当前位置: 仪器信息网 > 行业主题 > >

卤代物和苯系物混标地表水

仪器信息网卤代物和苯系物混标地表水专题为您提供2024年最新卤代物和苯系物混标地表水价格报价、厂家品牌的相关信息, 包括卤代物和苯系物混标地表水参数、型号等,不管是国产,还是进口品牌的卤代物和苯系物混标地表水您都可以在这里找到。 除此之外,仪器信息网还免费为您整合卤代物和苯系物混标地表水相关的耗材配件、试剂标物,还有卤代物和苯系物混标地表水相关的最新资讯、资料,以及卤代物和苯系物混标地表水相关的解决方案。

卤代物和苯系物混标地表水相关的资讯

  • 25种VOC混标,24种SVOC,7种有机磷/地表水GB3838-2002定制
    国家环保总局和国家质量监督检验检疫总局制定的地表水环境质量标准GB3838-2002 于2002 年4 月28 日通过,2002 年6月1 日正式实施。 其中表三特定80项一直没有针对性强的定制混标,我公司根据实际情况,分别和国外专业标样生产商定制三种有机物混标,分别是挥发性有机物前35项,半挥发性有机物前35项以及有机磷7项定制混标,由于针对性强,非常适合我国现有地表水有机项目检测。并且我们根据实际情况提供这些混标的内标和配套耗材解决方案。 上海澜锐公司根据实际情况和国外订制一批大量的内标及替代物,在保证质量的前提下,把价格降到最低,希望对我们的环境工作者有所帮助,所有产品均为进口有证标液,通过ISO:17025和ISO:9001认证,保证有效性和可溯源性。 序号 名称 规格 促销价格 备注 LR-VOC-001 25种VOC混标 100ppm甲醇 850 地表水前35项VOC混标 LR-SVOC-002 24种SVOC混标 500ppm甲苯 950 地表水前35项SVOC混标 LR-OP-003 7种有机磷农药 100ppm甲醇 620 地表水80项有机磷混标 LR-S-001 氟代苯 2000ppm甲醇 165 挥发性有机物内标 LR-S-002 1,2-二氯苯-d4 2000ppm甲醇 165 挥发性有机物替代物 LR-S-003 4-溴氟苯 2000ppm甲醇 165 挥发性有机物替代物 SVOC-内标 十氯联苯 200ppm正己烷 245 SVOC-内标混标 菲-d10、萘-d8、苊-10、菲-10、屈-d12 、氘代对二氯苯 1000-2000ppm二氯甲烷溶剂 450 SVOC-替代物混标 苯酚-d6、2-氟苯酚,2,4,6-三溴苯、硝基苯-d5、2-氟联苯、三联苯-d14 2000ppm二氯甲烷溶剂 680 多环芳烃内标 十氟联苯 2000ppm二氯甲烷溶剂 245 混标内容 LR-VOC-001 三氯甲烷;四氯化碳;三溴甲烷;二氯甲烷;1.2&mdash 二氯乙烷;环氧氯丙烷500ppm;氯乙烯;1,1&mdash 二氯乙烯;1,2&mdash 二氯乙烯;三氯乙烯;四氯乙烯;氯丁二烯;六氯丁二烯;苯乙烯;苯;甲苯;乙苯;二甲苯①;异丙苯;氯苯;1,2&mdash 二氯苯;1,4&mdash 二氯苯 LR-SVOC-002 三氯苯②;四氯苯③;六氯苯;硝基苯;二硝基苯④;2,4&mdash 二硝基甲苯;2,4,6&mdash 三硝基甲苯;硝基氯苯⑤;2,4&mdash 二硝基氯苯;2,4&mdash 一氯苯酚;2,4,6&mdash 三氯苯酚;五氯酚;苯胺;邻苯二甲酸二丁酯;邻苯二甲酸二辛酯;苯并(a)芘 LR-OP-003 甲基对硫磷 对硫磷 马拉硫磷 乐果 敌敌畏 敌百虫 内吸磷 我公司可以提供GB3838-2002其它所有标样,有任何疑问请随时与我们公司联系。 24小时技术服务电话:13370063777 QQ:443824598 上海澜锐仪器科技有限公司 地址:上海莘凌路285号 电话:0086 21 25902666,25902777,29415777
  • 迪马科技现货供应地表水污染物检测用混标
    为贯彻《环境保护法》和《水污染防治法》,加强地表水环境管理,防治水环境污染,保障人体健康,国家环境总局批准并联合国家质量监督检验检疫总局发布并实施《地表水环境质量标准(GB3838-2002)》。 这一标准项目共计109 项,对地表水的各种水域水源的检测提出了明确要求。     我公司为满足您日常检测工作的需求,方便您的使用,特针对本标准的检测要求专门定制了两套原装进口的半挥发性和挥发性有机物混标,现货供应并提供COA证书,即:#SP-DC01Z (24 种SVOC 混标)和#SP-DC02Z (25 种VOC 混标)。   有关产品订货的相关信息,欢迎您登陆我司网站www.dikma.com.cn查看或直接致电我司北京总部及驻各地办事机构咨询。
  • 新地表水环境质量标准 GB3838-2002 定制混标标样
    地表水环境质量标准 GB3838-2002 定制混标标样 我们公司一直致力于地表水环境质量标准 GB3838-2002 定制混标,并且根据实际情况不断改进,在原来有机物前35项定制二种有机物混标基上,增加了6种有机磷(替代原有机磷7种),12种氯苯类混标,10种硝基苯类混标。非常适合我国现有地表水有机项目检测。 混标 组分 规格 备注 12种氯苯类订制混标 1,2- 二氯苯;1,4- 二氯苯;1,3- 二氯苯;氯苯;1,2,3- 三氯苯;1,2,4- 三氯苯;1,3,5- 三氯苯;1,2,3,4- 四氯苯;1,2,3,5- 四氯苯;1,2,4,5- 四氯苯;五氯苯;六氯苯(100ppm) 200ppm甲醇溶剂*1ml 地表水氯苯类混标 10种硝基苯类混标 2,4-二硝基氯苯;2,4,6-三硝基甲苯;2,4-二硝基甲苯;邻硝基氯苯;间硝基氯苯;对硝基氯苯;邻二硝基苯;间二硝基苯;对二硝基苯;硝基苯; 2000ppm甲醇溶剂*1ml 6种有机磷订制混标 甲基对硫磷 对硫磷 马拉硫磷 乐果 敌敌畏 内吸磷 100ppm甲醇溶剂*1ml 原有机磷7种组分中敌百虫组分干扰敌敌畏测定,敌百虫本身物质不稳定,剔除敌百虫组分 25种VOC订制混标 地表水前35项挥发性 100ppm甲醇溶剂*1ml 地表水前35项挥发性 24种SVOC订制混标 地表水前35项半挥发性 500ppm甲苯溶剂*1ml 地表水前35项半挥发性 8种有机氯订制混标 4,4' -DDD、4,4' -DDE、4,4' -DDT、2,4' -DDT、&alpha -HCH、&beta -HCH、&gamma -HCH、&delta -HCH 50ppm甲苯甲醇溶剂*1ml 国产 8种苯系物混合标液 苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、苯乙烯、异丙苯 1000ppm甲醇 进口订制 除标注国产以为,均为进口订制混标,保证可溯源性。 我公司可以提供GB3838-2002其它所有标样,有任何疑问请随时与我们公司联系。
  • 地表水新标即将实施!污染物检测有新变化?
    随着“自动监测为主、手工监测为辅”监测模式的推行,我国地表水环境监测能力与自动预警水平持续提升,配套的多项地表水监测标准得到修订。2022年5月,生态环境部发布《地表水环境质量监测技术规范》(HJ 91.2-2022),该标准适用于江河、湖泊、水库和渠道等地表水的水环境质量手工监测,支撑《地表水环境质量标准》(GB 3838-2002)实施,并将于2022年8月1日实施。修订了什么?《地表水环境质量监测技术规范》(HJ 91.2-2022)为首次修订,适用于江河、湖泊、水库和渠道等地表水的水环境质量手工监测。与《地表水和污水监测技术规范》(HJ/T 91-2002)相比,本标准明确了总磷监测的现场前处理方法,完善了布点与采样、监测项目与分析方法、监测数据处理、质量保证与质量控制等相关内容,进一步规范地表水环境质量手工监测工作,支撑《地表水环境质量标准》(GB 3838-2002)实施。自动监测市场,再现“新空间”2019 年 5 月,生态环境部印发《地级及以 上城市国家地表水考核断面水环境质量排名方案(试行)》,提出为充分发挥城市国家地表 水考核断面水环境质量排名的倒逼作用,对设置有国家地表水考核断面的所有地级及以上城市水环境治理进行排名。十四五以来,自动为主、手工为辅的融合监测模式更是在全国落地开花。《“十四五”生态环境监测规划》提出开展自动为主、手工为辅的融合监测,以支撑全国水环境质量评价、排名与考核,精准、及时的自动监测数据将作用于各城市排名。与此同时,《生态环境 监测规划纲要(2020-2035 年)》提出建立 9+N 自动监测能力要求,即在常规 9 参数基 础上,增加化学需氧量、五日生化需氧量、阴阳离子、重金属、有机物、水生态综合毒性 等特征指标。不难看出,多方讯号显示水质在线监测仪器市场将迎来新增长。无论是手动监测,还是自动监测,若想精准检测数据,检测人员、仪器分析依然是关键!基于此,仪器信息网将于7月14日举办地表水检测分析技术网络研讨会,届时将邀请领域内权威专家出席,优秀厂商进行技术分享!点击链接报名:https://www.instrument.com.cn/webinar/meetings/surfacewater20220714/详细会议日程(持续更新中):报告时间报告方向报告嘉宾09:30--10:00《地表水环境质量监测技术规范》(HJ 91.2-2022)标准解读标准制定单位专家邀请中10:00--10:30待定吉天仪器10:30--11:00安捷伦质谱技术助力环境监测与保护杜伟安捷伦科技(中国)有限公司 液质应用工程师11:00--11:30微波消解-离子色谱法测定地表水中痕量总磷中国环境监测总站 业务主管/高级工程师14:00--14:30地表水自动监测技术难点解析钟声江苏省环境监测中心 高级工程师16:00--16:30待定孙娟江苏省南京环境监测中心 科室主任/高级工程师
  • 科普 | 污染源和地表水在线监测:氰化物和总氰化物有差别?
    朗石论坛Labsun Online提问者【求助】氰化物和总氰化物有区别吗?如果监测地表水,是监测总氰化物,还是氰化物呢?提问者【求助】我负责电镀厂的排口监测,这类污染源水质是监测氰化物还是总氰化物呢?朗石最近,有很多客户咨询氰化物和总氰化物的问题,关于两者的定义、存在形态以及其在地表水或污染源排口监测的区别,下面会一一介绍哦!1介绍氰化物是剧毒物质,可在生物体内产生氰化氢,使细胞呼吸受到麻痹引起窒息死亡;一般人一次口服0.1 g左右的氰化钾或氰化钠就会致死,当水体中的氰化物浓度达0.3~0.5 mg/L时,水中的鱼类及其他水生生物将死亡。2存在形态氰化物在水体中存在形态有氢氰酸、氢离子和络合态氰化物。一般来说,环境监测中的氰化物分为两种:总氰化物和氰化物(易释放氰化物)。总氰化物:包括全部简单氰化物和绝大部分络合氰化物,如锌氰络合物、铁氰络合物、镍氰络合物、铜氰络合物等(不包括钴氰络合物)。易释放氰化物:包括全部简单氰化物和锌氰络合物(不包括铁氰化物、亚铁氰化物、镍氰络合物、铜氰络合物、钴氰络合物等)。3水环境中氰化物监测及限值一般来说,在我国水环境监测中,地表水、地下水以及饮用水监测氰化物,污水和废水监测总氰化物。关于氰化物/总氰化物监测朗石公司致力于水质检测核心技术研发,通过技术创新解决客户难题,给客户带来更大价值。针对于地表水、地下水、饮用水以及污染源排口不同的监测需求,我司开发了氰化物自动在线监测仪和总氰化物自动在线监测仪两款产品,欢迎大家前来咨询!
  • 十四五地表水监测 新型污染物值得关注
    p   日前,生态环境部部长黄润秋主持召开部常务会议,审议并原则通过《“十四五”国家地表水监测及评价方案(试行)》以及《电子工业水污染物排放标准》《铸造工业大气污染物排放标准》等标准或标准修改单。 /p p   会议指出,国家地表水质量监测评价和信息发布,在客观反映全国地表水环境质量状况、落实地方政府水污染防治责任、支撑“水污染防治行动计划”目标考核、服务社会公众等方面发挥了重要作用。随着生态环境保护工作的深入推进,有必要进一步完善监测评价方式,优化监测资源配置,更好支撑精准治污、科学治污、依法治污。要客观确定“十四五”考核评价基数, span style=" color: rgb(255, 0, 0) " 推动由人工监测与自动监测并行向以自动监测为主过渡 /span ,缩短监测评价周期,降低运行成本,提高工作效率。要进一步优化地表水监测指标和评价方式, span style=" color: rgb(255, 0, 0) " 逐步在有条件的流域和地区探索开展新型污染物监测评估工作 /span 。要不断加强监测数据质量管理,确保数据“真、准、全”,客观真实反映水环境质量状况。要做好地表水环境质量信息公开工作,自觉接受社会监督,压实地方政府水污染防治责任。 /p p   会议强调,生态环境标准是生态环境管理最基本、最常用、最有效的手段之一,是开展环境监测执法和环境应急预警的依据和基础。开展大气、水和固体废物有关环境标准修订,既是中央改革办确定的年度改革任务,也是中央巡视反馈意见整改的重要举措。要坚持问题导向,加强环境基准研究,做好已有研究成果转化,不断提高标准制修订质量。要合理把握国家标准和地方环境标准之间的关系,鼓励地方因地制宜制定出台更加严格的环境保护标准,提高污染物排放管控要求。 span style=" color: rgb(255, 0, 0) " 要抓紧制定涉挥发性有机物、氮氧化物排放重点行业标准,为推进细颗粒物与臭氧协同控制提供有力支撑。要通过制定和完善相关标准,规范固废危废处理处置设施高水平建设和运行,加快补齐危废和医废集中处置能力短板,切实保障公众健康。 /span /p p   同时,11月10日,生态环境部又发布了《关于同意建设国家环境保护新型污染物环境健康影响评价重点实验室的函》,同意以上海市环境科学研究院、上海市疾病预防控制中心、上海交通大学为依托单位,建设国家环境保护新型污染物环境健康影响评价重点实验室(以下简称重点实验室)。 /p p   重点实验室建设任务是针对我国新型污染物环境与健康管理需要,开展我国新型污染物的检测与识别技术、生物毒性与生态风险、人体暴露特征与健康效应、削减与预警技术和健康风险干预策略等研究,为新型污染物环境健康风险管理提供科技支撑。并以重点实验室为学术交流与合作平台,培养创新型骨干人才和青年拔尖人才,构建我国新型污染物环境健康影响评价的研究平台和人才培养基地。 /p p   据悉,重点实验室建设期两年。按照《国家环境保护重点实验室管理办法》(环办科财〔2020〕24号)的有关规定,由上海市生态环境局加强对重点实验室建设的支持和指导,协调推动落实相关条件 由依托单位围绕《计划任务书》中提出的建设目标和建设内容,建立“开放、流动、联合、竞争”的运行模式,落实资金投入,按期完成重点实验室的各项建设任务。 /p p   就在11月17-18日,仪器信息网将举办“环境新型污染物检测”主题网络研讨会,邀请大气、水、土壤环境监测及检测领域的专家,针对饮用土壤抗生素检测、水中叶绿素检测、环境二噁英手动监测、环境超细颗粒物的识别及溯源等当下的热点及相关检测技术进行在线交流和探讨。 /p p   扫描下方二维码或点击链接报名即可报名参会: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/b624a44d-5172-4611-a75d-16574819bb31.jpg" title=" 报名二维码.jpg" alt=" 报名二维码.jpg" / /p p   报名链接: a href=" https://www.instrument.com.cn/webinar/meetings/XXWRW2020/" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn/webinar/meetings/XXWRW2020/ /span /a /p
  • 地表水重金属专项监测方案征求意见
    关于征求《地表水重金属专项监测方案》意见的通知   总站水字[2011]177号   内蒙古自治区、江苏省、浙江省、江西省、河南省、湖北省、湖南省、广东省、广西壮族自治区、四川省、云南省、陕西省、甘肃省、青海省、重庆市、贵州省环境监测中心(站):   为配合《重金属污染综合防治“十二五”规划》的实施,结合2011年6月在京召开的重金属专项监测研讨会的有关精神,我站编制了《地表水重金属专项监测方案》(征求意见稿)(详见附件)。方案中监测断面由各省环境监测中心(站)根据重点区域情况设置,同时总站增加了部分重点区域内的国控监测断面(含“锰三角”地区15个监测断面),共计299个。   现就《地表水重金属专项监测方案》向你站征求意见,同时,请你站补充监测断面表中相关断面的具体地理位置(表中指标项为“所在地区”具体到某县、某乡镇、某村)和经纬度(详见方案中表5)。请于8月21日前,将意见或建议电子版发送至总站水室邮箱(Email:water@cnemc.cn),纸质版请邮寄至总站水室。   根据安排,我站拟定于今年9月份正式开展地表水重金属专项监测工作,具体开展时间和工作安排,我站将另行通知。   联系人:姚志鹏 电话:010-84943091   附件:《地表水重金属专项监测方案》(征求意见稿)   二〇一一年八月五日   地表水重金属专项监测方案   (征求意见稿)   中国环境监测总站   二〇一一年八月   一、 目的   为配合《重金属污染综合防治“十二五”规划》(以下简称“规划”)的实施,结合重点地区、重点企业重金属排放状况,以全面、准确、客观地反映重点地区地表水重金属污染状况为目的,通过开展重点地区地表水重金属专项监测工作,及时发现重点地区地表水重金属污染状况和潜在风险,为重金属环境治理提供数据支持和技术支撑,制定本方案。   二、 监测范围和期限   监测范围主要是《重金属污染综合防治“十二五”规划》中重点省份(内蒙古自治区、江苏省、浙江省、江西省、河南省、湖北省、湖南省、广东省、广西壮族自治区、四川省、云南省、陕西省、甘肃省、青海省)的重点地区(名单见附表1)、“锰三角”地区和其他存在重金属污染风险的地区,同时增加重金属经常超标的国控地表水监测断面和饮用水源地断面。   地表水重金属专项监测工作,原则上由地市级环境监测站承担监测任务,结合《重金属污染综合防治“十二五”规划》开展为期5年的专项监测工作。   三、 监测断面设置原则   监测断面(点位)设置原则上采用现有国控、省控、市控断面,各省环境监测中心(站)结合本辖区内重点区域污染源排放情况设置监测断面(点位),主要原则如下:   1、重点区域内受现有或潜在重金属污染风险的主要干流、湖(库)体及一级支流的的国控、省控、市控断面   2、重点区域内受重金属污染潜在影响的河流型或湖库型的集中式饮用水源地   3、重点区域内受重金属重点污染源影响的河流设置监测断面。   4、将“锰三角”监测断面纳入到重金属专项监测之中   四、 监测指标   开展重金属监测工作前,各承担重金属监测工作的单位每年开展一次重金属全分析监测工作,筛选重金属特征污染物,作为当年度的选测指标。   1、监测指标   监测指标包括必测和选测指标,必测指标为:铅、汞、镉、铬(六价)、砷 选测指标:铜、锌、硒、镍、钒、铊、锰、钴、锑或其他当地特征污染物。   2、每年在枯水期开展一次重金属全分析工作,监测指标为:铅、汞、镉、铬(六价)、砷、铜、锌、硒、镍、钒、铊、锰、钴、锑及当地特征污染物。   3、底泥监测,每年开展一次底泥全分析监测,监测指标与水体相同,监测结果不参与评价,作为水体中重金属含量的参考。   五、 监测方法   1.分析方法   我国重金属监测的标准分析方法主要以分光光度法和原子吸收分光光度法为主。由于我国环境监测仪器的分析能力近年来有较大提高,因此本工作主要推荐使用国内应用较多的原子吸收法、原子荧光法以及较先进的电感耦合等离子体发射光谱法(ICP-AES)、电感耦合等离子体-质谱法(ICP-MS)作为分析方法。   当选择原子荧光法、原子吸收法、电感耦合等离子体发射光谱法(ICP-AES)分析地表水中重金属指标时,可依据我国水环境中重金属监测常用标准分析方法进行(表1、表2)。由于我国目前缺少电感耦合等离子体-质谱法(ICP-MS)的现行标准分析方法,故选择电感耦合等离子体-质谱法分析地表水中重金属指标时,本监测方案推荐统一采用EPA标准分析方法 200.8(1994)《Determination Of Trace Elements In Waters And Wastes By Inductively Coupled Plasma - Mass Spectrometry》(电感耦合等离子体-质谱法测定水和废物中痕量元素)。   必测与选测重金属指标的推荐标准分析方法见详见表1、表2。   表1 5种必测重金属指标推荐标准分析方法 监测项目 监测方法 方法来源 铅 螯合萃取-火焰原子吸收分光光度法 GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法 石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 汞 冷原子吸收分光光度法 HJ 597-2011水质 总汞的测定 冷原子吸收分光光度法 冷原子荧光法 HJ/T 341-2007 水质 汞的测定 冷原子荧光法(试行) 原子荧光法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 镉 螯合萃取-火焰原子吸收分光光度法 GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法 石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 铬(六价) 二苯碳酰二肼分光光度法 GB7467-87水质 六价铬的测定 二苯碳酰二肼分光光度法 砷 氢化物发生 原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 原子荧光法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 表2 9种选测重金属指标推荐标准分析方法 监测项目 监测方法 方法来源 铜 螯合萃取-火焰原子吸收分光光度法 GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法 石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 锌 火焰原子吸收分光光度法 GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 硒 石墨炉原子吸收分光光度法 GB/T 15505-1995水质 硒的测定 石墨炉原子吸收分光光度法 原子荧光法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 镍 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 钒 石墨炉原子吸收分光光度法 GB/T 14673-1993水质 钒的测定 石墨炉原子吸收分光光度法 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 铊 萃取石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 锰 火焰原子吸收分光光度法 GB 11911-89水质 铁、锰的测定 火焰原子吸收分光光度法 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 钴 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 锑 原子荧光法 水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS) EPA 200.8   2.前处理方法   2.1 样品采集   样品采集后均现场沉降30分钟,取上清液保存,24小时内回实验室分析。如现场不具备沉降条件的,可在24小时内回实验室沉降30分钟后取上清液测定。24小时内不能及时分析的,需酸化保存。   2.2 样品制备   样品均按照水和废水监测分析方法(第四版增补版)中前处理要求(除非国标有特殊规定要求),消解后上仪器进行测定。所有前处理消解过程中均不加氢氟酸。选用ICP-MS方法分析地表水中重金属元素时,前处理过程按照EPA200.8方法中相关要求进行消解处理,详见表3。   表3 ICP-AES与ICP-MS分析样品的前处理方法 监测项目 监测方法 前处理方法 方法来源 铅、镉、砷、铜、锌、镍、钒、锰、钴 电感耦合等离子体发射光谱法(ICP-AES) 取一定体积的均匀样品(自然沉降30min取上层非沉降部分),加入(1+1)硝酸若干毫升(视取样体积而定,通常每100mL样品加5.0mL硝酸)置于电热板上加热消解,确保溶液不沸腾,缓慢加热至近干取下冷却,反复进行这一过程,直到试样溶液颜色变浅或稳定不变。冷却后加入硝酸若干毫升,再加入少量水,置电热板上继续加热使残渣溶解。冷却后用水定容至原取样体积,使溶液保持5%的硝酸酸度。 水和废水监测分析方法(第四版增补版) 铅、汞、镉、砷、铜、锌、硒、镍、钒、铊、锰、钴、锑 电感耦合等离子体-质谱法(ICP-MS) 前处理时,将水样摇匀,量取(100±1)ml水样于250ml烧杯中。加入2ml(1+1)硝酸和1.0ml(1+1)盐酸于上述烧杯中。电热板(置于通风柜中)上加热消解,加热温度不得高于85℃。消解时,烧杯应盖上带架的表面皿,或采取其他措施,保证样品不受通风柜周边的环境污染。在85℃持续加热,直至样品蒸发至20ml左右。在烧杯口盖上表面皿,以减少过多的蒸发,并保持轻微持续回流30min。待样品冷却后,将其全部转移至50ml容量瓶或A级具塞比色管中,用试剂水定容,加盖,摇匀保存。若消解液中存在一些不溶物可静置过夜或离心以获得澄清液。样品在上机前,应调节水样中氯离子的浓度,取20ml已制备的样品于50ml容量瓶中,用试剂水定容,混匀若溶液中溶解性固体含量>0.2%,需要进一步稀释,以防固体颗粒堵塞采样锥和截取锥。若执行的是直接加入程序,内标在上机前即加入样品中。因为无法估计不同基体对被稀释溶液稳定性的影响,所以一旦样品前处理完毕,应尽快进行分析。 EPA 200.8   3.方法选择原则   3.1各承担重金属监测工作单位依据现有实验室仪器条件,选择相应的重金属标准分析方法(表1,表2),具备ICP-MS与ICP-AES的监测单位可优先选用推荐的ICP-MS与ICP-AES标准分析方法,监测项目和前处理步骤见表3及方法文本。   3.2 若ICP-AES、火焰原子吸收分光光度法等方法检出限高于或接近地表水环境质量标准《GB3838-2002》中该重金属标准限值时,应选择检出限较低,灵敏度较高的石墨炉原子吸收分光光度法或ICP-MS方法。   3.3 若承担监测的单位不具备实验室仪器条件的,也可选用分光光度方法(国标)进行分析。   六、 监测时间频次   手工监测:每月1—10日 逢法定假日监测时间可后延,最迟不超过每月15日。每月开展一次。   重金属全分析在每年枯水期开展一次。   七、 数据报送及报告编制   各有关环境监测站20日前向相关省(自治区)环境监测中心(站)报送水质监测数据。数据报送参照附表3、4,各省(自治区)环境监测中心(站)审核后,在每月25日前暂以excel格式数据通过FTP(地址ftp://11.200.0.101)报送中国环境监测总站水室。“锰三角”地区监测结果按照原有的方式报送。   重金属全分析结果通过FTP报送总站水室。   八、 数据报送格式   报送监测数据时,若监测值低于检测限,在检测限后加“L”,未监测项目填写“-1”,超标项目由相关监测站组织核查,并向总站报送超标原因分析,数据报送格式表见附表4、5。   九、 质量控制和保证   监测数据实行三级审核制度,省站对报送的监测结果负责。   质量保证按照《地表水和污水监测技术及规范》(HJ/T 91-2002)及《环境水质监测质量保证手册》(第二版)有关要求执行。   十、 附表   表1:重金属污染重点区域 序号 省份 重点区域 1 内蒙古 巴彦淖尔乌拉特后旗 2 赤峰巴林左旗 3 赤峰克什克腾旗 4江苏 无锡惠山区 5 泰州姜堰市 6 泰州靖江市 7 泰州海陵区 8 浙江 温州鹿城区 9 温州平阳县 10 宁波鄞州区 11 宁波余姚市 12 嘉兴海宁市 13 台州玉环县 14 湖州长兴县 15 江西 赣州大余县 16 赣州南康市 17 上饶市上饶县 18 上饶弋阳县 19 赣州章贡区-赣县 20 南昌进贤县 21 赣州崇义县 22 河南 焦作济源市 23 三门峡灵宝市 24 安阳龙安区 25 洛阳栾川县 26 焦作孟州市 27 三门峡义马市 28 周口项城市 29 湖北 黄石市区 30 黄石大冶市及周边 31 襄樊谷城县 32 十堰郧县 33 荆门钟祥市 34 孝感大悟县 35 湖南 株洲清水塘及周边地区 36 湘潭竹埠港及周边地区 37 郴州三十六湾及周边地区 38 长沙七宝山地区 39 娄底冷水江地区 40 岳阳原桃林铅锌矿及周边地区 41 意义按桃江安化涉砷锑地区 42怀化沅陵、辰溪、溆浦等涉砷镉地区 43 邵阳邵东县 44 永州东安县 45 张家界慈利县镍钼矿开采区 46 常德石门县雄黄矿地区 47 广东 韶关乐昌市 48 韶关浈江区 49 清远清城区 50 珠三角电镀区 51 韶关大宝山矿区及周边区域 52 韶关凡口铅锌矿周边 53 汕头潮阳区 54 广西 河池金城江区 55 河池南丹县 56 河池环江县 57 四川 凉山会东县 58 凉山会理县 59 德阳什邡市 60 凉山西昌县 61 内江隆昌县 62 宜宾翠屏区 63 绵阳安县 64 云南 昆明东川区 65 红河个旧市 66 曲靖会泽县 67 怒江兰坪县 68 文山马关县 69 昆明安宁市 70 曲靖陆良县 71 保山腾冲县 72 红河金平县 73 玉溪易门县 74 陕西 安康旬阳县 75 宝鸡凤县 76 渭南潼关县 77 宝鸡凤翔县 78 商洛商州区 79 汉中略阳县 80 汉中宁强县 81 商洛洛南县 82 商洛镇安县 83 宝鸡陈仓区 84 甘肃 白银市 85 金昌金川区 86 陇南成县 87 酒泉瓜洲 88 陇南西和县 89 陇南徽县 90 嘉峪关甘肃矿区 91 酒泉玉门市 92 酒泉肃北县 93 西宁湟中县 94 海西格尔木市 95 西宁城东区 96 西宁大通县 97 吴中青铜峡市 98 锰三角地区 贵州松桃县、重庆秀山县、湖南花垣县   表5 重金属监测断面表(略)   表6 锰三角地区监测断面表(略)   表7 河流监测断面数据报送格式表(略)   表8 湖库监测点位数据报送格式表(略)
  • 哈希公司地表水监测解决方案:为地表水安全助力
    近期上海黄浦江松江段水域大量漂浮死猪的情况,引起了人们对饮用水源安全的思考和讨论,地表水是人类宝贵的水源,地表水的质量与人民生活密切相关。然而,层出不穷的地表水污染事件使得公众对水质监控越来越关心。如何确保水质安全以及如何对地表水源实时监测等技术问题也成为了环保业内人士热点讨论的话题。 哈希公司作为水质监测业内一员,一直都对地表水源监测技术的开发投入了相当大的资源。哈希地表水在线监测解决方案,可以为客户提供快速、准确的实时水质监控数据。 地表水常规五参数:提供pH,溶解氧,电导率,浊度,水温等常规水质参数的检测。 蓝色卫士:可根据客户需求最多同时监控8种水质参数,并可自动根据当地水源状况监测出突发的水质变化情况并报警。在添加了客户定制数据库的情况下,蓝色卫士系统还可以根据数据库内容分析水质变化的原因,为相关部门决策及快速反应提供重要的参考依据。 湖泊、水库等浮标式水质检测系统 DREL2800系列便携式水质分析实验室:全面的便携式快速水质分析系统。适用于野外各种环境水质测试要求,也适用于突发事件的快速水质参数检测。 Eclox便携式水质毒性分析仪:快速分析水质综合毒性。克服了传统发光细菌法的使用限制,操作更加简单方便,可以在各种环境下快速提供水质毒性参考。可用于常规检测或突发事件的处置。 document.write("") xno = xno+1 更多信息可以致电哈希公司客户热线电话了解:400-686-8899 / 800-840-6026 更多详情请点击
  • 水纹预警溯源技术助力地表水水质监测
    p   地表水的保护一直是各地环保工作的重点,而我国南方地区因人口密集、经济发达,污染物排放总量居高不下,再加上复杂的水网地形,保护难度更大。近年来,地表水保护有了长足进步。以江苏省为例,在饮用水源地、国控点等地表水重点监控断面已实现自动监测的全覆盖,可实时监测pH、溶解氧、氨氮、总磷、总氮、高锰酸盐指数、蓝绿藻等常规指标。地表水应急预警监测实现了常态化。但常规有机物监测指标(如高锰酸盐指数等)只反映总量,不反映有机物毒性和来源。,所以当前水体管理存在着入侵污染物的性质说不清、变化原因说不透,污染源头更难抓的突出问题。由于地表水污染事件频发,监控污水偷排以及诊断污染来源已成为当前预警监测亟待解决的重点和难点,迫切需要一种新型的在线监测技术。 /p p   三维荧光光谱检测水体中的有机污染物是近年新兴的一项技术,但目前多数研究还只用于监测水体中的有机物浓度,未发现被用来识别污染来源的报道。清华大学研发了污染预警溯源技术,可用于水体水质异常的快速预警以及污染类型的快速诊断。苏州环境监测中心基于该项技术对南方某水体开展在线监测应用,研究了水体的荧光水纹特征、强度规律及荧光强度与常规监测指标的关系,并针对研究期间检测到的水质异常现象进行了污染溯源分析。 /p p   水体中天然有机物的主要成分(如腐殖质、蛋白质以及叶绿素等)都有特征荧光。污水也含有很多FOM,如油脂、蛋白质、表面活性剂、腐殖质、维生素、酚类等芳香族化合物、药品残余及其代谢产物等。由于每种FOM都有特定发光位置,大部分工业和生活污水的水纹也各不相同,可作为污染类型的判断依据。目前,清华大学已将该技术仪器化。该仪器能在15—30 min识别污染类型并发出警报。目前可识别长三角地区的10种主要废水,包括生活污水、印染废水、电子废水、石化废水、焦化废水、造纸废水和金属制造废水等。通常情况下,仪器判定的与已知污染的相似度大于0.9,就可以认定水样受到该种污水的污染。 /p p   水纹预警溯源技术及其在线仪器的应用,增强了水质自动监测站的预警监测能力。预警溯源仪已具备了良好的预警和溯源功能,成功地捕捉了水质异常并确定了污染类型,为环境监管提供了有力的技术支撑。 /p
  • 部分地表水自动站遭遇开工难 征地和资金成拦路虎
    p    strong 造价百万的环保小工程 何以遭遇大面积“开工难”? /strong /p p   经历连日的气温攀升,到4月2日这一天,湖南衡阳市的最高温度已经接近30摄氏度,让人感受到夏日一般逼人的暑热。当《每日经济新闻》记者赶到湘江沿江风光带上的一个工地时,十余名工人正挥汗如雨忙碌地赶着工期,一座两层楼的房子轮廓已基本成形。 /p p   此刻胡敏正站在工地旁边,时不时会抬手擦一下额头上的汗珠,一旁的工地负责人正向他汇报工程的进展和现场情况。胡敏可不是这个施工项目的“包工头”或者设计单位的监理师,不过作为衡阳市环保局石鼓分局的局长,频繁地前往工地已经成为他近一段时间以来最重要的工作之一,其中的缘由很简单——正建设中的国家地表水自动站工期已经迫在眉睫。 /p p   根据生态环境部的要求,今年7月底前,应该基本完成水质自动站建设。作为衡阳市两个在建的水站之一,当地政府意识到,水站建设的工期极为紧张,每一天都不敢放松。 /p p   实际上,衡阳的水站建设还算走在前列——截至今年3月底,距设立的时限只有4个月,全国仍有171个水站还未开工。水站建设为何进展不顺?工程投入仅约100万元的“小项目”到底存在什么样的“症结”?4月2日~4日,受生态环境部委托,《每日经济新闻》记者来到湖南衡阳市,对当地水质自动监测站建设经验进行调查采访,并试图以此为样本,剖析水站建设背后的博弈。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/20243223-545b-4f39-a598-b03de089f292.jpg" title=" 20180413083352513.jpg" / /p p style=" text-align: center " strong 小项目经历繁杂手续需协调十余个部门 /strong /p p   在衡阳市蒸水入湘江口的地方,以著名的石鼓书院为首的景观构成了沿江重要的景点,绿树成荫,其间“藏着”一座不起眼的二层建筑,走近了立刻就能看到门口悬挂着“湖南省衡阳市蒸水入湘江口水质自动站”的蓝底白字站牌。 /p p   水站占地面积100多平方米,分两层,每层建筑面积80多平方米,分为仪器房、质控室、值班室三部分,水站建设共花费110万元(不包括监测仪器)。 /p p   推进地表水监测体系改革,实施国家地表水环境质量监测事权上收,是生态文明体制改革的重要基础工程。在这一背景下,如期建成水站成为生态环境部要求各地立下的“军令状”。 /p p   衡阳市的担子自然落到了市环保局局长刘晓利的肩上,水站建设的实施方案、选址、资金、协调沟通都有他的身影。 /p p   实际上,地方如此重视水站的建设自有原因,因为水站建设中很多困难是难以想象的。据了解,一个水站建设的工程投入大概在100万元,在环保工程中算是非常小的工程项目,但是推进难的问题在全国很多省份都存在。 /p p   衡阳市环保局的一位负责人告诉记者,当年这座水站建设曾面临诸多困难,其中比较典型的,是建设过程中涉及水利、国土、规划、住建、气象等十余个单位,堪称衡阳市水站建设中涉及部门最多的一个,因此与相关部门的协调、手续办理等就花费了大概半年时间。 /p p   为何会花费如此长的时间?衡阳市环保局蒸湘分局局长徐小鹏介绍,因为水站位置特殊,既在沿江风光带上,又处于防洪堤上,除了走常规程序,还要办理水利防洪评价手续。最终,水站于2015年底动工,2016年底完成建设验收。 /p p   上述衡阳市环保局的负责人称,一个水站从开始建设到最后完工,大概需要2~3个月时间,但是,前期勘察、制定方案、协调、办理手续等需要大量的时间,整套程序走完比较繁琐。 /p p   同样建在城区中心、湘江沿江风光带上的城北水厂水站,与蒸水入湘江口水质自动站面临的情况类似,但有了前面的经验,该水站建设相对顺畅得多。 /p p   衡阳市环保局副局长唐小平向《每日经济新闻》记者介绍,为了满足站房设计要求,为水质监测创造良好的监测环境,城北水厂水站的设计方案先后进行了4次修改完善。 /p p   “市政府高度重视,不仅组织相关部门召开了工作协调会议,而且主管副市长到施工现场,督促、协调相关部门解决问题。”唐小平说,城北水厂水站已于2018年3月23日正式动土施工,预计4月20日前完成主体工程。 /p p   胡敏介绍,城北水厂水站建设的任务实际上去年8月底就下来了,工作进度按照国、省要求稳步推进。现在正加班加点建设,他每天都到施工现场了解进度并向领导汇报,不敢有一丝松懈。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/32cc1349-fec7-4a8d-8482-b44c9b3e1bd0.jpg" title=" 20180413083352321.jpg" / /p p style=" text-align: center " strong 征地和资金双双成为“拦路虎”环保人员为征地与村民同吃住半月 /strong /p p   相对于在城区建设水站过程中遇到的部门协调较为繁琐的情况,在农村地区建立水站面临最大的困难则是征地难和资金不足。 /p p   衡阳市衡东县石湾镇的袁大爷已经年逾70,最近他在做完日常农活外有了一份新的“工作”——每天都要去村旁边河堤上待上几个小时,“巡查”河堤边的一处正在施工的现场。 /p p   袁大爷关心的工程就是建设中的熬州水质自动站。记者到达时,他一边看施工现场一边叮嘱工人把管子埋得深一点,不要妨碍到开春后庄稼的种植。叮嘱完后,他又转身去找工程的负责人问问施工进展,商量一下工程完工后能不能给顺便修一条阶梯,方便农民种田的时候走路。 /p p   袁大爷告诉《每日经济新闻》记者,他每天都会来施工现场看看,开始村里村民是坚决反对施工的,后来知道建设水站是一项民生工程,对村民有益无害,逐渐大家都支持了。 /p p   “这块地是我们村的集体土地,如果建普通房子的话,我们肯定是不会同意的。建了水站之后,我们今后用水心里也更有底了,知道水质状况了,放心多了。”袁大爷说。 /p p   衡东县环保局副局长谭洪波介绍,熬州水质自动站位于石湾镇佳埠村11组,由于靠近河堤,考虑到防洪需要抬高架空,所以征用了该村组1.3亩土地。 /p p   “一开始村民以为是企业违规建设厂房,因此都出来反对。后来通过村干部多次与村民沟通,介绍征地的用途和水站建设的目的,前后不到半个月时间,村民就都签字同意征地了。”谭洪波说,现在村民对工程建设非常支持。 /p p   在后续的工程建设过程中,也出现了一些小插曲。谭洪波称,虽然项目建设之前就已经明确了施工方,但是当地一些施工队希望接些活干。他们不清楚水站虽然只是两层楼房(含一层架空层),技术标准却比较高,不比一般的民建房。还好,经过多次沟通之后,也逐渐得到村民的理解。 /p p   一位具有水站建设经验的施工单位负责人对《每日经济新闻》记者说,相对于民建房,水站的负载系数更高,抗震要求也更高,尤其是在河堤等一些地块上施工,由于土质比较松软,对地基也提出了更高的技术要求。 /p p   谭洪波介绍,目前衡东县除了正在建设的熬州水质自动站外,已经建成了洣水草市镇、洣水入湘江口2个水质自动监测站。为了做通村民的工作,在洣水草市镇自动站建设征地期间,衡东县环境监测站副站长陈文建寄宿在村民家中,连续工作15天,与村民同吃同住,解决了征地、修路、架线三大难题,保障了该水站顺利开工。 /p p   除了征地难之外,对于一些偏远地区的地方政府而言,经费也是需要重点考虑的问题之一。 /p p   根据要求,湖南省环保厅给每个水站拨付70万元的建设资金,但资金拨付有一个过程,水站建设的时间却比较紧、等不起。为了保障工期,很多水站都会面临资金未到位工程先启动的问题,政府垫付前期工作经费成为新措施。 /p p   比如,通过衡东县环保局局长谢正辉的专题汇报,衡东县委常委、常务副县长丁秋文主持专题会议,落实建设资金工作,衡东县政府与石湾镇政府在熬州水质自动站建设过程中,在前期分别垫付了10万元、5万元。 /p p   同时,记者在多个水站了解到,部分水站因建站地点特殊,在架电、修路、修护坡、基础建设等方面资金投入比一般水站更多,最终费用会达到100万元左右,超出每个站70万元的拨付资金。 /p p   对此,刘晓利强调,经费在衡阳市没有问题,除了省厅给的资金外,其他的财政兜底,市政府领导态度非常明确,市委常委、常务副市长廖健指示财政部门在水站建设资金上给予大力支持,确保资金 站点的运营,财政也给予保障。 /p p    strong 从任务最重到进展最快 衡阳为水站建设开辟“绿色通道” /strong /p p   湘江水系和衡山灵气造就了衡阳的湖湘文化底蕴。湘江流经衡阳境内达226公里,但是,发达的河网也给衡阳市的水站建设带来了更多考验。 /p p   湖南省需要建设的78个国家考核断面中,除5个不建设水站外,其余73个均要求建设水站。衡阳市环保局监测科技科科长贺晶介绍,衡阳市的任务是在11个国家考核断面中建立水站,占全省总数的15%左右。2011年开始,衡阳市分三批开展全市水站建设,呈现出“三最”的特点,即数量最多、速度最快、分布最广。 /p p   值得注意的是,在衡阳11个国家考核断面中,已建成验收的水站为9个,在建水站为2个,建设完成率达到81.8%。目前两个在建的水站也已在加快推进建设,预计在今年4月底前完成站房主体工程建设、5月底前完程站房内部布局和辅助设施建设。衡阳水站建设进度走在了湖南省各地市的前列,成为湖南省水站建设中的典范。 /p p   据了解,全国2050个国家地表水考核断面水站由国家和地方共建,国家负责新建水站仪器设备配置 地方负责新建水站站房和采水系统建设,并对地方投资建设的水站进行仪器设备填平补齐和系统功能更新。其中,需地方新建水站959个,需地方进行填平补齐仪器设备和更新系统功能的已建水站530个。 /p p   上周,记者从生态环境部的通报了解到,除了黑龙江、吉林、辽宁、内蒙古、青海等地和陕西的个别地区仍处封冻期暂无法施工外,还有部分地方水站开工率仍然低于全国平均水平。其中,陕西、河北、海南、北京、山东、天津、广西、安徽等地区共有171个水站未开工。 /p p   对于衡阳市为什么能够在水站建设中走在前列,刘晓利反复强调的就是“落实”二字,包括落实目标任务、落实工作责任、落实保障措施、落实管理运营。 /p p   刘晓利认为,水站建设不仅仅是环保部门的事情,环保部门是具体实施和综合协调的牵头部门,其中还牵涉到财政、国土、规划、水利等众多部门,需要各部门共同推进、支持配合,为水站建设开辟“绿色通道”,简化审批流程。 /p p   同时,由于水站建设牵涉部门多、手续繁杂,衡阳市为加快水站建设,在国家水站经费还没有到位的情况下,不等不靠,政府垫付前期工作经费,主动与相关部门做好工作衔接,加快推进工程进度。 /p p   刘晓利介绍,为确保水站正常运行,提高水站数据质量,建立了“日值守、月考核、季巡检”的质量管理制度。并将水站建设和运行质量纳入年度环保重点工作目标考核,定期跟进、通报。 /p p   刘晓利强调,下一步将对水站推进进度慢的建设责任单位采取通报、约谈等形式进行督促督办。把新建的两个水站,按照要求保质保量建设完成,把已经建设完成的站点管理好、运营好。 /p
  • EZ1009 六价铬分析仪在地表水站的应用
    EZ1009 六价铬分析仪在地表水站的应用哈希公司背景介绍铬是环境风险较高的重金属元素之一,特别是六价铬,具有致癌致畸毒性和生物富集性。健康的自然水体中六价铬本底值非常低,一般不具有环境风险和健康风险。冶金、皮革制造等工业活动是引起水体中六价铬超标的主要原因之一,此外水体酸化也会导致土壤中六价铬成分析出,从而引起六价铬超标。桂林是以山水闻名的旅游城市,工业虽少,但地处西南酸雨带, 六价铬在部分流域依然是重点关注参数。在桂林几处地表水站安装有 EZ 系列六价铬分析仪。应用情况客户现场安装的是 EZ1009 标准版本:量程 0-500ppb、1 路进样、1 路 mA 输出,水样在前端进行沉淀预处理。现场六价铬每小时测试一次,由运维商定期更换试剂并进行校准。日常数据一般小于 10ppb,偶尔由于降雨会增加水样浊度,进而导致结果偏离日常值。水样经前端水泵打入集成样品管,由仪器自带样品经蠕动泵吸入。试剂除必需成份外还配有纯净水用于管路冲洗。目前已应用一年半的时间,运维商主要工作为定期添加试剂及更换备件。需要注意的是样品的预处理,本案例中仅采用简单的静置沉淀处理,难以解决汛期水样浊度及色度上升带来的浊度干扰,建议可采用微滤预处理以消除类似干扰。现场安装示意图如图 1 所示。▲ 图1 现场安装图▲ 图2 现场部分时间监测数据现场数据表明,该地地表水六价铬指标大多数情况满足《地表水环境质量标准》(GB3838-2002)中I类水要求,少数情况下满足II类水标准。对于水中六价铬含量的波动,EZ1009能够较为准确的进行监测反馈,这也体现了其优异的性能。总结EZ1009 六价铬分析仪能够实现地表水六价铬的在线监测需求。客户现场情况表明EZ1009 性能稳定、维护量少,能够在较短的时间内提供准确的数据。整体而言,其优异的性能得到了客户的认可。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取便携乐扣弹跳杯哦!
  • 地表水监测仪器需求或将主要来自地方省市
    仪器信息网讯 2014年4月18日,中国科学仪器行业的“达沃斯论坛”——2014中国科学仪器发展年会(ACCSI 2014)于北京召开,作为发展年会的分会场之一,环境监测仪器技术论坛也在同期召开。此次会议上,中国环境监测总站工程师姚志鹏就《我国地表水和饮用水环境监测管理与技术》做了报告,报告就我国水环境监测网络体系、国控地表水环境监测网络体系、地表水环境监测网现状等进行了全面的介绍分析。 中国环境监测总站工程师姚志鹏讲解我国地表水和饮用水环境监测技术   针对较多人问到的水质自动监测站建设情况,姚志鹏透露,目前国家已在大江大河的省界断面和重要国界河流建设了149个地表水水质自动监测站,监测频次为4小时一次,监测项目为常规五参数、高锰酸盐指数、总有机碳、氨氮等。水质自动监测站需要建设费用、运行维护费用,持续监测生成的海量数据也需要处理,而相关费用大多已投入到大气监测方面,即使是水质自动监测站的一些比较旧的水质监测仪器的更新有些也因此搁置,因此目前来看,“十二五”期间,国控地表水水质自动监测站建设将会比较少,增建站点的可能性比较小,而一些地方省市的建设力度则是比较大的,如河南、江苏等,其省内包括浮标站在内的自动监测站就已经增加到二百多个甚至三百多个。   姚志鹏也为参加会议的业内人士介绍了最受关注的水质监测相关政策法规如“水十条”等的情况,他透露,《地表水环境质量标准》的修订工作或为“水十条”让路,因而其修订工作将大幅延期。《地表水和污水监测技术规范》的修订工作也在进行之中,过去的旧规范把地表水和污水的检测标准融合在一起,比较注重其科学性,但对实际应用中的可操作性考虑的不够,如果完全严格按照规范进行水质监测,很难去完成检测工作,但如果不按规范进行检测,检测数据又不具有法律效力,因此新规范的修订将更注重其实际应用,修订工作最快可能于2015年完成。
  • 地表水国控监测点位由759个调整为972个
    总站水字[2012]101号   关于按照“十二五”地表水国控点位   开展监测工作的通知   各省、自治区、直辖市环境监测中心(站):   根据环保部“关于印发国家地表水、环境空气监测网(地级以上城市)设置方案的通知”(环发[2012]42号)的有关精神,地表水国控监测点位由759个调整为972个(详见附件)。请各省(自治区、直辖市)于2012年6月份起,每月按照新点位开展地表水环境质量监测工作,监测数据按照原有方式报送。并于6月1日前,报送本辖区内监测点位的经纬度和2010年以来的监测数据至总站水室邮箱water@cnemc.cn,经纬度按照“度、分、秒”的格式报送,监测数据报送格式参照附表1和附表2。   联系人:姚志鹏电话:010-84943091   沈 欣010-84943177   二〇一二年五月九日   附件1:国家城市环境空气质量监测网点位.pdf   附件2:各省市点位信息填报表.rar   附件3:监测数据报送格式.doc
  • 总站国家地表水水站运行维护服务项目中标结果出炉!有"新面孔"出现
    日前,中国环境监测总站就新一轮“国家地表水水质自动监测站运行维护服务”发起公开招标,预算金额为32851.05万元,中标结果于今日出炉,最终中标金额为32039.9676万元。其中,雪迪龙中得2包,中标2656.105万元;北京尚洋东方中得2包,中标2423.1693万元;碧兴物联中得3包,中标3647.3355万元;广西先得环保中得2包,中标2536.093万元;广州怡文中得1包,中标1168万元;绿洁科技中得2包,中标2445.135万元;河北华清环境中得1包,中标1215.45万元;河南省鑫属实业有限公司中得1包,中标1017.8755万元;力合科技中得3包,中标3689.055万元;青岛佳明中得1包,中标1116.4255万元;厦门隆力德中得2包,中标2539.91万元;上海科泽中得2包,中标2505.1775万元;武汉境辉环保科技有限公司中得1包;中标1135.4139万元;宇星科技中得2包,中标2664.6533万元;长江水利委员会长江科学院中得1包,中标1280.1645万元。我们注意到,此次中标的厂商大部分还是在2018年那轮“国家地表水自动监测系统建设及运行维护项目”中中标的厂商,同时也多了一些“新面孔”,如河南省鑫属实业有限公司、武汉境辉环保科技有限公司、河北华清环境科技集团股份有限公司以及青岛佳明测控科技股份有限公司等。图1.中标企业中标包数分布图2.中标企业中标金额占比中标(成交)信息详情如下:一、项目编号:2141STC61711(招标文件编号:2141STC61711/1-26)二、项目名称:国家地表水水质自动监测站运行维护服务项目三、主要标的信息:包号中标成交供应商名称中标成交供应商地址中标金额(万元)1北京雪迪龙科技股份有限公司北京市昌平区高新三街3号1353.420000 2力合科技(湖南)股份有限公司湖南省长沙市高新区青山路668号1389.190000 3宇星科技发展(深圳)有限公司深圳市南山区高新技术产业园清华信息港研发楼B座301号1374.882000 4力合科技(湖南)股份有限公司湖南省长沙市高新区青山路668号1362.910000 5北京雪迪龙科技股份有限公司北京市昌平区高新三街3号1302.685000 6碧兴物联科技(深圳)股份有限公司深圳市宝安区新安街道兴东社区67区留仙三路1号润恒工业区厂房2栋3011312.503500 7宇星科技发展(深圳)有限公司深圳市南山区高新技术产业园清华信息港研发楼B座301号1289.771300 8厦门隆力德环境技术开发有限公司福建省厦门市思明区软件园二期观日路18号501室1335.005750 9碧兴物联科技(深圳)股份有限公司深圳市宝安区新安街道兴东社区67区留仙三路1号润恒工业区厂房2栋3011298.232000 10上海科泽智慧环境科技有限公司上海市静安区江场三路38号11号楼402室1298.487500 11广西先得环保科技有限公司南宁市江南区白沙大道30号广西水产引育种中心科普楼603、603A号房1301.95500012杭州绿洁环境科技股份有限公司浙江省杭州余杭区仓前街道绿汀路1号1幢101室1259.980000 13长江水利委员会长江科学院湖北省武汉市黄浦大街23号1280.164500 14河南省鑫属实业有限公司河南省郑州市上街区衡山路石嘴商务楼13楼1305房间1017.875500 15广西先得环保科技有限公司南宁市江南区白沙大道30号广西水产引育种中心科普楼603、603A号房1234.138000 16上海科泽智慧环境科技有限公司上海市静安区江场三路38号11号楼402室1206.690000 17武汉境辉环保科技有限公司武汉市蔡甸经济开发区姚家山工业园1135.413895 18河北华清环境科技集团股份有限公司河北省石家庄市裕华区富强大街131号众创大厦23层1215.450000 19北京尚洋东方环境科技有限公司北京市丰台区南四环西路188号十二区38号楼1至6层全部内4层1215.012000 20北京尚洋东方环境科技有限公司北京市丰台区南四环西路188号十二区38号楼1至6层全部内4层1208.157300 21厦门隆力德环境技术开发有限公司福建省厦门市思明区软件园二期观日路18号501室1204.908800 22杭州绿洁环境科技股份有限公司浙江省杭州余杭区仓前街道绿汀路1号1幢101室1185.155000 23广州市怡文环境科技股份有限公司广州市经济技术开发区南云三路12号1168.000000 24青岛佳明测控科技股份有限公司山东省青岛市高新区聚贤桥路11号1116.425500 25碧兴物联科技(深圳)股份有限公司深圳市宝安区新安街道兴东社区67区留仙三路1号润恒工业区厂房2栋3011036.600000 26力合科技(湖南)股份有限公司湖南省长沙市高新区青山路668号936.955000 服务内容:包号供应商服务名称服务范围服务时间1北京雪迪龙科技股份有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量88个;水站所在省份:北京市、河北省、内蒙古自治区、山西省、天津市。2021年10月1日-2022年9月30日2力合科技(湖南)股份有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量81个;水站所在省份:贵州省、云南省、重庆市。2021年10月1日-2022年9月30日3宇星科技发展(深圳)有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量73个;水站所在省份:黑龙江省、辽宁省、内蒙古自治区。2021年10月1日-2022年9月30日4力合科技(湖南)股份有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量87个;水站所在省份:北京市、河北省、山西省、陕西省、天津市。2021年10月1日-2022年9月30日5北京雪迪龙科技股份有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量82个;水站所在省份:甘肃省、宁夏回族自治区、山西省、陕西省、四川省。2021年10月1日-2022年9月30日6碧兴物联科技(深圳)股份有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量77个;水站所在省份:四川省、云南省、西藏自治区。2021年10月1日-2022年9月30日7宇星科技发展(深圳)有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量86个;水站所在省份:安徽省、河南省。2021年10月1日-2022年9月30日8厦门隆力德环境技术开发有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量85个;水站所在省份:广东省、广西壮族自治区、海南省。2021年10月1日-2022年9月30日9碧兴物联科技(深圳)股份有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量75个;水站所在省份:安徽省、青海省、新疆维吾尔自治区。2021年10月1日-2022年9月30日10上海科泽智慧环境科技有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量77个;水站所在省份:四川省、重庆市。2021年10月1日-2022年9月30日11广西先得环保科技有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量82个;水站所在省份:广东省、海南省。2021年10月1日-2022年9月30日12杭州绿洁环境科技股份有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量82个;水站所在省份:江苏省、山东省。2021年10月1日-2022年9月30日13长江水利委员会长江科学院国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量81个;水站所在省份:湖北省、江西省。2021年10月1日-2022年9月30日14河南省鑫属实业有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量79个;水站所在省份:湖北省、湖南省。2021年10月1日-2022年9月30日15广西先得环保科技有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量79个;水站所在省份:安徽省、江苏省、上海市。2021年10月1日-2022年9月30日16上海科泽智慧环境科技有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量76个;水站所在省份:湖北省、湖南省。2021年10月1日-2022年9月30日17武汉境辉环保科技有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量71个;水站所在省份:甘肃省、河南省、宁夏回族自治区。2021年10月1日-2022年9月30日18河北华清环境科技集团股份有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量74个;水站所在省份:广西壮族自治区、云南省、贵州省。2021年10月1日-2022年9月30日19北京尚洋东方环境科技有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量76个;水站所在省份:江苏省、山东省。2021年10月1日-2022年9月30日20北京尚洋东方环境科技有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量63个;水站所在省份:黑龙江省、吉林省。2021年10月1日-2022年9月30日21厦门隆力德环境技术开发有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量64个;水站所在省份:吉林省、辽宁省。2021年10月1日-2022年9月30日22杭州绿洁环境科技股份有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量77个;水站所在省份:福建省、浙江省。2021年10月1日-2022年9月30日23广州市怡文环境科技股份有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量76个;水站所在省份:江苏省、上海市、浙江省。2021年10月1日-2022年9月30日24青岛佳明测控科技股份有限公司国家地表水水质自动监测站运行维护服务固定式水站,运维水站数量73个;水站所在省份:福建省、江西省、浙江省。2021年10月1日-2022年9月30日25碧兴物联科技(深圳)股份有限公司国家地表水水质自动监测站运行维护服务浮船式水站,运维水站数量43个;水站所在省份:安徽省、河北省、吉林省、江苏省、内蒙古自治区、宁夏回族自治区、山东省、天津市、新疆维吾尔自治区。2021年10月1日-2022年9月30日26力合科技(湖南)股份有限公司国家地表水水质自动监测站运行维护服务浮船式水站,运维水站数量39个;水站所在省份:广东省、湖北省、湖南省、江苏省、江西省、云南省。2021年10月1日-2022年9月30日
  • 赛默飞发布地表水和饮用水中痕量生物胺的检测方案
    2015年3月3日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布的地表水和饮用水中痕量生物胺的检测方案。腐胺、尸胺、组胺、亚精胺和精胺是最常见的五种生物胺,摄入过量将会诱发恶心、心悸、呼吸紊乱等强烈过敏反应,甚至危害生命安全。我国水产品卫生标准GB2733-2005就曾明确限定了市售、非活水产品中组胺的含量。目前生物胺的准确定量测定方法主要有气质联用、液相色谱法和离子色谱法等。其中仅离子色谱法无需将生物胺经过繁琐的柱前衍生或预衍生处理,以离子交换分离为基础,简单而迅捷地实现了这五种生物胺的分离测定。毛细管离子色谱的诞生,标志着离子色谱进入了低消耗、低成本、高效率时代。其微升级的流量,极大地降低了淋洗液的消耗,配合淋洗液自动发生装置使用,有效地保证了各种突发事件发生时,离子色谱总能在第一时间内完成对应的应急样品测定。赛默飞地表水和饮用水中痕量生物胺的检测方案,采用通用高压离子色谱ICS-5000+为依托,选用高效阳离子交换分离柱IonPac CS19,以甲基磺酸淋洗液发生器在线产生甲基磺酸溶液,梯度淋洗,完成了地表水、自来水样品中痕量腐胺、尸胺等五种常见生物胺的分离分析。方法重复性较好,准确性较高,在所选定条件下,可准确完成地表水、自来水中痕量腐胺、尸胺、组胺、亚精胺和精胺的分离测定工作。通用高压离子色谱ICS-5000+产品详情:www.thermo.com.cn/Product6544.html 下载应用纪要请点击:www.thermo.com.cn/Resources/201501/211561786.pdf---------------------------------------------关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 国家地表水首次采测分离工作告捷:已完成断面95.8% 25日前完成数据审核
    p   10月20日,经济观察网记者从环保部获悉,截至10月18日下午17时,所有国家地表水考核断面第一次采测分离采样及现场监测工作均按计划如期顺利完成。环保部相关负责人对经济观察网表示,其中95.8%的断面完成了采样、现场监测和样品交接工作,4.2%的断面已完成采样、现场监测工作,目前正处于混样运输阶段。 /p p   国家地表水环境值监测网采测分离采样及现场监测工作的按期顺利完成标志着国家地表水环境质量监测网采测分离工作取得了阶段性成功,国家地表水监测事权上收工作迈出坚实的一步。 /p p   上述负责人告诉经济观察网,“下一步,各地环境监测部门将紧锣密鼓地推进所有样品的分析和数据上报工作,环境保护部也将组织做好采测分离监测数据审核分析工作,争取在25日前完成当月所有数据的审核分析,及时与各地政府共享。” /p p   据环保部相关负责人介绍,自10月9日国家地表水环境质量监测网采测分离工作全面启动以来,在环境保护部精心组织和安排部署下,各地环保部门和第三方采样公司严格按照《关于开展国家地表水环境质量监测网采测分离工作的通知》和相关技术规范要求,积极筹备,昼夜奋战,全力推进国家地表水环境质量监测网采测分离工作。 /p p   经济观察网了解到,按环保部的设计思路,采测分离就是将国家考核断面水样采集和分析测试工作交由不同单位承担,改变现行属地监测模式,从机制上与利益相关方脱钩。由中国环境监测总站统一制定实施计划,第三方机构按照统一技术规范进行采样,对水样加密混合后随机分送至各分析实验室。分析实验室对水样进行集中分析,原始监测数据直传监测总站,并对监测全流程各环节留痕质控,确保数据真实、准确。监测总站完成数据汇总审核后,及时与地方共享。 /p p   环境保护部环境监测司司长刘志全在官方网站上表示,每个断面位置都设置了一个带有二维码和编号的断面桩,第三方采样人员只有到达断面使用手机扫描断面桩上的二维码后才会得知具体任务,使用标注有编号和二维码的样品瓶收集样品后会全部运送至最近的集合点。 /p p   “此后会将来自不同地区不同断面的样品进行随机分配,由第三方公司运输至各地环境监测站进行分析化验,分析数据再对应每个样品的编号汇总至国家环境监测总站的数据库中进行解码,这就是我们说的采测分离。”刘志全说。 /p
  • 萃取法升级!TF-SPME法分析地表水农残的效率翻倍
    由于农药在农业中的广泛使用,地表水中农药等环境污染物的增加,公共饮用水的质量控制是政府环境机构的优先事项之一。美国环境保护署(US EPA)要求,必须在低浓度和亚浓度下测定水样中的农药。从水样中提取、富集和净化农药的样品制备技术中,其中液-液萃取(LLE)和固相萃取(SPE)是两种成熟的技术,同时也作为美国环保署的官方方法被广泛使用。 SPME今天提出一种全新的前处理方法薄膜固相微萃取SPME,已广泛应用于多种应用,包括水采样和分析、食品分析、生物流体、体内和非破坏性分析、代谢组学和组织取样等。与LLE 和SPE 技术不同,SPME 是一种不完全萃取的样品前处理技术。 图1:萃取技术的分类完全萃取 vs 非完全萃取技术?完全萃取技术是一种使用较大量溶剂或吸附材料将目标分析物全部或者接近全部分离和提取出来的技术,而固相微萃取技术是一种使用微量萃取吸附材料,基于萃取材料与目标物分子之间的分配平衡,有选择性的将特定目标成分提取分离和富集的技术,属于非完全萃取技术。萃取定量公式如下: Kfs:目标物在样品中的分配系数Vf:涂层体积Vs:样品体积C0:样品的初始浓度薄膜固相微萃取技术(以下简称TF-SPME或TFME),作为SPME方法的扩展,TF-SPME薄膜固相微萃取技术可以通过增加涂层体积Vf↑和表面积以增加吸附容量,达到更低的检测限,可以进一步提高技术灵敏度。实验应用:TF-SPME分析地表水中的农药残留薄膜固相微萃取技术特别适用于环境样品的分析,薄膜固相微萃取的发明者加拿大滑铁卢大学的Pawliszyn教授及其团队提出碳网片支撑的TF-SPME薄膜固相微萃取分析地表水中的农药残留。应用一 具体实验从加拿大安城滑铁卢不同地点的格兰德河采集地表水样本,在3 个月内采集了3 批地表水样品(共18 个样品)进行盲样分析验证,分别提交给官方认证的第三方实验室和滑铁卢大学进行分析,分别用LLE 和TF-SPME的方法对23 种农药在不同实验室之间的地表水进行了定量分析,其中LLE法根据EPA 8720中方法操作。TF-SPME萃取方法:# 萃取方法:30ml去离子水中加标5ng/mL# 萃取时间:30min# 搅拌速度:600rpm# 涂层类型:PDMS/DVB下图分别是两种方法的准确度和检出限的比较。 图2:TF-SPME和LLE方法分析18个地表水样品的准确度 表1:TF-SPME和LLE方法的检测限比较,μg/L结论通过对23 种农药在不同实验室之间的地表水中的实验室间研究,TF-SPME法与LLE 法测定结果的一致性表明,TF-SPME法可用于地表水样品中农药的常规分析,TF-SPME薄膜固相微萃取法还具有以下优点:● 研究表明,两种方法之间有良好的一致性,LLE和TF-SPME都有着相似的准确度,在70-130%之间;● 灵敏度高——在所研究的浓度水平下,90% 的农药残留物可以通过 TFME 进行定量,而只有 53% 的化合物可以使用 LLE 方法进行定量,尤其是浓度低于 1 mg/L 时的样品;● TF-SPME所需样品量少——LLE法至少需要800mL样品,一定程度上增加了实验室废液和增加运输成本;● 方便易用——TF-SPME法可以同时萃取/分析所有农药,而LLE时需要通过调节pH值分别提取酸性、中性、碱性化合物;● 绿色环保——无溶剂/萃取技术,避免对有机溶剂的使用。实验应用:现场采样分析地表水中的农药残留 与此同时,TF-SPME也可以用于现场采样现场采样可用于恶劣环境中的现场采样。Hamed Piri-Moghadam等人采用TF-SPME薄膜固相微萃取和便携式GC-MS耦合现场采样分析地表水中的农药残留。 图3:TF-SPME用于现场采样综上所述,这些结果表明TF-SPME法分析地表水中农药残留的应用非常可行,同时它是一种精确的分析方法,为许多化合物提供了更低的检测限。应用于现场取样时,TF-SPME所能达到的灵敏度将弥补便携式仪器低灵敏度的不足。TF-SPME需要的样品量少、并且可以同时分析酸性、碱性和中性化合物,是一种快速、低成本和绿色环保的样品前处理技术。TF-SPME产品订购信息货号描述规格200212-002-04TF手动包:4×2cm PDMS/DVB TF-SPME固相微萃取薄膜&顶空配件20*4.85*0.04mm200212-004-04TF手动包:4×4cm PDMS/DVB TF-SPME固相微萃取薄膜&顶空配件40*4.85*0.04mm200213-102-04TF手动包:4×2cm PDMS/HLB(1μm)TF-SPME固相微萃取薄膜&顶空配件20*4.85*0.04mm200213-104-04TF手动包:4×2cm PDMS/HLB(1μm)TF-SPME固相微萃取薄膜40*4.85*0.04mm参考文献【1】Inter-laboratory validationof a thin film microextraction technique fordetermination of pesticides in surface water samples. Hamed Piri-Moghadam a, Emanuela Gionfriddo a, Angel Rodriguez-Lafuente b,Jonathan J. Grandy a, Heather L. Lord b, Terry Obal b, Janusz Pawliszyn Analytica Chimica Acta xxx (2017) 1-11【2】Development and validation of eco-friendly strategies based on thinfilm microextraction for water analysis. Hamed Piri-Moghadam, Emanuela Gionfriddo, Jonathan J. Grandy, Md. Nazmul Alam,Janusz Pawliszyn. Journal of Chromatography A, 1579 (2018) 20–30
  • 赛默飞:提供完整解决方案提高地表水监测质量
    p   地表水作为人类生活用水的重要来源之一,关系着人们的饮用水安全和国民经济的可持续发展。有效地检测地表水环境对于水资源的保护工作意义重大,地表水的各项检测数据可以反映出地表水的污染情况,也是环境监测的重要指标。近日生态环境部发布的四项国家环境保护标准征求意见稿中就有一项是《地表水监测技术规范》,这意味着国家可能有新的标准发布。那么,目前我国地表水的检测现状是什么样的?未来又将如何发展呢?为了帮助相关用户学习、了解地表水的分析方法与检测技术的最新进展等内容,仪器信息网特别策划了“ strong 地表水检测与分析技术进展 /strong ”专题,并邀请到赛默飞世尔科技(中国)有限公司水质分析仪器产品经理步万里就相关问题发表看法。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/43c3bdde-7427-4a70-a21e-c36a5d37927e.jpg" title=" 产品经理步万里.png" alt=" 产品经理步万里.png" / /p p style=" text-align: center " 步万里:赛默飞世尔科技,水质分析仪器产品经理 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:请您介绍一下地表水检测与分析技术的相关情况、主要检测内容和行业现状。 /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 步万里: /strong /span 目前地表水检测依据的主要技术标准是《地表水环境质量标准》(GB 3838-2002),涉及的监测项目共109项。其中主要的测量参数如下表,标黄的是必测项目,蓝色的是选测项目。 /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" margin-left: 10px border-collapse: collapse border: none " align=" center" tbody tr style=" height:2px" class=" firstRow" td width=" 151" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 常规五参数 /span /strong strong /strong /p /td td width=" 435" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" span style=" background-color: rgb(255, 255, 0) " strong span style=" background: rgb(255, 255, 0) font-size: 12px line-height: 115% font-family: 微软雅黑, sans-serif " pH /span /strong strong span style=" background: rgb(255, 255, 0) font-size: 12px line-height: 115% font-family: 微软雅黑, sans-serif " 、电导率、溶解氧、浊度、水温 /span /strong /span strong /strong /p /td /tr tr style=" height:1px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 1" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 营养盐及有机污染物 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 1" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:yellow background:yellow" 高锰酸盐指数 span COD sub Mn /sub /span 、化学需氧量 span COD sub Cr /sub /span 、氨氮、总磷、总氮 /span /strong strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 、 span style=" background:aqua background:aqua" 硝酸盐氮 /span /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 无机阴离子 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 氰化物、氟化物、硫化物、氯化物、硫酸根 /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 重金属类 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 铜、铅、锌、镉、砷、汞、六价铬、铁、锰、钴、镍、锑 /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 有机类污染物 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 石油类、阴离子表面活性剂、以及苯、卤代烃、芳香烃等 span 18 /span 种挥发性有机物 /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 细菌学指标 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 粪大肠菌群 /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 其它 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 叶绿素、藻密度 /span /strong /p /td /tr /tbody /table p   《地表水自动监测技术规范(试行)》(HJ 915-2017)则定义了地表水水质自动监测系统建设、运行和管理等方面的技术要求。 /p p   关于地表水监测行业的情况,最近几年地表水监测行业发展迅速。2015年,国务院办公厅发布了《生态环境监测网络建设方案》,明确提出坚持全面设点、全国联网、自动预警、依法追责,形成政府主导、部门协同、社会参与、公众监督的生态环境监测新格局 2016年,环保部发布了《“十三五”国家地表水环境质量监测网设置方案》,新增1795个国控断面,调整后新国控断面(点位)共2767个,包括河流断面2424个,湖库点位343个,共监测1366条河流和139座湖库。据我了解,现在全国从事在线自动水质监测仪器生产企业约300家,有近200家的产品拥有CCEP认证。 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:目前在地表水相关检测项目中哪些值得重点关注?检测的特点和难点在哪里? /strong /span /p p    strong span style=" color: rgb(255, 0, 0) " 步万里: /span /strong 目前在地表水的检测中我认为有高锰酸钾指数、COD sub Cr /sub 和重金属测量这3个项目值得重点关注。 /p p   高锰酸盐指数:市场上大部分为两种测量原理,高锰酸盐氧化-比色法和高锰酸盐氧化-电位滴定法两种,后者更接近国标法《水质-高锰酸盐指数的测定》GB 11892-89。但目前考核高锰酸盐指数数据时,使用葡萄糖还是草酸钠会得出完全不同的结果,因此急需国家对此方法做一定程度的明确规定。 /p p   COD sub Cr /sub :主要是废液的二次污染问题,目前是根据新标准HJ 35X-2019来进行废液分离,但如何判定清洗废液是否完全无害还没有统一的标准,在数次清洗后,我们发现清洗废液仍能检测出痕量重金属,因此建议此检测项目使用独立的废液回收系统。 /p p   重金属测量:由于现有技术的局限性,目前的难点是如何找到测量准确度、运维成本小的方法,且能够满足国标要求。以阳极溶出伏安法为例,用这种方法检测重金属存在维护量大,试剂有毒有害,运行不稳定等技术成熟度的问题。 /p p   span style=" color: rgb(0, 112, 192) " strong  仪器信息网:贵公司在地表水检测方面可以提供哪些产品组合和解决方案?相比于同类产品,优势在哪里? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 步万里: /strong /span 赛默飞世尔科技作为科学服务领域的世界领导者,始终以帮助客户“使世界更健康、更清洁、更安全”为使命。在地表水检测方面赛默飞有多款仪器可以满足需求,并且可以提供完整的地表水监测方案: /p p style=" text-indent: 2em " strong 6800微型水质在线自动监测系统 /strong ,占地仅需1平米,可测量五参数和高锰酸盐指数、氨氮、COD sub Cr /sub 、总铜、总镍、六价铬、总磷、总氮、氰化物等参数。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C395497.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/965278ba-7a12-41c8-b4a6-7ad901e50ec8.jpg" title=" 6800_300.jpg" alt=" 6800_300.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C395497.htm" target=" _blank" strong 6800微型水质在线自动监测系统 /strong /a /p p style=" text-indent: 2em " strong 3106 COD化学需氧量自动监测仪 /strong ,可自动切换量程,无需重复校准 IP66防护等级。 /p p style=" text-align:center" a href=" https://www.instrument.com.cn/netshow/C235904.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/a055647e-b9a8-4bfc-bb57-8fc0b7126529.jpg" title=" 在线 Orion 3106 COD.jpg" alt=" 在线 Orion 3106 COD.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C235904.htm" target=" _blank" strong 3106 COD化学需氧量自动监测仪 /strong /a /p p style=" text-indent: 2em " strong 3131 高锰酸盐指数自动监测仪 /strong ,氧化还原电位滴定法,不受浊度计色度的影响 油浴加热,安全、均匀 双高精度注射泵,1/10000精度。 /p p style=" text-align:center" a href=" https://www.instrument.com.cn/netshow/C414758.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/65ba7005-38d0-4a7c-a430-5928b8bd8808.jpg" title=" 3131.png" alt=" 3131.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C414758.htm" target=" _blank" strong 3131 高锰酸盐指数自动监测仪 /strong /a /p p style=" text-indent: 2em " strong 3150 总磷/总氮水质在线自动监测仪 /strong ,可自动切换量程 可灵活配置总磷、总氮单参数或二合一 定量准确,不受样品色度、浊度干扰。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C396581.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/a9ee1662-9b8a-44fc-afa4-18ece49c0e3a.jpg" title=" 3150.jpg" alt=" 3150.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C396581.htm" target=" _blank" strong 3150 总磷/总氮水质在线自动监测仪 /strong /a /p p style=" text-indent: 2em " strong 2240 氨氮自动监测仪 /strong ,氨气敏电极法测量原理,不受水样浊度和色度的影响 测量范围最高可达1000mg/L 采用标准加入法自动进行校正,适用于低浓度或背景复杂样品。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C220173.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/2f915c3d-814c-4dfe-85c6-f718a9f91fe3.jpg" title=" 2240.jpg" alt=" 2240.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C220173.htm" target=" _blank" strong 2240 氨氮自动监测仪 /strong /a /p p style=" text-indent: 2em " strong 8010cX 氨氮自动监测仪 /strong ,水杨酸分光光度法原理 可自动切换量程,且无需新校准 高精度注射泵保障了高精度测量 IP65防护等级。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C340805.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/debbbd89-2cde-449d-9b63-29ef3bc15c4a.jpg" title=" 8010.jpg" alt=" 8010.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C340805.htm" target=" _blank" span & nbsp 8010cX 氨氮自动监测仪 /span /a /p p style=" text-indent: 2em " strong 3300重金属水质在线自动监测仪 /strong ,可自动切换量程 定量准确,不受样品色度、浊度干扰。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C414760.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/5c37245d-5a68-429e-9e67-ed6b06305048.jpg" title=" 3150.jpg" alt=" 3150.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C414760.htm" target=" _blank" strong span 3300重金属水质在线自动监测仪 /span /strong /a /p p style=" text-indent: 2em " strong MPC 20在线多参数通用控制器 /strong ,可同时测量常规五参数、水中油、叶绿素、蓝绿藻、UV全光谱等参数 IP65防护等级。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/a90a8649-20d0-4cd2-a92c-1a45472a895f.jpg" title=" MPC 20 正面.jpg" alt=" MPC 20 正面.jpg" / /p p style=" text-align: center " img style=" " src=" https://img1.17img.cn/17img/images/202007/uepic/77478974-1f45-463e-9712-de3175b53ce6.jpg" title=" MPC 20 下.jpg" / /p p style=" text-align: center " strong span MPC 20在线多参数通用控制器 /span /strong /p p   span style=" color: rgb(0, 112, 192) " strong  仪器信息网:生态环境部在6月1日发布了《地表水监测技术规范(征求意见稿)》,原《地表水和污水监测技术规范》(HJ/T 91-2002)中涉及 /strong /span span style=" color: rgb(0, 112, 192) " strong 地表水监测的部分将会废止,您觉得新标准实施后将会带来怎样的变化?请问从厂商角度会怎么应对呢? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 步万里: /strong /span 此次《征求意见稿》内容更新了地表水监测项目分析方法、完善了监测数据处理、质量控制与质量保证,这些对仪器的测量性能和稳定性都提出了更高的要求,这些都会促进厂商改进仪器的设计,以满足将来新的现场要求。 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:您觉得在地表水检测与分析技术方面,未来的发展趋势有哪些?会出现哪些新的需求? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 步万里: /strong /span 我认为地表水自动监测站和分析仪器未来的发展趋势是主机更加紧凑、小型化 试剂使用量减少、维护量减少 为了应对上面提到的新法规带来的变化,未来相关仪器会增加自动质控功能、废液分离功能等。 /p p   随着技术和市场的发展,将会涌现更多创新技术,以提高分析仪器/系统的智能化、网络化、无人化。检测方面可能会新增测量参数,如水中油、叶绿素、藻密度等。 /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 小结: 此次仪器信息网就地表水检测与分析技术方面的问题咨询了步万里经理,他和我们分享了在地表水检测中需要关注的检测项目,以及《地表水监测技术规范(征求意见稿)》将给仪器厂商和市场带来的变化。面对标准上对测量性能和稳定性要求的提升,厂商们也在积极跟进,升级相关检测仪器的性能来满足地表水检测的需要。他还对地表水检测技术的发展做了展望,预测随着环境的变化以及对地表水质要求的提高,未来在检测项目中可能会出现新增的测量参数。 /span /p
  • 国家地表水水质自动监测系统介绍
    p   实施地表水水质的自动监测,可以实现水质的实时连续监测和远程监控,及时掌握主要流域重点断面水体的水质状况,预警预报重大或流域性水质污染事故,解决跨行政区域的水污染事故纠纷,监督总量控制制度落实情况。 /p p   及时、准确、有效是水质自动监测的技术特点,近年来,水质自动监测技术在许多国家地表水监测中得到了广泛的应用,我国的水质自动监测站(以下简称水站)的建设也取得了较大的进展,环境保护部已在我国重要河流的干支流、重要支流汇入口及河流入海口、重要湖库湖体及环湖河流、国界河流及出入境河流、重大水利工程项目等断面上建设了100个水质自动监测站,监控包括七大水系在内的63条河流,13座湖库的水质状况。 /p p   现有100个水站分布在25个省(自治区、直辖市),由85个托管站负责日常运行维护管理工作。其中:(1)位于河流上有83个水站,湖库17个 (2)位于国界或出入国境河流有6个,省界断面37个,入海口5个,其他42个。目前还有36个水质自动站正在建设中,水站仪器设备更新项目也在实施中。 /p p    strong 地表水质自动监测站仪器配置与运行方式 /strong /p p   水质自动监测站的监测项目包括水温、pH、溶解氧(DO)、电导率、浊度、高锰酸盐指数、总有机碳(TOC)、氨氮,湖泊水质自动监测站的监测项目还包括总氮和总磷。以后将选择部分点位进行挥发性有机物(VOCs)、生物毒性及叶绿素a试点工作。 /p p   水质自动监测站的监测频次一般采用每4小时采样分析一次。每天各监测项目可以得到6个监测结果,可根据管理需要提高监测频次。监测数据通过公外网VPN方式传送到各水质自动站的托管站、省级监测中心站及中国环境监测总站。 /p p   为充分发挥已建成的100个国家地表水质自动监测站的实时监视和预警功能,经研究定于2009年7月1日在互联网上发布国家水站的实时监测数据。 /p p   每个水站的监测频次为每4小时一次,按0:00、4:00、8:00、12:00、16:00 20:00、24:00整点启动监测,发布数据为最近一次监测值。 /p p   每个水站发布的监测项目为pH、溶解氧(DO)、总有机碳(TOC)或高锰酸盐指数(CODMn)及氨氮(NH3-N)共5项。执行《地表水环境质量标准》(GB3838—2002)中相应标准,对每个监测项目的结果给出相应的水质类别。总有机碳(TOC)目前没有评价标准。 /p p   为使水质状况表达容易理解,按水质类别将水质状况分为优(I、II类水质)、良(III类水质)、轻度污染(IV类水质)、中度污染(V类水质)及重度污染(劣V类水质)。 /p p style=" text-align: center " 评价指标在GB3838-2002标准中的标准限值 /p p style=" text-align: right "   单位:mg/L /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/f5b6ff1f-72b5-4ba2-a8c7-44bd05995212.jpg" title=" QQ截图20171027153506.jpg" / /p p   水质自动监测站为在线连续监测设备,在仪器故障检查维修、日常维护校准时将出现数据缺失现象。水质自动监测站在日常运行中也会经常受到停电、洪水、断流、雷击破坏、通讯中断等意外影响,造成水站暂停运行。目前部分水站的仪器设备已运行8~9年,已超过使用寿命,造成故障率较高或停止运行,目前已列更新计划,年底前实施完毕。 /p p    strong 主要监测指标含义 /strong /p p   pH:表征水体酸碱性的指标,pH值为7时表示为中性,小于7为酸性,大于7为碱性。天然地表水的pH值一般为6~9之间,水体中藻类生长时由于光合作用吸收二氧化碳,会造成表层pH值升高。 /p p   溶解氧(DO):代表溶解于水中的分子态氧。水中溶解氧指标是反映水体质量的重要指标之一,含有有机物污染的地表水,在细菌的作用下有机污染物质分解时,会消耗水中的溶解氧,使水体发黑发臭,会造成鱼类、虾类等水生生物死亡。在流动性好(与空气交换好)的自然水体中,溶解氧饱和浓度与温度、气压有关,零度时水中饱和氧气含量可14.6mg/L,25℃为8.25 mg/L。水体中藻类生长时由于光合作用产生氧气,会造成表层溶解氧异常升高而超过饱和值。 /p p   高锰酸盐指数(CODMn):以高锰酸钾为氧化剂,处理地表水样时所消耗的量,以氧的mg/L来表示。在此条件下,水中的还原性无机物(亚铁盐、硫化物等)和有机污染物均可消耗高锰酸钾,常被作为地表水受有机污染物污染程度的综合指标。也称为化学需氧量的高锰酸钾法,以别于常作为废水排放监测的重铬酸钾法的化学需氧量(COD)。 /p p   总有机碳(TOC):代表水体中有机物质含量的另一项综合指标。采用燃烧水样中的有机物,通过测定生成的二氧化碳(CO2)含量,以C元素的量来表示总有机碳的含量。对于化学成分相同的水样,总有机碳与高锰酸盐指数存在一定的相关性。 /p p   氨氮(NH3-N):氨氮以溶解状态的分子氨(又称游离氨,NH3)和以铵盐(NH4+)形式存在于水体中,两者的比例取决于水的pH值和水温,以含N元素的量来表示氨氮的含量。水中氨氮的来源主要为生活污水和某些工业废水(如焦化和合成氨工业)以及地表径流(主要指使农田使用的肥料通过地表径流进入河流、湖库等)。 /p p    strong 应用实例 /strong /p p   随着国家水质自动监测系统的运行,充分发挥了实时监视和预警功能。在跨界污染纠纷、污染事故预警、重点工程项目环境影响评估及保障公众用水安全方面已经发挥了重要作用。 /p p   2002年在浙江-江苏的跨省污染纠纷处理过程中,自动站的连续监测数据在监督企业污染治理和防止超标排放方面发挥了重要作用。 /p p   长江干流重庆朱沱和宜昌南津关水质自动监测站在2003年5~6月三峡库区蓄水期间,共取得库区上下游2520个水质实时数据,为管理部门的决策提供了有力的依据。 /p p   淮河干流淮南、蚌埠及盱眙站成功地全程监视了2001~2006年淮河干流大型污染团的迁移过程,为沿淮自来水厂及时调整处理工艺,保证饮水安全提供了依据,为环境管理及时提供了技术支持。 /p p   汉江武汉宗关自动监测站自建立以来,每年对汉江水华的预警监测都发挥了重要作用,及时通知武汉市主要饮用水处理厂提前做好处理,保障水厂出水达标。 /p p   2007、2008、2009年太湖蓝藻预警监测期间,太湖沙渚、西山和兰山嘴水质自动监测站开展了加密监测,通过水质pH、溶解氧等藻类生长的水质特异性指标预测判断水体的藻类生长状况,为饮用水水质预警提供了大量实时数据,发挥了重要作用。 /p p   2008年四川汶川特大地震发生后,中国环境监测总站立即通过水质自动监测系统远程查看灾区水质状况,将灾区7个水质自动监测站的监测频次由原来的4小时一次调整为2小时一次,在第一时间分析了地震灾区地震前后水质状况,并将灾区水质无明显变化的情况及时向国务院抗震救灾总指挥部上报,并编制《汶川大地震后相关国家水质自动监测站水质监测结果》,每天在互联网上发布自动监测结果,为保障灾区饮用水安全,稳定灾区群众发挥了重要作用。 /p p   2008年北京奥运会期间,利用北京密云古北口自动站(密云水库入口)、门头沟沿河城自动站(官厅水库出口)、天津果河桥自动站(于桥水库入口)、沈阳大伙房水库及上海青浦急水港自动站等国家水质自动监测站对城市的饮用水源实施严密监控,每日以《奥运城市地表水自动监测专报》形式上报环境保护部,为奥运期间饮水安全提供了技术保障。 /p
  • 环保部称近1/4地表水被污染
    中国环保部周一发布的环境监控数据显示,中国近四分之一的地表水仍处于污染状态,甚至不能做为工业用水,而只有不到一半的地表水可以饮用。   环保部网站(www.mep.gov.cn)发布报告称,今年上半年,该部监察员对全国主要河道及湖泊的水样进行检测,仅有49.3%的地表水可以安全饮用,同比提高1.3个百分点。   中国将水质分为六个级别,前三个级别可以安全饮用并用于洗浴。四级和五级地表水占26.4%,六级占24.3%,前者仅能做为工农业用水,而後者完全不能使用。   尽管过去十年间环保部门了颁布更为严格的法律法规,但依然难以遏制数以千计的小型造纸厂、水泥厂、化工厂的污水直接排放至江河,化肥过量使用导致国内湖泊及河流藻类过度繁殖等现象。   环境部称,今年上半年全国环保重点城市空气质量明显好转,二氧化硫同比下降30.2%。但在今年上半年,监测的443个城市中,189个城市出现酸雨。
  • 中国近1/4地表水被污染 外媒称地方政府监管不力
    中国仅有49.3%的地表水可以安全饮用,近四分之一的地表水处于污染状态,甚至不能作为工业用水。   《国际先驱导报》记者金微发自北京、吉林漂浮的蓝色化工物料桶成了过去一周松花江的一道“风景线”,在洪水肆虐时,这道“风景线”多少让人有些心惊。   “它们就像一个个蓝色的‘定时炸弹’。”一名在松花江上参与打捞物料桶的市民说。   7月28日,吉林省永吉县突降暴雨引发山洪,致使该县新亚强生物化工有限公司和吉林众鑫集团的库房被冲毁,约4000个空桶和3000个原辅料桶被冲入松花江。   吉林市民发现这些漂浮在江边的桶“弥漫着一股异常的气味”。这些曾经或者正在装着三甲基一氯硅烷等物质的化工桶让吉林市民和下游的哈尔滨市民陷入恐慌,2005年松花江污染后市民去超市抢水的一幕再次上演。   仅49.3%的地表水可安全饮用   2005年11月,吉林石化发生爆炸,导致松花江出现水污染,哈尔滨全城停水多日。5年以后,抢水一幕再现。   如今,有关部门通报指出,化工桶打捞工作基本结束,没有一只桶流出吉林省,而在此期间,松花江水质也未见异常。不过,住在松花江沿岸的人们仍然如“惊弓之鸟”的抢水行为却让人深思。   国务院批准实施的《松花江流域水污染防治规划(2006-2010)》中称,该沿岸仅排放汞、镉、六价铬等重金属和难降解有机污染物的企业就有157家。这些企业被一些外电看作是中国表面风光的城市里面隐藏的大量“定时炸弹”。   这样的“定时炸弹”不仅仅存在松花江流域。环保问题专家、北京公众环境研究中心主任马军介绍,湘江的污染已有几十年的历史,上游的金属矿的开采和冶炼,造成重金属超标,这些年问题开始加剧。“另外,在我们河流的上游,长江流域、黄河的中上游,矿区开采也较多,尾矿的处理没有做到位。虽然造成的影响还没有其他河流突出,实际上已经有很多隐患。”   不过,这些区域尚未列入国家治理污染的重点,有着更为严重污染的“三河”(海河、淮河和辽河)是治理重点。   十几年来一直为淮河污染奔忙的民间环保人士霍岱珊回忆,过去淮河被污染到河边不能站人。如今,经过十几年治理,虽然进展缓慢,但是“至少可以站人了”。即便如此,环保部的监控结果显示,淮河上的86个监测断面中,只有37.3%能达到饮用水标准。   近年来,中国各地化工、石化项目纷纷上马,大多布局在江河湖海沿岸和人口稠密城市近郊。2006年,中国化工、石化项目环境风险大排查的结果显示,总投资约1万亿元的7555个化工、石化建设项目中,81%布设在江河水域,人口密集区等环境敏感区域,45%为重大风险源。   中国环保部今年上半年对全国主要河道及湖泊的近千份水样进行检测,最近发布的监测结果显示,仅有49.3%的地表水可以安全饮用,近四分之一的地表水处于污染状态,甚至不能作为工业用水。   出现新型污染   让环保界人士有些不安的是,最近几年出现的新型污染,并未体现在统计数据中。   “有机化学物污染和重金属污染已经成为我国河流的新型污染,不同于河水的黑臭污染,这些污染物有时隐于无形,一旦排放到环境中,危害几十年长期存在,难以治理。”绿色和平污染项目主任马天杰忧心忡忡地告诉记者。   “由于重金属在自然界难降解,随着其逐渐的累积,今后污染的风险会一天天加大,即使减少排放,但过去累积的风险不会在短期内消除,而在局部地区它已经累积到爆发的程度。”马军说。   一个现实的例子就是去年和今年,湖南郴州、陕西凤翔等地发生数百名儿童血铅中毒事件,原因就是当地工厂的排污工作没有做好。   在霍岱珊的“淮河水系环境科学研究中心”,陈列着很多畸形的鱼,这些都是重金属和化学污染所致。“你看过后,肯定都不太敢吃鱼。”霍岱珊说,水生生物和陆地生物往往互相印证,而在淮河两岸村庄除了癌症高发,村民不孕不育的现象增多,而且出现不少畸形儿。   他说,现在淮河的监控和治理对象只有氨氮含量、PH值、融解氧等指标,而不包括重金属和持久性化学污染物。   绿色和平在调查珠江工业污染时也发现,很多有害物质在目前并不受现有政策法律的管制,所以许多企业能够在不违反法律的情况下排放这类物质。   马天杰说,西方国家几百年的发展,初级污染和新型污染不会同时出现,而我们现在初级污染未解决又添新型污染,“压缩型”污染更难治理。   地方政府庇护   美联社、香港《南华早报》将中国的污染问题归结于中国注意经济发展而忽略的环境保护所致,包括监管不力。   《南华早报》举例说,中国环保部2008年成立时,在北京的工作人员只有“区区300人”,“与之形成鲜明对比的,美国的环境保护署有多达1.7万名工作人员”。   不过,点开环保部的网站不难看到,环保部并非不作为,像松花江干流、淮河干流,水质已经出现明显好转。   而在频繁发生的污染事故背后,经常看到环保部门与地方政府的博弈,结果又常常是地方政府背靠着“有利地形”而占据上风。   马军于2006年推出中国首个水污染公益数据库“中国水污染地图”。目前,他的“中国水污染地图”每天都更新着各地企业排污的报告,“我们已经有67000条政府公布的企业超标违规纪录,其中涉及水污染的约有40000条。”   数据库里收录了被洪水冲走化工桶的这两家吉林企业的信息。“现在对这起事故原因还没有详细的调查报告,但我们发现这家厂子曾有过爆炸的记录,这些都收录在我们的数据库里,这反应了它的管理水平存在问题。”马军说。   而最近闹得沸沸扬扬的紫金矿业集团紫金山铜矿湿法厂污水池发生渗漏,大量污水涌入汀江导致污染事件,也并非无迹可寻:今年5月,环境保护部发文严厉批评11家存在严重环保问题的上市企业,名列榜首的正是紫金矿业。针对环保部的批评,当地官员对紫金矿业的违规行为不闻不问,反而加入隐瞒行列。   马天杰介绍,湖南有色金属股份有限公司的两家下属企业因超标排放多次被环保部门点名,但绿色和平在今年1月和3月分别对两家公司进行调研发现,他们的排放程度并没有收敛。“他们完全是光明正大的排放。”马天杰说。   “很多情况表明地方官员相信其让污染企业继续运作的做法不会受到惩罚。”《南华早报》报道说。   应加大公众监督力度   在马军看来,环境问题迟迟得不到解决的原因,是缺乏动力。“这个动力应来自于政府的监管、法院的判罚,但是这两个重要的动力来源尚不具备,不仅监管较弱,而且法院的介入也不积极,地方保护因素不是在一夜之间能够扭转,因此需要社会的参与来弥补动力的不足。”   2008年5月,由环境保护部制定的《环境信息公开办法(试行)》被认为是引进社会参与的一次尝试。《办法》提出:环保部门应当向社会主动公开污染物排放超标的企业名单。   “信息公开并不能减少污染,但是却是公众参与到环境监督的关键一环。”马天杰举例说,一些地方环保部门保留着对污染企业的监测数据,而这些数据往往又是污染受害者打赢环保官司的重要证据,这就是实现社会监督最直接的形式。   美国80年代就要求企业列出有毒物质排放清单,其中包括300多种的有毒有害物质。居民只要输入邮政编码就可以知道周围企业排放了哪些污染。   然而,在中国环境信息公开办法实施两年多后,却遭遇另类尴尬。绿色和平曾多次致函要求株洲市环保局公开当地两家污染企业的环境信息,但是,环保部门却以两家企业为上市公司比较敏感为由,拒绝公开相关信息。   “我们经常遇到这种打太极的现象,地方政府有惯性思维,本能地觉得这会导致社会不稳定。政府部门应意识到信息公开的重要性,鼓励公民参与,而不能成为其中的阻碍因素。”马天杰说。   长期在淮河环保一线工作的霍岱珊对社会监督的作用深有体会,他认为加大公众的监督力度对解决污染问题是一条有效的途径,“莲花模式”就是很好的例子。   莲花味精曾是淮河上出名的排污大户——每天排放污水12万吨,受过罚款后仍然偷排。为此,霍岱珊常上门去“找茬”,双方关系搞得“很不愉快”。2005年,这家厂的日资撤离,新换的负责人找到霍岱珊,决定接受公众监督,践行企业环境责任。其后,莲花味精改变生产工艺,制造1吨味精从消耗37吨水到耗水4吨左右即可,废料还进一步处理,加工成复合肥,每年多盈利2000多万元,实现了循环经济。霍岱珊更是富有创意地在莲花味精污水处理厂门口放置了一块环境信息公示牌,标注出每天的排污信息。这种NGO与企业互动,而且达到双赢的案例,被称为“莲花模式”。   目前,霍岱珊在沿淮河800公里范围内,有了8个工作站,形成企业排污观测网络,但霍岱珊仍有无奈:“国家有法律,但到地方难落实,他们将环保信息作为机密或以政治问题对待,对公众监督实行种种限制。我们淮河卫士能够得到高层领导和底层百姓的支持,得不到地方政府的支持,这也应照了中国环保两头热的现状。”
  • 地表水检测移动实验室仪器配置及监测项目一览
    p   随着我国对地表水现场检测的需求不断扩大,地表水快速检测移动实验室在检测过程中的重要性逐渐显现,因此对地表水快速检测移动实验室的采样、检测仪器等相关设备也引起了高度重视。作为地表水采样与检测一体化的移动实验室平台,制定统一、规范的地表水快速检测移动实验室用于地表水现场采样与检测等显得尤为必要。 /p p   日前,全国移动实验室标准化技术委员会发布关于通知,对《地表水快速检测移动实验室通用技术规范》征求意见。本标准由全国移动实验室标准化技术委员会提出并归口,起草单位为青岛佳明测控科技股份有限公司,合作单位为中国环境监测总站、青岛市环境监测中心、上海安杰环保科技股份有限公司、山东正泰希尔专用汽车有限公司。 /p p   我们国家目前已经建立了《地表水环境质量标准》、《移动实验室通用要求》、《地表水自动监测技术规范》等标准,但是没有移动实验室地表水监测的专业性标准,本标准参考了以上标准,根据地表水的相关规定,做了相关规范,填补了地表水检测移动实验室没有技术规范的空白。 /p p   标准中明确了地表水快速检测移动实验室仪器设备配置参考及地表水快速检测移动实验室监测项目。其中,地表水快速检测移动实验室可参考地表水快速检测移动实验室监测项目来选配仪器设备。详细内容如下: /p p style=" text-align: center " strong 地表水检测移动实验室配置仪器设备 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 39" p style=" text-align:center " 序号 /p /td td width=" 157" p style=" text-align:center " 检测类别 /p /td td width=" 480" p style=" text-align:center " 仪器设备 /p /td /tr tr td width=" 39" rowspan=" 2" p style=" text-align:center " 1 /p /td td width=" 157" rowspan=" 2" p style=" text-align:center " 采样器、样品采集、存储类 /p /td td width=" 480" p style=" text-align:center " a href=" https://www.instrument.com.cn/Consumables/s_82.htm" target=" _blank" 聚乙烯塑料桶 /a 、 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 单层采水瓶 /a 、 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 直立式采水器 /a 、 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 在线自动监测设备 /a /p /td /tr tr td width=" 480" p style=" text-align:center " a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 硬质玻璃瓶 /a 、 a href=" https://www.instrument.com.cn/Consumables/s_82.htm" target=" _blank" 聚乙烯瓶 /a 等容器、 a href=" https://www.instrument.com.cn/Consumables/s_82.htm" target=" _blank" 无菌瓶 /a 等容器、 a href=" https://www.instrument.com.cn/list/main/03.shtml" target=" _blank" 车载冰箱 /a /p /td /tr tr td width=" 39" p style=" text-align:center " 2 /p /td td width=" 157" p style=" text-align:center " 试验类 /p /td td width=" 480" p style=" text-align:center " a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 烧杯 /a 、 a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 试管 /a 、 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 试剂盒 /a 、 a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 容量瓶 /a 、 a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 量筒 /a 、 a href=" http://移液枪" target=" _blank" 移液枪 /a 、 a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 移液管 /a 等 /p /td /tr tr td width=" 39" p style=" text-align:center " 3 /p /td td width=" 157" rowspan=" 3" p style=" text-align:center " 检测仪器类 /p /td td width=" 480" rowspan=" 3" p style=" text-align:center " a href=" http://五参数分析仪" target=" _blank" 五参数分析仪 /a 、 a href=" https://www.instrument.com.cn/zc/1687.html" target=" _blank" 高锰酸盐指数分析仪 /a 、 a href=" http://氨氮分析仪" target=" _blank" 氨氮分析仪 /a 、 a href=" https://www.instrument.com.cn/zc/319.html" target=" _blank" 总磷分析仪 /a 、 a href=" https://www.instrument.com.cn/zc/319.html" target=" _blank" 总氮分析仪 /a 、 a href=" https://www.instrument.com.cn/zc/35.html" target=" _blank" 可见/紫外分光光度计 /a 、 a href=" https://www.instrument.com.cn/zc/24.html" target=" _blank" 离子色谱仪 /a 、 a href=" https://www.instrument.com.cn/zc/1158.html" target=" _blank" 气相分子吸收光谱仪 /a 、 a href=" https://www.instrument.com.cn/zc/39.html" target=" _blank" 原子发射光谱仪 /a 。 a href=" https://www.instrument.com.cn/zc/1650.html" target=" _blank" 重金属分析仪等在线自动监测仪 /a 、 a href=" https://www.instrument.com.cn/zc/646.html" target=" _blank" 重金属分析系统 /a 、 a href=" https://www.instrument.com.cn/zc/293.html" target=" _blank" 电感耦合等离子体质谱仪ICP-MS /a 、 a href=" https://www.instrument.com.cn/zc/24.html" target=" _blank" 离子色谱仪 /a 、 a href=" https://www.instrument.com.cn/zc/1.html" target=" _blank" 气相色谱仪 /a 、 a href=" https://www.instrument.com.cn/zc/290.html" target=" _blank" 气相色谱-质谱联用仪 /a 、 a href=" https://www.instrument.com.cn/zc/290.html" target=" _blank" 气相色谱-飞行质谱联用仪 /a 、 a href=" https://www.instrument.com.cn/zc/143.html" target=" _blank" 培养箱 /a 等。 /p /td /tr tr td width=" 39" p style=" text-align:center " 3 /p /td /tr tr td width=" 39" p style=" text-align:center " 3 /p /td /tr /tbody /table p   地表水快速检测移动实验室仪器设备选择原则:a) 根据使用的实际需求选择合适的仪器设备。 b) 有限选用主流分析方法的仪器设备  c) 仪器设备宜便捷、小型化。 /p p style=" text-align: center " strong 地表水快速检测移动实验室监测项目 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 44" valign=" top" p style=" text-align:center " & nbsp /p /td td width=" 280" valign=" top" p style=" text-align:center " strong 必测项目 /strong strong /strong /p /td td width=" 314" valign=" top" p style=" text-align:center " strong 选测项目 /strong strong /strong /p /td /tr tr td width=" 44" valign=" top" p style=" text-align:center " 河 流 /p /td td width=" 280" valign=" top" p style=" text-align:center " 水温、pH、溶解氧、高锰酸盐指数、化学需氧量、BOD5、氨氮、总氮、总磷、铜、锌、氟化物、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、 br/ & nbsp & nbsp & nbsp 石油类、阴离子表面活性剂、硫化物和粪大肠菌群 /p /td td width=" 314" valign=" top" p style=" text-align:center " 总有机碳、甲基汞,根据纳污情况由各级相关环境保护主管部门确定 /p /td /tr tr td width=" 44" valign=" top" p style=" text-align:center " 集中式饮用水源地 /p /td td width=" 280" valign=" top" p 水温、pH、溶解氧、悬浮物②、高锰酸盐指数、化学需氧量、BOD5、氨氮、总磷、总氮、铜、锌、氟化物、铁、锰、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、石油类、阴离子表面活性剂、硫化物、硫酸盐、氯化物、硝酸盐和粪大肠菌群 /p /td td width=" 314" valign=" top" p 三氯甲烷、四氯化碳、三溴甲烷、二氯甲烷、1,2-二氯乙烷、环氧氯丙烷、氯乙烯、1,1-二氯乙烯、1,2-二氯乙烯、三氯乙烯、四氯乙烯、氯丁二烯、六氯丁二烯、苯乙烯、甲醛、乙醛、丙烯醛、三氯乙醛、苯、甲苯、乙苯、二甲苯③、异丙苯、氯苯、1,2-二氯苯、1,4-二氯苯、三氯苯④、四氯苯⑤、六氯苯、硝基苯、二硝基苯⑥、2,4-二硝基甲苯、2,4,6-三硝基甲苯、硝基氯苯⑦、2,4-二硝基氯苯、2,4-二氯苯酚、2,4,6-三氯苯酚、五氯酚、苯胺、联苯胺、丙烯酰胺、丙烯腈、邻苯二甲酸二丁酯、邻苯二甲酸二(2-乙基己基)酯、水合肼、四乙基铅、吡啶、松节油、苦味酸、丁基黄原酸、活性氯、滴滴涕、林丹、环氧七氯、对硫磷、甲基对硫磷、马拉硫磷、乐果、敌敌畏、敌百虫、内吸磷、百菌清、甲萘威、溴氰菊酯、阿特拉津、苯并(a)芘、甲基汞、多氯联苯⑧、微囊藻毒素-LR、黄磷、钼、钴、铍、硼、锑、镍、钡、钒、钛、铊 /p /td /tr tr td width=" 44" valign=" top" p style=" text-align:center " 湖泊水库 /p /td td width=" 280" valign=" top" p 水温、pH、溶解氧、高锰酸盐指数、化学需氧量、BOD5、氨氮、总磷、总氮、铜、锌、氟化物、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、石油类、阴离子表面活性剂、硫化物和粪大肠菌群 /p /td td width=" 314" valign=" top" p style=" text-align:center " 总有机碳、甲基汞、硝酸盐、亚硝酸盐,其它 br/ & nbsp & nbsp & nbsp 根据纳污情况由各级相关环境保护主管部门确定 /p /td /tr tr td width=" 44" valign=" top" p style=" text-align:center " 排污河(渠) /p /td td width=" 280" valign=" top" p style=" text-align:center " 根据纳污情况,参照表中工业废水监测项目 /p /td td width=" 314" valign=" top" p style=" text-align:center " & nbsp /p /td /tr /tbody /table p br/ /p
  • 浙江136处地表水水质监测数据 可网上实时查看
    本月起,浙江136处地表水的水质监测数据网上实时可查。据省环保厅消息,浙江省地表水水质自动监测数据发布平台于8月1日正式上线。登录这个水质数据发布平台会发现,它与浙江省此前发布的空气质量监测数据发布平台类似,都是在一张地图上标记出所有自动监测站点的位置,并实时显示每个站点的监测数据。据了解,此次上线的地表水断面自动监测站点一共136个,这些站点覆盖全省钱塘江、京杭大运河等8大水系主要流域水体。其实时数据、日报数据和月报数据均可随时查到。具体数据包含了pH酸碱度、溶解氧、高锰酸盐指数、总磷、氨氮5项指标。每个监测站点会因为不同监测数据的好坏,按一类至劣五类分成蓝、浅蓝、绿、黄、橙、红,一共六种颜色,使市民登录后,一眼便可看出这里的水好不好。目前,打开发布平台,可以看到采集情况。如杭州市九溪水厂于8月2日20点采集情况:pH监测值为7.14,蓝色;溶解氧为7.34mg/l,淡蓝色;高锰酸盐指数为2.5mg/l,淡蓝色;总磷浓度为0.217mg/l;黄色;氨氮浓度为0.21mg/l,淡蓝色。这也就意味着,在钱塘江边供应杭州饮用水的主力军九溪水厂的地表水,除总磷一项指标为四类外,其他都达到一二类水平。来源:水之守护者微信
  • 环境总站关于第一批地表水智能分析实验室测试单位比选结果的公示
    为推动国家地表水监测网数智化转型工作,2024年3月,中国环境监测总站(以下简称总站)公开征集地表水无人监测技术测试单位。近日,总站水运管中心组织召开“第一批地表水智能分析实验室测试单位比选会”,根据专家评审结果,确定北京市生态环境监测中心、重庆市生态环境监测中心、辽宁省沈阳生态环境监测中心、浙江省杭州生态环境监测中心、宁波市生态环境局北仑分局环境监测站、广东省深圳生态环境监测中心站共6家单位作为总站第一批地表水智能分析实验室测试单位,现予以公示。公式时间:自本公告发布之日起5个工作日。如对上述结果有异议,请在公示期内以书面形式提出。联系人:王延军 15851962270 沈嘉豪 15010136816联系邮箱:waterygzx@cnemc.cn
  • 上海地表水监测体系1.56亿元采购大标“来袭”
    p   span style=" font-family: times new roman "  6月14日,中国政府采购网发布了上海市环境监测中心地表水环境预警监测与评估体系国际招标项目第一批、第二批的评审结果及第三批的重新招标公告。据不完全统计,整个项目的采购预算高达1.56亿元,据公告显示,项目资金来源目前已经落实。 /span /p p span style=" font-family: times new roman "   据悉,前两批次的招标工作于3月22日启动,采购预算分别为3853万元、8700万元,采购内容共计47个水质自动监测站,具体评审结果如下: /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 18px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 18px " 上海市环境监测中心地表水环境预警监测与评估体系(第一批) /span /strong /span /p p span style=" font-family: times new roman "   第一批采购内容分为6包,涉及20个监测站,具体参见下表: /span /p p span style=" font-family: times new roman "    strong 包一 省市边界固定式水质自动监测站(3个) /strong /span /p p span style=" font-family: times new roman "    span style=" color: rgb(112, 48, 160) font-family: times new roman " 第一候选人:上海境琛环保科技有限公司 /span /span /p p span style=" color: rgb(112, 48, 160) font-family: times new roman "    具体中标品牌: SPX Flow Technology Norderstedt GmbH等 /span /p p span style=" font-family: times new roman "    strong 包二 省市边界固定式水质自动监测站 (2个) /strong /span /p p span style=" color: rgb(112, 48, 160) font-family: times new roman "    第一候选人:上海雷磁环保工程有限公司 /span /p p span style=" color: rgb(112, 48, 160) font-family: times new roman "    具体中标品牌:美国哈希公司等 /span /p p span style=" font-family: times new roman "    strong 包三 省市边界固定式水质自动监测站 (1个) /strong /span /p p span style=" font-family: times new roman "    span style=" color: rgb(112, 48, 160) font-family: times new roman " 第一候选人:上海境琛环保科技有限公司 /span /span /p p span style=" color: rgb(112, 48, 160) font-family: times new roman "    具体中标品牌: 中国河北先河环保科技股份有限公司等 /span /p p span style=" font-family: times new roman "    strong 包四 黄浦江杨浦大桥固定式自动监测站(1个) /strong /span /p p span style=" font-family: times new roman "   span style=" color: rgb(112, 48, 160) font-family: times new roman "   第一候选人:上海雷磁环保工程有限公司 /span /span /p p span style=" color: rgb(112, 48, 160) font-family: times new roman "    具体中标品牌:美国哈希公司等 /span /p p span style=" font-family: times new roman "    strong 包五 苏州河及黄浦江岸边式水质自动站(7个) /strong /span /p p span style=" color: rgb(112, 48, 160) font-family: times new roman "    第一候选人:杭州鼎林环保科技有限公司 /span /p p span style=" color: rgb(112, 48, 160) font-family: times new roman "    具体中标品牌:美国哈希公司等 /span /p p span style=" font-family: times new roman "    strong 包六 淡水浮标式水质自动站(6个) /strong /span /p p span style=" font-family: times new roman "    span style=" color: rgb(112, 48, 160) font-family: times new roman " 第一候选人:上海雷磁环保工程有限公司 /span /span /p p span style=" color: rgb(112, 48, 160) font-family: times new roman "    具体中标品牌:德国OTT公司 /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 18px " strong span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 18px " 上海市环境监测中心地表水环境预警监测与评估体系(第二批) /span /strong /span /p p span style=" font-family: times new roman "   第二批采购内容分为十包,涉及27个监测站,具体参见下表: /span /p p span style=" font-family: times new roman "    strong 包一 市级水源地及上游预警固定式水质自动站(1个) /strong /span /p p span style=" font-family: times new roman "   & nbsp span style=" color: rgb(112, 48, 160) font-family: times new roman " 第一候选人:上海摩威环境科技股份有限公司 /span /span /p p span style=" color: rgb(112, 48, 160) font-family: times new roman "    具体中标品牌:中国河北先河环保科技股份有限公司等 /span /p p span style=" font-family: times new roman "    strong 包二 市级水源地及上游预警固定式水质自动站(3个) /strong /span /p p span style=" font-family: times new roman "    span style=" color: rgb(112, 48, 160) font-family: times new roman " 第一候选人:上海摩威环境科技股份有限公司 /span /span /p p span style=" color: rgb(112, 48, 160) font-family: times new roman "    具体中标品牌:美国哈希公司等 /span /p p span style=" font-family: times new roman "    strong 包三 市级水源地及上游预警固定式水质自动站(1个) /strong /span /p p strong span style=" font-family: times new roman "    /span /strong span style=" color: rgb(112, 48, 160) font-family: times new roman " 第一候选人:北京泰得思达科技发展有限公司 /span /p p span style=" font-family: times new roman "    strong 包四 黄浦江上游固定式水质自动站(1个) /strong /span /p p span style=" font-family: times new roman "    span style=" color: rgb(112, 48, 160) font-family: times new roman " 第一候选人:上海市环境监测技术装备有限公司 /span /span /p p span style=" color: rgb(112, 48, 160) font-family: times new roman "    具体中标品牌:美国YSI等 /span /p p span style=" font-family: times new roman "    strong 包五 黄浦江上游固定式水质自动站(1个) /strong /span /p p span style=" color: rgb(112, 48, 160) font-family: times new roman "    第一候选人:上海市环境监测技术装备有限公司 /span /p p span style=" color: rgb(112, 48, 160) font-family: times new roman "    具体中标品牌:中国上海市环境监测技术装备有限公司 /span /p p span style=" font-family: times new roman "    strong 包六 松江固定式及岸边时水质自动站(3个) /strong /span /p p span style=" font-family: times new roman "   span style=" color: rgb(112, 48, 160) font-family: times new roman "  第一候选人:上海摩特威尔自控设备工程有限公司美国 /span /span /p p span style=" color: rgb(112, 48, 160) font-family: times new roman "    具体中标品牌:美国哈希 /span /p p span style=" font-family: times new roman "    strong 包七 松江固定式水质自动站(1个) /strong /span /p p span style=" font-family: times new roman "    span style=" color: rgb(112, 48, 160) font-family: times new roman " 第一候选人:上海摩威环境科技股份有限公司 /span /span /p p span style=" color: rgb(112, 48, 160) font-family: times new roman "    具体中标品牌:德国Bran+Lubbe等 /span /p p span style=" font-family: times new roman "    strong 包八 青浦固定式及岸边式水质自动站(5个) /strong /span /p p span style=" font-family: times new roman "    span style=" color: rgb(112, 48, 160) font-family: times new roman " 第一候选人:上海雷磁环保工程有限公司 /span /span /p p span style=" color: rgb(112, 48, 160) font-family: times new roman "    具体中标品牌:美国哈希等 /span /p p span style=" font-family: times new roman "    strong 包九 金山固定式及岸边式水质自动站(3个) /strong /span /p p span style=" font-family: times new roman "    span style=" color: rgb(112, 48, 160) font-family: times new roman " 第一候选人:上海摩特威尔自控设备工程有限公司 /span /span /p p span style=" color: rgb(112, 48, 160) font-family: times new roman "    具体中标品牌:美国哈希等 /span /p p span style=" font-family: times new roman "    strong 包十 淡水浮标式水质自动站(8个) /strong /span /p p span style=" font-family: times new roman "    span style=" color: rgb(112, 48, 160) font-family: times new roman " 第一候选人:上海雷磁环保工程有限公司 /span /span /p p span style=" color: rgb(112, 48, 160) font-family: times new roman "    具体中标品牌:美国哈希等 /span /p p span style=" font-family: times new roman "   哈希和先河环保两家环境监测仪器多次出现在前两批标项包的第一候选位置,按目前情况推断,这两家将成为此项目的大赢家。美国YSI公司、德国Bran+Lubbe、OTT公司、上海市环境监测技术装备有限公司等也在个别标项包中成为第一候选。 /span /p p span style=" font-family: times new roman "   刚刚公布的“ strong 地表水环境预警监测与评估体系国际招标 (第三批) /strong 重新招标公告”显示,此批次招标预算为3000万元人民币,项目采购内容分为两包,包一为4套水中挥发性有机物在线监测仪,包二为6套水中挥发性有机物在线监测仪。此批次仪器均为水中挥发性有机物在线监测系统,根据招标公告,其涉及的仪器为10套含吹扫捕集系统的四极杆气质联用仪。具体采购详情,请参看政采网相关公告: a title=" " href=" http://www.ccgp.gov.cn/cggg/dfgg/gkzb/201606/t20160614_6900671.htm" target=" _self" 地表水环境预警监测与评估体系国际招标 (第三批)重新招标公告 /a /span /p
  • FP360 sc 水中油分析仪在地表水水质监测的应用
    随着工业的规模的不断扩大和发展,国家对地表水的污染越来越重视,其中,石油类是地表水必测项目之一,国内不少地区环监部门对河流、湖泊、排污河渠都采取在线监测的方式来监控油类污染物。工业的矿物油污染是地表水油类污染的来源之一,紫外荧光法的FP360sc水中油可以有效监测矿物油的污染。上海某环境监测中心对石油类污染指标纳入了地表水在线监测的范畴,在多个地区的不同地表水水质自动监测站均采用FP360 sc在线水中油分析仪。应用情况主要仪器:FP360 sc在线分析仪,SC1000 控制器。如图 1 和图 2 所示。FP360 sc体积小,对于占地面积小岸边监测站安装方便;客户认可紫外荧光法测量原理,认为FP360 sc测量值能够比较好的反应监测指标的趋势。FP360 sc与SC1000控制器兼容,降低了成本,且FP360 sc水中油分析仪维护简单,不需要使用试剂,维护成本非常低。当前用户主要用于趋势测量,在没有做校准的情况下水中油含量为几十个ppb,能够达到监测水中油含量的变化趋势的要求。 总结 随着国内污染状况的日趋严重,随着环保监测要求的日益提升,地表水石油类在线监测会被越来越多地区的环保局所采纳,FP360 sc分辨率低,检出限仅1.2ppb PAH,是一款几乎免维护的水中油分析仪,不需要消耗试剂,只需每2年返厂一次,清洗维护有需要时才执行,特别适用于地表水水质自动监测站。
  • 搞地表水检测?看看行业专家是怎么说的
    p style=" text-align: justify text-indent: 2em " 社会经济的迅猛发展加之人口数目的不断增长,导致地表水污染不断加剧,水资源安全受到了严重的威胁。随着国家对环保问题关注力度的增强,水污染已受到环保部门的高度重视。今年3月底,国家生态环境部新发布了3项水质检测的国家环境保护标准的征求意见函,标准中对水中58种污染物及微生物检测方法做出了明确的规定。 /p p style=" text-align: justify text-indent: 2em " 确保水质的健康安全,做好水质检测工作至关重要。 /p p style=" text-align: justify text-indent: 2em " 鉴于此,仪器信息网( a href=" https://www.instrument.com.cn/" _src=" https://www.instrument.com.cn/" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn/ /span /a )联合 strong span style=" color: rgb(255, 0, 0) " 青岛市分析测试学会 /span /strong ,将于 strong 2020年5月13日 /strong 召开“ strong 地表水检测与分析” /strong 主题网络研讨会,携手该领域的专家和一线工作者带来精彩的分享,解读水质检测标准,探讨提高水质检测水平的相关技术,力求可以为水环境的保护尽绵薄之力。 /p p style=" text-align: center text-indent: 2em " span style=" font-family: 微软雅黑 color: rgb(255, 0, 0) " strong span style=" font-family: 微软雅黑 font-size: 18px " 精彩内容抢先看↓↓↓ /span /strong /span /p p strong 一、会议日程 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/11da8250-1ca0-4731-8a64-2e25030c3d13.jpg" title=" 地表水日程.png" alt=" 地表水日程.png" / /p p strong 二、演讲嘉宾阵容 /strong /p p & nbsp /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/cc857e11-22a0-46b5-997f-73ac6f70fe3c.jpg" title=" 地表水专家.png" alt=" 地表水专家.png" / /p p style=" text-align: justify " strong 三、会议报名 /strong /p p style=" text-align: center " 扫描下方二维码或点击链接: span style=" color: rgb(0, 112, 192) text-decoration: underline " a href=" https://www.instrument.com.cn/webinar/meetings/DBS2020/" _src=" https://www.instrument.com.cn/webinar/meetings/DBS2020/" style=" color: rgb(0, 112, 192) text-decoration: underline " https://www.instrument.com.cn/webinar/meetings/DBS2020/ /a /span /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " 了解会议详情及报名& nbsp /span /p p span style=" color: rgb(0, 112, 192) " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/02ed3bdb-87a4-4ac5-b593-14daca58d833.jpg" title=" 地表水.png" alt=" 地表水.png" / /p p style=" text-align: center " br/ /p p style=" text-align: center " strong 扫描下方二维码 /strong /p p style=" text-align: center " strong 提前进入“地表水检测”会议群 /strong /p p style=" text-align: center " strong 了解更多会议信息 /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 291px height: 464px " src=" https://img1.17img.cn/17img/images/202004/uepic/89239e66-d861-435b-a75c-a6c970a2defa.jpg" title=" 微信图片_20200430134522.png" alt=" 微信图片_20200430134522.png" width=" 291" height=" 464" / /p p br/ /p p & nbsp /p
  • 地表水环境质量标准109项全分析难点项目技术研讨会召开
    为提高地表水环境质量监测能力,特别是集中式生活饮用水水源地监测技术水平,解决109项全分析监测中的技术难点和存在的问题, 2012年12月20-21日,中国环境监测总站在厦门举办了“地表水环境质量标准109项全分析难点项目技术研讨会”,总站王业耀副站长致辞,各省(自治区、直辖市)及全国113个环保重点城市环境监测中心(站)共270多名环境监测技术人员参加了会议。   会上针对地表水环境质量标准109项全分析之技术方法现状与能力建设需求、特定项目优化检测技术研究、109项控制项目QA/QC体系的不足及建议,在大会进行了主旨报告。 会议现场   随后,会议分有机分析、常规和无机分析技术两个分会场,代表们针对地表水样品保存和前处理、常规项目如高锰酸盐指数、活性氯、氨氮等分析技术中存在的问题、大型仪器ICP-MS、GC-MS、UPLC-MS/MS等在环境监测分析中的应用,以及四乙基铅、丁基黄原酸、甲基汞、塑化剂等难点项目的监测分析技术进行了重点发言及讨论交流。   为了筹划此次研讨会,分析室在“十一五”水专项子课题“地表水环境质量特定监测项目分析测试方法优化研究”成果的基础上,结合地表水监测的经验,组织河南省、重庆市、江苏省等监测站针对109项全分析工作存在的问题和技术难点开展了专题研究,并汇集了各地方监测站近期《地表水环境质量标准》分析技术与方法的最新研究成果,整理出版了《地表水环境质量标准109项全分析技术难点研究》论文集。   此次会议的召开为环境监测技术人员提供了一个良好技术交流平台,共同研讨了《地表水环境质量标准》109项全分析难点技术,有力促进了各级环境监测分析部门难点问题的解决和技术水平的提高,为推进“十二五”期间集中式生活饮用水水源地水质监测工作提供了技术保障。 “地表水环境质量标准109项全分析难点项目技术研讨会议”相关PPT如下所示(下载):   一、无机类   1、ICP-AES测试地表水中铬含量不确定度的研究分析-陈波   2、ICPMS测定微量元素-余斌   3、ICP-MS在水质监测中的应用-陈纯   4、地表水基本项目监测的几点思考-张瑜龙   5、地表水重金属监测的样品前处理方法探讨-张霖琳   6、分光光度法测定水中活性氯的方法研究-王媛媛   7、流动注射分析法与分光光度法测定水中氨氮的比较-张星星   8、石墨炉原子吸收法测定地表水特定项目-毛雨廷   9、石墨炉原子吸收法测定水中钒的方法探讨-季彦鋆   二、有机类   1、GCMS在环境中的应用-邓力   2、地表水109项中挥发性有机物的测定-吹扫捕集-气相色谱-质谱法-王 荟   3、地表水环境质量标准109项控制项目QAQC体系的不足及建议-戴秀丽   4、地表水特定项目检测技术研究-杨丽莉   5、地表水中四乙基铅的分析方法和样品保存研究-王玲玲   6、丁基黄原酸测定方法的研究-朱红霞   7、气相色谱法测定地表水中甲基汞分析条件的优化-丁曦宁   8、全自动固相萃取-气相色谱测定环境水样中有机磷农药残留-何书海   9、水样中极性化合物的分析-王静   10、水中邻苯二甲酸酯类塑化剂的测定-邢冠华   11、汛期水样中五氯酚的含量测定及其健康风险评价-贺小敏   12、液相色谱及液质联用技术在环境分析中的应用- 张蓓蓓
  • 干货分享|“地表水检测与分析”主题研讨会精彩视频回放
    p style=" text-indent: 2em " 2020年5月13日,由仪器信息网和 span style=" color: rgb(255, 0, 0) " strong 青岛分析测试学会 /strong /span 联合举办的 strong “地表水检测与分析” /strong 主题网络研讨会成功召开。10位来自各地环境监测中心、科研院校的专家及来自仪器企业的应用技术专家齐聚,为地表水检测领域的同行带来精彩的报告分享。 /p p style=" text-indent: 2em " 会议期间,听众朋友积极与报告老师互动问答,反响较好,收获颇丰。 /p p style=" text-indent: 2em " 为方便各位网友回顾学习相关知识,仪器信息网特整理此篇内容,欢迎观看会议回放视频,温故知新。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 130px height: 138px " src=" https://img1.17img.cn/17img/images/202005/uepic/86e6db33-2151-44b1-8322-080c70141217.jpg" title=" 谭丕功.jpg" alt=" 谭丕功.jpg" width=" 130" height=" 138" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" font-family: 黑体, SimHei text-indent: 2em " 谭丕功 研究员 /span /p p style=" text-align: center " span style=" font-family: 黑体, SimHei text-indent: 2em " 山东省青岛生态环境监测中心 /span /p p style=" text-indent: 2em " strong 报告题目: /strong 地表水监测标准及相关问题 /p p style=" text-indent: 2em " strong 报告简介: /strong 针对地表水环境质量标准(GB3838-2012)所列项目,重点从监测项目的形态、监测指标的特点和一些监测分析方法之间的差异几方面详细讲解地表水监测的难点以及存在的问题和解决的方法。 /p p style=" text-indent: 2em " strong 视频回放链接: /strong a href=" https://www.instrument.com.cn//webinar/video_112524.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn//webinar/video_112524.html /span /a /p p style=" text-indent: 2em " & nbsp /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 142px height: 150px " src=" https://img1.17img.cn/17img/images/202005/uepic/ec1fef6f-a474-4f8c-a571-a411664a1a15.jpg" title=" 姜啸龙.jpg" alt=" 姜啸龙.jpg" width=" 142" height=" 150" / /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 姜啸龙 分析计测事业部市场部GCMS专员 /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 岛津企业管理(中国)有限公司 /span /p p style=" text-indent: 2em " strong 报告题目: /strong 岛津GCMS水质分析解决方案 /p p style=" text-indent: 2em " strong 报告简介: /strong 1、介绍针对国家法规更新不断完善的GCMS分析方法包 /p p style=" text-indent: 2em " 2、水中嗅味物质分析研究的最新进展 /p p style=" text-indent: 2em " 视频回放链接: a href=" https://www.instrument.com.cn//webinar/video_112525.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn//webinar/video_112525.html /span /a /p p style=" text-indent: 2em " & nbsp /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 133px height: 129px " src=" https://img1.17img.cn/17img/images/202005/uepic/285582d7-5cbf-45a7-b9d1-208ecaa56403.jpg" title=" 高松.jpg" alt=" 高松.jpg" width=" 133" height=" 129" / /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 高松 研究员 /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 吉林大学 /span /p p style=" text-indent: 2em " strong 报告题目: /strong 针阱微萃取& amp 气相色谱法快速分析水中有机污染物 /p p style=" text-indent: 2em " strong 报告简介: /strong 针阱微萃取(Needle trap Microextraction, NTME)是从固相微萃取(solid-phase microextraction,SPME)技术发展而来,该技术集样品采样、免溶剂萃取、浓缩及色谱进样于一体,克服了SPME易碎裂、吸附容量低、静态萃取时间长等缺点,可实现对环境大气、水、土壤等样品中挥发半挥发性有机物的动态免溶剂提取,并直接耦合GC/GCMS进行定性定量分析。针阱微萃取提取气态样品仅0.1mL-100mL,水样0.2-10.0mL,3分钟即可完成样品前处理(采样、提取、浓缩),广泛适用多种目标物包括VOCs、SVOCs、POPs、农残、新型污染物、石油烃等,本报告将以环境水质中6种典型硝基苯类化合物为目标物SVOC,研究建立针阱微萃取快速提取& amp 气相色谱测定的分析方法。 /p p style=" text-indent: 2em " strong 视频回放链接: /strong a href=" https://www.instrument.com.cn//webinar/video_112526.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn//webinar/video_112526.html /span /a /p p style=" text-indent: 2em " & nbsp /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 137px height: 133px " src=" https://img1.17img.cn/17img/images/202005/uepic/ced23a17-75dd-402a-94dd-f77d070785fe.jpg" title=" 郭英田.jpg" alt=" 郭英田.jpg" width=" 137" height=" 133" / /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 郭英田 YSI水质应用专家 /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 赛莱默分析仪器中国(Xylem Analytics) /span /p p style=" text-indent: 2em " strong 报告题目: /strong YSI数字水质仪在地表水监测中的应用 /p p style=" text-indent: 2em " strong 报告简介: /strong YSI数字水质仪在地表水监测中的应用,塞莱默旗下YSI公司是水质仪器的领导者,创新推出的专业型数字水质仪,满足地表水监测的广泛需求。原位监测地表水的水质参数,温度,电导率,盐度,溶解氧,PH,ORP,浊度,藻类和叶绿素。分成三部分,一,ProDSS多参数仪,二,Prosolo (ODO—T,ODO—CT),三,Proswap 单参数仪。 /p p style=" text-indent: 2em " strong 视频回放链接: /strong a href=" https://www.instrument.com.cn//webinar/video_112527.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn//webinar/video_112527.html /span /a /p p style=" text-indent: 2em " & nbsp /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 159px height: 168px " src=" https://img1.17img.cn/17img/images/202005/uepic/7fda025d-2d3a-4c26-93b2-83a56d37b461.jpg" title=" 张秀蓝.jpg" alt=" 张秀蓝.jpg" width=" 159" height=" 168" / /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 张秀蓝 副研究员 /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 国家环境分析测试中心 /span /p p style=" text-indent: 2em " strong 报告题目: /strong 水质 磺胺类抗生素的测定 液相色谱串联质谱法 /p p style=" text-indent: 2em " strong 报告简介: /strong a)& nbsp 水质抗生素药物的研究进展 /p p style=" text-indent: 2em " b) 药物测定的主要方法以及存在的困难 /p p style=" text-indent: 2em " c) 如何发现样品测定中的问题 /p p style=" text-indent: 2em " d) 解决问题及方法建立 /p p br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 158px height: 160px " src=" https://img1.17img.cn/17img/images/202005/uepic/9de682a2-51c1-4a36-8fcf-62c3c8cc4831.jpg" title=" 陈漪洁.jpg" alt=" 陈漪洁.jpg" width=" 158" height=" 160" / /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 陈漪洁 技术负责人 /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 国家城市供水水质监测网青岛监测站 /span /p p style=" text-indent: 2em " strong 报告题目: /strong 固相微萃取/气相色谱质谱联用技术检测水中痕量有机物 /p p style=" text-indent: 2em " strong 报告简介: /strong 固相微萃取技术的研究现状;固相微萃取技术的优缺点;固相微萃取技术用于检测水中常见嗅味物质、醛类、二恶烷、四乙基铅等痕量有机物的方法应用情况简介。 /p p style=" text-indent: 2em " strong 视频回放链接: /strong a href=" https://www.instrument.com.cn//webinar/video_112528.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn//webinar/video_112528.html /span /a /p p br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 161px height: 159px " src=" https://img1.17img.cn/17img/images/202005/uepic/2d7f514d-3f50-411b-acc4-fa276f5952e7.jpg" title=" 孙文军.jpg" alt=" 孙文军.jpg" width=" 161" height=" 159" / /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 孙文军 食品环境市场部 高级应用工程师 /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " Waters /span /p p style=" text-indent: 2em " strong 报告题目: /strong 水体中痕量级有机污染物快速、全自动化定量分析技术 /p p style=" text-indent: 2em " strong 报告简介: /strong 介绍一种操作友好、无需前处理、一体化、自动化的前沿水体分析液质技术:超高效在线固相液质系统。并介绍该技术在地表水体监测应用:成功用于检测痕量的微囊藻毒素、农药、抗生素和精神性药物等。 /p p style=" text-indent: 2em " strong 视频回放链接: /strong a href=" https://www.instrument.com.cn//webinar/video_112529.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn//webinar/video_112529.html /span /a /p p style=" text-indent: 2em " & nbsp /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 155px height: 162px " src=" https://img1.17img.cn/17img/images/202005/uepic/9b5b9965-8151-4649-b0c6-b4a4ac762988.jpg" title=" 潘婷.jpg" alt=" 潘婷.jpg" width=" 155" height=" 162" / /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 潘婷 产品专员 /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 德国元素 /span /p p style=" text-indent: 2em " strong 报告题目: /strong 地表水中总有机碳(TOC)测定解决方案 /p p style=" text-indent: 2em " strong 报告简介: /strong 地表水是人类、动物、植物等赖以生存的源泉。近年来,地表水的有机物污染越来越严重,导致水质恶化、鱼虾死亡,危害人类健康,引起了大家的极度关注。总有机碳-有机物污染评价的高效手段,其测定具有简单、快速、结果准确等优势,已被引入相关法规。针对地表水检测的特点,Elementar德国元素为您提供全面的应用分析解决方案。主要内容如下: /p p style=" text-indent: 2em " 1. 解读相关标准 /p p style=" text-indent: 2em " 2. 地表水测定难点及德国元素相应解决方案 /p p style=" text-indent: 2em " 3. 经典案例分享 /p p style=" text-indent: 2em " strong 视频回放链接: /strong a href=" https://www.instrument.com.cn//webinar/video_112530.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn//webinar/video_112530.html /span /a /p p br/ /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 155px height: 150px " src=" https://img1.17img.cn/17img/images/202005/uepic/0015edd6-f397-4f2e-a40d-6429f1a349d2.jpg" title=" 孙明辉.jpg" alt=" 孙明辉.jpg" width=" 155" height=" 150" / /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 孙明辉 质谱部门应用工程师 /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 布鲁克· 道尔顿(Bruker Daltonics) /span /p p style=" text-indent: 2em " strong 报告题目: /strong Bruker高分辨质谱在地表水污染物筛查中的应用(靶向和非靶向结合) /p p style=" text-indent: 2em " strong 报告简介: /strong 布鲁克 TargetScreener 多目标物筛查方案的靶向筛查功能,联合 MetaboScape 软件的非靶向筛查流程,可以在基于高分辨的数据、强大的数据库和未知物结构解析工具的基础上,轻松完成环境、食品等样品中未知物的筛查工作,大幅度提高筛查水平。 /p p style=" text-indent: 2em " strong 视频回放链接: /strong a href=" https://www.instrument.com.cn//webinar/video_112531.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn//webinar/video_112531.html /span /a /p p br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 151px height: 154px " src=" https://img1.17img.cn/17img/images/202005/uepic/f19a6629-318f-4cf3-9a32-77c7fb6da06c.jpg" title=" 杨丽莉.jpg" alt=" 杨丽莉.jpg" width=" 151" height=" 154" / /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 杨丽莉 总工程师 /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 南京市环境监测中心站 /span /p p style=" text-indent: 2em " strong 报告题目: /strong 地表水中挥发性有机化合物的测定 /p p style=" text-indent: 2em " strong 报告简介: /strong 针对常用地表水中挥发性有机化合物的检测技术,从检测原理到分析测试注意事项及质量保证质量控制的要点进行详细解读。 /p p style=" text-indent: 2em " strong 视频回放链接: /strong a href=" https://www.instrument.com.cn//webinar/video_112532.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn//webinar/video_112532.html /span /a /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em text-align: center " span style=" color: rgb(247, 150, 70) " strong span style=" font-family: 黑体, SimHei " “地表水检测与分析”会议回放视频集锦 /span /strong /span /p p style=" text-indent: 2em text-align: center " span style=" color: rgb(247, 150, 70) " strong span style=" color: rgb(247, 150, 70) font-family: 黑体, SimHei " 点击图片观看 /span /strong /span /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/Video/Video/Collection/10544" target=" _blank" img style=" max-width: 100% max-height: 100% width: 529px height: 225px " src=" https://img1.17img.cn/17img/images/202005/uepic/0b633594-b7fd-4066-b6a7-a32b27b67cd2.jpg" title=" w1125h480dibiaos.jpg" alt=" w1125h480dibiaos.jpg" width=" 529" height=" 225" / /a /p p style=" text-indent: 2em " br/ /p p style=" text-indent: 2em " 为了方便相关领域用户交流,我们建立了“地表水检测会议”参会群,1群已满,大家可以扫描下方二维码加入2群,以便今后在群中讨论交流地表水检测相关技术与进展。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 290px height: 462px " src=" https://img1.17img.cn/17img/images/202005/uepic/9c6132ba-9c6a-4d92-8752-a80ce3e9942a.jpg" title=" 地表水.jpg" alt=" 地表水.jpg" width=" 290" height=" 462" / /p p style=" text-indent: 2em text-align: center " span style=" font-size: 16px " strong span style=" font-family: 黑体, SimHei color: rgb(247, 150, 70) " br/ /span /strong /span /p p style=" text-indent: 2em text-align: center " span style=" font-size: 18px " strong span style=" font-family: 黑体, SimHei color: rgb(247, 150, 70) " 精彩网络研讨会预报名 /span /strong /span /p table style=" border-collapse:collapse " tbody tr class=" firstRow" td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 247" valign=" middle" align=" center" strong span style=" font-size: 14px " 会议名称 /span /strong /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 127" valign=" middle" align=" center" strong span style=" font-size: 14px " 会议时间 /span /strong /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 228" valign=" middle" align=" center" strong span style=" font-size: 14px " 会议日程(完善中) /span /strong /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 247" valign=" top" span style=" font-size: 14px " “生活饮用水检测与分析”主题网络研讨会 /span /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 128" valign=" top" span style=" font-size: 14px " 2020.6.5 /span /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 228" valign=" top" a href=" https://www.instrument.com.cn/webinar/meetings/dw2020/" target=" _blank" style=" text-decoration: underline font-size: 14px color: rgb(0, 112, 192) " span style=" font-size: 14px color: rgb(0, 112, 192) " https://www.instrument.com.cn/webinar/meetings/dw2020/& nbsp /span /a span style=" font-size: 14px color: rgb(0, 112, 192) " & nbsp /span /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 247" valign=" top" span style=" font-size: 14px " “土壤重金属检测技术”主题网络研讨会 /span /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 127" valign=" top" span style=" font-size: 14px " 2020.5.21 /span /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 228" valign=" top" a href=" https://www.instrument.com.cn/webinar/meetings/turang0521/" target=" _blank" style=" text-decoration: underline font-size: 14px color: rgb(0, 112, 192) " span style=" font-size: 14px color: rgb(0, 112, 192) " https://www.instrument.com.cn/webinar/meetings/turang0521/& nbsp /span /a span style=" font-size: 14px " /span /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 247" valign=" top" span style=" font-size: 14px " “第三届标准物质技术与应用”主题网络研讨会 /span /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 127" valign=" top" span style=" font-size: 14px " 2020.6.3-6.4 /span /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 228" valign=" top" a href=" https://www.instrument.com.cn/webinar/meetings/BZWZ2020/" target=" _blank" style=" text-decoration: underline font-size: 14px color: rgb(0, 112, 192) " span style=" font-size: 14px color: rgb(0, 112, 192) " https://www.instrument.com.cn/webinar/meetings/BZWZ2020/& nbsp /span /a span style=" font-size: 14px " /span /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 247" valign=" top" span style=" font-size: 14px " 第九届光谱网络大会(iCS2020) /span /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 127" valign=" top" span style=" font-size: 14px " 2020.5.26-5.29 /span /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 228" valign=" top" a href=" https://www.instrument.com.cn/webinar/meetings/iCS2020/" target=" _blank" style=" text-decoration: underline font-size: 14px color: rgb(0, 112, 192) " span style=" font-size: 14px color: rgb(0, 112, 192) " https://www.instrument.com.cn/webinar/meetings/iCS2020/& nbsp /span /a span style=" font-size: 14px " /span /td /tr /tbody /table p style=" text-align: center " & nbsp /p p style=" text-align: center " strong 更多精彩会议预告,请关注 /strong strong span style=" color: rgb(247, 150, 70) " “仪器信息网微服务公众号” /span /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 309px height: 309px " src=" https://img1.17img.cn/17img/images/202005/uepic/7ec9970e-7fed-4e61-b29a-35dd078404b8.jpg" title=" 仪器信息网为服务.jpg" alt=" 仪器信息网为服务.jpg" width=" 309" height=" 309" / /p p style=" text-align: center " strong 厂商精品环境类会议视频合集推荐: /strong /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/Video/Video/Collection/10538" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn/webinar/Video/Video/Collection/10538 /span /a /p p br/ /p
  • 国家地表水、空气自动监测站和环境监测车标牌(标识)制作规定
    p style=" text-align: center " 国家地表水、空气自动监测站和环境监测车标牌(标识)制作规定 /p p   一、国家地表水自动监测站标牌 /p p   1.适用范围:国家地表水自动监测站。 /p p   2.标牌尺寸:宽70cm× 高50cm× 厚4cm。 /p p   3.标牌材质:拉丝不锈钢(镜面边)。 /p p   4.标牌布局:标牌从上往下依次排列的是,“中华人民共和国环境保护部”、“环境保护标志”、“国家地表水水质自动监测网”、“**站”、“NO.**”、“中国环境监测总站 东经:**° **′**″ 北纬:**° **′**″”。(**根据自动站的实际情况填写)。 /p p   5.字体字号:采用Photoshop制作,具体字体字号详见附图1。 /p p   6.编号原则:水站编号为四位阿拉伯数字,具体为: /p p   (1)编号前两位数字,为各省(区、市)行政区划代码(六位)的前两位。如北京市为“11”,天津为“12”。 /p p   (2)编号后两位数字,为各省(区、市)内已建成的水站编号。辖区内有多个水站的,先按照断面名称首字汉语拼音字母排序,从“01-99”依次编号 若首字字母相同,则按照断面名称第二个字汉语拼音字母排序,从“01-99”依次编号。以此类推。 /p p   (3)新建水站编号在已建水站之后,编号参照上述原则。 /p p   水站标牌具体样式见附图1。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/e3de860f-dc87-4b60-9d89-d14e1e0dfd1f.jpg" title=" W020120302521839431896_副本.jpg" / br/ /p p style=" text-align: center " strong 附图1 /strong /p p   二、国家空气自动监测站标牌 /p p   1.适用范围:城市空气自动监测站、农村空气自动监测站、背景空气自动监测站。 /p p   2.标牌尺寸、标牌材质、标牌字体、对应字号均同国家地表水自动监测站。 /p p   3.标牌布局:标牌从上往下依次排列的是,“中华人民共和国环境保护部”、“环境保护标志”、国家环境空气自动监测网(或“国家背景空气自动监测网或国家农村空气自动监测网)”、“**站”、“NO.**”、“中国环境监测总站 东经:**° **′**″ 北纬:**° **′**″”。(**根据自动站的实际情况填写)。 /p p   4.编号原则: /p p   (1)城市空气自动监测站:行政区编码(6位)+点位代码(3位)。点位代码按照现有点位代码命名规则,001-050为城市对照点,051-699为城市监测点。现有点位代码不变,代码不足3位的,代码前加“0”补足3位。以后新建站点代码按照建成时间的顺序依次向后编号。 /p p   (2)农村空气自动监测站:行政区编码(6位)+8+(01-99)。 /p p   (3)背景空气自动监测站:行政区编码(6位)+7+(01-99)。 /p p   (4)其他特殊功能站:行政区编码(6位)+9+(01-99)(凡不能编入以上三类站点的国家环境空气监测点,如特殊区域监测点,全部归入此类)。 /p p   (5)上述(2)-(4)中,各行政区内每个类型的空气自动监测站最后两位数,按照建成时间的顺序从“01-99”开始向后编号。 /p p   空气站标牌具体样式见附图2~附图4。 /p p   三、环境监测车标识 /p p   1.适用范围:环境监测业务用车,底色为白色。 /p p   2.标识内容:“环境监测”四个字+“环保标志”图样(详见附图5) /p p   3.标识尺寸:附图5所示图样为标准尺寸,可根据车辆不同按比例缩放,保证与车身协调。 /p p   4.标识字体:“环境监测”为方正综艺字体,环保标志里的“中国环境监测”为华文新魏字体,“ZHB”为Arial字体。 /p p   5.标识颜色:详见附图5。 /p p   6.标识材质:喷漆或贴膜(材料户外耐久性应在5年之上)。 /p p   7.粘贴位置:标识粘贴在汽车的两侧中间位置,“环保标志”图样粘贴在前,“环境监测”四个字粘贴在后,要求位置协调美观。 /p p   列举常见监测车标牌具体样式见附图6~附图7。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制