当前位置: 仪器信息网 > 行业主题 > >

仓鼠卵巢细胞二氢叶酸还原

仪器信息网仓鼠卵巢细胞二氢叶酸还原专题为您提供2024年最新仓鼠卵巢细胞二氢叶酸还原价格报价、厂家品牌的相关信息, 包括仓鼠卵巢细胞二氢叶酸还原参数、型号等,不管是国产,还是进口品牌的仓鼠卵巢细胞二氢叶酸还原您都可以在这里找到。 除此之外,仪器信息网还免费为您整合仓鼠卵巢细胞二氢叶酸还原相关的耗材配件、试剂标物,还有仓鼠卵巢细胞二氢叶酸还原相关的最新资讯、资料,以及仓鼠卵巢细胞二氢叶酸还原相关的解决方案。

仓鼠卵巢细胞二氢叶酸还原相关的论坛

  • 新技术或可预测卵巢癌患者存活时间

    新华社华盛顿12月4日电(记者林小春)美国研究人员4日报告说,一种DNA(脱氧核糖核酸)检测技术或许可以帮助预测卵巢癌患者的存活时间,从而为个性化的癌症诊断及治疗提供指导。 美国弗雷德?哈钦森癌症研究中心的研究人员当天在《科学转化医学》杂志上说,他们开发的这种技术可以可靠、快速、廉价地对卵巢癌患者体内一种叫做肿瘤浸润淋巴细胞的免疫细胞进行计数。此前研究表明,卵巢癌患者体内的肿瘤浸润淋巴细胞越多,卵巢癌患者的存活时间越长。 研究负责人、癌症研究专家贾森?比拉说,与现有方法相比,新技术有望更早、更有效地预测癌症患者的治疗反应、癌症复发情况以及存活时间。如果将来用于临床,将会帮助医生选择最佳治疗方案,从而延长患者寿命。 研究人员利用30名卵巢癌患者身上取得的肿瘤样本测试了这种技术,这些患者存活时间从1个月到10年不等。结果表明,肿瘤浸润淋巴细胞的数量与卵巢癌患者的存活时间呈正相关,存活5年以上卵巢癌患者的肿瘤浸润淋巴细胞数量是不到两年患者的约3倍。 研究人员指出,这种肿瘤浸润淋巴细胞计数技术可能也适用于其他类型的癌症,有望在将来成为“一种用于更为个性化的癌症诊断及治疗的强有力工具”。

  • 【金秋计划】Nodakenin通过调节成骨细胞和破骨细胞的发生来减轻卵巢切除术所致的骨质疏松症

    [size=15px][color=#595959]骨质疏松[/color][/size][size=15px][color=#595959]症(OP)是一种以骨量减少和骨微结构损伤为特征的全身性骨代谢性疾病,它增加了骨脆性和骨折风险,与人口老龄化密切相关,患病率一直很高,正在成为全球关注的问题。此外,由于绝经后性激素水平急剧下降,女性的患病率远高于男性。目前临床治疗骨质疏松的药物包括特立帕肽、雌激素、降钙素、双膦酸盐等,主要目的是促进骨合成和防止骨吸收。这些药物在长期使用中经常会引起不良反应。因此,寻找一种安全有效的治疗方法尤为必要。[/color][/size] [size=15px][color=#595959]紫花前胡苷(Nodakenin,NK)是从中药独活(RAB)中分离得到的一种呋喃香豆素类化合物。NK已被证明具有抗炎、抗菌、抗氧化和抗血小板聚集作用,并能改善认知功能。最近,研究发现NK通过调节线粒体改善软骨退变和炎症反应,提高软骨下骨体积,从而缓解骨[/color][/size][size=15px][color=#595959]关节炎[/color][/size][size=15px][color=#595959]。然而,NK对OP影响的相关研究尚未见报道。[/color][/size] [align=center] [/align] [size=15px][color=#595959]评价NK对OVX小鼠的抗骨质疏松作用,探讨NK对体外成骨细胞和破骨细胞形成的调控机制。[/color][/size] [size=15px][color=#595959]采用网络药理学、分子对接和分子动力学模拟技术来确定NK在[/color][/size][size=15px][color=#595959]骨质疏松症[/color][/size][size=15px][color=#595959]中的潜在靶点和通路。6-8周龄雌性C57BL/6J小鼠行卵巢切除术,术后8周给予不同剂量NK (5 mg/kg或20 mg/kg)灌胃治疗,连续6周。从4周龄C57BL/6J小鼠骨髓腔中分离并获得BMSCs和BMMs,进行药效观察及机制验证。[/color][/size] [align=center] [/align] [size=15px][color=#595959]通过测定碱性磷酸酶活性和各种成骨标志物的表达,发现NK处理显著促进骨髓间充质[/color][/size][size=15px][color=#595959]干细胞[/color][/size][size=15px][color=#595959]成骨分化,同时激活PI3K/AKT/mTOR信号通路。相比之下,PI3K[/color][/size][size=15px][color=#595959]抑制剂[/color][/size][size=15px][color=#595959]LY294002逆转了这些变化,抑制了NK的成骨分化作用。同时,通过下调c-Src和TRAF6抑制Akt和NFκB信号通路,从而有效抑制RANKL诱导的破骨细胞生成。此外,口服NK可显著提高小鼠骨量,改善卵巢切除(OVX)介导的骨微结构紊乱。[/color][/size] [align=center] [/align] [size=15px][color=#595959]这些数据表明NK通过促进骨生成和抑制破骨细胞生成来减轻OVX诱导的骨丢失。该研究可能为骨质疏松症提供潜在的治疗策略。[/color][/size]

  • 【金秋计划】青蒿素类衍生物可治疗多囊卵巢综合征及其机制

    [size=14px] [/size] [size=14px] [/size] [size=14px]多囊卵巢综合征(polycystic ovary syndrome,PCOS)是一种普遍存在的生殖内分泌疾病,全球发病率约为10%-13%。其特征是高雄激素血症、排卵功能障碍、多囊卵巢形态,并且通常伴有代谢紊乱。雄激素升高是驱动PCOS表型特征的关键因素。尽管多囊卵巢综合征的患病率很高,但针对这种复杂综合征的药物干预仍面临巨大挑战。目前可用于PCOS的治疗方案有限,主要针对特定症状的管理。因此,迫切需要制定创新的治疗策略。[/size] [size=14px] [/size] [size=14px]青蒿素是植物来源的化合物,作为疗效稳定且副作用小的一线抗疟疾药物而闻名,但也被证明具有一些有益的代谢作用。复旦大学汤其群教授团队早期系统筛选了促进白色脂肪棕色化的小分子化合物,发现青蒿素类衍生物能够激活产热脂肪细胞来增强能量消耗和胰岛素敏感性的能力,从而防止饮食引起的肥胖和代谢紊乱(Cell Research,2016)。青蒿素在啮齿动物PCOS样模型和人类PCOS患者中的治疗潜力及机制尚不清楚。[/size] [size=14px] [/size] [size=14px]2024年6月14日,复旦大学附属中山医院汤其群教授团队在Science(IF=56.9)发表题为“Artemisinins ameliorate polycystic ovarian syndrome by mediating LONP1-CYP11A1 interaction”的文章,发现青蒿素类衍生物能够显著改善PCOS的疾病表型。机制上,青蒿素能够靶向线粒体蛋白酶LONP1,促进LONP1与其底物CYP11A1的结合,加速CYP11A1的降解,抑制卵巢雄激素的合成,降低PCOS患者的雄激素水平,改善月经周期及卵巢多囊样变。该研究证明青蒿素还可以缓解多种啮齿动物模型和人类患者中多囊卵巢综合征的内分泌表现,这表明了一种治疗这种内分泌疾病多个方面的潜在方法。[/size] [size=14px] [/size] [size=14px]1、在啮齿类动物模型中,蒿甲醚(ATM)对PCOS样表型有抑制作用[/size] [size=14px] [/size] [size=14px]为了评估青蒿素对PCOS发展的影响,作者首先使用脱氢表雄酮(DHEA)建立PCOS样小鼠模型,并同时给药发现蒿甲醚(artemether,ATM,一种青蒿素),发现ATM可以消除DHEA处理小鼠血清中升高的睾酮,从而防止PCOS样特征,改善DHEA引起的发情周期中断,改善卵巢异常形态。在观察到预防效果的基础上,作者评估ATM的治疗效果。在建立DHEA诱导的PCOS样模型后,通过腹腔注射不同剂量的ATM处理小鼠,发现ATM降低血清睾酮,恢复正常的发情周期,抑制子宫水肿,并显著减少卵巢囊泡(图1)。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]接下来,作者在大鼠模型中研究了ATM的抗PCOS作用,发现腹腔注射ATM足以使PCOS样大鼠的血清睾酮水平降至与对照大鼠相似的水平,并缓解被打乱的发情周期。卵巢组织学分析显示ATM逆转了DHEA处理大鼠的低排卵表型。在注射胰岛素和hCG(两者都是雄激素产生的强效诱导剂)建立的另一个PCOS样大鼠模型中,这一发现得到了进一步验证综上所述,在啮齿类动物模型中,ATM治疗改善了PCOS的主要特征,包括血清睾酮水平升高、发情周期不规则、多囊卵巢形态和低生育能力(图2)。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]2、青蒿素抑制卵巢中的甾体生成和睾酮产生[/size] [size=14px] [/size] [size=14px]ATM引起的睾酮急剧下降促使作者探索青蒿素在调节雄激素合成中的作用。发现在PCOS样模型中,无论是腹腔还是口服,ATM均未显示出对促卵泡激素(FSH)和黄体生成素(LH)的影响。作者猜测青蒿素通过靶向卵巢调节睾酮水平,发现ATM显著抑制卵巢间质细胞中睾酮的产生。同样,SM934,也是一种青蒿素类似物,显示出与ATM诱导的睾酮水平相当的抑制作用。除了降低睾酮,ATM和SM934还明显降低孕烯醇酮、孕酮和17a-OHP,这些都是卵巢甾体生成的中间体和睾酮的前体,这一观察结果被另一种青蒿素衍生物青蒿琥酯(ATS)进一步验证。这些数据强烈表明,青蒿素抑制卵巢膜间质细胞的类固醇生成过程和随后的雄激素合成(图3A-3I)。[/size] [size=14px] [/size] [size=14px]3、青蒿素通过降低CYP11A1来限制睾酮的产生[/size] [size=14px] [/size] [size=14px]为了揭示青蒿素诱导雄激素合成减少的细胞途径,作者对分离的卵巢间质细胞进行蛋白质组学分析,发现CYP11A1是ATM诱导下调最显著的蛋白,CYP11A1催化胆固醇向孕烯醇酮的转化,这是类固醇激素生物合成的第一步,ATM对CYP11A1的下调与前面观察到的青蒿素抑制雄激素合成相一致。作者接着在大鼠和小鼠卵巢间质细胞和PCOS样小鼠卵巢中验证了青蒿素剂量依赖性地下调CYP11A1蛋白,而不影响HSD3B2和CYP17A1。接下来,作者发现补充孕烯醇酮(CYP11A1催化反应的产物)或者过表达CYP11A1挽救了青蒿素处理细胞中下降的睾酮,而CYP11A1表达被破坏后青蒿素无法进一步降低睾酮的产生,表明上调和下调CYP11A1决定了睾酮的产生,青蒿素通过CYP11A1影响睾酮的产生(图3J-3O)。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]4、青蒿素介导LONP1和CYP11A1之间的相互作用[/size] [size=14px] [/size] [size=14px]作者接着探索青蒿素调节CYP11A1的机制。发现青蒿素诱导的蛋白水平降低,但Cyp11a1的mrna不受青蒿素的影响,表明青蒿素有转录后调控作用。随后,作者检测了CYP11A1的稳定性,发现ATM和SM934明显缩短了CYP11A1蛋白的半衰期。进一步研究表明,蛋白酶抑制剂MG132挽救了ATM和SM934诱导的CYP11A1下调,这共同表明青蒿素通过抑制其蛋白稳定性来降低CYP11A1水平(图4)。[/size] [size=14px] [/size] [size=14px]为了确定导致青蒿素诱导的CYP11A1不稳定的介质,作者应用IP-MS来鉴定ATM或SM934治疗下CYP11A1的相互蛋白,确定了两个候选蛋白在ATM和SM934均存在,co-IP验证发现其中的LONP1蛋白(一种线粒体蛋白酶,在线粒体蛋白质质量控制中至关重要)为目标蛋白,通过ATM和SM934诱导,LONP1和CYP11A1之间的相互作用显著增强。此外,LONP1过表达显著下调CYP11A1,这些数据表明,LONP1而不是TFG可能参与调节CYP11A1蛋白水平。内源性co-IP进一步证实,ATM和SM934增强了LONP1和CYP11A1之间的结合亲和力。综上所述,这些数据强烈表明,青蒿素增强了CYP11A1-LONP1的关联,就像“分子胶”一样,是一类诱导或稳定蛋白质之间相互作用的小分子。接下来,通过分子对接预测了LONP1和CYP11A1的结合位点,蛋白突变验证了CYP11A1中F252-T259区域对于CYP11A1-LONP1相互作用至关重要(图4)。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]5、LONP1促进CYP11A1降解,抑制睾酮合成[/size] [size=14px] [/size] [size=14px]在确定了青蒿素增强了CYP11A1-LONP1的相互作用之后,作者试图研究LONP1在青蒿素诱导的CYP11A1降解中的作用。发现LONP1过表达降低了CYP11A1水平,MG132挽救了CYP11A1水平,MG132是一种蛋白酶抑制剂,也能够抑制LONP1。这些结果与上述数据一致,表明MG132可以恢复青蒿素引起的CYP11A1下降。此外, CDDO-Me(LONP1抑制剂)逆转了ATM引起的CYP11A1表达降低,敲低LONP1完全逆转了ATM诱导的CYP11A1下降。而催化失活的LONP1 (LONP1-S844A) 没有像WT LONP1那样降低CYP11A1的表达或缩短CYP11A1蛋白的半衰期,说明LONP1通过其蛋白酶活性降低了CYP11A1(图5)。[/size] [size=14px] [/size] [size=14px]为了证实LONP1是否直接介导了CYP11A1的下调,作者使用纯化的CYP11A1和LONP1蛋白进行了体外蛋白酶测定,发现ATM促进了LONP1催化的CYP11A1降解,而在缺乏LONP1或ATP的情况下,ATM对CYP11A1没有影响。此外,CYP11A1 (DF252-T259)的突变体形式未能与LONP1结合,对青蒿素诱导的下调表现出抗性。这些观察结果共同支持了LONP1在介导青蒿素诱导的CYP11A1下调中不可或缺的作用。接下来,作者评估了LONP1对卵巢雄激素合成的影响,发现LONP1的过表达下调了CYP11A1蛋白,进而降低孕烯醇酮、孕酮、17a-OHP和睾酮水平。通过腹腔注射AAV-LONP1在小鼠卵巢中过表达LONP1。结果显示,LONP1降低了CYP11A1同时抑制了血清睾酮。这些数据共同表明,LONP1的过表达复制了青蒿素降低雄激素的作用(图5)。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]6、LONP1是青蒿素的直接靶点[/size] [size=14px] [/size] [size=14px]然后,作者试图确定青蒿素是否直接靶向LONP1或CYP11A1。通过生物素标记的青蒿素进行Pulldown实验证实了bio-ATS有效地降低了CYP11A1,进一步发现bio-ATS对LONP1蛋白而不是CYP11A1具有结合亲和力。游离ATS、ATM或SM934的竞争以及实验热稳定性实验同样表明LONP1,而不是CYP11A1,是青蒿素的直接靶点。进一步分子对接确定了青蒿素与靶点的结合模式。SPR和蛋白突变实验证实青蒿素对CYP11A1水平的抑制作用很大程度上依赖于其与LONP1蛋白水解结构域的结合。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]7、双氢青蒿素治疗多囊卵巢综合征的疗效观察[/size] [size=14px] [/size] [size=14px]最后,作者进行了一项试点临床研究,以验证青蒿素治疗多囊卵巢综合征患者的疗效。19例PCOS患者口服双氢青蒿素治疗12周,发现双氢青蒿素治疗显著降低了PCOS患者的血清睾酮。血清AMH水平与生长卵泡的数量密切相关,因此在PCOS患者中通常升高,而双氢青蒿素治疗显著降低了血清AMH。与这一结果一致的是,超声检查发现,双氢青蒿素治疗后,窦腔卵泡计数明显减少。63.16%的PCOS患者恢复了正常的月经周期。结果表明双氢青蒿素可有效改善PCOS患者高雄激素血症,改善多囊卵巢形态,促进月经正常。[/size] [size=14px] [/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px] [/size] [size=14px]总结[/size] [size=14px] [/size] [size=14px]在这项研究中,作者将青蒿素确定为抗PCOS药物研究结果证明了青蒿素衍生物在缓解啮齿动物模型和人类患者的PCOS症状方面的功效,通过抑制卵巢雄激素合成来抑制高雄激素血症。青蒿素促进CYP11A1蛋白降解以阻止雄激素过量产生。从机制上讲,青蒿素直接靶向LONP1,增强了LONP1-CYP11A1相互作用,并促进了LONP1催化的CYP11A1降解。LONP1 的过表达复制了青蒿素的降雄激素作用。研究数据表明,青蒿素的应用是治疗多囊卵巢综合征的一种有前途的方法,并强调了LONP1-CYP11A1相互作用在控制高雄激素血症和多囊卵巢综合征发生方面的关键作用。[/size] [size=14px] [/size] [size=14px]图片[/size]

  • 【金秋计划】苍术中有效成分抗肿瘤作用机制研究进展

    肿瘤是指体内细胞的异常增生,可以是良性的或恶性的。良性肿瘤(例如息肉)生长缓慢且通常局限在一个区域,不会侵犯周围组织或扩散到其他部位。恶性肿瘤(即癌症)具有侵袭性,可以快速生长并通过血液或淋巴系统扩散到其他身体部位,形成远处转移。癌症是一种严重威胁人类健康和生命的疾病,2020年全球有1 930万新增癌症病例和1 000万癌症死亡病例,且我国癌症发病率和死亡率均位居全球第一[1]。最常见的癌症类型是乳腺癌、肺癌、结直肠癌和前列腺癌。因此,寻找新的抗肿瘤药物,阐明抗肿瘤药物的分子机制,是解决当前临床肿瘤治疗难点的有效策略。中药具有多种有效成分,因其不良反应低、多靶点、多通路等优点,已成为抗肿瘤药物开发的重要来源和研究热点[2]。目前,常规的肿瘤症治疗方法为手术、放射治疗和化学治疗等,但这些方法往往伴随着较大的不良反应和毒性,而且对某些难治性或复发性肿瘤效果不佳[3]。因此,寻找有效、低毒的抗肿瘤药物是当前临床研究的重要方向。 苍术是一种常用的中药材,分为茅苍术Atractylodes lancea (Thunb.) DC.和北苍术A. chinensis (DC.) Koidz.,分别来源于菊科植物茅苍术或北苍术的干燥根茎。苍术具有燥湿健脾、祛风散寒的功效,在《神农本草经》中列为上品[4]。近年来,苍术在抗微生物、抗炎、抗肿瘤、免疫调节、调节消化系统、心血管系统和神经系统等方面的药理作用受到了广泛关注。苍术中含有挥发油、多糖、倍半萜类、聚乙炔类等[5]多种化学成分。其中一些成分已经被证实具有抑制或杀伤多种肿瘤细胞的能力,其作用机制涉及诱导凋亡、抑制增殖、迁移、侵袭和转移,以及调控免疫功能等方面[6]。然而,苍术中的抗肿瘤活性成分及其作用机制尚未完全明确,需要进一步深入地探索和验证。本文通过整理国内外研究文献,对苍术活性成分、苍术与其他药物联合抗肿瘤及其分子机制进行总结,探讨苍术在抗肿瘤方面的应用规律和思路,为苍术资源的开发利用以及抗肿瘤临床疗法的研究提供理论参考。 1 苍术主要化学成分 茅苍术与北苍术化学成分相似,药理作用也较为相似,目前已从苍术中分离出多种化学成分,主要含有包括萜类、聚乙烯炔类、有机酸类、糖苷类化合物等[7-8]。苍术主要抗肿瘤化学成分,见图1。茅苍术与北苍术中主要化学成分如表1所示。 图片 图片 2 苍术的抗肿瘤机制 苍术中含有苍术内酯Ⅰ、Ⅱ、Ⅲ、苍术酮、β-桉叶醇和苍术素等有效成分,这些成分不仅可以抗炎、抗氧化、抗菌、保肝、降血糖,还可以抗肿瘤[14-15]。近年来,苍术及其有效成分对肿瘤的抑制作用受到了广泛的关注。研究发现,苍术有效成分对多种肿瘤细胞都有抑制作用,可以通过多种途径和机制影响肿瘤细胞的生长、迁移、侵袭和血管生成,诱导肿瘤细胞的凋亡和自噬,调节肿瘤微环境和免疫系统。 2.1 抑制肿瘤细胞增殖 肿瘤是由于细胞增殖失控而形成的一种疾病[16]。细胞周期是细胞增殖的基本过程,由细胞周期蛋白(cyclin,CCN)和细胞周期蛋白依赖性激酶(cyclin-dependent kinase,CDK)复合物共同调控[17]。干预细胞周期是抑制肿瘤发展的有效策略之一[18]。Kotawong等[19]发现,苍术中的苍术素、苍术内酯I和β-桉叶醇等有效成分可以通过影响肿瘤细胞周期的不同阶段来抑制肿瘤细胞的增殖。这些成分可以通过抑制磷脂酰肌醇-3-羟激酶(phosphatidylinositol 3-hydroxy kinase,PI3K)、磷酸化蛋白激酶B(protein kinase B,AKT)和哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路来诱导肿瘤细胞在G1期停滞;Yu等[20]发现苍术内酯I通过上调周期蛋白依赖性激酶抑制剂1A(cyclin-dependent kinase inhibitor 1A,p21)和下调cyclinB1、CDK1和细胞分裂周期25C蛋白(cell division cyclin25,Cdc25c)等关键分子来抑制肿瘤细胞在G2/M期的进入,在动物模型中,苍术内酯I可以显著抑制膀胱癌的生长,且无明显不良反应。Zhang等[21]实验发现苍术内酯Ⅱ可以通过改变结直肠癌细胞内的蛋白表达从而抑制结直肠癌细胞的增殖和活性,并且还显著增强了结直肠癌细胞的化疗敏感性。Pongsakorn等[22]发现,苍术提取物可以通过抑制细胞外信号调节激酶信号级联(ERK-signaling cascade,ERK)信号通路来抑制胆管癌细胞的增殖。ERK信号通路是一种重要的细胞内信号转导机制,参与调节细胞生长、分化和凋亡等过程。苍术提取物可以下调ERK及其下游分子的表达,从而抑制胆管癌细胞的生长和增殖,不同类型的胆管癌细胞对苍术提取物的敏感度不同,其中人胆管HuCCT-1癌细胞最为敏感。 2.2 诱导肿瘤细胞凋亡 细胞凋亡是一种程序性细胞死亡形式,它通过限制细胞的增殖和分化来维持组织稳态或去除潜在的有害细胞[23]。目前已知的细胞凋亡途径主要有3种,即外源性途径(死亡受体介导)、内源性途径(线粒体介导)和内质网途径。其中,线粒体途径是最重要的一种,它涉及线粒体外膜透化(outer mitochondrial membrane,MOMP)、细胞色素C释放和半胱天冬酶(cysteine aspartic acid protease,Caspase)激活[24]。多项研究发现,苍术酮可以通过降低线粒体膜电位、提高活性氧水平、抑制B细胞淋巴瘤-2基因(B-cell lymphoma-2,Bcl-2)表达、促进BCL2-相关X蛋白(BCL2-associated X protein,Bax)裂解和Caspase-3表达[25],以及下调PI3K/AKT/mTOR信号通路来诱导肿瘤细胞凋亡[26]。Narahara等[27]研究表明,β-桉叶醇和苍术内酯Ⅲ[27]可以通过增加Caspase-3、Caspase-8、Caspase-9和Bax等凋亡相关蛋白的表达、下调Bcl-2表达、释放细胞色素C和降低线粒体膜电位来诱导胆管癌细胞凋亡。此外,Li等[28]使用β-桉叶醇处理的白血病HL60细胞,发现β-桉叶醇可以通过激活c-JunN端激酶(c-Jun N-terminal kinase,JNK)丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路来诱导白血病HL60细胞凋亡。Li等[29]研究发现,苍术素可以通过降低Bcl-2表达、激活p53肿瘤蛋白(p53 tumor protein,p53)、Bax和Caspase-3、-8、-9等凋亡因子来诱导人乳腺癌MCF-7细胞凋亡,并表现出浓度依赖的毒性效应。Li等[30]研究表明,苍术内酯I和苍术内酯Ⅱ[31]可以通过与对两面针激酶2(Janus kinase 2,JAK2)直接相互作用而负调节信号传导及转录激活因子3(signal transducer and activator of transcription 3,STAT3)磷酸化,从而抑制其活化,进而导致糖酵解的抑制和结肠、直肠癌细胞凋亡的诱导。 2.3 抑制肿瘤细胞转移 肿瘤细胞转移是指肿瘤细胞通过血液循环从原发部位转移到其他部位的过程,这是癌症治疗的难点,也是癌症死亡的主要原因[32]。上皮间质转化(epithelial-mesenchymal transition,EMT)是一种与癌症发生相关的细胞程序,它使癌细胞具有移动性、侵袭性和抗凋亡能力,从而促进转移。苍术的一些活性成分具有抑制肿瘤细胞转移的潜在作用,其机制可能涉及对EMT的调控[33]。Acharya等[34]研究发现,β-桉叶醇可以改变EMT相关标志物的表达,从而抑制结肠癌细胞的增殖、迁移和侵袭。同时它还可以影响PI3K、AKT、p38丝氨酸/苏氨酸蛋白激酶(p38 mitogen-activated protein kinase,p38MAPK)信号通路,以及肺癌细胞中的活性氧水平,从而降低癌细胞的黏附和迁移能力[35]。麦静愔等[36]发现苍术酮可以通过抑制EMT过程等途径抑制肿瘤细胞的迁移和侵袭能力,此外,苍术酮还可以通过下调基质金属蛋白酶(matrix metalloproteinase,MMP)的表达从而抑制肿瘤细胞的迁移和侵袭能力。MMP是一类能够降解细胞外基质(extracellular matrix,ECM)的锌依赖性内肽酶,在癌症进展中的作用与它们参与ECM降解以及黏附和细胞骨架蛋白、生长因子、趋化因子的调节和加工有关[37]。且有动物实验表明,苍术酮可以明显抑制肝癌生长,没有明显的毒性。Zhong等[38]在观察了苍术多糖在U-2 OS人骨肉瘤细胞中对内皮细胞选择素(endothelial cell selectin,E-Selectin)和路易斯X三糖(Lewis-X Trisaccharide,LacCer Lex)的影响,发现苍术多糖可通过降低U-2 OS细胞上的E-Selectin抑制U-2 OS细胞对人脐静脉内皮细胞HUVECs的黏附、迁移和侵袭。肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs)在促进肿瘤转移中发挥重要作用,Zhang等[39]发现苍术内酯II可以有效抑制肿瘤细胞极化,从而抑制肺癌细胞在体内和体外的转移。铁死亡是一种新的细胞死亡模式,其特征是铁过载导致脂质过氧化而导致膜损伤,过度的铁死亡会影响肿瘤的转移,从而抑制肿瘤的进展[40]。He等[41]发现,苍术素可通过抑制谷胱甘肽过氧化物酶4(glutathione peroxidase 4,GPX4)和铁蛋白轻链(ferritin light chain,FTL)的表达,以及上调酰基辅酶A合成酶长链家族成员4(acyl-CoA synthetase long-chain family member 4,ACSL4)和转铁蛋白受体(transferrin receptor,TFR1)的表达来诱导肝癌HCCM细胞的铁死亡。 2.4 诱导肿瘤细胞自噬 细胞自噬是一种分解代谢通路,能清除不必要的或功能失调的细胞成分并回收代谢底物[42]。目前已知有3种主要的细胞死亡方式:细胞凋亡(Ⅰ型)、自噬性细胞死亡(Ⅱ型)和坏死(Ⅲ型)。自噬性细胞死亡是指自噬过程中产生的自噬体过多或过大,导致细胞质溶解和细胞死亡。自噬体是由双层膜包裹的囊泡,内含被降解的细胞器和蛋白质。微管相关蛋白1轻链3(microtubule-associated protein 1 light chain 3,LC3)是自噬体形成的关键标志物,它以微管相关蛋白1A/1B-轻链3(microtubule-associated protein 1 light chain 3,LC3-I)和微管相关蛋白1轻链3的脂化形式(lipidated form of microtubule-associated protein 1 light chain 3,LC3-Ⅱ)2种形式存在,LC3-Ⅰ转化为LC3-Ⅱ是自噬体形成的必要步骤[43-44]。Li等[29]使用苍术素处理乳腺癌MCF-7细胞时发现,苍术素可以增加了LC3Ⅰ向其脂化形式的LC3Ⅱ的转化,并增加了苄氯素1(beclin-1,BECN1)的表达,下调了人乳腺癌MCF-7细胞中的p62蛋白(p62 protein,p62)表达,改变凋亡和自噬相关生物标志物。Acharya等[45]研究发现,苍术素通过调节PI3K、AKT、mTOR、p38MAPK信号通路的活性,可以诱导胆管癌HuCCT-1细胞发生自噬,并抑制其生长、迁移和侵袭,SB202190(p38MAPK诱导剂)和3-MA(p38MAPK抑制剂)分别显著增加和降低苍术素诱导的自噬速率。 2.5 抑制肿瘤血管生成 血管生成本身不会导致恶性肿瘤的形成,但可以为肿瘤的生长和转移提供条件。肿瘤在发展到一定阶段后,需要依赖新生血管来满足其对氧气和营养的增加的需求,以及排除代谢废物,因此,抑制血管生成是一种有效的抗肿瘤策略[46]。血红素加氧酶1(heme oxygenase 1,HO-1)是一种在肿瘤组织中高表达的酶,它可以促进肿瘤的血管生成和抗氧化应激,为肿瘤细胞提供生存优势。因此,抑制HO-1的表达或活性是治疗肿瘤的另一种有效策略之一。Mathema等[47]研究发现,苍术素可以抑制胆管癌CL6肿瘤细胞的集落形成和伤口愈合能力,其机制与抑制HO-1的表达、下调信号转导及转录激活蛋白1/3(signal transducer and activator of transcription 1/3,STAT1/3)和核因子κB(nuclear factor kappa-B,NF-κB)的信号通路有关。β-桉叶醇也具有抑制胆管癌细胞中HO-1的表达的能力,其机制与浓度依赖性地抑制STAT1/3和NF-κB信号通路有关[48]。β-桉叶醇还可以通过抑制生长因子信号通路中的环磷腺苷效应元件结合蛋白(cyclic-AMP response binding protein,CREB)激活来阻断血管生成,从而抑制肿瘤的发展[49]。Tsuneki等[50]有动物实验表明,β-桉叶醇可以通过激活丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)来刺激大鼠嗜铬细胞瘤细胞中的神经突生长,且β-桉叶醇还表现出了体外和体内的抗血管生成活性,其阻断了由碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)或血管内皮生长因子(vascular endothelial growth factor,VEGF)诱导的人脐静脉内皮细胞(human umbilical vein endothelial cell,HUVEC)中CREB蛋白的磷酸化,从而抑制bFGF刺激的HUVEC迁移和HUVEC在基质胶中的管形成。同时,它还能显著降低小鼠皮下植入的Matrigel栓塞和小鼠佐剂诱导的肉芽肿中的血管生成[51]。 2.6 免疫调节作用 随着肿瘤的发生和发展,或在接受化疗、放疗等治疗的过程中,肿瘤患者机体免疫力的显著下降。因此,调节或刺激机体免疫能力,可能是一种有效的主动抗癌策略。免疫治疗作为一种新型的抗癌手段,已经引起了广泛的关注和研究[52]。巨噬细胞是机体内重要的免疫细胞,在机体免疫中发挥着重要的作用[53]。Qin等[54]从苍术中分离得到两种多糖成分:中性多糖和酸性多糖。研究表明,酸性多糖能够显著地刺激小鼠单核巨噬细胞白血病细胞(RAW264.7)细胞的增殖、吞噬能力、NO产生和细胞因子分泌,并且呈现出剂量相关性,而中性多糖则相对较弱。此外,中性多糖和酸性多糖均能够激活淋巴结Peyers patch细胞中的T细胞,并促进集落刺激因子的产生。而酸性多糖也表现出比中性多糖更好的肠道免疫调节活性。吲哚胺-2,3-二氧化酶(indoleamine 2,3-dioxygenase,IDO)是一种通过犬嘌呤途径氧化分解色氨酸的限速酶,是抗肿瘤免疫治疗中小分子药物开发的潜在目标。IDO可在肿瘤微环境中通过与许多肿瘤相关的自发炎症和T细胞激活而被诱导。Liu等[55]研究发现,苍术内酯Ⅰ可以通过下调Toll样受体4/髓样分化蛋白2复合物(toll-like receptor 4/myeloid differentiation 2 complex,TLR4/MD-2)的表达,抑制人卵巢癌细胞(EOCSKOV3)中髓样分化主要反应蛋白88(myeloid differentiation primary response protein 88,MyD88)、NF-κB、Akt和IDO1的信号通路的活化,从而减少白细胞介素-6(interleukin-6,IL-6)、转化生长因子-β1(transforming growth factor beta 1,TGF-β1)、VEGF和白细胞介素-17A(interleukin-17A,IL-17A)等促进肿瘤免疫逃逸的因子的分泌。同时,还可以降低调节性T细胞(Treg细胞)在肿瘤微环境中的比例,改善T淋巴细胞受到EOCSKOV3细胞上清液抑制而导致的增殖反应降低和抗肿瘤细胞毒性减弱。Liu等[56]研究发现,苍术内酯Ⅲ可以通过直接结合JAK3蛋白,从而抑制γ-干扰素(interferon gamma,IFN-γ)触发的JAK3/STAT3通路,从而达到抑制IDO激活的目的。 苍术抗肿瘤成分的潜在分子机制见图2。对苍术抗肿瘤有效成分及其抗肿瘤作用进行归纳总结,见表2。 图片 图片 3 联合用药 西医治疗肿瘤的常用手段有手术切除、药物化疗和高能射线放疗等,这些手段去除肿瘤西医的治疗方式更为直接,适合前期控制病情,化疗药物虽然能够杀死肿瘤细胞,但同时也伴有严重的副作用,影响患者的生活质量和治疗效果。中药具有不良反应小、安全性高的特点,因此中药与化疗药物的联合应用被广泛关注和探索[57]。 阿帕替尼是全球第一个在晚期胃癌被证实安全有效的小分子抗血管生成靶向药物,也是晚期胃癌标准化疗失败后,明显延长生存期的单药。Zhou等[58] 分析了不同苍术多糖提取方法的影响。比较了热水浸提法、超声浸提法和酶浸提法提取苍术多糖的得率、总糖含量、相对分子质量分布、单糖组成、并测定苍术多糖与阿帕替尼的协同活性。结果发现其中超声浸提法表现出最强的协同作用。这也与超声浸提的苍术多糖相对分子质量小、β-构型高、半乳糖含量高的事实相一致。Srijiwangsa等[59]发现,β-桉叶醇可以通过抑制胆管癌细胞和细胞裂解物中的NAD(P)H醌氧化还原酶1[NAD(P)H quinonedehydrogenase 1,NQO1]的活性和蛋白表达,增强氟尿嘧啶和多柔比星对细胞迁移的细胞毒性活性和抑制活性。Mai等[60]将不同浓度的苍术内酯I、硼替佐米以及硼替佐米+苍术内酯I作用于U266细胞结果研究发现,苍术内酯可以调节JAK2/STAT3通路上的IL-6、JAK2、STAT3等基因表达抑制U266肿瘤细胞的增殖和促进其凋亡并呈剂量依赖性,并能与硼替佐米产生协同作用,当苍术内酯I与硼替佐米联合使用时,可显著增强对U266细胞增殖的抑制作用。 紫杉醇是第一个获得批准的草药衍生化疗药物[61]。并且作为一种已知的Toll受体4配体(toll-like receptor 4 ligand,TLR4),可激活TLR4/MyD88依赖性途径,该通路介导了上皮性卵巢癌的化学耐药性和肿瘤进展。苍术内酯I是一种新型TLR4拮抗剂,通过干扰紫杉醇与人白细胞膜TLR4的结合,来抑制TLR4信号传导。Huang等[62]研究发现苍术内酯-I可以减弱紫杉醇诱导的IL-6、VEGF和存活蛋白的蛋白表达,并增强MyD88(+)EOC人卵巢癌细胞的早期凋亡和生长抑制;苍术内酯I被发现更加亲和人髓样分化蛋白2(myeloid differentiation 2,MD-2)的疏水囊,并通过对接模拟与紫杉醇的结合位点部分重叠,这表明苍术内酯-I可能阻断MyD88(+)EOC细胞中MD-2介导的TLR4/MyD88依赖性紫杉醇信号传导。因此,苍术内酯-I可以通过阻断MD-2介导的TLR4/MyD88信号传导,显著提高MyD88(+)EOC细胞对紫杉醇的反应。 结缔组织生长因子(connective Tissue Growth Factor,CTGF)是一种多功能信号调节剂,可通过调节细胞增殖、迁移、侵袭、耐药性和EMT来促进癌症的发生、进展和转移。CTGF还参与大多数节点的肿瘤微环境,包括血管生成、炎症和肿瘤相关成纤维细胞(cancer-associated fibroblasts,CAFs)激活[63]。Wang等[64]研究发现,苍术内酯-I可以下调三阴性乳腺癌细胞中CTGF的表达和分泌。除了通过CTGF抑制三阴性乳腺癌细胞迁移外,苍术内酯-I还下调了成纤维细胞中CTGF的表达,降低了乳腺癌细胞将成纤维细胞转化为CAFs的能力,从而增加了三阴性乳腺癌细胞对紫杉醇的敏感性。在小鼠肿瘤模型中,发现苍术内酯-I治疗可以增强紫杉醇对肿瘤的化疗作用,减少肿瘤向肺和肝的转移。在用苍术内酯-I与紫杉醇联合治疗的小鼠中,源自接种肿瘤的原代培养的成纤维细胞表达相对较低水平的CAFs标志物。 研究表明了苍术内酯-I可以通过阻断CTGF表达和成纤维细胞活化来使三阴性乳腺癌细胞对紫杉醇敏感,还可以通过阻断MD-2介导的TLR4/MyD88信号传导,显著提高肿瘤细胞对紫杉醇的反应并。这些机制有助于未来研究以确定苍术内酯I在临床环境中的价值。对苍术化学成分联合治疗归纳总结,见表3。 图片 4 结语与展望 苍术中含有多种抗肿瘤成分,其中多为倍半萜类成分,如苍术酮、苍术素和苍术内酯等,这些成分多是通过调控PI3K/Akt/mTOR通路来发挥抗肿瘤的作用,但作用靶点与方式却各不相同。例如苍术内酯主要通过降低Akt的磷酸化水平、上调Bax和Bad蛋白表达、增加脂质磷酸酶(PTEN)活性来抑制该通路进而诱导肿瘤细胞凋亡[20];β-桉叶醇能通过激活p27抑制cyclinD1和CDK4蛋白表达最终导致细胞周期停滞于G1期[19]。这些成分通过多途径、多靶点影响肿瘤细胞的生存、运动、代谢和迁移进而共同发挥抗肿瘤作用。正因为其作用机制的不同,使其各有效成分对不同肿瘤的作用具有一定特异性。因此苍术抗肿瘤活性成分联合化疗药物减副增效在科学研究及临床用药时可根据其作用机制进行选择。目前关于苍术化合物对肿瘤细胞的研究还存在一些不足之处,如缺乏对不同肿瘤细胞类型和不同剂量的系统比较、缺乏对苍术化合物与其他药物或放化疗的协同作用的评价,以及缺乏对苍术化合物在体内代谢和药效学的深入分析等。 因此,今后还需要加强对苍术化合物抗肿瘤作用的基础和临床研究。后续可以根据苍术有效成分的抗肿瘤作用机制,筛选出具有最强抗肿瘤活性和最低毒性的化合物,作为候选药物进行进一步的优化和改造,提高其药效和安全性;分析苍术中有效成分的药代动力学特征,研究其在体内的吸收、分布、代谢和排泄等过程,确定其最佳的给药途径、剂量和方案,减少其不良反应和药物相互作用;根据苍术中有效成分的药效学特征,研究其对不同类型、分期和分子标志物的肿瘤细胞的作用差异,确定其最适合的治疗对象和指标,提高其个体化和精准化的治疗效果;根据苍术有效成分的协同增效或拮抗作用,探索其与其他抗癌药物或放化疗的联合应用,实现其对肿瘤细胞的多靶点、多途径和多机制的综合干预,增强其抗肿瘤效能和克服肿瘤耐药性,以期为开发新型的抗肿瘤药物提供更多的选择和可能性。 苍术与化疗药物的联合应用被广泛关注和探索。作为苍术的主要成分,现有研究已表明倍半萜类具有显著的抗肿瘤活性,其与化疗药物的联合临床用药有着巨大的潜力。但倍半萜类化合物分子结构中含有多个疏水基团,导致它们的极性较低,难以与水分子形成氢键或静电相互作用,在水中的溶解度小、生物利用度低。随着现代药物研究技术的现代化和多学科的交叉融合,这些问题也可以通过引入基团、采用纳米技术制备纳米载体、采用共晶技术制备倍半萜类化合物的共晶体等方式来提高其水溶性,进而增强其生物利用度。这些技术在药物化学领域已比较成熟,也已逐步应用于临床药物的开发。例如,抗疟活性药物青蒿素同样具有水溶性差应用困难的问题,通过引入羧酸基团,显著提高了其水溶性和生物利用度[65-66]; 此外,共晶体可以改变倍半萜类化合物的晶型和晶格参数,从而降低其结晶度和熔点,增加其自由能和溶解度[67]。苍术内酯也可通过与尼可替尼(一种具有较高水溶性的抗肿瘤药物)制备共晶体,可以显著提高其水溶性。因此,苍术抗肿瘤有效成分和化疗药物的联合用药在临床环境中的开发和应用具有很高的研究价值。 苍术作为中医临床常用的化湿药。其药性辛、苦、温,归脾、胃、肝经,其苦温燥湿,可以去湿浊、辛温健脾以和脾胃,多用于湿

  • 【金秋计划】苍术中有效成分抗肿瘤作用机制研究进展

    肿瘤是指体内细胞的异常增生,可以是良性的或恶性的。良性肿瘤(例如息肉)生长缓慢且通常局限在一个区域,不会侵犯周围组织或扩散到其他部位。恶性肿瘤(即癌症)具有侵袭性,可以快速生长并通过血液或淋巴系统扩散到其他身体部位,形成远处转移。癌症是一种严重威胁人类健康和生命的疾病,2020年全球有1 930万新增癌症病例和1 000万癌症死亡病例,且我国癌症发病率和死亡率均位居全球第一[1]。最常见的癌症类型是乳腺癌、肺癌、结直肠癌和前列腺癌。因此,寻找新的抗肿瘤药物,阐明抗肿瘤药物的分子机制,是解决当前临床肿瘤治疗难点的有效策略。中药具有多种有效成分,因其不良反应低、多靶点、多通路等优点,已成为抗肿瘤药物开发的重要来源和研究热点[2]。目前,常规的肿瘤症治疗方法为手术、放射治疗和化学治疗等,但这些方法往往伴随着较大的不良反应和毒性,而且对某些难治性或复发性肿瘤效果不佳[3]。因此,寻找有效、低毒的抗肿瘤药物是当前临床研究的重要方向。 苍术是一种常用的中药材,分为茅苍术Atractylodes lancea (Thunb.) DC.和北苍术A. chinensis (DC.) Koidz.,分别来源于菊科植物茅苍术或北苍术的干燥根茎。苍术具有燥湿健脾、祛风散寒的功效,在《神农本草经》中列为上品[4]。近年来,苍术在抗微生物、抗炎、抗肿瘤、免疫调节、调节消化系统、心血管系统和神经系统等方面的药理作用受到了广泛关注。苍术中含有挥发油、多糖、倍半萜类、聚乙炔类等[5]多种化学成分。其中一些成分已经被证实具有抑制或杀伤多种肿瘤细胞的能力,其作用机制涉及诱导凋亡、抑制增殖、迁移、侵袭和转移,以及调控免疫功能等方面[6]。然而,苍术中的抗肿瘤活性成分及其作用机制尚未完全明确,需要进一步深入地探索和验证。本文通过整理国内外研究文献,对苍术活性成分、苍术与其他药物联合抗肿瘤及其分子机制进行总结,探讨苍术在抗肿瘤方面的应用规律和思路,为苍术资源的开发利用以及抗肿瘤临床疗法的研究提供理论参考。 1 苍术主要化学成分 茅苍术与北苍术化学成分相似,药理作用也较为相似,目前已从苍术中分离出多种化学成分,主要含有包括萜类、聚乙烯炔类、有机酸类、糖苷类化合物等[7-8]。苍术主要抗肿瘤化学成分,见图1。茅苍术与北苍术中主要化学成分如表1所示。 图片 图片 2 苍术的抗肿瘤机制 苍术中含有苍术内酯Ⅰ、Ⅱ、Ⅲ、苍术酮、β-桉叶醇和苍术素等有效成分,这些成分不仅可以抗炎、抗氧化、抗菌、保肝、降血糖,还可以抗肿瘤[14-15]。近年来,苍术及其有效成分对肿瘤的抑制作用受到了广泛的关注。研究发现,苍术有效成分对多种肿瘤细胞都有抑制作用,可以通过多种途径和机制影响肿瘤细胞的生长、迁移、侵袭和血管生成,诱导肿瘤细胞的凋亡和自噬,调节肿瘤微环境和免疫系统。 2.1 抑制肿瘤细胞增殖 肿瘤是由于细胞增殖失控而形成的一种疾病[16]。细胞周期是细胞增殖的基本过程,由细胞周期蛋白(cyclin,CCN)和细胞周期蛋白依赖性激酶(cyclin-dependent kinase,CDK)复合物共同调控[17]。干预细胞周期是抑制肿瘤发展的有效策略之一[18]。Kotawong等[19]发现,苍术中的苍术素、苍术内酯I和β-桉叶醇等有效成分可以通过影响肿瘤细胞周期的不同阶段来抑制肿瘤细胞的增殖。这些成分可以通过抑制磷脂酰肌醇-3-羟激酶(phosphatidylinositol 3-hydroxy kinase,PI3K)、磷酸化蛋白激酶B(protein kinase B,AKT)和哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路来诱导肿瘤细胞在G1期停滞;Yu等[20]发现苍术内酯I通过上调周期蛋白依赖性激酶抑制剂1A(cyclin-dependent kinase inhibitor 1A,p21)和下调cyclinB1、CDK1和细胞分裂周期25C蛋白(cell division cyclin25,Cdc25c)等关键分子来抑制肿瘤细胞在G2/M期的进入,在动物模型中,苍术内酯I可以显著抑制膀胱癌的生长,且无明显不良反应。Zhang等[21]实验发现苍术内酯Ⅱ可以通过改变结直肠癌细胞内的蛋白表达从而抑制结直肠癌细胞的增殖和活性,并且还显著增强了结直肠癌细胞的化疗敏感性。Pongsakorn等[22]发现,苍术提取物可以通过抑制细胞外信号调节激酶信号级联(ERK-signaling cascade,ERK)信号通路来抑制胆管癌细胞的增殖。ERK信号通路是一种重要的细胞内信号转导机制,参与调节细胞生长、分化和凋亡等过程。苍术提取物可以下调ERK及其下游分子的表达,从而抑制胆管癌细胞的生长和增殖,不同类型的胆管癌细胞对苍术提取物的敏感度不同,其中人胆管HuCCT-1癌细胞最为敏感。 2.2 诱导肿瘤细胞凋亡 细胞凋亡是一种程序性细胞死亡形式,它通过限制细胞的增殖和分化来维持组织稳态或去除潜在的有害细胞[23]。目前已知的细胞凋亡途径主要有3种,即外源性途径(死亡受体介导)、内源性途径(线粒体介导)和内质网途径。其中,线粒体途径是最重要的一种,它涉及线粒体外膜透化(outer mitochondrial membrane,MOMP)、细胞色素C释放和半胱天冬酶(cysteine aspartic acid protease,Caspase)激活[24]。多项研究发现,苍术酮可以通过降低线粒体膜电位、提高活性氧水平、抑制B细胞淋巴瘤-2基因(B-cell lymphoma-2,Bcl-2)表达、促进BCL2-相关X蛋白(BCL2-associated X protein,Bax)裂解和Caspase-3表达[25],以及下调PI3K/AKT/mTOR信号通路来诱导肿瘤细胞凋亡[26]。Narahara等[27]研究表明,β-桉叶醇和苍术内酯Ⅲ[27]可以通过增加Caspase-3、Caspase-8、Caspase-9和Bax等凋亡相关蛋白的表达、下调Bcl-2表达、释放细胞色素C和降低线粒体膜电位来诱导胆管癌细胞凋亡。此外,Li等[28]使用β-桉叶醇处理的白血病HL60细胞,发现β-桉叶醇可以通过激活c-JunN端激酶(c-Jun N-terminal kinase,JNK)丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路来诱导白血病HL60细胞凋亡。Li等[29]研究发现,苍术素可以通过降低Bcl-2表达、激活p53肿瘤蛋白(p53 tumor protein,p53)、Bax和Caspase-3、-8、-9等凋亡因子来诱导人乳腺癌MCF-7细胞凋亡,并表现出浓度依赖的毒性效应。Li等[30]研究表明,苍术内酯I和苍术内酯Ⅱ[31]可以通过与对两面针激酶2(Janus kinase 2,JAK2)直接相互作用而负调节信号传导及转录激活因子3(signal transducer and activator of transcription 3,STAT3)磷酸化,从而抑制其活化,进而导致糖酵解的抑制和结肠、直肠癌细胞凋亡的诱导。 2.3 抑制肿瘤细胞转移 肿瘤细胞转移是指肿瘤细胞通过血液循环从原发部位转移到其他部位的过程,这是癌症治疗的难点,也是癌症死亡的主要原因[32]。上皮间质转化(epithelial-mesenchymal transition,EMT)是一种与癌症发生相关的细胞程序,它使癌细胞具有移动性、侵袭性和抗凋亡能力,从而促进转移。苍术的一些活性成分具有抑制肿瘤细胞转移的潜在作用,其机制可能涉及对EMT的调控[33]。Acharya等[34]研究发现,β-桉叶醇可以改变EMT相关标志物的表达,从而抑制结肠癌细胞的增殖、迁移和侵袭。同时它还可以影响PI3K、AKT、p38丝氨酸/苏氨酸蛋白激酶(p38 mitogen-activated protein kinase,p38MAPK)信号通路,以及肺癌细胞中的活性氧水平,从而降低癌细胞的黏附和迁移能力[35]。麦静愔等[36]发现苍术酮可以通过抑制EMT过程等途径抑制肿瘤细胞的迁移和侵袭能力,此外,苍术酮还可以通过下调基质金属蛋白酶(matrix metalloproteinase,MMP)的表达从而抑制肿瘤细胞的迁移和侵袭能力。MMP是一类能够降解细胞外基质(extracellular matrix,ECM)的锌依赖性内肽酶,在癌症进展中的作用与它们参与ECM降解以及黏附和细胞骨架蛋白、生长因子、趋化因子的调节和加工有关[37]。且有动物实验表明,苍术酮可以明显抑制肝癌生长,没有明显的毒性。Zhong等[38]在观察了苍术多糖在U-2 OS人骨肉瘤细胞中对内皮细胞选择素(endothelial cell selectin,E-Selectin)和路易斯X三糖(Lewis-X Trisaccharide,LacCer Lex)的影响,发现苍术多糖可通过降低U-2 OS细胞上的E-Selectin抑制U-2 OS细胞对人脐静脉内皮细胞HUVECs的黏附、迁移和侵袭。肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs)在促进肿瘤转移中发挥重要作用,Zhang等[39]发现苍术内酯II可以有效抑制肿瘤细胞极化,从而抑制肺癌细胞在体内和体外的转移。铁死亡是一种新的细胞死亡模式,其特征是铁过载导致脂质过氧化而导致膜损伤,过度的铁死亡会影响肿瘤的转移,从而抑制肿瘤的进展[40]。He等[41]发现,苍术素可通过抑制谷胱甘肽过氧化物酶4(glutathione peroxidase 4,GPX4)和铁蛋白轻链(ferritin light chain,FTL)的表达,以及上调酰基辅酶A合成酶长链家族成员4(acyl-CoA synthetase long-chain family member 4,ACSL4)和转铁蛋白受体(transferrin receptor,TFR1)的表达来诱导肝癌HCCM细胞的铁死亡。 2.4 诱导肿瘤细胞自噬 细胞自噬是一种分解代谢通路,能清除不必要的或功能失调的细胞成分并回收代谢底物[42]。目前已知有3种主要的细胞死亡方式:细胞凋亡(Ⅰ型)、自噬性细胞死亡(Ⅱ型)和坏死(Ⅲ型)。自噬性细胞死亡是指自噬过程中产生的自噬体过多或过大,导致细胞质溶解和细胞死亡。自噬体是由双层膜包裹的囊泡,内含被降解的细胞器和蛋白质。微管相关蛋白1轻链3(microtubule-associated protein 1 light chain 3,LC3)是自噬体形成的关键标志物,它以微管相关蛋白1A/1B-轻链3(microtubule-associated protein 1 light chain 3,LC3-I)和微管相关蛋白1轻链3的脂化形式(lipidated form of microtubule-associated protein 1 light chain 3,LC3-Ⅱ)2种形式存在,LC3-Ⅰ转化为LC3-Ⅱ是自噬体形成的必要步骤[43-44]。Li等[29]使用苍术素处理乳腺癌MCF-7细胞时发现,苍术素可以增加了LC3Ⅰ向其脂化形式的LC3Ⅱ的转化,并增加了苄氯素1(beclin-1,BECN1)的表达,下调了人乳腺癌MCF-7细胞中的p62蛋白(p62 protein,p62)表达,改变凋亡和自噬相关生物标志物。Acharya等[45]研究发现,苍术素通过调节PI3K、AKT、mTOR、p38MAPK信号通路的活性,可以诱导胆管癌HuCCT-1细胞发生自噬,并抑制其生长、迁移和侵袭,SB202190(p38MAPK诱导剂)和3-MA(p38MAPK抑制剂)分别显著增加和降低苍术素诱导的自噬速率。 2.5 抑制肿瘤血管生成 血管生成本身不会导致恶性肿瘤的形成,但可以为肿瘤的生长和转移提供条件。肿瘤在发展到一定阶段后,需要依赖新生血管来满足其对氧气和营养的增加的需求,以及排除代谢废物,因此,抑制血管生成是一种有效的抗肿瘤策略[46]。血红素加氧酶1(heme oxygenase 1,HO-1)是一种在肿瘤组织中高表达的酶,它可以促进肿瘤的血管生成和抗氧化应激,为肿瘤细胞提供生存优势。因此,抑制HO-1的表达或活性是治疗肿瘤的另一种有效策略之一。Mathema等[47]研究发现,苍术素可以抑制胆管癌CL6肿瘤细胞的集落形成和伤口愈合能力,其机制与抑制HO-1的表达、下调信号转导及转录激活蛋白1/3(signal transducer and activator of transcription 1/3,STAT1/3)和核因子κB(nuclear factor kappa-B,NF-κB)的信号通路有关。β-桉叶醇也具有抑制胆管癌细胞中HO-1的表达的能力,其机制与浓度依赖性地抑制STAT1/3和NF-κB信号通路有关[48]。β-桉叶醇还可以通过抑制生长因子信号通路中的环磷腺苷效应元件结合蛋白(cyclic-AMP response binding protein,CREB)激活来阻断血管生成,从而抑制肿瘤的发展[49]。Tsuneki等[50]有动物实验表明,β-桉叶醇可以通过激活丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)来刺激大鼠嗜铬细胞瘤细胞中的神经突生长,且β-桉叶醇还表现出了体外和体内的抗血管生成活性,其阻断了由碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)或血管内皮生长因子(vascular endothelial growth factor,VEGF)诱导的人脐静脉内皮细胞(human umbilical vein endothelial cell,HUVEC)中CREB蛋白的磷酸化,从而抑制bFGF刺激的HUVEC迁移和HUVEC在基质胶中的管形成。同时,它还能显著降低小鼠皮下植入的Matrigel栓塞和小鼠佐剂诱导的肉芽肿中的血管生成[51]。 2.6 免疫调节作用 随着肿瘤的发生和发展,或在接受化疗、放疗等治疗的过程中,肿瘤患者机体免疫力的显著下降。因此,调节或刺激机体免疫能力,可能是一种有效的主动抗癌策略。免疫治疗作为一种新型的抗癌手段,已经引起了广泛的关注和研究[52]。巨噬细胞是机体内重要的免疫细胞,在机体免疫中发挥着重要的作用[53]。Qin等[54]从苍术中分离得到两种多糖成分:中性多糖和酸性多糖。研究表明,酸性多糖能够显著地刺激小鼠单核巨噬细胞白血病细胞(RAW264.7)细胞的增殖、吞噬能力、NO产生和细胞因子分泌,并且呈现出剂量相关性,而中性多糖则相对较弱。此外,中性多糖和酸性多糖均能够激活淋巴结Peyers patch细胞中的T细胞,并促进集落刺激因子的产生。而酸性多糖也表现出比中性多糖更好的肠道免疫调节活性。吲哚胺-2,3-二氧化酶(indoleamine 2,3-dioxygenase,IDO)是一种通过犬嘌呤途径氧化分解色氨酸的限速酶,是抗肿瘤免疫治疗中小分子药物开发的潜在目标。IDO可在肿瘤微环境中通过与许多肿瘤相关的自发炎症和T细胞激活而被诱导。Liu等[55]研究发现,苍术内酯Ⅰ可以通过下调Toll样受体4/髓样分化蛋白2复合物(toll-like receptor 4/myeloid differentiation 2 complex,TLR4/MD-2)的表达,抑制人卵巢癌细胞(EOCSKOV3)中髓样分化主要反应蛋白88(myeloid differentiation primary response protein 88,MyD88)、NF-κB、Akt和IDO1的信号通路的活化,从而减少白细胞介素-6(interleukin-6,IL-6)、转化生长因子-β1(transforming growth factor beta 1,TGF-β1)、VEGF和白细胞介素-17A(interleukin-17A,IL-17A)等促进肿瘤免疫逃逸的因子的分泌。同时,还可以降低调节性T细胞(Treg细胞)在肿瘤微环境中的比例,改善T淋巴细胞受到EOCSKOV3细胞上清液抑制而导致的增殖反应降低和抗肿瘤细胞毒性减弱。Liu等[56]研究发现,苍术内酯Ⅲ可以通过直接结合JAK3蛋白,从而抑制γ-干扰素(interferon gamma,IFN-γ)触发的JAK3/STAT3通路,从而达到抑制IDO激活的目的。 苍术抗肿瘤成分的潜在分子机制见图2。对苍术抗肿瘤有效成分及其抗肿瘤作用进行归纳总结,见表2。 图片 图片 3 联合用药 西医治疗肿瘤的常用手段有手术切除、药物化疗和高能射线放疗等,这些手段去除肿瘤西医的治疗方式更为直接,适合前期控制病情,化疗药物虽然能够杀死肿瘤细胞,但同时也伴有严重的副作用,影响患者的生活质量和治疗效果。中药具有不良反应小、安全性高的特点,因此中药与化疗药物的联合应用被广泛关注和探索[57]。 阿帕替尼是全球第一个在晚期胃癌被证实安全有效的小分子抗血管生成靶向药物,也是晚期胃癌标准化疗失败后,明显延长生存期的单药。Zhou等[58] 分析了不同苍术多糖提取方法的影响。比较了热水浸提法、超声浸提法和酶浸提法提取苍术多糖的得率、总糖含量、相对分子质量分布、单糖组成、并测定苍术多糖与阿帕替尼的协同活性。结果发现其中超声浸提法表现出最强的协同作用。这也与超声浸提的苍术多糖相对分子质量小、β-构型高、半乳糖含量高的事实相一致。Srijiwangsa等[59]发现,β-桉叶醇可以通过抑制胆管癌细胞和细胞裂解物中的NAD(P)H醌氧化还原酶1[NAD(P)H quinonedehydrogenase 1,NQO1]的活性和蛋白表达,增强氟尿嘧啶和多柔比星对细胞迁移的细胞毒性活性和抑制活性。Mai等[60]将不同浓度的苍术内酯I、硼替佐米以及硼替佐米+苍术内酯I作用于U266细胞结果研究发现,苍术内酯可以调节JAK2/STAT3通路上的IL-6、JAK2、STAT3等基因表达抑制U266肿瘤细胞的增殖和促进其凋亡并呈剂量依赖性,并能与硼替佐米产生协同作用,当苍术内酯I与硼替佐米联合使用时,可显著增强对U266细胞增殖的抑制作用。 紫杉醇是第一个获得批准的草药衍生化疗药物[61]。并且作为一种已知的Toll受体4配体(toll-like receptor 4 ligand,TLR4),可激活TLR4/MyD88依赖性途径,该通路介导了上皮性卵巢癌的化学耐药性和肿瘤进展。苍术内酯I是一种新型TLR4拮抗剂,通过干扰紫杉醇与人白细胞膜TLR4的结合,来抑制TLR4信号传导。Huang等[62]研究发现苍术内酯-I可以减弱紫杉醇诱导的IL-6、VEGF和存活蛋白的蛋白表达,并增强MyD88(+)EOC人卵巢癌细胞的早期凋亡和生长抑制;苍术内酯I被发现更加亲和人髓样分化蛋白2(myeloid differentiation 2,MD-2)的疏水囊,并通过对接模拟与紫杉醇的结合位点部分重叠,这表明苍术内酯-I可能阻断MyD88(+)EOC细胞中MD-2介导的TLR4/MyD88依赖性紫杉醇信号传导。因此,苍术内酯-I可以通过阻断MD-2介导的TLR4/MyD88信号传导,显著提高MyD88(+)EOC细胞对紫杉醇的反应。 结缔组织生长因子(connective Tissue Growth Factor,CTGF)是一种多功能信号调节剂,可通过调节细胞增殖、迁移、侵袭、耐药性和EMT来促进癌症的发生、进展和转移。CTGF还参与大多数节点的肿瘤微环境,包括血管生成、炎症和肿瘤相关成纤维细胞(cancer-associated fibroblasts,CAFs)激活[63]。Wang等[64]研究发现,苍术内酯-I可以下调三阴性乳腺癌细胞中CTGF的表达和分泌。除了通过CTGF抑制三阴性乳腺癌细胞迁移外,苍术内酯-I还下调了成纤维细胞中CTGF的表达,降低了乳腺癌细胞将成纤维细胞转化为CAFs的能力,从而增加了三阴性乳腺癌细胞对紫杉醇的敏感性。在小鼠肿瘤模型中,发现苍术内酯-I治疗可以增强紫杉醇对肿瘤的化疗作用,减少肿瘤向肺和肝的转移。在用苍术内酯-I与紫杉醇联合治疗的小鼠中,源自接种肿瘤的原代培养的成纤维细胞表达相对较低水平的CAFs标志物。 研究表明了苍术内酯-I可以通过阻断CTGF表达和成纤维细胞活化来使三阴性乳腺癌细胞对紫杉醇敏感,还可以通过阻断MD-2介导的TLR4/MyD88信号传导,显著提高肿瘤细胞对紫杉醇的反应并。这些机制有助于未来研究以确定苍术内酯I在临床环境中的价值。对苍术化学成分联合治疗归纳总结,见表3。 图片 4 结语与展望 苍术中含有多种抗肿瘤成分,其中多为倍半萜类成分,如苍术酮、苍术素和苍术内酯等,这些成分多是通过调控PI3K/Akt/mTOR通路来发挥抗肿瘤的作用,但作用靶点与方式却各不相同。例如苍术内酯主要通过降低Akt的磷酸化水平、上调Bax和Bad蛋白表达、增加脂质磷酸酶(PTEN)活性来抑制该通路进而诱导肿瘤细胞凋亡[20];β-桉叶醇能通过激活p27抑制cyclinD1和CDK4蛋白表达最终导致细胞周期停滞于G1期[19]。这些成分通过多途径、多靶点影响肿瘤细胞的生存、运动、代谢和迁移进而共同发挥抗肿瘤作用。正因为其作用机制的不同,使其各有效成分对不同肿瘤的作用具有一定特异性。因此苍术抗肿瘤活性成分联合化疗药物减副增效在科学研究及临床用药时可根据其作用机制进行选择。目前关于苍术化合物对肿瘤细胞的研究还存在一些不足之处,如缺乏对不同肿瘤细胞类型和不同剂量的系统比较、缺乏对苍术化合物与其他药物或放化疗的协同作用的评价,以及缺乏对苍术化合物在体内代谢和药效学的深入分析等。 因此,今后还需要加强对苍术化合物抗肿瘤作用的基础和临床研究。后续可以根据苍术有效成分的抗肿瘤作用机制,筛选出具有最强抗肿瘤活性和最低毒性的化合物,作为候选药物进行进一步的优化和改造,提高其药效和安全性;分析苍术中有效成分的药代动力学特征,研究其在体内的吸收、分布、代谢和排泄等过程,确定其最佳的给药途径、剂量和方案,减少其不良反应和药物相互作用;根据苍术中有效成分的药效学特征,研究其对不同类型、分期和分子标志物的肿瘤细胞的作用差异,确定其最适合的治疗对象和指标,提高其个体化和精准化的治疗效果;根据苍术有效成分的协同增效或拮抗作用,探索其与其他抗癌药物或放化疗的联合应用,实现其对肿瘤细胞的多靶点、多途径和多机制的综合干预,增强其抗肿瘤效能和克服肿瘤耐药性,以期为开发新型的抗肿瘤药物提供更多的选择和可能性。 苍术与化疗药物的联合应用被广泛关注和探索。作为苍术的主要成分,现有研究已表明倍半萜类具有显著的抗肿瘤活性,其与化疗药物的联合临床用药有着巨大的潜力。但倍半萜类化合物分子结构中含有多个疏水基团,导致它们的极性较低,难以与水分子形成氢键或静电相互作用,在水中的溶解度小、生物利用度低。随着现代药物研究技术的现代化和多学科的交叉融合,这些问题也可以通过引入基团、采用纳米技术制备纳米载体、采用共晶技术制备倍半萜类化合物的共晶体等方式来提高其水溶性,进而增强其生物利用度。这些技术在药物化学领域已比较成熟,也已逐步应用于临床药物的开发。例如,抗疟活性药物青蒿素同样具有水溶性差应用困难的问题,通过引入羧酸基团,显著提高了其水溶性和生物利用度[65-66]; 此外,共晶体可以改变倍半萜类化合物的晶型和晶格参数,从而降低其结晶度和熔点,增加其自由能和溶解度[67]。苍术内酯也可通过与尼可替尼(一种具有较高水溶性的抗肿瘤药物)制备共晶体,可以显著提高其水溶性。因此,苍术抗肿瘤有效成分和化疗药物的联合用药在临床环境中的开发和应用具有很高的研究价值。 苍术作为中医临床常用的化湿药。其药性辛、苦、温,归脾、胃、肝经,其苦温燥湿,可以去湿浊、辛温健脾以和脾胃,多用

  • 二甲双胍可提高卵巢癌患者生存率

    新华社华盛顿12月4日电 (记者任海军)美国研究人员日前发表报告称,他们的研究显示,常用的糖尿病药物二甲双胍能提高卵巢癌患者的生存率。 明尼苏达州梅奥诊所研究人员比较了61名服用二甲双胍的卵巢癌患者和178名未服用二甲双胍的卵巢癌患者的数据。他们发现,服用二甲双胍组患者的5年生存率为67%,而对照组患者的5年生存率为47%。如剔除身高体重指数、癌症严重程度、化疗方式、手术质量等因素的影响,服用二甲双胍组患者的5年生存率比对照组患者要高4倍。 相关研究报告本周发表在美国《癌症》杂志网络版上。研究负责人桑吉夫·库马尔表示,研究结果“令人鼓舞”,但由于研究中有很多因素不可控,二甲双胍与卵巢癌患者生存率的提高是否具有直接关系仍不能下定论。库马尔表示,卵巢癌是一种死亡率很高的癌症,找到治疗卵巢癌的有效方式非常迫切,他们的研究可望为二甲双胍应用于卵巢癌治疗临床研究铺平道路。 二甲双胍是一种具有长期用药安全记录的药品。此前曾有研究显示,二甲双胍可以抑制肺部和乳腺肿瘤的生长,降低糖尿病患者患乳腺癌的风险。

  • 每日服用阿司匹林可降卵巢癌风险

    据新华社华盛顿电 (记者林小春)美国国家癌症研究所一项新研究显示,每天服用阿司匹林可以把女性罹患卵巢癌风险降低20%。不过,研究人员同时强调,还需进一步研究才能把这个结论作为临床建议推荐。 早期卵巢癌可成功治疗,但早期卵巢癌症状与消化系统疾病和膀胱疾病类似,因此卵巢癌常常到晚期才被发现。 美国国家癌症研究所研究人员指出,晚期卵巢癌治疗选择有限,治疗效果不理想,因此预防措施对控制卵巢癌问题至关重要。阿司匹林具有抗炎症的效果,之前研究显示每日服用阿司匹林能够降低罹患结肠直肠癌、黑色素瘤等癌症的风险,因而他们开展了迄今最大型的研究来评估阿司匹林与卵巢癌风险之间的关系。 研究人员分析了来自约8000名卵巢癌患者和近1.2万名未罹患卵巢癌女性的数据,这些人中有18%经常服用阿司匹林。结果发现,与每周服用阿司匹林不到一次的女性相比,每天服用阿司匹林的女性患卵巢癌风险降低20%。 参与研究的美国国家癌症研究所布里顿·特拉贝特博士说:“我们的研究表明阿司匹林也可以降低卵巢癌风险,但这一结果不应影响当前的临床实践。我们还需要更多的研究以探索这种潜在防癌药物的风险与益处的平衡。”来源:中国科技网-科技日报 2014年02月13日

  • 抗癌药帕唑帕尼可延缓卵巢癌复发

    据新华社华盛顿6月3日电 研究人员日前在芝加哥举行的美国临床肿瘤学会年会上报告说,大规模临床试验显示,抗癌药物帕唑帕尼可延缓卵巢癌复发。 口服抗癌药帕唑帕尼由葛兰素史克公司生产,药物原理是通过干预肿瘤内血管生长实现抑制肿瘤。此前,美国食品和药物管理局已批准该药用于治疗肾癌和软组织肉瘤。 在此次研究中,德国妇科癌症专家安德烈亚斯·迪布瓦领导的小组选取940名卵巢癌患者,这些研究对象此前已接受化疗或手术等初始治疗。研究人员分别使用帕唑帕尼和安慰剂对他们进行对比试验。 研究发现,口服帕唑帕尼的卵巢癌患者,其卵巢癌平均复发时间为17.9个月,与使用安慰剂治疗的患者相比,复发时间延缓了约半年。 迪布瓦表示,这一研究证实帕唑帕尼可抑制卵巢肿瘤增长,如果经过批准,该药可用于卵巢癌患者术后或化疗后的维持治疗。

  • 【我们不一YOUNG】维生素B11(叶酸)

    [align=center][font=DengXian]维生素[/font]B11([font=DengXian]叶酸[/font])[/align][font=DengXian]绿色蔬菜和动物肝脏中富含叶酸,乳中含量较低。蔬菜中的叶酸呈结合型,而肝中的叶酸呈游离态。人体肠道中可合成部分叶酸。[/font][font=DengXian]分子结构中含有蝶啶、对氨基苯甲酸和[/font]L-[font=DengXian]谷氨酸三部分。[/font][font=DengXian]叶酸缺乏时,脱氧胸苷酸,嘌呤核苷酸的形式及氨基酸的互变受阻,细胞内[/font]DNA[font=DengXian]合成减少,细胞的分裂成熟发生障碍,引起巨幼红细胞性贫血。[/font] [font=DengXian]小肠疾病能干扰食物叶酸的吸收和经肝肠循环的再循环过程,故叶酸缺乏是小肠疾病常见的一种并发症。[/font]

  • 【金秋计划】转录组学和蛋白质组学分析显示桂枝茯苓丸抑制STAT3-EMT在卵巢癌进展中的作用

    [b][size=15px][color=#595959]卵巢癌[/color][/size][size=15px][color=#595959](OC)[/color][/size][/b][size=15px][color=#595959]是最致命的妇科恶性[/color][/size][b][size=15px][color=#595959]肿瘤[/color][/size][/b][size=15px][color=#595959]。频繁的腹膜播散是导致生存率低的主要原因。目前,临床上使用诱导化疗(铂和紫杉类药物)和[/color][/size][b][size=15px][color=#595959]靶向治疗[/color][/size][/b][size=15px][color=#595959](抗[/color][/size][b][size=15px][color=#595959]血管[/color][/size][/b][size=15px][color=#595959]生成药物和聚ADP核糖聚合酶[/color][/size][b][size=15px][color=#595959]抑制剂[/color][/size][/b][size=15px][color=#595959])来改善治疗效果。然而,75%的患者出现耐药性,导致复发和临床失败。因此,迫切需要制定有效的治疗策略。[/color][/size] [b][size=15px][color=#595959]桂枝茯苓丸(GZFL)[/color][/size][/b][size=15px][color=#595959]源于《金匮要略》,由桂枝、茯苓、赤芍、牡丹皮、桃仁组成,用于治疗[b]妇科癥瘕[/b](腹部肿块和疼痛),也是目前临床上治疗卵巢癌的经典中药方剂,疗效良好。经GZFL治疗的患者化疗效果改善(血清CA125、CEA水平降低),不良反应(如胃肠道)减少,生存期延长。药理研究证实GZFL具有明显的体外[b]抗癌作用[/b]。在[/color][/size][b][size=15px][color=#595959]乳腺癌[/color][/size][/b][size=15px][color=#595959]细胞模型中,GZFL通过调控PI3K和MAPK通路抑制肿瘤发展。在OC中,GZFL可抑制MTDH-PTEN,调节PI3K/AKT/mTOR通路,增加顺铂敏感性。综上,GZFL具有较强的抗癌作用。为了了解GZFL抗OC的潜在机制,前期通过网络药理学和体外验证证明GZFL抑制OC细胞迁移,[b]IL6/STAT3被显著抑制[/b]。然而,其潜在机制尚未得到充分探讨。[/color][/size] [align=center] [/align] [size=15px][color=#595959]阐明GZFL治疗OC的潜在机制,重点是STAT3信号通路。[/color][/size] [align=center] [/align] [size=15px][color=#595959]采用[b]OC异种移植小鼠模型[/b],评价GZFL的体内疗效。在OC细胞中进行[/color][/size][b][size=15px][color=#595959]蛋白质[/color][/size][size=15px][color=#595959]组学分析[/color][/size][/b][size=15px][color=#595959],在小鼠肿瘤中进行RNA-seq分析,以充分捕捉GZFL的[b]翻译和转录特征[/b]。GZFL对[b]体外野生型和STAT3敲除OC细胞[/b]的增殖、成球能力和活性氧(ROS)的影响进行了评估。通过[b]STAT3激活[/b]、转录活性、[b]缺氧和EMT[/b]相关蛋白的表达来验证GZFL的生物学活性。[/color][/size] [align=center] [/align] [size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959]GZFL在小鼠中具有安全抑制肿瘤生长的作用,同时在体外以[b]STAT3依赖的方式[/b]阻止细胞生长、成球能力和ROS积累。GZFL通过转录和翻译影响参与[b]炎症信号、EMT、细胞迁移和细胞缺氧应激反应[/b]的基因。深入的分子研究证实,GZFL诱导的OC细胞毒性和EMT抑制与STAT3激活和转录活性的抑制直接相关。[/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size] [align=center] [/align] [b][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][/b][size=15px][color=#595959]该研究首次提供了GZFL通过[b]抑制STAT3-EMT信号抑制OC进展[/b]的证据。这些结果将进一步支持其在卵巢癌中的潜在临床应用。[/color][/size][size=15px][color=#595959][/color][/size]

  • 维生素C可以杀死一类顽固癌细胞

    有研究说足够浓度的维生素C可以杀死一类顽固癌细胞,对治疗胰腺癌、结肠癌和卵巢癌有疗效。所以多吃富含维生素C的蔬菜对健康很有帮助。

  • 【原创大赛】Polar-RP和叶酸的亲密接触

    【原创大赛】Polar-RP和叶酸的亲密接触

    继续我的原料入厂检验之旅。这次说的是叶酸的入厂检验。叶酸,Folic acid,维生素B复合体之一,相当于蝶酰谷氨酸(pteroylglutamic acid,PGA),是米切尔(H.K.Mitchell,1941)从菠菜叶中提取纯化的,故而命名为叶酸。有促进骨髓中幼细胞成熟的作用,人类如缺乏叶酸可引起巨红细胞性贫血以及白细胞减少症,对孕妇尤其重要。说到白细胞,可能大家更清楚,旧称白血球,血液中的一类细胞。白细胞也通常被称为免疫细胞。再说到免疫细胞,就不用多说了吧,呵呵。所以说,叶酸是一种非常重要的维生素,特别是对病人来说。对于叶酸的检验,《中国药典》2010年版有收录。本检验也是按照药典要求来进行。http://ng1.17img.cn/bbsfiles/images/2013/11/201311231857_478956_1609327_3.jpg色谱柱信息为:月旭Ultimate® Polar-RP,4.6mm*250mm,5μm。Ser NO.:661201507,Part NO:00215-31043。对照品溶液的制备:精密称取叶酸对照品(中检所购买)约10mg,置50ml量瓶中,加0.5%的氨溶液30ml溶解后,用水稀释至刻度,摇匀。即为对照品溶液。供试品溶液:精密称取本品约10mg,照对照品溶液同法操作,即为对照液溶液。测定法:精密量取对照品溶液和供试品溶液各10μL,注入液相色谱仪,记录色谱图。按外标法以峰面积计算含量,即得。对照液色谱图为:http://ng1.17img.cn/bbsfiles/images/2013/11/201311231905_478957_1609327_3.jpg供试品溶液色谱图:http://ng1.17img.cn/bbsfiles/images/2013/11/201311231905_478958_1609327_3.jpg结论:1.月旭Ultimate® Polar—RP来检测叶酸,峰形漂亮,柱效好。2. 从色谱图上,很干净。而叶酸峰的保留时间在12.5min左右。是不是可以通过调整流动相,让出峰时间更早一些呢?我感觉,理论上是可以的。

  • 干细胞药物研发成为我国支持对象

    日前,由天津市申报的《子宫内膜再生细胞治疗卵巢早衰临床前及临床研究》项目成功入选国家重大科技专项2014新药创制项目。这标志着国家重大科技专项首次将干细胞药物研发作为支持对象,也是我国今年正式启动的首个国家级干细胞临床研究课题。  这一项目是由天津滨海新区科技创新型企业顺昊细胞生物技术(天津)有限公司牵头,与天津市药物研究院、北京协和医院、天津医科大学总医院、天津市中心妇产医院共同研发,经市科委筛选申报,经科技部、财政部、国家发改委5轮评审,以其独创性和成果的临床效果,从全国40余个干细胞项目中脱颖而出。  子宫内膜再生细胞作为近年来国际干系细胞领域的最新技术成果之一,对卵巢组织具有重建和修复功能,并可形成局部免疫抑制微环境,是一种无毒、非依赖性的组织修复和免疫调节疗法,实现卵巢早衰病症的缓解,乃至治愈。  目前,天津顺昊细胞已研发出从胎盘组织分离扩增造血干细胞和间充质干细胞的有效方法,全面掌握从胎盘及宫内膜中分离、扩增、冻存各类型干细胞的技术,并针对各类适应者研发出干细胞个性化制剂,为恶性贫血,白血病等危害人类健康的重大疾病的造血干细胞移植治疗带来希望。同时可针对心脑血管疾病,肝硬化、骨和肌肉衰退性疾病、脑和脊髓神经损伤、老年痴呆及红斑狼疮和硬皮病等自身免疫性疾病进行治疗。顺昊细胞的子宫内膜再生细胞项目此次获批不仅是一项干细胞药物治疗重大疾病的临床研究,更重要的是干细胞制药的标准化研究,为今后出台国家级标准提供依据。  顺昊细胞生物技术(天津)有限公司是滨海新区科技创新型企业,成立仅两年,却汇聚了以天津生物医药创业领军人物周泽奇博士和哈佛大学医学院细胞和分子生理学博士后朱彦、瑞士联邦理工学院分子生物学博士张磊等一大批国内外干细胞研究精英人才。目前已通过了国家高新技术企业认定,成为天津国际生物医药联合研究院干细胞研发中心项目承建单位。

  • 昆明植物所等发现对肿瘤细胞有选择性的铂类抗癌化合物

    铂类药物是一类重要的肿瘤化疗药物,在临床中得到广泛的应用,成为治疗包括肺癌、胃癌、结肠癌、卵巢癌、睾丸癌等常见恶性肿瘤的一线药物。然而,目前临床使用的铂类抗癌药物对肿瘤细胞缺乏选择性,在杀死肿瘤细胞的同时,对正常细胞也有较大伤害,导致明显的临床毒副作用。同时,肿瘤病人容易对铂类药物产生耐药性,导致化疗失败。 针对铂类药物存在的以上两大问题,中国科学院昆明植物研究所李艳研究组与昆明贵金属研究所刘伟平研究组合作,发现mixed-NH3/cyclopentamine和不对称的3-X-1,1-cyclobutanedicarboxylato与Pt(II)配合物对肿瘤细胞显示出明显的选择性,能选择性诱导肿瘤细胞的凋亡,而对正常细胞影响很小,同时对顺铂耐受的非小细胞肺癌和卵巢癌细胞株有较高的杀伤活性,显示出重要的研究开发前景。 近日,这类化合物的结构和用途已经获得国家发明专利授权(ZL20101027465.2)。

  • 转基因小鼠制备实验

    1、 选取7~8周龄雌性小鼠,阴道口封闭,作为供体,下午3:00左右,每只小鼠腹腔注射PMSG(10 IU)。2、 47~48小时后,每只小鼠腹腔注射HCG(0.8 IU),并与正常公鼠合笼;另取数只适龄母鼠(2月龄以上)作为受体,阴道口潮红,与结扎公鼠合笼。3、第二天上午9:00前观察供体、受体,有精栓者拿出备用。受体笼拿出作好隔离措施。4、10:30左右,断颈处死供体,手术取出整个输卵管,放入透明质酸酶~0.3mg/M2液中。显微镜下,用镊子撕开输卵管壶腹部,受精卵随同颗粒细胞即一同流出。5、仔细观察放在透明质酸酶M2液中的受精卵,当受精卵周围的颗粒细胞脱离时,将受精卵吸出,放入M2液中洗涤,最后放在M16液中放入5% CO2,37C0培养箱培养。6、在显微镜下观察,挑选细胞饱满,透明带清晰,雄原核清晰可见的受精卵待用。7、安装持卵针和注射针,使其末端平行于载物台,在凹玻片的中央滴入一滴M2液,覆盖石蜡油,移入待注射的受精卵。DNA在注射针中的气泡应在先前全部弹走。8、在高倍镜下,将注射针轻触持卵管,使DNA缓慢流出并控制其流量;反复吹吸受精卵,使其处于最佳位置,将注射针刺入受精卵的雄原核,直至看到原核膨大即退出。将注射过的和未注射过的受精卵上下分开放置,不致于混搅,注射完毕后,放入5% CO2,37C0培养箱培养。9、将受体麻醉,注射计量为1%戊巴比妥钠0.01ml/g,腹腔注射。手术取出卵巢连接输卵管,用脂肪镊固定,在显微镜下找到输卵管开口。吸取注射后经培养成活的受精卵,吸取方法是先吸一段较长的M2,吸一个气泡,然后吸取受精卵,尽量紧密排列,再吸一段液体,吸一个气泡,再吸一段液体,共四段液体三个气泡。除较长的那段液体,其余的液体大致1cm左右,气泡0.2cm左右。将移植管口插入输卵管口,轻轻将移植管内的液体吹入,看到输卵管壶腹部膨大并清晰地看到三个气泡,即移植成功。将卵巢连同输卵管放回腹腔,缝合肌肉和皮肤。10、受体每隔一个星期称体重一次,当第二次比第一次称重增加时,即可初步判断怀孕。手术后19~21天仔鼠分娩,待仔鼠3周后,剪耳、编号,剪尾,交分子组检测。(一般选取4-5周龄的雌鼠作为供体,此时的小鼠卵数较多,状态较好。用pms诱导卵细胞成熟,用hcg超排。)

  • 【原创大赛】补叶酸,补叶酸,补叶酸!

    [font=宋体][color=#333333][back=white] 叶酸是一种水溶性维生素,也叫维生素[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]B9[/back][/color][/font][font=宋体][color=#333333][back=white]。最初从菠菜中发现了这种生物因子,因此命名为叶酸,叶酸富含于新鲜的水果、蔬菜、肉类食品中,尤以酵母、肝及绿叶蔬菜中含量比较多,但天然叶酸极不稳定,易受阳光、加热的影响而发生氧化,所以人体真正能从食物中获得的叶酸并不多。合成的叶酸在数月或数年内可保持稳定,容易吸收且人体利用度高。[/back][/color][/font][font=宋体][color=#333333][back=white] 人体缺少叶酸可导致红血球的异常,未成熟细胞的增加,贫血以及白血球减少。孕妇缺乏叶酸有可能导致胎儿出生时出现低体重、唇腭裂、心脏缺陷等。因此,怀孕前[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]3[/back][/color][/font][font=宋体][color=#333333][back=white]个月就要开始吃[/back][/color][/font][font=宋体][color=#333333]叶酸[back=white],每天[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]0.4mg[/back][/color][/font][font=宋体][color=#333333][back=white],即一粒[/back][/color][/font][font=宋体][color=#333333]叶酸,[back=white]可以降低胎儿神经管畸形率至[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]85%[/back][/color][/font][font=宋体][color=#333333][back=white]。服用[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]5 mg[/back][/color][/font][font=宋体][color=#333333][back=white]的叶酸则用来治疗女性贫血,消费者可根据不同情况进行选择。[/back][/color][/font][font=宋体][color=#333333][back=white] 叶酸测定试剂盒是以化学发光免疫分析法为原理定量测定人血清中叶酸含量的试剂盒,对贫血的临床诊断和治疗起辅助作用,最重要的是判断后期孕妇需不需要继续补充叶酸。叶酸的测定检查一般是在怀孕[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]3-4[/back][/color][/font][font=宋体][color=#333333][back=white]个月进行,判断后期孕妇需不需要继续补充叶酸,检测结果主要有三种:低风险,代表对叶酸的吸收和代谢能力是正常的或者接近正常,可以正常补充叶酸。中度风险,代表对叶酸的吸收和代谢能力存在障碍,可能会出现叶酸缺乏导致胎儿异常。高度风险,出现叶酸缺乏可能性就会非常高,女性需要在整个孕期补充叶酸。[/back][/color][/font][font=宋体][color=#333333][back=white] 叶酸测定试剂盒的检测效果至关重要,直接关系到优生优育。相关检测机构一般会按照以下要求对该试剂盒进行检测:[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]1.[/back][/color][/font][font=宋体][color=#333333][back=white]外观:试剂盒各组分应齐全、完整,液体无渗漏。[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]2.[/back][/color][/font][font=宋体][color=#333333][back=white]溯源性:生产企业应根据有关规定提供所用叶酸校准品的来源、赋值过程以及测量不确定度等内容。[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]3.[/back][/color][/font][font=宋体][color=#333333][back=white]准确度:[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]a)[/back][/color][/font][font=宋体][color=#333333][back=white]相对偏差[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]:[/back][/color][/font][font=宋体][color=#333333][back=white]使用可用于评价常规方法的有证参考物质[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white](CRM)[/back][/color][/font][font=宋体][color=#333333][back=white]进行测定,实测值与标示值的相对偏差应在士[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]15%[/back][/color][/font][font=宋体][color=#333333][back=white]范围内[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white] b)[/back][/color][/font][font=宋体][color=#333333][back=white]回收试验[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]:[/back][/color][/font][font=宋体][color=#333333][back=white]回收率应在[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]85%-115%[/back][/color][/font][font=宋体][color=#333333][back=white]范围内。[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white] [/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]4.[/back][/color][/font][font=宋体][color=#333333][back=white]检出限:应不大于[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]1.0ng/mL[/back][/color][/font][font=宋体][color=#333333][back=white]。[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]5.[/back][/color][/font][font=宋体][color=#333333][back=white]线性:在不窄于[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]15-200ng/mL[/back][/color][/font][font=宋体][color=#333333][back=white]区间内,相关系数[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]r≥0.99[/back][/color][/font][font=宋体][color=#333333][back=white]。[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]6.[/back][/color][/font][font=宋体][color=#333333][back=white]重复性[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]:[/back][/color][/font][font=宋体][color=#333333][back=white]利用同一批试剂盒对浓度在[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]15-60ng/mL[/back][/color][/font][font=宋体][color=#333333][back=white]和[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]11-19ng/mL[/back][/color][/font][font=宋体][color=#333333][back=white]的样本各重复检测[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]10[/back][/color][/font][font=宋体][color=#333333][back=white]次,其变异系数[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white](CV)[/back][/color][/font][font=宋体][color=#333333][back=white]应不大于[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]10%[/back][/color][/font][font=宋体][color=#333333][back=white]。[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]7.[/back][/color][/font][font=宋体][color=#333333][back=white]批间差[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]:[/back][/color][/font][font=宋体][color=#333333][back=white]用[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]3[/back][/color][/font][font=宋体][color=#333333][back=white]个批号试剂盒检测浓度在[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]11-19ng/mL[/back][/color][/font][font=宋体][color=#333333][back=white]的同一份样本,则[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]3[/back][/color][/font][font=宋体][color=#333333][back=white]个批号试剂盒之间的批间变异系数[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white](CV) 15%[/back][/color][/font][font=宋体][color=#333333][back=white]。[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]8.[/back][/color][/font][font=宋体][color=#333333][back=white]稳定性[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]: a)[/back][/color][/font][font=宋体][color=#333333][back=white]效期稳定性试验生产企业应规定试剂盒的有效期。取效期末的试剂盒检测其试剂准确度、检出限线性和重复性,应符合[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]3~6[/back][/color][/font][font=宋体][color=#333333][back=white]的要求;[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]b)[/back][/color][/font][font=宋体][color=#333333][back=white]热稳定性试验[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]:[/back][/color][/font][font=宋体][color=#333333][back=white]取有效期内的试剂盒根据生产企业所声称的热稳定性条件,检测其试剂准确度检出限线性和重复性,应符合[/back][/color][/font][font='Times New Roman',serif][color=#333333][back=white]3~6[/back][/color][/font][font=宋体][color=#333333][back=white]的要求。[/back][/color][/font]

  • 【资料】解廷《细胞》子刊解析干细胞重要发现

    来自著名的美国密苏里州斯托瓦斯医学研究所(Stowers Institute for Medical Research),中科院生物物理研究所传染病与免疫学中心,堪萨斯大学医学院,中西大学(Midwestern University)的研究人员揭示了干细胞衰老的奥秘,这一发表在昨天刚刚出版的《Cell Stem Cell》杂志上的文章由中科院海外评审专家解廷(斯托瓦斯医学研究所)领导完成,第一作者是斯托瓦斯医学研究所与中科院生物物理研究所联合培养的博士生潘磊(Lei Pan,音译)。目前普遍认为人类组织衰老与干细胞活性下降和数目减少有关,这些变化在许多譬如皮肤皱纹和器官功能下降等的衰老表现中起着重要的作用。至今为止对于干细胞衰老调控的理解还比较少,但是解廷实验室已经证明了干细胞功能中年龄依赖性得下降有关的特殊因素,以及这些因素的微环境:niche。潘表示,“在这项研究中,我们利用果蝇卵巢生殖干细胞(germline stem cells,GSCs)作为研究模型,证明干细胞功能中年龄依赖性的下降和其niche在干细胞整个衰老过程中扮演着十分重要的角色”,“我们检测了干细胞衰老调控的三个因素,发现并证明衰老过程是受到外在和内在因素调控的”。研究小组首先聚焦在一个称为骨形态发生蛋白(bone morphogenic protein, BMP)的蛋白家族——其在许多组织的发育过程中扮演着重要的角色,他们发现当niche微环境的BMP信号活性随着年龄下降的时候,干细胞增值的能力也会随之降低,干细胞数量也减少了。相反当BMP信号增加,干细胞的寿命以及增值能力也都有所提升。其次研究人员也发现干细胞与niche之间的关联也起到一定作用:强的关联可以延长干细胞的寿命,而降低关联则会增加干细胞衰老。这篇研究报告最后强调了GSCs或者niche中的一个酶(减少自由氧)的过量表达如何延长干细胞的寿命,以及增加干细胞增值的能力。解廷认为,“对成人组织中由于干细胞功能下降导致细胞损耗的长期无效替换也许是人类衰老的一个主要原因”,“如果我们能了解如何通过操纵干细胞和/或niche的功能,来减缓干细胞衰老,我们也许就能够减缓人类衰老,治疗年龄相关性的推行性疾病”。

  • 叶酸(维生素BC,维生素M)-----多关心一下自己的身体

    水溶性;   维生素B族中的一种,亦称为维生素BC或维生素M;   计量单位是微克(mcg);   是制造红血球不可缺少的物质;   帮助蛋白质的代谢。   成人的建议每日摄取量是180~200mcg,孕妇加倍,哺乳期的妇女在头6个月需要280mcg,之后的6个月则需260mcg;   在制造核酸(核糖核酸、脱氧核糖核酸)上扮演重要的角色;   是细胞增殖不可少的物质;   人体在利用糖分和氨基酸时的必要物质;   在室温中长时间无遮护的贮存时将被破坏。   效用   促进乳汁的分泌;   防治肠内的寄生虫和食物中毒;   增进皮肤的健康;   有镇痛剂的作用;   与泛酸及对氨基苯甲酸一起服用时,可防止白发;   在身体衰弱(健康状态不良)时,可增进食欲;   防止口腔粘膜溃疡;   预防贫血。   缺乏症   巨红血球性贫血   富含叶酸的食物   深绿叶蔬菜、胡萝卜、动物肝脏、蛋黄、美国甜瓜、杏、南瓜、鳄梨、豆类、全麦、黑裸麦面粉。   营养补品   一般是400mcg的制剂。如果有医生的处方,可以买到lmg(1000mcg)剂量的叶酸。   有的复合维生素B制剂中含有400mcg的叶酸,但大多数复合维生素B制剂中只含有100mcg(请查看标签)。   一般的每日摄取量是400mcg~500mcg。   营养补品   并未发现有副作用。有些人服用后会引起过敏性皮肤炎。   叶酸之敌   水、磺胺药剂、阳光、雌激素、食品加工(特别是煮沸)、高温。   建议   如果您是常喝酒的人,多摄取叶酸为好;   大量的维生素C会加速叶酸的排出,所以,摄取维生素C在2g以上的人必须增加叶酸的量;   正使用苯妥英(抗癫痫药),或是服用雌激素、磺胺类药物、苯巴比妥(安眠药与镇定剂)、阿司匹林时,应该增加叶酸的摄取量;   我曾经发现,有许多人在短期间内每天摄取1~5mg的叶酸,结果皮肤上的斑点消失了。如果您有这方面的烦恼,可以去请教营养医师;   如果您感觉到似乎要生病,或者是已经生病了,必须要摄取抗紧张感的营养补品,切记要先查看其中是否含有充分的叶酸。叶酸不足时,抗体会减少,抵抗力将减弱;   大量摄取叶酸会使服食二苯乙内酰脲的癫痫症患者产生痉挛现象。

  • 【讨论】转基因食物导致仓鼠不孕?

    【讨论】转基因食物导致仓鼠不孕?

    关于转基因食品的安全性问题是国际性的话题。我们希望和鼓励大家秉承科学的精神,依据可靠的实验和研究来讨论。对于一些并不可靠的所谓的“科学实验结果”更需要仔细分辨。http://ng1.17img.cn/bbsfiles/images/2011/04/201104120842_288320_2185349_3.jpg流言: 科学家已经证明,食用转基因食物会导致后代的生育能力丧失!并且发现实验中食用转基因食物的第三代仓鼠有畸形,嘴里竟然长毛了!转基因食物绝对有害!

  • 【原创大赛】HPLC法测定果冻类样品中叶酸含量的方法学建立

    [align=center][b]HPLC法测定果冻类样品中叶酸含量的方法学建立[/b][/align][align=center]顾琛 [/align][align=left][b]摘要:目的:[/b]本文采用反相高效液相色谱法建立测定果冻类食品叶酸(folic acid)含量的分析的方法。[b]方法:[/b]使用C[sub]18[/sub]柱作为分析柱,磷酸缓冲液和甲醇作为流动相,紫外检测器作为检测器,叶酸(Pteroylmonoglutamic acid)作为对照品,果冻食品作为样品。[b]结论:[/b]该法在50ng/mL-1000ng/mL之间呈良好的线性,重现性好RSD<2%,回收率在107±2%,稳定性良好,最小检测限20ng/mL。样品测试结果与微生物检测结果相符。本法可以作为测定食品中叶酸含量的一个方法。[/align][b]关键词:[/b]叶酸,HPLC, 果冻样品[b]Abstracts :Aim:[/b] A simple method for the determination offolic acid in gel sample by high-performance liquid chromatography withUV-detection is reported. [b]Methods: [/b]The method was simple by using RP-column (C[sub]18[/sub])with phosphorate -methanol as mobile phase and UV as a detector. [b]Conclusion: [/b]The calibration graph was linear from 50 to1000ng/mL for folic acid with a correlation coefficient of 0.999(n=5). Thedetection limit is 20ng/mL. The method was successfully applied fordetermination of folic acid in the gel sample. The recovery was 107±1.5% and the reletive standard deviation was no morethan 2%. Compared with microbiology method, the results of the samples are same.This method can be used for content determination of the folic acid in gelsample.[b]Key Words:[/b] folic acid, HPLC, gel sample [b]1.前言与文献综述1.1叶酸的理化性质,生物学功能[/b] 叶酸(folic acid)是一组含有碟酰谷氨酸结构的一类化合物统称。食物中的叶酸绝大多数是以喋酰多谷氨酸(或称多谷氨酸叶酸)的形式存在的。叶酸为淡黄色结晶粉末,微溶于水,不溶于乙醇、乙醚及其它有机溶剂;叶酸的钠盐易溶于水,但在水溶液中易被光解破坏,分解成碟啶和氨基苯甲酰谷氨酸盐。在酸性溶液中对热不稳定,而在中性和碱性溶液中却十分稳定。食品中叶酸经受热易损失。 食物叶酸经小肠粘膜细胞内特异叶酰多谷氨酸水解酶的作用,水解为喋酰单谷氨酸(或称单谷氨酸叶酸,PteGlu①)后吸收。吸收后的单谷氨酸叶酸一部分又转变为多谷氨酸叶酸,在肝脏、红细胞及其他组织细胞内贮存,其余部分则以单谷氨酸叶酸的形式分布于血浆、组织液、胆汁及尿液中。肝脏的叶酸浓度是血浆的几百倍,但其单谷氨酸叶酸浓度与血浆相近。叶酸以8种辅酶形式存在于生物体内,为一碳单位的载体参与嘌呤、嘧啶等重要物质的合成。[sup] [/sup]因此叶酸在DNA、RNA、核酸和蛋白质的生物合成中起着重要作用,是细胞增殖和机体发育的物质基础。叶酸在体内的含量直接影响到多种物质如核苷酸的代谢,进而影响血细胞的形成。[b]1.2目前测定叶酸的一些主要方法以及对各个方法的评价1.2.1微生物法[/b] 微生物法是检测生物体内叶酸的经典方法。[color=black]它最根本的原理在于利用了微生物对于某些营养物质的特异性。大量的研究发现,某种微生物会对某种维生素具有极强的特异性,是其正常生长所必需的维生素,并且在一定条件下,其生长与繁殖速度与溶液中该维生素的含量成一定的对应关系,含量高则生长快,反之则慢,微生物法便利用了这种对应关系间接地测定出样品中该维生素的含量。[/color]通常所用的微生物有干酪样乳酸杆菌(L.casei)、粪链球菌和啤酒小球菌属。此3种微生物对不同形式叶酸的敏感度不同。粪链球菌只对非甲基化叶酸敏感,如PteGlu、二氢叶酸(DHF)和四氢叶酸(THF)。 微生物分析叶酸[color=black]具有极高的灵敏度准确度高、先期投入少,见效快、测定结果反映了样品中具有生物活性的被测物含量等优点。许多国际标准方法机构仍旧将微生物法作为叶酸分析的标准方法或第一方法。[/color] 但是微生物法也有许多局限性,如整个实验周期长,批间检测结果重复性差,检测结果受样品中所含抗叶酸药物或抗生素成分的影响,[color=black]只能反映维生素的总含量,不能测定维生素各种异构体的组成和含量[/color]等。[b]1.2.2同位素放射免疫法[/b] 同位素放射免疫法检测血清叶酸始于70年代初。该方法具有快速、简便的特点,同时由于叶酸放射免疫试剂盒的出现,很快得到普及,尤其广泛应用于临床实验室。放射免疫法与微生物法检测叶酸,除原理不同外,检测结果的意义也有所不同。对大量标本总体而言,两种方法结果相关性较好,但对个体标本,两种方法结果的差异较大。微生物法对多谷氨酸叶酸响应值低,不能直接用于检测叶酸含量。但微生物法对所有单谷氨酸叶酸及其衍生物的反应灵敏度相同,故在用叶酸水解酶处理样品使所有叶酸形式转变为单谷氨酸叶酸后进行检测,可得到准确的叶酸值。同位素放射免疫法对多谷氨酸叶酸反应的相对灵敏度有较大的差别,随着叶酸浓度增加,反应的相对灵敏度增加,但多谷氨酸叶酸的反应曲线不可能与单谷氨酸叶酸的反应曲线重合;另一方面,多谷氨酸叶酸与结合蛋白的亲合性与单谷氨酸叶酸相比较高,不同的单谷氨酸叶酸衍生物反应灵敏度不同,放射免疫法也不适用于检测单谷氨酸叶酸衍生混合物。由于上述原因,尽管放射免疫法可用于检测和评价叶酸的营养状况,但从定量检测的角度来讲,难以得到准确的叶酸含量值。[b]1.2.3离子捕获法[/b] Wilson等提出离子 捕获法检测叶酸,该技术可谓叶酸检测技术中的最新方法,即在实验中,样品加入变性剂后叶酸与内源性结合蛋白分离,释放后的叶酸再与带有大量阴离子的亲合试剂结合,合成产物经过离子捕获池而与阳离子纤维结合,最后通过碱性磷酸酶与喋酸(叶酸的类似物)结合物对叶酸结合蛋白上游离结合位点的探查,定量分析样品的叶酸含量。该研究证实,离子捕获法测定血清或红细胞叶酸,其结果与同位素放射免疫法的结果具有良好的相关性,相关系数分别为0.96 和0.93。[b]1.3色谱法和HPLC法在测定食品中叶酸含量的现状[/b][align=left] 色谱法也称层析法,是一种分配平衡为基础的分离分析技术。色谱分离体系包含两相:固定相和流动相。由流动相带领的[color=black]物质分子在固定相间分配达到“平衡”的过程。通过不同物质分配平衡性质的差异达到彼此分离。[/color][/align][align=left][color=black] 20[/color][color=black]世纪[/color][color=black]70[/color][color=black]年代初发展起来的高效液相色谱([/color][color=black]High performance liquidchromatography, HPLC[/color][color=black])吸收了普通液相层析和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的优点,经过适当改进发展起来的。它既有普通液相层析的功能(可在常温下分离制备水溶性物质),又有[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]诸多优点(高速、高分辨率和高灵敏度)。适用于很多不易挥发、受热易分解的物质定性定量分析。[/color][sup][/sup][color=black][/color][/align][align=left] 运用高效液相色谱(HPLC)方法来定量食品中叶酸含量在近年来得到了普及。借助于色谱柱的高分离效果和灵敏的检测器,有能力来分离检测不同形式叶酸。中国药典方法使用高效液相色谱-紫外检测器检测叶酸。由于有些叶酸具有荧光特性,D.MP.Johan等[sup][/sup]使用高效液相色谱-荧光-紫外检测器的串连(HPLC-FD-UV)分析面包酵母中叶酸含量。R.Stefania[sup][/sup]等同样使用HPLC-FD-UV分析意大利食品中叶酸含量。由于食品中的干扰物质多,且叶酸含量较少,E.J.M.Konings[sup][/sup] 使用固相萃取法(SPE)对样品进行纯化和富集,然后使用HPLC-FD-UV检测牛奶,肝脏,蔬菜,面粉中的叶酸。L.H Douglas[sup][/sup] 等用HPLC-柱前衍生和HPLC-电化学检测器分别检测牛奶和其它食品中叶酸含量。随着技术的进步,高效液相色谱和质谱联用(HP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url])提供了专一性好,灵敏的方法。A.Freisleben[sup][/sup]使用LC-FD-MS联用检测食品中叶酸含量。[/align][align=center][b]表一:几种液相色谱联用的检测器方法的比较:[/b][/align][align=center][b]Table 1. Comparison of some detectors of HPLC [/b][/align] [table=649][tr][td=1,1,61] [align=center]检测器[/align] [/td][td=1,1,192] [align=center]原理[/align] [/td][td=1,1,72] [align=center]灵敏度[/align] [/td][td=1,1,84] [align=center]专一性[/align] [/td][td=1,1,108] [align=center]检测限②[/align] [/td][td=1,1,132] [align=center]评注[/align] [/td][td=1,1,0] [/td][/tr][tr][td=1,2,61] [align=center]紫外[/align] [align=center](UV)[/align] [/td][td=1,2,192] 物质在紫外光谱有吸收[/td][td=1,2,72] [align=center]较高[/align] [/td][td=1,2,84] [align=center]稍强[/align] [/td][td=1,2,108] [align=center]2μg/100mL[/align] [/td][td=1,2,132] 受到食品中其它物质干扰较大。[/td][td=1,1,0] [/td][/tr][tr][td=1,1,0] [/td][/tr][tr][td=1,2,61] [align=center]荧光[/align] [align=center](FD)[/align] [/td][td=1,2,192] 共轭结构在激发光下电子激发到高能态,退激回基态时能量以荧光形式释放,根据荧光强度得待测物浓度。[/td][td=1,2,72] [align=center]高[/align] [/td][td=1,2,84] [align=center]强[/align] [/td][td=1,2,108] [align=center]不能检测[/align] [/td][td=1,2,132] 能检测四氢叶酸和5-甲基四氢叶酸。而叶酸(Pt-Glu)③无荧光性质。[/td][td=1,1,0] [/td][/tr][tr][td=1,1,0] [/td][/tr][tr][td=1,2,61] [align=center]电化学(ECD)[/align] [/td][td=1,2,192] 外加电压使特征物质失去电子,根据失去电子形成电流大小得出待测物质的浓度。[/td][td=1,2,72] [align=center]高[/align] [/td][td=1,2,84] [align=center]强[/align] [/td][td=1,2,108] [align=center]0.32pmol[/align] [/td][td=1,2,132] 灵敏度高,专一性强。但是装备复杂。[/td][td=1,1,0] [/td][/tr][tr][td=1,1,0] [/td][/tr][tr][td=1,2,61] [align=center]质谱[/align] [align=center](MS)[/align] [/td][td=1,2,192] 特征碎片离子检测[/td][td=1,2,72] [align=center]较高[/align] [/td][td=1,2,84] [align=center]强[/align] [/td][td=1,2,108] [align=center]0.1μg/100mL[/align] [/td][td=1,2,132] 不普及,价格高。但是发展方向。[/td][td=1,1,0] [/td][/tr][tr][td=1,1,0] [/td][/tr][/table][b]1.4方法学建立的目的和意义以及技术路线1.4.1方法学建立的目的和意义[/b] 由于人体内的叶酸几乎完全依赖于食物的摄入,因此当摄入量不足或利用率低时,体内便会出现叶酸缺乏的状况。近年来的研究表明,叶酸缺乏会导致贫血、慢性下痢、食欲不振、发育迟缓等疾病,孕妇补充叶酸可防止因神经系统发育不全而形成的畸胎,儿童服用叶酸可提高智商,促进智力发展。所以,叶酸强化食品的摄取对人类健康具有重要意义。而叶酸强化食品的含量的科学性显得十分重要。 确实食品添加剂的质和量决定着加工类食品的营养和安全性。国外对于食品营养和安全十分关注,通过在加工食品的包装上注明的添加成分、营养物质的含量、适宜人群在产品包装,以利于不同需求的消费者选择。随着国内外交流的加强和HACCP认证的推进以及质量意识的增强,食品安全,食品营养受到了消费者和食品生产企业的关注。随着分析测试仪器的先进化和自动化给食品中各个成分的测定提供了强有力的“武器”,尤其是高效液相色谱的普及,它的高效性、准确性、方便、微量等优点是食品分析的一场“革命”。国内外HPLC法测定食品营养成份和食品添加剂方法发展得很快,相关报道较多。但是由于叶酸在食品中添加量甚微,食品中干扰物质较多,所以相应的文章报道相对较少。基于以上考虑设立本项目,具体目的有以下四点:[list=1][*]建立高效液相色谱方法分离分析果冻类样品中叶酸含量的方法学;[*]通过色谱条件的摸索和优化,获得叶酸分离的最佳条件;[*]对样品前处理条件的摸索和调整,得到简便、快速、有效的样品前处理方法;[*]通过对本套方法学的验证包括线性、精密度、回收率、稳定性等实验,建立可靠、完善、准确的测定果冻类样品中叶酸含量的方法学。本方法的建立,可为检测果冻类样品中叶酸含量提供可靠和准确的手段,也为检测其他食品中叶酸含量提供参考资料,所以本研究具有社会效益和经济价值。[/list][b]1.4.2技术路线[/b] 色谱条件的建立(流动相配比、色谱柱选取、检测波长、流速、柱温) [img=,51,13]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181710139504_8563_1626663_3.png[/img] 积分条件的建立 [img=,51,14]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181710137869_6909_1626663_3.png[/img] 确立标准品、样品配制方法 [img=,51,13]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181710142106_9538_1626663_3.png[/img] 方法学验证(线性回归、精密度、回收率、稳定性、样品含量测定)[img=,40,14]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181710143330_4024_1626663_3.png[/img] 方法学的改进 [b]2.实验部分2.1实验样品的描述2.1.1样品性质[/b] 无色或淡黄色果胶类样品。常温下为胶态和液态混合物。样品名称(AminoVital Supersports;AminoVital-1;AminoVital-2)。[b]2.1.2样品中添加的主要物质[/b] 添加氨基酸,维生素类,甜味剂,食用香精,食用色素,有机酸。[b]2.1.3可能的干扰因素[/b] 根据配料表信息,氨基酸、甜味剂、色素等物质在样品中较维生素几十倍量添加,而维生素中又以维生素C添加量最大,叶酸添加量相当少。所以上述物质对叶酸分析造成较大的干扰。[b] 2.1.4标准品和样品保存条件[/b] 标准品避光保存于冰箱冷冻柜中。样品置于-18℃冷藏库中保存。[b]2.2实验条件2.2.1仪器和试剂及标准品[/b]仪器配置:岛津LC-10A系列 泵:LC-10ADVP真空脱气机:DGU-12A控制器:SCL-10AVP紫外检测器:SPD-10AVP自动进样器:SIL-10ADVP柱温箱:CTO-10ASVP积分仪:CR-8A和LC-Solution积分工作站试剂:磷酸二氢钾(GR),氢氧化钾(GR),甲醇(HPLC),氨水(GR),纯水(HPLC)标准品:叶酸标准品(Pteroylglutamic Acid),纯度:98.0~102.0% 和光特级[b]2.2.2HPLC方法条件建立[/b]2.2.2.1流动相配制 0.05mol/L磷酸二氢钾(pH=6.33):甲醇=92:8(体积比),作为流动相。 称取7.0g KH[sub]2[/sub]PO[sub]4[/sub]置于1000mL烧杯,加入800mL纯水,溶解。通过滴加0.1mol/L KOH溶液,调节缓冲液pH值为6.33,转移至1000mL容量瓶中,加入80mL甲醇,再用纯水定容至刻度,摇匀。用0.45μm微孔滤膜过滤。装瓶。2.2.2.2检测器和检测波长 使用紫外检测器。使用λ=285nm作为检测波长。2.2.2.3色谱柱 ODS柱作为本次实验的分离分析柱。2.2.2.4流速和柱温选 流速设0.6mL/min;柱温选定为35.0℃2.2.2.5色谱条件: 色谱柱:Shim-pack VP-ODS 4.6mm×150mm 粒度:5μm (P/N 228-34937-91) 流速:0.6mL/min 检测器:紫外检测器 波长:λ=285nm 进样量:100μL 分析时间:100分钟(对于标准品测试仅需40分钟) 柱温:35.0 ℃ [b]2.3标准品配制(线性浓度配制)[/b] 标准品在使用前先放置于五氧化二磷干燥器至室温,并且避光保存。称取5.1mg叶酸(Pteroylglutamic Acid, 纯度:98.0~102.0% 和光特级)标准品,置于50mL棕色容量瓶中,用0.5%氨水溶液稀释,定容,摇匀。作为贮备液。用移液管吸取叶酸贮备液1mL,移入100mL棕色容量瓶中,用0.5%氨水溶液稀释,定容,摇匀。浓度为1020ng/mL.(STD 5)。分别吸取STD 5溶液1mL, 1mL, 5mL, 5mL, 置于20mL, 10mL, 25mL, 10mL容量瓶中,用0.5%氨水溶液稀释,定容,摇匀。浓度分别为 51ng/mL.(STD 1);102ng/mL.(STD 2);204ng/mL.(STD 3);510ng/mL.(STD 4)。[align=center][b]表二:标准品及对应的浓度[/b][/align][align=center][b]Table 2.Standard and their concentrations[/b][/align][align=center] [table=307][tr][td=1,1,72] [align=center]标准品[/align] [/td][td=1,1,72] [align=center] [/align] [/td][td=1,1,72] [/td][td=1,1,91] 浓度(ng/mL)[/td][/tr][tr][td] [align=center]STD1[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center]51[/align] [/td][/tr][tr][td] [align=center]STD2[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center]102[/align] [/td][/tr][tr][td] [align=center]STD3[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center]204[/align] [/td][/tr][tr][td] [align=center]STD4[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center]510[/align] [/td][/tr][tr][td] [align=center]STD5[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center]1020[/align] [/td][/tr][/table][/align][b]2.4精密度重复性[/b] 5个标准均连续进样6次,测试标准品相对标准偏差。[b]2.5标准品稳定性[/b] 5℃保存的半个月的叶酸标准品贮备液,放至室温。用移液管吸取1mL移入100mL棕色容量瓶中,用0.5%氨水定容,摇匀。再用移液管吸取上述溶液,移入10mL棕色容量瓶中。用0.5%氨水定容,摇匀。连同新试验配制的同浓度标准品一起测试。观察叶酸标准品在0.5%氨水溶液中的稳定性。 [b]2.6样品前处理步骤[/b] 精密称取样品5.00g置于25mL棕色容量瓶中,用0.5%氨水溶解,定容,摇匀。超声波超声10分钟。10000rpm离心10分钟。取上清液,用0.45μm微孔滤膜过滤。作为检液。[b]2.7样品配制[/b] 每个样品测试3次,样品分析后,在各样品中添加1mL STD5标准品,来确定样品溶液中叶酸的保留时间。样品分析时间100分钟。[b]2.8样品回收率[/b] 样品名称:Amino Vital ATP 19582 精密称取样品5.00g,置于25mL棕色容量瓶中,用0.5%氨水溶解,定容,摇匀。10000rpm离心10分钟。吸取上清液,用0.45μm微孔滤膜过滤。作为空白检液。 精密称取10.00g样品,置于50mL棕色容量瓶中,用移液管吸取5mLSTD 5 溶液,移入同一容量瓶中, 用0.5%氨水溶解,定容,摇匀。10000rpm离心10分钟。吸取上清液,用0.45μm微孔滤膜过滤。作为回收率试验检液。[b]2.9确定最小检测浓度[/b] 用移液管吸取STD3标准品1mL置于10mL棕色容量瓶中,用0.5%氨水溶解,定容,摇匀。浓度为20ng/mL.[b]3.结论3.1标准曲线[/b][align=center][b]表三:标准品浓度和峰面积[/b][/align][align=center][b]Table 3.Standard concentration with their peak area[/b][/align][align=center] [table=288][tr][td=1,1,72] [align=center]C(ng/mL)[/align] [/td][td=1,1,72] [align=center] [/align] [/td][td=1,1,72] [align=center] [/align] [/td][td=1,1,72] [align=center]平均面积[/align] [/td][/tr][tr][td] [align=center]51[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center]16661[/align] [/td][/tr][tr][td] [align=center]102[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center]33061[/align] [/td][/tr][tr][td] [align=center]204[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center]66948[/align] [/td][/tr][tr][td] [align=center]510[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center]168852[/align] [/td][/tr][tr][td] [align=center]1020[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center]331618[/align] [/td][/tr][/table][/align][align=center][img=,547,246]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181710144650_39_1626663_3.png[/img][/align][align=center][b]图一:叶酸标准品浓度和面积线性关系图[/b][/align][align=center][b]Fig1.Linearity of HPLC method[/b][/align]叶酸标准品线性回归方程: Y=325.58x+555.10 R=0.9999 式中Y是面积;x是浓度;R是相关系数。[img=,553,174]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181710143198_4423_1626663_3.png[/img][align=center][b]图二:204ng/mL叶酸标准品色谱图[/b][/align][align=center][b]Fig 2.Chromatogram of folic acid standard (204g/mL)[/b][/align][b]3.2精密度[/b]每个标准品重复测试6次,各相对标准偏差见表四:[align=center][b] [/b][/align][align=center][b]表四:叶酸标准品精密度测试数据[/b][/align][align=center][b]Table4.Percise of standards[/b][/align][align=center] [table=288][tr][td=1,1,72] [align=center]C(ng/mL)[/align] [/td][td=1,1,72] [align=center] [/align] [/td][td=1,1,72] [align=center] [/align] [/td][td=1,1,72] [align=center]RSD%[/align] [/td][/tr][tr][td] [align=center]51[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center]1.13%[/align] [/td][/tr][tr][td] [align=center]102[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center]1.20%[/align] [/td][/tr][tr][td] [align=center]204[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center]1.53%[/align] [/td][/tr][tr][td] [align=center]510[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center]0.22%[/align] [/td][/tr][tr][td] [align=center]1020[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center]0.34%[/align] [/td][/tr][/table][/align][b]3.3样品测试结果表五:HPLC方法测定的果冻类样品中叶酸含量Table 5. Folic acid content in gel samples(μg/100g) by HPLC[/b] [table][tr][td=1,1,516] 样品名 HPLC测定量(μg/100g)[/td][/tr][/table]1.Amino Vital 31.7Supersports 2. Amino Vital-1 17.63.Amino Vital-2                     17.9 [table][tr][td=1,1,516] [/td][/tr][/table][b]3.4 回收率[/b]样品名:Amino Vital  ATP 19582[b] 表六:添加回收率测定Table 6. Recoveries of folic acid to sample[/b] [table][tr][td=1,1,504] Amino Vital 回收率[/td][/tr][/table]1. 106%2 107%3. 109% [table][tr][td=1,1,504] 平均回收率为107±1.5%[/td][/tr][/table][b] [/b][img=,528,162]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181710147516_2748_1626663_3.png[/img][align=center][b]图三:回收率测试空白图谱(Amino Vital ATP 19582)[/b][/align][align=center][b]Fig 3.Recovery test chromatogram Blank(Amino Vital )[/b][/align][img=,528,164]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181710146335_2905_1626663_3.png[/img][align=center][b]图四:回收率测试添加叶酸标准溶液图谱(Amino Vital )[/b][/align][align=center][b]Fig 4.Recovery test chromatogram by adding folic acid standardsolution(Amino Vital )[/b][/align][b] 3.5 HPLC法与微生物法测试结果比较[/b]日本的国家标准是使用微生物方法测定叶酸的含量。微生物方法测定的是食品中总的叶酸含量,应该比HPLC方法测的的值要大些。为了比较HPLC方法的准确性,通过对应样品比较得知。[b]表七:微生物测定值与HPLC测定值比较Table 7. Comparison of the result of mircobiology method and HPLC method[/b] [table][tr][td=1,1,516] 样品名 微生物测定值(μg/100g) HPLC测定值(μg/100g)[/td][/tr][/table]1.Amino Vital 44 31.7Super sports 2. Amino Vital 18 17.6 3.Amino Vital         20          17.9 [table][tr][td=1,1,516] [/td][/tr][/table][b]3.6总体评价及方法适应性[/b] 通过以上实验以及对实验数据的分析和比较,得出本方法线性拟合良好, 精密度高,最小检测限低。样品添加回收率在107±2%内,并且样品测试结果与微生物方法测试结果作比较,两者数据相近。本方法简便,前处理相对简便,可以为检测果冻类样品中叶酸含量提供可靠和准确的分析手段,同时也为其它食品中叶酸含量的检测提供参考。[b]4.讨论4.1分析条件选取 4.1.1流动相 [/b]流动相在HPLC分离分析中起着至关重要的作用。 过实验确定了本次实验的流动相。原因如下:[list=1][*]叶酸在碱性水溶液中溶解且稳定性较好,而大多数ODS柱在pH=2.0~7.0范围内使用,所以本文使用的流动相pH值在6.3比较适合[*]通过实验发现水相和甲醇的配比为92:8(v/v)分离效果最好。样品中叶酸和前面的杂质完全分离。[*]使用磷酸二氢钾和氢氧化钾来调节离子浓度和pH值。这时色谱峰形呈正态曲线,柱效最高。[/list][b]4.1.2检测器和检测波长[/b] 叶酸中有苯环和碟酰结构,图五。所以可以用紫外检测器来检测。虽然叶酸中有共轭结构,但是通过实验发现Pteroylglutamic Acid 无荧光吸收。所以不能使用荧光检测器。 由于条件限制,无全波长扫描的紫外光度计和二极管阵列检测器。所以通过文献和实验来找最佳波长。根据报道[sup][/sup],叶酸在265nm,285nm至290nm以及365nm处有极大吸收。在265nm,285nm,290nm,365nm分析同一叶酸标准品,发现λ=285nm处峰形最高。[b] [/b][align=center][img=,363,124]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181710151110_6182_1626663_3.png[/img][/align][align=center][b]图五:叶酸的分子结构[/b][/align][align=center][b]Fig 5. Molecular structure of folicacid (Pteroylglutamic Acid)[/b][/align][b]4.1.3 进样量[/b] 所以根据本实验室条件,100μL的进样量适合并且满足实验要求。[b] 4.1.4分析时间[/b] 由于标准品在30分钟内就已出来,所以标准品采集时间仅需30分钟。但是样品中成分复杂,一定把样品中组分全部出尽才能进下一个样品。通过实验样品的采集时间为100分钟。[b]4.2试样标准的配制讨论 4.2.1样品试液选取[/b] 原则:确保叶酸在溶液中溶解且不被破坏。 实验证明:叶酸不溶解于纯水中,在酸性溶液中不稳定。而使用0.5%氨水溶液较好地溶解叶酸,而且通过稳定性实验,叶酸在该试液中稳定,峰面积无显著变化。[b] 4.2.2标准品浓度选取[/b] 本实验样品的浓度恰好在线性范围内,而且标准品浓度与响应值呈一元线性关系。[b] 4.2.3样品前处理[/b] 样品使用0.5%氨水溶液溶解。由于样品呈液胶状,超声波超声可以击碎胶状物质,使其分散。通过实验发现10分钟超声可以使之形成均一、稳定的溶液。[b]5.后续工作及前景[/b] 由于条件的限制和目的要求的局限,本文只对一种叶酸化合物进行分析测试,而食品中的叶酸形式有五种之多。通过流动相摸索和梯度洗脱完全能够使不同形式的叶酸得到分离,以此扩大分析的范围。同时叶酸分析也可以通过色谱条件的摸索与其它物质(尤其是水溶性维生素)一起分析,达到提高效率的目的。为了使灵敏度提高,高效能的检测器的选择有着可观的前景。现在困扰我们分析叶酸含量的主要问题是样品中叶酸含量甚微,仅仅是ng级。紫外检测器最小检测限也就是这个级别。本文也指出:一味地扩大样品称样量或增加样品进样量会导致噪音增大,同样不能提高灵敏度。所以象一些专属性较强的检测器如荧光检测器,电化学检测器是考虑的一个方向。荧光检测器的灵敏度可以达到pg级。对于荧光检测器不能检测Pteroylglutamic Acid,是由于该物质没有荧光发色基团。我们可以通过柱前或柱后衍生的方法让其接上荧光发色基团,或者是柱前分离柱后通过反应液改变它的结构,提高检测的灵敏度。而使用电化学检测器需要摸索诸如电离电压,流动相等等条件。由于电化学检测器它的专属性很高,不容易受到干扰物质的影响。它应该是一个发展方向。从样品前处理的角度考虑,前处理步骤越少,分析时间更短,目标物在处理时损失越少,相对实验成本越低是改进原有实验方法的目标。一般对于含有复杂成分且目标分析物含量甚微的样品要去除干扰物质然后富集待测组分。固相萃取技术(solidphase extraction, SPE)应当是一个比较好的样品前处理方法。但是固相萃取技术的一个弱点是样品容易损失,回收率不高引起准确性不高。荷兰的Knoing教授使用亲和层析(affinity chromatography)的方法来提高待测物富集和纯化的效率。可见食品中叶酸分析应该还是一个难点,同时又是一个热点。快速高效准确的方法会随着仪器性能的进步和方法的进一步完善成熟而成熟。[b]6.参考文献[/b][list=1][*]中国药典编委会.中国药典(2000)二部,北京:化学工业出版社,2000.[*]Johan D.M. P. Jelena A. J. Sofia B.H., Development of aSimplified Method for the Determination of Folates in Baker’s Yeast by HPLCwith Ultraviolet and Fluorescence Detection. J.Agric. Food Chem. 2005,53:2406-2411.[*]Douglas L.H. RandyL.W. Michael G.Z., Determination ofnative folates in milk and other dairy products by high-performance liquidchromatography. J.Chrom. 1988, 449 : 271-279.[*]Stefania R. Liisa T.V. AlteroA., Determination of folate vitamersin food and in Italian reference diet by high-performance liquidchromatography.J.Chrom A . 1999, 855: 237-245.[*]Konings EJM,A validated LC method for the determinationof folates in vegetables, milk powder, liver and flour.J AOAC Int. 1999, 82: 119-127.[*]Eduward Chu. James C.Drake. Donna Boarman, Mechanism of Thymidylate Synthase Inhibition by Methotrexate inHuman Neoplastic Cell Lines and Normal Human Myeloid Progenitor, J. Biochem.1990,265: 8470-8473.[*]Pamela J.Bagley Jacob selhub,Analysis of Folate Form Distribution by Affinity Followed by Reversed-PhaseChromatography with Electrochemical Detection, Clin. Chem. 2000, 46: 404.[*] FreislebenA. Schieberle P. Rychlik M., Comparison of folate quantification in foods byhight-performance liquid chromatography-fluorescence detection to that bystable isotope dilution assays using high-performance liquid chromatography-tandemmass spectrometry. Anal. Biochem. 2003, 315: 247-255.[*] 赵永芳.生物化学技术原理及应用(第三版).北京:科学出版社,2003.10[*] 吴坤等.营养与食品卫生学(第五版).北京:人民卫生出版社,2005.[/list][hr/] ①PteroylglutamicAcid②检测限是以叶酸(Pt-Glu)来计算。③微生物测定值是日本食品研究所用微生物法测定。

  • 【讨论】藏书羊肉是怎么回事啊?

    最近看到有人讨论附近的一家苏州藏书羊肉馆,说是量很足,但我一向很少听说苏州羊肉的,再说苏州现在有养羊的地方吗?倒是说上海的七宝有白切羊肉,还是不错的。还有,藏书是啥意思?难道像鸡毛信,尾巴后面藏了本书?武林秘笈?[em0801]

  • 挑战人类生殖: 用干细胞制造胚胎

    自去年10月开始,分子生物学家Katsuhiko Hayashi就陆陆续续收到了许多夫妻的邮件,这些夫妻大多人到中年,仍然在为了一件事情焦急:要一个孩子。其中有一位英国的更年期妇女,希望到他位于日本京都大学的实验室,在他的帮助下怀上孩子,她写道:“这是我唯一的愿望。”这些请求开始于Hayashi一篇文章的发表——他原以为只有发育生物学家才会对他的实验结果感兴趣。在体外条件下,利用小鼠的皮肤细胞创造可以发育成精子和卵子的原始生殖细胞(PGCs)。为了证明这些实验室培养的原始生殖细胞与自然发育而成的原始生殖细胞类似,他利用它们生成了卵子,进而创造小鼠生命。他表示,这个创造出来的小鼠生命仅仅是他研究的一个“副产品”,他的研究将意味着更多——利用不孕妇女的皮肤细胞为她们提供可受精的卵细胞。与此同时他还提出,男性的皮肤细胞也可以用来创造卵子,同样,女性的皮肤细胞也可以生成精子。(事实上,研究结果发表后,许多同性恋发邮件给Hayashi ,索要更多的信息。)尽管这是一项创新研究,但是公众的广泛关注还是令Hayashi和他的教授Mitinori Saitou感到非常惊讶。他们花了十多年不断挖掘哺乳动物配子产生的微妙细节,然后在体外条件下重新创建该过程——一切都是为了科研,而非医疗。现在他们的方法使研究人员能够创建无限的原始生殖细胞,这种在以前很难获得的珍贵细胞的正常供应有助于推动哺乳动物生殖研究。但是,当他们将这个科学挑战自小鼠到猴子,再到人类推进时,这一过程被公众定义为治疗不孕不育的过程,于是相关的道德争议随之出现。“毫无疑问,他们在小鼠身上给这一领域带来了重大的改变,” 洛杉矶加州大学的生育专家Amander Clark说,“但是,在这项技术展示它的实用性之前,我们必须讨论一下使用这种方式创造配子的伦理问题。”回到最初在小鼠体内,胚胎发育一周后,便出现约40个左右的原始生殖细胞。这个小小的细胞团进而在雌性小鼠体内形成成千上万的卵细胞,在雄性小鼠体内每天都能生成几百万个精细胞,并能够遗传小鼠的全套遗传信息。Saitou想要了解在这些细胞发育过程中受到了那些信号的控制。在过去的十年中,Saitou已经通过辛苦研究确定了几个基因——包括Stella, Blimp1 和Prdm14 ——这些基因的某种组合在某些时候对于PGCs的发育起到了至关重要的作用。利用这些基因作为标记,可以从其他细胞中筛选原始生殖细胞以观察这些细胞的变化。2009年,在日本神户的RIKEN发育生物学中心,他发现,当培养条件适当时,在精确的时间加入骨形态发生蛋白4(BMP4),可以胚胎干细胞转化为原始生殖细胞的。为了验证这一发现,他向胚胎干细胞提供高浓度的BMP4,结果显示,几乎所有的胚胎干细胞都变成了PGCs。他和科学家们都预计这一过程非常复杂。http://www.ibioo.com/data/attachment/portal/201308/25/095620gaqefeejnqejxuu3.jpg人造小鼠生殖细胞产生小鼠胚胎的过程(点击图片查看大图)Saitou的方法严格遵循了自然过程,这与其他从事类似研究的人形成了鲜明的对比,以色列魏茨曼科学研究所的干细胞专家Jacob Hanna说。许多科学家尝试通过信号分子轰击干细胞在体外创造特定类型的细胞,然后筛选细胞混合物得到他们想要的细胞。但是他们忽略了这些细胞的自然形成过程和这些人造细胞与自然形成细胞的相似程度。Saitou找出了形成生殖细胞所需的条件,去除多余的信号干扰并将每个过程的时间精确控制,给他的同事们留下了深刻的印象。英国谢菲尔德大学的干细胞生物学家Harry Moore将这种生殖细胞发育的精确重现视为一场“胜利”。到了2009年, Saitou在小鼠生殖细胞出现之前从外胚层取了一些细胞,这成了研究的起点。但是想要真正掌握这个过程中,Saitou希望从细胞培养开始。当时正值Hayashi从英国剑桥大学回到日本,和Saitou一样,Hayashi在该领域先驱Azim Surani英国的实验室里完成了4年的研究。Surani盛赞这两位科学家说,他们的“气质、风格和解决问题的方法能够相互补充”。 Saitou “处理事情时很有系统性、完成目标一心一意”,而Hayashi“工作时更有直觉、视角更广阔、处理问题方法相对更加宽松”,他说。“他们确实形成了一个非常强大的团队。”Hayashi加入了Saitou京都大学的团队,他很快就发现,那里不同于剑桥。在京都大学,Hayashi用在理论讨论上的时间比曾经少得多,而更多的时间都花在实验上。他说“在日本,我们只管‘做’,这有时是非常低效的,但有时又酝酿着巨大的成功”。Hayashi同样以外胚层细胞作为起点,但与Saitou不同的是,他试图培养一个能够产生原始生殖细胞的稳定细胞系。可惜这种方法没有奏效。Hayashi借鉴其他研究结果——一个关键调控分子(activin A)和生长因子(bFGF)可以将培养的早期胚胎干细胞转化成类似于外胚层细胞的细胞类型。这引发了Hayashi将这两个因素结合起来的想法,诱导胚胎干细胞分化为外胚层,然后采用Saitou之前的方法把这些细胞成为的PGCs。通过这种新的方法,他最终获得了成功。为了证明这些人造的原始生殖细胞是真实的拷贝,他们必须证明这些细胞可以进一步发育成精子和卵子。这一进程是非常复杂和难以理解的。所以研究小组将这一工作留给了自然——Hayashi将PGCs植入无法产生精子的小鼠的睾丸,观察这些细胞是否会发育。Saitou认为,这是可行的,但还是感到有些担忧。当实验进行到第3或4只小鼠时,他们发现小鼠的输精管里充满了精子。“这一切都发生得恰如其分,我知道他们会产生幼仔,”Hayashi说。研究小组将这些精子注入卵细胞中并植入雌性小鼠的胚胎,结果产生了大量的雌性和雄性后代。他们利用诱导多能干细胞(iPS)进行反复的实验,成熟的细胞被重新编程为胚胎状态。此外,精子被用于生产幼仔,证明它们具有基本功能——这是干细胞分化领域的罕见成就。Clark说:“这是整个多能性干细胞研究领域里在培养皿中生成全功能细胞类型少有的成功案例之一。”他们预计形成卵细胞更复杂,但是在去年,Hayashi在体外条件下制作有正常着色的原始生殖细胞并转入白化小鼠的卵巢,将产生的卵细胞体外受精后植入代孕。当透过幼崽半透明的眼睑看到黑色的眼睛时,他知道这一切又成功了。生殖细胞的回馈目前,许多研究人员已经能够复制验室培养原始生殖细胞的过程。人造原始生殖细胞特定用于表观遗传学研究:通过修饰DNA确定哪些基因表达。最常见的修饰就是为DNA碱基加上甲基,这些修饰在有些情况下,能够反映生物所经历的历史过程。与其它类型的细胞类似,表观遗传标记改变了原始生殖细胞在胚胎发育过程中的命运,但原始生殖细胞有个与众不同的特点,就是当它们发育成精子和卵子后,表观遗传标记被擦除。这就允许细胞创建能够形成任何类型细胞的受精卵。表观遗传微妙变化中出现错误将会导致不孕不育并出现器官故障,如如睾丸癌。Surani和Hanna的团队已经利用人造原始生殖细胞研究不同酶在表观遗传调控中的作用,也许有一天,能够解答表观遗传网络如何参与疾病调控。事实上,体外产生的原始生殖细胞可以为研究提供数百万个细胞,而不是供科学家研究了40个左右,这些细胞可以通过解剖早期胚胎获得。Hanna说:“这是一个大问题,因为我们这里有这些稀有的原始生殖细胞正在经历我们尚不了解的全基因组表观遗传变化。”“体外模型为科学家们提供了前所未有的方便,” Clark表示认同。临床意义但是Hayashi和Saitou没有办法向乞求帮助的不孕夫妻提供帮助。在这种方法被运用在临床之前,还有许多问题需要梳理。Saitou和Hayashi发现,虽然运用他们的技术所产生的后代通常似乎是健康和大量的,但这些后代产生的原始生殖细胞并生不完全“正常”。 第二代原始生殖细胞产生的卵细胞往往是脆弱、畸形的,并且从支持它们生长的组织上脱离。当受精时,卵细胞内部会分为三组染色体,而不是正常的两组,体外受精的成功率也只有正常原始生殖细胞的三分之一。哈佛医学院从事表观遗传学研究的Yi Zhang,使用Saitou的方法在研究中发现,体外受精过程中,人造的原始生殖细胞不能像自然状态下产生的原始生殖细胞一样,抹去它们的表观遗传标记。“我们必须要知道,这些都是PGCs的类似细胞,而不是真正的原始生殖细胞,”他说。此外,这项技术还存在两个大的挑战。首先是在不将PGCs放回睾丸或卵巢的前提下买入和使它们变成成熟的精子和卵子,Hayashi目前正在试图破解PGCs生成卵子或精子的生物信号,使人工培育条件下完成这一阶段成为可能。但最可怕的挑战是在人体重复上述所有的工作。该小组已经在利用Saitou找到的关键调控基因来调整人类的iPS细胞,但是Saitou 和Hayashi都知道,人类的信息调控网络不同于小鼠。此外,Saitou有无数的小鼠胚胎进行解剖,但无法在人类胚胎进行

  • Nature:科学家从人卵细胞培养出胚胎干细胞

    10月6日出版的新一期英国《自然》杂志刊登报告说,美国研究人员用人类卵细胞培养出了胚胎干细胞,虽然这项成果还存在一些缺陷,但已是“黄禹锡造假事件”后最接近培养出正常人类胚胎干细胞的成果。这一成果可能引起有关克隆问题的新一轮大争论。http://www.bioon.com/biology/UploadFiles/201110/2011100911202350.jpg(图片来自原文)将体细胞中的遗传物质植入卵细胞中,将其培育成为胚胎干细胞甚至最终培养出新的个体,就是常说的克隆技术,著名的克隆羊“多利”就是用这种技术得到的。2004年,韩国研究人员黄禹锡曾宣称用这种方法培育出了人类胚胎干细胞,引起一时轰动,但后来证明这是一起造假事件。此后,许多科研人员都进行了这方面的尝试,但一直没有成功。相关研究面临的障碍是,如果先将人类卵细胞中的遗传物质去掉,再植入另一个体细胞的遗传物质,这样得到的卵细胞分裂几次后就会停止发育。而美国纽约干细胞基金实验室等机构的研究人员报告说,如果留下一部分原有卵细胞中的遗传物质,再另外加上体细胞的部分遗传物质,这样得到的卵细胞可以发育到具有70至100个细胞的囊胚阶段,达到可以提取胚胎干细胞的阶段。胚胎干细胞具备发育成各种组织和器官的潜力,如果能够培育出人类胚胎干细胞,就意味着能够培育出属于某个人自己的组织和器官,可用于个性化的医疗。当然这也会引起有关克隆人的争议。本次研究虽然能够培育出人类胚胎干细胞,但也存在一些缺陷。最重要的是这些细胞中存在3组染色体,即卵细胞原有的1组染色体和来自体细胞的2组染色体,而正常的人类细胞只有2组染色体。因此,这种人类胚胎干细胞还不具备实用性。但是《自然》杂志同时发表的社论指出,这是自“黄禹锡造假事件”后最接近培养出可用人类胚胎干细胞的成果,在大方向上证明这仍然是一条可行的道路。社论认为,这将引起新一轮的有关克隆人的大争论,甚至提出联合国有必要开始考虑制订监管克隆的规章制度。

  • 【转帖】国内抗生素研发的几个误区。

    随着我国市场经济的深入发展和药物研发能力的不断提高,每年向国家食品药品监督管理局申报的抗生素新品种的数量始终保持在较高的水平上,一方面为感染性疾病的治疗提供丁较多的手段,但另一方面,在经济效益的驱动下,我国新抗生素研发方面还存在以下几个误区:1.抗生素复方制剂的合理性有待进一步研究①磺胺增效剂——甲氧苄嘧啶(TMP)与非磺胺类抗生素组方磺胺类药物主要抑制了细菌的二氢叶酸(DHFA)的合成,而TMP则抑制了二氢叶酸还原酶(DHFR)的活性,进一步阻止了四氢叶酸(THFA)的合成,由于两者从不同途径同时阻断了细菌的叶酸代谢系统,故TMP起到了磺胺增效作用。但我国在抗生素复方制剂的研发过程中,把TMP作为万能抗菌增效剂,出现了TMP加头孢氨苄、TMP加四环素、TMP加庆大霉素、甚至TMP加黄连素等不合理的复方制剂。②β-内酰胺类酶抑制剂,如克拉维酸钾、舒巴坦钠和三唑巴坦钠,与各种头孢菌素的复方制剂不宜随意组合,应从各种头孢菌素固有抗菌谱及半衰期与酶抑 制剂的半衰期、毒性大小和两者的最佳配比去考虑组方的合理性。但现在却有开发各种头孢菌素与β-内酰胺类酶抑制剂的复方制剂如:头孢呋辛钠与舒巴坦钠、头孢曲松钠与三唑巴坦钠或舒巴坦钠,未从抗菌谱和两者的半衰期的差别予以全面考虑。

  • 【资料】食品中的毒素

    1 食品中天然存在的毒素①动物类食品中的天然毒素(1)动物肝脏中的毒素动物肝脏富含蛋白质、VA、叶酸,但同时也含有胆固醇及胆酸,肝脏是动物重要的电写废物和外源毒素的处理工厂,其中肝脏中主要的毒素物质为胆酸、内胆酸、脱氧胆酸和牛磺胆酸构成的混合物,毒性依次为牛磺胆酸脱氧胆酸胆酸,摄入量小不会中毒,脱氧胆酸对人肠道上皮细胞癌如结肠癌、直肠癌有促进作用。(2)海洋鱼类毒素:金枪鱼、蓝鱼,贮藏在不适宜的条件下容易产生组胺导致中毒;(3)河豚毒素:河豚味美而剧毒,多存在于河豚的卵巢、皮肤、肝脏甚至肌肉中,其LD50 为8.7μg/kg体重,人经口服的最大致死量为408.7μg/kg体重。(4)贝类毒素:主要为麻痹性贝类毒素和腹泻性贝类毒素。②植物类食物中的天然毒素(1)致甲状腺肿大物质:甲状腺肿大的主要发病原因是机体缺碘,食用某些十字花科甘蓝属的蔬菜如油菜、包心菜、花菜、芥菜等一会致病,其主要物质是以黑芥子硫苷为前体的物质和硫氰酸酯。(2)生氰糖苷:广泛存在于豆科、蔷薇科和稻科中的糖苷水解形成氢氰酸,如木薯、杏仁、枇杷、豆类等。(3)消化酶抑制剂:胰蛋白酶抑制剂、胰凝乳蛋白酶抑制剂、α-淀粉酶抑制剂;(4)生物碱糖苷:含氮有机化合物,马铃薯变绿的地方有龙葵碱。2 生物污染主要是一些真菌毒素。如黄曲霉毒素、杂色曲霉毒素、金黄色葡萄球菌毒素,大肠杆菌毒素等。3 化学污染化学污染的食品毒素主要有:重金属、多环芳烃、多氯联苯、残留农药、食品添加剂等。4 食品加工中形成的毒素有一些加工过程如烟熏、煎炸、烘烤、高温杀菌等中形成的毒素,常见的有:苯并[a]芘、Maillard 反应产物和一些杂环胺,腌肉中形成的亚硝基胺等。

  • 【分享】食品中的毒素

    1 食品中天然存在的毒素①动物类食品中的天然毒素(1)动物肝脏中的毒素动物肝脏富含蛋白质、VA、叶酸,但同时也含有胆固醇及胆酸,肝脏是动物重要的电写废物和外源毒素的处理工厂,其中肝脏中主要的毒素物质为胆酸、内胆酸、脱氧胆酸和牛磺胆酸构成的混合物,毒性依次为牛磺胆酸脱氧胆酸胆酸,摄入量小不会中毒,脱氧胆酸对人肠道上皮细胞癌如结肠癌、直肠癌有促进作用。(2)海洋鱼类毒素:金枪鱼、蓝鱼,贮藏在不适宜的条件下容易产生组胺导致中毒;(3)河豚毒素:河豚味美而剧毒,多存在于河豚的卵巢、皮肤、肝脏甚至肌肉中,其LD50 为8.7μg/kg体重,人经口服的最大致死量为408.7μg/kg体重。(4)贝类毒素:主要为麻痹性贝类毒素和腹泻性贝类毒素。②植物类食物中的天然毒素(1)致甲状腺肿大物质:甲状腺肿大的主要发病原因是机体缺碘,食用某些十字花科甘蓝属的蔬菜如油菜、包心菜、花菜、芥菜等一会致病,其主要物质是以黑芥子硫苷为前体的物质和硫氰酸酯。(2)生氰糖苷:广泛存在于豆科、蔷薇科和稻科中的糖苷水解形成氢氰酸,如木薯、杏仁、枇杷、豆类等。(3)消化酶抑制剂:胰蛋白酶抑制剂、胰凝乳蛋白酶抑制剂、α-淀粉酶抑制剂;(4)生物碱糖苷:含氮有机化合物,马铃薯变绿的地方有龙葵碱。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制