当前位置: 仪器信息网 > 行业主题 > >

可见光区透射比滤光片标准

仪器信息网可见光区透射比滤光片标准专题为您提供2024年最新可见光区透射比滤光片标准价格报价、厂家品牌的相关信息, 包括可见光区透射比滤光片标准参数、型号等,不管是国产,还是进口品牌的可见光区透射比滤光片标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合可见光区透射比滤光片标准相关的耗材配件、试剂标物,还有可见光区透射比滤光片标准相关的最新资讯、资料,以及可见光区透射比滤光片标准相关的解决方案。

可见光区透射比滤光片标准相关的资讯

  • 新年新气象—新品UH5700之测定可见光透过率和太阳光透过率
    前言新年新气象,日立推出了新产品UH5700,这是一款台式紫外可见近红外分光光度计,支持液体样品、固体样品透过率、反射率、吸光度的测定,丰富的附件满足多方面测定需求。图1 UH5700实验新软件UH5700使用了新型控制软件UV solutions Plus,操作步骤简单,数据处理功能丰富。图2 软件测定界面测定附件根据JIS R 3106*1测定了玻璃的可见光透过率以及太阳光反射率。使用玻璃滤光片支架附件测定了三种玻璃的透射光谱,附件外观如图所示。*1 JIS R 3106 平板玻璃的透过率、反射率、放射率、太阳能转化率的实验方法图3 玻璃滤光片支架附件详细参数请参考网址:https://www.instrument.com.cn/netshow/sh102446/s924855.htm 样品测定详细数据信息请点击网址:https://www.instrument.com.cn/netshow/sh102446/s924855.htm 总结新的台式紫外可见近红外分光光度计配合新型软件,可以方便快捷的计算出不同玻璃的光谱性能,新的一年将给您的研发领域注入新活力。
  • IDEX Health & Science 推出流式细胞仪滤光片
    纽约州罗彻斯特市,2023 年 2 月 27 日——IDEX Health & Science (IH&S) 推出了专为流式细胞术应用设计的新 Semrock ® 品牌的 Nanopede&trade 系列滤光片。 "我为我们的流式细胞术和荧光检测客户感到兴奋,” 应用科学家 Elizabeth Bernhardt 博士说, “因为 Nanopede 跨越光谱的方式为他们的仪器提供了方便性,以满足现在和未来的荧光标记改革。”流式细胞仪通过散射光测量和荧光标记检测细胞。在光谱流式细胞术中,使用离散的背靠背(光谱相邻)滤光片收集整个光谱中的荧光。然后将光子合并,以便光谱分解可以分辨出哪些荧光标记存在于被询问的细胞中。因此,光谱流式细胞术需要在离散步骤中覆盖 UV、可见光和 NIR 的滤光片,这可能导致需要平衡仪器成本和光学滤光片性能。IDEX Health & Science 了解这些需求,我们很自豪地宣布推出我们新的 Semrock 品牌滤光片系列,该系列涵盖 20 nm 全宽半高 (FWHM) 步长的可见光谱。Nanopede 系列中的前十款滤光片在设计时就考虑到了您的应用,这只是我们不断发展的流式细胞术产品线的开始,以适应快速发展的流式细胞术市场。我们的团队了解每台流式细胞术仪器都是不同的,与我们合作定制滤光片以满足您的特定应用需求。
  • 3i流式简讯|IDEX推出全新流式细胞仪滤光片
    仪器信息网讯 近期,IDEX Health & Science (IH&S) 推出了专为流式细胞术应用设计的新 Semrock ® 品牌的 Nanopede™ 系列滤光片。 流式细胞仪通过散射光测量和荧光标记检测细胞。在光谱流式细胞术中,使用离散的背靠背(光谱相邻)滤光片收集整个光谱中的荧光。然后将光子合并,以便光谱分解可以分辨出哪些荧光标记存在于目标检测细胞中。因此,光谱流式细胞术需要在离散步骤中覆盖 UV、可见光和 NIR 的滤光片,这就需要平衡仪器成本和光学滤光片性能。 应用科学家 Elizabeth Bernhardt 博士表示:"我为我们的流式细胞术和荧光检测客户感到兴奋,因为 Nanopede 跨越光谱的方式为他们的仪器提供了方便性,以满足现在和未来的荧光标记改革。IDEX Health & Science 了解这些需求,我们很自豪地宣布推出我们新的 Semrock 品牌滤光片系列,该系列涵盖 20 nm 全宽半高 (FWHM) 步长的可见光谱。Nanopede 系列中的前十款滤光片在设计时就考虑到了上述应用,以适应快速发展的流式细胞术市场。”
  • 基于光纤激光器的可见光频率梳、20GHz可见光波段天文光学频率梳
    成果名称 基于光纤激光器的可见光频率梳、20GHz可见光波段天文光学频率梳 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 □原理样机 &radic 通过小试 □通过中试 □可以量产 成果简介: 光学频率梳是很多高端研究的基础科学仪器,例如原子跃迁频率的精密测量、光钟的频率的测量、引力波的测量、微重力的测量、系外类地行星的探测等。利用频率梳测量频率时,需要频率梳的频率间隔在200MHz以上,以便波长计数器计量波数。特别地,类地行星观测需要20GHz以上频率间隔的频率梳来定标光谱仪,这个频率间隔一般的光纤激光器无法达到,目前只能依靠法布里-珀罗(FP)滤波装置进行频率倍增。由于FP透射光谱的有限线宽会导致边模泄露,从而影响天文光谱仪的定标精度,因此需要源激光频率梳本身的频率间隔尽量大,以抑制边模。可见,研制高重复频率(大频率间隔)的频率梳已经成为国际激光器和频率梳领域研究的热点和难点。目前该产品的国内市场基本上被德国Menlo System公司生产的基于掺镱光纤激光器的可见光域频率梳垄断,我国亟需研制出具有自主知识产权的光梳设备。 2011年,北京大学信息学院张志刚教授申请的&ldquo 基于光纤激光器的可见光频率梳&rdquo 得到第三期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。在基金经费支持下,通过关键配件的购置和加工,该项研究得以顺利开展。课题组瞄准研制稳定的、可供频率测量的、基于飞秒光纤激光器的可见光域激光频率梳这一目标,开展了一系列富有成效的工作,包括:(1)搭建高重复频率、1um波长的锁模光纤激光器,作为频率梳&ldquo 种子源&rdquo ;(2)研究初始频率和腔内色散的关系,以得到更高信噪比的初始频率信号;(3)利用合适的色散补偿元件对种子源输出的脉冲进行色散补偿,并进行多级反向放大,使其输出功率满足频率梳要求;(4)试验多种光子晶体光纤,以获得更宽的、覆盖可见光域的光谱。通过以上工作的开展,课题组成功研制出了国际首创的500MHz光学频率梳样机,而Menlo公司同类产品重复频率仅为250M。这一技术的产品化将打破外国公司在国内市场的垄断,填补国内外市场的空白。 在第三期项目工作的基础上,张志刚课题组的王爱民副教授申请的&ldquo 20GHz可见光波段天文光学频率梳的研制&rdquo 项目在2012年得到了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。在第四期基金的支持下,项目组发展了前期500MHz高重复频率的光学频率梳的研究成果,开展了更加深入的工作,包括:(1)利用FP技术对500MHz重复频率的稳定光梳进行倍频,获得20GHz、1m波段的稳定光学频率梳;(2)对20GHz光学频率梳进行功率放大、脉冲压缩和倍频,实现515nm波段的蓝光飞秒光梳源;(3)利用拉锥光子晶体光纤对飞秒蓝光光梳进行可见光扩谱,达到400-750nm的光谱覆盖。通过这些工作,课题组成功研制出了一套可直接与天文望远镜对接的20G天文光梳频率标准系统,其工作达到该领域国际前沿水平。 这两期项目目前已经结题,其成果已进入产品化阶段,科技转化前景良好。相关成果受到了北京市科委的高度重视。 课题组瞄准研制稳定的、可供频率测量的、基于飞秒光纤激光器的可见光域激光频率梳这一目标,开展了一系列富有成效的工作。课题组成功研制出了一套可直接与天文望远镜对接的20G天文光梳频率标准系统,其工作达到该领域国际前沿水平。 应用前景: 光学频率梳是很多高端研究的基础科学仪器,例如原子跃迁频率的精密测量、光钟的频率的测量、引力波的测量、微重力的测量、系外类地行星的探测等。
  • 蓝菲光学成功交付上海市质检院定制摄影镜头光谱透射率及色贡献指数检测系统
    2019年11月蓝菲光学成功交付上海质检定制摄影镜头光谱透射率及色贡献指数检测系统。光谱透射率及色贡献指数是衡量摄影镜头质量优劣的重要指标。摄影镜头的光谱透射比特性直接影响彩色摄影的色再现质量,ISO规定了以用对数透射比为基础的色贡献指数来描述照相镜头的色再现性(ISO 6728-1983)。我们知道照相镜头是由多片透镜组成的,其设计是由全世界多个厂商共同协作的,不同厂商根据其设计方案,则选用不同的透镜玻璃。照相机的色贡献指数是由整个镜头的综合光谱透过率决定的。从某种意义上讲,用于照相镜头的每一块透镜玻璃都应该测量其色贡献指数,并且测试值符合标准要求。上海市质量监督检验技术研究院,是国家市场监督管理总局批准设立的,经上海市人民政府依法设置的非营利性公益科研类政府实验室,是国家级产品质量监督检验研究院。是集产品质量检验检测、计量校准、体系与产品认证、标准化服务、培训与咨询为一体的全国最具有综合竞争力的检测院所之一。上海市质检院针对采购检测仪器具有很高的产品要求,在产品质量、性能、售后服务等一系列考察后,选定蓝菲光学定制生产镜头色贡献指数检测系统。蓝菲光学定制生产的镜头色贡献指数检测系统基于积分球的光谱透射率测试系统,来获取镜头的光谱透射比。待测镜头最大尺寸128mm(D)*366mm(L), 待测镜头重量5kg以内。镜头透过率范围一般在4%-98%。硬件系统由积分球,光谱仪,准直光源,夹具和暗室组成。系统符合JBT8248.1-1999 照相镜头光谱透射比的测量方法和JBT8251-1999 照相镜头的色贡献指数国标。蓝菲光学高漫反射涂料很受行业认可,该测试系统积分球内部使用Spectraflect® 涂料在紫外-可见光-近红外光谱区内漫反射率高达98%。积分球的开口处采用刀刃结构有助于收集大角度散射,挡板采用最小化设计,使得探测器能够最大程度地看到球内壁表面。探测器口位于球的顶部和底部,使用挡板遮挡防止样品和参考口光束直接照射。蓝菲光学的光谱仪光谱范围350-1100nm,该光谱仪内置的电制冷、薄型背照式CCD探测器可高效地抑制杂散光。所使用的准直光源均匀性>90%,光斑大小可调,配套软件显示光谱透射比和色贡献指数,光谱间隔为10nm,此外允许我们自定义光谱及对软件二次开发,方便实用。图1 上海质检定制摄影镜头光谱透射率及色贡献指数检测系统图图2 摄影镜头光谱透射率及色贡献指数检测系统软件界面蓝菲光学定制的摄影镜头光谱透射率及色贡献指数检测系统设计灵活,可依照标准定制,适用于各类镜头透过率和色贡献指数测试。
  • ​紫外可见光谱法研究光伏电池
    近些年来,寻找环境问题解决方案日益成为全球亟待解决的主要难题。鉴于化石燃料资源正在迅速耗竭及其对环境造成严重破坏,发展替代性能源产品已经成为当务之急。太阳是清洁能源的一个丰富来源,可通过光伏系统,将太阳光转化为直流电能从而为我们所用。近年来各国都在积极推动可再生能源应用,因此,光伏产业发展十分迅速。今年是“十四五”开局之年,在国家政策的支持下,在“碳达峰”、“碳中和”的目标要求下,光伏行业将迎来更大的发展。光伏转换技术的发展和进步需要在化学、电子、机械和光学等方面对整个过程的各个阶段进行表征,大量的研究工作仍然在进行中。紫外/可见/近红外光谱仪在光学性质研究中有着重要的应用。配有150mm积分球的LAMBDA 1050+紫外/可见/近红外分光光度计使用LAMBDA 1050+紫外/可见/近红外分光光度和150mm积分球,可以测量样品在200~2500nm范围内的透过率、反射率和吸光度。积分球的内表面使用Spectralon高分子材料制成,其反射率接近100%。150mm积分球的窗口面积占内反射表面比值小于2.5%。窗口面积比例越低,测量结果的精密度越高。60mm积分球的窗口面积比大约为7%。透射率和反射率积分球测量:透射模式(上)和反射模式(下)积分球内部的检测器(可见光区域使用光电倍增管,近红外光区域使用PbS检测器)被Spectralon材料制成的挡板所保护,避免直接反射光线进入检测器,从而保证测试结果的准确度。在进行反射率测量时,可以打开镜面反射侧翼,将镜面反射光线排除,从而只测量漫反射光线。在进行透射率测量时,将正对入射光束的窗口上的标准盖板取走,可以排除直接透射光线,从而只测量漫透射光线。吸光度中心样品架附件;使用积分球测量吸收光谱使用中心样品架,将待测样品放置在积分球的中心位置,可以直接测量样品的吸光度。光伏电池的测量光伏电池是将光能转换为电能的半导体器件,第一阶段是吸收有效光谱范围内的光线。为了增加光电转换效率,需要对硅片表面进行处理,以增加光伏电池的吸光度。测量光伏电池的反射率、透过率和吸光度,可以评价其处理方式的效果。未处理的硅晶片、经过织构化处理的硅晶片、覆盖了抗反涂层的硅晶片以及光伏电池成品处理前和处理后硅晶片的透过率(左)和反射率(右)硅片的吸光度可通过如下公式获得:%吸光度=100%-%反射率-%透过率可见,经过处理的硅片吸光度更高,从而光能利用率更高。光伏电池的有效反射率是包含了AM1.5太阳辐射光谱权重的积分反射率,可以表示为:其中R(λ)是测量得到的百分比反射率,Sλ是太阳辐射光谱(以光子流表示)。有效反射率可以在光伏电池生产过程的任意环节进行测量,所得数值可以用于不同样品的相互比较。光伏电池对不同角度光线的透射率和反射率非常重要,后续文章会介绍相应分析方法,敬请期待。更多详情,请扫描二维码下载完整应用报告。
  • 新品发布悌可光电推出欧美伽光学无人机专用滤光片
    近日欧美伽光学推出针对无人机专用滤光片。随着人工智能、传感技术和控制系统的技术的成熟,近年来无人机行业飞速发展。从传统的娱乐航拍,迅速发展出农业植保,测绘,智能电力检测、外卖快递等,行业也由消费电子扩展至智慧农业、石油与天然气,水利,林业、快递运输多个领域。 举例农业用检测滤光片:在现代农业中,无人机技术的应用越来越广泛,专为农作物测绘而设计的无人机滤光片成为农田管理的得力助手。这款产品配备了专用光学滤光片,飞行高度和相机透镜的精妙搭配保证了获取清晰高效的农田数据,让监测和分析变得如此轻松。滤光片选取最佳波长,根据作物光谱反射率,可以匹配任何品牌的无人机,帮助用户精准监测作物生长状态,健康状况一目了然。现在我们来看看 用于农作物检测的滤光片示例下面的滤光片示例通过使用4个单独的滤光片/相机组合来计算作物的NDRE值,并计算NDRE的比率。这里涉及到的特定波段的比率和差异可以用于许多植物指数的计算。 农作物监测滤光片——红色波段(red)在叶绿素A/B重叠区域的中心,而红色边缘波段(red edge)在反射率曲线的上升边缘的中心。 优化用于农作物监测的光谱性能如何选取最佳波长的滤光片,取决于你所监测的作物的光谱反射率,以及在健康(和患病)植物中存在的叶绿素、类胡萝卜素和花青素的比例。不仅每种健康植物类型都有独特的色素比例,且当植物受到压力时,这些色素的比例也会发生变化。类胡萝卜素和花青素在压力期间都会上调——这就是为什么当作物干燥或受到压力时,叶子会变成黄色、红色或棕色。农作物无人机监测的注意事项1.光源—由于通常使用太阳作为光源,所以光强度可能随云层的变化而变化。云、雾霾和尘埃也会影响太阳光谱的光谱分布,优先散射较低的波长。虽然光谱变化不是造成误差的主要因素,但测量系统需要一个中性(即白色)反射的测试目标进行校准,以获得最佳的测量结果。 2.信号来源植物中常见的色素包括主要的叶绿素A和B,它们赋予植物绿色,但也包括不同数量的类胡萝卜素和花青素。反射光谱在波长被吸收的位置下降。反射率信号-水合作用、叶绿素含量和其他色素含量(花青素和类胡萝卜素)的组合会影响植物反射率的光谱。在压力的作用下类胡萝卜素和花青素表达上升,叶绿素表达下降,将使作物变黄和棕色。同时也会反应在反射率光谱和植物指数上。热成像-可以用来制作在9-14微米波长范围内的作物的温度分布图。水合作用和蒸腾作用良好的植物比那些干燥和热胁迫的植物更冷。阳光不是测量的严格必要条件,但它可以与反射率同时进行,因为可以探测到红外波长。3.无人机的飞行高度和相机上的透镜-决定了图像的视野和分辨率。高度和视场还决定了信号进入成像滤光片的入射角。随着入射角的增加,滤光片的响应区域通常会转移到更低的波长,边缘也变得不那么陡峭。4.光谱滤光片-一般通过对应的带通滤光片:蓝色、绿色、红色、红色边缘和近红外进行标准化差异(示例如下)。另一种选择是使用线性可变带通滤波器,它的带通随滤光片一维方向的变化而变化,可以提供类似“彩虹”的滤光效果。这种滤光片在相机上产生光谱,从而实现高光谱成像。这款无人机农业用检测滤光片的推出,为农业生产带来了全新的技术。随着农业现代化进程的不断推进,无人机技术在农业领域的应用越来越广泛,为农业检测提供了更为便捷、高效的农田管理工具。无人机滤光片的问世,不仅提升了农作物监测和分析的精准度,也使农业生产更加智能化、科技化。可以通过使用这款滤光片,及时了解农田的情况,有效掌握作物的生长情况,为农田的精细化管理提供重要依据。欧美伽光学提供多种无人机适用类型滤光片详细请咨询!
  • 滤光片分光型高光谱相机的发展现状及趋势
    高光谱相机可将成像技术与光谱探测技术相结合,在对目标空间特征成像的同时,可以对每个空间像元形成多个窄波段实现连续的光谱覆盖,不同光谱信息能充分反映地物内部的物理结构、化学成分的差异。与传统的空间二维成像相比,高光谱相机可以同时获取目标的空间和光谱信息,在一定的空间分辨率下,能够获取宽谱段范围内地物独有的连续特征光谱,对地物的精准识别和探测具有显著优势,目前已成为对地遥感重要的前沿技术手段,在农、林、水、土、矿等资源调查与环境监测等领域具有重要的应用价值。随着滤光片镀膜技术的飞速发展,极大地促进了滤光片分光型高光谱相机的研制,目前基于滤光片分光原理的高光谱相机以大幅宽、高空间分辨率、高光谱分辨率和轻小型的优势成为高光谱遥感载荷的重要组成部分,在微纳卫星高光谱星座组网中获得广泛应用。据麦姆斯咨询报道,近期,中国科学院长春光学精密机械与物理研究所刘春雨研究员课题组在《红外与激光工程》期刊上发表了以“滤光片分光型高光谱相机发展现状及趋势”为主题的文章。刘春雨研究员主要从事光学系统设计、光电系统总体设计等方面的研究工作。高光谱成像原理示意图这项研究主要对滤光片分光型的高光谱相机进行了综述,介绍了国内外典型滤光片分光型星载高光谱成像载荷,以及地面在研的滤光片分光型高光谱成像系统,并分析了这些系统的技术方案、性能指标及应用前景,阐述了基于滤光片分光原理的高光谱相机的技术特点和优缺点,最后展望了滤光片分光型高光谱相机的发展趋势。滤光片轮高光谱相机是以滤光片轮为分光元件,通过转动滤光片轮获得不同波段的光谱图像,从而完成复色光到单色光的分光。滤光片轮高光谱相机的关键器件是滤光片轮,可以根据观测波段的不同替换相应谱段范围的滤光片轮,光路结构简单,谱段更换灵活。随着光谱成像技术的发展,探测波段数目越来越多,滤光片轮已无法满足宽谱段高分辨率的观测,因此越来越多地被用于多光谱探测中。可调谐滤光片高光谱相机以可调谐滤光片为分光元件,根据调谐方式的不同主要分为液晶可调谐滤光片(Liquid Crystal Tunable Filter,LCTF)高光谱相机、声光可调谐滤光片(Acousto-Optic Tunable Filter,AOTF)高光谱相机、MEMS可调谐FP腔滤光片(MEMS Tunable Fabry–Perot Cavity Filters)高光谱相机。楔形滤光片型高光谱相机也被称为渐变滤光片型高光谱相机,可以实现在光谱区和空间区的连续取样,它的设计理念是将一个楔形多层薄膜介质作为滤光片,并将其安装在紧靠着二维阵列探测器的位置,使探测器的若干像元与渐变滤光片的某一光谱带相互对应。根据渐变滤光片各波段与探测器像元之间的对应关系,渐变滤光片高光谱相机又可以分为线性渐变型和滤光片阵列型。线性渐变滤光片结构及分光示意图量子点又称为“纳米晶”,是一种无机材料,自身稳定性高,其半径小于大块的激子波尔半径。将不同种类的量子点集成一起,则可以实现不同波段的同时探测,量子点光谱仪(CQD)就是以此为原理研制的。传统概念上的光谱仪配置了高精度的光学和机械元件,体积笨重、造价昂贵、结构复杂,应用领域严重受限,量子点光谱仪的出现突破了上述局限,为微型光谱仪的推广提供了新思路。近红外量子点光谱仪原理图总的来看,滤光片分光型的高光谱相机正处于起步阶段,其光谱分辨率还无法与高精度的光栅色散分光方式相比拟,因此提高系统的光谱分辨率和能量利用率将成为镀膜型高光谱相机总的发展方向,尤其是随着镀膜技术以及量子点等新材料的发展,基于镀膜型的高光谱相机的光谱分辨率和能量利用率已得到了大幅提高,研发成本也有望进一步降低;此外,滤光片与探测器的结合也将进一步提高系统的光谱分辨率,甚至可以与高精度的光栅色散分光相媲美,因此,滤光片和探测器晶元的结合也是镀膜型高光谱相机的一大发展趋势。不难看出,滤光片型高光谱相机的发展将推动高光谱成像领域的颠覆性发展,并由此带动微纳卫星高光谱遥感技术的发展,为未来微纳高光谱卫星星座组网在轨业务运行,更好地服务于国民经济奠定技术基础。该项目获得国家自然科学基金(41504143)、中国科学院科研装备研制项目(YJKYYQ20190044)、安徽省自然科学基金(1908085 ME135)、中国科学院青年创新促进会(2016203)的支持。
  • DR6000紫外可见光分光光度计 尊荣上市
    DR6000紫外可见光分光光度计是哈希公司2012年全新推出的第四代分光光度计产品,由德国设计和生产,具有优异的分析精度,实现了结果可靠与高效测量的完美统一。 优异的分析精度 全新的第四代DR6000分光光度计是在德国设计和生产的,无论是在常规的实验室分析工作中,还是在要求比较苛刻的光度测定应用中,都具有优异的分析精度。 高效测量 DR6000紫外可见光分光光度计实现了结果可靠与高效测量的统一。 直观的菜单导航系统以及7英寸的彩色触摸屏使您通过几个简单的步骤输入和校准您自己的方法。 为了帮助您节省时间,仪器内置了250多种预先编程设置好的方法,包括TOC、重金属和营养盐等参数。 另有可选配应用包,包括对饮用水和啤酒等的分析,为您提供了更多的应用方案。 快速扫描与简单的LIMS(实验室信息管理系统)结合,DR6000可以使实验室的分析效率达到最高值。 优化时间管理 无论是标准分析,还是特定的分析应用,DR6000优化的数据管理及简单的操作将会为您减少繁杂的常规工作,让您可以将宝贵时间分配到最重要的任务上。 关于数据处理,DR6000有三个USB接口,并且具有以太网端口,可以快速的获取数据并进行实时的数据传输。DR6000与LIMS(实验室信息管理系统)是可以兼容的。 此外,使用显示屏上直观的用户导航,可直接显示方法操作流程,使DR6000的操作更加简单。 步骤清晰可追溯 DR6000分析步骤是非常直观易用的。不仅如此,您还可以监测这些过程中的所有步骤&mdash &mdash 即使使用预制试剂测试也是如此,随时都可以访问校准数据、批次号、测量步骤以及原始数据。在大显示屏上,只需按下一个按键,就可以调用所有的数据并进行验证。 由系统保证的高效和准确 只有完美的互动才能确保高效和准确&mdash &mdash 从DR6000的独立部件,到与您及您的实验室设备进行互动。哈希公司作为研发者、生产制造商及销售和服务伙伴,会为您提供一个完美高效的系统。 配合即开即用型、高精度预制试剂,工作步骤将被大大减少,并与标准方法具有可比性 ADDISTA标准溶液 用于内部质量控制的认证滤光片 用于消解的DRB200消解器 用于连续分析的流通池模块 应用软件扩展包,例如供饮用水和啤酒使用的软件包 旋转适配器,例如供酶化学使用 更多具体产品参数请见中国试剂网:www.reagent.com.cn
  • 光伏材料的角度分辨反射/透射分析
    光学镀膜材料在太阳能行业应用广泛:由化学气相沉降法生成的氧化锌涂层,自然形成金字塔形表面质地,在薄膜太阳能电池领域被用于散射太阳光。将不同折射系数的高分子材料排列组成的全息滤光镜,将太阳光在空间上分成不同颜色的色带(棱镜一样),将不同响应波长的光伏电池调到每个波长的焦距处,从而形成一种新型的多结太阳能电池。位于硅太阳能电池前部的纳米圆柱形硅涂层起米氏散射的作用,因此增加了在更宽入射角范围和偏振情况下的光被太阳能电池的吸收。曲面型光电模块的渲染和原理图。3M可见镜膜能够使模块在可见光区表现为镜像,而在近红外光区变为黑色。对于所有的光学涂层——特别是那些非垂直角度接收阳光或者阳光入射的涂层,表征波长、角度和偏振测定的反射和入射就尤为关键。PerkinElmer公司的自动化反射/透射附件ARTA,可以测定任何入射角度、检测角度、S和P偏振光在250-2500nm的范围内的谱图,从而告诉我们:所有的入射光都去哪儿啦?装备了ARTA的LAMBDA紫外/可见/近红外分光光度计样品3M可见光镜膜:吸收紫外光,反射可见光,透过红外光。仪器PerkinElmer公司的LAMBDA 1050+紫外/可见/近红外分光光度计。150mm积分球,Spectralon涂层积分球包含硅和InGaAs检测器,检测样品200-2500nm的范围内的总透射谱和总反射谱。装备了150mm积分球的LAMBDA紫外/可见/近红外分光光度计ARTA,配备PMT和InGaAs检测器的积分球(60mm),能在水平面上围绕样品旋转340°,进行角度分辨测量。3M薄膜固定在ARTA样品支架上的照片实验结果用150mm积分球附件测量的3M薄膜的总反射和总透射谱图。薄膜在750nm附近具有预期的突变,在此处有将近100%的可见光反射率和约90%的红外光透射率。3M薄膜对于s(左图)和p(右图)偏振光的角度分辨反射谱图。对于所有的偏振情况,直至50˚的范围内反射到透射的转变都很急剧,但是有轻微的蓝移。对于入射角在约50˚以上的情况,s偏振光的转换终止,并且薄膜开始失去对光谱的分光功能。这种情况的一个明显后果就是在冬天或者纬度高于30˚的区域的夏季月份,曲面型光电镜片的工作效率都很低。更多详情,请扫描二维码下载完整应用报告。
  • 市场监管总局(国家标准委)发布两项汽车行业强制性国家标准
    近日,国家市场监督管理总局(国家标准化管理委员会)批准发布《机动车玻璃安全技术规范》等16项强制性国家标准,其中包含两项汽车行业强制性国家标准,均由TC114(全国汽车标准化技术委员会)归口上报,339(工业和信息化部)执行,主管部门为工业和信息化部。序号标准编号标准名称代替标准号实施日期1GB 9656-2021机动车玻璃安全技术规范GB 9656-20032023-01-012GB 40164-2021汽车和挂车 制动器用零部件技术要求及试验方法2022-01-01一、《机动车玻璃安全技术规范》国家标准《机动车玻璃安全技术规范》起草单位为中国建材检验认证集团股份有限公司、中国汽车技术研究中心有限公司等。修订后的标准技术内容参考UN R43。无相关产品标准类的ISO标准可采用。部分项目的检验方法修改采用相关ISO标准。修订后标准与GB 9656-2003的变化对比见表1。表1 GB 9656-2021修订版与2003版对比No.项目2003版修订版水平分析1前言/强制条款部分条款强制全文强制——2范围只适用于汽车明确了适用的车的类别。根据实际应用对适用范围的车辆定义更清晰、准确。优于2003版3术语无增加18个术语使标准结构合理、使用方便。优于2003版4分类包括分类及应用部位说明删除应用部位说明,符合GB1.1要求。优于2003版5技术要求及试验方法总则对原片提出要求,将要求分为主要技术要求及一般技术要求删除原片要求及主要技术要求和一般技术要求的分类;将各种安全玻璃材料在不同应用部位需满足的要求以表格形式列出;提出钢化玻璃应用限制条件;增加了贴膜玻璃的要求。便于对各种安全玻璃材料的总体要求有全面的了解,使标准更便于。优于2003版6厚度对夹层玻璃、钢化玻璃、区域钢化玻璃及塑玻复合材料及中空安全玻璃的单片厚度偏差提出了要求。技术要求:1.根据最新浮法玻璃标准,修订单片玻璃的厚度偏差;2.增加刚性塑料;3.对中空玻璃总厚度提出偏差要求;4.修改了对夹层玻璃及塑玻复合材料厚度偏差的描述。5.删除了区域钢化的内容试验方法:增加HUD玻璃的内容针对所有安全玻璃材料分别提出了具体的要求,考虑了最新产品的需求,采用了最新原材料标准。优于2003版 7技术要求及试验方法可见光透射比按车型、视区规定了最低可见光透射比值技术要求:1. 增加对后风窗的要求;2. 修改视区;试验方法:对试验设备“接受器及配套指示仪器的线性”略有修改,删除“或在读数量程的±10%之内,选择小值”。修改后的视区划分更符合目前车辆风窗玻璃设计要求;试验方法规定更科学。优于2003版8副像偏离按车型、视区规定了最高副像偏离值技术要求:1. 修改视区;2.对不做检查区域进行补充规定;试验方法:1. 对于靶式光源仪,增加了单环靶的结果表达;2.对于准直望远镜,调整了装置图中样品方向;将“可先用靶式光源仪以简单快速的扫描方法检查安全玻璃”列为可选择的过程;将结果表达中设计试验程序的表述移到试验过程。修改后的视区划分更符合目前车辆风窗玻璃设计要求;试验方法表述符合GB1.1的要求。优于2003版9光畸变按车型、视区规定了最高光畸变值技术要求:1. 修改视区;2.对不做检查区域进行补充规定;试验方法:对光源进行了修订,改为:150W石英卤素灯(如果不使用滤光片)或250W石英卤素灯(使用绿色滤光片)。修改后的视区划分更符合目前车辆风窗玻璃设计要求;试验方法更具有可操作性。优于2003版10颜色识别对视区带色风窗提出的要求删除此项透射比不低于70%的视区带色前风窗玻璃不影响对交通信号颜色的识别。优于2003版11技术要求及试验方法抗磨性针对风窗及侧窗用夹层玻璃及塑玻复合材料技术要求:1.增加刚性塑料要求;2.增加该项目的适用部位试验方法:增加了对塑料材料的试验方法。使该要求更具合理性。优于2003版12人头模型冲击用于风窗及风窗以外部位的各种材料,钢化玻璃除外技术要求:1.删除前风窗以外夹层玻璃、塑玻复合材料的人头模型冲击要求;2.增加刚性塑料要求。3.对夹层玻璃冲击后状态要求表述更准确4.删除了区域钢化内容试验方法:增加了对刚性塑料的试验方法,包括对带减速装置人头模型冲击试验设备的校准方法。符合GTR6的要求,要求更明确。优于2003版13抗穿透性针对风窗用夹层玻璃及塑玻复合材料同2003版无变化14抗冲击性针对夹层玻璃、塑玻复合材料及钢化玻璃在高、低及常温下的冲击状态技术要求:1. 对夹层玻璃的称重要求进行修改;2.增加刚性塑料、HUD玻璃的要求;3.修改了前风窗以外夹层玻璃冲击后碎片剥落要求。试验方法:1.增加了对刚性塑料进行试验的内容;2.对冲击高度进行修改;3.增加了高、低温冲击试验的试验时机要求。要求更明确,试验方法更具可操作性。优于2003版 15碎片状态针对区域钢化及钢化玻璃技术要求:1. 对长条碎片的要求修订描述;2. 删除钢化玻璃的补做内容。3.删除了区域钢化内容试验方法:按曲率半径200mm对钢化玻璃的冲击点进行了修订。对长条碎片的要求更精准,对钢化玻璃的要求予以了加严。优于2003版 16技术要求及试验方法柔性无此项针对刚性塑料,新增项目。引入新材料。优于2003版17耐高温性针对夹层玻璃、塑玻复合材料技术要求:无变化。试验方法:1.增加了对样品的要求;2.删除了对样品数量的要求;3.增加了对超温控制的要求。检验操作控制更严格。优于2003版 18耐辐照性针对夹层玻璃、塑玻复合材料技术要求:无变化。试验方法:1.增加了对样品的要求;2.删除了对样品数量的要求;3.增加了辐照强度的要求。检验操作控制更严格。优于2003版 19耐湿性针对夹层玻璃、塑玻复合材料技术要求:1.原要求不变;2.增加了对刚性塑料的要求。试验方法:1.增加了对样品的要求;2.删除了对样品数量的要求;3.修改了试验后样品状态评价时机的要求;4.增加刚性塑料内容。检验操作控制更严格,引入新材料。优于2003版 20耐温度变化性针对塑玻复合材料 技术要求:无变化。试验方法:增加样品放置要求。检验操作控制更严格。优于2003版 21技术要求及试验方法耐燃烧性针对塑玻复合材料技术要求:1.增加刚性塑料的要求;2.降低燃烧速度试验方法:无变化。加严要求,引入新材料。优于2003版 22耐化学侵蚀性针对塑玻复合材料技术要求:增加刚性塑料的要求。试验方法:根据刚性塑料增加负重法试验方法引入新材料。优于2003版 23耐模拟气候性无针对刚性塑料,新增项目。引入新材料。优于2003版 24挥发性有机物无针对贴膜玻璃,新增项目关注贴膜玻璃环保性能,优于2003版25检验规则对型式检验及认证检验的抽样规则进行了规定删除根据全文强制要求,删除此部分内容26判定规则写入试验方法条款以规范性附录的形式对每一项技术的判定进行了规定有利于标准整体框架的协调,简单扼要,便于使用,优于2003版27实施日期无根据强标使用特点,规定出过渡期使标准更具实施性28边缘应力有删除该项在2003版中针对钢化玻璃,为一般性技术要求,非强制项目29表面应力有删除该项在2003版中针对弯型夹层玻璃及塑玻复合材料,为一般性技术要求,非强制项目30耐模拟气候性有删除该项在2003版中该项目针对塑玻复合材料,为一般性技术要求,非强制项目31露点有删除该项在2003版中该项目针对安全中空玻璃,为一般性技术要求,非强制项目32加速耐久性能有删除该项在2003版中该项目针对安全中空玻璃,为一般性技术要求,非强制项目33太阳能特性该两项原计划在9656修订时应加入,针对目前汽车玻璃节能特性,是两个非常有现实意义的项目,也是申请9656修订目的之一,属于非强制性项目。但由于此次标准项目更改为安全技术规范,这两个项目也不能写入。34可见光反射比二、《汽车和挂车 制动器用零部件技术要求及试验方法》国家标准《汽车和挂车 制动器用零部件技术要求及试验方法》主要起草单位:中国第一汽车股份有限公司技术中心 、泛亚汽车技术中心有限公司 、浙江亚太机电股份有限公司 、浙江万安科技股份有限公司 、上海汽车制动系统有限公司 、烟台孚瑞克森汽车制动部件有限公司 、河北星月制动元件有限公司 、重庆红宇摩擦制品有限公司 、中国重型汽车集团有限公司 、长春一汽富晟特比克制动有限公司 。本标准主要包含术语和定义、试验相关要求、技术要求和试验方法、包装和标志、产品一致性等。本标准与UN R90的主要结构变化对比见表2。表2 本标准与UN R90主要技术要素对比本标准UN R90章节编号章节标题章节编号章节标题1范围1范围2规范性引用文件——3术语和定义2定义——3认证申请——4认证4试验相关要求——5技术要求5技术要求及试验6包装和标志6包装和标志——7换装零件的变更和扩展7产品一致性8产品一致性——9产品不一致性的惩罚——10产品完全停产——11有权进行认证试验的技术服务部门和型式认证权威机构的名称和地址——12过渡期规定根据我国标准化相关文件规定,本标准除采用我国对应的规范性引用文件替代UN R90的规范性引用文件外,还增加了5项规范性引用标准,本标准涉及的规范性引用标准与6GB 5763 汽车用制动器衬片--7GB/T 7216-2009 灰铸铁金相检验(ISO 945-1:2008,MOD)
  • 一种分子装置可将红外线变成可见光
    一个国际研究团队开发出一种检测红外光的新方法,通过将红外光的频率变为可见光的频率,可将常见的高灵敏度可见光探测器的“视野”扩展到远红外线。这一突破性研究发表在最近的《科学》杂志上。  人类眼睛可看到400—750太赫兹之间的频率,这些频率定义了可见光谱。手机摄像头中的光传感器可检测低至300太赫兹的频率,而通过光纤连接互联网的检测器可检测到大约200太赫兹的频率。  在较低频率下,光传输的能量不足以触发人类眼睛和许多其他传感器中的光感受器,而100太赫兹以下的频率(中红外和远红外光谱)有着丰富的可用信息。例如,表面温度为20℃的物体会发出高达10太赫兹的红外光,这可以通过热成像“看到”。此外,化学和生物物质在中红外区域具有不同的吸收带,这意味着可通过红外光谱远程无损地识别它们。  但变频并不是一件容易的事。由于能量守恒定律,光的频率无法通过反射或透射等方法轻易改变。  在新研究中,来自瑞士洛桑联邦理工学院(EPFL)、中国武汉理工大学、西班牙瓦伦西亚理工大学和荷兰原子和分子物理学研究所的科学家们通过使用介质(微小振动分子)向红外光添加能量来解决这个问题。红外光被引导到分子,在那里被转换成振动能量。同时,更高频率的激光束撞击相同的分子以提供额外的能量,并将振动转化为可见光。为了促进转换过程,分子夹在金属纳米结构之间,通过将红外光和激光能量集中在分子上,充当光学天线。  领导这项研究的EPFL基础科学学院克里斯多夫加兰德教授说:“新设备具有许多吸引人的功能。首先,转换过程是连贯的,这意味着原始红外光中存在的所有信息都忠实地映射到新产生的可见光上。它允许使用标准探测器(如手机摄像头中的探测器)进行高分辨率红外光谱分析。其次,每个设备的长度和宽度约为几微米,这意味着它可以合并到大型像素阵列中。最后,该方法具有高度通用性,只需选择具有不同振动模式的分子,即可适应不同的频率。”
  • 滴定分析“新技术”:光谱滴定概述及进展
    摘要:光谱滴定方法作为滴定领域的新技术,是替代颜色滴定(感官滴定、人工滴定)的新一代革新技术。在可见光范围内,采用全波长同步监控+色空间算法+曲线算法技术,建立了试剂量与单一计量参数的在线二维滴定曲线坐标,从而使颜色滴定方法提升为自动化仪器分析方法。与电位方法、温度方法相比,应用面广、不干扰被测定反应、测量无延迟、无接触性传感器、不受温度影响、反应灵敏、沿用颜色测量方法原理等诸多优点,未来将在滴定分析技术中占主导地位。表1.四种滴定技术比对表滴定技术发明人时间距今优缺点滴定分析方法(感官滴定方法)法国化学家,Joseph Louis Gay-Lussac19世纪上半叶约150年现况:建立了深厚的理论、标准体系。优点:简单,至今仍是滴定分析的主流方法。缺点:主观方法,误差大,无法量值溯源。前景:逐步被淘汰。电位滴定德国化学家,Rorber Behrend1893127年现况:历史久,研究充分。优点:测量精确,图形化操作,可量值溯源。缺点:属间接测量,操作条件多、需要根据测量对象适配器材、要求高、受温度影响大、干扰化学反应、信号延迟。前景:应用受限,市场有限。温度滴定P.迪图瓦和E.格罗贝特192298年现况:目前通常作为电位滴定仪的附件。优点:反应灵敏,不干扰反应过程,可量值溯源。缺点:属间接测量,应用于简单反应体系。前景:应用面狭小,市场很有限。光谱滴定中国20183年现况:新技术,理论不完善,仪器未商品化。优点:属直接测量技术,高准确度、高可靠性、不受温度影响、不干扰化学反应、终点明显,可量值溯源,操作简单,应用面广。缺点:不能分析混浊、固体和半固体及终点无色变的化学反应溶液,应用尚不普及。前景:逐步替代感官滴定方法,成为滴定分析的主导技术,市场广阔。滴定分析法作为化学分析经典方法,是各领域的通用分析方法,目前有几千种颜色分析方法应用在药品、食品、农产品、土壤、化工、石油、冶金、机械、试剂、环保、生物、医疗、… 等各种行业,只要有化学物质分析的工作,就离不开滴定分析技术。高精度的滴定终点判别和自动化判别技术,直接决定了光谱滴定技术的高准确度和可靠性。光谱滴定的用途:1、替代原有的光度滴定分析方法;2、替代广泛应用的感官滴定方法;3、建立系列新的光谱滴定检测方法和标准;4、偶氮、稀土、苯基荧光酮等显色剂的研究;5、分子开关或分子机器的光化学性能研究;6、光辐射化学研究;7、应用于化学分子形态;8、生物酶活性研究;光谱滴定方法为近几年新研发的技术,尚未推广,科普宣传、仪器制造、方法原理、应用案例等方面属于初创状态,仅有原理样机和《化学光谱滴定技术》著作面世。研究人员和投资者不会立即看到技术体系的应用和效益,但目前的工作是实现后期专利技术独占的前期工作,是实现大规模替代感官滴定的理论、方法、标准、仪器提供关键的前瞻性基础。其经济价值方面,与电位滴定仪的中国十亿市值市场、世界70亿市值(瑞士万通,2015)相比,该技术属滴定行业内国内外首创,目前没有任何型号的商品机问世,故无法对其市场前景做出明确评价。参考滴定分析仪器的市场,光谱滴定技术的应用领域远远大于电位分析技术。一旦仪器商品化,研发机构将在该投入上取得知识产权保护和大于电位滴定仪的长期的效益。目前亟待解决与存在的问题建议:采取联合申请课题,取得科技部、基金、协会、企业的政策和资金支持,共同进行理论体系、测量原理、商品机型仪器生产、应用技术研究与方法推广、国际专利申报等方面的研究,尽快保持我国现有的国际领先地位。本资料简单介绍光谱滴定原理、算法、技术应用和案例分析,供制造商、技术研究者、合作者参考。滴定分析法发展历程滴定分析法(titrametric analysis)的研究历史可追溯到18世纪晚期。19世纪上半叶,法国化学家Joseph Louis Gay-Lussac命名了滴定分析方法,因此被认为是滴定分析法的发明者。如今,滴定法成为最重要的化学分析技术之一,应用普遍而频繁。其方法采用人工操作、眼睛观看颜色、大脑对颜色变化做出判断、语言形容滴定过程的额颜色变化,属于主观判断的感官分析方法,简单、应用广、速度快、成本低,也存在受色评价环境影响大、语言描述模糊、眼睛感受的个体差异大、手工控制滴定准确度差等缺点,这种建立在主观观察基础上的方法已经不适应现代检测技术的需求。只是由于历史过于悠久,其建立海量检测方法、技术标准以及应用领域的习惯,致使其还在广泛应用。化学反应过程的颜色变化,是化学结构变化的可见光表现,颜色变化代表反应过程的进程,是结构对光谱吸收的性质,所以测量的颜色变化可以准确表征反应中物质结构的变化,这也是与感官滴定方法一脉相承。现代研究证明,颜色的最精确的测量方式是分光式测量方法,颜色可以用CIE 1976(L*a*b*)彩色均匀空间的三维坐标位置标识,每个颜色都有其唯一指标位置,颜色的变化可以在CIE 1976(L*a*b*)彩色均匀空间的三维坐标中描述出变化轨迹,从而将主观的颜色变化描述转变为客观测量数据,进而实现化学分析过程的光谱滴定测量技术。光谱滴定方法的基础是色测量的分光式测量方法,所以,从原理上它就具有高准确度、高可靠性、可量值溯源的优点。计入相关变量因子算法的滴定曲线的凸变峰型非常明显清晰。具有准确、可靠、明显、自动等诸多优点。缺点与光分析方法相似,计算方法复杂、数据量庞大,严重依赖于数据处理系统,这在计算技术高速发展的今天已经不是问题了。而其替代逐步替代感官滴定方法的发展趋势,将成为滴定分析的主导技术,技术应用和仪器市场及其广阔。一、滴定原理与分类目前的滴定分析(titrametric analysis),按测量原理主要分为可见光颜色滴定、电位滴定、温度滴定等三种滴定方法,光谱滴定属于可见光颜色滴定的仪器分析方法,可以替代可见光颜色滴定的大部分方法。1、可见光颜色滴定法颜色测量包括光源颜色的测量与物体色的测量两大类,滴定分析领域关注反应液的颜色变化,属于非荧光物体测量。化学滴定分析反应中的可见光颜色测量属于非荧光物体测色,为感官颜色滴定法和传统仪器颜色滴定法两大类。其中,仪器颜色滴定法包括光密度法、紫外光度滴定、可见光光-电积分法和分光光度滴定(光电滴定)。仪器颜色滴定法测量反应液体颜色是测定液体在测量时的光谱光度特性反应液体光谱反射比P(λ)或者反应液体的光谱透射比τ(λ)等,计算出色刺激函数φ(λ)之后,根据色度学的三个基本方程求出被测颜色的CIE三刺激值X、Y、Z(标准照明体Y= 100)。 1.1 感官颜色滴定法其实质是一种目视光度测定法,原理是利用加色混合定律,将各个分量的未知色加在一起,以描述所得的未知色。是依靠反应过程中的颜色的变化,用人眼作为感受器、大脑判断颜色变化程度,在被测量溶液中加入指示剂或者依靠反应过程中的颜色感官颜色滴定法直观、简便、快速等优点,是滴定实验中最常用的方法之一,是一种完全主观评价方法,同时也是最简单的一种方法。眼睛是一种光学系统,能够在视网膜上产生图像。它由包括角膜、水状体、虹膜状体以及玻璃体等实体组成,使眼睛能够针对以105系数变化的照明水平简单而快速地做出反应。眼睛能够感知的最小照度为10-12Lx(相当于夜空中黯淡的星光)。为了能够感知到光,人眼中包含了锥状细胞和杆状细胞两种感光器:锥状细胞感受到各种颜色(“明视觉”),对波长555 nm的黄绿光谱区域,其灵敏度最高;杆状细胞使我们看到的是黑白的画面(“夜间视觉”),在波长507 nm的绿光谱区域,其灵敏度最高。人眼对光谱灵敏度曲线见图1。图1.人眼对光谱灵敏度曲线其弊端在于观察变色阈值是借助人眼,经验和心理、生理因素的个体差异引起较大的判断误差,无法溯源,受环境条件影响大,可变因素太多,且无法进行定量描述,从而影响到评估的准确性和可靠性。虽然感官颜色滴定法是应用面最广的分析方法,但其主观测量结果的缺陷致使其处于被逐步淘汰的趋势。1.2、可见光-光密度检测分析法 光密度测量是测量反射光量和入射光量的大小,光密度计提供的光之间的差别是光的吸收量,也即被测液体表面层的吸收光量大小,吸收特性的度量,只表示黑或灰的程度。该方法只要应用在印刷行业,“彩色密度”是指测量时,通过红、绿、蓝三种滤色片分别来测量黄、品、青油墨的密度。它直观地反映了C、M、Y、K四色印刷的密度、网点百分比、油墨叠印率等,被广泛用于印刷行业的颜色和墨层厚度控制当中。 1.3、可见光光-电积分法 光电积分法是20世纪60年代仪器测色中采用的常见方法。是测量整个测量波长区间内,通过积分测量测得样品的三刺激值X、Y、Z,再由此计算出样品的色品坐标等参数。通常用滤光片把探测器的相对光谱灵敏度S(λ)修正成CIE的光谱三刺激值x(λ)、y(λ)、z(λ)。用这样的三个光探测器接收光刺激时,就能用一次积分测量出样品的三刺激值X、Y、Z。滤光片必须需满足卢瑟条件,以精确匹配光探测器。卢瑟条件如下:此类型仪器的测色准确度是与仪器符合卢瑟条件的程度有直接关系的,要做到完全符合上述条件是很困难的。在实际的滤色修正中,由于色玻璃的品种有限,仪器不可能完全符合卢瑟条件,只能近似符合应用部分滤光片法可使x(λ)和z(λ)曲线的匹配积分误差小于2%,y(λ)曲线的匹配积分误差小于0.5%。光电积分式仪器不能精确测量出被透射液体的三刺激值和色品坐标,但能准确测出被透射液体的色差,因而又被称为色差仪。所以,色差仪原理也可以进行颜色滴定分析,受其依据的原理限制,误差大、应用范围有限。 1.4、可见光-分光光度法 分光光度滴定(spectrophotometric titration),又称光电滴定(photoelectric titration)。通过测量滴定过程中吸光度又称分光光度滴定法。它是通过样品液体的透射光能量与同样条件下标准样品透射的光能量进行比较,得到样品液体在每个波长下的光谱吸收率,然后利用CIE提供的标准观察者和标准光源公式计算,从而得到三刺激值X、Y、Z,再由X、Y、Z按CIEYxy,CIELab等公式计算色品坐标x.y,CIELAB色度参数等。该方法以待测组分、滴定剂、反应产物在滴定过程中吸光度的变化确定滴定终点的分析方法。它能在底色较深的溶液和无色溶液中滴定,检测微弱吸光度变化、可准确确定滴定终点。该方法通过测量探测样品的光谱成分确定其颜色参数,不仅可以给出X、Y、Z的绝对值和色差值△E,还可以给出物体的分光透射率值和分光透射率曲线。采用此类仪器可实现高准确度的色测量,可对光电积分测色进行定标,建立色度标准等,故分光式仪器是颜色测量中的权威仪器。1.4.1光度滴定法光度滴定(photometric titration) 是在滴定过程中,用光度计记录特定波长的吸光度的变化(非颜色变化)。要求滴定过程中,溶液吸光度Abs的变化遵循朗伯-比尔定律。滴定时,每加入一定量的滴定剂,都同步在相同波长下记录其吸光度。然后以吸光度A为纵坐标,标准溶液的体积V为横坐标,绘出光度滴定曲线,从两条切线的交点可求得滴定终点。光度滴定方法要求被滴定溶液的吸光度的变化必须遵循朗伯-比尔定律。光度滴定法对于某些纯净液体和波长吸收特征性强的反应,非常方便,适用于滴定有色溶液、略微混浊的溶液、微量物质,有较高的灵敏度和准确度。由于采用单波长检测,不能适合反应前后由于结构改变导致的特征吸收波长偏移,而且当化学反应出现多次多个吸收波长时,无法获得多滴定终点的光度信号,可靠性和适用性差。1.4.2紫外光度滴定(ultraviolet photometric titration)利用溶液紫外光吸收的变化观察终点的一种光度滴定。例如,被测物是无色的,伴随滴定的进行,其紫外光吸收在改变。1.4.3浊度滴定(turbidimetric titration )又称比浊滴定法。利用沉淀的生成或消失,溶液浊度发生变化进行的滴定。用通常的光度滴定装置可进行滴定,由于沉淀粒子吸收光、沉淀的反应滴定。1.4.4可见光光谱滴定技术新一代可见光光谱滴定法技术(Visible Spectral Titration Technology, VSTT)是在可见光-分光光度法的基础上发展的。它是测量反应液体的多个设定波长的光谱透射比τ(λ),计算出光谱滴定曲线。在曲线上的凸变峰对应的体积值均为颜色突变点。该颜色突变点视为物质结构改变点,对应的加入试剂体积数为滴定终点的体积数。该方法的基础是色测量的分光式测量方法,所以,从原理上它就具有高准确度、高可靠性的优点。而采用现代数据处理技术剔除高速测量产生的噪音干扰,分离出的信号计入相关变量因子的算法,使滴定曲线的凸变峰型号非常明显清晰。具有准确、可靠、明显、自动等诸多优点。缺点与光分析方法相似,不能分析混浊、固体和半固体、终点无色变的化学反应溶液及其过程,而且计算方法复杂、数据量庞大,严重依赖于数据处理系统,这个缺点仅相对于其他方法相比,对于现代计算技术的发展根本不是问题。光谱滴定方法是2015年搭建成原理验证机、2018年提出光谱滴定的概念。依据该方法原理研发的设备和方法应用业内尚未普及,出版的文献著作仅有《化学光谱滴定技术》(王飞,著)。依据其原理和应用,光谱滴定方法可以替代感官颜色滴定法、可见光光-电积分法、单波长可见光分光光度法,与电位滴定方法、温度滴定方法一起成为滴定分析领域的3种仪器分析方法,相互补充。2、电化学分析法电化学分析法(electrochemical analysis)是以,测量原电池的电动势为基础,根据电动势与溶液中某种离子的活度(或浓度)之间的定量关系(Nernst 方程式)来测定待测物质活度或浓度的一种电化学分析法。是滴定领域中出现最早、应用最广的仪器测量技术。它是以待测试液作为化学电池的电解质溶液,比较其中一只电极电位随试液中待测离子的活度或浓度的变化而变化,与另外另一支是在一定温度下电极电位基本稳定不变之间的电动势来确定待测物质的念量。 1893 年德国学者 Rorbert Behrend 首次使用在滴定实验中应用电位分析方法做为判定终点方法。20 世纪中期自动电位滴定法在化学分析中开始流行,万通公司于 1949 年推出第一台用于酸度滴定的自动电位滴定仪 Titriskop。1957 年首创第一支活塞滴定管取代玻璃滴定管,1961 年诞生能够自动记录滴定曲线的自动电位滴定仪 Potentiograph。1971 年出现联用计算机的高性能电位滴定装置,1978 年,微处理技术与动态滴定技术结合,缩短分析时间的同时增强滴定精度。本世纪自动电位滴定仪的生产商较为著名的还有美国布鲁克海文公司、瑞士梅特勒-托利公司、英国马尔文公司、上海仪电科学仪器、上海雷磁科技公司、江苏新高科等。电位滴定法能有效减少人眼判断产生的主观误差,不需样品指示剂,无关溶液颜色和混浊度。是当前世界上最常用的自动化滴定方法。但其缺点在于电极使用不便、无法高温测定和滴定终点与颜色标准不一致。同时无法测定无离子参与、低浓度溶液、滴定产物稳定性小的单组分、滴定产物稳定性接近的多组分溶液浓度,严重影响的其使用范围。电分析法包括:电解法(electrolytic analysis method):电重量法(electtogravimetry):库伦法法(coulometric)库仑滴定分析法(coulometric tiyration):测定电解过程中所消耗的电量,按法拉第定律求出待测物质含量的分析方法称作库仑分析法。库仑分析法还可分为控制电位库仑分析法和恒电流库仑滴定法。电导法(conductometry) :电导分析法(conductometric analysis) :电导滴定法(conductometric titration):电位法(potentiometry) :直接电位法(dirext potentiometry):通过测量电池电动势来确定指示电极的电位,然后根据Nernst方程由所测得的电极电位值计算出被测物质的含量。电位滴定法(potentiometric titration):在滴定过程中通过测量电位变化以确定滴定终点的方法。和直接电位法相比,电位滴定法不需要准确的测量电极电位值,因此,温度、液体接界电位的影响并不重要,其准确度优于直接电位法。与感官颜色滴定法相比,对于待测溶液有颜色或浑浊时,终点的指示就比较困难,或者根本找不到合适的指示剂。电位滴定法是靠电极电位的突跃来指示滴定终点。在滴定到达终点前后,滴液中的待测离子浓度往往连续变化n个数量级,在等当点附近发生电位的突跃。被测成分的含量仍然通过消耗滴定剂的量来计算。因此测量工作电池电动势的变化,可确定滴定终点。电位滴定法无主观误差,是当前世界上最常用的自动化滴定方法。缺点在于必须针对不同化学反应类型选用特定电极、电极表面胶体与溶液交换接触交换电荷的接触式测量致使对含量低的样品测定产生较大影响、受温度影响大且不能高温测量、信号延迟、滴定终点与颜色滴定终点难以一致。伏安分析法(voltammetry):利用电解法过程中测得的电流-电压关系曲线(伏安曲线)进行分析的方法称作伏安分析法。极谱分析法(polarography):是用滴汞电极的伏安分析法称作极谱分析法。溶出法(stripping method):电流滴定法(amperometric titration):3、温度滴定法温度滴定法是非接触式传感探测技术。是一种量热分析技术,即用一种反应物滴定另一种反应物,随着加入滴定剂的数量的变化,测量反应体系温度的变化。滴定一般在尽可能接近绝热的条件下进行,被滴定物可以是液体或悬浮的固体;滴定剂可以是液体或气体。温度变化是由滴定剂与被滴定物间的化学作用或物理作用(例如一种有机分子吸附于固体表面)引起的。1922年P.迪图瓦和E.格罗贝特建立热滴定法,用于容量分析。1924年P.M.迪安和O.O.瓦茨最早使用测温滴定这一术语;以后又有人采用热滴定、焓滴定、测温焓滴定、量热滴定和测温滴定等术语,至今仍未统一。70年代以来,由于与滴定量热计相关的一些技术(如恒温浴、恒速滴定装置、反应容器、温度传感电路以及数据分析手段等)获得迅速发展,连续滴定法结果的精度已可与常用溶液量热计比美,而且能够滴定少于毫克级的试样。因此热滴定不仅可用于分析目的,而且已成为一种精密量热技术。滴定量热法特别适用于下述目的:在有连串反应或并行反应存在的情况下,测定焓变ΔH;用于包含微弱相互作用物种的反应,求吉布斯函数改变ΔG;鉴别络合反应中存在的物种等。还用于测定混合热、物质在两相中的分配系数和吸附容量等,并可用于生物化学、微生物学和环境化学等方面。实验数据以热谱图形式表示,它提供了有关反应中物质的量(滴定终点)和反应物质的特性(焓变)的数据。对图进行分析,可以得知反应容器中发生的反应的类型和数目,以及溶液中存在的各物种的浓度等信息。这部分内容称为热滴定,同时还可以确定反应的化学计量关系,计算反应的热力学量,如平衡常数K(ΔG°)、标准状态下的焓变ΔH°和熵变ΔS°,这部分内容称为滴定量热法。测温滴定法以热效应为基础,与溶液的许多性质(如粘度、光学透明度、介电常数、溶剂强度、以及离子强度等)无关,因此可以用于气相、液相、非水溶液、有色溶液、胶体溶液和粘稠浆状等体系。温度滴定法的特殊优点是不干扰滴定反应,如离子强度或溶剂等,则在很大程度上与它们无关。同时可以操作有色溶液,胶体溶液或浆液。同电化学方法中的电极比较,作为测量器件的温度传感器是惰性的,并且它不伪示试样成分参与反应的结果。3.2.1 CIE 1976(L*a*b*)均匀彩色空间的参数值计算CIE 1976(L*a*b*)色度值,由光谱滴定仪的数据处理软件读取的吸光度值后,按公式计算出样品在CIE 1964标准色度系统的三刺激值X、Y、Z,再按照公式计算CIE 1976(L*a*b*)色空间的心理明度235.601435.6334336.417336.4105436.267736.3003735.990236.02268
  • 抗疫情!北京加班生产8000片PCR检测用滤光片驰援武汉
    p style=" text-indent: 2em " span style=" text-indent: 2em " 滤光片是新型冠状病毒检测设备中的关键部件。从前天开始,北京专门生产滤光片的企业接到的订单累计增加到8000余片,几乎全部运往武汉。为了保障供应,明天(2月3日),该企业的镀膜车间将提前复工,实现24小时不间断生产。 /span br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 289px " src=" https://img1.17img.cn/17img/images/202002/uepic/00159dd4-06b1-4289-b9f7-768735ae0f40.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 289" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 光冷抛光车间,工作人员在进行抛光作业,只有平整度达到要求的滤光片才能进入到下一个生产环节。 span style=" color: rgb(127, 127, 127) " (文中图片由新京报记者 李木易 摄) /span /p p style=" text-indent: 2em " span style=" text-indent: 2em " 大年初四,京仪博电公司接到一个特殊的订单:一家苏州企业要定向向武汉地区捐献检测新型冠状病毒使用的荧光PCR检测仪,急需1000片新型冠状病毒检测滤光片。为了确保滤光片能够及时安装进检测设备,该公司决定提前复工,留守在北京的技术人员全员到岗加班生产滤光片。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 307px " src=" https://img1.17img.cn/17img/images/202002/uepic/d14a0db4-d584-4a7e-9d53-4ce86cd1563b.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 450" height=" 307" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 工作人员在进行胶合作业,滤光片从制作基础片到成型、胶合、检测、测试,大约需要10个小时。 /p p style=" text-indent: 2em " 今天上午,在该公司的生产车间里,记者看到这种对于检测新型冠状病毒起着至关重要作用的滤光片,它呈圆形,厚度为20毫米和25毫米两种,直径为5毫米。技术人员在各个岗位分别对其加工。在光冷抛光室,两位技术人员站在仪器旁一边用小刷子在滤光片上刷上抛光液,一边随时关注着滤光片的打磨效果,只有平整度达到要求的滤光片才能进入到下一个生产环节。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 292px " src=" https://img1.17img.cn/17img/images/202002/uepic/e059b362-d556-4a33-abe1-b18b2469b3b9.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 450" height=" 292" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 留守在北京的技术人员全员到岗加班生产滤光片。企业接到的订单累计增加到8000余片,几乎全部运往武汉。 /p p style=" text-indent: 2em " 成型后的滤光片将进入到胶合的环节。在这个环节,技术人员要用酒精对滤光片进行擦拭,确保没有任何灰尘和异物,然后进行胶合。技术人员告诉记者,一片滤光片从制作基础片到成型、胶合、检测、测试,大约需要10个小时。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202002/uepic/a06a9cc8-4f4e-46c1-a6f8-254f7fa20c4f.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 出厂前,工作人员利用分光光度计检测滤光片的质量。 /p p style=" text-indent: 2em " 不过10个小时的工期显然远远不足以满足当下疫情防控的需求。因此技术员们决定使用前期存储的基础片进行加工。这样一来,原本生产1000片需要1个月,现在仅需要7天便可完成。 /p p style=" text-indent: 2em " 随着疫情的蔓延,来自全国的滤光片订单骤然增加。京仪博电公司经理李建华告诉记者,截至2月1日,用于新型冠状病毒检测的滤光片的订单累计超过8000片,这些滤光片几乎全部将运往武汉。他坦言:“目前公司的基础片已经全部消耗殆尽,因此必须扩大复工,镀膜车间将从明天起24小时不间断生产,以确保滤光片能按时交付。”记者了解到,镀膜车间为自动化生产车间,对人工需求不大,因此可以实现不间断生产。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 303px " src=" https://img1.17img.cn/17img/images/202002/uepic/8f8d8153-9081-4a6b-bc6b-d6a1fef05989.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 450" height=" 303" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 工作人员在快递箱上贴上“疫区急需货物,请加急处理”的标签。 /p p style=" text-indent: 2em " 为了让这些重要的滤光片能够及时送抵检测仪器生产企业,技术人员特意在快递箱上贴上“疫区急需货物,请加急处理”的标签。记者注意到,这些标签大大小小,几乎把快递箱贴满了。技术人员告诉记者:“特殊时期,快递物流公司特意交代我们把这提示条贴上。快递员看到提示条,就会优先将这些保障物资送往目的地。” /p p br/ /p
  • 紫外可见光谱仪在吸光度测量中的应用 | 鉴知技术
    1.吸光度测量原理当入射光频率与物质分子的震动频率一致,或者入射光引起物质分子电子能级跃迁,都会产生光学吸收现象。溶液的浓度越高,穿过溶液的分子也会相应地被吸收越多。当一定强度的光线通过物体的时候,被吸收部分越少,透过部分越多反之也然。1852年比耳确定了吸光度与液浓度及液层厚度之间的关系,建立了光吸收的基本定律,称为朗伯-比耳定律。朗伯比尔定律是吸光度测量的基本定律,是描述物质对某一波长光吸收的强弱与吸收物质的浓度及其液层厚度间的关系。当一束平行单色光通过液层厚度为b、吸光物质的浓度为c的单一均匀的,非散射的有色溶液时,溶液的吸光度与溶液浓度和液层厚度成正比。A=kcb=lg(I0/I)A: 为吸光度k:为摩尔吸收系数(常用单位 L/(mol*mm))c:为浓度(常用单位 mol/L)b:为光程(常用单位 mm)I0:入射光强度I:透射光强度图1 吸光度原理图2.应用系统介绍(1)发光源:能够输出稳定功率以及且连续光谱的辐射源,紫外波段实验室常使用脉冲氙灯或氘灯,可见波段实验室常使用卤钨灯。(2)样品池:用于放置待检测样品,常用直接盛放样品的器件为石英比色皿,厚度一般为10mm,适用于紫外到可见光波段范围。(3)检测设备:又称分光光度计,将光学分光器件和能实现光电转化的探测器集成。本此测量应用使用的系鉴知技术的SR50C光纤光谱仪,光谱仪内置脉冲氙灯同步触发功能,除了可搭配如下图一样的比色皿样品固定架进行测试,同时也可根据实际需求搭配侵入式光纤探头或流通池进行取样。 (4)显示器:连接光谱仪和笔记本电脑,显示测量过程中的数据,本此测量应用使用的系鉴知技术自主研发的上位机软件。图2 脉冲氙灯吸光度检测系统图3.实验示例鉴知技术拥有自主研发的整套光谱吸光度测量系统和相关的配件,本次实验采用KNO3溶液,光谱仪采用北京鉴知技术有限公司的微型光纤光谱仪SR50C,在室温环境下进行测试,实验结果如下表所示:光谱仪型号:SR50C(200-400 nm)波长范围nm分辨率 nm可根据客户需要定制:波长范围,分辨力大小,光谱仪尺寸大小200-4000.5比色皿光程KNO3 浓度mg/L220nm 吸光度275nm 吸光度相关系数R210mm0.20.0432780.0446110.99780.30.0672250.0658580.40.0873060.087540.50.1150570.1081420.80.1664770.1617651.00.2072560.20099表1 KNO3溶液在220nm,275nm处的吸光度根据表中数据,绘制硝酸钾溶液吸光度随浓度变化的线性关系曲线,如下图所示。图3 KNO3溶液浓度与吸光度线性关系结论:由图得知硝酸钾溶液的吸光度与其浓度具有较大的线性相关关系,线性拟合系数R2=0.9978,标准曲线的方程式是:A = 0.1985.74C + 0.0048可根据拟合的标准曲线,将未知浓度样品的吸光度代入标准曲线的方程式中,得出未知样品的浓度。因此,鉴知紫外可见光谱仪能够在吸光度测量中有较好的测量结果满足客户的需求。4.SR50C光纤光谱仪优势体积小,重量轻,分辨率高;灵敏度高,适用于微量元素分析;测量准确性和一致性高;价格优惠。5.典型行业应用参考行业或典型应用光源光谱仪附件高校或实验室代替分光光度计氘卤组合SR50C,SR75C, ST90S10mm 紫外石英比色皿样品池抗紫外光纤在线水质仪器分析脉冲氙灯/氘卤组合SR50C,SR75C10mm 紫外石英比色皿样品池抗紫外光纤衰减器烟气在线仪器分析脉冲氙灯ST90S光纤、气室超微量分光光度计脉冲氙灯SR50C,SR75C,ST90S-便携式多参数水质分析仪脉冲氙灯SR50C,SR75C-北京鉴知技术有限公司,简称“鉴知技术”, 是一家以光谱检测技术为核心的专业公司,产品已广泛应用于缉私缉毒、液体安检、食品安全、药品检测等诸多领域,公司致力于为客户提供更先进的产品和更快捷的物质识别方案。
  • 荷兰科学家发明可见光折射率为零的装置
    在细心加工的波导里(图左),光波产生了一个带状图案(中间),但是,由于波导的宽度不同,某一特定波长的光波能无限快地传播,从而照亮整个波导。   一个由物理学家和工程师组成的研究小组日前宣称,在一个纳米尺度的装置内,可见光的速度能达到无限快。当然,该小发明并不会带来瞬时通信,爱因斯坦相对论中提出的著名速度限制也仍然有效,但是,这个小东西将有各种各样的用途,包括在一种光学电路中充当一个要素。   在真空中,光大约以3亿米/秒的速度传播。而在诸如玻璃等物质中,其传播速度会变慢。但是,科学家们能使用奇怪的方法操纵光和物质的交互作用,来调整光的折射率,例如使其变成负数,这样能带来光的弯曲。   《科学》杂志在线报道称,现在,荷兰原子和分子物理学研究所物理学家Albert Polman、美国宾夕法尼亚大学电气工程师Nader Engheta及其同事们实现了一个非常奇特的“壮举”。   他们发明了一个微小装置,在这里,可见光的折射率为零,因此,光波以一个特别的波长快速传播,速度甚至达到无限快。   这个装置包含一个85纳米厚、2000纳米长,被银环绕的绝缘二氧化硅矩形杆,光通常无法穿透这个矩形杆。结果是形成了一个被称为波导的光传送空间。   研究人员还做成了二氧化硅宽度从120纳米到400纳米的不同装置,并将研究成果发表在了《物理评论快报》上。   这里,光的表现不同,因为电磁场必须服从确定的“边界条件”。一般而言,对向传播光波的高峰和低谷重叠,就产生了明亮和黑暗的条带。一旦截止波长正确,就会发生有趣的事情。那时整个波导被照亮,而不是产生条带状的图案。因此,光沿着波导的长度同步振荡。   之前,Engheta领导的研究小组也曾制造出较长波长辐射的零折射率。不过,在可见光上重复这项工作更加困难,因为设备太小而无法容纳光源。   因此,研究人员通过击中一个电子束在波导里产生所有波长的光,并且测量了泄漏的光量。研究人员发现,以特殊波长照射出去的光量取决于电子束是否进入某一点,这里对于这个波长来说可能有一个光亮或黑暗的点。因此通过沿着波导扫描电子束,并检测输出量,研究人员追踪了每个波长的光图像。   为何这一现象没有违反相对论?因为光有两种速度,Engheta解释道。“相速度”是指一个给定波长传播速度多快,而“群速度”指的是光运送能量或信息的速度有多快。而只有群速度必然比光在真空中传播的速度慢。   这个设备将有多种用途,Engheta说,它能够帮助制作出期望中的纳米级光学电路导管。   一批这样的波导甚至能够制出一种有零折射率的疏松材料。但是,制造这种排列可能十分具有挑战性,美国佐治亚理工学院电气工程师Wenshan Cai说:“理论上很简单,但操作上很困难。”
  • 评估智能手机镜头中光学元件的透过率
    评估智能手机镜头中光学元件的光学性能-透过率1.前言刚刚发布的华为P30手机因后置拍照评分高登上DXO榜首,随后三星发微博表示不服,并称其S10+手机拍照总分高。可见,手机/数码相机以及摄像机中光学元件的微型化和先进性已取得重大进展。但是要获得还原度高的图像,就需要精确评估镜头中微透镜和滤光片的光学特性。日立UH4150不仅拥有独特的光学系统,大型的样品室,还可以进行专属定制,是测量相机中光学元件的理想工具。2.测量附件2.1微小样品测量附件由于手机照相机镜片太小,将照射到样品的光通量调节到小于样品尺寸比较困难。使用微小样品测量附件可以解决这个问题,该附件包括聚光镜/参照光束膜/样品支架。样品支架可以根据透镜的尺寸和形状灵活配置。附件如图1所示。图1 微小样品测量附件图片及结构(左)微小样品支架 (右)微小样品测量附件2.2 全积分球附件透射光束的形状受散射和折射影响大的样品,如透镜,需要使用积分球消除检测器的局域性。60mm标准全积分球附件和高灵敏度积分球在透镜测量中都可使用。图2 ф60mm的全积分球附件(仪器顶部视图)3.测量实例智能手机相机中CMOS和CCD传感器在近红外区域具有高度的敏感性。而人眼只能看到380nm-700nm的可见光,因此,为了重现肉眼看到的图像,需要切断对成像质量形成干扰的700nm以上波长的光。很多相机和摄像机,通过加入红外截止滤光片,达到上述效果。具体详细测量数据请参考:https://www.instrument.com.cn/netshow/sh102446/s910399.htm4.总结现在智能手机更新换代频率加快,各大品牌都在系统,拍照,内存等多种参数方面竞相提升。手机镜头从单摄到如今的双摄,甚至华为新出的三摄,手机成像原件的进步,手机摄影的方便与快捷,都让我们对手机摄影爱不释手。日立高新技术通过独特的技术,开发的固体样品分析专家紫外/可见/近红外分光光度计,能够对相机镜头的光学元件进性准确评估,促进科技产品更加飞速的发展。 日立高新技术公司是日立集团旗下的一家仪器设备子公司。全球雇员超过10000人,在世界上26个国家及地区共有百余处经营网点。企业发展目标是"成为独步全球的高新技术和解决方案提供商",即兼有掌握先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。其产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料。其中,生命科学领域产品包括电子显微镜、原子力显微镜和分析仪器(色谱、光谱、热分析)等。 参考文献:张帆. 手机摄影艺术的发展与表现[D]. 2016.驱动之家.屠榜DxO Mark之后 华为P30 Pro再获TIPA 2019拍照手机大奖[N].2019
  • 要相信光丨“一个关于检测光的故事”
    我们共同生活的星球,光几乎无处不在,它滋养了万物,同时也给我们留下了很多神奇的现象,比如“彩虹”。可能您认为彩虹没什么神奇的,但您清楚为什么会形成彩虹吗?可能您又默默地拿出了高中课本,没错就是由于光的衍射形成的。但是什么是“光的衍射”哪?据非权威消息,弗朗西科玛利亚格里马迪最早说明了光的衍射,对的,不是自然百科全书牛顿,比他早了几十年。某一天,有点和那个著名的苹果故事类似,他发现从百叶窗射进来的光,照射在一根棍子上,棍子的影子不但加宽,并且出现了彩带,他就这么把光具有波动性的理论提出来了。当然后面光是一种“波”还是一种“粒子”,大家争论了很久,最后“遇事不决,量子力学”,总算基本统一到光具有波粒二象性。瑞士洛桑联邦理工学院科学家拍摄的有史以来第一张光既像波,同时又像粒子流的照片在整个漫长的科学争论中,科学家总是要用数据说话的,光的检测设备,就作为争论的副产品和“武器”,顺应不同时代的需求被研制了出来。现在已经基本没有了关于“波粒二象性”的争论,是不是关于“光”的探索就停下了吗?并没有,光化身成了“幕后英雄”,化身成“光电材料”,默默地走入了智能穿戴设备、生物识别、物联网、自动驾驶、安防、通信等等领域。比如您现在看的手机屏幕(这是一篇公众号,电脑的概率很小吧),屏幕亮度够不够、图像是不是清晰、刷的久一点眼镜会不会不舒服,这些都是由光电材料性能来决定的。那么光电材料性能怎么样,是如何检测的哪?没错,现在的主要方法是用“分光光度计”,它可以告诉你光过去了多少,反射了多少,带宽多少,禁带宽度多少,可见光透射比多少,光热比多少,还可以有很多个“参数”… … PerkinElmer Lambda1050+光谱仪TAMS绝反变角度透射反射附件光路图甚至可以自动围着你的手机转一圈,告诉您您的手机内容在各个角度(可视角)都可以看得清,防窥膜的作用也就仅能控制在3点钟方向。不同波长下BSDF(BRDF+BTDF)测试等等,“你来电话啦”。怎么刚刚还亮亮的屏幕变“暗”啦,又一个知识点来了,您的手机上有一个感知您与手机距离的镜头,他的专一性“带宽”非常好,好到只为您一个人服务。用于生物识别的滤光片透射数据如果这个专一性很好的材料用在能量更强的紫外区,搭配不同的宝石和气体,您将拥有一柄专属的“光之剑”,在硅片上刻画纳米的世界。祝您早日成为“光之巨人”广告时间:作为极具规模及影响力的光电综合性展会,第24届CIOE中国光博会将于2022年9月7-9日在深圳国际会展中心举办,面向光电及应用领域提供前沿的光电创新技术及综合解决方案,助力企业与光电行业上下游进行商贸洽谈,达成商业合作。作为一家具有80多年历史的全球性技术公司,珀金埃尔默始终致力于为创建更健康的世界而持续创新,也将亮相此次会议,并在7号馆设有展位,展位号7D005 ,欢迎您的莅临!展会时间:2022年9月7-9日展会地点:深圳国际会展中心展位号:7D005
  • 神奇!科学家开发新型分子装置,可将红外光变成可见光
    光是一种电磁波:它由在空间中传播的振荡电场和磁场组成。每个波都以其频率为特征,频率是指每秒振荡的次数,以赫兹(Hz)为单位。人类肉眼可以检测到400到750万亿赫兹(或太赫兹,THz)之间的频率,这些频率定义了可见光谱。手机摄像头中的光传感器,可以检测低至300THz的频率,而用于通过光纤连接互联网的检测器,对大约200THz的频率敏感。在较低的频率下,光所传输的能量,不足以触发我们肉眼以及许多其他传感器中的光感受器。但是,在100太赫兹以下的频率,即中红外和远红外光谱中,有丰富的信息。例如,一个表面温度为20°C的身体会发出高达10太赫兹的红外光,这可以通过热成像捕捉。此外,化学和生物物质在中红外有明显的吸收带,这意味着我们可以通过红外光谱学进行远程、非破坏性地识别它们,红外光谱具有无数的应用。近日,国际科学家小组开发出一种新方法,通过将频率改变为可见光频率来检测红外光。该设备可以将常见的高灵敏度可见光探测器“视野”扩展到远红外线。变频并不是一件容易的事。由于能量守恒定律,光的频率是基本特征,不能通过将光反射到表面或穿过材料而轻易改变。研究人员通过使用介质,向红外光添加能量来解决这个问题:微小的振动分子。红外光被引导到分子,在那里它被转换成振动能量。同时,更高频率的激光束撞击相同的分子,以提供额外的能量,并将振动转化为可见光。为了促进转换过程,分子被夹在金属纳米结构之间,金属纳米结构通过将红外光和激光能量集中在分子上而充当光学天线。研究人员表示,这个新设备具有许多吸引人的功能。首先,其转换过程是连贯的,这意味着原始红外光中存在的所有信息,都能忠实地映射到新创建的可见光上。还可以使用标准探测器(如手机摄像头中的探测器)进行高分辨率红外光谱分析。其次,每个设备的长度和宽度约为几微米,这意味着它可以合并到大型像素阵列中。最后,该方法具有很强的通用性,可以通过简单选择具有不同振动模式的分子来适应不同的频率。但是,到目前为止,该设备的光转换效率仍然很低。研究人员称现在正在集中精力进一步改进它。题为Continuous-wave frequency upconversion with a molecular optomechanical nanocavity的相关研究论文发表在《科学》上。
  • 新型石墨烯光学探测器实现监测光谱从可见光到红外辐射
    德国亥姆霍兹德累斯顿罗森多夫(HZDR)研究中心的科学家通过在 SiC 上一个微小的片状石墨烯加上天线,开发出一种新的光学探测器。据称,这种新型探测器可以迅速的反射所有不同波长的入射光,并可在室温下工作。这是单个检测器首次实现监测光谱范围从可见光到红外辐射,并一直到太赫兹辐射。  HZDR 中心的科学家们已经开始使用新的石墨烯探测器用于激光系统的精确同步。据HZDR 物理与材料科学研究所的物理学家 Stephan Winnerl 称,相对于其他半导体,如硅或砷化镓,石墨烯可以承载具有超大范围光子能量的光,并将其转换成电信号,只需要一个宽带天线和恰当的衬底来。  石墨烯片和天线组件吸收光线,将光子的能量转移至石墨烯的电子中。这些“热电子”能够增加探测器的电阻,产生快速电信号,在短短 40 皮秒内便可完成入射光注入。  衬底的选择是提高捕光器的关键。过去使用的半导体衬底吸收了一些波长的光,但碳化硅可在光谱范围不主动吸收光。 此外,天线的作用就像一个漏斗,捕捉长波红外和太赫兹辐射。目前,科学家们已经能够将光谱范围增加为此前型号探测器的90倍,所能探测到的最短波长比最长的小 1000倍。而在可见光中,红光波长最长,紫光波长最短,红光波长仅是紫光的两倍。  该光学探测器已被 HZDR 中心采用,用于易北河中心的两个自由电子激光器的精确同步。这种精确同步对“泵浦探针”实验尤为重要,研究员使用其中一个激光器激发材料,再使用另一个具有不同波长的激光器进行测定。在这种实验中,激光脉冲必须精确同步。因此,科学家们使用石墨烯探测器如同使用秒表。精确同步的探测器可以显示出激光脉冲何时达到目标,大带宽有助于防止探测器变为潜在错误来源。该种探测器的另一个优点是,所有的测量可以在室温下进行,避免了其他探测器所需的昂贵和费时的氮气或氦气冷却过程。
  • 175nm-50000nm变角度透射反射光学性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。本文主要介绍采用珀金埃尔默紫外/可见/近红外光谱仪和Spectrum 3红外傅里叶变换红外光谱仪,配置TAMS等可变角度测试附件,测试样品不同角度下绝对反射率、透射率数据,实现175nm-50000nm透射率、反射率等光学性能的精确表征。TAMS附件为变角度绝对反射、变角度透射测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。 Lambda系列分光光度计 TAMS变角度透射反射附件光路图图1 仪器外观图以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。01样品变角度透射测试采用TAMS附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,测试曲线如下图所示。 图2 样品不同角度和偏振态下透射率测试数据(点击查看大图)TAMS附件配套不同的偏振组件,可以自动测试样品不同波长下偏振信号,如下图测试石英样品在45度下偏振P光和S光反射数据: 图3 样品紫外波段P光和S光偏振测试(点击查看大图)02样品变角度透射/反射曲线测试通过软件设置,可一次性测试得到样品透射和反射率曲线,如下图,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。 图4 样品45度透射和反射曲线测试(点击查看大图)03NIST标准铝镜10度反射率曲线测试测试NIST标准铝镜10度下反射率数据,如下图所示,黑色曲线为TAMS测试曲线,红色为NIST标准值曲线,两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。 图5 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)04样品变角度全波长反射曲线测试(200-2500nm)软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。 图6 样品全波段(200-2500nm)变角度反射率测试(点击查看大图)05不同膜系设计的镀膜样品性能验证测试样品600-1400nm下45度反射率曲线,该样品在1200nm以上属于高反射率,反射率大于99.5%,同时需要关注600-1200nm范围各个吸收峰情况,该波段下吸收峰非常尖锐,同时吸收峰较多,需要仪器具备高分辨率,从而准确测试出每一个尖锐吸收峰信号。 图7 膜系设计验证样品45度反射率测试(点击查看大图)06双向散射分布函数(BSDF)测试除了测试常规变角度透射和反射曲线外,TAMS附件可以自动测试样品不同角度下透射和反射率信号,可以得出样品不同角度下的透射分布函数(BTDF)和反射分布函数(BRDF)信号,最终得到双向散射分布函数(BSDF)。采用该附件可方便测试样品双向散射分布函数(BSDF)、双向反射分布函数(BRDF)、双向透射分布函数(BTDF)等光学参数测试,测试结果如下图所示: 图8 BRDF和BTDF测试(点击查看大图)如下图所示,测试样品不同波长下BSDF分布函数曲线(BRDF + BTDF),从而可以得出样品随不同角度下透射和反射信号变化情况。 图9 样品不同波长下BSDF(BRDF+BTDF)测试(点击查看大图)07窄带滤光片测试Lambda系列光谱仪为双样品仓设计,TAMS附件可与标准检测器、积分球检测器自由更换。对于窄带滤光片样品,即需要准确测设带通区域的透过率、半峰宽,也需要准确测试截止区吸光度值(OD值),可直接切换标准检测器进行检测。 图10 用于激光雷达的镀膜镜片透射和OD值测试数据(点击查看大图)08红外波段区变角透射反射测试珀金埃尔默傅里叶变换红外光谱仪,可广泛应用于上述红外材料光学性能测试,可测试样品在不同波段下红外透光率以及反射率,搭配变角透射及变角反射附件,可以实现不同角度下透射率及反射率测试,如下图为红外波段透射和反射测试曲线: 图11 用于Spectrum 3傅里叶红外的TAMS附件 图12 红外TAMS附件测试样品红外波段不同角度透射数据Summary综上,采用Lambda系列紫外/可见/近红外分光光度计以及傅里叶红外光谱仪,搭配TAMS、标准检测器、积分球等多种采样附件,可以组合出完备的材料光学性能测试平台,满足光学镀膜测试的多样化需求,更加准确便捷的得到样品的光学检测数据。 关注我们
  • 微型光谱仪之反射检测
    1、技术简介  光在两种物质分界面上改变传播方向又返回原来物质中的现象,叫做光的反射。正是因为光在物体表面发生的反射,我们的眼睛才能感知到周围的世界的颜色与景象。反射是通过光入射到物体表面后在不同波长段的反射率差异引起。光谱仪获得的反射光谱信息就像人眼所见到的视觉内容一样,但是光谱信息更为数据化、更客观。反射测量可以测试物体的颜色,或者通过判定物体的反射光谱差异进行多样品的筛选和品控。 镜面 粗糙表面图5.1 反射原理图  2、 应用说明  由于某些检测样本的特殊性,不能完全依赖于化学方法进行检测,反射光谱模型作为一种迅速、高性价比的检测方法,可以作为化学分析方法在其他应用领域的替代方案,甚至可以直接用来测试粉末状样品。反射光谱检测方法不能判定是否适用于被测目标样本的原有模样,所以还是需要尝试多次对照测试它们的反射光谱,提高光谱数据的准确性。  化学分析的方法可以用来提高最低检出限,并确定掺杂成分,但是光学的方法可以进行预先的快速查看与筛选。将反射光谱检测与化学计量学相结合,利用可见光和近红外漫反射光谱提供快速、无损的检测。在实际检测中,可以分析不同的样本之间的差异。数学上来说,主成分包含在了定义的所有波长多维空间的范围内。主成分使我们能够获得多维数据集和重要维度,然后从无意义的噪音中分离出有意义的信息。  食品安全:香料检测,香蕉成熟度分析,芒果与鳄梨区分检测等   自然环境:水体汞污染监测,农作物分析等  3 、典型产品和配置  颜色检测配置:  1. 光谱仪  2. 光源  3. 积分球:积分球可以180° 收集样品表面的反射光,所以它能尽可能多地收集样品表面的反射光。反射式积分球还能使用在弯曲表面,或者颜色测量。它能将样品表面发射的光很好地在积分球内部进行匀化,然后再耦合到光谱仪。反射光通过圆形的入射光孔径进入积分球,然后经过分球内壁涂抹的特殊涂层材料的均匀反射。图2 积分球示意图  4. 反射探头:当需要快速测量样品或者应用在样品表面非常小的采样点时,反射探头既可以测量镜面反射,也可以测量漫反射,而且可以基于光源和光谱仪的配置不同,选择不同类型的扩大波长范围的反射探头。探头的发射光和反射光是同一方向的,接收到的光是反射光的一部分,所以使用反射探头测量反射光谱是一种相对测量。图3 反射探头  5. 采样附件(光纤、滤光片、透反射支架、动态样品台等):透反射支架用来固定反射探头的标准配件,同时也可以用于透射测量。使用透反射支架,可以有效地减少光源对样品的过度加热,对于生物样品或者有机样品,还有那些低熔点的样品非常重要 动态样品台,基于样品台旋转或者直线移动来对样品进行测量,并获得测量的平均信号。这种测量方式避免了结果的多样性,提高了样品测量的均一性结果,特别是对于谷物、种子和土壤类等不均一的样品,是比较理想的选择。 图4 反射支架和样品台  6. 准直透镜:在做反射测量时,准直透镜可以使用在光纤的末端来准确地固定入射光和反射光的角度。镜面发射或者漫反射都可以使用这样的测量方式,但是我们需要固定夹具来对测量系统进行固定。准直透镜必须预先调焦来避免光束的发散,来保证获得更好的光谱。  7. 光谱仪控制软件图5 反射检测典型配置  典型配置  典型产品:高灵敏度光谱仪,光源,滤光片,积分球,透反射支架,动态样品台,准直透镜  4 、应用文章  4.1 香料掺假检测图6 不同香料检测光谱  4.2 香蕉成熟度检测图7 不同成熟度香蕉光谱图  4.3 芒果与鳄梨区分检测图8 芒果与鳄梨检测光谱  4.4 基于SPR快速检测花生过敏源图9 过敏源光谱  4.5 无人机智能农业检测 图10 无人机农业检测光谱图  4.6 农作物成分检测图11 农作物成分光谱图  4.7 水体汞污染监测图12 水体检测光谱图(来源:海洋光学)
  • 教你如何测定微小样品的透过率、反射率
    随着机器的小型化趋势,光学部件也在不断微小化,如摄像镜头中的透镜、传感器部件、光盘中的拾音器组件等。因此微小样品的准确测量十分必要。要准确获得这些微小样品的测定,需要缩小入射光束,以使光斑照射到样品上。日立开发了各种微小样品测量附件,为光电领域提高解决方案。1. 微小样品的透过率测量使用日立UH4150选配微小样品透过率测定附件和全积分球,利用φ1 mm 掩光膜即可测定透镜的透射率。图1 小尺寸透镜的外观 图2 两种透镜的透过光谱 微小样品透过率测定附件由聚光透镜、参比光束光阑以及微小样品支架构成,可准确测定微小样品和任意微小零配件的透射率。微小样品支架可搭载最大直径为φ20mm的样品,标配φ3mm的掩光膜,用户也可选配φ1mm的掩光膜等。图3 微小样品透过率测定附件 2. 微小样品镜面反射率的测定手机镜头和车载摄像头中图像传感器的红外截止滤光片尺寸微小,使用UH4150选配微小样品5度绝对反射附件即可测定滤光片的反射率。图4 红外滤光片的镜面反射光谱 可以看到滤光片在可见区的反射率低,在近红外区的反射率较高。微小5 °镜面绝对反射附件由反射附件、聚光透镜、参比光束光阑以及微小样品支架构成。与5 °镜面反射附件(标准)相比,样品位置的光束较小,支持微小样品反射光谱的测定。图5 微小样品反射率测定附件3. 微小样品的全反射率测定使用日立UH4150 搭配微小样品全反射/漫反射测量附件,测量了LED灯反射板的全反射率。图6 LED灯的反射板测定时使用铝制平面镜作为标准参考,利用铝制平面镜的绝 对反射率将LED灯反射板的反射率的相对值转换为绝对值,得到全反射光谱如图所示。图7 LED 灯反射板的全反射光谱测定结果表明该反射板的反射率高达90%,可以有效利用LED灯光源的光通量,提高照明效率。综上案例,使用具有大型样品室的日立紫外可见近红外分光光度计UH4150,容易构建不同样品的光学测量系统,可搭配多种附件,实现低噪音测定微小样品。拨打 4006305821,获取更多信息
  • 天津能谱全新推出大样品无损检测专用紫外可见分光近红外光度计
    为满足不同样品检测的要求,天津能谱成功研发出大样品无损检测专用紫外可见分光近红外光度计,该产品的研发具有重要的科学意义和实际应用价值:1. 拓宽应用领域:传统紫外可见近红外分光光度计通常适用于小样品或液体样品的检测,而大样品无损检测设备能够处理更大尺寸的固体样品,如建筑材料(如玻璃幕墙)等,常规最大尺寸一般控制在110mm以内,样品再大样品仓等放不进去,天津能谱成功研发出的大样品无损检测从而拓宽了该技术的应用领域。特别反射附件测试不在局限于样品大小的限制。2. 提高检测效率与准确性:这类仪器设计用于大尺寸样品,通常配备有专门的光学系统和大样品室,可以在不破坏样品的前提下,快速准确地获取样品的光谱信息,这对于需要保持样品完整性的应用尤为重要。3. 促进材料科学研究:在材料科学领域,这种设备可以用于研究材料的光学性质,如透过率、反射率和吸收特性,对于新材料的开发、质量控制及性能评估极为关键。4. 建筑材料:建筑材料的能效特性(如玻璃的透光性和隔热性),有助于环境保护和公共安全。5. 文物保护与鉴定:对于文物和艺术品的鉴定与保护,无损检测技术可以提供宝贵的信息,帮助专家了解材质老化、修复历史等,而不会对珍贵文物造成任何伤害。6. 光学质量控制:在光学制造行业,大样品镜片等的无损检测对于确保产品质量、优化生产工艺、减少浪费具有重要意义。 iCAN 3000G建筑玻璃可见光透射比/遮阳系数检测仪是iCAN 3000 紫外可见近红外分光光度计的基础上升级专门用于测定各种建筑玻璃可见光透射(反射)比、太阳光直接透射比、太阳能总透射比、紫外线透射(反射)比及有关玻璃等参数。根据所记录的图谱对被测物质进行定性或定量分析,是检测建筑玻璃参数的一个重要工具。可检测的样品有:普通平板玻璃、电浮法玻璃、夹层玻璃、离子镀膜玻璃、溅射镀膜玻璃、LOW-E玻璃、汽车安全膜等;用于建筑幕墙玻璃节能参数的测定、玻璃镀膜材料研和分析; Ø 设备可满足以下测试:紫外光透射比 Tuv可见光透射比 TV室外侧可见光反射比 pvo室内侧可见光反射比 pvi太阳光直接透射比 Te太阳光直接反射比 pe太阳红外直接透射比 TIR太阳能总透射比 g遍阳系数 SC光热比 LSG太阳红外热能总透射比 glR向室内侧二次热传递系数 qi向室内侧太阳红外二次热传递系数 qin传热系数U
  • 如何精准找出CIS影像晶片缺陷?透过量子效率光谱解析常见的4种制程缺陷!
    本文将为您介绍何谓量子效率光谱,以及CIS影像晶片常见的4种制程缺陷。SG-A_CMOS 商用级图像传感器测试仪相较于传统光学检测设备可以提供更精细的缺陷检测资讯,有助于使用者全面了解CIS影像晶片的性能表现。量子效率光谱是CIS影像晶片的关键参数之一,可以反映CIS影像晶片对不同波长下的感光能力,进而影响影像的成像质量。1. 什么是CIS影像晶片的量子效率光谱?CIS影像晶片的量子效率光谱是指在不同波长下,CIS晶片对光的响应效率。物理上,光子的能量与其波长成反比,因此,不同波长的光子对CIS影像晶片产生的响应效率也不同。量子效率光谱可以反映传感器在不同波长下的响应能力,帮助人们理解传感器的灵敏度和色彩还原能力等特性。通常,传感器的量子效率光谱会在可见光波段范围内呈现出不同的特征,如波峰和波谷,这些特征也直接影响着传感器的成像质量。2. Quantum Efficiency Spectrum 量子效率光谱可以解析CIS影像晶片内部的缺陷,常见的有下四种:BSI processing designOptical Crosstalk inspectionColor filter quality and performanceSi wafer THK condition in BSI processing3. 透过量子效率光谱解析常见的4种制程缺陷A. 什么是BSI制程?(1) BSI的运作方式BSI全名是Back-Side Illumination.是指"背照式"影像传感器的制造工艺,它相对于传统的"正面照射"(FSI, Front-Side Illumination)影像传感器,能够提高影像传感器的光学性能,特别是在各波长的感光效率的大幅提升。在BSI制程中,像素置于矽基板的背面,光通过矽基板进入感光像素,减少了前面的传输层和金属线路的干扰,提高了光的利用率和绕射效应,进而提高了影像传感器的解析度和灵敏度。(2) 传统的"正面照射"(FSI, Front-Side Illumination)图像传感器的工作方式FSI 是一种传统的图像传感器制程技术,光线透过透镜后,从图像传感器的正面照射到图像传感器的感光面,因此需要在感光面(黄色方框, Silicon)的上方放置一些电路和金属线,这些元件会遮挡一部分光线,降低图像传感器的光量利用率,影响图像的品质。相对地,BSI 技术是在感光面的背面,也就是基板反面制作出感光元件,让光线可以直接进入到感光面,这样就可以最大限度地提高光量利用率,提高图像的品质,并且不需要额外的电路和金属线的遮挡,因此也可以实现更高的像素密度和更快的图像读取速度。(3) 为什么BSI工艺重要?BSI工艺是重要的制造技术之一,可以大幅提升CIS图像传感器的感光度和量子效率,因此对于低光照环境下的图像采集有很大的帮助。BSI工艺还可以提高图像传感器的分辨率、动态范围和信噪比等性能,使得图像质量更加优良。由于现今图像应用日益广泛,对图像质量和性能要求也越来越高,因此BSI工艺在现代图像传感器的制造中扮演着重要的角色。目前,BSI 技术已成为图像传感器的主流工艺技术之一,被广泛应用于各种高阶图像产品中。(4) 量子效率光谱如何评估BSI工艺的好坏如前述,在CIS图像芯片的制造过程中,不同波长的光子对于图像芯片的感光能力有所不同。因此,量子效率光谱是一种可以检测图像芯片感光能力的方法。利用量子效率光谱,可以评估BSI工艺的好坏。Example-1如图,TSMC使用量子效率光谱分析了前照式FSI和背照式BSI两种工艺对RGB三原色的像素感光表现的差异。结果表明,BSI工艺可以大幅提高像素的感光度,将原本FSI的40%左右提高到将近60%的量子效率。上图 TSMC利用Wafer Level Quantum Efficiency Spectrum(量子效率光谱)分析1.75μm的前照式FSI与背照式BSI两种工艺对RGB三原色的像素在不同波长下的感光表现差异。由量子效率光谱的结果显示,BSI工艺可以大幅提升像素的感光度,将原本FSI的40%左右提高到将近60%的量子效率。(Reference: tsmc CIS)。量子效率光谱的分析可以帮助工程师判断不同工艺对感光能力的影响,并且确定BSI工艺的优势。(5) 利用量子效率光谱分析不同BSI工艺工艺对CIS图像芯片感光能力的影响Example-2 如上图。Omnivision 采用Wafer Level Quantum Efficiency Spectrum量子效率光谱分析采用TSMC 65nm工艺进行量产时,不同工艺工艺,对CIS图像芯片感光能力的影响。在1.4um像素尺寸使用BSI-1工艺与BSI-2的量子效率光谱比较下,可以显著的判断,BSI-2的量子效率较BSI-1有着将近10%的量子效率提升。代表着BSI-2的工艺可以让CIS图像芯片内部绝对感光能力可以提升10%((a)表)。此外,量子效率光谱是优化CIS图像芯片制造的重要工具。例如,在将BSI-2用于1.1um像素的工艺中,与1.4um像素的比较表明,在蓝光像素方面,BSI-2可以提供更高的感光效率,而在绿光和红光像素的感光能力方面,BSI-2的效果与1.4um像素相似。另外,Omnivision也利用量子效率光谱分析了TSMC 65nm工艺中不同BSI工艺工艺对CIS图像芯片感光能力的影响,发现BSI-2可以提高近10%的量子效率,从而使CIS图像芯片的感光能力提高10%。将BSI-2工艺用于1.1um像素的制造,并以量子效率光谱比较1.4um和1.1um像素。结果显示,使用BSI-2工艺的1.1um像素,在蓝色像素方面具有更高的感光效率,而在绿色和红色像素的感光能力方面与1.4um像素相近。这个结果显示,BSI-2工艺可以在保持像素尺寸的前提下提高CIS图像芯片的感光能力,进而提高图像质量。因此,利用量子效率光谱比较不同工艺工艺对CIS图像芯片的影响,可以为CIS制造优化提供重要参考。上图 Omnivision采用了Wafer Level Quantum Efficiency Spectrum量子效率光谱,以分析TSMC 65nm工艺在量产时,不同工艺工艺对CIS图像芯片感光能力的影响。通过这种光谱分析技术,Omnivision能够精确地判断不同工艺工艺所产生的量子效率差异,并进一步分析出如何优化CIS图像芯片的感光能力。因此,Wafer Level Quantum Efficiency Spectrum量子效率光谱分析是CIS工艺中一项重要的技术,可用于协助提高CIS图像芯片的质量和性能。(Reference: Omnivision BSI Technology.)B. Optical Crosstalk Inspection(1) 什么是Optical Crosstalk?CIS的optical cross-talk是指光线在图像芯片中行进时,由于折射、反射等原因,导致相邻像素之间的光相互干扰而产生的一种影响。(2) 为什么Optical Crosstalk的检测重要?在CIS图像芯片中,optical crosstalk是一个重要的问题,因为它会影响图像的品质和精度。optical crosstalk是由于像素之间的光学相互作用而产生的,导致相邻像素的光信号互相干扰,进而影响到像素之间的区别度和对比度。因此,降低optical cross-talk是提高CIS图像芯片品质的重要目标之一。(3) 如何利用QE光谱来检测CIS 的Crosstalk?量子效率(QE)光谱可用于检测CMOS图像传感器(CIS)的串音问题。通过测量CIS在不同波长下的QE,可以检测CIS中是否存在串音问题。当CIS中存在串音问题时,在某些波长下可能会观察到QE异常。在这种情况下,可以采取相应的措施来降低串音,例如优化CIS设计或改进工艺。缩小像素尺寸对于高分辨率成像和量子图像传感器是绝对必要的。如上图,TSMC利用45nm 先进CMOS工艺,来制作0.9um 像素用于堆叠式CIS。而optical crosstalk光学串扰对于SNR与成像品质有着显著的影响。因此,TSMC采用了一种像素工艺,来改善这种optical crosstalk光学串扰。结构如下图。结构(a)是控制像素。光的路径线为ML(Microlens)、CF (Color Filter)、PD(Photodiode, 感光层)。而在optical crosstalk影响的示意图,如绿色线的轨迹。光子由相邻的像素单元进入后,因为多层结构的折射,入射到中间的PD感光区,造成串扰讯号。TSMC设计结构(b) “深沟槽隔离(DTI)" 技术是为了在不牺牲并行暗性能的情况下抑制光学串扰。由(b)可以发现,DTI所形成的沟槽可以隔离原本会产生光学串扰的光子入射到中间的感光Photodiode区,抑制了串扰并提高了SNR。像素的横截面示意图 (a) 控制像素 (b)串扰改善像素。Wafer Level Quantum Efficiency Spectrum of two different structure CISs. 在该图中,展示了0.9um像素的量子效率光谱,其中虚线代表控制的0.9um像素(a),实线代表改进的0.9um像素(b)。由于栅格结构的光学孔径面积略微变小,因此光学串扰得到了极大的抑制。光学串扰抑制的直接证据,在量子效率光谱上得到体现。图中三个黄色箭头指出了R、G、B通道的串扰抑制证据。蓝光通道和红光通道反应略微下降,但是通过新开发的颜色滤光片材料,绿光通道的量子效率得到了提升。利用Wafer Level Quantum Efficiency Spectrum技术可以直接证明光学串扰的抑制现象。对于不同的CIS图像芯片,可以通过量子效率光谱测试来比较它们在不同波长下的量子效率响应,进而分辨optical crosstalk是否得到抑制。上图展示了0.9um像素的量子效率光谱,其中虚线代表控制的0.9um像素(a),实线代表改进的0.9um像素(b)。由于栅格结构的光学孔径面积略微变小,因此光学串扰得到了极大的抑制。光学串扰抑制的直接证据,在量子效率光谱上得到体现。图中三个黄色箭头指出了R、G、B通道的串扰抑制证据。C. Color filter quality inspection(1) 什么是CIS 的Color filter?CIS的Color filter是一种用于CIS图像芯片的光学滤光片。它被用于调整图像传感器中各个像素的光谱响应,以便使得CIS图像芯片可以感测和分离不同颜色的光,并将其转换为数字信号。Color filter通常包括红、绿、蓝三种基本的色彩滤光片。而对于各种不同filter排列而成的color filter array (CFA),可以参考下面的资料。最常见的CFA就是Bayer filter的排列,也就是每个单元会有一个B、一个R、与两个G的filter排列。Color filter在CIS图像芯片中扮演着非常重要的角色,其质量直接影响着图像的色彩再现效果。为了确保Color filter的性能符合设计要求,需要进行精确的光谱分析和质量检测。透过率光谱可以评估不同Color filter的光学性能 量子效率光谱可以检测Color filter与光电二极管的匹配程度。只有通过严格的质量检测,才能保证CIS芯片输出优质的图像。图 Color filter 如何组合在“Pixel"传感器中。一个像素单位会是由Micro Lens + CFA + Photodiode等三个主要部件构成。Color filter的主要作用是将入射的白光分解成不同的色光,并且选择性地遮挡某些色光,从而实现对不同波长光的选择性感光。(2) 为什么Color filter的检测重要?在CIS图像芯片中,每个像素上都会有一个color filter,用来选择性地感光RGB三种颜色的光线,从而实现对彩色图像的捕捉和处理。如果color filter的性能不好,会影响像素的感光度和光谱响应,进而影响图像的品质和精度。因此,优化color filter的性能对于提高CIS图像芯片的品质至关重要。Color filter 的检测是十分重要的,因为color filter 的品质和稳定性会直接影响到CIS 图像芯片的色彩精确度和对比度,进而影响整个图像的品质和清晰度。如果color filter 存在缺陷或不均匀的情况,就会导致图像中某些颜色的偏移、失真、色彩不均等问题。因此,对color filter 进行严格的检测,可以帮助制造商确保其性能和品质符合设计要求,从而提高CIS 图像芯片的生产效率和产品的可靠性。(3) 如何利用QE光谱来检测CIS 的Color filter quality?CIS的Color filter通常是由一种称为“有机色料"(organic dyes or pigments)的物质制成,这些有机色料能够选择性地吸收特定波长的光,以产生所需的颜色滤波效果。这些有机色料通常是透过涂布技术将它们沉积在玻璃或硅基板上形成彩色滤光片。量子效率(QE)光谱可以测量CIS在不同波长下的感光度,从而确定Color filter的品质和性能。正常情况下,Color filter应该能够适当地分离不同波长的光,并且在光学过程中产生较小的串扰。因此,如果在特定波长下的量子效率比预期值低,可能是由于Color filter的品质或性能问题引起的。通过对量子效率 (QE)光谱的分析,可以确定Color filter的性能是否符合设计要求,并提前进行相应的调整和优化。TSMC利用Wafer Level Quantum Efficiency Spectrum晶片级量子效率光谱技术,对不同的绿色滤光片材料进行检测,以评估其对CIS图像芯片的感光能力和光学串扰的影响。如上图,TSMC的CIS工艺流程利用Wafer Level Quantum Efficiency Spectrum的光谱技术,针对不同的绿色滤光片材料进行检测,以评估其对CIS图像芯片的感光能力和光学串扰的影响。晶圆级量子效率光谱显示了三种不同Color filter材料(Green_1, Green_2和Green_3)的特性。透过比较这三种材料,可以发现:(1) 主要绿色峰值位置偏移至550nm(2) 绿光和蓝光通道的optical crosstalk现象显著降低(3) 绿光和红光通道的optical crosstalk现象显著增加。通过对量子效率(QE)光谱的分析,可以确定Color filter的性能是否符合设计要求,并提前进行相应的调整和优化。以确保滤光片材料的特性符合设计要求,并且保证图像的品质和精度,提高CIS图像芯片的可靠性和稳定性。D. Si 晶圆厚度控制(1) 什么是Si 晶圆厚度控制?当我们在制造BSI CIS图像芯片时,需要使用一种称为"减薄(thin down)"的工艺来将晶圆变得更薄。这减薄后的晶圆厚度会直接影响CIS芯片的感光度,因此晶圆的厚度对图像芯片的感光性能和质量都有很大的影响。为了确保图像芯片能够正常工作,我们需要使用"Si 晶圆厚度控制"工艺来精确地控制晶圆的厚度。这样可以确保我们减薄出来的晶圆厚度能够符合设计要求,同时也可以提高图像芯片的产品良率。BSI的流程图。采用BSI工艺的CIS图像芯片,会有一道重要的工艺“减薄"(Thin down), 也就是将晶圆的厚度减少到一定的程度。(2) Si 晶圆厚度控制工艺监控中的量子效率检测非常重要在制造CIS芯片时,Si 晶圆厚度控制工艺的控制对于芯片的感光度有着直接的影响。这种影响可以透过量子效率光谱来观察,确保减薄后的CIS芯片拥有相当的光电转换量子效率。减薄后的晶圆会有一个最佳的厚度值,可以确保CIS芯片拥有最佳的光电转换量子效率。使用450nm、530nm和600nm三种波长,可以测试红色、绿色和蓝色通道的量子效率。实验结果显示了不同减薄厚度的CIS在蓝光、绿光、红光通道的量子效率值的变化。减薄厚度的偏差会对CIS的感光度产生直接的影响,进而影响量子效率的值。因此,量子效率的检测对于Si 晶圆厚度控制工艺的监控至关重要,以确保制造的CIS芯片具有稳定和一致的质量。下图显示了在不同减薄厚度下CIS图像芯片在蓝、绿、红三个光通道的量子效率值变化。蓝光通道的量子效率值是利用450nm波长测量的,当减薄后的厚度比标准厚度多0.3um时,其量子效率值会由52%下降至49% 当减薄后的厚度比标准厚度少0.3um时,蓝光通道的量子效率只略微低于52%。红光通道的量子效率值是利用600nm波长测量的,发现红光通道的表现在不同厚度下与蓝光通道相反,当减薄后的厚度比标准厚度少0.3um时,红光通道的量子效率显著地由44%下降至41%。在较厚的条件(+0.3um)下,红光通道的量子效率并没有显著的变化。绿光通道的量子效率值是以530nm波长测量的,在三种厚度条件下(STD THK ± 0.3um),绿光通道的量子效率没有显著的变化。利用不同的Si晶圆厚度(THK)对CIS图像芯片的量子效率进行测试,测试波长分别为600nm、530nm和450nm,并且针对红色、绿色和蓝色通道的量子效率进行评估。结果显示,在绿光通道方面,Si晶圆厚度的变化在±0.3um范围内,530nm波段的量子效率并未有明显变化。但是,在红光通道方面,随着Si晶圆厚度的下降,量子效率会有显著的下降。而在蓝光通道450nm的情况下,量子效率会随着Si晶圆厚度的下降而有显著的下降。这些结果表明,Si晶圆厚度对于CIS图像芯片的量子效率有重要的影响,且不同通道的影响程度不同。因此,在制造CIS图像芯片时需要精确地控制Si晶圆厚度,以确保产品的质量和性能。
  • 赛默飞发布Orion AquaMate 7100 可见光分光光度计新品
    用于水和废水的分光光度计基于60 年光谱学经验的基础, 下一代 Orion AquaMate 分光光度计结合卓越性能并融合现代设计。Thermo Scientific ™ Orion ™ AquaMate ™ 7100 可见光和8100 紫外/ 可见光分光光度计专为满足水和废水实验室分析的特殊需求而设计,包括如下特性:• 260 条预编程测试方法,并且可以灵活地编写自己定义的方法• 支持圆形、方形及长方形的比色池架• 直观的操作软件,包括性能验证测试,设计符合GLP 和GMP 标准• 可选择中量程或大量程两种波长读数模式• 7 英寸,高分辨率友好的触摸屏操作界面预置的测试方法Orion AquaMate 7100 可见光和 8100 紫外可见光分光光度计内置了超过260 种测试方法,可以简单方便地使用Thermo Scientific ™ Orion ™ AQUAfast ™ 、Merck(默克)以及 CHEMetrics 的试剂进行测试。预置的测试程序简单准确,可分析酸度,碱度,铝,氨氮,铵离子,锑,AOX, 砷,BOD, 硼,溴,镉,钙,氯化物,氯,二氧化氯,铬酸盐,铬,COD, 色度,铜,氰化物,氰尿酸,DEHA, 洗涤剂,溶解氧,氟化物,甲醛,金,硬度,联氨,过氧化氢,碘,铁,铅,镁,锰,汞,钼酸盐,钼,一氯胺,镍,硝酸盐,亚硝酸盐,氮,氧,除氧剂,臭氧,钯,Ph, 苯酚,磷酸盐,铂,钾,二氧化硅,银,钠,硫酸盐,硫化物,表面活性剂,悬浮物,锡,TOC。可以使用Orion AQUAfast, Merk, 和 CHEMetrics 的试剂以及各种规格的试管测试挥发性有机酸和锌。仪器可以根据试剂批次的变化对预置测试程序进行一点调整。预置测试程序可以编辑为新的化学分析程序或者操作员可以建立自定义的测试程序。所有的预置测试程序都存储在U 盘上,允许操作员根据需要增加或删除测试程序。可以通过USB 上传用户自定义的标准曲线,这样就有可能使用大多数的化学试剂。可以访问thermofisher.com/aquamateuvvis 查找最新的符合美国环保署要求的试剂化学方法清单。为了便于上传, 传输和存储测试程序和数据,Orion AquaMate 分光光度计有三个USB 口,可以使用U 盘直接把数据拷贝到电脑,或者通过连接外部打印机打印分光光度计产生的硬拷贝数据。性能验证测试Orion AquaMate 7100 可见光和8100 紫外- 可见光分光光度计包括性能验证测试,确保波长精度和仪器功能。依照GLP 和GMP 的要求,每份测试报告给出测试时间,日期和仪器序列号。内部波长精度测试是与内部光源和外部校准标准相兼容的。可选的各种比色池池架仪器可以灵活搭配各种比色池,适用于宽量程的圆形,方形和放置三个矩形比色池的固定架。每个比色池固定架可以很容易的在仪器样品室安装和更换。具有磁力的,易于清洁的比色池固定架,适用于12-25mm圆形,10mm 方形和20-100mm 矩形比色池。还包括一个可调节的圆形的固定架,可搭配13-24mm 圆形比色池。可根据水质分析需要选择两种模式对于水和废水的分析,Orion AquaMate 7100 可见光分光光度计波长范围 325-1100 nm, 5.0nm 光谱带宽完全满足大多数常规样品的测量。Orion AquaMate 7100 可见光分光光度计额外的性能特点:• 使用成本低,物有所值• 小巧,轻便的设计• 卤钨灯可提供1000 小时的测试使用• 性能特点与Orion AquaMate 8100 紫外- 可见光分光光度计类似双光束光学系统提高测量精度氙灯发出非常强的光,在不损失样品的测量精确性,分光器提取并测量一小部分光到内置参比检测器。在每次测量样品的同时进行参比光束校正。双光束光学系统,对每个数据点进行参比光束校正,最大限度的保证每次测量的准确性。长时间测量无漂移,扫描速度变化峰值漂移。双光束系统确保仪器在全紫外至近红外光谱区域都能到非常优越的数据。氙灯只有在测量时才会发出光脉冲。创新点:基于60 年光谱学经验的基础, 下一代 Orion AquaMate 分光光度计结合卓越性能并融合现代设计。 Thermo Scientific™ Orion ™ AquaMate ™ 7100 可见光和8100 紫外/ 可见光分光光度计专为满足水和废水实验室分析的特殊需求而设计,包括如下特性: • 260 条预编程测试方法,并且可以灵活地编写自己定义的方法 • 支持圆形、方形及长方形的比色池架 • 直观的操作软件,包括性能验证测试,设计符合GLP 和GMP 标准 • 可选择中量程或大量程两种波长读数模式 • 7 英寸,高分辨率友好的触摸屏操作界面 Orion AquaMate 7100 可见光分光光度计
  • 微型光谱仪之颜色检测
    1、技术简介  颜色是大脑对于射入人眼的光的主观感受。一般人眼可感知的波段为380~780nm。  颜色可以简略分为反射颜色,透射颜色,光源色和结构色,前三种最为常见。  待测物的反射/透射颜色取决于待测物的光谱反射率/透射率,参考光源和观察条件。光源色取决于光源光谱。结构色与物体表面特殊的衍射结构有关。  颜色在生产和生活中扮演着重要的角色,颜色的控制已经成为评价许多产品外在和内在质量中最受重视的要素之一。传统的测色方法直接用人眼观察,方法简单灵活,但是结果依赖于观测人员的经验和心理、生理等主观因素的影响,也依赖于观察条件,结果使得测量结果的准确性和公正性经常受到质疑,目前已经被光谱测色技术取代。图1 不同颜色光谱  光谱测色是利用光谱仪获取光源发射或物体透反射的可见光波段的光谱进行分析。根据色度学理论,任何颜色可用三个对人眼的颜色三刺激值来表示,因此获得颜色三刺激值正是测色仪器的测量目的。颜色三刺激值可以通过颜色刺激函数分别乘以CIE光谱三刺激值,并在整个可见光谱范围内分别对这些乘积进行积分。计算公式如下:  其中,φ (λ ) 为色刺激函数,由光源辐射特性或物体的透反射特性决定 X(λ ), Y(λ ), Z(λ )为标准观察者的光谱三刺激值 k为归一化系数。X, Y 和Z则是颜色三刺激值,它们虽然从数量上对颜色进行了定量的描述。  历史上,由于各个行业颜色测量对象差异很大,颜色三刺激值直接使用多有不便。于是国际照明委员会(CIE)先后推出了CIE xyz和CIE L*a*b*等多种颜色空间,将颜色三刺激值转换后使用。在实践中,CIE xyz多用于发光体颜色描述,而CIE L*a*b*模型在物体表面色的色差,例如纺织品、油漆、塑料等行业。关于两种颜色空间的具体计算函数可直接参考CIE网站,一般颜色测量软件都集成了这些函数,比如著名的海洋光学的测量软件集成了所有主流的颜色空间函数,并集成了CIE规定的所有标准照明体函数模型,几乎可以满足所有颜色测量需要,给客户开展多种颜色测量带来了极大便利。图2 CIE xyz图3 CIE L*a*b*  2 、应用说明  颜色测量包含三个基本要素:参考光源,参考标准源,光谱采集装置。常用参考光源为卤钨灯或氙灯。参考标准源一般多用漫反射标准板。光谱采集装置则有光谱仪和配套附件组成。光谱仪必须涵盖可见光波段,并且要具有足够的灵敏度和稳定性,配套附件包括光纤探头和积分球等。  颜色计算较为繁琐,选择一款集成各种颜色参数自动计算功能的软件也是很有必要的。  农产品加工:肉类,果蔬等品质分类   照明行业:LED颜色分析   纺织行业:纺织物色差鉴定   造纸行业:纸品颜色控制   化工行业:油漆,涂料等品质控制。  典型配置  典型产品:高分辨率光谱仪,光源,探头,滤光片,聚光透镜  3、应用文章  3.1 LED颜色测量图4 使用七步MacAdam 椭圆来定义LED在CIE 1931 色品图中的分割区域  3.2 化学变色反应测量图5 化学变色反应中的吸光度图谱图6 化学变色反应在553nm和759nm的吸光度变化趋势  3.3 基于颜色检测的犯罪现场的血迹的时间评价图7 血迹检测图 (内容来源:海洋光学)
  • 二氧化硅纳米粒子可将近红外光转为紫外可见光
    据物理学家组织网近日报道,新加坡国立大学工程学院生物工程系的研究人员研制出一种新技术,能够通过纳米粒子将红外光转化为紫外光和可见光,为深层肿瘤的非侵入性疗法铺平了道路。据称,该技术能够抑制肿瘤生长,控制其基因表达,是世界上首个使用纳米粒子治疗深层肿瘤的非侵入性光动力疗法。相关论文发表在近日出版的《自然医学》杂志上。   领导该项研究的新加坡国立大学副教授张勇(音译)说,人体内的基因会释放出一些特定的蛋白,从而保证机体的健康。但有些时候这个过程也会出现差错,导致包括癌症在内的一些疾病的产生。此前人们已经发现非侵入性光疗法能够控制基因的表达,纠正这一过程。但使用紫外光有一定副作用,有时甚至得不偿失 而可见光穿透力较弱,无法照射到组织深处的肿瘤。为此,他和他的团队开发出一种外面包裹着一层介孔(处于宏观和微观之间的尺度)二氧化硅的纳米粒子。他们发现,这种纳米粒子在被引入患者病灶区域后,可将近红外光转化为可见光或紫外光。通过这种方法就能有效激活基因,控制蛋白质的表达,从而达到治疗癌变细胞的目的。   研究人员称,与紫外光和可见光相比,近红外光安全且具有更强的穿透力,它能达到更深层的目标肿瘤组织而不会对健康细胞造成伤害,他们正计划将其扩展到其他以光为基础的疗法当中。该技术具有极为广泛的应用前景,除光疗法外,还可以被用于生物成像和临床诊断,借助这些纳米粒子可以获得更清晰精确的癌细胞图像。目前该项目已经获得了来自新加坡A*STAR研究所和新加坡国家研究基金的资助,下一步该团队还将借此技术开发出用于快速诊断的试剂盒。
  • 紫外可见光谱分析仪——为化学与生物化学实验带来快速、准确且可靠的数据分析
    SE-3607紫外可见光谱分析仪是博源光电基于自主研发的光谱分析技术为PASCO公司全新打造的重磅产品。它是一款UV-VIS宽波长范围且易于使用的紫外可见光谱仪,可为化学和生物化学在实验教学中提供快速,准确和性能可靠的常规分析。借助USB通讯和跨平台的光谱分析软件,UV-VIS紫外可见光谱仪改善了实验室成员之间的协作方式,使其在平板电脑,iPad和Chromebook上分析从电脑上采集的数据成为了可能。石英光纤等附件可用于扩展光谱仪的功能,从而可用于测量发射光谱,各类光源或激光器。特征• 测量范围:180nm - 1050nm• 直观跨平台的软件操作• 软件内置常规分析工具• 自动切换亮暗,一键式校准• 清晰的标记指示比色皿的正确放置应用• 溶液浓度的测定• 鉴定未知物质• 测量反应速率或衰减速率• 比色法(例如BCA,Bradford,Lowry)• 合成化合物的纯度测试• 平衡常数的确定• 摩尔吸收系数的测定• 品质测试(例如,发酵培养基,食品掺假,品质保证水平)光谱仪经过严格设计,可在快节奏的实验教学中提供最佳性能• 结构紧凑,体积适中• 高灵敏度CMOS检测器可加快分析速度• 内部排水结构设计,减少液体滴落和溢出造成损坏的风险• 隔离式光路结构,可确保随时间变化的精度(±1 nm)• USB连接及跨平台,支持实验室设备和学生自带设备• 兼容常规长度为1厘米的方形和圆形比色皿在可见光,UVA,UVB和UVC区域的提供宽波长范围检测,为常规应用提供了出色的独立解决方案• 吸光度动态变化• 纯化蛋白质分析• 平衡常数的测定• 核酸纯度测试• DNA和RNA的检测• 分析提取或合成的化合物• 核酸浓度的测定• 用于蛋白质定量的比色测定法(例如Bradford,BCA,Lowry)• 分光光度法测定化学和生化化合物光谱仪集成了易于使用的光谱仪软件该免费软件与大多数学生设备兼容,使实验组可以轻松快速地共享和查看其数据。 跨平台光谱分析软件还可以作为免费的功能齐全的应用程序使用,它具有以下功能,从而提高了分析效率:• 易于使用的菜单导航• 自动切换亮暗,一键式校准• 自动显示和存储样品数据• 进行扫描平均和数据平滑• 直观的数据重命名以优化数据跟踪• 光谱图将可见光的波长与颜色相关联• 内置的Beer-Lambert定律与线性拟合用于测定浓度• 可打印光谱和数据图• 将数据导出为.csv文件或.png屏幕截图,以便在Excel,SPARKvue或Capstone软件中进行进一步分析软件包含四种预置的分析模式吸光度分析模式使用“吸光度分析模式”对溶解在乙醇中的合成乙酰水杨酸样品进行分析。样品的吸收光谱表明样品在237nm 和313 nm处有较强的吸收光谱。使用“吸光度分析模式”可获得合成的乙酰水杨酸样品的吸收光谱。 浓度分析模式:浓度与吸光度(Beer-Lambert定律)使用“浓度分析模式”中的Beer-Lambert定律确定纯化蛋白的浓度。在“吸光度分析模式”屏幕中选择目标波长后,分析了五种已知浓度的蛋白质标准品(BSA)。应用线性拟合以创建标准曲线,并且测定未知蛋白质的浓度确定为0.215 mmol / L。使用Beer-Lambert定律在“浓度与吸光度”显示中确定纯化蛋白的浓度。时间分析模式:时间与吸光度(动态分析)使用“时间分析模式”随时间测量酚酞在NaOH中的褪色。对于具有不同浓度的NaOH的样品,随时间测量与酚酞相关的波长的吸光度。 下面提供了包含0.3M NaOH的酚酞样品的结果。使用“时间分析模式”随时间测量酚酞在NaOH中的褪色。光分析模式:波长与光强附加的石英光纤套件用于分析紫外可见光谱中各种光谱源的强度。氦元素光谱在下面使用“光分析模式”显示。可以将采集到的光谱(例如上面的氦光谱)与“光分析模式”屏幕中的预加载参考光谱进行比较。了解更多的产品详情和资讯信息,请登陆博光商城www.brolight.cn
  • 微型光谱仪的结构解析
    光谱仪究其实质是一个“分光”仪器,现在有几种方式来实现分光功能。主流的方式是用光栅作为色散部件,将不同波长的光在空间上分开,用阵列探测器接收并输出光谱。另一种方式是用干涉仪调制入射光,用单元探测器接收被调制了的光,并输出光强随时间变化的曲线,再用傅里叶变换还原光谱,这就是傅里叶光谱仪。  由于在UV-VIS-NIR波段,硅CCD, CMOS阵列的工艺成熟,性价比好,再加上无移动部件,可靠性好,因此,几乎无一例外地使用光栅色散,阵列探测器检测的方式。只是在波长大于900nm的近红外波段,硅材料实在无法胜任,才采用InGaAs线列探测器,但是,至少在现阶段InGaAs线列探测器还是太贵,于是才有人尝试采用傅里叶光谱技术,转动光栅技术,美国德州仪器公司的DLP(Digital Light Procession)技术,其核心是用MEMS技术制造一个微镜陈列,可以用集成电路芯片组驱动每一个微镜的方向,这样就可以用单元InGaAs探测器,使近红外波段的微型光谱仪成本下降。另一种思路是怎么把光谱仪做得更小,更便宜,干脆不用光栅分光,虽然性能不一定那么好,但是对于有些应用也许就足够了,这基本上就是用滤光片加线列探测器的方法。  就采用光栅分光技术的微型光谱仪而言,其性能主要决定于三个方面,光学设计,光栅的选择,探测器的选用。  光学设计又与采用的光栅种类有关,现用的光栅有反射光栅和透射全息光栅两大类,采用不同光栅的光谱仪光学设计方案有所不同。现在的主流是反射光栅,这是由于制造工艺相对成熟,因此价格也相对低一些的原因,采用反射光栅,又要做得体积小,采用折叠光路的设计就很自然了,因此,交叉光路Czerny-Turner 结构(Crossed Czerny-Turner)成为市场最流行的设计 另一类是透射全息光栅,它的主要优点是光栅效率高,导致光学系统的光通量大,对于一些测量比较微弱的光的应用,或者快速动态过程分析,不允许长的积分时间,就倾向于选择透射光栅,当然,价格相对会贵一些。  以下我们就分析典型的交叉光路的Czerny-Turner 结构光谱仪(如图所示)。图 典型的交叉光路Czerny-Turner光谱仪结构。1为SMA 905接头,2为入射狭缝,3为长通滤光片(可选),4为准直反射镜,5为反射光栅,6为汇聚反射镜,7为柱形汇聚透镜(可选),8阵列探测器,9为线性可变滤光片阻挡高阶衍射光进入探测器,10为探测器的石英玻璃窗口,取代普通BK7玻璃窗口,用于工作在小于340nm的紫外波段光谱仪(可选)  -用光纤将待测光束通过标准的SMA905接头接入光谱仪。  -待测光束通过狭缝进入光谱仪,狭缝就是成像系统中的“物”,通常为矩形,根据应用的要求,狭缝的宽度可选,较宽的狭缝允许更多的光子进入光学系统,即系统的光通量较大,但这是以损失分辨率为代价。典型的狭缝宽度在5um-200um之间,高度为1mm。  -从狭缝出射的光是发散的,我们希望入射光束的传播方向是可控的,不要散射到不该去的地方,导致杂散光太大,通过准直光学部件,通常是反射镜,将其变为平行光束。  -光栅作为色散元件:这是对光谱仪性能有决定性影响的元件,不同波长的光被衍射到空间不同的方向。光栅的参数包括刻线密度,闪耀角度等,都会影响到光谱仪的性能指标,包括分辨率,波长范围,光栅效率曲线等。  -反射镜作为光束汇聚器件,将光栅分光后不同波长狭缝的“像”汇聚到阵列探测器不同的像元上。每个像元会接收到波长范围很窄的光子(15 nm to 0.02 nm,取决于光谱仪的结构)  众所周知,狭缝的宽度会影响到光谱仪的分辨率和响应率,  -探测器阵列:探测器是实现光电转换的重要器件。线阵探测器上的每一个象元的读出数据对应于一个特定的波长范围,在紫外,可见光,短波近红外波段,硅CCD是目前使用最多的探测器,其性价比最好,探测器本身的噪声对光谱仪信噪比的影响。只有在900nm-2500nm的近红外波段才使用InGaAs线列探测器。  -模-数转换电路ADC (Analog-to-Digital Converter):探测器读出电路给出的是电压模拟信号,通过ADC把模拟信号转换为数字信号,将每个像元输出的电压转换为一个特定的数字,这个读数被称为“counts”  ADC器件性能的重要指标是它输出的数字是用多少位二进制数字来表示。一个12位的模数转换电路可以将满量程光强度用0-4096(212)个counts来表示。相应的,同样的满量程光强度,如果用16位的模数转换电路其输出则是用0-65535(216)个counts来表示。由此可见ADC器件的位数反映了光谱仪在垂直方向的“分辨率“。(如图xxx所示)ADC的位数越高其输出的读数就可以越”准确“地描述光谱的强度。  因此,对于一个采用2048个像元的线列探测器和12位模数转换器件的光谱仪,每条光谱曲线会输出2048个波长和对应光强的数据对,每个光强的数据用一个12位数字表示。这些数据是光谱的原始数据。图 ADC的位数和垂直方向“分辨率“的关系示意图  -光谱仪内还包括以微处理器为中心的一些电路,主要包含两部分功能。一方面,产生光谱仪CCD或CMOS探测器所需的控制时序,使探测器按用户设定的工作模式工作 另一方面,实现与PC机的通信,如从探测器中读出数据并传送到PC端。这些电路的性能,譬如,模拟电路的噪声水平、处理器的主频、缓存的大小和通信接口的速度,都会对光谱仪的整体性能有重要影响。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制