当前位置: 仪器信息网 > 行业主题 > >

尿酸酶来源于产朊假丝酵母

仪器信息网尿酸酶来源于产朊假丝酵母专题为您提供2024年最新尿酸酶来源于产朊假丝酵母价格报价、厂家品牌的相关信息, 包括尿酸酶来源于产朊假丝酵母参数、型号等,不管是国产,还是进口品牌的尿酸酶来源于产朊假丝酵母您都可以在这里找到。 除此之外,仪器信息网还免费为您整合尿酸酶来源于产朊假丝酵母相关的耗材配件、试剂标物,还有尿酸酶来源于产朊假丝酵母相关的最新资讯、资料,以及尿酸酶来源于产朊假丝酵母相关的解决方案。

尿酸酶来源于产朊假丝酵母相关的论坛

  • 【每日一贴】饲料酵母

    【中文名称】饲料酵母【英文名称】feed yeast【性状】 黄色粉末。有特殊香味。【用途】 在饲料中作蛋白源,在鸡饲料中添加4%,相当鱼粉的效果。【制备或来源】 将黄粉(或味精废液)用酵母菌培养,制得的菌体与培养基混合,再经脱水,干燥制得。【其他】 含粗蛋白65%以上,并含有18种氨基酸,其中8种是动物必须氨基酸。另外含有磷、钾、钙、镁等微量元素及多种维生素。【生产单位】 浙江义乌糖厂;山东省科学院生物研究所;山东省莱州酵母厂;

  • 【“仪”起享奥运】酵母蛋白---素食者的蛋白新思路

    [size=16px]素食者在蛋白质摄入上一直面临着挑战,尽管素食食品富含多种营养成分,但素食者在蛋白质摄入方面存在不足。首先,植物性食品中的蛋白质含量相对较低,且氨基酸组成不如动物性蛋白完整,素食者需要摄入更多的植物性食品才能满足蛋白质的需求。然而,过多的植物性食品摄入可能导致热量过剩、膳食纤维过多等问题。其次,一些素食者可能存在对某些植物性食品的过敏或不耐受情况,例如大豆、坚果等食品中的蛋白质可能引发人体过敏反应,而谷物中的麸质[i][/i]则可能引起不耐受反应等。此外,植物性蛋白质的生物利用率较低,需要素食者通过合理搭配食物来提高蛋白质的摄入效率。[/size][size=16px]在传统素食者蛋白质摄入不足的背景下,素食蛋白棒产品正逐渐在素食者中普及起来。[/size][size=16px]素食蛋白棒是一种高蛋白、低脂肪、便携的零食,能够方便素食者在日常饮食中补充蛋白质,满足素食者对蛋白质的需求。素食蛋白棒的热量和脂肪含量相对较低,使得素食者可以在控制热量摄入的同时,获得足够的蛋白质补充。[b]一是丰富的营养价值[/b]:作为素食蛋白棒中重要蛋白来源的酵母蛋白,是一种来源于酿酒酵母的优质完全蛋白,拥有高蛋白质含量与优质氨基酸配比,其蛋白质含量高达80%以上,富含人体所需的全部8种必需氨基酸,且其氨基酸配比合理,易被人体吸收利用。酵母蛋白除了赋予素食蛋白棒高蛋白质含量外,还提供B族维生素和矿物质等多种营养成分,有助于维持身体的正常代谢和健康状态。研究表明,酵母蛋白中的活性成分能够调节肠道菌群平衡,促进有益菌的增殖,抑制有害菌的生长,从而改善肠道环境,提高肠道健康水平。[b]二是环保与可持续性和性价比优势[/b]:酵母蛋白来源于微生物发酵,相比动物源蛋白和植物源蛋白更加环保和可持续,它不需要大量的土地、水和饲料资源,也不产生温室气体排放。目前,酵母蛋白的生产已完全工业化,生产效率高、成本低,使得酵母蛋白与乳清蛋白等动物蛋白相比在价格上具有一定的优势,同时避免了动物源蛋白和植物源蛋白可能带来的过敏源问题。[/size]

  • 【每日一贴】饲料酵母粉

    【中文名称】饲料酵母粉【英文名称】feed yeast powder【性状】 有浓香气味。【用途】 是一种蛋白质含量高,氨基酸齐全,且含有B族维生素、微量元素及各种酶,是一种营养价值高的单细胞蛋白。能促进禽畜的新陈代谢,可增强禽畜的抗病能力,提高禽畜的生长速度、繁殖能力、肉质和毛皮质量,特别适宜以气味觅食得鱼虾喂养。【制备或来源】 用酒糟液发酵而成。其工艺路线有三种:(1)酒糟经冷却、净化、增殖、浓缩、质壁分离后,再干燥、粉碎得产品;(2)将酒糟接种发酵后,经干燥,去杂质粉碎得产品;(3)将酒糟沉渣加营养盐液,以酵母为微生物源,发酵后,经分离、干燥、粉碎得产品。【生产单位】 杭州长征化工厂;河南南阳酒精总厂酵母厂;

  • 食品中的重金属主要来源于哪里?

    看到食品检测版面控制重金属检测,那么重金属的污染主要来源于哪里??食品中都有那些重金属?标准规定的重金属是常规检测项目,那么没有规定的重金属污染有检测的吗??http://simg.instrument.com.cn/bbs/images/default/emyc1010.gif

  • 绿豆的消暑功效来源于绿豆皮

    绿豆的消暑功效来源于绿豆皮,中医也叫做“绿豆衣”,主要是其所含的多酚类物质发挥作用。绿豆煮的时间越短,多酚类物质含量越高,它的抗氧化活性也越高,解暑功能也最好,因此想要消暑热,绿豆无需煮开花。

  • 酵母酶解粉

    请问谁知道酵母酶解粉是什么?它和酵母粉之间有什么区别吗?

  • 【转帖】酵母双杂交系统的发展和应用

    随着对多种重要生物的大规模基因组测序工作的完成,基因工程领域又迎来了一个新的时代---功能基因组时代。它的任务就是对基因组中包含的全部基因的功能加以认识。生物体系的运作与蛋白质之间的互相作用密不可分,例如:DNA合成、基因转录激活、蛋白质翻译、修饰和定位以及信息传导等重要的生物过程均涉及到蛋白质复合体的作用。能够发现和验证在生物体中相互作用的蛋白质与核酸、蛋白质与蛋白质是认识它们生物学功能的第一步。   酵母双杂交技术作为发现和研究在活细胞体内的蛋白质与蛋白质之间的相互作用的技术平台,在近几年来得到了广泛运用。酵母双杂交系统是在真核模式生物酵母中进行的,研究活细胞内蛋白质相互作用,对蛋白质之间微弱的、瞬间的作用也能够通过报告基因的表达产物敏感地检测得到,它是一种具有很高灵敏度的研究蛋白质之间关系的技术。大量的研究文献表明,酵母双杂交技术既可以用来研究哺乳动物基因组编码的蛋白质之间的互作,也可以用来研究高等植物基因组编码的蛋白质之间的互作。因此,它在许多的研究领域中有着广泛的应用。本文就酵母双杂交的技术平台和应用加以介绍。  酵母双杂交系统的建立是基于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。反式转录激活因子,例如酵母转录因子GAL4在结构上是组件式的(modular),往往由两个或两个以上结构上可以分开,功能上相互独立的结构域(domain)构成,其中有DNA结合功能域(DNA binding domain,DNA-BD)和转录激活结构域(activation domain,DNA-AD)。这两个结合域将它们分开时仍分别具有功能,但不能激活转录,只有当被分开的两者通过适当的途径在空间上较为接近时,才能重新呈现完整的GAL4转录因子活性,并可激活上游激活序列(upstream activating sequence, UAS)的下游启动子,使启动子下游基因得到转录。  根据这个特性,将编码DNA-BD的基因与已知蛋白质Bait protein的基因构建在同一个表达载体上,在酵母中表达两者的融合蛋白BD-Bait protein。将编码AD的基因和cDNA文库的基因构建在AD-LIBRARY表达载体上。同时将上述两种载体转化改造后的酵母,这种改造后的酵母细胞的基因组中既不能产生GAL4,又不能合成LEU、TRP、HIS、ADE,因此,酵母在缺乏这些营养的培养基上无法正常生长。当上述两种载体所表达的融合蛋白能够相互作用时,功能重建的反式作用因子能够激活酵母基因组中的报告基因HIS、ADE、LACZ、MEL1,从而通过功能互补和显色反应筛选到阳性菌落。将阳性反应的酵母菌株中的AD-LIBRARY载体提取分离出来,从而对载体中插入的文库基因进行测序和分析工作。在酵母双杂交的基础上,又发展出了  酵母单杂交、酵母三杂交和酵母的反向杂交技术。它们被分别用于核酸和文库蛋白之间的研究、三种不同蛋白之间的互作研究和两种蛋白相互作用的结构和位点。  基于酵母双杂交技术平台的特点,它已经被应用在许多研究工作当中。 1、利用酵母双杂交发现新的蛋白质和蛋白质的新功能  酵母双杂交技术已经成为发现新基因的主要途径。当我们将已知基因作为诱饵,在选定的cDNA文库中筛选与诱饵蛋白相互作用的蛋白,从筛选到的阳性酵母菌株中可以分离得到AD-LIBRARY载体,并从载体中进一步克隆得到随机插入的cDNA片段,并对该片段的编码序列在GENEBANK中进行比较,研究与已知基因在生物学功能上的联系。另外,也可作为研究已知基因的新功能或多个筛选到的已知基因之间功能相关的主要方法。例如:Engelender等人以神经末端蛋白alpha-synuclein 蛋白为诱饵蛋白,利用酵母双杂交CLONTECH MATCHMARKER SYSTEM 3为操作平台,从成人脑cDNA文库中发现了与alpha-synuclein相互作用的新蛋白Synphilin-1,并证明了Synphilin-1与alpha-synuclein 之间的相互作用与帕金森病的发病有密切相关。为了研究两个蛋白之间的相互作用的结合位点,找到影响或抑制两个蛋白相互作用的因素,Michael等人又利用酵母双杂交技术和基因修饰证明了alpha-synuclein的1-65个氨基酸残基和Synphilin-1的349-555个氨基酸残基之间是相互作用的位点。研究它们之间的相互作用位点有利于基因治疗药物的开发。  2、利用酵母双杂交在细胞体内研究抗原和抗体的相互作用  利用酶联免疫(ELISA)、免疫共沉淀(CO-IP)技术都是利用抗原和抗体间的免疫反应,可以研究抗原和抗体之间的相互作用,但是,它们都是基于体外非细胞的环境中研究蛋白质与蛋白质的相互作用。而在细胞体内的抗原和抗体的聚积反应则可以通过酵母双杂交进行检测。例如:来源于矮牵牛的黄烷酮醇还原酶DFR与其抗体scFv的反应中,抗体的单链的三个可变区A4、G4、H3与抗原之间作用有强弱的差异。Geert等利用酵母双杂交技术,将DFR作为诱饵蛋白,编码抗体的三个可变区的基因分别被克隆在AD-LIBRARY载体上,将BD-BAIT载体和每种AD-LIBRARY载体分别转化改造后的酵母菌株中,并检测报告基因在克隆的菌落中的表达活性,从而在活细胞的水平上检测抗原和抗体的免疫反应。  3、利用酵母双杂交筛选药物的作用位点以及药 物对蛋白质之间相互作用的影响  酵母双杂交的报告基因能否表达在于诱饵蛋白与靶蛋白之间的相互作用。对于能够引发疾病反应的蛋白互作可以采取药物干扰的方法,阻止它们的相互作用以达到治疗疾病的目的。例如:Dengue病毒能引起黄热病、肝炎等疾病,研究发现它的病毒RNA复制与依赖于RNA的RNA聚合酶(NS5)与拓扑异构酶NS3,以及细胞核转运受体BETA-importin的相互作用有关。研究人员通过酵母双杂交技术找到了这些蛋白之间相互作用的氨基酸序列。如果能找到相应的基因药物阻断这些蛋白之间的相互作用,就可以阻止RNA病毒的复制,从而达到治疗这种疾病的目的。  4、利用酵母双杂交建立基因组蛋白连锁图(Genome Protein Linkage Map)众多的蛋白质之间在许多重要的生命活动中都是彼此协调和控制的。基因组中的编码蛋白质的基因之间存在着功能上的联系。通过基因组的测序和序列分析发现了很多新的基因和EST序列,HUA等人利用酵母双杂交技术,将所有已知基因和EST序列为诱饵,在表达文库中筛选与诱饵相互作用的蛋白,从而找到基因之间的联系,建立基因组蛋白连锁图。对于认识一些重要的生命活动:如信号传导、代谢途径等有重要意义。

  • 水质氰尿酸检测仪用途有哪些

    水质氰尿酸检测仪用途有哪些

    山东云唐智能科技有限公司水质氰尿酸检测仪是一种专门用于检测水体中氰尿酸浓度的仪器。其主要作用包括:  水质监测:水质氰尿酸检测仪用于监测水体中氰尿酸的浓度。氰尿酸是一种有害物质,可能存在于工业废水、金属冶炼废水、某些化工过程中的废水等。监测氰尿酸浓度有助于及早发现水体污染问题。  环境保护:通过检测水体中氰尿酸的浓度,可以迅速发现环境中的潜在污染源,有助于采取必要的措施来减少或阻止氰尿酸污染,以保护自然环境。  工业过程控制:氰尿酸是一些工业过程的副产品或废水中的污染物。在工业生产中,监测氰尿酸浓度可以帮助确保废水排放符合法规要求,并有助于改进工业过程,以减少废水中的氰尿酸含量。  饮用水安全:虽然氰尿酸在自然界中并不常见,但在某些情况下,它可能出现在地下水或水源中。检测氰尿酸浓度有助于确保饮用水的安全性,以满足卫生标准。  科学研究:科研人员可以使用水质氰尿酸检测仪来进行水质研究,探讨氰尿酸在不同水体中的分布、来源和影响等方面的问题。  紧急响应:在发生氰尿酸泄漏或污染事件时,水质氰尿酸检测仪可用于紧急响应,快速检测水体中的氰尿酸浓度,以评估风险,并采取必要的清除和修复措施。  总之,水质氰尿酸检测仪对于维护水体质量、保护环境、确保饮用水安全以及支持工业和科学研究都具有重要作用。它们提供了关于水体中氰尿酸浓度的关键信息,有助于预防和解决与氰尿酸相关的环境和健康问题。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/09/202309261000465892_8561_5604214_3.jpg!w690x690.jpg[/img]

  • 怎样才能提高啤酒酵母的质量

    [color=initial]一、菌种选育[/color] [list=1][*] 传统选育方法 [list][*]从自然界中筛选优良菌株:可以从不同的啤酒生产环境、土壤、水果等来源中采集酵母样本,通过分离、纯化和筛选,找到具有优良发酵性能和风味特征的酵母菌株。例如,从传统的啤酒酿造地区采集土壤样本,从中分离出可能适合啤酒发酵的酵母菌株。[*]诱变育种:利用物理(如紫外线、X 射线等)或化学(如亚硝基胍、硫酸二乙酯等)诱变剂对现有酵母菌株进行处理,使其发生基因突变,然后筛选出具有优良性状的突变株。例如,用紫外线照射酵母菌株,使其发生基因突变,然后通过发酵实验筛选出发酵速度快、产酒精能力强的突变株。[/list][*] 现代生物技术选育方法 [list][*]基因工程技术:通过基因克隆、表达和调控等手段,对酵母菌株进行改良。例如,可以将具有优良发酵性能的基因导入到酵母菌株中,使其获得更好的发酵能力和风味特征。或者通过基因编辑技术,对酵母菌株的特定基因进行修饰,以改善其性能。[*]高通量筛选技术:利用自动化设备和先进的检测技术,对大量的酵母菌株进行快速筛选。例如,使用微流控芯片技术,可以同时对数千个酵母菌株进行发酵实验和分析,大大提高了筛选效率。[/list][/list] [color=initial]二、优化发酵工艺[/color] [list=1][*] 控制发酵条件 [list][*]温度控制:根据不同的酵母菌株和啤酒类型,确定最佳的发酵温度。一般来说,低温发酵可以产生更多的风味物质,而高温发酵则可以加快发酵速度。例如,对于淡色啤酒,可以采用较低的发酵温度(8-12℃),以获得清爽的口感和丰富的风味;而对于深色啤酒,可以采用较高的发酵温度(15-20℃),以促进麦芽的焦香和酵母的代谢。[*]压力控制:适当的压力可以促进酵母的发酵活动,提高啤酒的质量。例如,在发酵过程中,可以通过控制发酵罐的压力,使酵母在一定的压力下进行发酵,从而提高发酵效率和啤酒的风味。[*]pH 值控制:保持适宜的 pH 值对于酵母的生长和发酵至关重要。一般来说,啤酒发酵的 pH 值在 4.0-5.5 之间。可以通过调整麦汁的 pH 值、添加缓冲剂等方法,控制发酵过程中的 pH 值。[/list][*] 优化麦汁成分 [list][*]调整麦汁浓度:根据不同的啤酒类型和酵母菌株,确定最佳的麦汁浓度。一般来说,高浓度的麦汁可以产生更多的酒精和风味物质,但也会增加酵母的代谢负担。例如,对于高浓度啤酒,可以采用较高的麦汁浓度(12-16°P),以获得浓郁的口感和香气;而对于低浓度啤酒,可以采用较低的麦汁浓度(8-10°P),以获得清爽的口感。[*]优化麦汁营养成分:确保麦汁中含有足够的碳源、氮源、维生素和矿物质等营养物质,以满足酵母的生长和发酵需求。例如,可以添加适量的麦芽提取物、酵母营养盐等,提高麦汁的营养价值。同时,要避免麦汁中含有过多的不良成分,如脂肪酸、醛类、酮类等,这些成分会影响酵母的代谢,导致酵母产生异味。[/list][*] 合理的酵母接种量和接种时间 [list][*]确定最佳的酵母接种量:酵母接种量过大或过小都会影响发酵效果和啤酒质量。一般来说,酵母接种量在 0.5-1.5×10?个细胞 / 毫升麦汁之间。可以根据酵母菌株的特性、麦汁浓度、发酵温度等因素,确定最佳的酵母接种量。例如,对于发酵速度快的酵母菌株,可以适当减少接种量;而对于发酵速度慢的酵母菌株,则可以适当增加接种量。[*]选择合适的接种时间:在麦汁冷却至适宜的接种温度后,及时接种酵母。过早或过晚接种酵母都会影响发酵效果。一般来说,在麦汁冷却至 8-12℃后,尽快接种酵母,以保证酵母的生长和发酵活动顺利进行。[/list][/list] [color=initial]三、酵母管理[/color] [list=1][*] 酵母的扩培和储存 [list][*]酵母扩培:采用科学的酵母扩培方法,确保酵母的数量和质量。一般来说,酵母扩培需要经过多个阶段,从原始菌种开始,逐步扩大培养,直到达到所需的酵母数量。在扩培过程中,要严格控制温度、pH 值、营养物质等条件,保证酵母的生长和繁殖。[*]酵母储存:正确储存酵母可以延长其使用寿命和保持其质量。酵母储存的条件包括低温、干燥、无氧等。一般来说,酵母可以储存在冰箱或冷库中,温度控制在 0-4℃之间。同时,要避免酵母与空气接触,以免酵母氧化和变质。在储存过程中,要定期检查酵母的质量,如有必要,可以进行活化和再培养。[/list][*] 酵母的回收和再利用 [list][*]酵母回收:在啤酒发酵结束后,及时回收酵母。可以采用离心、过滤等方法,将酵母从啤酒中分离出来。回收的酵母要经过清洗、消毒等处理,去除杂质和残留的啤酒成分。[*]酵母再利用:经过处理后的酵母可以再次用于啤酒发酵。但要注意控制酵母的使用次数,一般来说,酵母的使用次数不宜超过 5-7 次。随着使用次数的增加,酵母的活性和发酵性能会逐渐下降,需要及时更换新的酵母菌株。[/list][*] 酵母的检测和监控 [list][*]定期检测酵母的质量:包括酵母的活性、数量、纯度、发酵性能等指标。可以采用显微镜观察、平板计数、发酵实验等方法,对酵母进行检测。例如,通过显微镜观察酵母细胞的形态和大小,判断酵母的活性和健康状况;通过平板计数法,确定酵母的数量和纯度;通过发酵实验,检测酵母的发酵性能和产酒精能力。[*]监控发酵过程中的酵母状态:在啤酒发酵过程中,要密切关注酵母的生长和代谢情况。可以通过检测发酵液的温度、pH 值、糖度、酒精含量等指标,了解酵母的发酵活动。同时,要注意观察发酵液的外观、气味等变化,如有异常情况,要及时采取措施进行处理。[/list][/list] 通过以上方法,可以有效地提高啤酒酵母的质量,从而生产出品质优良的啤酒

  • 紫尿酸和硫代紫尿酸与铁钴显色体系的比较研究

    紫尿酸和硫代紫尿酸与铁钴显色体系的比较研究[align=center]十月[/align]紫尿酸(violuric acid,VA)和硫代紫尿酸(thivioluric acid,TVA)是结构和性质相似的两种金属指示剂,其[color=#333333]化学式分别为C[/color][sub][color=#333333]4[/color][/sub][color=#333333]H[/color][sub][color=#333333]3[/color][/sub][color=#333333]N[/color][sub][color=#333333]3[/color][/sub][color=#333333]O[/color][sub][color=#333333]4[/color][/sub][color=#333333]和C[/color][sub][color=#333333]4[/color][/sub][color=#333333]H[/color][sub][color=#333333]3[/color][/sub][color=#333333]N[/color][sub][color=#333333]3[/color][/sub][color=#333333]O[/color][sub][color=#333333]3[/color][/sub][color=#333333]S[/color][font=arial][color=#333333],在碱性介质中[/color][/font]二者均可与[color=#666666]铁(Ⅱ)和钴(Ⅱ)[/color]发生灵敏的配合反应形成分别形成稳定的蓝色和黄色配阴离子并成功应用于微量铁(Ⅱ)的水相[sup][1-4][/sup]和树脂相光度法测定[sup][5-6][/sup]及铁(Ⅱ)和钴(Ⅱ)同时测定[sup][7-8][/sup],本文对紫尿酸和硫代紫尿酸与[color=#666666]铁(Ⅱ)和钴(Ⅱ)显色体系分析性能[/color]分析比较于下。铁(Ⅱ)-紫尿酸和铁(Ⅱ)-硫代紫尿酸显色体的比较[align=center]表1 铁(Ⅱ)-紫尿酸和铁(Ⅱ)-硫代紫尿酸显色体的比较[/align][table][tr][td][/td][td][align=center]紫尿酸体系[/align][/td][td][align=center]硫代紫尿酸体系[/align][/td][/tr][tr][td]显色反应介质的pH值[/td][td]水相:9~11(9.5)树脂相:9.2~12.3(10.0)[/td][td]水相:7.6~11(9.0)树脂相:9.2~11.0(10.0)[/td][/tr][tr][td]配阴离子的吸收峰波长(nm)[/td][td]水相:620和350树脂相:620[/td][td]水相:658和384,树脂相:665[/td][/tr][tr][td]配阴离子的摩尔吸光系数ε[size=12px]([/size][size=12px][color=#666666]Lmol[/color][/size][sup][size=12px][color=#666666]-1[/color][/size][/sup][size=12px][color=#666666]cm[/color][/size][sup][size=12px][color=#666666]-1[/color][/size][/sup][size=12px])[/size][/td][td]水相:ε[sub]620[/sub]=1.93×10[sup]4[/sup],ε[sub]350[/sub]=2.64×10[sup]4[/sup]树脂相:ε[sub]620[/sub]=2.1×10[sup]5[/sup][/td][td]水相:ε[sub]658[/sub]=[color=#666666]2.42×10[/color][sup][color=#666666]4[/color][/sup][color=#666666],[/color]ε[sub]384[/sub]=[color=#666666]4.18×10[/color][sup][color=#666666]4[/color][/sup][color=#666666],[/color]树脂相:ε[sub]665[/sub]=2.02×10[sup]5[/sup][/td][/tr][tr][td]线性范围及相关系数r[/td][td]水相:0~50μg/29.0ml,r=0.9997树脂相:0~25μg/29.0ml,r=0.9998[/td][td]水相:0~50μg/25ml,r=0.9998树脂相:0~20μg/30ml,r=0.9999[/td][/tr][tr][td]加标回收率(%)[/td][td]水相:95%,树脂相:96~103%[/td][td]水相:98~102%,树脂相:96~104%[/td][/tr][tr][td]平行测定的相对标准偏差(RSD,%,n=5-6)[/td][td]水相:0.05),加标回收率为96~102%,6次平行测定的相对标准偏差为2.3~4.2%,方法最低检出限为26μg/L。5、紫尿酸树脂相光度法[sup][5][/sup]测定微量铁。利用碱性条件下,铁(Ⅱ)与紫尿酸反应形成蓝色配阴离子且该配阴离子能被以苯乙烯型强碱性阴离子交换树脂完全吸附,在620nm测定树脂相的吸光度,建立了痕量铁的紫尿酸树脂相光度测定法,方法线性范围为Fe(Ⅱ)0~25.0μg/29ml,其灵敏度约为水相光度法的10倍,方法用于自来水中铁的测定,结果令人满意。[color=#222222]6、硫代紫尿酸树脂相光度法测定微量铁的研究[/color][sup][color=#666666][6][/color][/sup]。在碱性介质中,铁(Ⅱ)与硫代紫尿酸反应形成一种稳定的兰色配阴离子,且该配阴离子能被阴离子交换树脂完全吸附,建立了一种测定水中微量铁的硫代紫尿酸树脂相光度法,该法铁(Ⅱ)含量在0~20.0μg/30mL范围内符合比尔定律,由曲线斜率法求得的表观摩尔吸光系数ε[sub]665[/sub]=2.02×10[sup]5[/sup]Lmol[sup]-1[/sup]cm[sup]-1[/sup](是水相光度法的8倍),方法应用于自来水和标准水样中铁的测定,其结果与[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法和标准值相吻合,加标回收率在96~104%,相对标准偏差(RSD)在1.7~4.1%(n=5)。钴(Ⅱ)-紫尿酸和钴(Ⅱ)-硫代紫尿酸显色体的比较[align=center]表2 钴(Ⅱ)-紫尿酸和钴(Ⅱ)-硫代紫尿酸显色体的比较[/align][table][tr][td][/td][td][align=center]紫尿酸体系[/align][/td][td][align=center]硫代紫尿酸体系[/align][/td][/tr][tr][td]显色反应介质的pH值[/td][td]9~11(9.5)[/td][td]8~10(9.0)[/td][/tr][tr][td]配阴离子的吸收峰波长(nm)[/td][td]365[/td][td]424[/td][/tr][tr][td]配阴离子的摩尔吸光系数ε([color=#666666]Lmol[/color][sup][color=#666666]-1[/color][/sup][color=#666666]cm[/color][sup][color=#666666]-1[/color][/sup])[/td][td]4.2×10[sup]4[/sup][/td][td][color=#666666]6.41×10[/color][sup][color=#666666]4[/color][/sup][/td][/tr][tr][td]线性范围及相关系数r[/td][td]0~50μg/29.0ml,r=0.9997[/td][td]0~25μg/25ml,r=0.9998[/td][/tr][tr][td]加标回收率(%)[/td][td][color=#454545]98%[/color]~[color=#454545]104%[/color][/td][td][color=#454545]97%[/color]~[color=#454545]103%[/color][/td][/tr][tr][td]平行测定的相对标准偏差(RSD,%)[/td][td][color=#454545]2.2%[/color]~[color=#454545]3.7%[/color][/td][td][color=#454545]2.2%[/color]~[color=#454545]3.7%[/color][/td][/tr][/table]1、紫尿酸光度法同时测定铁和钴[sup][7][/sup]。[color=#666666]利用铁钴配阴离子在365nm处的吸光度具有良好的加和性,建立了同时测定铁,钴的紫尿酸光度法。铁、钴量均在0[/color]~[color=#666666]50.0μg/29ml范围内符合比耳定律,方法用于自来水中铁和钴的同时测定,结果分别与邻菲罗啉光度法和亚硝基R盐光度法一致,回收率分别为96%[/color]~[color=#666666]102%和98%[/color]~[color=#666666]104%[/color]。2、[color=#333333]以硫代紫尿酸为显色剂分光光度法同时测定铁和钴[/color][sup][8][/sup]。[color=#666666]利用在碱性介质中,铁(Ⅱ)和钴(Ⅱ)可与硫代紫尿酸反应分别形成稳定的蓝色和黄色配阴离子,铁(Ⅱ)配阴离子在658 nm和395 nm具有吸收峰,钴(Ⅱ)配阴离子只有一个吸收峰位于424 nm,体系的吸光度AFe[/color][sub][color=#666666]658[/color][/sub][color=#666666]、ACo[/color][sub][color=#666666]424[/color][/sub][color=#666666]与铁、钴含量在一定的范围内呈线性关系,且铁(Ⅱ)、钴(Ⅱ)配阴离子在424 nm波长处的吸光度具有良好的加和性,在658 nm测定铁,在424 nm测定钴的质量浓度分别在0~50.0μg/25 mL和0~25.0 μg/25 mL范围内符合比耳定律,该方法应用于水样中微量铁和钴的同时测定,其结果与[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法相吻合,加标回收率分别为98%~104%和97%~103%,相对标准偏差(n=5)分别在1.8%~3.4%和2.2%~3.7%。[/color][color=#666666]结论[/color][color=#666666] 两体系的显色酸度、选择性、重现性、回收率基本相当,但灵敏度TVA体系略高于VA体系,铁的线性范围两者一致,但钴的TVA体系的线性范围比VA体系窄,分别为0~25μg/25 mL和0~50 μg/29 mL。[/color]参考文献1)黄选忠.[url=https://xueshu.baidu.com/usercenter/paper/show?paperid=fb78ad774381d905c8a58f00431bb4bd%22 \t %22https://xueshu.baidu.com/usercenter/paper/_blank][color=black]紫尿酸光度法测定微量铁[/color][/url][color=black][J].[/color][url=https://xueshu.baidu.com/s?wd=journaluri:(5145ec157c6c3d18) %E3%80%8A%E7%90%86%E5%8C%96%E6%A3%80%E9%AA%8C-%E5%8C%96%E5%AD%A6%E5%88%86%E5%86%8C%E3%80%8B&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=publish&sort=sc_cited%22 \o %22%E3%80%8A%E7%90%86%E5%8C%96%E6%A3%80%E9%AA%8C-%E5%8C%96%E5%AD%A6%E5%88%86%E5%86%8C%E3%80%8B%22 \t %22https://xueshu.baidu.com/usercenter/paper/_blank][color=black]理化检验[/color]:[color=black]化学分册,[/color][/url][color=black]1994,30(4):228-229[/color]2)[url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri:(be536d7becb2c686) author:(%E9%99%88%E5%AD%9D%E8%BF%9B) %E6%B9%96%E5%8C%97%E7%9C%81%E5%85%B4%E5%B1%B1%E5%8E%BF%E5%8C%BB%E7%96%97%E4%B8%AD%E5%BF%83%22 \t %22https://xueshu.baidu.com/usercenter/paper/_blank][color=black]陈孝进[/color][/url][color=black],[/color][url=https://xueshu.baidu.com/s?wd=authoruri:(a0695e2aef9c86bf) author:(%E7%8E%8B%E8%8F%8A%E7%BA%B2) %E5%AE%9C%E6%98%8C%E5%B8%82%E5%85%B4%E5%B1%B1%E5%8E%BF%E4%BA%BA%E6%B0%91%E5%8C%BB%E9%99%A2&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person&sort=sc_cited%22 \t %22https://xueshu.baidu.com/usercenter/paper/_blank][color=black]王菊纲[/color][/url][color=black],[/color][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri:(6162ec3c414df85) author:(%E5%BD%AD%E5%85%B0) %E6%B9%96%E5%8C%97%E7%9C%81%E5%85%B4%E5%B1%B1%E5%8E%BF%E5%8C%BB%E7%96%97%E4%B8%AD%E5%BF%83%22 \t %22https://xueshu.baidu.com/usercenter/paper/_blank][color=black]彭兰[/color][/url][color=black],等.[/color][url=https://xueshu.baidu.com/usercenter/paper/show?paperid=40728203b688c4dd3ce6532c909071c8%22 \t %22https://xueshu.baidu.com/usercenter/paper/_blank][color=black]紫尿酸双波长叠加光度法测定水中微量铁[/color][/url][J].化学分析计量, 2012,21(2):72-743)黄选忠,黄伟.铁(Ⅱ)-硫代紫尿酸显色体系的研究及应用[J].分析科学学报,2009, 25(4):490-4924)黄选忠,陈孝进.硫代紫尿酸光度法测定微量铁的研究[J].中华预防医学杂志, 1999,33(2):119-1205)黄选忠.紫尿酸树脂相光度法测定痕量铁[J].[url=https://xueshu.baidu.com/s?wd=journaluri:(5145ec157c6c3d18) %E3%80%8A%E7%90%86%E5%8C%96%E6%A3%80%E9%AA%8C-%E5%8C%96%E5%AD%A6%E5%88%86%E5%86%8C%E3%80%8B&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=publish&sort=sc_cited%22 \o %22%E3%80%8A%E7%90%86%E5%8C%96%E6%A3%80%E9%AA%8C-%E5%8C%96%E5%AD%A6%E5%88%86%E5%86%8C%E3%80%8B%22 \t %22https://xueshu.baidu.com/usercenter/paper/_blank][color=black]理化检验[/color]:[color=black]化学分册,[/color][/url][color=black]1995,31(6):346-347[/color]6)黄选忠,陈孝进,彭兰.[color=#222222]硫代紫尿酸树脂相光度法测定微量铁的研究[/color][J].[url=https://xueshu.baidu.com/s?wd=journaluri:(5145ec157c6c3d18) %E3%80%8A%E7%90%86%E5%8C%96%E6%A3%80%E9%AA%8C-%E5%8C%96%E5%AD%A6%E5%88%86%E5%86%8C%E3%80%8B&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=publish&sort=sc_cited%22 \o %22%E3%80%8A%E7%90%86%E5%8C%96%E6%A3%80%E9%AA%8C-%E5%8C%96%E5%AD%A6%E5%88%86%E5%86%8C%E3%80%8B%22 \t %22https://xueshu.baidu.com/usercenter/paper/_blank][color=black]公共卫生与预防医学,[/color][/url][color=black]2005,16(5):61-62[/color]7)黄选忠.紫尿酸光度法同时测定铁和钴[J].理化检验:化学分册,1996,32(4):227-228[color=black]8)[/color]黄选忠,黄伟.以硫代紫尿酸为显色剂分光光度法同时测定铁和钴[J].理化检验:化学分册, 2009, 45(12):1410-1412

  • 尿酸的市场价

    [em32] 请问现在尿酸的市场价格一般是多少?在哪里可以买到?谢谢!

  • 氰尿酸检测仪是什么仪器

    氰尿酸检测仪是什么仪器

    [size=16px]氰尿酸检测仪是什么仪器氰尿酸检测仪通常用于测量尿液中的氰尿酸浓度。氰尿酸是一种有机化合物,它是尿液中的一种代谢产物,通常与痛风等疾病相关。氰尿酸检测仪是一种实验室仪器,用于定量测量尿液中氰尿酸的浓度,以帮助医生进行疾病诊断和监测病情。这些仪器通常基于化学分析原理或生化分析原理,可以自动化地进行样本的处理和测量。它们可以提供准确的氰尿酸浓度结果,有助于医疗诊断和治疗决策。不同型号的氰尿酸检测仪可能采用不同的技术和方法,但它们的主要目的是测量尿液中的氰尿酸浓度以监测患者的健康状况。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/10/202310310943534961_4781_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 【求助】尿酸溶液如何配置

    做过尿酸分析的同行能不能交流一下,尿酸标准溶液如何配制的呀?我的尿酸是Sigma的,但是像文献上用酸性PBS不好溶呀,0.1M NaOH溶解后也容易析晶?不知道怎么回事?

  • 【资料】德国科学家成功获取酵母菌细胞高清三维图片

    德国科学家日前成功获取了显示单细胞酵母菌内部构成的高分辨率三维图片,为研究更高级别的生物提供了新的依据。 据此间媒体30日报道,位于海德堡的欧洲分子生物实验室的科学家们使用电子束从不同角度照射酵母菌细胞,再通过电脑组合完成了这张细胞内部结构高清图片。图片除了显示细胞核 及其他组成部分外,还可以显示细胞内细微的丝状物。通过类似的方式,科学家也获取了人脑细胞内部结构的图片。 科学家认为,如同人体由骨骼支撑一样,一个细胞内部的组成部分也决定了细胞的结构和形状。单细胞的酵母菌被认为能够为研究包括人类在内的高级生物提供依据。来源:新华网

  • 碳酸饮料霉菌酵母问题

    有没有做碳酸饮料酵母长很多的情况啊,我们最近是三个不同的样品是碳酸饮料,其中一个样品酵母结果45cfu/ml,已经超过限量了,但是之前做饮料从来没有出现过这种情况,基本都没有长过,这次做的其它类似样品,也没有长,就一个样品长了,放在一个培养箱培养的,就想问问有没有做碳酸饮料酵母超了的情况,因为之前没有过饮料做霉菌酵母超了的,就有点怀疑这个会不会是我们培养箱污染了,但其它一起培养的样品都正常。

  • 【求购】怎么做液体饲料如酵母糖蜜里金属元素铜的检测?

    我们饲料厂有时候还让做液体饲料如酵母糖蜜里金属元素铜的检测,你们各位觉得酵母糖蜜的前处理方法跟常规饲料有啥区别没啊,难道也是先电炉炭化,马弗炉灰化,然后加水润湿,加酸溶解,浓缩赶酸,然后转移定容过滤,上AAS测定吗?液体饲料会不会有别的处理方法呀?

  • 关于酵母抽提物

    [b][color=#646464][color=#1a1a1a]酵母抽提物,英文Yeast Extract,简称YE。[/color][/color][/b][color=#1a1a1a]酵母抽提物可以说是食物风味诱惑的原动力,让吃货们欲罢不能的味道,很多时候其实是YE在起作用。[/color][color=#1a1a1a][color=#1a1a1a]对于食品工业生产和餐饮门店,是非常熟悉的。家庭厨房中一般不会见到,其实他是隐藏的。[color=#1a1a1a]回家看看家里酱油瓶子的配料表上,不管是老抽、生抽、味极鲜,都能看到他的名字。[/color][/color][/color][color=#1a1a1a]它的神奇之处,在于包含了人体可直接吸收利用的可溶性营养及风味物质的浓缩物,[color=#1a1a1a]如20种氨基酸和多肽、核苷酸、维生素、有机酸和矿物质等等。[color=#1a1a1a]复杂成分带来多种丰富而饱满的味道。[/color][/color][/color][color=#1a1a1a]家用时,假如手抖放多了,除了味道太重,也没别的危害。[color=#1a1a1a]而且素食者也可以用,是难得的同时营养、调味和保健三大功能的食品调味料。[/color][/color][color=#1a1a1a]酵母抽提物的原料是啤酒酵母、葡萄酒酵母和面包酵母为原料。[color=#1a1a1a]主流产品是啤酒酵母,很大一部分产量是啤酒酿造的副产品。[color=#1a1a1a]这个以前是当做废弃物的,后来发现这个宝贝的味道太浓郁,再稍作加工大有可为。[/color][/color][/color]

  • 毛细管电泳-微流控系统检测尿样中的尿酸和其它成分

    尿样检测是医学最常检测的项目之一,传统方法需要样品量大、时间长、消耗试剂多、成本高。 微流控电泳平台可以很好的监控尿酸的含量、同时分离开来自样品本身或外在的干扰物质如: - 肾上腺素、 - L-DOPA(左旋多巴)、 - 抗坏血酸维生素C、 - 醋氨酚(对乙酰氨基酚,退热净(一种替代阿司匹林的解热镇痛药);扑热息痛)、 - 黄嘌呤、 - 茶碱、 - 咖啡因等 电化学方法可以直接检测尿酸和相关物质,摆脱了传统的方法对温度敏感、测试成本高、还需要相关试剂(酶)等依赖。 微流控系统提供了快速、经济、高通量的尿酸分析方法

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制