当前位置: 仪器信息网 > 行业主题 > >

呼吸道合胞病毒人免疫球蛋

仪器信息网呼吸道合胞病毒人免疫球蛋专题为您提供2024年最新呼吸道合胞病毒人免疫球蛋价格报价、厂家品牌的相关信息, 包括呼吸道合胞病毒人免疫球蛋参数、型号等,不管是国产,还是进口品牌的呼吸道合胞病毒人免疫球蛋您都可以在这里找到。 除此之外,仪器信息网还免费为您整合呼吸道合胞病毒人免疫球蛋相关的耗材配件、试剂标物,还有呼吸道合胞病毒人免疫球蛋相关的最新资讯、资料,以及呼吸道合胞病毒人免疫球蛋相关的解决方案。

呼吸道合胞病毒人免疫球蛋相关的资讯

  • 我学者实现对多种呼吸道病毒精准检测
    记者7日从中国科学院深圳先进技术研究院获悉,该院生物医学与健康工程研究所研究员杨慧团队与深圳市儿童医院的科研团队合作,开发出一种简单、全封闭、高度集成的微流控系统,实现了对多种呼吸道病毒及其变种的精准检测。相关成果于近日发表在《生物传感器与生物电子学》杂志上。  病毒是导致呼吸道感染的主要因素之一。传统诊断方法通常需要复杂的实验设备和较长的检测周期,且存在着高成本、低灵敏度等问题。  杨慧介绍,传统的聚合酶链式反应(PCR)技术只能确定病毒类型,如果要检测同一病毒的不同变异株,就需要进行昂贵且耗时较长的基因测序。  为解决上述问题,研究人员开发出一种微流控系统,该系统可以对新冠病毒及其变异株(BA.1、BA.2和BA.5)、甲型流感病毒(H1N1)、甲型流感病毒(H3N2)、流感病毒(IVB)和呼吸道感染病毒(HRSV)进行精准识别。  据悉,这项研究具有将实验室科学带入社区诊所的能力,是诊断技术领域一项重大突破。随着针对多种疾病诊断试剂的持续开发,该微流控系统在疾病预防、健康监测以及个性化医疗方面,具有巨大的潜力和应用价值。
  • 基于数字微流控技术的上呼吸道易感病毒多靶标快速检测方法
    呼吸道病毒感染由于其高致病率及致死率,成为世界各国人民发病和死亡的主要原因之一。引起上呼吸道感染的病毒种类较多,尤其是甲型流感病毒新型H5N1(FluA-H5N1)、甲型流感病毒新型H1N1(FluA-H1N1)、乙型流感病毒(FluB)、冠状病毒(SARS-CoV)、中东呼吸综合征冠状病毒(MERS-CoV)、新型冠状病毒(2019-nCOV)等病毒在近一个世纪以来的多次大规模流行,给人类的生命健康和社会经济带来巨大伤害。这些上呼吸道感染的病毒引起的感染症状和季节性流行病毒特点相似,为避免造成群聚传染,快速鉴别呼吸道病原体的检测显得尤为重要。据麦姆斯咨询报道,近期,拱北海关技术中心等科研机构于《热带医学杂志》发表研究性论文,将RT-qPCR技术和数字微流控技术相结合,建立一种基于数字微流控RT-qPCR芯片技术的上呼吸道易感病毒多靶标快速检测方法。实现一种以少量样品同时快速检测多个呼吸道病原体的检测技术。该方法满足了目前市场对呼吸道病原体的高诊断率的需求,同时还为精准医疗提供了新的检验手段。为实现一个芯片多个项目的检测功能,研究人员将6个引物(2019-nCOV-N引物、2019-nCOV-Orf1引物、FluA-M1引物、FluB-HA引物、SARS-65引物、MERS-62引物)和相应探针分别预存到芯片的各个反应点中,并向反应点添加引物预存液,而后将芯片置于风干干燥箱中干燥,接着将干燥好的芯片取出进行封装处理。图1 数字微流控芯片结构示意图:芯片设置6个反应点,从左往右依次是预存的2019-nCOV-N引物、2019-nCOV-Orf1引物、FluA-M1引物、FluB-HA引物、SARS-65引物和MERS-62引物为了验证该数字微流控RT-qPCR芯片的检测性能,研究人员使用TE缓冲液将阳性质粒10倍稀释为10 pg/μL至0.01 fg/μL的浓度梯度,并根据RT-qPCR反应体系和反应程序,完成各单项目的引物、探针在AGS4800实时荧光定量PCR仪上的检测下限检测。同样,对相应浓度的质粒使用数字微流控芯片完成实时荧光RT-qPCR反应。如图2所示,6种引物在AGS4800实时荧光定量PCR仪上均可检出对应的阳性质粒,对于10 pg/μL的质粒均可在20个循环之前检出,且45个循环内无非特异性扩增。图2 检测试剂测试结果此外,FluA、FluB、SARS-CoV、MERS-CoV、2019-nCOV这5个检测项目使用PCR仪的25 μL体系最低可检出0.01 fg/μL的质粒,而数字微流控RT-qPCR芯片法每个反应最低可检出0.1 fg/μL的质粒,与PCR仪2 μL体系灵敏度相同。根据公式,质粒拷贝数浓度 =(质粒浓度×摩尔系数)/(质粒长度×碱基对平均分子量),分别计算2种方法中的每个反应的质粒拷贝数可得知,上述2种方法在2~25μL的体系下检出限均为12~15拷贝/反应,检测下限基本一致(图3)。图3 数字微流控RT-qPCR芯片的检测下限测试结果最后,为明确该数字微流控RT-qPCR芯片的检测灵敏度和特异性,研究人员同时使用数字微流控RT-qPCR芯片和RT-qPCR仪检测20个临床标本(包含新冠病毒2例,甲型流感8例,乙型流感6例)的5项呼吸道病毒项目,共计100个测试反应,见表1。结果显示微流控芯片除样品7出现一次对甲型流感病毒漏检外,其余阳性样品均检出对应病毒,对于20个样品的5种病毒的总灵敏度为94%,总特异性为100%。Kappa值 = 0.962,两个检测方法具有高度一致,并且差异有统计学意义(P 0.05)。表1 PCR仪和微流控芯片检测临床样本结果汇总综上所述,该研究将多个RT-qPCR检测项目与数字微流控检测芯片结合,建立了在一次反应中同时检测多个项目的数字微流控RT-qPCR芯片。该数字微流控芯片RT-qPCR法可以以最少的样本量快速检测多个项目,自动化程度更高,可以提高上呼吸道病毒检测的效率,提高应对大规模疫情的快速反应能力。论文链接:http://www.rdyz.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=2d5c44d8-8305-4cbb-9dca-0c8aba6fc75d
  • 数字PCR首次被写入呼吸道病原检测专家共识
    成人呼吸道感染类型多样,不同感染类型及不同基础疾病患者病原谱各具特点,在临床常规诊疗过程中,应以患者临床症状体征为基础,联合应用影像学、传统微生物学、免疫学和分子生物学等检测技术,依据相应检测标准做出快速、精准诊断。分子生物学诊断技术在临床的应用目前仍有较多问题亟待解决,尤其是对临床结果的正确解读。不同检测技术所提供的结果具有不同临床意义,如何做到合理应用是所有相关临床医生和检测工作者共同思考的问题。于2023年8月在《协和医学杂志》最新发布的《成人呼吸道感染病原诊断核酸检测技术临床应用专家共识(2023)》参考国内外指南及文献, 分析了实时荧光聚合酶链反应(polymerase chain reaction,PCR)技术、等温扩增技术、数字PCR技术、核酸即时检测技术和病原体高通量测序技术的临床应用场景、技术特点和性能验证要求,以及该类技术在成人急性上呼吸道感染、气管支气管炎、社区获得性肺炎、医院获得性肺炎/呼吸机相关肺炎、慢性阻塞性肺疾病急性加重、肺结核和免疫功能受损人群呼吸道感染中的应用,供临床借鉴参考。其中数字PCR作为新兴的核酸检测技术,第一次被写入呼吸道病原检测的专家共识中,为不同的应用场景提供了更多的选择。共识内容摘要一、不同核酸检测技术性能特征和应用场景的比较PCR:聚合酶链反应 TAT:检验结果回报时间。说明和补充: 数字PCR除了检出限远低于其它检测方法外,能够精准定量的优势让它还可以用来做疗效评估。此外,随着技术的发展,以新羿生物D50为代表的新机型能够实现高通量的检测,检测时间缩短到了1h左右。二、核心推荐意见PCR:聚合酶链反应;mNGS:宏基因组高通量测序。说明和补充: 相较于实时荧光PCR,数字PCR更适合多靶标呼吸道病原体核酸检测。随着数字PCR仪器自动化水平和检测通量的升级,它也可以用于门急诊,住院患者和大规模人群筛查。三、成人呼吸道感染病原体核酸检测技术应用建议PCR:聚合酶链反应;mNGS:宏基因组高通量测序;tNGS:多重病原靶向测序;BALF:支气管肺泡灌洗液;ESBL:超广谱β-内酰胺酶;HIV:人免疫缺陷病毒。说明和补充: 数字PCR可以实现对上表中各种感染类型病原体的检测,并且可以做到单个样本的检测数量更少、样本量要求更低以及对病原体的精准定量。总结分子诊断技术在呼吸道感染性疾病,尤其是全球应对新型冠状病毒大流行中发挥了重要作用,高灵敏度和高特异度的核酸扩增试验(nucleic acid amplification tests,NAATs)已成为诊断新冠病毒感染的参考标准。随着基因组学、工程学和纳米科学等前沿学科的交叉融合快速发展,NAATs 呈现出多种多样的检测方法和日新月异的技术手段,以PCR为基础发展出的实时荧光PCR、多重PCR、数字PCR和等温扩增技术,以及高通量测序、基因芯片、核酸质谱、生物传感器等检测技术,在大型实验室批量检测或现场核酸即时检测(point-of-care testing, POCT)中得以广泛应用。除呼吸道病毒外,一些系统还能检测细菌性肺炎的常见病原体及特定耐药基因。不同检测技术所提供的结果具有不同临床意义,联合应用可进一步提高病原学检测的灵敏度和特异度,更好的解释患者的病程发展并进行治疗监测。其中数字PCR以其灵敏度高(检出限 1copies/mL)、同时检测靶标较多(病原体数个~数十个)、用时短和定量准确等优点,被推荐用于“直接定量检测呼吸道标本中病原体个数,适用于低浓度样本、低丰度基因或突变基因的检测,和其他核酸检测方法的检测限标定”,以及对“造血干细胞及实体器官移植后患者 ”进行病毒(包括巨细胞病毒和其他呼吸道病毒)的定量、动态检测。应用场景包括“定量检测,疗效评估,环境检测,参考品或标准品定标”。
  • 呼吸道病原体快速检测企业英诺特登陆科创板
    7月28日,英诺特生物科创板IPO上市,股票代码688253,发行价26.06元/股,开盘后市值一度超46亿元。英诺特是一家专注于 POCT 快速诊断产品研发、生产和销售的高科技生物医药企业,公司紧紧扎根 POCT 快速检测领域,以呼吸道病原体检测和多种病原体联合检测为特色,以急门诊,尤其是儿童急门诊检测作为切入点,致力于打造中国呼吸道病原体快速联合检测领导品牌。1)政策加码 POCT市场快速扩张近年来,国家加大了对国内体外诊断企业的扶持力度,出台了《“十三五”生物产业发展规划》《国家突发急性传染病防治“十三五”规划(2016-2020 年)》等多项鼓励政策以推动行业发展。随着分级诊疗的推进及医疗资源下沉,我国即时检测(下称“POCT”)行业快速发展。根据统计,我国POCT市场规模从2015年的43亿元增长至2019年的112亿元,年复合增长率达到27.04%。未来预计将继续以超过20%的增速增长,到2024年,行业规模将达到290亿元。作为POCT行业的细分领域,我国呼吸道病原体检测市场也保持快速增长态势。近年来,在分级诊疗体系不断推进、检测范围扩大、早诊早治趋势凸显等因素驱动下,我国呼吸道病原体检测试剂市场规模由2013年的1.78亿元增长至2019年的12.97亿元,复合增长率达到39.24%;我国呼吸道病原体检测试剂需求量由2013年的875万人份增长至2019年的4942万人份,复合增长率达到33.45%。2)深耕研发 拥有多个国内独家品种近年来,英诺特深耕快检产品的研发销售,同时也逐步提升研发投入。截至报告期末,公司拥有研发人员 75 名,占员工总数的19.43%。2020年初新型冠状病毒肺炎疫情发生后,公司快速响应,开展对新冠病毒检测产品的研发攻关,在短时间内克服多个技术难题,并于 2020 年 2 月 22 日通过国家药监局应急通道审批,获得国内首批新型冠状病毒 IgM/IgG 抗体检测试剂盒注册证,并随后参与了 3 项新型冠状病毒抗体检测试,剂盒国家标准的制定,后续陆续取得了包括 FDA 的 EUA 授权在内的多个海外市场准入许可,支援全球抗疫,是唯一一家被中共中央、国务院、中央军委授予“全国抗击新冠肺炎疫情先进集体”的体外诊断试剂生产商。另外,对呼吸道病原体感染的临床症状和体征较为相似但治疗方法截然不同的特点,英诺特重点发展呼吸道病原体联合检测产品,掌握多种联检技术,拥有多个国内独家品种,通过一个产品、一次检测快速准确地鉴别多种病原体,帮助医生尽早确定治疗方法和用药方案。针对呼吸道疾病在儿童中更为高发,且更易造成严重并发症的特点,公司将儿童急门诊作为呼吸道病原体检测产品的切入点。报告期内,公司以全血呼吸道五联检测卡、流感病毒三联检测卡、病毒血清五联检测卡、呼吸道病原体九联间接免疫荧光试剂盒等多个独家联检产品为代表的呼吸道病原体检测产品成功进入了包括首都医科大学附属北京儿童医院、首都儿科研究所附属儿童医院、复旦大学附属儿科医院等在内的众多区域性重点儿童医院,并获得其认可。经过多年发展,英诺特现已构建起了免疫层析平台、间接免疫荧光平台、液相免疫平台、核酸分子检测平台、基因重组蛋白工程平台以及细胞和病原体培养平台 6 大技术平台,基于技术平台进行专业分工提升研发的广度和深度。 公司同时开展多个在研项目,与现有产品形成了良好的互补,为公司未来新产品的持续推出、产品结构的优化提供保障。截至本招股意向书签署日,公司取得了16 项发明专利,拥有 71 项医疗器械产品注册/备案证,其中三类医疗器械注册证 56 项。未来,公司将以客户应用场景需求为中心,不断对标国际一流企业,实现产品线的丰富与覆盖。公司计划依托在呼吸道特别是儿科领域建立的市场网络优势,切入肠道疾病检测领域、过敏检测领域,夯实公司在儿科领域的优势地位。
  • 研究利器ImageXpress Pico开启小儿呼吸道感染研究大门
    重磅::科学家使用ImageXpress Pico证实在急性呼吸道病毒感染中,富含ha的ECM的形成促进了促炎症环境的形成。ImageXpress Pico本身具有高分辨率成像功能和强大的分析能力,加上其紧凑小巧的设计风格正是 “小身材,大能耐”的真实写照。西雅图儿童研究所首席研究员,西雅图儿童医院肺科和睡眠内科主治医师Stephen R. Reeves博士说:“ImageXpress Pico系统使我们的团队能够准确有效地评估肥大细胞与RSV感染的人肺成纤维细胞(HLFs)的结合特性,并更好地了解RSV的炎症反应。研究挑战——了解RSV感染的HLFs外基质中肥大细胞(mast cells)和透明质酸(hyaluronan,HA)的结合特征呼吸道合胞病毒(RSV)是世界范围内感染儿童最常见的病毒之一。病毒的轻度病例仅限于上呼吸道(鼻子和喉咙)炎症;更严重的病例会延伸到下呼吸道(支气管和肺),并伴有咳嗽、低烧和食欲不振。更严重的RSV感染可发展为肺炎、呼吸衰竭和或死亡。RSV具有高度传染性,主要影响儿童。然而,成年人和那些免疫系统较弱的人也易被影响。RSV的症状和传播与影响上呼吸道和下呼吸道的其他病毒类似,包括甲型和乙型流感病毒、鼻病毒、腺病毒以及冠状病毒株COVID-19。更多地了解这些病毒的潜在机制有助于阐明潜在的治疗方案。西雅图儿童研究所、华盛顿大学和贝纳罗亚研究所的研究人员着手研究RSV的一种潜在机制。Stephen Reeves博士和他的伙伴设计了几个实验来确定RSV感染的HLFs中肥大细胞和HA之间相互作用的下游炎症效应。为此需要用活细胞和固定的细胞做细胞荧光成像来测试摸索一系列的条件,包括包括HA在细胞外基质(ECM)中的位置和作用机制,肥大细胞蛋白表达,以及HA、肥大细胞和ECM之间的分子相互作用。传统的荧光显微镜成像需要使用玻璃盖片对细胞进行固定,这将浪费更多的时间。Reeves博士和他的团队需要一种更有效的方式去更有效的获得高质量的活细胞和固定组织图像。解决方法——高分辨率的活细胞和固定细胞荧光成像和分析研究团队选择了ImageXpress® Pico自动细胞成像系统,因为其易用性、灵活性和强大的分析能力。分析方法为了帮助该团队快速开展实验,我们的现场应用科学家和技术支持专家为不同的分析提供了现场培训和支持。这包括了实验方案和动态分析,这样就可以同时成像和分析。图像获取研究小组进行了活细胞成像,然后固定组织,对细胞外基质成分进行染色,而这些成分在活细胞中是不可视的。在ImageXpress Pico用多孔板进行成像,减少了与样品处理相关的时间。图像采集过程中,大面积的感兴趣区域可以通过高倍镜下的拼接模式获取。这样的成像方式既减少了额外的荧光显微镜重复验证工作,同时还可以得到高质量图片。结果分析Reeves博士和他的伙伴能够定量分析肥大细胞和感染了RSV的HLFs的细胞外基质(ECM)之间的相互作用,图片和分析数据如下:ImageXpress Pico系统还用于分析RSV感染的HLFs在48小时内TSG-6的表达和肥大细胞粘附的影响。图片和分析数据如下:(注:TSG-6是一种与炎症相关的蛋白,在RSV感染的细胞中表达上调)。ImageXpress Pico自动细胞成像系统产品使用ImageXpress Pico是一个稳定的、可靠的自动细胞成像系统,适于实验台面操作 。这台仪器专为个体生物实验室或高通量筛选应用而设计,其紧凑的设计风格结合了仪器本身高分辨率成像功能和强大的分析能力给到客户所有层面的成像体验。基于细胞分析,系统拥有强大的预设程序模板,以及先进的功能,如数字共焦。无论您是在做固定细胞或活细胞的荧光或明场成像,只需单击几下鼠标就可以开始成像和生成数据。结果高质量的数据有助于科学取得更快的突破Reeves博士使用ImageXpress Pico首次证实:l 在感染RSV的儿童捐赠者来源的HLFs中,HA的合成更强,从而产生富含HA的细胞外基质(ECM)l 富含HA的ECM促进肥大细胞更强的黏附,增加肥大细胞蛋白酶的释放,导致炎症反应(如气道收缩、粘液生成、咳嗽)l RSV感染的HLFs表现出肥大细胞炎症介质的表达增加,以及肥大细胞黏附增加研究结果表明,在急性呼吸道病毒感染中,富含ha的ECM的形成促进了促炎症环境的形成。这一机制对RSV等呼吸道病毒的干预治疗具有深远的意义。总结:研究总结:该研究表明,感染RSV的HLFs诱导了合成HA的酶的上调(HAS 2和3),同时下调了分解HA的酶(HYAL 2),这导致了细胞外基质中HA的增加和肥大细胞的粘附。此外,RSV感染的HLFs显示TSG-6表达增加,增强了肥大细胞与ECM的结合。与RSV诱导的ECM结合的肥大细胞可以上调肥大细胞蛋白酶的表达,促进促炎症环境的形成。Stephen R. Reeves博士认为:“ImageXpress Pico系统不断改进以满足我们不断变化的需求,并为进一步的发现打开了大门。我们很期待接下来会发生什么!”Reeves博士和其他通讯作者是Dr. Jason Debley实验室成员的一部分。Debley实验室利用流行病学、临床和分子方法来了解儿童早期哮喘的进化,并研究在儿童哮喘中气道上皮的作用。西雅图儿童研究所免疫和免疫疗法中心的研究人员调查了一些影响人类免疫系统的最具挑战性的儿童疾病。最终的目标是利用免疫学的治疗力量来设计新的疾病治疗方法。
  • 安图生物呼吸道分子检测产品再获新证!
    近日,安图生物甲型流感病毒/乙型流感病毒/呼吸道合胞病毒核酸检测试剂盒(PCR-荧光探针法)、人偏肺病毒核酸检测试剂盒(PCR-荧光探针法)获国家药品监督管理局颁发的医疗器械注册证。  流感疫情有“抬头”趋势  11月1日,在2022年“世界流感日”科普宣传与学术会议上,多位专家在会上提醒,应格外关注今年冬天的呼吸道传染病疫情。中国工程院院士钟南山表示,全球仍然面临着新冠疫情和流感疫情叠加流行的风险,特别是今年冬季。中国科学院院士董晨表示,目前全球仍面临较高的流感和新冠肺炎等呼吸道传染病叠加流行的风险,呼吸道传染病的防控任重而道远。  流行性感冒是由流感病毒引起的一种急性呼吸道传染病,每年的秋冬季进入流行高峰。孕妇、婴幼儿、老年人和慢性基础疾病患者等高危人群,患流感后出现严重疾病和死亡的风险较高。据世界卫生组织监测数据显示,今年以来全球流感发病数大幅上升,报告病例数较过去两年明显增多。  提高病原学检出率势在必行  由于呼吸道感染的临床表现无特异性,因此临床早期诊断是非常关键的。但呼吸道感染较为复杂,多表现为病原体混合感染,症状和流行特点较为相似,传统手段无法精准检测。核酸检测以其灵敏度高、特异性强、时效性好等优势,可快速鉴别诊断病原体,对于辅助临床用药具有重要的意义。  可搭载安图生物全自动化核酸检测平台实现随到随检  安图甲型流感病毒/乙型流感病毒/呼吸道合胞病毒核酸检测试剂盒(PCR-荧光探针法)、人偏肺病毒核酸检测试剂盒(PCR-荧光探针法)搭载全自动核酸提纯与实时荧光PCR分析系统,实现随到随检,能够快速明确病原体,指导临床个性化用药。  全自动检测,操作简便,提高生物安全。  随到随测,检测灵活。  缩短TAT时间,检测时长约100min。  多项目自由组合方案,1管样本,可随意组合检测多种病原体。  配备急诊模式,适合门急诊检测。  2~8℃保存,易于储存与运输。  目前,安图生物已获注册证的呼吸道检测产品:新型冠状病毒2019-nCoV核酸检测试剂盒(PCR-荧光探针法)、人副流感病毒核酸检测试剂盒(PCR-荧光探针法)、安图甲型流感病毒/乙型流感病毒/呼吸道合胞病毒核酸检测试剂盒(PCR-荧光探针法)、人偏肺病毒核酸检测试剂盒(PCR-荧光探针法),可搭载全自动核酸检测平台,是呼吸道分子检测的新利器。  未来,安图生物还将推出多项呼吸道疾病核酸检测产品,为临床提供更全面、更快速、更精准的呼吸道病原体解决方案,助力呼吸道疾病的防控和诊疗。
  • 呼吸道感染高发拉动多联检测需求,多家企业加速布局
    流感病毒、呼吸道合胞病毒、肺炎支原体等多种病原体的流行,直接拉动了呼吸道多联检测需求的增加。据人民日报健康客户端记者不完全统计,截至目前,已有圣湘生物、中帜生物、英诺特等多家公司的呼吸道联检产品,获得国家药监局的注册认证。仅2023年,就有明德生物、创澜生物等公司生产的至少4种3重呼吸道多联检测产品获批。此外,博拓生物、明德生物等企业也在加速布局,部分呼吸道多联检测产品已在注册流程中。目前,北京、上海、湖北武汉等多地医院检验科均推出了呼吸道联检项目,联检项目数量不一,分为3重联检、6重联检、13重联检等,覆盖甲型流感病毒、新冠病毒、呼吸道合胞病毒、肺炎支原体等常见病原体。此外,部分电商平台也推出了呼吸道病毒“居家快检”服务,同样能够对多种呼吸道病毒进行快速检测。部分电商平台推出呼吸道病毒“居家快检”服务,能够对多种呼吸道病毒进行检测。张爽 摄“不少患者到医院就诊之前,就做了这种多重联检。检查结果是有参考价值的,我们会再结合症状等具体情况判断,只要能够保证准确度,在临床也有推广价值,有助于早期明确病因,对症治疗。”北京佑安医院感染综合科主任医师李侗曾在接受人民日报健康客户端记者采访时表示。多位受访专家表示,目前医院呼吸道多重联检价格较高。人民日报健康客户端记者咨询了北京、江苏南京、四川成都、陕西西安等多家开展呼吸道多联检测的医院,根据检测数量的不同,一次多联检测价格在500~1000元不等。“早上8:30之前做完呼吸道6重联检,当天下午就能够拿到结果,患者需要进行咽拭子采样。”北京市怀柔区一家医院的检验科工作人员表示,“目前,急诊、发热门诊、儿科都有部分患者进行检查。”根据观研报告2023年发布的《中国呼吸道病原体检测行业发展趋势研究与投资前景分析报告》,我国2025年呼吸道病原体检测市场规模有望突破600亿元关口。由于近期流行的呼吸道病原体较多,相比于单项检测产品,多联检测产品的优势也在凸显。人民日报健康客户端记者在采访中了解到,呼吸道多联检测产品包括核酸、抗原、抗体等检测方式。“检测是准确用药的前提,呼吸道疾病的暴发带动检测需求大幅增长,为检测试剂企业带来订单弹性。”华鑫证券分析师胡博新表示,“多联检测更符合呼吸道疾病的快速诊断需求,是未来发展趋势,同时,多联检测的研发周期长,注册认证壁垒高,更具有定价优势。对比新冠、心肌等单项检测产品,呼吸道多联抗原检测产品具有更长的成长周期。”
  • 近60%的实验室不合格! 卫健委发布2022下呼吸道感染宏基因室间质评报告(附合格实验室名单)
    近日,国家临检中心发布全国下呼吸道感染宏基因组(DNA和RNA)高通量测序室间质评预研活动结果报告。本次接受报名的实验室 131 家,实际收到 122 家有效回报结果。如图 1 所示,基于评分方法,122 家实验室所得成绩分布如下:100 分的实验室 11 家,80~99分(含 80 分)的实验室 40 家,60~79 分(含 60 分)的实验室 22 家,低于 60分(不含 60 分)的实验室 49 家。按照≥80 分为合格的标准,合格率为 41.8%(51/122)。本次质评预研活动从检测分析敏感性、特异性、报告解读等多个方面考核了国内实验室检测常规呼吸道标本中 DNA 和 RNA 病原体的能力。总体而言,各实验室的检测流程存在较大差异,检测水平参差不齐。通过对回报数据的分析,发现主要存在以下问题:(一)检测流程差异大,质量保证不完善1. mNGS 检测流程差异大且存在变化从 122 家实验室的检测流程来看,mNGS 检测方法呈现两个特点:(1)复杂多样。各实验室的微生物破壁方式、DNA 和 RNA 提取、富集、文库制备、测序平台、微生物比对算法、公共数据库和背景微生物数据库等均有较大不同;(2)存在变化。与 2021 年下呼吸道宏基因组测序 EQA 相比,绝大多数实验室两次参评报告的检测方法均有所不同,调整的环节包括核酸提取试剂、文库构建试剂、序列比对软件及数据库组成等各个方面。2. 质量保证尚不完善参与本次预研活动的 122 家实验室中,26.2%(32/122)的实验室未使用阳性质控,3.3%(4/122)的实验室未使阴性质控,27.0%(33/122)的实验室未使用内参,11.5%(14/122)的实验室尚未完成性能确认工作。全面验证过分析敏感性(最低检测限)、精密度(重复性和再现性)、分析特异性等基本性能指标的实验室仅占 76.2%(93/122)。由于 mNGS 检测流程的差异,以及实验室流程存在不确定性,以及各实验室质量保证的不完善,使得 mNGS 实验室检测的质量存在一定问题。目前 mNGS12检测均为自建方法,标准操作流程(SOP)的建立和性能确认的完成是开展临床服务的前提条件,完善的室内质量控制是保证实验室日常检测质量的有效手段,此外,实验室需明确,SOP 不应随意改变,如确需变更,应先进行相应的性能确认。(二)假阴性和假阳性问题与 2020 年开展的宏基因组 EQA 相比,本次 EQA 在细菌真菌检测的基础上,增加了实验室对 DNA 病毒和 RNA 病毒检测能力的考察。整体而言,实验室对各类病原体的检测能力依次为真菌细菌DNA 病毒RNA 病毒。实验室的假阴性结果主要集中在 RNA 病毒的漏检,这可能与 RNA 病毒不稳定、基因组远小于细菌和真菌和实验操作中(去宿主、珠磨破壁)造成 RNA 病毒损失有关。(三)实验室结果解读能力有待提高实验室依据病例信息未能做出准确诊断的原因有两个层面:一是检出效果不理想,未检测到病原体因而无法报告的错误类型占比较少,在 2022S10-2022S13样本中分别占 5.7%(7/122)、4.1%(5/122)、4.1%(5/122)和 0.8%(1/122),当检出的假阳性微生物较多时,也会干扰准确病原体判断;二是报告解读能力不足,在 2022S10-2022S13 样本中,分别有 36.8%(45/122)、22.1%(27/122)、20.5%(25/122)和 10.7%(13/122)的实验室检测到了真正的病原体,但没有依据病例信息做出准确的临床诊断。在混合感染病例样本漏报病原体和其他单病原体感染样本中多报其他微生物,都反映出对不同类型病原体感染的临床特点和微生物致病情况等相关知识的匮乏。因此,在结果报告时,多学科专家(临床医学家、微生物学家以及生信分析专家等)的共同参与将有助于 mNGS 检测结果的正确解读。成绩合格的实验室(按单位名称拼音排序):阿吉安(福州)基因医学检验实验室安徽省感染病诊断中心安徽医科大学第一附属医院感染科实验室北京大学人民医院检验科北京善通医学检验实验室有限公司北京圣诠基因医学检验实验室北京予果医学检验实验室有限公司成都圣元医学检验实验室重庆基拯医学检验所有限公司大连医科大学附属第一医院国家基因检测技术应用示范中心复旦大学附属儿科医院分子医学中心复旦大学附属中山医院精准医学中心甘肃省妇幼保健院检验科广东省中医院病理科-基因联合实验室广西医科大学第二附属医院遗传与基因组医学中心广州达安基因高通量测序实验室广州华银医学检验中心有限公司广州微远医学检验实验室广州金域医学检验实验中心有限公司杭州迪安医学检验中心有限公司杭州杰毅医学检验实验室有限公司杭州求臻医学检验实验室有限公司华中科技大学同济医学院附属同济医院检验科华中科技大学协和深圳医院检验医学中心吉林大学第一医院基因诊断中心济南爱新卓尔医学检验实验室江门市中心医院检验科解放军总医院第八医学中心呼吸与危重症医学部研究所陆军军医大学第一附属医院感染病科实验室南昌大学第一附属医院精准医学中心南京格致医学检验实验室山东大学齐鲁医院检验科陕西佰美医学检验实验室上海儿童医学中心转化所感染研究室上海交通大学医学院附属瑞金医院临床微生物科上海探洇医学检验实验室有限公司深圳市第二人民医院中心实验室沈阳市第十人民医院中心实验室天津华大医学检验所天津金匙医学检验实验室微岩医学科技(北京)有限公司武汉凯德维斯医学检验实验室武汉康圣达医学检验所有限公司粤北人民医院检验科长沙博奥医学检验实验室浙江大学医学院附属第一医院检验科浙江洛兮医学检验实验室中国医科大学附属第一医院检验科中南大学湘雅二医院感染科实验室中南大学湘雅二医院临床分子诊断中心中山大学附属第一医院检验科
  • 吸烟对心、脑血管和呼吸道的影响
    对心、脑血管的影响 许多研究认为,吸烟是许多心、脑血管疾病的主要危险因素,吸烟者的冠心病、高血压病、脑血管病及周围血管病的发病率均明显升高。统计资料表明,冠心病和高血压病患者中75%有吸烟史。冠心病发病率吸烟者较不吸烟者高3.5倍,冠心病病死率前者较后者高6倍,心肌梗塞发病率前者较后者高2~6倍,病理解剖也发现,冠状动脉粥样硬化病变前者较后者广泛而 严重。高血压、高胆固醇及吸烟三项具备者冠心病发病率增加9~12倍。心血管疾病死亡人数中的30%~40%由吸烟引起,死亡率的增长与吸烟量成正比。烟雾中的尼古丁和一氧化碳是公认的引起冠状动脉粥样硬化的主要有害因素,但其确切机理尚未完全明了。多数学者认为,血脂变化、血小板功能及血液流变异常起着重要作用。高密度脂蛋白胆固醇(HDL-C)可刺激血管内皮细胞前列环素(PGI2)的生成,PGI2是最有效的血管扩张和抑制血小板聚集的物质。吸烟可损伤血管内皮细胞,并引起血清HDL-C降低,胆固醇升高,PGI2水平降低,从而引起周围血管及冠状动脉收缩、管壁变厚、管腔狭窄和血流减慢,造成心肌缺氧。尼古丁又可促使血小板聚集。烟雾中的一氧化碳与血红蛋白结合形成碳氧血红蛋白,影响红细胞的携氧能力,造成组织缺氧,从而诱发冠状动脉痉挛。由于组织缺氧,造成代偿性红细胞增多症,使血粘滞度增高。此外,吸烟可使血浆纤维蛋白原水平增加,导致凝血系统功能紊乱;吸烟还可影响花生四烯酸的代谢,使PGI2生成减少,血栓素A2相对增加,从而使血管收缩,血小板聚集性增加。以上这些都可能促进冠心病的发生和发展。由于心肌缺氧,使心肌应激性增强,心室颤动阈值下降,所以有冠心病的吸烟者更易发生心律不齐,发生猝死的危险性增高。 据报告,吸烟者发生中风的危险是不吸烟者的2~3.5倍;如果吸烟和高血压同时存在,中风的危险性就会升高近20倍。此外,吸烟者易患闭塞性动脉硬化症和闭塞性血栓性动脉炎。吸烟可引起慢性阻塞性肺病(简称COPD),最终导致肺原性心脏病。对呼吸道的影响 吸烟是慢性支气管炎、肺气肿和慢性气道阻塞的主要诱因之一。实验研究发现,长期吸烟可使支气管粘膜的纤毛受损、变短,影响纤毛的清除功能。此外,粘膜下腺体增生、肥大,粘液分泌增多,成分也有改变,容易阻塞细支气管。在狗实验中,接触大量的烟尘可引起肺气肿性改变。中国医科大学呼吸疾病研究所的一项研究发现,吸烟者下呼吸道巨噬细胞(AM)、嗜中性粒细胞(PMN)和弹性蛋白酶较非吸烟者明显增多,其机制可能是由于烟粒及有害气体的刺激,下呼吸道单核巨噬细胞系统被激活,活化的AM除能释放弹性蛋白酶外,同时又释放PMN趋化因子,使PMN从毛细血管移动到肺。激活的AM还释放巨噬细胞生长因子,吸引成纤维细胞;以及PMN释放大量的毒性氧自由基和包括弹性硬蛋白酶、胶原酶在内的蛋白水解酶,作用于肺的弹性蛋白、多粘蛋白、基底膜和胶原纤维,从而导致肺泡壁间隔的破坏和间质纤维化。据报导,1986年美国患COPD者近1300万人,1991年死亡9万多人,吸烟是其主要病因。吸烟者患慢性气管炎较不吸烟者高2~4倍,且与吸烟量和吸烟年限成正比例,患者往往有慢性咳嗽、咯痰和活动时呼吸困难。肺功能检查显示呼吸道阻塞,肺顺应性、通气功能和弥散功能降低及动脉血氧分压下降。即使年轻的无症状的吸烟者也有轻度肺功能减退。COPD易致自发性气胸。吸烟者常患有慢性咽炎和声带炎。
  • 多联检测大幅提升呼吸道疾病诊断效率 多家公司布局脚步加快
    近日,继在北京、广州陆续开通“居家快检”服务之后,美团买药又在上海市浦东区、宝山区等地开通试点服务,可一次性检测甲流、乙流、肺炎支原体等12种常见的呼吸道感染病毒或细菌。多联检测有利于实现对呼吸道感染的精准诊疗,符合未来发展趋势。《证券日报》记者了解到,目前,多家体外诊断上市公司纷纷加快了在多种呼吸道病原联合检测领域的布局。快速鉴别多种病原体由于感染不同呼吸道病原体的临床症状和体征较为相似,例如:发热、咳嗽或头痛等,但病理、病程和治疗方法却存在显著差异,因此,鉴别呼吸道的病原体对患者来说十分关键。呼吸道多联检测能够快速鉴别多种呼吸道病原体,在临床上具有重要意义。已有上市公司推出了相关产品或服务。金域医学基于不同检测平台,开展了呼吸道病原体核酸6项、呼吸道多种病原体核酸检测18项及上呼吸道多种病原体靶向测序107种等检测项目。金域医学证券部相关负责人向《证券日报》记者表示:“主要考虑到幼龄儿童频繁感染且采样困难,一次无创采样可同时检测多种病原体,这样不仅解决诊断时效性、辅助明确致病病原体及指导用药问题,还能缓解患者不断往返医院的麻烦和焦虑情绪。”“如果患者同时感染了新冠病毒和肺炎支原体,传统的单病原体检测方法大多只能检测到其中一种病原体,而多联检测可以同时检测出多种病原体,不仅避免了多次检测的麻烦,还能对症下药,大幅提高病人诊疗效率。”一名体外诊断业内人士告诉《证券日报》记者。记者在走访中了解到,目前呼吸道疾病多联检测主要应用于医院、社康中心等场景。深圳市福田区万春堂连锁药房相关工作人员告诉《证券日报》记者:“现在药店有新冠病毒抗原检测试剂盒可以购买,但没有呼吸道多联检测产品,多联检测过程中需要专业人员,在附近的社康中心可以做这项检测。”企业推进多联检测布局在试剂盒研发方面,华大基因方面向《证券日报》记者表示,公司研发的多联检测相关试剂盒已获得国内NMPA和欧盟CE准入资质,检测靶标包括甲型流感病毒、乙型流感病毒等在内的18个病原体。凯普生物自主研发的“甲、乙型流感病毒及新型冠状病毒2019-nCoV核酸检测试剂盒(荧光PCR法)”已获得CE证书,目前暂未取得国内注册证,相关专利“一种新冠病毒、甲乙流感及呼吸道合胞病毒检测试剂盒”已获得国家知识产权局授予发明专利权。此外,明德生物研发的甲、乙型流感病毒及新冠三联检产品也正在注册中。在应用端,美团买药“居家快检”实现了呼吸道多联检测应用场景的延伸。据了解,“居家快检”项目有经过培训的专业送检人员,用户下单成功后,半小时左右会有送检员带着采样盒上门收集样本,完成消毒、封签等环节后,将样本送往实验室进行检测,大概3个小时,检测报告可在小程序查询。华鑫证券研报认为,尽管多联检测的研发周期长,注册认证壁垒高,但其更符合呼吸道疾病的快速诊断需求,是未来发展趋势。
  • 共赴武汉 | 天隆科技与您相约儿童呼吸道非细菌病原学检测及诊断论坛
    会议预告目前,呼吸系统感染仍然是儿科常见的感染性疾病之一。但儿童免疫系统发育不完善,往往导致呼吸系统感染性疾病症状隐匿、不典型且临床诊断困难。儿童呼吸系统感染性疾病病原学研究的相对滞后更造成临床上抗菌药物使用的不合理。因此,及时准确地进行病原学诊断,是临床选择合理治疗方案从而有效控制病情的关键。为进一步加强儿童呼吸系统病原学检测的临床认识,提高儿童呼吸系统感染性疾病的诊疗水平,普及呼吸道系统病原学检测新技术,同时加强临床医师、检验科医师以及院感医师等医务人员的交流与合作,由中华医学会杂志社和《中华儿科杂志》编辑委员会主办,华中科技大学同济医学院附属同济医院儿科承办的“儿童呼吸道非细菌病原学检测及诊断论坛”将于2021年 7月30日-8月1日在湖北省武汉洪广大酒店举行。特邀专家报告会议期间,天隆科技有幸邀请到华中科技大学同济医学院附属同济医院鲁艳军教授就《核酸检测技术在儿童呼吸道感染中的应用》开展专题讲座,探讨核酸检测技术在儿童呼吸系统感染性疾病病原学诊断的应用与发展。报告题目《核酸检测技术在儿童呼吸道感染中的应用》报告时间7月31日 15:10-15:40演讲嘉宾鲁艳军 教授副主任医师 硕士研究生导师华中科技大学同济医学院附属同济医院博士毕业于华中科技大学同济医学院,一直工作于同济医院检验科分子诊断与遗传室,从事各种疾病的分子诊断及咨询。参与多项国家自然基金和省级课题等的研究工作,累计发表SCI论文20余篇,参与编写《实验诊断临床指南》。先后利用基因测序平台、基因芯片平台,建立了多种感染性疾病、遗传病及个体化用药分子诊断方法。目前担任中西医结合检验分会分子诊断专业专业委员会委员和妇幼保健检验医学专业委员会委员。
  • 新研究阐明微塑料在呼吸道沉积
    研究表明,人类每小时可能会吸入约16.2块微塑料,相当于1周吸入1张信用卡的塑料量。而这些微塑料通常含有有毒污染物和化学物质,吸入后可能会造成严重的健康风险,因此了解它们如何在呼吸系统中传播对于预防和治疗呼吸系统疾病至关重要。据13日发表于《流体物理学》杂志的论文,来自澳大利亚悉尼科技大学、伊朗乌尔米亚大学、孟加拉国科米拉大学等单位的一个国际研究团队开发出一种计算流体动力学模型,分析了微塑料在上呼吸道的传输和沉积特征。团队研究了不同形状(球形、四面体和圆柱形)和大小(直径为1.6、2.56和5.56微米)的微塑料在缓慢和快速呼吸条件下的运动。微塑料往往会聚集在鼻腔、口咽或喉咙后部的热点部位。研究人员解释说,呼吸道的形状复杂且高度不对称,加上鼻腔和口咽部复杂的流动行为,导致微塑料偏离流动路径并沉积在这些区域。流动速度、颗粒的惯性和不对称形状影响微塑料的总体沉积,并增加其在鼻腔和口咽区的沉积浓度。呼吸条件和微塑料大小影响呼吸道内总的微塑料沉积速率。流速越大,沉积越少,最大的(直径5.56微米)微塑料比较小的微塑料更容易沉积在呼吸道中。2022年,科学家首次在人类呼吸道深处发现了微塑料,这引发了人们对严重的呼吸道健康危害的担忧。研究人员强调,人们需要更多地意识到空气中存在微塑料及其对健康的潜在影响。他们希望这一结果能为靶向药物输送系统提供参考,并改善健康风险评估。
  • 重磅|北京重大呼吸道传染病研究中心成立|快速诊断技术研究储备是重点
    根据北京市疾病预防控制中心信息,2023年8月20日,在北京召开的重大呼吸道传染病研究学术研讨会上,宣布了北京重大呼吸道传染病研究中心成立。研究中心设立1个工作指导委员会、1个专家委员会、1个工作机构和3个实验室平台,其中专家委员会中包括沈洪兵、王辰、王军志、徐建国、高福和王福生等院士在内的23名专家。北京重大呼吸道传染病研究中心依托北京市疾病预防控制中心(北京市预防医学科学院),联合首都医科大学附属北京地坛医院、佑安医院、朝阳医院、胸科医院,以及中国科学院病原微生物与免疫学重点实验室、中国医学科学院和中日友好医院、昌平实验室等单位相关研究团队,成立并开展相关研究。研究中心借助在京优质研究资源,针对重大呼吸道传染病防控中的关键问题,持续开展快速诊断技术、内生传播规律、关键生物特性、复杂疾病特征、精准预测预警、适宜防治策略、空气消毒净化等相关核心技术研究储备,并密切跟踪、收集全球重大呼吸道传染病研究进展,为首都呼吸道传染病防控体系建设、超大城市呼吸道传染病防控提供科技支撑和政策建议。
  • 重磅│“提高呼吸道病原体核酸检测率”医疗质量改进目标,结核病刻不容缓
    为进一步加强医疗质量安全管理,持续提升医疗质量安全管理科学化、精细化水平,构建优质高效的医疗质量管理与控制体系,国家卫生健康委制定并发布了10项《2021年国家医疗质量安全改进目标》。在此基础上,医政医管局组织各专业国家级质控中心围绕本专业医疗质量安全的薄弱环节和关键点,提出了2021年质控工作改进目标(共33项)。其中,在感染性疾病专业提出了“提高呼吸道病原核酸检测率”的目标。 肺结核:经呼吸道传播的乙类传染病结核病是由结核分枝杆菌感染人体后引起的慢性传染病,人体除头发和指甲外都可以发生结核病。其中,肺脏是最常被侵犯的器官,如被侵犯就叫肺结核。肺结核是我国法定报告的乙类传染病,其主要通过呼吸道传播,1名传染性肺结核患者若不加以治疗,1年平均可感染10-15名健康人。根据世界卫生组织2020年10月14日发布的最新全球结核病年度报告,我国2019年新发结核病患者数约83万例,位居全球第三位;利福平耐药结核病患者数约6.5万例,占全球利福平耐药肺结核患者的14%,位居全球第二位,是全球结核感染负担最重的国家之一。 结核病的早期快速诊断是预防和控制结核病蔓延的关键《“十三五”全国结核病防治规划》要求:到2020年全国结核病患者病原学诊断率达到50%以上,东中部地区和西部地区分别有80%和70%的县(市、区)具备开展结核病分子生物学诊断的能力。为进一步遏制结核病流行,推进健康中国建设,2019年5月国家卫生健康委、国家发展改革委、教育部、科技部、民政部、财政部、国务院扶贫办和国家医保局联合制定了《遏制结核病行动计划(2019—2022 年)》,并指出:结核病的早期快速诊断是预防和控制结核病蔓延的关键。 结核分枝杆菌核酸检测阳性为确诊病例2017年11月,新的《肺结核诊断》行业标准正式发布,明确将结核分枝杆菌核酸检测阳性列为确诊病例,该标准的发布为结核病的确诊提供了新的手段。2020年全球结核病报告数据显示,2019年我国结核病病原学阳性率为47%,在原有的传统痰涂片和痰培养确诊病例的基础上有了大幅提升。 迪澳恒温核酸检测系统优选方案该系统是“十二五”国家科技重大专项成果转化产品,主要通过bst聚合酶及特异性引物在恒温条件下(63℃)对标本中结核分枝杆菌复合群核酸片段进行特异性扩增,扩增产物(dna)与核酸染料结合后发出荧光信号,通过恒温扩增荧光检测仪实时读取荧光信号,根据仪器给出的扩增曲线和出峰时间判断结果,可以快速对人痰标本中的结核分枝杆菌复合群dna进行定性检测。其优势在于:l 结果准确敏感性高,病原学阳性率为64%,远高于痰涂片和痰培养,优于传统pcr;特异性高(96.26%),与痰培养相当。l 安全性高专用收集管全封闭提取痰液样本,无病原体暴露,降低感染风险。l 操作简便,结果快速痰液样本无需特殊处理;耗时短,70min即可获得检测结果。l 通量高、便携检测通量:1-48个,最多可一次性检测46个样本;仪器轻巧,携带方便,移动后无需进行荧光校准,直接检测。l 智能化自动上传数据,无缝接入医院lis、his系统;自动实时监控、判读、出报告。 小结:此次医政医管局提出“提高呼吸道病原核酸检测率”的目标,重点指出:提高呼吸道病原核酸检测率,助力快速明确病因,合理使用抗菌药物,实现呼吸道传染病的早发现、早隔离、早报告和早治疗。结核病作为常见的呼吸道传染病,其早期快速诊断是防控的关键。迪澳恒温核酸检测系统是国家“十二五”重大传染病专项课题成果,因其“安全、准确、快速、便携、联网”,被纳入国家结核病参比实验室的推荐检测方法,已经服务于全国多个省市的结核病防控工作,并在疫情应急防控中也得到了很好的应用,可有效助力提高呼吸道病原核酸检测率。
  • 华大基因基因检测新突破!PTseq呼吸道感染基因检测上市
    8月末,华大基因基因检测在感染性疾病方面取得了新突破,推出了一款名为“PTseqTM呼吸道感染病原微生物靶向高通量基因检测”的产品,重新定义病原测序产品的应用方向,将重点放在呼吸系统感染的核心需求上,积极推动了感染性疾病的精准诊疗发展。呼吸道感染是临床最常见的感染性疾病之一,其病原组成复杂多样,约50%的患者很难明确病原体。因此,进行及时准确的病原学诊断,尽早确定目标病原并进行针对性用药治疗,是改善患者预后、降低病死率和后遗症发生率的关键。因此,华大基因积极研发基因检测产品,帮助医疗机构实现呼吸道感染病原体的精准诊断。华大基因基因检测推出的这款产品利用了国产自主测序平台、专利引物设计系统以及独有的污染校正算法,基于tNGS技术进行检测。它不仅具备了测序技术的广谱性优势,还兼具了多重PCR技术的高灵敏度优势,同时也具备了检测性能与高性价比。其检测范围涵盖了268种靶标,包括227种病原微生物、30种耐药基因和11种毒力基因。它不仅能够覆盖95%以上的呼吸道感染常见核心病原体,还可以进行重点耐药基因和毒力基因的鉴定。华大基因基因检测产品能够全方位地帮助患者制定个体化的抗感染治疗方案,降低耐药性的发生风险,助力呼吸道感染的精准诊疗。此外,华大基因基因检测产品具有高性价比、省时省力的特点,聚焦患者核心需求,可以一步到位进行DNA病原体+RNA病原体检测,价格远低于mNGS检测技术。从收到合格样本到报告出具,整个检测流程只需不到18小时。基于华大基因mNGS产品PMseq®十年检测积累的大数据,这款华大基因基因检测产品采用靶向高通量测序(tNGS)技术,使其在有效性和性价比之间取得了平衡,提升精准防控感染的技术可及性,为更多呼吸道感染患者精准诊疗提供另一种选择,普惠大众。这款产品将成为华大基因病原微生物检测产品体系的有力补充,推动感染性疾病的精准诊疗发展。一直以来,华大基因基因检测利用先进的测序技术,致力于为患者提供更加精准、高效和经济的感染性疾病诊断产品。通过提供准确的病原检测结果和个体化的治疗方案,华大基因基因检测产品为患者提供更优的治疗选择,帮助医疗机构更有效地应对呼吸道感染等感染性疾病。该产品的发布,为未来的感染性疾病诊疗研究提供了更广阔的空间。
  • 申城科研团队联合开发可同时检测12种常见呼吸道病原体的集成微流控芯片
    图说:用于同时检测多种呼吸道病原体的集成微流控芯片 采访对象供图(下同)新民晚报讯(记者 郜阳 通讯员 徐凌)引起呼吸道感染的病原体复杂多样,给全球公共卫生健康带来严重威胁,迫切需要有效的诊断方法。近日,中国科学院上海微系统与信息技术研究所赵建龙、贾春平团队联合上海海洋大学卞晓军团队,开发了一种集成微流控芯片,能够高效、灵敏地同时检测12种常见呼吸道病原体,实现了从样本到结果的快速全自动化诊断流程,为现场多重病原体检测提供了一种有前景的分子诊断平台。相关成果发表于国际学术期刊《分析化学》(Analytical Chemistry)。“这项创新技术的核心在于其高度集成化的设计,它整合了多个步骤,实现了样本处理到结果分析的全自动化流程。”卞晓军介绍,芯片的设计巧妙,通过微柱和气泡捕获阵列结构实现磁珠的高效混合,同时采用油包水体系有效防止了交叉污染。图说:声流混合的优化卞晓军解释,该芯片实现磁珠高效混合的方式主要包括以下六个方面,分别是微柱设计、气泡捕获阵列结构、声流驱动混合、共振频率的应用、油相驱动、微柱间隙的优化。通过上述设计和操作,该芯片能够在大约35秒内实现磁珠的高效混合,为后续的核酸提取和检测提供了均匀的磁珠混合物。“这一成果不仅提高了检测效率,也大大缩短了诊断时间,整个检测过程仅需约70分钟,其多重病原体分析能力、灵敏度和速度均优于现有的大多数微流控芯片分子诊断方法。”卞晓军说,芯片的检测灵敏度极高,检出限低至10拷贝/μL,确保了对低浓度病原体的有效检测。在临床鼻拭子样本的验证中,芯片展现了出色的多重病原体分析能力,无论是单一病原体还是混合感染,都能准确检测。“我们期待芯片能够提供快速、准确的诊断信息,为疾病控制和治疗赢得宝贵时间。”
  • 血清学检测助力疾病防治/疫苗研发, 全新流式微球免疫分析试剂盒主攻抗体同型特异性分析
    仪器信息网讯 新型冠状病毒(SARS-CoV-2)感染引起的新型冠状病毒肺炎(COVID-19)暴发,对人民群众的生命安全和身心健康造成了严重损伤。SARS-CoV-2核酸检测作为COVID-19诊断的主要指标受多种因素影响致其假阴性率较高。为提高诊断效率国家卫生健康委员会早在《新型冠状病毒肺炎诊疗方案(第七版)》中就提出将SARS-CoV-2特异性抗体列为疑似病例确诊的病原学证据之一。近日,路明克斯(Luminex)公司宣布推出全新Guava® SARS-CoV-2多抗原抗体检测试剂盒,用于流式细胞仪,助力全面免疫分析。血清学检测有助于疾病的防治和疫苗研发核酸检测方法作为新冠病毒肺炎确诊的关键技术,在疫情期间发挥着巨大作用,然而,核酸检测多采用咽拭子,新冠病毒感染人体后,上呼吸道(咽部)的病毒含量低,在感染过程中,随着人体机能的增强,病毒载量会有一个相对降低的过程,再加上采样不规范、运输和存储等过程中可能导致病毒RNA的降解,都导致了核酸检测可能出现“假阴性”结果。相反,血清学检测方式中使用的样本是血清,血清中一般不含有冠状病毒或含病毒量较低,可以大大降低医护人员的职业暴露风险;同时血清学检测方法不仅可以用于感染的诊断,也可以检测感染者体内特异性抗体的变化情况、人群的易感状况等,有助于疾病的防治和疫苗研发。血清学检测有利于研究人员通过测量血液(血清或血浆)中 SARS-CoV-2 抗体的存在来确定受试者是否已感染严重急性呼吸综合征冠状病毒2(SARS-CoV-2),也就是导致 COVID-19 的病毒。抗SARS-CoV-2 抗体检测依赖于免疫反应,并可能受多种因素影响,包括病毒暴露量、症状发作后评估阶段、年龄、性别和健康状况。因此,血清学检测的灵敏度和特异性对于准确可靠检测抗SARS-CoV-2 抗体来说非常重要。科普:实验室检测新冠病毒判断人体内是否感染了新冠病毒,有两种常用的实验室检测方法,一种是核酸检测,一种是血清学抗体检测。1、核酸检测核酸检测主要是检测鼻咽拭子、咽拭子、痰液等标本中是否有新冠病毒核酸,检测结果阳性代表感染了新冠病毒。通过核酸检测筛查新冠病毒感染者,是实现“早发现”和“早诊断”最重要的手段和措施,有助于后续尽早给予治疗和干预,减少重症和死亡。人群核酸检测能协助判定疫情规模和流行阶段,同时可用于判断传染性的大小和作为解除隔离的依据。2、血清学抗体检测血清学抗体检测主要检测血清中针对新冠病毒的特异性抗体,即人体在感染新冠病毒后产生的具有免疫功能的蛋白质。在感染的不同时期,出现的抗体类型不同,所以血清学抗体检测主要用于判断既往感染、恢复期诊断、流行病学回顾性调查以及疫苗效果评估等。抗体检测阳性提示被检查者处在恢复期,或者曾经感染过,或者接种过疫苗,需要结合核酸检测结果作出综合分析。助力免疫反应全面评估,路明克斯全新试剂盒该试剂盒是一种新型的、基于微球的免疫分析试剂盒,用于流式细胞仪,可同时分析血清和血浆样本中针对三种SARS-CoV-2抗原(核衣壳蛋白(N)、刺突蛋白受体结合域(RBD)以及刺突蛋白S1亚基(S1))的IgG、IgM和IgA抗体表达。通过对荧光强度和数据结果简单直观地解读,可轻松分析体内相关抗体的水平,为免疫反应提供更全面的评估。Guava® SARS-CoV-2抗体检测试剂盒针对Guava® Muse® 细胞分析仪和Guava® easyCyte™ 系统上进行了系统性的优化,亦可兼容任何配置有488nm或532nm激光器的流式细胞仪。Guava easyCyte流式细胞仪(点击查看)Guava Muse细胞分析仪(点击查看)据悉,针对血清样本中SARS-CoV-2抗体同型特异性分析,其工作流程十分简易:仅需三步即可完成从样本到数据的过程:从抗体孵育,上机检测到数据输出,整体流程不超过75分钟。将50μL人血浆和血清样品以1:400稀释、孵育,然后在Guava® Muse® 细胞分析仪上进行分析。结果如图所示,在样本中清晰地检测到SARS-CoV-2特异性的IgG、IgM和 IgA抗体。综上,该试剂盒主要具有:同时进行分析三种SARS-CoV-2特异性抗原;更加完整的抗体图谱;更加全面的免疫反应评估;简单、快速获取结果;检测通量灵活等特点。
  • 人冠状病毒广谱抑制剂的研究进展(二)
    上期,展鹏教授团队分享并阐述了冠状病毒的基本结构、冠状病毒的生命周期、抗冠状病毒药物的主要靶点等内容,本期将分享靶向冠状病毒刺突蛋白、RdRp、蛋白酶及宿主靶标的一系列冠状病毒广谱抑制剂,以及其对抗击新冠肺炎疫情、预防未来的冠状病毒传播具有的重要意义。本文讨论的冠状病毒广谱抑制剂是针对冠状 病毒与宿主的关键靶点开发的抗病毒化合物。现 阶段,根据这类化合物靶向的生理过程不同,分别靶向冠状病毒的侵入过程、RNA复制过程、多聚 蛋白裂解过程以及宿主靶标。4.1靶向冠状病毒侵入过程的抑制剂在抗病毒药物中,侵入抑制剂可以使病毒的生命周期停止在第一步,使其对宿主的危害最小化。SARS-CoV和SARS-CoV-2是通过刺突蛋白与人类呼吸道上皮细胞的ACE2结合而侵入[16], 而MERS侵入所利用的胞外受体是CD26,也称 作二肽基肽酶(DPP4)。刺突蛋白是一种I型跨膜蛋白(图3),分子 表面高度糖基化,它组装成三聚体后,分布在病毒颗粒的最外层,形成了冠状病毒独特的外观。所有冠状病毒刺突蛋白的胞外部分都是由两个相同的结构域结合而成:氨基端的S1亚单位与受体结 合相关,含有受体结合域(receptor binding domain,RBD);羧基端的S2亚单位含有融合肽 (fusion peptide),与病毒融合相关。在S1完成结合后,S2被细胞表面的TMPRSS2蛋白酶裂解,该过程是病毒与宿主细胞膜融合所必需的[17]。因此,靶向S蛋白或TMPRSS2的分子可成为有效的冠状病毒侵入抑制剂。Figure 3 (A-B ) Structure of S protein trimer, from different angles of view ( PDB code :6XM5) ; ( C) Structure of S protein monomer and location of NTD and RBD; (D) Binding mode of S protein with ACE2 ( PDB code: 7KNY)4.1.1 靶向S蛋白的侵入抑制剂在S蛋白抑制剂中,肽类具有高效、低毒的优势[18]。基于ACE2胞外序列设计的水溶性肽 作为潜在的侵入抑制剂曾受到重视,但其体内半衰期短,难以转运到肺泡[19]。为提高成药性, Lei[20]将ACE2片段与人免疫球蛋白IgGl的Fc结构域结合,提高了血浆中稳定性并增强了结合力。目前,已设计并合成了一系列模拟ACE2的N端螺旋结构域的肽类化合物,如Barh[21]通过扫 描现有的抗菌、抗病毒肽类数据库,得到了10个可能有效阻断S蛋白RBD区域与人ACE2作用 的肽类,但其体内外活性有待进一步研究。在此 基础上,Larue[22]设计了一系列针对刺突蛋白的 ACE2多肽类似物(SAP1 ~SAP6,表1),并在编码荧光素酶并负载SARS-CoV-2刺突蛋白的慢病毒侵染HEK293T-ACE2细胞体系中测定各个多 肽对病毒侵入的抑制作用,各物质活性以半数抑 制浓度(IC50)计量,活性最好为SAP6[(1.90 ± 0. 14) mmol • L-1 ]。同时,上述多肽对SARS- CoV-2刺突蛋白RBD区域的亲和力(Kd)最高为 (0.53 ±0.01) mmol-L-1(SAPl)。Table 1 Amino acid sequence of ACE2 derivatives targeting S proteinCompd.SequenceLocationSAP127-TFLDKFNHEAEDLFYQ42Helix-1SAP237-EDLFYQSSLS5Helix-1SAP379-LAQMYPL-85Helix-3SAP4352-GKGDFRYL-359Helix-11SAP524-QAKTFLDKFNHEA-36Helix-1SAP637-EDLFYQ42Helix-1Curreli等[23]基于ACE2蛋白结合区中30个 氨基酸残基长度的螺旋结构,以8 ~11碳的不饱 和炷链连接肽链上一定跨度的邻近氨基酸,设计了 4个高度螺旋化的装订肽(stapled peptide) NYBSP-1~NYBSP-4,并在 HT1080/ACE2 细胞 与人肺A549/ACE2细胞系中使用基于假病毒的 单循环方法测定了上述多肽分子的EC50值。其中3 个多肽分子显示出了潜在的抗病毒活性:HT1080/ ACE2 中的 EC50值为(1. 9 ~ 4. 1 )μmol• L-1 , A549/ACE2 中 EC50值为(2. 2 ~ 2. 8) μmol • L-1,且在最高测试剂量时,未显示出任何细胞毒性。使用SARS-CoV-2病毒侵染Vero E6细胞时, NYBSP-1显示出了最高的抑制活性,在 17.2 μmol• L-1的浓度完全阻止了细胞病理效应。NYBSP-2和NYBSP-4活性稍低,EC100值为 33 μmol • L-1,NYBSP-4在血浆中的半衰期为289 min,代谢稳定性好。Glasgow 采用“受体陷阱”,(receptor trap)策略,合成出高亲和性、高溶解性的ACE2胞外部分结构域,阻止病毒刺突蛋白与人体细胞表面的 ACE2的结合与入侵[24]。基于此策略设计的肽类分子使冠状病毒难以产生抗药性,并可以抑制几乎所有通过ACE2侵入细胞的冠状病毒[25]。在进一步研究中,Glasgow[24]利用计算机/实验组合的蛋白质工程方法,重新设计了能与SARS- CoV-2刺突蛋白结合的ACE2胞外可溶性区域 (氨基酸18-614) 。最终得到的ACE2变体对于单体刺突蛋白RBD区域的KD app ( apparent binding affinity)值已接近100 pmol• L-1。同时,最理想的 “受体陷阱”分子抑制SARS-CoV-2假病毒和真正 SARS-CoV-2 病毒的 IC50值已达到(10~100) ng-mL-1的范围。这类多肽分子有望真正实现针对利用ACE2入侵宿主细胞的冠状病毒的广谱抑制。由于S蛋白分子高度糖基化,可与多糖衍生物产生多种相互作用,引导人们去探索针对S蛋 白的多糖类抑制物。早在2013年,Milewska就证实了N-(2-羟丙基)-3-三甲氨基甲壳素氯化物 (HTCC,1,图4)及其疏水性修饰的同系物(HM- HTCC)是HCOV-NL63的潜在抑制剂[26],并制备 了不同比例的氨基被甲壳素取代的HTCC衍生物, 各自具有对不同种类人冠状病毒的抑制作用[27]。近期,文献报道了在人呼吸道上皮细胞中,HTCC 具有抑制 SARS-CoV-2 和 MERS-CoV 的 活性。尽管HTCC中单个正电基团对于靶标的作用较弱,但冠状病毒连环化的特性和多聚物分 子中的多个位点协同作用使得HTCC可以稳定 结合S蛋白。目前,虽然HTCC仍未被批准用于 临床,但实验已经证明其在肺部局部给药的可行 性,且毒副作用极低口旳。综合考虑,上述各种甲 壳素衍生物联合使用,有望成为广谱抗人冠状病 毒感染的防治药物。Griffithsin(2,图4)是由海藻中分离得到的天 然血凝素,可利用糖基结构域结合病毒包膜糖蛋白中特定的寡糖[29]。已有研究表明,griffithsin可以与多种病毒表面的糖蛋白相互作用,包括HIV gpl20 以及 SARS-CoV 的 S 蛋白[30-31]。2016 年,Millet 等[32]报道了 griffithsin 对于 MERS-CoV 的抑制作用。在2μg • mL-1 浓度下,griffithsin抑制了 MERS 病毒对 Huh-7、MRC-5 和 Vero-81 细 胞系90%以上的感染性。针对迅速爆发的新冠 肺炎疫情,一系列针对griffithsin抗新冠病毒活性 的研究正在展开。Xia等[33]首先发现griffithsin 对SARS-CoV-2假病毒侵染呈现剂量依赖性地抑 制作用,EC50值为293 nmol• L-1 Cai等[34]网进一 步在体外试验中测定了 griffithsin对SARS-CoV- 2的抑制活性,结果表明,griffithsin对SARS-CoV- 2活病毒的EC50值达63 nmol• L-1,同时对S蛋白 介导的细胞间融合的EC50 值为323 nmol-L-1值得注意的是,该研究团队还报道了 griffithsin与肽 类冠状病毒侵入抑制剂EK1的协同作用。未来, griffithsin可以单独或与EK1联合制成鼻喷剂、吸入剂或凝胶,以预防或治疗新冠肺炎。4. 1.2 TMPRSS2 抑制剂在SARS-CoV或 MERS-CoV的刺突S蛋白 发挥作用之前,要依赖宿主细胞的跨膜蛋白酶 TMPRSS2将其裂解为S1和S2亚单位[35]。针对 这类蛋白酶的抑制剂也可用于阻断各种冠状病毒 的入侵过程。蔡莫司他(nafamostat,3,图5 )最初用于治疗胰腺炎,后发现也是TMPRSS2抑制剂,对MERS- CoV具有拮抗活性[36]。进一步研究发现,蔡莫司 他甲磺酸盐对SARS-CoV-2的EC50值达到了纳摩尔级[37]。同时,在日本批准用于治疗胰腺炎的 药物甲磺酸卡莫司他(camostat mesilate,4,图5) 同样具有抑制TMPRSS2的活性[17],在微摩尔浓度即可有效抑制MERS-CoV感染中合胞体的形成[38],EC50值达到 0.11 μmol• L-1[39]:对 SARS- CoV-2的EC50值为87 nmol• L-1[37]o现阶段仍无 法确定该化合物能否在肺部达到抑制病毒的有效浓度[40],但已有临床研究正在评估其对新冠肺炎的治疗作用。4. 1. 3 宿主细胞激酶抑制剂病毒在生命周期中利用了宿主细胞的若干信 号通路。冠状病毒以内吞方式入侵宿主细胞的过 程中,除S蛋白与ACE2的作用外,还需要Abel- son激酶(Abl)的介导。Abl是细胞中重要的管 家蛋白,参与正常细胞的多个生理过程,同时也与 病毒的入侵与复制密切联系,是开发广谱冠状病 毒抑制剂的有效靶点[41]。伊马替尼(imatinib ,5, 图5)是Abl的抑制剂,已被批准用于治疗慢性粒 细胞白血病。已有研究证实,伊马替尼通过阻断病毒颗粒与胞内体膜融合,从而抑制病毒以内吞 路径入胞,并在感染早期抑制SARS-CoV和 MERS-CoV的增殖關。据报道,伊马替尼抑制 SARS-CoV-2 增殖的 EC50值达到130 nmol-L-1 , 同时对SARS-CoV-2 S蛋白的RBD区域结合活 性高达2. 32 pimol-L-1,可通过双靶点作用有效 抑制SARS-CoV-2的侵入關。但在细胞实验中, 其毒性较为明显,用于治疗新冠肺炎或其他冠状 病毒感染前还要经过充分评估。目前,世界范围 内已有多项伊马替尼针对新冠肺炎的临床试验正 在进行(NCT04394416、EudraCT2020-001236-10、 NCT04357613)。4. 1. 4 组织蛋白酶L与Furin蛋白酶抑制剂组织蛋白酶L位于宿主细胞的胞内体,在无 TMPRSS2表达的细胞中,组织蛋白酶L发挥裂 解活性,介导病毒粒子与胞内体膜融合,从而完成侵入过程[44]。2003年,SARS-CoV疫情引起了人 们对组织蛋白酶L抑制剂研发的重视。随后的十几年内,已发现数种具有抗冠状病毒活性的组 织蛋白酶L抑制剂。其中,K11777(6,图5)是通 过筛选2 000余个人组织蛋白酶抑制剂发现的[45],其对人体或某些寄生虫的半胱氨酸蛋白酶具 有显著抑制作用。K11777抑制SARS-CoV和 MERS-CoV感染的EC50值分别达到0.68 nmol• L-1与46 nmol• L-1,但其不可逆的共价结合机制可能导致较强的毒副作用。目前,K11777仅作为锥虫 病治疗药物进行临床试验M ,其针对SARS- CoV-2的抑制作用有待于进一步确证。SARS-CoV-2 S蛋白的裂解过程也可依赖 Furin蛋白酶进行。Cheng[47]研究了以蔡基荧光 素(naphthofluorescein, 7,图5 )为代表 的数个 Furin蛋白酶抑制剂,证实了此类分子可抑制SARS-CoV-2的感染进程及细胞病理效应。但冠状病毒侵入细胞的不同路径中的关键酶具有互补作用,因此单一种类的蛋白酶抑制剂难以起效[48],而多种抑制剂联用的毒性可能大幅度增加。针对冠状病毒生命周期中宿主蛋白酶的药物应用尚存在一定的风险与挑战。4.2靶向冠状病毒RNA复制过程的抑制剂针对冠状病毒另一类极为重要的治疗靶标是 RNA依赖的RNA聚合酶(RdRp),由非结构蛋白 nspl2、nsp7与nsp8结合构成。其活性位点高度保守,包括在一个β转角中突出的两个连续的天 冬氨酸残基样[49],在不同的正链RNA病毒如冠状病毒和HCV中结构相似[50]。RdRp作为RNA复 制的工具,在病毒的复制中具有重要作用[51]。同 时该酶结构高度特异化,人体无同源酶,是药物开 发的优良靶点。4. 2. 1 RNA依赖的RNA聚合酶抑制剂瑞德西韦(remdesivir ,8,图6-A)是一种腺昔 酸类似物,作为RNA聚合酶的广谱抑制剂,能够抑制人与鼠冠状病毒[52]。更为重要的是,研究证明瑞德西韦在体外针对SARS-CoV-2具有抑制活性, 其抑制 SARS-CoV-2 的 EC50值为 0.77μmol• L-1, 且CC50值大于100 μmol• L-1[53]。基于“老药新用”的原则,2020年10月23日,瑞德西韦获得美 国FDA的正式使用批准,用于治疗12岁以上的新冠肺炎患者[54]。作为一种核昔类似物,瑞德西韦可以与 SARS-CoV、MERS-CoV 和 SARS-CoV-2 RdRp 的 NTP结合位点相互作用。其代谢后以核昔母体9 (GS-441524,图6-A)的形式掺入新生的子代 RNA链中,但允许子链RNA的进一步延长。瑞 德西韦在新生链中移动到-4位时,分子中1,-氰基 与RdRp侧链的Ser861残基发生空间上的碰撞,阻碍了 RdRp在RNA链上的进一步移动,进而导致RNA复制终止(图6-B)。由于终止作用是在瑞德西韦结合RdRp后发生的,该过程称为延迟链终止[54]。延迟链终止机制的RdRp抑制剂针对冠状病 毒具有一定的抗耐药性。包括SARS-CoV-2在内 的冠状病毒会编码具有核酸外切酶活性的nspl4,该酶可以在3,端切除掺入RNA链的异常 碱基,并重启正确的RNA合成[56]。在此机制下, 导致RNA合成即时终止的分子,如去除3,羟基 的核甘类似物,在插入后会被nspl4切除。相对地,在一定延迟后使RNA链合成终止的RdRp抑制剂可有效逃脱nspl4的校对。但研究证实,核酸外切酶仍会识别并切除部分含有瑞德西韦的子 链RNA,并重启RNA复制[57]。同时,病毒体外 传代实验中发现了针对瑞德西韦的耐药现象。与 SARS-CoV-2相似的鼠肝炎病毒(MHV)传代培 养至23代后,其RdRp中出现了不利于瑞德西韦 结合的氨基酸突变[58]。一系列瑞德西韦的临床试验也引起了研究人 员对其临床疗效的争议。2020年5月,原研公司 吉利德发布了适应性试验的“最终报告” (NCT04280705)[59],称瑞德西韦在临床中可缩短住院时间,改善呼吸系统症状。但WHO在2020 年12月2日发表的“团结实验” (NCT04315948) 结果显示,瑞德西韦无法显著改善总体死亡率、通气时间与住院时间,疗效仍待改进[60]。Spin-ner[61]在为期11天的周期内研究了瑞德西韦针 对新冠肺炎轻中症患者的疗效(NCT04292730), 结果表明,在治疗期间,虽然患者的某些临床数 据出现显著改变,但并不表示任何程度的病情改善。近H,Li[62]在一系列细胞实验中比较了瑞德 西韦与核昔母体GS-441524在体外细胞中的抗病毒能力。结果显示,GS-441524在Vero E6细胞 系中对SARS-CoV-2的抑制能力略强于瑞德西韦,但在Calu-3和Caco-2细胞系中活性稍弱。GS-441524亦可显著提高感染鼠肝炎病毒 (MHV)小鼠的生存率,初步展示出广谱抗病毒作用。由于GS-441524合成方便、成本低、可口服, 同样有望成为治疗SARS-CoV-2的候选药物。法匹拉韦(favipiravir, 10,图7)最早在日本上 市,用于治疗流感,其通过与RdRp活性位点结合 发挥抑制活性[63],对所有种类及亚型的流感病毒均有拮抗作用,具有治疗多种RNA病毒感染的 潜力。此外,法匹拉韦在抑制病毒RdRp的同时, 不对哺乳动物机体的RNA及DNA合成路径产生影响[64-65]。虽然法匹拉韦在体外试验中对 SARS-CoV-2的抗病毒活性较低(EC50 = 62μmol• L-1),但在两次临床试验中均显示出良 好的效果3项7]。利巴韦林(ribavirin, 11,图7)是已上市的广谱抗病毒药物,已被批准用于治疗丙型肝炎与呼吸道合胞病毒感染。其作用机制是通过靶向病毒 RdRp而使病毒基因组RNA中出现多位点突变, 最终导致病毒mRNA加帽终止,进而抑制病毒 RNA合成[68]。利巴韦林的疗效已经在SARS- CoV和MERS感染者中得到了证实,但严重的不 良反应限制了其临床应用[69]。且在体内外实验中,利巴韦林对SARS-CoV-2感染的疗效约为瑞德西韦的1 /100[53]。综合考虑,利巴韦林治疗 SARS-CoV-2感染的药效、安全性及潜在的毒性 作用有待在临床试验中进一步研究。Galidesivir( BCX4430,12,图 7 )也是腺昔酸 类似物,最初为病毒RNA聚合酶抑制剂,曾被用 来治疗丙型肝炎,且对多种RNA病毒如SARS- CoV,MERS-CoV, Ebola 病毒和 Marburg 病毒具 有广谱抑制活性。在生物体内,galidesivir首先被 转化成相应的三磷酸核昔,再以此形式插入病毒 新合成的RNA链中,导致RNA转录或复制的提 前终止[70]。因此,其有望成为治疗新冠肺炎的候 选药物[71]。阿兹夫定(azvudine,FNC,13,图7)是首个核 首类双靶点HIV抑制剂,针对多种HIV耐药毒株有良好的抑制活性[72]。新冠肺炎疫情爆发后,在我国进行的一项临床试验(CTR2000029853)显 示,阿兹夫定可以显著缩短新冠肺炎轻中症状患 者的核酸转阴时间,对重症患者也具有潜在的治 疗作用。同时临床上未观察到任何与药物有关的 不良反应,安全性有充分保障。目前针对阿兹μmol• L-1。特别是 S416的选择指数达到10 000以上,且无激酶抑制 活性,在治疗浓度下对宿主细胞毒性极小,基本克 服了脱靶效应,作为广谱抗冠状病毒抑制剂具有 极大的开发潜力。此外,DHODH抑制剂有望在 新冠肺炎的治疗中发挥免疫抑制作用,降低“细 胞因子风暴”产生的炎症损伤。参考文献见 中国药物化学杂志 第31卷 第9期,2021年9月总173期
  • 人冠状病毒广谱抑制剂的研究进展(一)
    人冠状病毒广谱抑制剂的研究进展(一)宋乐天,程玉森,高升华,姜向毅,展鹏*,刘新泳*(山东大学药学院药物化学研究所化学生物学教育重点实验室,山东济南250012)摘要:冠状病毒在全球范围内的三次流行对人类生命健康造成了极大威胁,特别是目前针对新冠疫情仍然缺乏有效的抗病毒药物。冠状病毒广谱抑制剂通过作用于病毒生命周期中的关键靶标或宿主关键因子来抑制病毒感染。本文作者聚焦冠状病毒生命周期中的药物靶点,综述了现有广谱冠状病毒抑制剂的研究进展,以期为研发抗冠状病毒药物提供参考,更好地应对当下及未来的冠状病毒疫情。关键词:冠状病毒 广谱抑制剂 老药新用 药物发现冠状病毒(coronaviruses, CoVs)在自然界中 广泛分布,1947年首次由啮齿类动物体内分离得到,其常在多个宿主间传播,对多种家畜、野生动 物及人类具有潜在威胁[1]。冠状病毒在动物间传播至人类,即形成人冠状病毒HCoV。至今已出现7种对人类具有传染性的冠状病毒,分别为HCoV-229E、HCoV-NL63、HCoV-OC43、HCoV-HKU1、MERS-CoV、SARS-CoV和SARS-CoV-2[2]。常见的人冠状病毒如HCoV-229E和 HCoV-OC43可导致上呼吸道感染、消化道及神经系统症状,不严重且能自愈[3-4],因此在较长时间内未受到重视。2003年暴发的重症急性呼吸综合征(severe acute respiratory syndrome, SARS)疫情造成全球范围内8000多人感染,死亡率为10%左右 2012年暴发的中东呼吸综合征(middle east respiratory syndrome, MERS)死亡率高达39%;而2019年底暴发的新型冠状病毒肺炎(coronavirus disease- 2019, COVID-19)疫情已经导致全球超过1.6亿人感染,350多万人死亡[5],造成了全球公共卫生危机,这促使人类加快对冠状病毒抑制剂的研究,但至今仍缺乏特异性药物或疗法。相比较,广谱抗病毒药物可作用于某一类病毒或某种病毒不同的变异株,具有独特的优势。本文作者聚焦冠状病毒生命周期中的关键靶标,探讨了开发广谱抗冠状病毒药物的思路。1.冠状病毒的基本结构冠状病毒的遗传物质为单正链RNA,可以作为病毒增殖时的遗传物质及复制模板,也能以mRNA的形式参与合成相应的蛋白质,或直接组装入子代病毒颗粒。冠状病毒基因组从5,端开始,前三分之二序列由两个重合的开放阅读框组 成,编码多聚蛋白pplab,其最终转化为16种非 结构蛋白(non-structural protein, nsp),与病毒基 因组转录与复制有关。3,端附近的序列编码冠状 病毒所共有的4种结构蛋白,包括核衣壳蛋白 (nucleocapsid protein, N 蛋白)、刺突糖蛋白 (spike glycoprotein, S 蛋白)、膜蛋白(membrane protein,M蛋白)和高度疏水的包膜蛋白(envelope protein, E 蛋白)(图1)[6] 。2.冠状病毒的生命周期冠状病毒的生命周期包括侵入宿主细胞、基因组复制和结构蛋白合成、子代病毒组装和释放 等基本步骤(图2)。S蛋白介导病毒入侵时,由宿主半胱氨酸组织蛋白酶和跨膜丝氨酸蛋白酶 (transmembrane protease serines 2, TMPRSS2)催化,裂解为S1、S2两个亚单位[7]。S1和S2分别负责病毒与细胞受体结合以及与细胞膜融合,二者协同介导病毒与细胞表面血管紧张素转化酶2 (ACE2)结合,引起S蛋白进一步的空间结构改变,使病毒以脱壳或膜融合方式纳入细胞[8]。相比于SARS-CoV, SARS-CoV-2和宿主细胞膜融合也可有成对碱性氨基酸蛋白酶(PACE,也称 Furin蛋白酶)的参与。其通过选择性水解刺突蛋 白中的氨基酸片段,预活化刺突蛋白以增强其与ACE2的结合力,提高对宿主细胞的侵染能力[9]。病毒侵入后,RNA复制产生子代RNA,并以之为模板合成多聚蛋白,后者在胞浆中受到主蛋白酶(main protease, Mpro或3CLpro)与木瓜样蛋白酶(papain-like protease, PLpro)协同作用,裂解生成功能性蛋白[10]。PLpro除此之外还具有去泛素活性,能在宿主细胞内将蛋白质脱除泛素和类泛素蛋白ISG15 ,以抑制宿主的抗病毒免疫反应[11]。最终,在功能性蛋白的作用下合成子代病毒颗粒的各个组分,装配并释放出胞。Figure 1 The structure of coronaviruses, represented by SARS-CoV-2Figure 2 The life cycle of coronaviruses, represented by SARS-CoV-23.抗冠状病毒药物的主要靶点通过将SARS-CoV-2的基因测序结果与不同的人冠状病毒基因序列对照,可以辨识出一系列 高度保守的序列。这些序列编码各种关键酶或蛋白质,包括S蛋白、主蛋白酶、木瓜样蛋白酶及依 赖RNA的RNA聚合酶(RdRp)等[12]。进一步研究表明,以上酶的活性位点在SARS-CoV-2、SARS-CoV、MERS-CoV乃至其他冠状病毒中保持高度相似[13],因此这些酶都是广谱抗病毒药物研发的重要靶点。同时,病毒增殖的过程中高度依赖宿主细胞的物质、能量与酶,因此靶向宿主细胞中与病毒生命周期密切相关的靶点,也是广谱抗病毒药物开发的重要策略[14]。靶向宿主的广谱冠状病毒抑制剂可充分克服病毒耐药性、突变性与种间差异性,具有较大的发展空间[15]。4.广谱冠状病毒抑制剂本文讨论的冠状病毒广谱抑制剂是针对冠状病毒与宿主的关键靶点开发的抗病毒化合物。现阶段,根据这类化合物靶向的生理过程不同,分别靶向冠状病毒的侵入过程、RNA复制过程、多聚蛋白裂解过程以及宿主靶标… … 下一期将分享靶向冠状病毒刺突蛋白、RdRp、蛋白酶及宿主靶标的一系列冠状病毒广谱抑制剂,以及其对抗击新冠肺炎疫情、预防未来的冠状病毒传播具有的重要意义。 参考文献:[1] BAILEY O T.PAPPENHEIMER A M.CHEEVER F S ,et al. A murine virus (JHM) causing disseminated encephalomyeliti s with extensive destruction of myelin: L Isolation and biological properties of the vinis[J]. J Exp Med, 1949,90(3) :195 -212.[2] YEZ W, YUAN S, YUEN K S, et al. Zoonotic origins of human coronaviruses [ J ]. Int J Biol Sci, 2020,16(10) : 1896 -1897.[3] WEISS S R, NAVAS-MARTIN S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus[ J]. Microbiol Mol Biol Rev,2005,69(4) :635 -664.[4] DE WIT E, VAN DOREMALEN N,FALZARANO D, et al. SARS and MERS: recent insights into emerging coronaviruses [ J ]. Nat Rev Microbiol, 2016,14(Suppl. 1) :523 -524.[5] World Health Organization WHO Coronavirus Disease (COVID-19) Dashboard[EB/OLJ. [2021 -08 -23]. https://covid!9. who. int/.[6] YANG D, LEIBOWITZ J L. The structure and functions of coronavirus genomic 3' and 5' ends[ J]. Virus Res,2015,206:120 -133. [7] LAN J,GE J, YU J, et al. Structure of the SARS- CoV-2 spike receptor-binding domain bound to the ACE2 receptor[ J]. Nature,2020,581(7807) :215 - 220.[8] HAMMING I,TIMENS W,BULTHUIS M L,et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis [ J ]. J Pathol, 2004,203(2) :631 -637.[9] HOFFMANN M, KLEINE-WEBER H, POHLMANN S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells [ J ]. Mol Cell,2020,78 (4) :779 -784.[10] HUANG J, SONG W, HUANG H, et al. Pharmacological therapeutics targeting RNA- dependent RNA polymerase, proteinase and spike protein: from mechanistic studies to clinical trials for CO VID-19 [ J ]. J Clin Med,2020,9(4) :H31.[11] PITSILLOU E, LIANG J, VERVERIS K, et al. Identification of small molecule inhibitors of the deubiquitinating activity of the SARS-CoV-2 papainlike protease: in silico molecular docking studies and in vitro enzymatic activity assay [ J ]. Front Chem, 2020,8:623971.[12] MORSE J S, LALONDE T, XU S, et al. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV [ J]. ChemBioChem, 2020,21(5) :730 -738.[13] COHEN M S. Hydroxychloroquine for the prevention of Co vid-19- searching for evidence [ J ]. N Engl J Med,2020,383(6) :585 -586.[14] 陈思奥.基于宿主的广谱抗病毒药物研究[D].武 汉:武汉工程大学,2019.CHEN S A. Host-based broad-spectrum antiviral drug research [ D ]. Wuhan: Wuhan Institute of Technology ,2019.[15] 罗翔.以宿主为靶标的广谱抗病毒药物设计、合成 与生物活性评价[D].武汉:武汉工程大学,2016.LUO X. Design, synthesis and biological evaluation of broad-spectrum antiviral drug targeting host cell [D]. Wuhan:Wuhan Institute of Technology,2016.
  • 西安交通大学第二附属医院576.00万元采购基因测序仪,流式细胞仪,核酸蛋白分析,细胞计数器,核酸提...
    html,body{-webkit-user-select:text }*{padding:0 margin:0 }.web-box{width:100% text-align:center }.wenshang{margin:0auto width:80% text-align:center padding:20px10px010px }.wenshangh2{display:block color:#900 text-align:center padding-bottom:10px border-bottom:1pxdashed#ccc font-size:16px }.sitea{text-decoration:none }.content-box{text-align:left margin:0auto width:80% margin-top:25px text-indent:2em font-size:14px line-height:25px }.biaoge{margin:0auto /*width:643px */width:100% margin-top:25px }.table_content{border-top:1pxsolid#e0e0e0 border-left:1pxsolid#e0e0e0 font-family:Arial /*width:643px */width:100% margin-top:10px margin-left:15px }.table_contenttrtd{line-height:29px }.table_content.bg{background-color:#f6f6f6 }.table_contenttrtd{border-right:1pxsolid#e0e0e0 border-bottom:1pxsolid#e0e0e0 }.table-left{text-align:left padding-left:20px }详细信息西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告陕西省-西安市状态:公告更新时间:2022-07-29招标文件:附件1西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告发布时间:2022072915:11:08西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告项目概况西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目招标项目的潜在投标人应在线上获取招标文件,并于2022年08月24日09时30分(北京时间)前递交投标文件。一、项目基本情况项目编号:XBMH2022152项目名称:西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目预算金额:576万元/年采购需求:西安交通大学第二附属医院采购分子组及大明宫院区医用试剂一批。本项目共分24个标段,各标标段具体采购的标的物及预算如下:标段号序号采购标的物名称检测方法采购预算(万元/年)中标家数参数要求招标最小单位第1标段(180万)1乙型肝炎病毒核酸定量检测PCR荧光探针法180万1家每测试2沙眼衣原体核酸检测每测试3淋球菌核酸测定每测试4解脲脲原体核酸检测每测试5单纯疱疹病毒II型核酸测定每测试7人巨细胞病毒核酸定量检测每测试8结核分枝杆菌核酸检测每测试9肺炎支原体核酸检测试剂盒每测试10EB病毒核酸检测每测试11幽门螺旋杆菌核酸检测每测试12肠道病毒71型核酸检测每测试13肠道病毒通用型核酸检测每测试14乙型肝炎病毒基因分型检测每测试15丙型肝炎病毒基因分型检测试剂盒每测试16人感染H7N9禽流感病毒RNA检测每测试17甲型H1N1流感病毒RNA检测每测试18季节性流感病毒H3亚型核酸检测每测试19季节性流感病毒H1亚型核酸检测每测试20Ⅰ群肠道沙门氏菌核酸检测每测试21发热伴血小板减少综合征布尼亚病毒核酸检测每测试22柯萨奇病毒A16型核酸检测每测试23柯萨奇病毒A6型核酸检测每测试24柯萨奇病毒A10型核酸检测每测试25呼吸道合胞病毒核酸检测试剂盒每测试26登革病毒核酸检测每测试27HIV1核酸测定试剂盒每测试28中东呼吸综合征冠状病毒核酸检测每测试29寨卡病毒核酸检测每测试30B族链球菌核酸检测每测试31人博卡病毒核酸检测每测试32腺病毒核酸检测每测试33人鼻病毒核酸检测每测试34乙型肝炎病毒前C区/BCP区突变检测PCR反向点杂交法每测试35乙型肝炎病毒YMDD基因突变检测每测试36人乳头瘤病毒核酸检测及基因分型(至少标段含20种)PCR反向点杂交法每测试372019nCoV核酸快速检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等耗材)荧光PCR法(快速扩增)1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限小于等于500copy/L5快速核酸释放技术6扩增时间小于50分钟每测试382019nCoV核酸检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限≤500copy/mL每测试39诺如病毒RNA荧光PCR法每测试40多瘤病毒(BKV、JCV)每测试41人偏肺病毒(HMPV)每测试42副流感病毒PIV每测试43甲型流感病毒每测试44乙型流感病毒每测试45呼吸道病毒核酸六重联检(甲、乙型流感病毒、腺病毒、呼吸道合胞病毒、副流感病毒1型、副流感病毒2型)每测试46白血病融合基因每测试47细小病毒(B19)胶体金法每测试第2标段(145万)1核酸提取或纯化试剂磁珠法145万1家每测试2丙型肝炎病毒核酸定量检测PCR荧光探针法每测试3丙型肝炎病毒基因分型检测每测试4HBVDNA/HCVRNA/HIVRNA(1+2)型三联检测每测试5乙型肝炎病毒核酸定量检测(高敏)检测下限≤10copies/mL每测试6乙型肝炎病毒基因分型检测每测试7丙型肝炎病毒核酸定量检测(高敏)检测下限≤25copies/mL每测试8丙型肝炎病毒核酸定量检测(超敏)检测下限≤15copies/mL每测试9EB病毒核酸定量检测检测下限≤400copies/mL每测试10人巨细胞病毒核酸定量检测检测下限≤400copies/mL每测试11沙眼衣原体核酸检测、解脲脲原体核酸检测、淋球菌核酸检测检测下限≤400copies/mL每测试12新型冠状病毒2019nCoV核酸检测,最低检测下限≤200copy/L(标段含采样管及保存液、提取试剂、扩增试剂、八连管)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4最低检测下限≤200copy/mL每测试13高危型人乳头状瘤病毒DNA检测(15种)荧光PCR法(无需杂交)每测试132019nCoV、甲型流感病毒、乙型流感病毒核酸三联检荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL14腺病毒核酸检测荧光PCR法每测试第3标段(30万)新冠核酸快检试剂2019nCoV核酸快速检测试剂(标段含采样管及保存液、保存管、提取试剂、扩增试剂、吸头、八连管等)快速核酸检测30万1家1磁珠法提取;2.全检测流程≤80分钟3检测模式:核酸提取、扩增检测均在同一封闭;4独立模块,随来随测,独立检测。5.目的基因不少于双靶标(ORFlab基因、N基因);6检测最低下限小于500copy/mL;7检测通量≥8;每测试第4标段(6万)(MTHFRC677T基因检测+高血压个体化治疗基因检测+HLAB27核酸检测等)MTHFRC677T基因检测(3个位点)PCR熔解曲线法6万1家每测试人类CYP2C19基因分型检测每测试CYP2D6*10、CYP2C9*3、ADRB1(1165GC)、AGTR1(116AC)、ACE(I/D)检测每测试人运动神经元存活基因1(SMN1)检测每测试测序反应通用试剂盒(高血压个体化治疗基因检测)聚合酶链杂交法每测试测序反应通用试剂盒(叶酸)每测试测序反应通用试剂盒(他汀类)每测试测序反应通用试剂盒(氯比格雷)每测试测序反应通用试剂盒(华法林)每测试测序反应通用试剂盒(硝酸甘油)每测试人类HLAB27核酸检测荧光PCR法每测试高血压个体化治疗基因检测试剂(5个位点)每测试人类HLAB*5801基因每测试B族链球菌核酸检测每测试结核分枝杆菌复合群核酸检测恒温扩增荧光法每测试MTHERC677基因检测PCR金磁微粒层析法每测试第5标段(20万)(免费按需提供检测的质控品、校准品、辅助试剂及一次性耗材)恒温扩增相关试剂(20万)结核TBRNA检测恒温扩增法20万1家每测试乙肝HBVRNA检测每测试泌尿生殖道病原体RNA检测(沙眼衣原体、解脲脲原体、淋病奈瑟菌、生殖支原体)每测试第6标段(5万)细菌耐药基因检测耐甲氧西林金黄色葡萄球菌耐药基因检测荧光PCR法5万1家每测试碳青霉烯耐药基因KPC检测每测试鲍曼不动杆菌耐碳青霉烯类抗生素基因(OXA23)检测每测试耐万古霉素肠球菌基因(vanA,vanB)检测每测试第7标段(20万)呼吸道病原菌核酸检测呼吸道病原菌核酸检测(标段括常见细菌、特殊病原体如嗜肺军团菌、结核分枝杆菌、肺炎支原体、肺炎衣原体、流感嗜血杆菌等)恒温扩增芯片法20万1家每测试第8标段(30万)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱30万1家每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试类固醇激素类类固醇激素18项(二氢睾酮、脱氢表雄酮硫酸酯、脱氢表雄酮、皮质醇(氢化可的松)、雌酮、17α羟孕酮、孕烯醇酮、皮质酮、11去氧皮质醇、脱氧皮质酮、雄烯二酮、17α羟孕烯醇酮、睾酮、醛固酮、雌二醇、雌三醇、可的松(皮质素)、孕酮)1.82.5ng串联质谱每测试原醛激素5项(醛固酮、血管紧张素I,皮质醇,脱氧皮质酮、可的松)每测试四种激素萃取液(醛固酮、皮质醇,脱氧皮质酮、可的松)每测试血儿茶酚胺代谢检测(肾上腺素、去甲肾上腺素、多巴胺、变肾上腺素、去甲变肾上腺素)每测试尿儿茶8项(DA,E,NE,MN,NMN,3MT,HVA,VMA)每测试高香草酸和香草扁桃酸萃取液每测试人体代谢物浓度胆汁酸谱15项(胆酸、牛磺胆酸、甘氨脱氧胆酸、石胆酸、甘氨胆酸、牛磺熊脱氧胆酸、脱氧胆酸、牛磺石胆酸、甘氨熊脱氧胆酸、熊脱氧胆酸、甘氨石胆酸、牛磺鹅脱氧胆酸、鹅脱氧胆酸、牛磺脱氧胆酸、甘氨鹅脱氧胆酸)串联质谱每测试药物浓度检测免疫抑制剂(他克莫司、环孢霉素A、西罗莫司)药物浓度检测串联质谱每测试抗癫痫药(卡马西平、卡马西平10,11环氧化物、奥卡西平、10羟基卡马西平、丙戊酸/苯巴比妥、苯妥英钠、拉莫三嗪、托吡酯、左乙拉西坦)药物浓度检测每测试抗菌药(万古霉素、伏立康唑、替考拉宁、利奈唑胺、美洛培南、替加环素、莫西沙星、氟康唑)药物浓度检测每测试抗肿瘤药(甲氨蝶呤、氟尿嘧啶、多西他赛、多柔比星)每测试镇静催眠药(阿普唑仑、氯硝西泮、咪达唑仑、劳拉西泮、奥沙西泮、唑吡坦、艾司唑仑、替马西泮、溴西泮)药物浓度检测每测试抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰、艾司西酞普兰、文拉法辛、O–去甲文拉法辛、曲唑酮、氟西汀+去甲氟西汀、氟伏沙明、度洛西汀、安非他酮、羟安非他酮)药物浓度检测每测试抗精神病药(氯氮平及去甲氯氮平、氯丙嗪、利培酮+9–羟基利培酮、喹硫平、阿立哌唑、脱氢阿立哌唑、奥氮平、齐拉西酮、氨磺必利、丙戊酸、舒必利、氟哌啶醇、奋乃静、氟奋乃静)药物浓度检测每测试第9标段(8万)阿司匹林耐药基因检测LTC4S一代测序技术8万1家为临床服用阿司匹林是否存在抵抗提供帮助每测试PTGS1每测试GP1BA高血糖个体化用药基因检测外周血液基因组中的CYP2C9、OCT2、SLCO1B1、PPARy基因多态性性为临床鉴别患者对降糖药物敏感性提供帮助每测试SLCO1B1ApoE检测SLCO1B1检测*1b和*5两个位点;ApoE检测E2和E4两个位点每测试个体化用药指导AGTR1/ACE/ADRB1CY2D6/CYP2C9/CYP3A5/NPPA检测高血压合理用药;总共检测7个基因,10位点每测试CYP2C19氯吡格雷用药每测试CYP2C9VKORC1华法林初始剂量每测试MTHFR检测评判叶酸代谢能力,指导合理补充叶酸每测试ALDH2检测判断硝酸甘油用药无效风险,评估酒精代谢能力每测试细胞因子联合检测试剂细胞因子六联检(IL2\IL4\IL6\IL10\IFNγ\TNFα);流式细胞术(2类注册证)每测试细胞因子七联检(IL2\IL4\IL6\IL10\IL17A\IFNγ\TNFα) 每测试细胞因子八联检(IL2\IL4\IL6\IL10\IL12P70\IL17A\IFNγ、TNFα) 每测试PD1(程序性死亡蛋白1)每测试十二联检(IL1β\IL2\IL4\IL6\IL8\IL10\IL12P70\IL17A\IFNγ\TNFα\IFNα)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试串联质谱检测3多种氨基酸检测试剂盒串联质谱每测试抗生素药物浓度检测试剂盒(阿米卡星、亚胺培南西司他丁、头孢哌酮舒巴坦、哌拉西林他唑巴坦、美罗培南、替加环素、利奈唑胺、万古霉素、去甲万古霉素、替考拉宁、氟康唑、伏立康唑、醋酸卡泊芬净)每测试第10标段(5万)1白色念珠菌核酸检测荧光PCR法5万1家每测试2光滑假丝酵母菌核酸检测每测试3热带假丝酵母菌菌核酸检测每测试4金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌核酸检测每测试5沙门氏菌和志贺氏菌核酸检测每测试6单纯疱疹病毒1型(HSV1)核酸检测每测试7单纯疱疹病毒2型(HSV2)核酸检测每测试8人感染H7N9禽流感病毒RNA检测每测试9麻疹病毒和风疹病毒核酸检测每测试10人乳头瘤病毒核酸检测及基因分型(至少标段含20种)荧光PCR定量法(无需杂交)每测试第11标段(大明宫)(60万)肝炎系列+新冠抗体+胃蛋白酶原乙型肝炎病毒表面抗体测定试剂盒磁微粒化学发光法60万1家每测试乙型肝炎病毒表面抗原测定试剂盒每测试乙型肝炎病毒e抗原测定试剂盒每测试乙型肝炎病毒e抗体测定试剂盒每测试乙型肝炎病毒核心抗体测定试剂盒每测试乙型肝炎病毒前S1抗原测定试剂盒每测试戊型肝炎病毒IgM测定试剂盒每测试丙型肝炎病毒抗体测定试剂盒每测试胃蛋白酶原Ⅰ测定试剂盒每测试胃蛋白酶原Ⅱ测定试剂盒每测试新型冠状病毒(2019nCoV)抗体检测试剂盒(磁微粒化学发光法)每测试抗HCV质控品每毫升HBcAb质控品每毫升HBeAb质控品每毫升HBeAg质控品每毫升HBsAb质控品每毫升HBsAg质控品每毫升抗HAVIgM质控每毫升抗HEVIgM质控品每毫升白介素6测定试剂盒(CMIA)每测试降钙素原测定每测试超敏C反应蛋白测定每测试肌酸激酶同工酶测定每测试心肌肌钙蛋白I测定每测试心肌肌钙蛋白T测定每测试肌红蛋白测定每测试心型脂肪酸结合蛋白测定每测试N端脑钠肽前体测定每测试白介素6质控品IL6免费提供胃蛋白酶原I质控品PGI免费提供胃蛋白酶原II质控品PGII免费提供人类免疫缺陷病毒抗原抗体测定试剂盒每测试梅毒螺旋体抗体测定试剂盒每测试甲型肝炎病毒IgM抗体测定试剂盒每测试激发液免费提供预激发液免费提供清洗液免费提供整装反应杯免费提供整装吸头免费提供样本稀释液免费提供FDP+DD纤维蛋白/原降解复合物胶乳免疫比浊法/颗粒增强免疫比浊法每测试D二聚体检测每测试FDP、D二聚体控制品每毫升D二聚体校准品每毫升FDP校准品每毫升生化类超敏C反应蛋白免疫比浊法每测试尿微量白蛋白测定每测试糖化白蛋白每测试糖化血红蛋白高压液相色谱法每测试第12标段(6万)多种心脑血管药物基因核酸样本预处理试剂心血管个性化用药指导11基因检测+核酸质谱法6万1家每测试心血管个性化用药指导21基因检测每测试高血压个性化用药指导9基因检测每测试冠心病个性化用药指导4基因检测每测试氯吡格雷+阿司匹林个性化用药基因检测每测试抗栓个性化用药9基因检测每测试儿童安全用药基因检测(核心板)每测试叶酸及营养每测试精神类药物基因核酸样本预处理试剂抑郁症个性化用药指导10基因检测每测试精神分裂症个性化用药10基因检测每测试癫痫个性化用药12基因检测每测试焦虑个性化用药9基因检测每测试肿瘤基因检测核酸样本预处理试剂化疗用药每测试男性18项高发肿瘤风险基因筛查(含BRCA基因)每测试女性21项高发肿瘤风险基因筛查(含BRCA基因)每测试核酸样本预处理试剂遗传性耳聋基因检测(20位点)每测试第13标段(5万)肝癌检测高尔基体蛋白73磁微粒化学发光免疫分析法5万1家每测试甲胎蛋白异质体比率(AFPL3%)每测试异常凝血酶原每测试感染三项1.全程C反应蛋白(CRP)上转发光免疫分析每测试2.血清淀粉样蛋白(SAA)每测试3.降钙素原(PCT)每测试第14标段(8万)ApoE基因型载脂蛋白EApoE基因型检测基因芯片法8万1家每测试第15标段(4万)SDC2基因甲基化检测人类SDC2基因甲基化检测荧光PCR法4万1家每测试第16标段(3万)S9甲基化Septin9基因甲基化检测荧光探针法3万1家每测试第17标段(25万)一次性加样枪头一次性加样枪头200微升迪肯酶免一体机专用25万1家每个一次性加样枪头1000微升每个核酸检测耗材盒装灭菌无酶吸头10微升核酸检测专用每个盒装灭菌无酶吸头100微升每个盒装灭菌无酶吸头200微升每个盒装灭菌无酶吸头1000微升每个加长型滤芯枪头(200ul)每个加长型滤芯枪头(10ul)每个HPV细胞保存液HPV细胞保存液(标段含采样器和保存管)5mlHPV分型专用每管采样管及保存管鼻拭子采样管、咽拭子采样管RNA检测标本采集每个第18标段(2万)六项呼吸道病毒核酸联合检测六项呼吸道核酸联合检测(甲、乙型流感病毒,呼吸道合胞病毒,腺病毒,肺炎支原体,人鼻病毒)荧光PCR法2万1家1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试六项呼吸道病原菌核酸检测六项呼吸道病原菌核酸检测(肺炎链球菌、肺炎克雷伯杆菌、流感嗜血杆菌、铜绿假单胞菌、嗜肺军团菌、金黄色葡萄糖菌)荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试第19标段(1万)传染病三项血液筛查核酸检测HBV+HCV+HIV血液筛查核酸检测荧光PCR法1万1家每测试第20标段(3万)心脑血管疾病风险预测MTHFRC677T基因检测(3个位点)PCR金磁微粒层析法2万1家每测试ALDH2(Glu504Lys)基因检测每测试氧化型低密度脂蛋白金磁微粒免疫层析法每测试S100β蛋白检测每测试早产早破预测胰岛素样生长因子结合蛋白1(IGFBP1)——胶体金与酶免方法1万胎膜早破诊断每测试胎儿纤维连接蛋白(fFN)——早产风险预测每测试第21标段(3万)颗粒酶B及穿孔素联合检测GranzymeB抗体试剂流式细胞计数法2万1家每测试穿孔素(Perforin)抗体试剂每测试CD45检测试剂(APCCy7)每测试CD3检测试剂(PerCP)每测试CD8检测试剂(APC)每测试CD16检测试剂(CD16PECy7)每测试CD56检测试剂(CD16PECy7)每测试HLAB27基因分型HLAB27基因分型检测荧光PCR法1万每测试百日咳杆菌核酸检测百日咳杆菌核酸检测荧光PCR法每测试第22标段(3万)耳聋基因检测遗传性耳聋易感基因检测(至少20种基因位点)PCR反向点杂交2万1家每测试艰难梭菌抗原及毒素快检艰难梭菌谷氨酸脱氢酶抗原GDH及毒素A/B酶联免疫层析法1万每测试第23标段(2万)SDC2和TFPI2基因甲基化联合检测SDC2和TFPI2基因甲基化联合检测试剂盒荧光PCR法2万1家每测试第24标段(2万)呼吸道病毒6项呼吸道合胞病毒、呼吸道腺病毒、人偏肺病毒、副流感病毒Ⅰ型、副流感病毒Ⅱ型、副流感病毒Ⅲ型荧光PCR法1万最低检测限:1000copies/mL每测试诺如病毒核酸检测诺如病毒RNA检测(粪标本)荧光PCR法0.5万每测试肠道病毒核酸检测试剂可检测肠道病毒,如柯萨奇病毒A组2型、4型、5型、6型、7型、9型、10型、12型、16型;柯萨奇病毒B组1型、2型、3型、4型、5型;肠道病毒C组;肠道病毒71型和埃可病毒。荧光PCR法0.5万(咽拭子)每测试合计共24个标段,总计576万元各供应商可选择参投一个或多个标段,可兼投兼中,但必须对所投标段内全部标的进行投标报价,不得缺项、漏项。本项目(不接受)联合体投标。二、申请人的资格要求:1、基本资格条件:符合《政府采购法》第二十二条规定的供应商条件;1.1、提供在中华人民共和国境内注册的营业执照(或事业单位法人证书,或社会团体法人登记证书,或执业许可证)、组织机构代码证和税务登记证复印件【如已办理了多证合一,则仅需提供合证后的营业执照】,如供应商为自然人的需提供自然人身份证明。1.2、提供2021年度任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或具有财务审计资质的单位出具的2020年度财务会计报告或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证);2021年以后新成立企业提供成立之日至开标前任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证)。1.3、提供2021年以来至少一个月的纳税证明或完税证明(提供增值税、企业所得税至少一种),纳税证明或完税证明上应有代收机构或税务机关的公章或业务专用章。依法免税的供应商应提供相关文件证明。1.4、提供2021年以来至少一个月的社会保障资金缴存单据或社保机构开具的社会保险参保缴费情况证明。依法不需要缴纳社会保障资金的供应商应提供相关文件证明。1.5、提供履行合同所必需的设备和专业技术能力的书面声明。1.6、提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。2、落实政府采购政策需满足的资格要求:本项目非专门面向中小企业采购。3、特定资格条件:3.1、供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法人身份证,并与营业执照上信息一致;法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证。3.2、投标产品纳入医疗器械(或药品)管理的,须提供供应商有效的医疗器械(或药品)经营许可证或经营备案凭证。3.3、投标产品纳入医疗器械(或药品)管理的,须提供产品有效的医疗器械(或药品)注册证或备案凭证。3.4、若投标产品为进口,供应商须提供有效的完整授权链的产品授权书(授权期限不足2年的须附能够提供持续供货的声明材料,英文授权须提供中文翻译版;制造商直接参与投标的不提供此项)。若投标产品为国产且纳入医疗器械(或药品)管理的,供应商须提供投标产品制造商有效的营业执照和生产许可证。3.5、供应商未被列入“信用中国”网站(www.creditchina.gov.cn)以下情形之一:①记录失信被执行人;②重大税收违法案件当事人名单。同时,在中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中查询没有处于禁止参加政府采购活动的记录名单。本项目(不接受)联合体投标。三、获取招标文件1、时间:2022年08月01日至2022年08月05日,法定工作日每天上午09:0012:00,法定工作日每天下午14:0017:00(北京时间,法定节假日除外)地点:线上发售方式:(1)根据陕西省人民政府《关于加强新型冠状病毒感染的肺炎防控工作的通告》要求,本次招标文件采用线上发售,供应商在文件发售期以内将单位介绍信(介绍信中必须注明项目名称、项目编号、标段号)、经办人身份证、联系电话及电子邮箱等资料,加盖投标单位公章的彩色扫描件发送至邮箱714884417@qq.com,并及时关注邮箱回复消息。(2)招标文件售价人民币¥7200.00元(本招标项目各标段招标文件之和,每单个标段300元),售后不退。(标书费交纳信息:账户名称:陕西西北民航招标咨询有限公司;开户银行:建行西安高新科技支行;账号:61001925700052502533;转帐事由:项目名称简称、编号、标段号,如以个人名义转入,须备注单位名称。财务电话:029883479258013),采购代理机构在收到邮件并确认文件收费到账后,通过邮箱向供应商发售招标文件,请及时查收。四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年08月24日09时30分(北京时间)开标时间:2022年08月24日09时30分(北京时间)地点:西安市唐延路3号唐延国际中心AB区8楼开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜:(1)招标文件售价为每标段300元。(2)本项目接受进口产品投标。(3)采购项目需要落实的政府采购政策:1、《财政部国家发展改革委关于印发〈节能产品政府采购实施意见〉的通知》(财库〔2004〕185号);2、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发〔2007〕51号);3、《财政部环保总局关于环境标志产品政府采购实施的意见》(财库〔2006〕90号);4、《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);5、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);6、《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号);7、《关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19号);8、《政府采购促进中小企业发展管理办法》(财库〔2020〕46号);9、陕西省财政厅关于印发《陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23号)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安交通大学第二附属医院地址:西安市西五路157号联系方式:冯老师029876798612.采购代理机构信息名称:陕西西北民航招标咨询有限公司地址:西安市唐延路3号唐延国际中心AB区8楼联系方式:佘冰霞029883479878046/139912653493.项目联系方式项目联系人:佘冰霞电话:029883479878046/13991265349(2022.07.27)重新招标公告分子组及大明宫耗材项目.pdf×扫码打开掌上仪信通App查看联系方式$('.clickModel').click(function(){$('.modelDiv').show()})$('.closeModel').click(function(){$('.modelDiv').hide()})基本信息关键内容:基因测序仪,流式细胞仪,核酸蛋白分析,细胞计数器,核酸提取仪,液相色谱仪,PCR开标时间:2022-08-2409:30预算金额:576.00万元采购单位:西安交通大学第二附属医院采购联系人:点击查看采购联系方式:点击查看招标代理机构:陕西西北民航招标咨询有限公司代理联系人:点击查看代理联系方式:点击查看详细信息西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告陕西省-西安市状态:公告更新时间:2022-07-29招标文件:附件1西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告发布时间:2022072915:11:08西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告项目概况西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目招标项目的潜在投标人应在线上获取招标文件,并于2022年08月24日09时30分(北京时间)前递交投标文件。一、项目基本情况项目编号:XBMH2022152项目名称:西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目预算金额:576万元/年采购需求:西安交通大学第二附属医院采购分子组及大明宫院区医用试剂一批。本项目共分24个标段,各标标段具体采购的标的物及预算如下:标段号序号采购标的物名称检测方法采购预算(万元/年)中标家数参数要求招标最小单位第1标段(180万)1乙型肝炎病毒核酸定量检测PCR荧光探针法180万1家每测试2沙眼衣原体核酸检测每测试3淋球菌核酸测定每测试4解脲脲原体核酸检测每测试5单纯疱疹病毒II型核酸测定每测试7人巨细胞病毒核酸定量检测每测试8结核分枝杆菌核酸检测每测试9肺炎支原体核酸检测试剂盒每测试10EB病毒核酸检测每测试11幽门螺旋杆菌核酸检测每测试12肠道病毒71型核酸检测每测试13肠道病毒通用型核酸检测每测试14乙型肝炎病毒基因分型检测每测试15丙型肝炎病毒基因分型检测试剂盒每测试16人感染H7N9禽流感病毒RNA检测每测试17甲型H1N1流感病毒RNA检测每测试18季节性流感病毒H3亚型核酸检测每测试19季节性流感病毒H1亚型核酸检测每测试20Ⅰ群肠道沙门氏菌核酸检测每测试21发热伴血小板减少综合征布尼亚病毒核酸检测每测试22柯萨奇病毒A16型核酸检测每测试23柯萨奇病毒A6型核酸检测每测试24柯萨奇病毒A10型核酸检测每测试25呼吸道合胞病毒核酸检测试剂盒每测试26登革病毒核酸检测每测试27HIV1核酸测定试剂盒每测试28中东呼吸综合征冠状病毒核酸检测每测试29寨卡病毒核酸检测每测试30B族链球菌核酸检测每测试31人博卡病毒核酸检测每测试32腺病毒核酸检测每测试33人鼻病毒核酸检测每测试34乙型肝炎病毒前C区/BCP区突变检测PCR反向点杂交法每测试35乙型肝炎病毒YMDD基因突变检测每测试36人乳头瘤病毒核酸检测及基因分型(至少标段含20种)PCR反向点杂交法每测试372019nCoV核酸快速检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等耗材)荧光PCR法(快速扩增)1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限小于等于500copy/L5快速核酸释放技术6扩增时间小于50分钟每测试382019nCoV核酸检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限≤500copy/mL每测试39诺如病毒RNA荧光PCR法每测试40多瘤病毒(BKV、JCV)每测试41人偏肺病毒(HMPV)每测试42副流感病毒PIV每测试43甲型流感病毒每测试44乙型流感病毒每测试45呼吸道病毒核酸六重联检(甲、乙型流感病毒、腺病毒、呼吸道合胞病毒、副流感病毒1型、副流感病毒2型)每测试46白血病融合基因每测试47细小病毒(B19)胶体金法每测试第2标段(145万)1核酸提取或纯化试剂磁珠法145万1家每测试2丙型肝炎病毒核酸定量检测PCR荧光探针法每测试3丙型肝炎病毒基因分型检测每测试4HBVDNA/HCVRNA/HIVRNA(1+2)型三联检测每测试5乙型肝炎病毒核酸定量检测(高敏)检测下限≤10copies/mL每测试6乙型肝炎病毒基因分型检测每测试7丙型肝炎病毒核酸定量检测(高敏)检测下限≤25copies/mL每测试8丙型肝炎病毒核酸定量检测(超敏)检测下限≤15copies/mL每测试9EB病毒核酸定量检测检测下限≤400copies/mL每测试10人巨细胞病毒核酸定量检测检测下限≤400copies/mL每测试11沙眼衣原体核酸检测、解脲脲原体核酸检测、淋球菌核酸检测检测下限≤400copies/mL每测试12新型冠状病毒2019nCoV核酸检测,最低检测下限≤200copy/L(标段含采样管及保存液、提取试剂、扩增试剂、八连管)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4最低检测下限≤200copy/mL每测试13高危型人乳头状瘤病毒DNA检测(15种)荧光PCR法(无需杂交)每测试132019nCoV、甲型流感病毒、乙型流感病毒核酸三联检荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL14腺病毒核酸检测荧光PCR法每测试第3标段(30万)新冠核酸快检试剂2019nCoV核酸快速检测试剂(标段含采样管及保存液、保存管、提取试剂、扩增试剂、吸头、八连管等)快速核酸检测30万1家1磁珠法提取;2.全检测流程≤80分钟3检测模式:核酸提取、扩增检测均在同一封闭;4独立模块,随来随测,独立检测。5.目的基因不少于双靶标(ORFlab基因、N基因);6检测最低下限小于500copy/mL;7检测通量≥8;每测试第4标段(6万)(MTHFRC677T基因检测+高血压个体化治疗基因检测+HLAB27核酸检测等)MTHFRC677T基因检测(3个位点)PCR熔解曲线法6万1家每测试人类CYP2C19基因分型检测每测试CYP2D6*10、CYP2C9*3、ADRB1(1165GC)、AGTR1(116AC)、ACE(I/D)检测每测试人运动神经元存活基因1(SMN1)检测每测试测序反应通用试剂盒(高血压个体化治疗基因检测)聚合酶链杂交法每测试测序反应通用试剂盒(叶酸)每测试测序反应通用试剂盒(他汀类)每测试测序反应通用试剂盒(氯比格雷)每测试测序反应通用试剂盒(华法林)每测试测序反应通用试剂盒(硝酸甘油)每测试人类HLAB27核酸检测荧光PCR法每测试高血压个体化治疗基因检测试剂(5个位点)每测试人类HLAB*5801基因每测试B族链球菌核酸检测每测试结核分枝杆菌复合群核酸检测恒温扩增荧光法每测试MTHERC677基因检测PCR金磁微粒层析法每测试第5标段(20万)(免费按需提供检测的质控品、校准品、辅助试剂及一次性耗材)恒温扩增相关试剂(20万)结核TBRNA检测恒温扩增法20万1家每测试乙肝HBVRNA检测每测试泌尿生殖道病原体RNA检测(沙眼衣原体、解脲脲原体、淋病奈瑟菌、生殖支原体)每测试第6标段(5万)细菌耐药基因检测耐甲氧西林金黄色葡萄球菌耐药基因检测荧光PCR法5万1家每测试碳青霉烯耐药基因KPC检测每测试鲍曼不动杆菌耐碳青霉烯类抗生素基因(OXA23)检测每测试耐万古霉素肠球菌基因(vanA,vanB)检测每测试第7标段(20万)呼吸道病原菌核酸检测呼吸道病原菌核酸检测(标段括常见细菌、特殊病原体如嗜肺军团菌、结核分枝杆菌、肺炎支原体、肺炎衣原体、流感嗜血杆菌等)恒温扩增芯片法20万1家每测试第8标段(30万)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱30万1家每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试类固醇激素类类固醇激素18项(二氢睾酮、脱氢表雄酮硫酸酯、脱氢表雄酮、皮质醇(氢化可的松)、雌酮、17α羟孕酮、孕烯醇酮、皮质酮、11去氧皮质醇、脱氧皮质酮、雄烯二酮、17α羟孕烯醇酮、睾酮、醛固酮、雌二醇、雌三醇、可的松(皮质素)、孕酮)1.82.5ng串联质谱每测试原醛激素5项(醛固酮、血管紧张素I,皮质醇,脱氧皮质酮、可的松)每测试四种激素萃取液(醛固酮、皮质醇,脱氧皮质酮、可的松)每测试血儿茶酚胺代谢检测(肾上腺素、去甲肾上腺素、多巴胺、变肾上腺素、去甲变肾上腺素)每测试尿儿茶8项(DA,E,NE,MN,NMN,3MT,HVA,VMA)每测试高香草酸和香草扁桃酸萃取液每测试人体代谢物浓度胆汁酸谱15项(胆酸、牛磺胆酸、甘氨脱氧胆酸、石胆酸、甘氨胆酸、牛磺熊脱氧胆酸、脱氧胆酸、牛磺石胆酸、甘氨熊脱氧胆酸、熊脱氧胆酸、甘氨石胆酸、牛磺鹅脱氧胆酸、鹅脱氧胆酸、牛磺脱氧胆酸、甘氨鹅脱氧胆酸)串联质谱每测试药物浓度检测免疫抑制剂(他克莫司、环孢霉素A、西罗莫司)药物浓度检测串联质谱每测试抗癫痫药(卡马西平、卡马西平10,11环氧化物、奥卡西平、10羟基卡马西平、丙戊酸/苯巴比妥、苯妥英钠、拉莫三嗪、托吡酯、左乙拉西坦)药物浓度检测每测试抗菌药(万古霉素、伏立康唑、替考拉宁、利奈唑胺、美洛培南、替加环素、莫西沙星、氟康唑)药物浓度检测每测试抗肿瘤药(甲氨蝶呤、氟尿嘧啶、多西他赛、多柔比星)每测试镇静催眠药(阿普唑仑、氯硝西泮、咪达唑仑、劳拉西泮、奥沙西泮、唑吡坦、艾司唑仑、替马西泮、溴西泮)药物浓度检测每测试抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰、艾司西酞普兰、文拉法辛、O–去甲文拉法辛、曲唑酮、氟西汀+去甲氟西汀、氟伏沙明、度洛西汀、安非他酮、羟安非他酮)药物浓度检测每测试抗精神病药(氯氮平及去甲氯氮平、氯丙嗪、利培酮+9–羟基利培酮、喹硫平、阿立哌唑、脱氢阿立哌唑、奥氮平、齐拉西酮、氨磺必利、丙戊酸、舒必利、氟哌啶醇、奋乃静、氟奋乃静)药物浓度检测每测试第9标段(8万)阿司匹林耐药基因检测LTC4S一代测序技术8万1家为临床服用阿司匹林是否存在抵抗提供帮助每测试PTGS1每测试GP1BA高血糖个体化用药基因检测外周血液基因组中的CYP2C9、OCT2、SLCO1B1、PPARy基因多态性性为临床鉴别患者对降糖药物敏感性提供帮助每测试SLCO1B1ApoE检测SLCO1B1检测*1b和*5两个位点;ApoE检测E2和E4两个位点每测试个体化用药指导AGTR1/ACE/ADRB1CY2D6/CYP2C9/CYP3A5/NPPA检测高血压合理用药;总共检测7个基因,10位点每测试CYP2C19氯吡格雷用药每测试CYP2C9VKORC1华法林初始剂量每测试MTHFR检测评判叶酸代谢能力,指导合理补充叶酸每测试ALDH2检测判断硝酸甘油用药无效风险,评估酒精代谢能力每测试细胞因子联合检测试剂细胞因子六联检(IL2\IL4\IL6\IL10\IFNγ\TNFα);流式细胞术(2类注册证)每测试细胞因子七联检(IL2\IL4\IL6\IL10\IL17A\IFNγ\TNFα) 每测试细胞因子八联检(IL2\IL4\IL6\IL10\IL12P70\IL17A\IFNγ、TNFα) 每测试PD1(程序性死亡蛋白1)每测试十二联检(IL1β\IL2\IL4\IL6\IL8\IL10\IL12P70\IL17A\IFNγ\TNFα\IFNα)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试串联质谱检测3多种氨基酸检测试剂盒串联质谱每测试抗生素药物浓度检测试剂盒(阿米卡星、亚胺培南西司他丁、头孢哌酮舒巴坦、哌拉西林他唑巴坦、美罗培南、替加环素、利奈唑胺、万古霉素、去甲万古霉素、替考拉宁、氟康唑、伏立康唑、醋酸卡泊芬净)每测试第10标段(5万)1白色念珠菌核酸检测荧光PCR法5万1家每测试2光滑假丝酵母菌核酸检测每测试3热带假丝酵母菌菌核酸检测每测试4金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌核酸检测每测试5沙门氏菌和志贺氏菌核酸检测每测试6单纯疱疹病毒1型(HSV1)核酸检测每测试7单纯疱疹病毒2型(HSV2)核酸检测每测试8人感染H7N9禽流感病毒RNA检测每测试9麻疹病毒和风疹病毒核酸检测每测试10人乳头瘤病毒核酸检测及基因分型(至少标段含20种)荧光PCR定量法(无需杂交)每测试第11标段(大明宫)(60万)肝炎系列+新冠抗体+胃蛋白酶原乙型肝炎病毒表面抗体测定试剂盒磁微粒化学发光法60万1家每测试乙型肝炎病毒表面抗原测定试剂盒每测试乙型肝炎病毒e抗原测定试剂盒每测试乙型肝炎病毒e抗体测定试剂盒每测试乙型肝炎病毒核心抗体测定试剂盒每测试乙型肝炎病毒前S1抗原测定试剂盒每测试戊型肝炎病毒IgM测定试剂盒每测试丙型肝炎病毒抗体测定试剂盒每测试胃蛋白酶原Ⅰ测定试剂盒每测试胃蛋白酶原Ⅱ测定试剂盒每测试新型冠状病毒(2019nCoV)抗体检测试剂盒(磁微粒化学发光法)每测试抗HCV质控品每毫升HBcAb质控品每毫升HBeAb质控品每毫升HBeAg质控品每毫升HBsAb质控品每毫升HBsAg质控品每毫升抗HAVIgM质控每毫升抗HEVIgM质控品每毫升白介素6测定试剂盒(CMIA)每测试降钙素原测定每测试超敏C反应蛋白测定每测试肌酸激酶同工酶测定每测试心肌肌钙蛋白I测定每测试心肌肌钙蛋白T测定每测试肌红蛋白测定每测试心型脂肪酸结合蛋白测定每测试N端脑钠肽前体测定每测试白介素6质控品IL6免费提供胃蛋白酶原I质控品PGI免费提供胃蛋白酶原II质控品PGII免费提供人类免疫缺陷病毒抗原抗体测定试剂盒每测试梅毒螺旋体抗体测定试剂盒每测试甲型肝炎病毒IgM抗体测定试剂盒每测试激发液免费提供预激发液免费提供清洗液免费提供整装反应杯免费提供整装吸头免费提供样本稀释液免费提供FDP+DD纤维蛋白/原降解复合物胶乳免疫比浊法/颗粒增强免疫比浊法每测试D二聚体检测每测试FDP、D二聚体控制品每毫升D二聚体校准品每毫升FDP校准品每毫升生化类超敏C反应蛋白免疫比浊法每测试尿微量白蛋白测定每测试糖化白蛋白每测试糖化血红蛋白高压液相色谱法每测试第12标段(6万)多种心脑血管药物基因核酸样本预处理试剂心血管个性化用药指导11基因检测+核酸质谱法6万1家每测试心血管个性化用药指导21基因检测每测试高血压个性化用药指导9基因检测每测试冠心病个性化用药指导4基因检测每测试氯吡格雷+阿司匹林个性化用药基因检测每测试抗栓个性化用药9基因检测每测试儿童安全用药基因检测(核心板)每测试叶酸及营养每测试精神类药物基因核酸样本预处理试剂抑郁症个性化用药指导10基因检测每测试精神分裂症个性化用药10基因检测每测试癫痫个性化用药12基因检测每测试焦虑个性化用药9基因检测每测试肿瘤基因检测核酸样本预处理试剂化疗用药每测试男性18项高发肿瘤风险基因筛查(含BRCA基因)每测试女性21项高发肿瘤风险基因筛查(含BRCA基因)每测试核酸样本预处理试剂遗传性耳聋基因检测(20位点)每测试第13标段(5万)肝癌检测高尔基体蛋白73磁微粒化学发光免疫分析法5万1家每测试甲胎蛋白异质体比率(AFPL3%)每测试异常凝血酶原每测试感染三项1.全程C反应蛋白(CRP)上转发光免疫分析每测试2.血清淀粉样蛋白(SAA)每测试3.降钙素原(PCT)每测试第14标段(8万)ApoE基因型载脂蛋白EApoE基因型检测基因芯片法8万1家每测试第15标段(4万)SDC2基因甲基化检测人类SDC2基因甲基化检测荧光PCR法4万1家每测试第16标段(3万)S9甲基化Septin9基因甲基化检测荧光探针法3万1家每测试第17标段(25万)一次性加样枪头一次性加样枪头200微升迪肯酶免一体机专用25万1家每个一次性加样枪头1000微升每个核酸检测耗材盒装灭菌无酶吸头10微升核酸检测专用每个盒装灭菌无酶吸头100微升每个盒装灭菌无酶吸头200微升每个盒装灭菌无酶吸头1000微升每个加长型滤芯枪头(200ul)每个加长型滤芯枪头(10ul)每个HPV细胞保存液HPV细胞保存液(标段含采样器和保存管)5mlHPV分型专用每管采样管及保存管鼻拭子采样管、咽拭子采样管RNA检测标本采集每个第18标段(2万)六项呼吸道病毒核酸联合检测六项呼吸道核酸联合检测(甲、乙型流感病毒,呼吸道合胞病毒,腺病毒,肺炎支原体,人鼻病毒)荧光PCR法2万1家1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试六项呼吸道病原菌核酸检测六项呼吸道病原菌核酸检测(肺炎链球菌、肺炎克雷伯杆菌、流感嗜血杆菌、铜绿假单胞菌、嗜肺军团菌、金黄色葡萄糖菌)荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试第19标段(1万)传染病三项血液筛查核酸检测HBV+HCV+HIV血液筛查核酸检测荧光PCR法1万1家每测试第20标段(3万)心脑血管疾病风险预测MTHFRC677T基因检测(3个位点)PCR金磁微粒层析法2万1家每测试ALDH2(Glu504Lys)基因检测每测试氧化型低密度脂蛋白金磁微粒免疫层析法每测试S100β蛋白检测每测试早产早破预测胰岛素样生长因子结合蛋白1(IGFBP1)——胶体金与酶免方法1万胎膜早破诊断每测试胎儿纤维连接蛋白(fFN)——早产风险预测每测试第21标段(3万)颗粒酶B及穿孔素联合检测GranzymeB抗体试剂流式细胞计数法2万1家每测试穿孔素(Perforin)抗体试剂每测试CD45检测试剂(APCCy7)每测试CD3检测试剂(PerCP)每测试CD8检测试剂(APC)每测试CD16检测试剂(CD16PECy7)每测试CD56检测试剂(CD16PECy7)每测试HLAB27基因分型HLAB27基因分型检测荧光PCR法1万每测试百日咳杆菌核酸检测百日咳杆菌核酸检测荧光PCR法每测试第22标段(3万)耳聋基因检测遗传性耳聋易感基因检测(至少20种基因位点)PCR反向点杂交2万1家每测试艰难梭菌抗原及毒素快检艰难梭菌谷氨酸脱氢酶抗原GDH及毒素A/B酶联免疫层析法1万每测试第23标段(2万)SDC2和TFPI2基因甲基化联合检测SDC2和TFPI2基因甲基化联合检测试剂盒荧光PCR法2万1家每测试第24标段(2万)呼吸道病毒6项呼吸道合胞病毒、呼吸道腺病毒、人偏肺病毒、副流感病毒Ⅰ型、副流感病毒Ⅱ型、副流感病毒Ⅲ型荧光PCR法1万最低检测限:1000copies/mL每测试诺如病毒核酸检测诺如病毒RNA检测(粪标本)荧光PCR法0.5万每测试肠道病毒核酸检测试剂可检测肠道病毒,如柯萨奇病毒A组2型、4型、5型、6型、7型、9型、10型、12型、16型;柯萨奇病毒B组1型、2型、3型、4型、5型;肠道病毒C组;肠道病毒71型和埃可病毒。荧光PCR法0.5万(咽拭子)每测试合计共24个标段,总计576万元各供应商可选择参投一个或多个标段,可兼投兼中,但必须对所投标段内全部标的进行投标报价,不得缺项、漏项。本项目(不接受)联合体投标。二、申请人的资格要求:1、基本资格条件:符合《政府采购法》第二十二条规定的供应商条件;1.1、提供在中华人民共和国境内注册的营业执照(或事业单位法人证书,或社会团体法人登记证书,或执业许可证)、组织机构代码证和税务登记证复印件【如已办理了多证合一,则仅需提供合证后的营业执照】,如供应商为自然人的需提供自然人身份证明。1.2、提供2021年度任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或具有财务审计资质的单位出具的2020年度财务会计报告或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证);2021年以后新成立企业提供成立之日至开标前任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证)。1.3、提供2021年以来至少一个月的纳税证明或完税证明(提供增值税、企业所得税至少一种),纳税证明或完税证明上应有代收机构或税务机关的公章或业务专用章。依法免税的供应商应提供相关文件证明。1.4、提供2021年以来至少一个月的社会保障资金缴存单据或社保机构开具的社会保险参保缴费情况证明。依法不需要缴纳社会保障资金的供应商应提供相关文件证明。1.5、提供履行合同所必需的设备和专业技术能力的书面声明。1.6、提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。2、落实政府采购政策需满足的资格要求:本项目非专门面向中小企业采购。3、特定资格条件:3.1、供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法人身份证,并与营业执照上信息一致;法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证。3.2、投标产品纳入医疗器械(或药品)管理的,须提供供应商有效的医疗器械(或药品)经营许可证或经营备案凭证。3.3、投标产品纳入医疗器械(或药品)管理的,须提供产品有效的医疗器械(或药品)注册证或备案凭证。3.4、若投标产品为进口,供应商须提供有效的完整授权链的产品授权书(授权期限不足2年的须附能够提供持续供货的声明材料,英文授权须提供中文翻译版;制造商直接参与投标的不提供此项)。若投标产品为国产且纳入医疗器械(或药品)管理的,供应商须提供投标产品制造商有效的营业执照和生产许可证。3.5、供应商未被列入“信用中国”网站(www.creditchina.gov.cn)以下情形之一:①记录失信被执行人;②重大税收违法案件当事人名单。同时,在中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中查询没有处于禁止参加政府采购活动的记录名单。本项目(不接受)联合体投标。三、获取招标文件1、时间:2022年08月01日至2022年08月05日,法定工作日每天上午09:0012:00,法定工作日每天下午14:0017:00(北京时间,法定节假日除外)地点:线上发售方式:(1)根据陕西省人民政府《关于加强新型冠状病毒感染的肺炎防控工作的通告》要求,本次招标文件采用线上发售,供应商在文件发售期以内将单位介绍信(介绍信中必须注明项目名称、项目编号、标段号)、经办人身份证、联系电话及电子邮箱等资料,加盖投标单位公章的彩色扫描件发送至邮箱714884417@qq.com,并及时关注邮箱回复消息。(2)招标文件售价人民币¥7200.00元(本招标项目各标段招标文件之和,每单个标段300元),售后不退。(标书费交纳信息:账户名称:陕西西北民航招标咨询有限公司;开户银行:建行西安高新科技支行;账号:61001925700052502533;转帐事由:项目名称简称、编号、标段号,如以个人名义转入,须备注单位名称。财务电话:029883479258013),采购代理机构在收到邮件并确认文件收费到账后,通过邮箱向供应商发售招标文件,请及时查收。四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年08月24日09时30分(北京时间)开标时间:2022年08月24日09时30分(北京时间)地点:西安市唐延路3号唐延国际中心AB区8楼开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜:(1)招标文件售价为每标段300元。(2)本项目接受进口产品投标。(3)采购项目需要落实的政府采购政策:1、《财政部国家发展改革委关于印发〈节能产品政府采购实施意见〉的通知》(财库〔2004〕185号);2、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发〔2007〕51号);3、《财政部环保总局关于环境标志产品政府采购实施的意见》(财库〔2006〕90号);4、《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);5、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);6、《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号);7、《关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19号);8、《政府采购促进中小企业发展管理办法》(财库〔2020〕46号);9、陕西省财政厅关于印发《陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23号)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安交通大学第二附属医院地址:西安市西五路157号联系方式:冯老师029876798612.采购代理机构信息名称:陕西西北民航招标咨询有限公司地址:西安市唐延路3号唐延国际中心AB区8楼联系方式:佘冰霞029883479878046/139912653493.项目联系方式项目联系人:佘冰霞电话:029883479878046/13991265349(2022.07.27)重新招标公告分子组及大明宫耗材项目.pdf
  • 一文了解侵袭美国的人偏肺病毒HMPV|核酸检测技术可确诊
    国内多地出现感染,暂无疫苗和药物近期,人偏肺病毒备受关注。今年以来,我国与美国间人员往来已逐步恢复,存在HMPV感染者输入我国的可能。但考虑到美国当前HMPV疫情已显著降低,以及我国目前已进入夏季,气候条件不适宜疫情传播,因此可以预计美国前期HMPV高发疫情对我国影响有限。目前暂时尚无hMPV疫苗上市,部分实验性候选疫苗正处于临床前研发阶段。关于人偏肺病毒人偏肺病毒(Human metapneumovirus,HMPV):属于肺病毒科,偏肺病毒属,有包膜的单股负链RNA病毒。2001年,由荷兰学者首次从未知病原体引起呼吸道感染患儿的鼻咽抽吸物样本中检出。血清学研究表明其存在至少60年,在世界各地均有分布,是常见呼吸道病原体之一。电镜下的HMPV(中国疾控中心)2021年8月18日,中国疾病预防控制中心在《Nature communications》发表了一项历时11年的来自于全国106个城市的277家哨点医院和92个参考实验室的呼吸道传染病监测数据研究。根据监测数据显示,在引起急性呼吸道感染的8种主要呼吸道病毒中,HMPV在全年龄段的阳性率占比为4.1%,其中在儿童和老年人中的阳性率占比分别为4.8%和4.7%。中国疾控中心对2009-2019年呼吸道传染病监测数据分析表明,在引起急性呼吸道感染的8种病毒中,HMPV排名第8位,阳性率占比为4.1%,远低于流感病毒的28.5%。传播方式:HMPV主要通过咳嗽和打喷嚏产生的飞沫或气溶胶传播,与感染者密切接触和接触病毒污染的环境也可能造成传播。一般来说,感染后潜伏期约3-5天,HMPV诱发的免疫保护较弱,反复感染常见。HMPV全年均有检出,但以冬春季检出率最高。此外,HMPV感染也可以引起暴发流行。核酸检测可明确诊断hMPV感染HMPV感染诊断技术包括病毒培养、核酸检测、抗原检测和血清学抗体检测。人偏肺病毒HMPV感染诊断技术一览核酸检测RT-PCR 是目前检测 HMPV 感染最敏感、最常用的方法抗体检测病毒感染和特异性抗体出现之间存在窗口期,抗体检测不能及时反映感染情况,对于病原体的早期诊断意义不大抗原检测HMPV 抗原检测的主要方法为直接免疫荧光法,检测快速但其灵敏度远远低于 RT- PCR。病毒培养因HIPV 在病毒培养中生长缓慢且仅有轻微的细胞病变效应,故病毒培养不适用于 HMMPV 检测。国内首个人偏肺病毒核酸检测试剂盒(PCR-荧光探针法)达安基因6月5日在互动平台表示,公司有人偏肺病毒核酸检测试剂盒(PCR-荧光探针法)产品,并已获得国家药品监督管理局的颁发的医疗器械注册证。在HMPV发现的过去21年里,由于缺乏相关精准、有效的检测产品,国内对于HMPV感染的检测存在不足,很大程度上影响了HMPV的整体检出率。临床症状|如何预防?HMPV可致上、下呼吸道感染,临床表现可从轻度呼吸道症状到重症肺炎。临床表现与RSV感染相似,表现为咳嗽、喘息、发热、紫绀等,其中30%~40%患儿出现发热症状,70%~80%患儿出现喘息症状。住院患者的临床表现包括细支气管炎或哮喘加重以及重症肺炎和急性呼吸窘迫综合征。与防控其他常见呼吸道病毒类似,公众应保持生活规律和良好心态,前往人员密集场所或环境最好佩戴口罩,同时做到勤洗手、勤通风、科学消毒等预防措施可有效降低感染HMPV的机会。——会议推荐——(点击下图报名)一、主办单位仪器信息网二、会议时间2023年6月28日-30日三、会议日程第七届PCR前沿技术与应用网络会议(iCPCR 2023)时间专场主题6月28日 上午新产品与新技术6月28日 下午分子诊断应用6月29日 上午药品/生物制品应用6月29日 下午农林育种应用6月30日 上午动植物疫病应用(上)6月30日 下午动植物疫病应用(下)详细日程点击查看:https://www.instrument.com.cn/webinar/meetings/icpcr2023/ 扫码直达报名页面温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。
  • 病毒溯源,笼罩在“德特里克堡”上的疑云
    一段时间以来,美国政客不断借溯源问题搞政治操弄,对美国自身早期病例和生物实验室的重重疑云避而不谈。目前,已经有很多线索显示,新冠病毒可能在2019年年底之前已在美国多地出现。多国媒体、专家等纷纷表示,美方应拿出透明、负责态度,公布并检测早期病例数据,允许国际社会彻查德特里克堡和美国在海外200多个生物实验室。 “究竟有多少人被误认为流感或肺炎患者,而实际是新冠病毒感染者?”  2019年下半年以来,美国的一些公共卫生事件疑点重重。据多家美国媒体报道,美国威斯康星州2019年7月大规模暴发“电子烟肺炎”并席卷多州,患者肺部CT部分区域呈现团状模糊的白色,呈现“大白肺”状态,与新冠肺炎症状极其相似。英国广播公司2019年9月称之为“美国电子烟肺病潮”,“病人症状包括咳嗽、气喘、疲倦,部分人曾经呕吐或腹泻”。  2019年7月,弗吉尼亚州发生不明原因呼吸系统疾病,靠近马里兰州德特里克堡生物实验室的两家养老院出现不明原因导致肺炎的呼吸道疾病。2019年9月,马里兰州报告称“电子烟肺炎”患者病例数增加了一倍。  美国疾病控制和预防中心报告说,自2019年7月开始,已有2807人感染“电子烟肺炎”,死亡68例。高烧、干咳、呼吸困难、全身无力、磨玻璃状“白肺”影像——医生对病人的描述与新冠肺炎症状几无差别,且致病原因未知。但2020年2月份新冠肺炎开始流行后,疾控中心就停止了对“电子烟肺炎”相关数据的统计。另据美国媒体报道,2019年7月,弗吉尼亚州一家养老院曾经出现症状与新冠肺炎高度相似的“呼吸系统疾病暴发”。  美国有线电视新闻网报道称,“电子烟肺炎”是新冠肺炎疫情之前“美国的关键公共卫生危机”,“然后我们停止讨论这件事”。据估计,美国2019年冬季至少有3200万流感病例。生物学领域著名研究机构斯克里普斯研究所的遗传学家埃里克托波尔2020年4月接受媒体采访时质疑:“究竟有多少人被误认为流感或肺炎患者,而实际是新冠病毒感染者?”  “美国很可能更早就出现了罕见的零星病例”  关于美国疫情早期病例数据的疑问也有很多。美国官方数据显示,美国2020年1月21日报告首例新冠肺炎病例,2020年2月29日报告首例新冠肺炎死亡病例。  美国《棕榈滩邮报》和《迈阿密先锋报》日前披露说,佛罗里达州卫生部网站曾发布当地2020年1月和2月出现新冠肺炎症状或新冠病毒检测结果为阳性的171名患者数据,然而这些数据于2020年5月4日晚被删除,后来该州卫生部发现删除数据导致病例号中断,又不得不恢复相关数据。  美国疾控中心研究人员2020年11月在美国《临床传染病》杂志上报告说,他们检测了美国红十字会2019年12月13日至2020年1月17日期间采集的7389份血液样本,结果发现其中106份含有新冠病毒抗体。美国疾控中心呼吸道病毒免疫学团队首席研究员娜塔莉索恩伯格表示,这些研究前后一致,“美国很可能更早就出现了罕见的零星病例”。  美国《华尔街日报》报道称,血液样本显示,美国5个州出现新冠肺炎的时间比人们之前了解的要早,有人在2019年12月就已感染这种病毒。有媒体报道称,这一检测结果出来后,美国政府高官以“干扰对华溯源工作,对美国国家安全不利”为由叫停该溯源调查项目,封存了2020年1月2日以前的血液样本,不再检测。  “国际社会必须了解真相”  连日来,多国专家和媒体纷纷发声,支持对美国、对德特里克堡生物实验室进行溯源调查。该实验室曾是美国陆军传染病医学研究所的一个站点,于2019年7月突然关闭。报告显示,这个特殊的实验室储存了各种致命病毒,如埃博拉、天花、非典、中东呼吸综合征和新型冠状病毒等。  菲律宾—金砖国家战略研究所等多家机构近日联合举办线上论坛暨《种族主义病毒无疫苗可用》新书发布会。多名学者就新冠病毒溯源问题发起网络联名请愿,呼吁国际社会扩大调查范围,尤其应调查美军德特里克堡生物实验室。目前网上签名请愿仍在开展,引发各界广泛关注。  请愿发起人之一、曾任菲律宾驻美国大使馆新闻官的帕格利纳万发布新书《种族主义病毒无疫苗可用》。帕格利纳万表示,各国应当以科学态度对待疫情相关议题,而不是施加政治干预。另一名请愿发起人、菲律宾专栏作家劳拉尔表示,由世界卫生组织牵头的新冠病毒溯源应当扩大调查范围,纳入德特里克堡生物实验室。很多与会者表示,美国应开放德特里克堡生物实验室调查,回应世界对病毒溯源真相的强烈诉求。  活动发起的网上请愿书表示,德特里克堡生物实验室至今仍是世卫组织专家不能忽视的一个谜,种种迹象表明该实验室“非常危险”。菲律宾网友评论称,“美国甩锅武汉实验室,就是为了分散人们对德特里克堡的注意力”“美国不择手段拒绝世卫组织调查,就是怕更多的黑暗秘密暴露”“国际社会必须了解真相”。  南非民主独立党主席、开普敦市议员安瓦尔亚当斯日前在当地主流媒体《星报》等发表评论文章,批评美国部分人将新冠病毒溯源政治化,并认为世卫组织应考虑对美国德特里克堡生物实验室进行溯源调查。  俄罗斯《劳动报》评论员米哈伊尔莫罗佐夫日前在俄自由媒体网发表文章指出,一些美国病毒学家和官员曾多次承认,在中国出现疫情之前,美国已有新冠肺炎死亡病例,但该情况没有得到足够重视。世卫组织专家组应前往美军德特里克堡和美方遍布全球的生物实验室展开调查。
  • VacCon倒计时4周!中生/神州细胞/厦大/辉瑞/康希诺/艾博/武汉病毒所等齐聚武汉,直击新型疫苗研发与产业化最新热点!
    新冠肺炎疫情下,国内外疫苗行业进入了一个新的发展阶段,在与疫情赛跑的过程中,新冠疫苗研发生产的经验也给全球疫苗行业带来了新的发展机遇。值此之际,VacCon第五届新型疫苗研发与产业化论坛将于2023年1月6-7日重磅亮相武汉!60+疫苗研发领域政府监管机构专家、科研专家科学家及领军企业负责人将带您探寻新型疫苗创新研发与前沿应用。【转发领取免费参会票!】仅限科研院校/疫苗、制药研发制造企业!转发本篇推送至朋友圈或2个疫苗相关微信社群,【将转发截图上传至报名链接中】,即可获得优先审核资格!扫描下方二维码,立即报名参会吧!记得上传转发截图哦~展位即将售罄!多种合作形式火热开放中!主题演讲,产品展示,插页广告,晚宴赞助,吊绳&名卡、手提袋、瓶装水、椅套广告等多种合作形式火热开放中!名额有限,详情咨询:180 1793 9885(同微信)【议程重磅首发】疫苗产业化热点前瞻(监管/国际化)专场国内外免疫规划与疫苗研发趋势全球疫苗研发进程与中国疫苗展望高福,中国科学院院士(确认中)高效广谱抗冠疫苗和药物防控现在和未来的新冠疫情(拟)姜世勃,复旦大学病原微生物研究所所长,美国微生物科学院院士圆桌讨论:新发传染病预防:科研转化、研发与产业化的机遇与挑战石正丽,武汉病毒研究所新发传染病研究中心主任,美国微生物科学院院士国际化生产质量建设与先进生产实践ICH疫苗制品中污染控制策略(CCS)要求/与国际接轨-欧盟最新版GMP无菌制剂要求解析高光,帕斯适宜卫生科技组织(PATH)高级技术官员,原美国FDA生物制品中心担任主审官员和检查员高生物安全风险新冠病毒灭活疫苗生产设施工艺布局介绍高腾飞,中国电子系统工程第四建设有限公司-技术研究院生命科学技术研究中心,副总经理抗新冠预防鼻用新药与疫苗研发(拟)段凯,武汉生物制品研究所有限责任公司党委书记、总经理疫苗国际市场需求与监管趋势解读袁瑗,帕斯适宜卫生科技组织(PATH)中国国家代表WHO标准下疫苗生产技术转移要点与案例分享陶立峰,智飞龙科马执行总裁兼质量中心总经理兼医学中心总经理猴痘疫苗的研究进展郑海发,国家药典委员,康泰生物副董事长、副总裁、首席科学家,民海生物科技有限公司总经理满足质量放行要求的疫苗生物学评价开发和验证陆航,嘉译生物医药(杭州)有限公司创始人兼首席执行官圆桌讨论:中国疫苗出海机遇与挑战,我们该如何与国际接轨?主持人:袁瑗,帕斯适宜卫生科技组织(PATH)中国国家代表人/兽用新型疫苗专场黏膜疫苗与病毒载体疫苗鼻喷流感病毒载体新冠肺炎疫苗研发夏宁邵,厦门大学生命科学学院/公共卫生学院教授吸入用新冠疫苗CMC与生产吴克,湖北大学产业教授、武汉博沃生物科技有限公司总裁吸入型新冠疫苗研发进展及临床应用舒俭德,康希诺高级医学事物副总裁外泌体介导的雾化吸入式COVID-19疫苗研究程柯,Xsome Biotech 创始人,美国北卡州立大学讲席教授(online)广谱高效新冠亚单位滴鼻黏膜疫苗研发 鄢慧民,上海市(复旦大学附属)公共卫生临床中心研究员鼻喷腺病毒载体新冠疫苗可建立阻断感染的免疫屏障陈凌,广州医科大学呼吸疾病国家重点实验室南山学者特聘教授、中国科学院广州生物医药与健康研究院特聘研究员多价鼻喷新城疫(NDV)载体新冠疫苗的临床前研发宋家升,浙江迪福润丝生物科技有限公司,创始人新型佐剂与重组蛋白疫苗新型手性纳米免疫佐剂研究(拟)胥传来,江南大学,教授CHO表达系统下的重组蛋白疫苗CMC质量研究与控制方志正,武汉滨会生物科技股份有限公司副总裁,教授,研究员,博士生导师话题待定三叶草生物新冠二聚体抗原蛋白疫苗研发与评价(拟)石剑,武汉友芝友生物制药有限公司疫苗研发负责人广谱/多价/多联疫苗超广谱新型疫苗研发与免疫机制研究(拟)徐建青,上海市新发再现传染病研究所所长,复旦大学附属上海市公共卫生临床中心科研院长重组新冠病毒Alpha/Beta/Delta/Omicron变异株S三聚体蛋白疫苗的临床进展兰章华,神州细胞生物技术集团股份公司,副总经理话题待定徐可,武汉大学病毒学国家重点实验室/生命科学学院教授,博士生导师,武汉大学疫苗研究院副院长全球首款15价HPV疫苗研发进展(拟)张海江,康乐卫士副总经理新型品种疫苗临床研究与评价呼吸道合胞病毒(RSV)候选疫苗临床研究与进展陈朝华 ,辉瑞中国研发中心总经理基于新冠疫苗的评价和未来疫苗研制策略陆家海,中山大学公共卫生学院教授/国家药品监督管理局疫苗及生物制品质量监测与评价重点实验室主任高血压治疗性疫苗研发进展廖玉华,武汉华纪元生物技术开发有限公司总经理,武汉协和医院心内科二级教授主任医师创新性RSV疫苗的进展王宾,艾棣维欣创始人兼董事会主席带状疱疹疫苗临床研究进展杨北方,湖北省疾病预防控制中心疫苗临床评价中心主任兽用宠物疫苗专场动物疫病防控产品的研发及应用(拟)陈焕春,中国工程院院士,武汉科前生物股份有限公司董事长、中国兽医协会会长创新型猪瘟疫苗研制最新进展袁世山,勃林格动物保健亚洲研发中心疫苗研发负责人(确认中)圆桌讨论:新型兽用疫苗科研到产业化的转化挑战与机遇金梅林,华中农业大学教授ST传代细胞源猪用疫苗的研制与应用吴文福,高级兽医师,广东永顺生物制药股份有限公司猪用疫苗高级专家新型mRNA药物递送系统——CLS赵李祥,慧疗生物,联合创始人、首席技术官非瘟亚单位疫苗研发与技术评价进展肖进,中牧研究院,副院长猫肠道冠状病毒新型益生菌载体口服候选疫苗的研究黄耀伟,岭南现代农业广东省实验室/华南农业大学兽医学院,教授动物病毒样颗粒疫苗技术研究(拟)郭慧琛,中国农业科学院兰州兽医研究所口蹄疫防控技术创新团队首席核酸疫苗专场环状RNA合成技术与疫苗研发王泽峰,中科院上海营养健康所研究员 ,环码生物医药科学顾问环状RNA疫苗设计与临床前开发(拟)高璐,圆因(北京)生物科技有限公司CEO对抗新冠病毒突变体以及其他冠状病毒物种的多价mRNA疫苗的设计与研发陈斯迪,耶鲁大学医学院副教授(online)抗Omicron变异株mRNA 疫苗与灭活苗的序贯免疫贾为国,复诺健/中生复诺健,首席科学家LNPs递送系统创新与新一代核酸疫苗研发丘远征,石药集团,疫苗临床中心总经理(确认中)冻干剂型mRNA-LNP疫苗的研发胡勇,瑞吉生物创始人、董事长兼总经理圆桌讨论:mRNA等新型疫苗的投融资布局与机遇徐实,澄实生物,CEO赵李祥,慧疗生物,联合创始人、CTOmRNA 疫苗关键技术与中国本土mRNA新冠疫苗开发进展英博,苏州艾博生物科技有限公司创始人&首席执行官mRNA疫苗递送平台及纳米制剂开发(拟)王育才,中国科学技术大学教授、合肥阿法纳生物科技有限公司创始人、董事长mRNA疫苗全周期药学质量控制与评价李玉华,中国食品药品检定研究院虫媒病毒疫苗室主任(确认中)艾滋病DNA核酸疫苗临床前与临床开发金侠,医克生物行政总裁、联合创始人个体化肿瘤mRNA疫苗治疗胶质母细胞瘤研发王立峰,启辰生生物科技有限公司,首席医学官基于纳米技术的创新肿瘤疫苗探索聂广军,国家纳米科学中心研究员mRNA疫苗研发及分析质控平台开发(拟)宋更申,悦康药业副总经理、院长其他传染病mRNA疫苗的临床前与临床研究(拟)易应磊,斯微(上海)生物技术股份有限公司传染病管线负责人*以上更新截止至12月6日,更多干货议题持续更新!最新议程信息与嘉宾阵容欢迎联系组委:177 2112 0767(同微信)【参会企业名单公开!】重庆市畜牧科学院西藏药业辉大基因海军军医大学河北农业大学丽珠生物PROBIO瑞阳生物中国疾控病毒病所北京东方略科凝生物制药三叶草生物新合生物瑞科生物康希诺安达生物药物开发(深圳)有限公司厦门赛诺邦格生物科技股份有限公司清华大学艾滋病综合研究中心睿丰康生物医药科技(浙江)有限公司上海奥浦迈生物科技有限公司北京鼎成肽源生物技术有限公司西南交通大学附属成都市第三人民医院呼吸与危重症医学科郑州安图实业集团股份有限公司中国科学技术大学生命科学与医学部成都苑东生物制药股份有限公司中国医学科学院医学生物学研究所所纽英伦生物技术(北京)有限公司武汉瀚海新酶生物科技有限公司江苏华泰疫苗工程技术研究有限公司成都海博为药业开拓药业江苏科技大学勃林格殷格翰康希诺生物股份公司悦康药业集团江苏华泰疫苗工程中心中国疾控中心传染病所四川三叶草生物制药上药生物治疗Everest Medicine深信生物诺唯赞生物中科院神经所空军军医大学药学系 中国科学院微生物研究所陆军军医大学基础医学院北京祥瑞生物制品有限公司武汉博沃生物科技有限公司浙江大学杭州国际科创中心杭州中美华东制药有限公司江苏省农业科学院兽医所珠海丽凡达生物技术有限公司丽珠医药集团股份有限公司深圳市疾病预防控制中心威斯克生物医药有限公司Angel安琪酵母股份有限公司成都康华生物制品股份有限公司上海百英生物科技有限公司.......更多参会企业详情欢迎联系:177 2112 0767(同微信)【聚焦前沿 | 精彩亮点】1、不只是新冠疫苗,探讨由新冠疫苗孵化快速崛起的新型技术路线下各类传染病、肿瘤等大品种新型疫苗的研发挑战与破局之道2、获取最前沿的新型疫苗(新型佐剂重组蛋白、病毒载体黏膜疫苗、广谱/多价/多联疫苗)研发与CMC进展3、深度探讨mRNA与环状RNA技术升级与创新,寻找mRNA疫苗CMC工艺生产、质控、产业链建设等最优解决方案4、应对未来中国疫苗出海挑战,学习ICH疫苗监管与法规要求,完善与国际接轨的疫苗生产质量标准体系与学习技术转移领先实践5、挖掘兽用宠物疫苗巨大市场潜力,探索新型技术在兽用疫苗的研发与应用,破局非洲猪瘟疫苗等新型疫苗研发挑战【全新升级 | 大会结构】【转发领取免费参会票!】仅限科研院校/疫苗、制药研发制造企业!转发本篇推送至朋友圈或2个疫苗相关微信社群,【将转发截图上传至报名链接中】,即可获得优先审核资格!扫描下方二维码,立即报名参会吧!记得上传转发截图哦~赞助/演讲/参会/媒体合作详情欢迎联系组委会:电话:177 2112 0767(同微信)邮箱:vaccon@bmapglobal.com网站:www.bmapglobal.com/vaccon2023媒体合作联系:上海商图信息咨询有限公司赵俊雯| Jane ZhaoTel:+86 136 6556 4971官网: www.bmapglobal.com
  • 中药抗“疫”:莪术油注射液协同治疗新型冠状病毒肺炎
    p style=" text-align: justify line-height: 1.75em "   背景介绍:当前新型冠状病毒肺炎(COVID-19)的治疗尚无特效药,国家医疗救治主管部门陆续发布多个针对COVID-19的诊疗方案。 strong 莪术油及其制剂在抗病毒、治疗肺纤维化等方面的疗效已被多项基础研究及临床应用所证实,推测在COVID-19的临床治疗中可试用莪术油注射液,特别是治疗肺间质改变造成的肺纤维化、促进止泻、减少患者发热时间等。 /strong 此外,与抗病毒、抗生素等临床配伍使用的经验提示,莪术油注射液可用于减少COVID-19患者在治疗过程中药物引发性肝损伤,提高治疗效果。为莪术油及其制剂在协同治疗COVID-19中的科学使用提供理论依据。 /p p style=" text-align: justify line-height: 1.75em "   当前新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)呈现全球蔓延之势。《新型冠状病毒感染的肺炎诊疗方案(试行第七版)》指出,该病毒感染临床表现为潜伏期1~14 d,一般为3~7 d。以发热、乏力、干咳为主要表现。少数患者伴有鼻塞、流涕、腹泻等症状。重症患者多在发病1周后出现呼吸困难和/或低氧血症,严重者快速进展为急性呼吸窘迫综合征、脓毒症休克、难以纠正的代谢性酸中毒和出凝血功能障碍等,胸部影像学的早期呈现多发小斑片影及间质改变,以肺外带明显。进而发展为双肺多发磨玻璃影、浸润影,造成肺间质改变,严重者可出现肺实变,胸腔积液少见。 /p p style=" text-align: justify line-height: 1.75em "   我国首例COVID-19病例遗体解剖报告称:尸体检验肉眼所见与影像学改变分布情况相符合,即与肉眼所见肺泡灰白色病灶对应,提示COVID-19主要引起深部气道和肺泡损伤为特征的炎性反应。新型冠状病毒(SARS-CoV-2)感染后病变仍聚焦于肺部,肺部有纤维化及实变,但严重程度小于严重急性呼吸综合征(sever acute respiratory syndrome,SARS),其他脏器损伤尚证据不足。 /p p style=" text-align: justify line-height: 1.75em "   鉴于SARS-CoV-2和SARS在分类序列和引起疾病临床症状上均具有相似性,并且2003年SARS病毒感染康复患者大部分都有不同程度的肺部病变,推测COVID-19患者康复后也会有肺部遗症、肝心遗症和心理遗症。同时,在温州COVID-19患者的定点收治医院,临床专家发现患者在康复且核酸转阴后遗留有不同程度的肺间质改变。因此,如何在临床治疗中阻断肺间质改变,避免肺纤维化,尤为重要。 /p p style=" text-align: justify line-height: 1.75em "   莪术油系从莪术Rhizoma CurcumaeCurcuma 中提取所得的挥发油,主要成分有莪术醇、莪术二酮、榄香烯等。临床多用其治疗病毒性肺炎、妇科炎症、小儿呼吸道疾病等。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 本文通过对莪术油及其制剂在抗病毒、治疗肺纤维化等方面的众多基础研究及临床应用报道进行梳理,结合SARS-CoV-2自身病理学特征、现有临床诊疗报道和患者遗体病理解剖等特点,初步探索莪术油及其制剂协同治疗COVID-19的可行性,以期为临床科学使用提供参考依据。 /p p style=" text-align: justify line-height: 1.75em "    span style=" color: rgb(0, 112, 192) " strong 莪术油及其制剂概述 /strong /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " 莪术为姜科植物温郁金Curcuma wenyujin Y. H. Chen et CLing、广西莪术C.kwangsiensis S. G. Lee et C. F. Liang或蓬莪术C. phaeocaulis Val. 的干燥根茎,其性温,味辛、苦,归肺、肝、脾经,有行气破血、消积止痛之效。莪术油系从莪术中提取得到的挥发油,其主要成分有莪术醇、莪术二酮、莪术烯醇、异莪术烯醇、吉马酮、榄香烯、姜黄素等,最早收载于《中国药典》1977年版。莪术油具有多种药理作用,包括抗肿瘤、抗炎、抗病原体、增强免疫力等,以及广泛的临床应用,包括小儿呼吸道疾病、病毒性肺炎、病毒性脑炎、病毒性肠炎、妇科炎症等。 /p p style=" text-align: justify line-height: 1.75em "   采用现代制药技术精制而成的莪术油注射液,其原药材为温莪术,原料药为莪术油,辅料为聚山梨酯80。临床适应证为“用于病毒引起的感冒、上呼吸道感染、小儿病毒性肺炎 消化道溃疡,甲型病毒性肝炎,小儿病毒性肠炎及病毒性心肌炎、脑炎等”。虽早在20世纪70年代即开始研究,20世纪90年代获准生产,2002年7月获国家药品监督管理局药品批准证明文件,但受原料药限制,莪术油注射液目前仅浙江天瑞药业有限公司独家生产,2019年销售量近160万支。临床治疗呼吸道感染和支气管炎占比最多,分别为46.40%、21.71% 其次为病毒性感冒、病毒性脑炎、肺炎、病毒性肠炎、疱疹性咽颊炎、腮腺炎,占比为1%~7%。迄今累计销售额逾1.2亿元,数百万患者获益。 /p p style=" text-align: justify line-height: 1.75em "   莪术油注射液临床不良反应发生率为0.2%~0.3%[8-9],包括变态反应、呼吸系统反应、胃肠道反应等,主要表现为呼吸困难、紫绀、过敏样反应、胸闷、过敏性休克、血压降低、脉搏微弱等。儿童使用发生不良反应的比例较高,这与其在儿科应用较广泛、儿童脏器尚未发育成熟等有关,但不良反应消除速度快、预后好,长期使用也未见对主要脏器的明显损害。 /p p style=" text-align: justify line-height: 1.75em "   莪术油注射液用于呼吸道感染疾病的不良反应发生率低于利巴韦林、青霉素、头孢类等抗病毒和抗生素类药物,但应注意控制静脉滴注速度,并在使用前对患者进行过敏反应测试。现有针对莪术油注射液提高稳定性和降低溶血性风险的研究结果提示,后续可通过改变莪术油注射液的配方等,以降低不良反应发生率。 /p p style=" text-align: justify line-height: 1.75em "   综上所述,莪术油与其制剂莪术油注射液在临床治疗用途上具有较高的一致性。 /p p style=" text-align: justify line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong   莪术油及其制剂治疗COVID-19的可行性分析 /strong /span /p p style=" text-align: justify line-height: 1.75em "    strong 治疗炎症反应的可行性分析 /strong /p p style=" text-align: justify line-height: 1.75em "   魏海明团队研究发现在SARS-CoV-2感染后,CD4+ T细胞被迅速激活,成为致病性Th1细胞,并产生粒细胞-巨噬细胞集落刺激因子(GM-CSF) 同时诱导炎症CD14+和CD16+以及单核细胞的白细胞介素-6(IL-6)的高表达,加速炎症的产生。这些过多又异常的免疫细胞可能大量进入肺循环,进而破坏免疫环境导致肺功能损伤。 /p p style=" text-align: justify line-height: 1.75em "   莪术油有活血祛癖之效,临床多用于治疗痈疽肿毒等症,结合现有研究,推测莪术油具有良好的镇痛、镇静、消炎的功效。 /p p style=" text-align: justify line-height: 1.75em "   莪术油发挥抗炎作用是通过抑制诱导型一氧化氮合酶(iNOS)的mRNA表达和蛋白水平,下调由脂多糖(LPS)诱导产生的肿瘤坏死因子-α(TNF-α)、IL-1β和IL-6水平,通过减少氨基末端激酶(JNK)的磷酸化水平,从而产生抗炎活性 以及通过抑制TNF-α、Toll样受体2(TLR2)mRNA、可溶性钙结合(S100B)蛋白表达从而发挥抗炎疗效。此外,莪术油中的莪术二酮、姜黄素等单体化合物等通过抑制核转录因子-κB(NF-κB)、IL-1β、IL-6及TNF-α等蛋白分子的高表达,从而抑制炎症反应。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " strong 直接作用于SARS-CoV-2的可行性分析 /strong /p p style=" text-align: justify line-height: 1.75em "   临床上通过观察70例小儿病毒性肺炎患者发现,莪术油对呼吸道合胞病毒有直接抑制作用,对流感病毒A1和A2有直接灭活作用。莪术油能使H1N1病毒蛋白的表达和RNA合成均受到抑制,从而抑制H1N1病毒的复制。通过体内实验发现,莪术油还可以减少由H1N1引起的肺损伤以及血清和全血细胞中的病毒载量,以及抗病毒蛋白的表达和细胞内病毒数量,这进一步证明了莪术油能抑制病毒复制。 /p p style=" text-align: justify line-height: 1.75em "   已上市品种莪术油注射液多年临床使用结果显示,其可有效影响病毒的侵入和复制 可抑制病毒核蛋白(NP)表达、减少病毒粒子 对呼吸综合症病毒均具有一定的抑制、杀灭或阻断作用 对流感甲型病毒、柯萨奇病毒B3、呼吸道合胞病毒、腺病毒3型等有抑制作用 可以迅速缓解病毒性肺疾病的症状和体征、明显缩短患者病程,预后良好,且安全性较高。 /p p style=" text-align: justify line-height: 1.75em "   2003年广州医学院第一附属医院、广州呼吸疾病研究所临床团队研究了SARS中医药介入治疗效果,研究表明采用中西医结合治疗组(在SARS憋喘期病情平稳时,配合莪术油注射液静脉滴注,每日1次)患者临床症状严重程度改善显著,且时间较早,重症患者病死率低。 /p p style=" text-align: justify line-height: 1.75em "   根据最新研究,在早期从5名武汉COVID-19患者体内获得的5例SARS-CoV-2基因组基本上一致,通过对其保守的7个非结构蛋白进行对比,发现SARS-CoV-2属于SARS相关病毒(SAR-Sr-CoV),并与SARS具有高度同源性。莪术油注射液在SARS病例中有过临床应用,故推测对于SARS-CoV-2也有药效。来自温州医科大学附属第一、第二医院的最新临床观察性研究(浙江大学应急专项课题,项目编号2020XGZX029)结果则显示,莪术油注射液可有效改善COVID-19普通型患者的咳嗽等症状,促进肺部病灶吸收等。 /p p style=" text-align: justify line-height: 1.75em "    strong 治疗肺纤维化的可行性分析 /strong /p p style=" text-align: justify line-height: 1.75em "   根据国家发布的《新型冠状病毒感染的肺炎诊疗方案(试行第七版)》诊断标准中可以总结出,SARS-CoV-2感染患者肺部间质改变易导致肺纤维化,从而导致呼吸窘迫甚至衰竭[38],而肺纤维化病变的发展可以作为判断COVID-19患者病情的发展依据。 /p p style=" text-align: justify line-height: 1.75em "   莪术油中的莪术醇可抑制肺纤维化大鼠肺组织中转化生长因子-β1(TGF-β1)和纤溶酶原激活剂抑制剂-1(PAI-1)的表达,缓解博来霉素诱导的大鼠肺纤维化。莪术醇还可通过将细胞周期阻滞于G0/G1,减少DNA复制,抑制人胚肺成纤维细胞增殖和细胞分泌胶原。 /p p style=" text-align: justify line-height: 1.75em "   莪术与三棱联合用药能有效降低大鼠肺组织中羟脯氨酸(Hyp)含量,同时减少肺组织细胞过度凋亡,从而抑制博来霉素诱导的肺纤维化。莪术与黄芪联合用药时能显著抑制博莱霉素致大鼠肺纤维化的作用,抑制TGF-β1及TGF-β1 mRNA的表达是其可能的机制之一。 /p p style=" text-align: justify line-height: 1.75em "    strong 治疗发热与腹泻的可行性分析 /strong /p p style=" text-align: justify line-height: 1.75em "   莪术油治疗病毒引起的发热和腹泻,主要是通过抑制病毒的活性,其次其活血化瘀、改善肠道微循环的作用可促进受损上皮细胞的再生,进而促进肠道对水和电解质的回吸收,治疗腹泻 以及通过增加巨噬及中性粒细胞吞噬能力治疗发热。莪术油退热、止泻作用良好,在临床上已经有很多成功使用莪术油注射液治疗的病例。 /p p style=" text-align: justify line-height: 1.75em "   袁洞君等研究发现在治疗小儿病毒性肺炎时,莪术油注射液治疗组总有效率(96.2%)显著高于利巴韦林对照组(76.0%),同时莪术油注射液组体温恢复正常时间、咳嗽缓解时间、肺啰音消失时间均显著短于利巴韦林治疗组。莪术油注射液联合奥司他韦治疗小儿病毒性肺炎,发现治疗组患儿喘憋消失时间、体温恢复正常时间及X线恢复正常时间均显著短于对照组(P& lt 0.05),并且在治疗后,两组患者血清IL-8、C反应蛋白(CRP)、肌酸激酶(CK)、心肌肌钙蛋白T(CTnT)水平均较治疗前显著降低(P& lt 0.05)。 /p p style=" text-align: justify line-height: 1.75em "   张玉玲取轮状病毒引起的腹泻病61例,用莪术油注射液治疗后,总有效率87.50%,高于对照组(病毒唑,总有效率为68.96%)。单晓英等对100例秋季腹泻患儿除用常规治疗(使用利巴韦林抗病毒,通过补充电解质,纠正酸中毒并加强对症支持治疗及口服微生态制剂和黏膜保护剂等综合治疗),还加用莪术油静滴治疗,结果治疗组有效率达96%。周云兰用莪术油注射液和利巴韦林治疗160例婴幼儿秋季腹泻患儿,结果治疗组总有效率90.0%,高于(P& lt 0.01)对照组总有效率(77.5%)。郭仲田将莪术油注射液用于160名患者进行腹泻治疗,结果显示5 d内治疗组与对照组退热、止吐、止泻、脱水纠正的例数两组间均有显著差异,此方法用于婴幼儿腹泻治疗同样有效。 /p p style=" text-align: justify line-height: 1.75em "   上述研究提示,对于病毒性肺炎引起的发热,莪术油及其制剂的退热效果好于利巴韦林、奥司他韦等常规药物,并兼有治疗腹泻等作用。因此可以考虑用于有发热、腹泻等症状的COVID-19患者。 /p p style=" text-align: justify line-height: 1.75em "    strong 与其他治疗药物合用的可行性分析 /strong /p p style=" text-align: justify line-height: 1.75em "   在2003年SARS爆发期间,医院采用大剂量激素疗法,虽然保住了患者的性命,但大多数患者发生了股骨头坏死等后遗症。在此次COVID-19疫情中针对炎症的治疗方面,最初诊疗方案中也推荐使用糖皮质激素类药物。据统计在128例COVID-19患者中仅有45%的患者接受了糖皮质激素治疗,且未收到预期效果,表明糖皮质激素可用于COVID-19的治疗证据有限。虽然使用糖皮质激素会抑制免疫反应,减轻肺部炎症渗出,但也可能导致病毒清除延迟,最终增加患者死亡风险。而同期使用中药治疗的患者预后良好,无股骨头坏死等不良反应。 /p p style=" text-align: justify line-height: 1.75em "   莪术油及其制剂莪术油注射液单独使用时可治疗病毒性肺炎、支气管肺炎,与抗生素、抗病毒药联合使用能提高这些药物单独使用时的疗效,且与大部分抗生素都能配伍。莪术油注射液联合奥司他韦治疗小儿病毒性肺炎,能显著改善患者临床症状,降低血清因子水平 联合利巴韦林注射液治疗115例小儿急性呼吸道感染的总有效率明显优于利巴韦林注射液组(P& lt 0.05)[66] 联合抗生素头孢唑啉钠治疗病毒性肺病,能缩短体温恢复正常、喘憋消失、肺部啰音消失、咳嗽缓解时间。这些研究说明,莪术油注射液与其他抗病毒药物联用时,除协同增效外,还能提高总有效率,减少喘憋时间、体温恢复正常时间以及X线恢复正常时间等。推测莪术油注射液对人感染冠状病毒后常见体征如呼吸道症状、发热、咳嗽、气促和呼吸困难等都将有所改善。 /p p style=" text-align: justify line-height: 1.75em "   莪术油注射液临床不良反应发生率低于抗病毒和抗生素类药物,因此合理使用莪术油注射液,还能降低其他抗病毒药物的使用量,减少药物毒性。 /p p style=" text-align: justify line-height: 1.75em "    strong 提升免疫力并保护肝脏的可行性分析 /strong /p p style=" text-align: justify line-height: 1.75em "   COVID-19患者机体本身有炎性反应,而病毒会引起胆汁淤积,由此进一步激发的炎性反应可能造成肝损伤,甚至引发细胞因子风暴。此外,COVID-19患者在发生呼吸窘迫综合征时由于缺氧时引发炎症因子进一步的释放,也会引起肝损伤。然而目前针对COVID-19的治疗药物如利巴韦林、糖皮质激素等,均会引起一定程度的肝损伤。 /p p style=" text-align: justify line-height: 1.75em "   多项研究证明,莪术对多种肝脏疾病肝纤维化、乙型肝炎、肝癌有治疗作用。莪术油中的莪术醇可以抑制Ras同源基因-Rho相关螺旋卷曲蛋白激酶(Rho-ROCK)信号通路,达到抗肝纤维化的效果 莪术油可通过下调TGF-β1、转录激活因子2(Smad2)、转录激活因子3(Smad3)蛋白和mRNA表达来减轻血瘀证肝纤维化小鼠的肝纤维化程度 或通过下调瘦素诱导活化的大鼠肝星形细胞(HSC)中锌指蛋白1(Gli1)的表达,参与Hedgehog信号通路,抑制HSC的活化与增殖,并能通过下调Gli1的表达而下调Wnt信号通路关键因子β-连环蛋白(β-catenin)的表达,抑制HSC活化与增殖,从而抑制肝纤维化。 /p p style=" text-align: justify line-height: 1.75em "   Diao等研究分析了2019年12月—2020年1月在武汉2家医院住院的522名COVID-19患者的住院数据中T细胞、CD4+、CD8+ T细胞和血清中细胞因子浓度。结果表明,COVID-19患者,尤其是老年患者(60岁以上)和需要重症监护病房(ICU)护理的患者,T细胞、CD4+和CD8+ T细胞总数显著减少。T细胞数与血清IL-6、IL-10和TNF-α浓度呈负相关,疾病衰退期患者的IL-6、IL-10和TNF-α浓度有所下降,T细胞计数恢复。莪术油可以通过下调Fas/Fas L通路,使得TLR2、TLR4蛋白和RAF原癌基因丝氨酸/苏氨酸-蛋白激酶(C-Raf)蛋白表达下调,导致相关因子TGF-β1以及IL-10等的表达下调,起到免疫增强作用。 /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " strong 从中医理论角度出发的可行性分析 /strong /p p style=" text-align: justify line-height: 1.75em "   自COVID-19暴发以来,临床针对其各种症状进行差异化治疗,目前尚无特效药。除直接使用抗病毒药物以外,还配合其他药物以减轻炎症反应,提高免疫力,有效退热、止泻以及保护肺器官以防发生肺纤维化损伤。根据现有临床研究报道,COVID-19患者多表现为发热、咳嗽、乏力,严重时可见细胞因子风暴综合征(CSS)、急性呼吸窘迫综合征(ARDS)的发生。中医认为COVID-19属于疫戾之气的范畴,具有很强的传染性,其病位在肺脾,基本病机特点为“湿、毒、瘀、闭”,以“瘀”贯穿疾病始终,因实邪阻滞,经脉不畅,气血不通,而至“瘀”。莪术具有活血化瘀之效,活血化瘀主要是针对脏腑、经络之气阻滞不畅,引起血液的运行瘀滞 现代医学研究证明,血液循环瘀阻,是许多疾病发生的基础,而胸闷、呼吸困难是肺部纤维化的表现形式。中药以疗效佳、毒副作用低体现其优势。针对本病的病机,在COVID-19治疗中可减轻患者肺部纤维化程度,从而提高患者愈后的生活质量。 /p p style=" text-align: justify line-height: 1.75em "   关于COVID-19的病灶,多数中医专家认为在肺,如王玉光教授认为“湿毒”是COVID-19的病理核心,病灶在肺,基本病机特点为“湿、毒、瘀、闭” 国医大师熊继柏教授指出本病的主要病位在肺,胃肠道的症状仅是一个兼证。各省市自治区诊疗方案将COVID-19归属于疫病范畴,病灶在肺,可累及脾胃,为感受疫戾之气所致。肺纤维化的病机复杂、变化多端,临床治疗以辨证治疗为主,有益气养阴、活血化瘀、扶正祛邪、软坚散结、宣肺涤痰、清热解毒、宽胸理气等治疗方法。而这次感染SARS-CoV-2的患者,其病情发展都较为迅速,使得身体极度虚弱,按照《难经》中“虚则补其母,实则泻其子”的治疗理论,此时应该先补脾,再健肺。中药莪术归肝、脾、肺经,《本草经疏》《药品化义》《萃金裘本草述录》和《汤液本草》等医学著作认为莪术具有行气破血、消积止痛、益气之效,能够同时补气健脾,强健肺气。《中国药典》2015年版也载明其功能主治为“行气破血,消积止痛。用于癥瘕痞块,瘀血经闭,胸痹心痛,食积胀痛”等。因此,采用现代工艺提取温莪术挥发油并精制而成的莪术油注射液,可避免中药传统口服给药方式起效慢、有效成分利用率低等不足,并通过血液循环系统快速到达因SARS-CoV-2感染的病理部位,及时发挥药效。 /p p style=" text-align: justify line-height: 1.75em "    strong 结语与展望 /strong /p p style=" text-align: justify line-height: 1.75em "   自COVID-19疫情发生以来,国家主管部门积极鼓励中医药疗法的介入,临床上通过“强化中西医结合”切实缩短了病程,这对中西医结合治疗疫病无疑是一大肯定。中医根据疾病的演变,适时调整治疗方案。此次针对COVID-19的诊疗,除探究其成因,根据患者的临床表现将其分型,并跟西医的分型对比衔接,做到辨证施治、对症下药,如中医初期寒湿郁肺证对应西医临床轻型,此时可应用麻杏石甘汤 重症期内闭外脱对应临床危重型,推荐使用醒脑静注射液。中西医在临床诊疗上精准协同,有助于深入认识COVID-19,优化诊疗方案,增强用药的精准度,从而全面提升临床救治效果。 /p p style=" text-align: justify line-height: 1.75em "   莪术油注射液治疗COVID-19同时具备中医理论和现代化研究成果依据,推测其在促进患者退热、加速止泻、减少肺纤维化、提升免疫力及改善患者肝功能上将有积极作用,并可与其他抗病毒药物协同作用,如配合糖皮质激素治疗可降低药物毒性 联合利巴韦林、奥司他韦降低药物毒性缩短退热时间并治疗因疾病引起的腹泻 对于初期COVID-19患者,可强健肺气,防止其向中期、重症期发展,可实现中医“治未病”初衷 对于处于重症期的患者可配合其他药物在抗病毒的同时治疗肺纤维化 对处于身体恢复期的人能补气健脾,助益身体机能恢复和提高免疫力,防止再次感染,为解决此次疫情中“肺疾”问题新增一味良药。这些都有待于进一步临床观察性研究,获得更多统计学数据后,科学辨证施治。此外,莪术油注射液源于中药材温莪术,其原料药莪术油成分亦较复杂,生产工艺、原药材和辅料的质量等都可能影响到制剂质量。因此,未来要加强原料药莪术油物质基础研究,建立多指标检测方法,控制其化学成分、杂质成分的含量,提高莪术油注射液质量标准 保障临床使用的安全性和有效性。中药注射液的安全性在目前仍然是受关注度比较高的问题,而注射液能在患者昏迷不能吞咽时使用成为它的一个优势。因此,使用中药注射液进行临床治疗前应对其进行充分的安全性测试,使用时应做到完全遵守医嘱,杜绝滥用。同时寻找新的注射液配方,如载药脂肪乳,以及筛查中药注射液中能起到治疗的成分,在最大程度上降低因成分复杂而导致的安全性问题。 /p p style=" text-align: justify line-height: 1.75em "   随着越来越多中药、中成药及其治疗方案的融入,中医药在抗击COVID-19疫情期间的作用和价值得以进一步发挥。通过梳理莪术油注射液对抗COVID-19多个方面的可行性,以期为后续临床验证性试验提供理论依据,为进一步挖掘莪术油注射液抗SARS-CoV-2的机制提供基础信息,加快其获准临床应用速度,从而为我国快速打赢这次疫情保卫战做出应有贡献。 /p p style=" text-align: justify line-height: 1.75em "   /p p br/ /p
  • 【瑞士步琦】通过喷雾干燥配制可吸入药物,就像呼吸新鲜空气一样简单
    通过喷雾干燥配制可吸入药物没有什么比在山上徒步旅行和呼吸新鲜空气更让我喜欢的了。事实上,我们呼吸的空气会超过一整个肺,因为普通人每分钟吸入 7 到 8 升空气,相当于每天吸入大约 11000 升。这种无意识的吸入和呼出过程对我们的健康至关重要,并确保身体细胞获得所需的氧气来发挥作用。肺通过气体交换过程吸收氧气,气体交换发生在肺中数以百万计的小气囊(称为肺泡)中。肺泡如此之多,如果你把它们平摊开来,它们会覆盖一个网球场那么大的区域。当我们吸气时,空气沿着我们的气管进入我们的肺部,通过两条被称为支气管的管道,这些管道分支成更小的细支气管,并在微小的肺泡群中结束。每个肺泡都被称为毛细血管的小血管网络所包围。肺泡壁的厚度约为人类头发的 1/50,允许气体通过肺泡壁进入毛细血管中的血液。进入血液的氧气与血红蛋白结合,通过心脏输送到身体的所有细胞。药物制造商利用这种高效的运输系统,制造出可吸入的干粉药物(通常直径小于 5 微米),小到足以通过上呼吸道和支气管。当颗粒沉积在肺部后,它们需要溶解在肺泡内衬的薄层中,然后它们才能被吸收到血液中。一旦进入血液,它就可以被运送到目标部位,最终,药物被代谢并从体内排出,通常是通过肝脏和肾脏。可吸入的干粉药物(通常直径小于 5μm)足够小,可以通过上呼吸道,然后溶解在肺泡内壁的薄层中,在那里它们可以被吸收到血液中。我相信你可以想象,制造足够小的粒子来穿过这个管道网络不是一件简单的任务;然而,这种传输系统的几个优点使这些工作都是值得的。对于需要立即治疗的问题,如哮喘发作,肺部是理想的递送系统。口服的药物必须经过消化系统才能生效;在这个过程中也有活性成分的损失。有些递送系统更容易设计和制造,但它们也有缺点。病毒传递系统简单,最大的优点是在人体组织中转染效率高;然而,病毒的毒性可以引发免疫反应,并且预先存在的抗体可以中和传递系统及其携带的分子,从而降低治疗效率。非病毒输送系统已被用于规避这些问题。脂质、聚合物和肽基系统可以被修改,用以提高生物相容性,增加内化,并定制药物输送的确切要求。这些类型的材料用于药物颗粒的配方,并用于包封或携带药物,保护其免受降解,并增强其在肺部的吸收,在病毒传递系统中发挥病毒的作用。干粉肺输送最常见的辅料之一是乳糖。基于脂质、聚合物和肽的系统可以被修改,用以提高生物相容性,增加内化,并定制药物传递的确切要求。乳糖具有几种有利的材料特性,使其成为可吸入药物的理想材料。它是美国食品药品监督管理局(FDA)批准的载体,因为它在给药后具有的无毒和易于降解的性质。其他美国食品药品监督管理局(FDA)批准的载体包括亮氨酸、甘露醇、葡萄糖、海藻糖和蔗糖。乳糖是理想的,因为它粘性比其他糖更低,并且具有更高的玻璃态化转变温度,在喷雾干燥时易于流动成粉末。雾化用于制造一系列可吸入粉末,包括多肽、抗生素、疫苗和生物可降解的载体颗粒。这些药物可以针对全身的疾病,但它们对治疗囊性纤维化、哮喘、慢性肺部感染、肺癌和结核病的肺部特异性应用尤其有益。使用喷雾干燥技术制造可吸入药物涉及到通过在不同固体浓度的水中溶解活性成分(药物、纳米颗粒)和赋形剂(乳糖或其他)来制备水溶液。偶尔在溶液中加入乙醇来促进蒸发。所得的喷雾干燥粉末由旋风分离器分离并收集在容器中。有几种常用的分析方法用于表征喷雾干粉,例如:扫描电镜分析粒子形态与大小激光衍射颗粒大小安德森撞击器细颗粒部分X射线衍射非晶/结晶状态差示扫描量热仪玻璃态转变温度气体吸附水分含量卡尔费休水分仪水分含量使用喷雾干燥技术制造可吸入药物涉及到通过将活性成分(药物、纳米颗粒)和赋形剂(乳糖或其他)溶解在不同固体浓度的水中来制备水溶液还有其他方法可以制造用于肺部的可吸入药物,例如冷冻干燥和气流粉碎;然而,喷雾干燥与这些方法相比有许多优点。喷雾干燥能产生高度分散的粉末,而不需要冷冻干燥时所需的载体颗粒。射流铣削过程产生流动性能差的扁平颗粒。气流粉碎的乳糖具有结晶结构,而喷雾干燥的乳糖则是无定形的。无定形态复合物形成的原因是干燥过程迅速,蒸发和形成固相的时间很少。喷雾干燥制成的球形颗粒具有较低的接触面积和均匀的粒度分布,从而增加了可吸入的颗粒组分。喷雾干燥也是一种成本效益高的一步工艺,直接从液体到干燥配方,具有较高的工艺放大能力。喷雾干燥制成的球形颗粒具有较低的接触面积和均匀的粒度分布,从而增加了可吸入的颗粒组分。有四种策略可用于制造干粉配方。第一种是小的无载体药物颗粒,它是 1 到 5μm 的气溶胶粉末,是在日益狭窄的气道之外沉积的最佳尺寸。然而,这种小颗粒经常粘在一起,并且具有很强的凝聚力,流动性差。这可以通过使用小药物和更大的载体颗粒,从而改善药物经吸入器的流动。如前所述,乳糖是最常用的载体,通常设计为 50μm 至 80μm 的尺寸。在吸入过程中,较小的颗粒与载体颗粒分离并沉积在肺泡中。第三个策略是在吸入干粉气溶胶研究方面取得突破,涉及低质量密度(5μm)。作为第一种策略的替代方案,这些较大的颗粒更容易聚集和分解,具有更好的流动性,并且可以逃避肺部的吞噬清除机制。最后一种策略是在药物的载体颗粒中使用胶囊化的纳米颗粒,并已成为大量研究的课题。纳米医学是生物医学领域的一个新兴领域,由于上述肺给药的好处,已经提出了诸多肺给药的建议。然而,细小的颗粒大小限制了肺沉积,使它们在吸入后从肺部呼出。通过喷雾干燥将纳米颗粒结合到载体颗粒中,使其用于肺部药物递送成为可能。喷雾干燥的多功能性和对方法的高度控制使每种策略都成为可能,并且考虑到可吸入药物相对于其他更具侵入性的输送方式的优势,我期待着未来。▲小型喷雾干燥仪 S-300▲纳米喷雾干燥仪高性能款 B-90 HP
  • 已上市及临床试验中以CHO细胞为生产平台的蛋白亚单位疫苗概述
    从18世纪天花的接种实践到通过接种牛痘预防天花,疫苗的开发与应用领域有着持续进步的丰富历史。1930年,可用于体外病毒繁殖的动物细胞培养物的引入,为20世纪下半叶针对麻疹、腮腺炎、风疹和脊髓灰质炎等疾病的减毒、灭活疫苗的成功开发奠定了基础。而随后的在酵母、细菌、昆虫和哺乳细胞中引入重组DNA技术的建立,使得新型疫苗的开发成为可能。本文将对当前上市或临床试验中的,以CHO细胞为生产平台的蛋白亚单位疫苗类型进行梳理。一CHO细胞表达系统特征CHO细胞包括从CHO-ori细胞系衍生出CHO-DXB11 (DHFR+/-) 、CHO-DG44 (-/-) 、CHO-GS、CHO-K1SV等多种细胞系,各具特定的特征,可分离稳定的转染物并获得高产量。与其他重组蛋白质生产细胞系相比,CHO细胞具有更高的生产力,流加批次培养可达到1-10 g/L。而相较于293细胞,病毒不易感染CHO细胞并在其中复制。CHO细胞对于蛋白的翻译后加工修饰与人类细胞的高度相似,如糖基化、二硫键形成以及蛋白的水解加工,但是也与人类细胞在翻译后修饰的特定模式与结构上存在微妙差异,没有工程化修饰过的CHO细胞不能合成某些人源聚糖键,比如:α-2,6-唾液酸化、二分N聚糖和α-1,3/4-岩藻糖基化,为了在CHO细胞内实现目的蛋白的糖基化,不同的团队也开发了相应的糖工程方法。CHO细胞可以进行高密度无血清悬浮培养,并将目的蛋白分泌到培养基中,因而是一个经济有效的大规模重组蛋白表达平台。CHO细胞中重组蛋白的表达可受到多种因素影响,包括:表达质粒、启动子的选择、培养条件(培养基成分、温度、溶氧)、CHO细胞系的选择和表达系统的选择等。利用CHO细胞进行重组蛋白表达包括瞬时表达和稳定表达两种方式。瞬时表达系统中含有目的基因的cDNA会随着细胞分裂而被稀释,表达周期较短。尽管瞬时表达的效率低于稳定表达,但优化策略后的蛋白产量也可高达1 g/L。而瞬时表达减少了与细胞系开发相关的时间和成本,被广泛用于临床前研究中蛋白的快速生产。CHO细胞稳转则是大规模生物制造的标准方法。二蛋白亚单位疫苗蛋白亚单位疫苗是基于病原体的一种或几种分离或选定的成分,通常是免疫显性抗原(全蛋白、蛋白结构域或多肽),可在佐剂刺激下使产生体液和/或细胞免疫。蛋白亚单位疫苗因为没有恢复到致病形式的风险,也被认为比灭活疫苗或减毒活疫苗更安全。蛋白亚单位疫苗已被批准用于多种病毒感染性疾病的预防,如:SARS-CoV-2、水痘-带状疱疹病毒、呼吸道合胞病毒和流感,剂量范围从5到180 ug。尽管新冠的蛋白亚单位疫苗应用范围没有其他类型疫苗广,但仍是目前临床前和临床候选疫苗的主要选择。蛋白亚单位疫苗的一个潜在挑战是免疫原性较低,这也凸显了识别抗原以引起强大保护性免疫的重要性。三CHO细胞生产的已批准或处于临床阶段的蛋白亚单位疫苗基于CHO细胞作为治疗性重组蛋白表达系统的优势,CHO细胞已成为蛋白亚单位疫苗生产的主要选择之一。从近40年前开始,各种基于CHO细胞的治疗药物被监管机构批准,与新的细胞系或使用较少的细胞系相比,生物制药公司、CDMO公司以及供应商可以基于CHO细胞生产平台的熟悉度大大减少了疫苗生产的时间和风险。利用CHO细胞生产蛋白亚单位疫苗的上下游工艺与生产其他重组蛋白相似。接下来我们将梳理已获批或正在临床开发的蛋白亚单位疫苗(如图1)。图1:CHO细胞生产平台的应用 (a) 已获批或临床候选药物的蛋白亚单位疫苗;呼吸道合胞病毒呼吸道合胞病毒是全球呼吸道感染的主要原因,在幼儿、老年人和慢性病患者中可引起严重疾病,2019年全球幼儿死亡人数超过100000人,在高收入国家中造成2.2万到4.7万人死亡。早期使用甲醛灭活的RSV疫苗,甲醛导致病毒抗原产生羰基集团,阻碍了抗原在细胞质中的加工,产生了低亲和力的抗体,从而导致了增强型的RSV疾病,表现为:高烧、支气管炎和呼吸困难。目前RSV表面的病毒融合 (F) 蛋白作为疫苗开发的潜在靶点,这种预融合稳定形式的设计已被证明可以产生有效的中和抗体。但也有研究表明,即使采用低剂量预融合F蛋白在动物上也可能产生增强型RSV疾病。相比之下,预融合的F蛋白在成人接种时表现出较好的结果,也导致葛兰素史克开发的RSV疫苗Arexvy疫苗 (RSVPreF3 OA) 的获批上市。该疫苗使用CHO细胞生产,由F蛋白的1-513号残基组成,通过T4纤维蛋白结构单元三聚体化。预融合形式通过将F1的Ser155和Ser290替换为半胱氨酸而实现,在不稳定的N端和结构刚性中心区域之间建立了二硫键,另外引入S190F和V207L突变以填充F1N端空隙,增加疏水相互作用。在早期临床试验展现良好的安全性,并确认其诱导产生中和抗体的能力后,和AS01E佐剂一起进入了III期临床,在17个国家25000名60岁以上成年人中评估有效性。研究结果显示,单剂该疫苗对RSV相关的下呼吸道疾病的有效性为82.6%,对严重表现的有效性为94.1%,对RSV相关急性呼吸道感染的有效性为71.7%。第二个获批的RSV疫苗是辉瑞公司的Abrysvo,是由CHO细胞生产的针对RSV A和B亚群的双价融合前F蛋白。在III期临床中,对RSV相关的下呼吸道疾病有66.7%的有效性,对严重RSV相关疾病有85.7%的有效性,且严重不良事件发生率低,安全性无明显问题。并且也作为孕妇疫苗进行评估,接种孕妇时间为妊娠第24-36周,该疫苗显示在新生儿出生后的前90天内,预防严重RSV相关呼吸道疾病有81.8%的有效性,因此获批做为预防婴儿RSV的母亲疫苗。以上两个疫苗受到了市场的广泛接受,在三个月内达到了12.35亿美元的销售额,也凸显了CHO细胞在疫苗制备中的商业潜力。水痘-带状疱疹病毒 (VZV)VZV可引起水痘,是一种与典型皮疹和轻微症状相关的高度传染性感染。初次感染后,病毒可在神经元中持续存在,多年后重新激活会引起带状疱疹;重新激活后以皮疼痛性水疱性皮疹为特征,在免疫受损的宿主中可能导致出血性病变,最主要的并发症为急性神经炎和带状疱疹后神经痛,影响50岁以上的25%-50%的患者。为了保护年长或免疫缺陷的成年人,重组VZV疫苗Shingrix于2017年由FDA获批,一年后获批EMA。Shringrix是以VZV病毒表面最普遍的gE蛋白为抗原,是中和抗体和T细胞识别的关键靶标。该疫苗由CHO细胞生产,并由于去除了C端和跨膜结构域而可以被分泌到细胞外。在抗原产生过程中,CHO细胞的培养条件优化后,使用20 L的波浪式反应器进行批培养,最终每升产量在2.44 g。在50岁以上人群中,有效性达97.2%以上。人巨细胞病毒 (HCMV)HCMV是一种感染了全球约80%人口的病原体,一旦个体免疫降低就会引发健康风险。并且也与各种癌症进展有关,其先天性感染也是出生缺陷的主要原因。即便如此,目前也没有批准上市的疫苗。但有几款疫苗在临床试验中,其中有几款疫苗基于HCMV表面的gB蛋白由CHO细胞产生,与病毒入侵过程中的膜融合至关重要,并且包含中和抗体的多个识别表位,该蛋白与佐剂MF59正处于临床II期进行测试。赛诺菲的gB基因来源于HCMV Towne毒株,不含跨膜结构域和弗林切割位点。gB/MF59疫苗在移植后患者、产后妇女和健康的青春期女孩等不同受众中均获得了良好的效果,结果显示,gB结合抗体滴度增加,CD4+T细胞反应增强,HCMV病毒血症降低。葛兰素史克的另一款gB蛋白亚单位疫苗处于临床I期试验中,抗原基于AD169毒株,其修饰与赛诺菲相似。另外,来自单纯疱疹病毒1型的gD氨基酸序列融合在AD169 gB序列以促进分泌。最近葛兰素史克开发的针对HCMV的新型佐剂,由gB蛋白和五聚体抗原组成。HCMV五聚体复合物也是疫苗开发中的具有吸引力的抗原,相比于gB蛋白,能诱导更有效的抗体中和进入上皮细胞。因此,葛兰素史克使用CHO-K1和CHO-DXB11衍生的细胞克隆获得400 mg/L的五聚体复合物,并在小鼠中诱导了有效的中和免疫反应。五聚体/gB 蛋白亚单位疫苗候选药物目前正在健康成人受试者中进行评估。人类免疫缺陷病毒 (HIV)即使在发现HIV病毒40年后,HIV功能性疫苗的挑战仍然存在,主要原因包括逆转录酶中缺乏3’核酸外切酶的校对活性,使得病毒gp41和gp120可快速突变。而中和抗体靶向的抗原表位位于HIV包膜蛋白的gp可变区域,在免疫系统的筛选压力下也会导致突变体的产生。HIV env gp重组三聚体是目前作为疫苗开发最有潜力的靶点,可能会引发广泛的中和抗体。始终保持融合前构象的早期可溶性三聚体称为“SOSIP”,其中包括gp120-gp41之间的工程化二硫键 (SOS) 以及有助于维持融合前构象的螺旋断裂突变(I559P,称为IP)。最近的临床试验中的SOSIP三聚体已经进行了改进,包括CHO细胞的改进。其中某些env蛋白,尤其是HIV分支B的env蛋白容易受蛋白水解影响。为了解决这个问题,采用了工程化的C1蛋白酶缺陷的CHO细胞系,从而减少蛋白降解。三聚体4571 (BG505 DS-SOSIP.664) 是基于HIV A分支的高度稳定的与融合闭合可溶性包膜糖蛋白三聚体。该三聚体在gp120中结合了201C-433C二硫键突变以防止CD4诱导的构象变化。最近三聚体4571在I期临床试验中进行了独立评估,并在异源方案中作为加强剂量中做了评估,结果显示三聚体4571是安全的,没有引起不良反应,并能够成功诱导特异性抗体产生,主要是集中在三聚体上的无聚糖基底上的抗体。但是对于天然三聚体,通常由于免疫系统无法接触到无聚糖基底而导致其在临床试验中具有更明显的非中和反应。为了减少这种基底定向免疫,未来CHO细胞生产的蛋白亚基疫苗可以使用聚糖进行工程设计以掩盖三聚体基底结构域,减少非中和抗体的产生。严重急性呼吸系统综合症冠状病毒2 (SARS-CoV-2)为抗击COVID-19大流行研发了多种疫苗,包括:灭活病毒疫苗、基于蛋白质的疫苗、核酸疫苗以及载体疫苗。源自SARS-CoV-2刺突 (S) 蛋白的蛋白亚单位疫苗由CHO细胞产生,不同的候选药物在特定国家/地区获得紧急使用或在临床试验阶段。表1:截止2023.12临床审批的CHO细胞生产的蛋白亚单位疫苗SARS-CoV-2蛋白亚单位疫苗开发最广泛使用的策略之一是使用S蛋白的胞外结构域 (ECD) 作为抗原。Medigen Vaccine Biologics Corporation开发的MVC-COV1901疫苗基于融合前稳定的S ECD三聚体,该三聚体具有K986P和V987P突变,以及在S1/S2连接处具有弗林蛋白酶切割位点682突变 (RRARGGAS) ,以提高稳定性并增加了T4纤维蛋白三聚体化结构域。CHO细胞用于生成表达该S抗原的稳定克隆,该抗原被证明类似于人HEK293细胞表达的SARS-CoV-2 S蛋白的结构。该候选疫苗用氢氧化铝(明矾)和CpG 1018佐剂,CpG 1018是一种TLR-9激动剂,通过刺激CD4+/CD8+T淋巴细胞来增强免疫原性。II期临床试验 (NCT04695652) 表明,MVC-COV1901是安全的且耐受性良好,并且在年轻人和老年人中都能诱导高中和抗体滴度。MVC-COV1901还与牛津-阿斯利康的ChAdOx1 nCoV-19病毒载体疫苗进行了比较,其中MVC-COV1901被证明更优越,可诱导更广泛的IgG亚类和更高的抗Omicron (BA.1) 变体的中和抗体滴度。MVC-COV1901已获准在斯威士兰、巴拉圭、索马里兰和台湾使用。SARS-CoV-2 S蛋白内的受体结合域 (RBD) 是中和抗体的主要靶点。因此,它已被用于生产各种蛋白亚单位疫苗。已经探索了不同的策略来进一步增强其抗原性,例如使用单体、二聚体或多聚体形式。ZIFIVAX (ZF2001) 疫苗由安徽智飞龙康生物制药公司开发,由三剂基于RBD的疫苗和明矾佐剂组成。ZF2001是由两个拷贝的RBD (R319-K537) 形成并在CHO细胞中产生串联重复的二聚体。这种RBD二聚体与RBD单体保持相似的亲和力,而且能够有效地与人ACE2受体结合。在I期和II期临床试验中,ZF2001在人体中表现出安全特征和免疫原性。在多个国家/地区进行的III期临床试验显示,在完全接种疫苗后至少六个月内对有症状和重度至危重的COVID-19具有安全性和有效性。ZF2001疫苗已获准在中国、哥伦比亚、印度尼西亚和乌兹别克斯坦使用。CHO细胞的广泛使用和抗原表达的翻译后修饰使得CHO细胞在面临非快速反应环境中生产疫苗更为可取,尤其是CHO细胞的可操作性、安全性和稳定性。CHO细胞作为更具成本效益和高效的疫苗生产平台的潜力会越来越的到业界认可。在CHO细胞培养过程中,HyClone可以提供多种商品化CHO细胞培养基,包括:Actipro、HyCell CHO、PSL A01和PSL A02等多种基础培养基以及包括Cell boost 7a、Cell boost 7b等多种补料。参考文献:CHO cells for virus-like particle and subunit vaccine manufacturing声明:本文为作者原创首发,严禁私自转发或抄袭,如需转载请联系并注明转载来源,否则将追究法律责任
  • 新型冠状病毒科研进展之——蛋白靶点结构研究进展
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 仪器信息网讯& nbsp /strong span style=" text-indent: 2em " 冠状病毒是一类严重危害人类和动物健康的病原微生物,属于具有大量天然宿主的一类RNA病毒。该病毒极易发生基因重组和变异,具有遗传多样性,迄今为止,已不断有新亚型或新的冠状病毒出现。冠状病毒上的S蛋白、PLpro和3CLpro是药物开发的良好靶点,本文整理并总结了基于靶标发现的潜在药物。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/38dd544f-4905-4c6c-899f-7d2e0b1a4099.jpg" title=" 截屏2020-03-30上午11.54.47.png" alt=" 截屏2020-03-30上午11.54.47.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 冠状病毒是一种有包膜的、非节段的单股正链RNA病毒,属于巢病毒目(nidovirales)冠状病毒科(Coronaviridae)正冠状病毒亚科(ortho-coronavirinae)。由于病毒包膜上有向四周伸出的突起,形如花冠而得名。冠状病毒亚科进一步细分为四类,即α、β、γ 和 δ 冠状病毒。冠状病毒在自然界中广泛存在,其自然宿主包括人类和其他哺乳动物如牛、猪、犬、猫、鼠和蝙蝠等。 strong 目前,已经鉴定出六种人类冠状病毒,其中包括α属的HCoV-29E和HCoV-NL63;β属的HCoV-OC43、HCoV-HKU1、严重急性呼吸综合征相关冠状病毒(SARS-CoV)和中东呼吸综合征相关冠状病毒(MERS-CoV)。 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 另外,近期从武汉市不明原因肺炎患者下呼吸道分离出的冠状病毒,世界卫生组织初步命名为2019-nCoV。2020年2月12日,国际病毒分类委员会宣布新型冠状病毒(2019-nCoV)的正式分类名为 span style=" color: rgb(192, 0, 0) " 严重急性呼吸综合征冠状病毒(SARS-CoV-2) /span 。研究者将来源于武汉的新型冠状病毒序列与已知的“SARS冠状病毒”“MERS冠状病毒”进行了比较,发现 strong 6个新型冠状病毒序列几乎一致,其与SARS的同源性更高,相似性约为70%,与MERS相似性约为40%。 /strong strong 序列差异主要在ORF1a和编码S-蛋白的spike基因上,这是冠状病毒与宿主细胞作用的关键蛋白。 /strong /p p style=" text-align: center text-indent: 2em line-height: 1.75em " strong span style=" color: rgb(0, 112, 192) " 冠状病毒蛋白靶点结构研究进展 /span /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 冠状病毒是最大的一种核糖核酸病毒(26~32kb),其基因组为单股、正链RNA。编码非结构蛋白(Nps)的复制酶基因占据了基因组的三分之二,而结构蛋白和辅助蛋白仅占病毒基因组的三分之一。目前已经解析出了许多冠状病毒相关的蛋白质结构,如SARS-CoV S糖蛋白(PDB ID:5WRG)(图1A)、MERS-CoV N蛋白的C末端结构域(PDB ID:6G13)(图1B)、MERS-CoV N蛋白的N末端结构域(PDB ID: 4UD1)(图1C)。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/fd7a83a8-25f3-48a0-989e-958bb95bc364.jpg" title=" 截屏2020-03-30上午10.38.54.png" alt=" 截屏2020-03-30上午10.38.54.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 病毒体与宿主细胞的初始附着是通过S蛋白与其受体之间的相互作用而开始的。根据研究报道,S蛋白具有受体结合活性和膜融合活性,是冠状病毒感染细胞的关键蛋白。研究发现在大多数冠状病毒中,S蛋白被宿主细胞弗林蛋白酶(Furin)样蛋白酶切割成S1和S2两种单独的多肽。S1的主要功能是与宿主细胞表面受体结合,而S2亚基则负责介导病毒-细胞以及细胞-细胞膜的融合。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在对近期的SARS-CoV-2 S蛋白进行研究时发现,虽然SARS-CoV-2 S蛋白中与ACE2蛋白结合的5个关键氨基酸中有4个发生了变化,但变化后的氨基酸,却没有影响SARS-CoV S蛋白与ACE2 蛋白互作的构象。与SARS-CoV S蛋白相比,突变体后的SARS-CoV-2 S蛋白结构与ACE2 蛋白相互作用能力,由于丢失的少数氢键有所下降,但仍然达到很强的结合自由能,说明SARS-CoV-2 是通过S蛋白与人ACE2相互作用感染人的呼吸道上皮细胞。 /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 疫苗和治疗药物研究进展 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 为了控制病毒的爆发,研究者们开发了针对 SARS¯ CoV 和 MERS¯ CoV 的疫苗。不同的疫苗有不同的制备方法下表中列出了这些方法的发展和优缺点。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/446bbee2-3399-4764-a3f5-0339be331bc9.jpg" title=" 截屏2020-03-30上午10.59.39.png" alt=" 截屏2020-03-30上午10.59.39.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 迄今为止,大多数研究只集中在SARS疫苗的开发上,研究过程中使用了动物模型,但是这些模型并不能概括人类发生的严重临床疾病。 strong 综合SARS 和 MERS 疫苗的研究经验。发现冠状病毒疫苗的研究主要靶标是冠状病毒的S蛋白。疫苗不仅需要诱导体液和细胞免疫应答,还需要诱导黏膜免疫应答并借助佐剂来诱导 Th1 和 Th2 途径的平衡。也就是说成功的疫苗必须在不引起过度免疫激活的情况下达到保护的平衡。 未来还需加强对 SARS-CoV 和 MERS-CoV 等疫苗的研发。 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 对于目前的 SARS-CoV-2,据新华社报道,美国医学专家正与中国同行合作研发针对新型冠状病毒的疫苗,美国休斯敦贝勒医学院彼得霍特兹教授通过电子邮件表示,贝勒医学院正在与美国得克萨斯大学、美国纽约血液中心以及中国上海复旦大学合作开发疫苗。目前,尚无针对 SARS-CoV、MERS-CoV、 & nbsp SARS-CoV-2 和其他 HCoV 感染的特异性疗法,患者主要接受支持性治疗,并辅以多种药物组合,包括使用抗体、干扰素以及病毒和宿主蛋白酶的抑制剂。& nbsp /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 此外,除了针对SARS外,有研究报道了一种针对MERS-CoV S蛋白N端结构域的新型中和单克隆抗体。该研究表明N末端结构域在病毒感染过程中可能很重要,这项发现对于进一步的疫苗设计和针对MERS-CoV感染的预防和治疗性单克隆免疫法的开发具有重要意义。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 理想情况下,疫苗接种和抗病毒治疗都应具有各自明确的作用机制,以避免产生逃逸突变病毒菌株,并提高对不同病毒菌株的活性。 strong 迄今为止,利巴韦林和利巴韦林加各种类型的干扰素已成为SARS和MERS患者最常用的治疗手段。 /strong SARS-CoV-2爆发以来,全国各个攻关团队筛选出一系列具有治疗潜力的药物。 strong 中国科学院上海药物研究所和上海科技大学免疫化学研究所的抗SARS-CoV-2病毒感染联合应急攻关团队报道了综合利用虚拟筛选和酶学测试相结合的策略进行药物筛选,发现了30种可能对SARS-CoV-2有治疗作用的药物、活性天然产物和中药。 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong span style=" text-indent: 2em " 沈阳药科大学、华中科技大学和军事医学研究院国家应急防控药物工程技术研究中心组成的联合攻关小组发现SARS-CoV-2蛋白序列中SARS-CoV-2-PLP序列与SARS-CoV-PLP具有82%的氨基酸同源性。 /span /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " & nbsp 2020 年 1 月 21 日,中国科学院上海巴斯德研究所郝沛研究员等使用计算机模拟的方法发现了& nbsp SARS-CoV-2的S-蛋白的受体结合结构域(RBD)和人血管紧张素转化酶 ACE2 的结合作用较强。& nbsp SARS-CoV-2通过 S 蛋白 - ACE2 结合途径对人 类传播构成了重大的公共卫生风险。因此ACE2 也可能用于& nbsp SARS-CoV-2的治疗研究。 黄朝林等根据过往洛匹那韦利托那韦片对& nbsp SARS-CoV感染的患者有“ 实质性的临床益处” 的结果 推测这种疗法可能对& nbsp SARS-CoV-2感染的患者有效。此外,武汉病毒研究所与军事医学科学院毒物药物研究所联合发现了在细胞层面上对& nbsp SARS-CoV-2有较好抑 制作用的雷米迪维或瑞德西韦(RemdesivirGS-5734)、氯喹(ChloroquineSigma-C6628)、利托那 韦(Ritonavir)等三种“老药物”。& nbsp /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 瑞德西韦属于核苷类似物能够抑制 RNA 依赖的 RNA 聚合酶 (RdRp),由美国知名药企吉利德科学公司研发原本用于对抗埃博拉病毒在体外和动物模型中瑞德西韦证实了对 SARS 和 MERS 的病毒病原体均有活性它们与新型冠状病毒结构相似,从理论预测瑞德西韦对新型冠状病毒可能有效。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 目 strong 前瑞德西韦已进入 III 期临床试验该临床试验项目将在武汉市金银潭医院等多家医院同时进行两部分组成均采用随机、双盲、安慰剂对照形式开展。 /strong 据吉利德对外披露,在武汉进行的临床实验有两项,一是研究评估瑞德西韦用于未表现出显著临床症状患者的治疗效果,也就是轻、重症患者。另一项则是评估其用于重症确诊病患的疗效。值得一提的是,来自中国科学院武汉病毒研究所等机构的中国学者已经在细胞水平上验证了瑞德西韦在2019 新型冠状病毒上有较好的活性。 span style=" text-indent: 2em " 研究结果显示在 Vero E6 细胞上瑞德西韦对 SARS-CoV-2的半数有效浓度EC50 =0.77μmol/L,选择指数 SI 大于 129,表明该药物在细胞水平上能效抑制& nbsp SARS-CoV-2 的感染,但其在人体上的作用还有待临床验证。 /span /p p br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 参考文献: /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1.XU X T,CHEN P,WANG J F,et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission[J]. Science China-Life Sciences,2020.& nbsp /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2.FOUCHIER R A,HARTWIG N G,BESTEBROER T M,et al. A previously undescribed coronavirus associated with respiratory disease in humans [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(16):6212 - 6216.& nbsp /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3.VANDER HOEK L,PYRC K,JEBBINK M F,et al. Identification of a new human coronavirus [ J] . Nature Medicine,2004,10(4):368 -373.& nbsp /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 4.WANG M,CAO R,ZHANG L,et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019¯ nCoV) in vitro [J]. Cell Research,2020 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 5.HUANG C,WANG Y,LI X,et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan,China [J]. Lancet,2020.& nbsp /p p br/ /p p br/ /p
  • 文献速递 | Echo Revolve显微镜助力对新冠病毒侵入机制的深入解析
    2019年突然爆发的新冠疫情在今天仍深刻的影响着我们的生活,对新冠病毒SARS-CoV-2的防范已成为我们每个人日常生活的一部分,研究者们在新冠病毒的治疗、防护、免疫等方面不断探索,帮助我们认识病毒、战胜疫情。近日,来自美国犹太健康中心的一篇报道帮助我们更深入的理解新冠病毒的发病原理,该文献发表于《Nature commuunications》,揭示了影响SARS-CoV-2传染性和新冠肺炎临床结果的可能机制。新冠肺炎是由SARS-CoV-2引起的,而作者研究发现宿主蛋白ACE2和TMPRSS2在呼吸道中的表达与病人对新冠肺炎的感染相关,SARS-CoV-2可以利用宿主蛋白ACE2和TMPRSS2作为进入因子侵入人体。研究者对695名儿童的鼻呼吸道转录组数据进行分析,发现影响ACE2和TMPRSS2表达的基因突变在世界不同人群中的频率不同,如表达减少相关的TMPRSS2 eQTL变异体rs1475908,东亚人(AF=38%)的等位基因频率最高、欧洲人AF为35%、非洲人AF为26%和德系犹太人AF为23%,而拉丁美洲人AF(AF=17%)的等位基因频率最低。与表达增加相关的两个TMPRSS2 eQTL变异在世界人群中表现出更多不同的等位基因频率。研究者发现TMPRSS2是粘液分泌网络的一部分,通过IL-13(白细胞介素-13)的作用被2型(T2)炎症改变从而上调,并且通过呼吸道病毒的干扰素反应使ACE2表达上调。研究者使用Echo Revolve正倒置一体显微镜进行免疫荧光实验证实,在呼吸道上皮的蛋白质水平上也可观察到IL-13和病毒感染介导的ACE2表达的影响。a-d GALA II哮喘患儿的体外鼻呼吸道上皮细胞ALI培养的免疫荧光染色, (a)IL-13处理5天;(b) IL-13处理5天并HRV-A感染24h的上皮细胞;(c)纤毛细胞的代表性图像(ACT 红色)和ACE2阳性(白色)细胞。核用DAPI(蓝色)染色。ACE2蛋白位于根尖腔室,IL-13处理后降低,HRV-A感染后升高。f-h、j非哮喘儿童的体外鼻呼吸道上皮细胞ALI培养的免疫荧光染色 (f) IL-13处理21天;(g) IL-13 和DAPT处理21天的上皮细胞;(h)纤毛细胞的代表性图像(ACT;红色),基底细胞(KRT5 绿色),ACE2阳性(白色)细胞。核用DAPI(蓝色)染色。ACE2蛋白位于根尖腔室,IL-13处理时ACE2蛋白降低,DAPT处理时ACE2蛋白升高;(j)健康人的体外鼻呼吸道上皮细胞ALI培养的免疫荧光染色。所有的图像都使用Echo Revolve正倒置一体显微镜拍摄。研究者最终确认儿童对常见冠状病毒感染的呼吸道反应,并发现这些冠状病毒感染产生类似于其他病毒物种的宿主反应,包括IL6和ACE2的上调。该研究有助于进一步揭示新冠病毒的致病机制,使我们对新冠肺炎的了解更加深入。希望我们可以早日解析新冠病毒致病的全部机制,战胜新冠病毒。Revolve FL应用highlight:1.自动切换多色荧光和透射光通道,快速成像;2.自动merge多通道检测图像,快速定位;3.触摸式Retina视网膜屏,高分辨率显示和注释。Revolve正倒置一体显微镜Revolve展现了其非凡的灵活性,可以轻松地实现正置和倒置显微镜转换,创新性地把正倒置显微镜合二为一,开启了显微镜Hybrid时代。☑ 视网膜屏显示技术:比拟目镜人眼观察效果。☑ 全视野观察: 更清晰,更方便。☑ 多通道荧光:多达4个EPI荧光通道,无须暗室,就可以轻松快速地完成多色荧光显微分析。☑ 自动化操作:通过iPad Pro点触操控相机及荧光通道之间的切换,实现了完全自动化操作。☑ App应用软件:基于IOS的Echo App是与Apple团队合作研发的专业显微镜软件。☑ 精湛的工艺尽显高端品质:实现非凡的性能。申请试用关注“深蓝云生物科技”公众号→云活动→免费试用。参考文献:Sajuthi S P , Deford P , Li Y C , et al. Type 2 and interferon inflammation regulate SARS-CoV-2 entry factor expression in the airway epithelium[J]. Nature Communications, 2020, 11(1).DOI:10.1038/s41467-020-18781-2
  • 流行性感冒病毒
    病毒传入人群后,传染性强并可迅速蔓延,传播速度和广度与人口密度有关。进入人体的病毒,如果不为咳嗽反射所清除,或不为机体的特异IgA抗体中和及粘膜分泌物中非特异性抑制物灭活,则可感染少数呼吸道上皮细胞,引起细胞产生空泡、变性并迅速产生子代病毒体扩散至邻近细胞,再重复病毒增殖周期。病毒的NA可降低呼吸道粘液层的粘度,不仅使细胞表面受体暴露,有利于病毒的吸附,而且还促进含病毒的液体散布至下呼吸道,在短期内使许多呼吸道细胞受损。流感病毒一般只引起表面感染,不引起病毒血症。  流感病毒侵袭的目标是呼吸道粘膜上皮细胞,偶有侵袭肠粘膜的病例,则会引起胃肠型流感。    病毒侵入体内后依靠血凝素吸附于宿主细胞表面,经过吞饮进入胞浆;进入胞浆之后病毒包膜与细胞膜融合释放出包含的ss-RNA;ss-RNA的八个节段在胞浆内编码RNA多聚酶、核蛋白、基质蛋白、膜蛋白、血凝素、神经氨酸酶、非结构蛋白等构件;基质蛋白、膜蛋白、血凝素、神经氨酸酶等编码蛋白在内质网或高尔基体上组装M蛋白和包膜;在细胞核内,病毒的遗传物质不断复制并与核蛋白、RNA多聚酶等组建病毒核心;最终病毒核心与膜上的M蛋白和包膜结合,经过出芽释放到细胞之外,复制的周期大约8个小时。  流感病毒感染将导致宿主细胞变性、坏死乃至脱落,造成粘膜充血、水肿和分泌物增加,从而产生鼻塞、流涕、咽喉疼痛、干咳以及其它上呼吸道感染症状,当病毒蔓延至下呼吸道,则可能引起毛细支气管炎和间质性肺炎。    人群普遍易感,潜伏期长短取决于侵入的病毒量和机体的免疫状态,一般为1~4天。起病后患者有畏寒、头痛、发热、浑身酸痛、乏力、鼻塞、流涕、咽痛及咳嗽等症状。在症状出现的1~2天内,随分泌物排出的病毒量较多,以后则迅速减少。无并发症患者发病后第3~4天就开始恢复;如有并发症,则恢复期延长。流感的特点是发病率高,病死率低,死亡通常由并发细菌性感染所致。常见的细菌有肺炎链球菌、金黄色葡萄球菌、流感嗜血杆菌等。并发症多见于婴幼儿、老人和慢性病(心血管疾病、慢性气管炎和糖尿病等)患者。
  • OPTON微观世界|病毒-亦敌亦友
    截止目前,新型冠状病毒已经冠肺炎已经引起全世界超8800万冠肺炎确诊病例,此次新冠肺炎疾病平均死亡率约2%左右,造成了数万名患者死亡,营造成了全球的经济形势下行。其实在人类历史上,有多种病毒会引起的疾病大流行,造成的伤亡远远大于此次新冠肺炎。天花病毒(Smallpox virus) 该病毒会引发烈性传染病天花,感染天花病毒的患者在痊愈后脸上会留有麻子,“天花”由此得名。天花是人类历史上发病率最高、死亡者最多的传染病。在16-18世纪,每年死于天花的人数,欧洲约为50万人,亚洲约为80万人,而整个18世纪欧洲人死于天花的总数,则约在1.5亿人以上。19世纪至20世纪初,天花依然横行无忌;这种状况一直持续到20世纪下半叶。 登革热病毒,该病毒通过蚊子叮咬进行传播,可引发急性传染病登革热。这种疾病最初发生在热带地区,通常大多是发生在这些地区的雨季,这种环境下极易滋生大量携带病毒的蚊子。传染病的爆发规模越来越大,情况越来越严重,其中登革热出血热的比例也越来越大。全球每年发生5000万~1亿个登革热病例,有24.5亿人受到感染的威胁。登革热影响所有年龄的人,但是大部分的登革热却发生在年龄15岁以下的儿童。马尔堡病毒 该病毒最早在1967年发现于德国马尔堡,引发的传染病称为马尔堡出血热。该病毒可以通过体液(血液、排泄物、唾液、呕吐物等)传播。病患者病状为发高烧,腹泻、呕吐,身体各孔穴严重出血。通常病发后一周死亡。病发死亡率为25%至100%。对于这种具高度传染能力,而同时致命的疾病,目前没有任何疫苗或医治的方法。埃博拉病毒 该病毒可引发急性传染病埃博拉出血热,可通过身体接触传染,是现存的毒性最大的病毒,导致患者病死率高达50%~90%。目前还还没有有效抵御这种病毒的疫苗和药物。它以极其恐怖的传播方式和速度像幽灵一样在非洲游荡,从1976年至2012年爆发了23次。2014年7月,埃博拉病毒再次在非洲大爆发,其感染和死亡人数已经超过以往任何一次,并且还在继续蔓延,并无被控制的迹象。甲型流感病毒 流感病毒分为三个型别,即甲型、乙型和丙型。其中甲型流感病毒是我们已经较为熟悉的一种,也是最危险的一种。历史上最骇人的一场流感发生于1918年,这场场全球性流感夺走了5000万条生命,其罪魁祸首就是名为H1N1的甲型流感病毒。令人闻之色变的禽流感也是一种甲型流感,近年来流行的H5N1、H7N9都是对人类危害较大的禽流感。甲型流感的可怕之处在于它可以通过短时间内的基因重组而演化出新的病株,每重组一次毒性增强、传染性增大,且能导致原有的治疗方法失效。患者感染后的症状主要表现为高热、咳嗽、流涕、肌痛等,多数伴有严重的肺炎,严重者心、肾等多种脏器衰竭导致死亡,病死率很高。SARS冠状病毒 该病毒可引发重症急性呼吸综合征,即我们熟知的SARS。据世界卫生组织公布的信息,SARS患者的平均死亡率为9.6%左右,最高可能达到14%~15%。该病于2002年在中国广东顺德首发,并扩散至东南亚乃至全球,直至2003年中期疫情才被逐渐消灭。该病为呼吸道传染性疾病,主要传播方式为近距离飞沫传播或接触患者呼吸道分泌物。 病毒与其他生物不同,病毒没有细胞结构,只能在宿主细胞内繁殖,病毒可以引起人类、动植物、昆虫的多种疾病。可见,病毒作为很多疾病的罪魁祸首,给人类带来了很多的灾难。 但是病毒也是有分类的,并不是所有的病毒都会感染人类。并且由于病毒在细胞内繁殖速度快,数量巨大,结构简单等特点,也为人类的生物技术带来了天然的载体。由于一般病毒的尺寸很小,只有几十到一百纳米,所以常规只能用透射电子显微镜才可以观察到,但是随着现代电镜技术的发展,扫描电镜也可以对其进行观察。下图是场发射扫描电镜STEM模式下拍摄的噬菌体病毒的照片。未经染色处理的T4-Phage噬菌体,使用STEM探测器获取高衬度图像(左),噬菌体的结构示意图 这是基于这种噬菌体病毒而发展起来的称为“噬菌体展示”的技术给人类制药带来了巨大的飞跃。这让能感染细菌的病毒可以用来进化新的蛋白质。噬菌体技术可产生抗体,用以中和毒素,对抗自身免疫性疾病以及治疗转移性癌症。 “噬菌体展示”技术的基本原理就是将编码多肽的外源DNA片段与噬菌体表面蛋白的编码基因融合后,以融合蛋白的形式呈现在噬菌体的表面。被展示的多肽或蛋白可保持相对的空间结构和生物活性并暴露于噬菌体表面。导入各种各样外源基因的一群噬菌体,就构成了一个呈现各种各样外源肽的展示库。当用一个蛋白质去筛查一个噬菌体展示库时,具体的操作过程其实是用这个蛋白质与该库中的全部噬菌体同时进行反应,以测试蛋白质与噬菌体的结合能力。所用的蛋白质会选择性地同(暴露于特定噬菌体表面的)某个外源肽相结合,从而分离出展示库里的某个特定的噬菌体。噬菌体展示技术示意图 噬菌体展示技术构建抗体库省去细胞融合步骤,避免了因杂交瘤不稳定而反复亚克隆的繁琐程序,极大的提高库容量,从杂交瘤的几千个克隆升至106个。噬菌体展示技术可以直接得到抗体基因,便于进一步构建各种基因工程抗体,还可用于一些难于制备的抗体,如弱免疫原、毒性抗原等,以及人源化抗体。由于噬菌体展示技术周期短,在细菌中增值,因此适用于抗体的大规模工业化生产。噬菌体抗体库的巨大优势,让其在后基因组时代具有多种应用。该项技术也获得了2018年诺贝尔化学奖的殊荣。 人们已经使用此种噬菌体展示的方法,对抗体进行定向进化,从而获得新的药物。第一个用这种方法获得的药物阿达木单抗(adalimumab),于2002年获批并用于类风湿性关节炎,牛皮癣和炎性肠道疾病,,阿达木成为销售额最高的生物药“药王”,仅2017年销售额就达到184.3亿美元。 由此可见,病毒并不是仅仅是人类的敌人,只要我们了解了其基因表达的特点,将所需的蛋白质进行直接表达,也可以是人类的生产工具,让其为人类工作。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制