑制法用于液相色谱-定量核磁共振联用法,实现了复杂有机分子的定量核磁法纯度定值。在2015年赴国际计量局BIPM进行6个月的定量核磁共振合作研究。负责及参与国际比对9项。获得国家奖科技进步奖二等奖1项。获得国家授权发明专利6项、软件著作权2项。发表论文57篇,其中SCI论文22篇。 /p p    strong 报名地址: /strong a title=" " href=" http://www.instrument.com.cn/webinar/meetings/iCMR2017/" target=" _self" http://www.instrument.com.cn/webinar/meetings/iCMR2017/ /a /p p & nbsp /p
  • 核酸提取纯化和浓缩方法应该选_____
    自20世纪诞生以来,分子生物学迅速发展并在整个生命科学领域广泛渗透和应用,推动了传统医学进入基于分子层面实验科学的现代生物医学时代。核酸提取和纯化是分子生物学试验的基础,在以下应用实验中都需要进行核酸提取: ● 分析基础研究和疾病研究中的基因表达;● 跟踪对药物治疗的反应(例如,在抗病毒治疗期间和之后监测病毒滴度);● 识别新物种并深入了解进化过程 (例如,Ancient DNA分析);● 对人类、动物和植物中引起传染病暴发的病原体进行监测和分类;● 通过微生物检测和量化监测食品和水安全;● 诊断疾病 (如基因疾病,癌症,免疫学缺陷)。核酸提取纯化基本步骤 核酸纯化方法是影响提取核酸质量高低的最重要因素之一,也是下游分子生物学试验成败的关键,遵循提取纯化原则以及选择合适的纯化、浓缩方法,可以使核酸的质量及回收率达到最大化。 核酸提取纯化原则和要求 ● 需要保证核酸一级结构的完整性,为下游实验做准备;● 排除其它核酸分子的污染(提取DNA时排除RNA的干扰,反之亦然);● 核酸样品中没有对酶有抑制作用的有机溶剂和高浓度的金属离子;● 将核酸样品中其它生物大分子如蛋白质、多糖和脂类分子的污染降到最低程度。 核酸提取纯化的常见方法溶液抽提法经典的DNA提取方法:酚氯仿抽法,主要是使用两种不同的有机溶剂交替抽提将蛋白去除。通过苯酚氯仿处理细胞破碎液或者组织匀浆后,在水相中主要溶解的是以DNA为主的核酸成分,在有机相中主要是多糖和脂类物质,蛋白质则沉淀于两相之间。离心分层后取出水层,多次重复操作,再合并含核酸的水相,利用核酸不溶于醇的性质,用乙醇沉淀核酸,之后再离心分离和溶解洗脱,最后通过将洗涤后的核酸沉淀进行浓缩干燥即可得到高纯度核酸。 离心柱法(柱膜法)通过特殊硅基质吸附材料,能够特定吸附DNA,而RNA和蛋白质顺利通过。硅胶膜表面的硅醇基团呈弱酸性,其水化后带负电。当溶液中存在一定浓度的阳离子后,形成的阳离子桥能够中和DNA和硅醇基团之间的表面负电荷,从而使DNA牢固地吸附在硅胶膜表面。反之,处于低盐水溶液状态下时,由于硅胶膜的硅醇基团与DNA磷酸基团之间的静电排斥,硅胶膜释放DNA。 利用高盐低PH结合核酸,低盐高PH值洗脱,来分离纯化核酸。离心柱纯化也是试剂盒提取中广泛的使用方法。磁珠法运用纳米技术对超顺磁性纳米颗粒的表面进行改良和表面修饰后,该磁珠能在微观界面上与核酸分子特异性地识别和高效结合。磁珠法利用了磁性颗粒活性基团在一定条件下可与核酸结合和解离的原理,先使用细胞裂解液裂解细胞,带有活性基团的磁性颗粒可特异性吸附从细胞中游离出来的核酸分子,而样品中的其他干扰物则很好的移除了,在磁场作用下,磁性颗粒与液体分开完成,最后回收颗粒(即磁珠-DNA 混合物),再用洗脱液洗脱,纯化浓缩后即可得到纯净的DNA,获得质量较高的核酸模板。 提取纯化方法的选择一般地,分离纯化步骤越多,核酸的纯度也越高,但得率会逐渐下降,完整性也愈难以保证。相反,通过分离纯化步骤少的实验方案,我们可以得到比较多的完整性较好的核酸分子,但纯度不一定很高。这需要结合核酸的用途而加以选择。如果对核酸提取的质量要求不高,可以选择经济实惠的溶液法,选择柱膜法还是磁珠法自动化提取,基本上取决于样本数量,针对大批量的样本,优选磁珠法自动化提取。如果对样本数量较少,则可以选择柱膜法,既快速又经济实用。对于Oligo寡核苷酸的纯化,实验要求更高。(可参考往期推文) 不管采用哪一种核酸提取纯化方法最后都离不开浓缩干燥! ● 再浓缩核酸样品,随着核酸提取试剂的逐步加入,以及去除污染物过程中核酸分子不可避免的丢失,样品中核酸的浓度会逐渐下降,甚至影响到后面的实验操作或不能满足后继研究与应用的需要时,需要对核酸进行浓缩,可将150uL DNA水溶液浓缩至10uL再进行测序;● 去除DNA样品中醇的残留,当DNA样品中有乙醇的残留会影响测序反应;● 干燥DNA样品。DNA沉淀后可能会含水或水/乙醇混合液,浓缩去除后可以得到干燥的DNA样品。常用的干燥方法:风干VS真空离心浓缩仪应用案例分享WTCHG(牛津大学人类遗传学威康信托中心) 使用Sequenom MassARRAY® SNP 基因分型系统用于SNP分析,样品前制备过程分别使用风干(左)和Genevac EZ-2真空离心浓缩仪(右)干燥含有寡核苷酸样品的384孔板。下图结果表明,使用EZ-2真空离心浓缩仪干燥寡核苷酸样品,可以大大降低样品降解率,保证样品不会被污染,消除了样品损坏的潜在来源。深绿色-高样本数据质量浅绿色-中等样本数据质量红色-样品质量差或无数据使用真空离心浓缩仪,可以避免核酸浓缩干燥遇到的过度加热、绝对干燥、交叉污染及紫外损害保证核酸样品的完整性。Genevac真空离心浓缩仪浓缩干燥DNA样本,Genevac真空离心浓缩仪是合适的选择,Genevac系统广泛应用于DNA样品制备与纯化处理,不论是处理PCR前的简单的小体积浓度DNA pellets,还是高通量处理许多纯化DNA或寡核苷酸的样品,都有不同的机型可供选择。如果你对上述产品或方案感兴趣,欢迎随时联系德祥科技,可拨打热线400-006-9696。 Genevac英国Genevac是德祥集团资深合作伙伴之一。英国Genevac公司成立于1990年,隶属SP Scientific旗下,一直专注于研究和生产各种离心蒸发浓缩设备,其产品广泛应用于生命科学、制药、化学、分析等领域。德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 阿尔茨海默症诊断标尺-Beta淀粉样肽(A-Beta)纯度标准物质出炉!
    p style=" text-indent: 2em " 中国计量科学研究院李红梅、冯流星团队近期在Analytical& nbsp Chemistry,2020,doi.org/10.1021/acs.analchem.0c02381发文,介绍了基于同位素稀释质谱技术的阿尔茨海默症临床诊断标志物(Aβ)纯度标准物质研制方法。冯流星研究员为该论文的第一作者,李红梅研究员为共同通讯作者。 /p p style=" text-align: center margin-top: 10px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/3c6fdaac-2942-41af-8bf7-0a1235c51c2b.jpg" title=" 1-1.png" alt=" 1-1.png" / /p p style=" text-indent: 2em " 阿尔兹海默症(Alzheimer& #39 s disease,AD)是不可逆的神经退行性疾病,随着人口的老龄化,AD的发病率越来越高,其致病机理和临床治疗已引起了广泛关注。众多临床研究表明, 血液、脑脊液和脑组织内的β淀粉样多肽(β amyloid peptide ,Aβ)水平异常与AD的病程进展密切相关,Aβ已成为目前研究AD的重要生物标志物之一。然而,临床上由于缺乏Aβ检测的标准物质,导致不同测量系统对Aβ的检测结果偏差较大,难以对AD病的病程进行准确的判断。因此,研制绝对准确的Aβ的定量方法及相关标准物质,对AD的早期诊断及治疗药物研发具有重要意义。 /p p style=" text-indent: 2em " & nbsp 针对这一难题,李红梅团队研制了β淀粉样多肽(Aβ)纯品溶液标准物质(GBW09874-09875),采用基于氨基酸水解同位素稀释质谱法和硫元素同位素稀释质谱法的两种独立参考方法对Aβ纯度进行定值,量值准确可靠、不确定度评定合理。该标准物质为Aβ纯度标准物质,位于ISO17511溯源链的顶端,为AD症诊断中Aβ标志物检测参考方法的建立提供溯源源头。 /p p style=" text-align: center margin-top: 10px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/160d2075-9f54-41f7-8217-0ffea64861d7.jpg" title=" 1-2.png" alt=" 1-2.png" / /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong span style=" font-size: 14px " 基于ID-LC-MS和HPLC-ID-ICP-MS两种方法Aβ标准物质定值示意图 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 0, 0) font-size: 16px " /span /p p strong span style=" color: rgb(127, 127, 127) " 学者简介: /span /strong /p p span style=" color: rgb(38, 38, 38) " 李红梅:研究员,中国计量科学研究院化学所所长。享受国务院政府特殊津贴,全国“三· 八”红旗手荣誉称号获得者 /span /p p span style=" color: rgb(38, 38, 38) " 冯流星:研究员,中国计量科学研究院化学所无机化学研究室主任 /span /p
  • 上海首个核酸产业园7月正式开工,一起来聊聊寡核苷酸药物解链温度
    导 读近年来,以核酸药物为首的功能性核酸备受关注,2021年底治疗罕见病脊髓性肌肉萎缩的反义寡核苷酸药物诺西那生钠进入中国医保,几乎同一时间,诺华降血脂的小干扰RNA药物Leqvio获FDA批准上市,据悉一年只需用药两次。寡核苷酸药物已经从罕见病过渡到了常见慢性病,并可大大降低患者用药频率。随着寡核苷酸类药物的陆续上市,核酸药物已成为当前生命科学和药物研究的热点之一。为了更好促进核酸药物的快速发展,上海首个核酸产业园于7月中旬在上海杭州湾经济技术开发区正式开工,该产业园是以生物医药产业为发展方向,基于核酸开发各种疫苗及药物。今天,我们就一起来聊聊核酸药物以及解链温度等话题。01核酸药物小科普核酸类药物核酸类药物是各种具有不同功能的寡聚核糖核苷酸(RNA)或寡聚脱氧核糖核苷酸(DNA),能够直接作用于致病靶基因或者靶mRNA,在基因水平上发挥治疗疾病的作用。常见的寡核苷酸药物主要包括反义寡核苷酸(ASO)、小干扰RNA(siRNA)、微小RNA(microRNA)、小激活RNA(saRNA)、适配体(Aptamaer)、信使RNA(mRNA)。解链温度在这些核酸药物中,对于具有双链结构的药物,需要对其解链温度进行分析。解链温度是衡量双链结构核酸类物质热稳定性的重要指标,它是控制结构和功能的关键因素。例如小干扰RNA(siRNA)药物等具有双链结构,当温度升高时,氢键断裂,双链逐渐解体,形成单链结构。这种现象称为核酸的“溶解”,将双链和单链所占比例相等的温度定义为解链温度(Tm)。因为核酸类物质在260 nm附近有一个紫外吸收峰,吸收值在解链过程中增加,通过测试该吸光度变化,以确定Tm值。因此在进行核酸药物Tm值分析时,可以利用紫外分光光度计加上控温附件和对应的数据分析软件来完成。02分析利器对于核酸解链温度Tm测试,岛津拥有成熟的方法和分析设备,该设备一般为UV-1900i配Tm分析系统(TMSPC-8)。Tm分析系统由8列控温支架、专用8列微量比色池、温度控制器和Tm分析软件构成,最多可同时测定8个样品。UV-1900i和Tm分析系统专用8列微量比色池(光程10 mm)03案例分享接着小编带您看看具体的寡核苷酸分析案例,操作步骤简单快捷,结果直观。测试样品为M13-25mer核酸,测试前先进行样品溶液脱气的预处理,通过UV-1900i和Tm分析系统可以轻松获得Tm 曲线(绘制260nm处的吸光度对温度曲线,如下图所示),该曲线可以显示升温时和降温时的结果。样品的Tm曲线测试完成后,可以通过中线法和微分法两种方法计算Tm值,最终得到的Tm值结果基本一致。Tm计算结果结 语核酸分子的解链温度对核酸药物的稳定性、有效性等研究有重大意义,在核酸药物研发生产过程是一个重要的参数指标。岛津紫外配合Tm分析系统,可以满足轻松获取Tm曲线,通过中线法或者微分法均可计算Tm温度,满足测试要求,为核酸药物质量控制提供了可靠数据。更多寡核苷酸药物分析,敬请持续关注。撰稿人:王娟娟本文内容非商业广告,仅供专业人士参考。
  • 制备色谱中的良性竞争:纯度、产率、通量的平衡术
    在制备色谱的世界中,一场良性的竞争正在悄然展开,参与者有三位不同的选手,分别是:由于这些参数彼此依赖,所以纯化分离不可能同时优化这三个参数,所以,这并非一场激烈的对抗,而是一场巧妙的平衡术,其中每个角色都在化学家的指挥下为最终的分离纯化目的而努力。 图1:制备色谱三参数关系图下面英诺德INNOTEG为大家介绍下这3个参数1.产品纯度在合成化学中,产品纯度是指合成反应产物中目标化合物的纯净度或纯度程度。这是一个衡量所得产物中所含杂质和未反应起始物的量的指标。在实验室里,红外、紫外、核磁这些仪器,都要求样品达到足够的纯度,才能得到准确的结果。除此之外合成多肽的过程中可能会产生各种杂质,例如未反应的氨基酸、副产物等。纯化步骤有助于有效去除这些杂质,保证其活性和功能的稳定性。同时,通过纯化,可以降低反应的变异性,提高实验的重复性和可重复性。2.产品产率产品产率指的是纯化得到的目标物与初始样品中目标物的比值。高产率表示分离和纯化过程较为高效,少量目标化合物丢失或被废弃。低产率可能暗示着分离步骤存在问题,导致目标化合物的损失。在色谱制备中,产率的提高通常需要优化分离条件、调整溶剂体系、选择适当的柱材料和调整流速等因素。综合考虑这些因素有助于最大程度地保留目标化合物,并提高纯化过程的效率。3.制备通量制备通量是对整个色谱制备纯化工艺的评价,尤其是成本方面的考量。这是个复杂的评价过程,主要是对成本(物料成本、时间成本、人力成本)、安全性、一致性等多个方面考量。通量的高低直接关系到整个制备过程的效率和成本效益。下面小编为大家展示三种常见的色谱图 ● 色谱图1图中所显示的制备液相分离能有非常高的通量,但两个化合物分离得不好。每个化合物都可能得到一些高纯度的产物,但是回收率,即产率却相当低。● 色谱图2图中各个峰都得到了良好分离,两个化合物的纯度和产率都很高,但是通量/实验效率非常低。● 色谱图3该图是优化的制备液相结果,对所有三个参数进行了平衡考虑。色谱峰基本上达到了基线分离,得到了较高纯度和产率,通量也尽可能大。由此结果可知,分离的目的在于保证产品纯度和收率的前提下,尽可能的提高分离效率。实现色谱分离纯化的更佳效能还有其他方式?在色谱分离和纯化中,优化参数应根据具体的实验目的和合成要求来选择。这种差异化的优化有助于在不同的实验场景中实现更佳的效能和经济效益。除此之外,先进的纯化设备在日常实验室应用中也非常重要,英诺德INNOTEG EasyPrep中高压制备色谱,替代传统手动过柱,贴心的自动化体验、多方位的实时监测、智能提升纯化效率,是您实验室的得力助手!● 英诺德INNOTEG EasyPrep MP系统是一款整合了泵、检测器、收集器等几大部件功能为一体的快速纯化制备色谱系统,能对化合物进行分离、检测和收集;● 全自动的工作站控制,帮助您从繁琐的样品制备过程中解放出来,提高工作效率;● 英诺德INNOTEG EasyPrep产品涵盖中、高压制备,满足不同的应用需求;● 提供配套的Flash柱,多种规格Flash C18柱、Flash Silica柱、Flash C8柱、Flash HILIC柱、Flash AQ C18柱可选,使整个过程更加便捷。应用场景药物化学、精细化工、生物工程、植物化学、有机合成、及生命科学等领域。中压制备优势特点介绍:1. 溶剂通道:二元、四元可选;四元中压制备可以实现正反相直接切换;2. 适配4g-800g正、反相层析柱;3. 采用高精度计量泵,耐受溶剂腐蚀,寿命长,精度高;4. 实时压力监测、超压保护功能,保障实验室安全;5. 支持多种容器收集;支持全收集、峰收集、时间收集等多种模式,并实时峰 -管对应;6. 12.1英寸大屏显示,触摸屏操作;采用全自动工作方式,只需要输入相应方法参数,系统自动切换梯度比例、分析、收集;7. 支持在线添加、修改梯度,支持手动拖拽运行梯度曲线。支持在线修改流速;8. 可将实验图谱批量生成PDF实验报告;9. 可设置开机后一键式自动清洗;支持色谱柱吹干,实验完成后可干燥色谱柱。如果您对英诺德INNOTEG EasyPrep中高压制备色谱产品感兴趣,欢迎致电400 006 9696咨询。德祥科技德祥集团成立于1992年,总部位于香港特别行政区。作为科学仪器供应商和服务商,德祥服务于大中华区和亚太地区,每年都为数以千计的客户提供全套解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。作为深耕科学仪器行业的供应商与服务商,德祥现已服务于政府、高校、科研、制药、检测、食品、医疗、工业、环保、石化以及商业实验室等众多领域。公司目前在亚太地区设有13个办事处和销售网点,3个维修中心和1个样机实验室。2009至2021年间,德祥先后荣获了多项奖项。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!英诺德INNOTEG英诺德INNOTEG是德祥集团旗下自主研发品牌,专业从事科学仪器设备研发生产的高科技企业,是集实验室设备研发生产、方法开发、实验室仪器销售和技术服务为一体的专业厂家。多年以来,英诺德INNOTEG致力于研发高效的实验室创新设备。公司十分重视技术的研究和储备,一直保持高比例研发投入,创建了一支由博士、硕士和行业专家等构成的经验丰富,技术精湛的研发团队,在仪器分析技术领域开展了颇有成效的研究开发工作。此外,英诺德还与各大科研院所、高校合作,积极推进科技成果项目的产业化。英诺德INNOTEG凭借强大的研发能力,注重前瞻性技术研发,已推出多款科学仪器设备及实验室耗材产品。
  • 卫计委拟批准纯度99.99%金箔用于白酒
    金箔酒(图片来源:网络)   行业协会称需要了解添加原因和目的   古代文学作品中时有吞金情节的描写,如今,纯度达到99.99%的金箔或许真的可以作为食品添加剂,就此我国开始征求意见。对此,行业协会和专家的态度并不积极。   卫计委   征求意见将金箔用于白酒   记者昨天注意到,国家卫计委官网近日刊登了《国家卫生计生委办公厅关于征求拟批准金箔为食品添加剂新品种意见的函》,函件称,经审核,拟批准金箔为食品添加剂新品种,现已开始征求各相关单位意见并向社会征求意见,时间截止到2月20日。   该函件中显示,允许金箔作为食品添加剂的产品仅为白酒,最大使用量为每公斤0.02克。在生产工艺上,函件中提到,将纯度为99.99%纯金以物理方式将其汽化,使其均匀分散成小分子,再将这些小金分子重新堆栈排列以精准控制分子磊晶堆栈的方式形成食品添加剂金箔。   至于为何在白酒中添加金箔以及添加金箔的好处,函件只字未提。   行业协会   要调查添加的理由和目的   &ldquo 协会方面刚刚收到这份征求意见函。&rdquo 中国食品工业协会、白酒专业委员会常务副会长兼秘书长马勇昨天接受记者采访时表示,&ldquo 但是我还没想明白,白酒中添加金箔能有什么作用。&rdquo 马勇表示,食品添加剂能否获得审批,应该看其是否具备技术的必要性。但是作为纯粮固态发酵白酒,添加金箔没有任何意义和技术必要性。   &ldquo 对于纯粮固态发酵工艺以外的白酒产品,是否有添加金箔的必要性?这些应当组织专家研讨,如果没有明显的技术必要性,那么行业协会肯定会持反对意见。&rdquo 马勇还表示,卫计委发布这种征求意见函,估计是有关方面提出了相关申请,&ldquo 我们还应该看提出申请方的理由和依据是什么,其目的又是什么。&rdquo   市场   白酒添加金箔涨身价   其实添加金箔的白酒在市场上并不新鲜,平时喜欢喝点白酒的赵先生告诉记者,他两三年前在老家就喝过这种添加了金箔的白酒,&ldquo 都是些地方品牌,但是同一品牌添加金箔的价格要达到300多元,而不添加的则仅需几十元钱。&rdquo   赵先生说,销售人员都说这种添加金箔的白酒对身体有保健功能,因为金箔不溶于酒,喝了能调节人体的一些机能 同时喝的时候也要故意摇一摇,&ldquo 金光闪闪,很有面子,但是其实口感也没什么区别&rdquo 。   记者了解到,去年就有媒体报道称,在位于南京的中国金箔艺术馆里有一种价值不菲的高档白酒在销售,这种白酒加入了真金打压而成的金箔,叫做&ldquo 金箔酒&rdquo ,一套礼盒3999元,厂家打出了&ldquo 常饮金箔酒定会让您精力充沛、心旷神怡&rdquo 的广告。报道还引述销售人员的话称,这些金都是处理过的,都能吃,此外公司还有金箔菜、金箔鸭。这些都是振精神、坚骨髓的,排毒的。然而这些产品上并未有保健品的标识。   专家说法   人体必要元素并不包括金   据了解,原卫生部相关部门曾于2011年下发过&ldquo 关于对&lsquo 金箔酒&rsquo 进行卫生监督有关问题请示的批复函&rdquo ,其中明确表示,金箔既不是酒类食品的生产原料,也不能作为食品添加剂使用。我国食品科学领域三院士之一中国工程院院士孙宝国昨天接受记者采访时表示,我国对食品添加剂采取许可管理,食品中使用金箔肯定是违规的。   中国农业大学食品学院营养与食品安全系副教授范志红表示,从营养学的角度看,目前已确定人体必要的元素有20多种,但肯定不包括金。   算金账   一瓶酒添金箔成本2块多   某大型黄金生产商相关负责人告诉记者,按现在制金工艺,0.5克99.99%黄金能够很轻松地打造成面积相当于100元人民币大小的金箔。此次卫计委征求意见稿即便通过,那么500克装白酒添加金箔量最多0.01克,而目前99.99%黄金原料价格也就200多元,也就是说一瓶白酒新增黄金原料成本不过2元多钱。
  • 我国发布全球首个泰国香米纯度检验标准
    “泰国香米”品牌鱼龙混杂,购买要多留神。   一直被人们誉为米中贵族的泰国香米,如今却频频陷入“丑闻”漩涡——今年央视“315晚会”曝光泰国假香米事件后,泰国香米质量问题再次受到人们的关注。   日前,国家标准委发布行业标准《泰国茉莉香米品种鉴定及纯度检验方法》。据悉,它由厦门检验检疫局和中国检验检疫科学研究院合作制定,将于今年5月1日起开始执行。   这是目前国际上首个公开发布的泰国香米纯度检验标准。主要涉及泰国茉莉香米品种鉴定和纯度检测的随机扩增多态性DNA技术检测法、感官检验法、水煮检验法等3种方法。   国际通俗称为“泰国香米”的就是泰国茉莉香米,是指由经泰国农业局、泰国农业部和泰国合作社注册的非糯性芳香水稻品种Kao Dok Mali 105或RD15的稻谷经碾磨获得的糙米或精米。泰国香米从1992年开始进入中国市场并逐步垄断国内高档米市场。目前每年输华的泰国香米大约20万吨,且进入中国市场销售的泰国香米价格高达1100美元/吨,较普通大米贵2倍以上,掺混白大米现象日趋严重。   首个纯度检验标准的出台执行,将有效规范进口香米市场。该标准适用性强,包括泰国茉莉香米品种鉴定和纯度检测RAPD及SSP基准检测方法和简便易行的感官检验法及水煮检验法两部分。   据介绍,基准检测方法是通过DNA扩增然后比对是否含有泰国香米特征性基因片断来判断、感官检验法详细描述了泰国香米颗粒特征、水煮检验法利用泰国香米和假香米水煮后的糊化程度判断。   DNA方法检测结果准确,但仪器设备要求高,检测费用高,而感官法和水煮法简单易懂,检测设备简易,检测费用低廉,寻常百姓在家里都能自己初步判断香米真假,感官法和水煮法结合使用可以获得较准确的检测结果。   泰国香米的特有的口感品质深受世界各国消费者喜爱。目前除泰国外,中国、美国、澳大利亚、印度、巴基斯坦、越南等均已种植香稻。但以泰国的产量最高,同时泰国也是全球最大的稻米出口国。泰国的稻田占全国耕地总面积52% 泰国大米出口遍及五大洲100多个国家 其中,泰国香米出口量约为每年110-200万吨,占泰国大米出口总量的20%左右。   中国是泰国香米的最大进口国,泰国香米中掺混白大米的现象趋多问题正引起有关各方高度关注,中央、地方新闻媒体多年来持续报导。据调查,我国的假香米主要是在泰国香米中掺入或全部由泰国巴吞米、泰国普通白大米、越南大米或直接由国产大米冒充。
  • Anal. Chem. 四川大学吴鹏课题组:单线态氧特征磷光发射测定D2O纯度 | 前沿用户报道
    供稿:郎云贺成果简介近日,四川大学吴鹏课题组利用单线态氧1270nm的NIR-II特征发射(聚噻吩光敏剂)测定D2O纯度,相关文章已发表在Analytical Chemistry上,该工作也表明了单线态氧的NIR-II发射在分析检测中具有潜在的应用价值。背景介绍重水(D2O)在核工业及生物有机分析等领域应用广泛。但由于D2O与H2O的物理性质极为相似,加之D2O具有强吸湿性,致使区分D2O和H2O极具挑战。单线态氧的特征磷光发射(1270 nm,NIR-II)具有半峰宽窄、信号干扰小的特点,能够有效区分D2O/H2O。图文导读单线态氧的特征磷光发射强度与溶剂相关。与O-D(ν = 2550 cm-1)相比,高振动频率的O-H(ν = 3250 cm-1)能够更快速有效的促使单线态氧非辐射失活,表现为更弱的信号强度(图1A)。目前,最直接、方便产生单线态氧的方式是通过光敏过程(图1B)。然而,常规情况下该特征磷光发射非常弱,难以满足定量分析的要求。图1 光敏氧化产生的1O2特征磷光发射区分H2O和D2O四川大学吴鹏教授团队筛选具有优良光敏稳定性、较高单线态氧量子产率的聚噻吩光敏剂,加入至不同比例的D2O/H2O溶液中,利用激光器作为激发光源,通过提高激光功率增强了光敏氧化产生的单线态氧1270 nm磷光发射信号。信号采集时间约30 s,最终实现D2O纯度的定量分析与检测。收集1O2的弱磷光发射信号的仪器设置在本研究中,主要是由四川大学分析测试中心分子光谱组瞬态荧光光谱仪(HORIBA Fluorolog® -3)支撑,装备近红外检测器(H10330,Hamamatsu)。通过该仪器,完成了光敏剂分子荧光光谱、荧光寿命、单线态氧磷光光谱、单线态氧磷光寿命等的测量。HORIBA Fluorolog® -3 荧光光谱仪作者借助外置激光器(提高激光功率),得到了平滑的单线态氧磷光发射曲线(如图2D),实现了通过NIR-II光谱完成D2O纯度的定量分析。该仪器具有功能多样、灵敏度高等优势,NIR-II光谱平均扫描时间仅30 s。值得注意的是,该仪器与脉冲激光器相连接,能够得到不同溶剂的单线态氧寿命衰减曲线(图2E)。该仪器对发光强度很弱的单线态氧NIR-II磷光及其他稳态/瞬态相关的研究提供了广阔的平台。图2 光敏剂PT10的光物理性质研究如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息Analysis of the Isotopic Purity of D2O with the Characteristic NIR-II Phosphorescence of Singlet Oxygen from a Photostable Polythiophene Photosensitizer署名作者:Yunhe Lang, Shihong Wu, Qin Yang, Yanju Luo*, Xia Jiang, and Peng Wu*文章链接:https://doi.org/10.1021/acs.analchem.1c01160扫码查看文献吴鹏教授课题组简介吴鹏,四川大学分析测试中心/化学学院教授,博导,国家优青,四川省学术与技术带头人。近年来的研究工作以室温磷光和单线态氧的光物理和光化学调控为基础,探究其在核酸检测、光动力治疗等领域的新应用。已在Nat. Commun.、Angew. Chem. Int. Ed.、Nano Lett.、Chem. Sci.、Anal. Chem.等国际知名期刊上发表论文90余篇,H-index 38。
  • 常态条件下实现自适应超高光谱纯度激光
    区别于普通光源,激光具有相干性高、单色性纯和方向性好等优点。因此,自激光问世以来,科学家们一直致力于激光参数极致调控的研究,以推动科学研究和工业应用的发展。其中,光谱纯度是决定激光相干性的关键因素。激光运转过程中自发辐射对其强度和相位的影响、泵浦源的功率抖动、谐振腔的温度变化和振动以及发光增益介质的晶格缺陷等原因都会对激光器的线宽进行展宽,从而降低输出激光的相干性。基于稳频控制的腔外伺服电学反馈技术和基于光子寿命延长的固定外腔光反馈技术是当前实现窄线宽激光输出的常用手段。腔外伺服电学反馈技术的核心是引入高稳定度频率基准参考源,固定外腔光反馈技术实现线宽压缩的程度有限,且不能自动匹配主腔激光波长的变化。因此如何在常态条件下实现激光线宽深度压缩的同时,还能自适应波长的变化具有重要的科学意义和工业应用价值。重庆大学朱涛教授团队从源头出发,系统深入地研究了超窄线宽激光的波长自适应光谱纯化机制,提出通过外部微弱的分布扰动信号来有效抑制激光腔的自发辐射,从而在常态条件下实现激光光谱深度纯化的思想。在此基础上提出了一种主腔结合弱分布反馈外腔的激光新构型,这种构型对光纤激光器、半导体激光器等具有增益类型的激光器均适用,并且弱分布反馈的方式可以通过连续波导实现连续的弱分布反馈,也可采用干涉结构如WGM等实现离散的弱分布反馈,其中弱分布反馈的物理过程可以是瑞利散射,也可以是构建的分布弱反射等。他们在论文中展现了半导体DFB激光器结合弱分布反馈的超窄线宽激光器,在常态条件下实现了十赫兹量级的自适应输出(理论上该线宽可以低至赫兹以下)。分布弱反馈深度压缩激光线宽的核心首先是减缓了激光腔内运转过程中自发辐射的耦合速率,从而大幅减小了激光本底线宽;其次是较弱的分布反馈可对激光腔中光子相位在时空域上进行自适应连续修正,避免了固定外腔反馈形成的激光相位突变和多纵模振荡,保证激光单纵模持续运转的同时可实现激光线宽的极致压缩。这项工作为在常态条件下实现自适应超高光谱纯度激光提供了有力的理论和实验基础。图1 激光光谱纯化原理图图2 光谱纯化及自适应动态演化过程该研究团队提出的思路和激光构型为改进和获得各种增益类型的高相干激光光源打开了新的视野,对实现其它激光参数的极致调控也具有重要的参考意义。目前,研究团队下一步将在高相干的基础上进一步研究激光时频空参数的极致调控,并推动激光精密测量领域向着精度更高、速度更快、范围更广的方向发展。该工作以“Ultra-high spectral purity laser derived from weak external distributed perturbation”为题发表在Opto-Electronic Advances (光电进展)2023年第2期。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制