当前位置: 仪器信息网 > 行业主题 > >

法莫替丁相关化合物标准品

仪器信息网法莫替丁相关化合物标准品专题为您提供2024年最新法莫替丁相关化合物标准品价格报价、厂家品牌的相关信息, 包括法莫替丁相关化合物标准品参数、型号等,不管是国产,还是进口品牌的法莫替丁相关化合物标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合法莫替丁相关化合物标准品相关的耗材配件、试剂标物,还有法莫替丁相关化合物标准品相关的最新资讯、资料,以及法莫替丁相关化合物标准品相关的解决方案。

法莫替丁相关化合物标准品相关的论坛

  • CATO独家 | 新型抑制胃酸杂质——法莫替丁杂质

    CATO独家 | 新型抑制胃酸杂质——法莫替丁杂质

    [font=宋体]◇关于法莫替丁杂质[/font][font=Helvetica][color=#333333] 法莫替丁,[/color][/font][font=宋体][color=#333333]英文名是[/color][/font][font=Helvetica][color=#333333]Famotidine[/color][/font][font=宋体][color=#333333],[/color][/font][font=Helvetica][color=#333333][font=Helvetica]化学式为[/font]C[/color][/font][font=Helvetica][color=#333333]8[/color][/font][font=Helvetica][color=#333333]H[/color][/font][font=Helvetica][color=#333333]15[/color][/font][font=Helvetica][color=#333333]N[/color][/font][font=Helvetica][color=#333333]7[/color][/font][font=Helvetica][color=#333333]O[/color][/font][font=Helvetica][color=#333333]2[/color][/font][font=Helvetica][color=#333333]S[/color][/font][font=Helvetica][color=#333333]3[/color][/font][font=Helvetica][color=#333333][font=Helvetica],是一种组胺[/font]H[/color][/font][font=Helvetica][color=#333333]2[/color][/font][font=Helvetica][color=#333333]受体拮抗剂[/color][/font][font=宋体][color=#333333]的[/color][/font][font=Helvetica][color=#333333]有机化合物[/color][/font][font=Helvetica][color=#333333],[/color][/font][font=宋体][color=#333333]在临床上[/color][/font][font='Segoe UI'][color=#05073b][back=#fdfdfe]法莫替丁是一种重要的药物,广泛用于治疗胃酸过多[/back][/color][/font][font=宋体][color=#05073b][back=#fdfdfe],[/back][/color][/font][font=宋体][color=#05073b][back=#fdfdfe]还有相关[/back][/color][/font][font=Helvetica][color=#333333]胃[/color][/font][font=宋体][color=#333333]疾病以[/color][/font][font=Helvetica][color=#333333]及十二指肠溃疡、反流性食管炎、上消化道出血[/color][/font][font=宋体][color=#333333]等。它的原理机制是[/color][/font][font='Segoe UI'][color=#05073b][back=#fdfdfe]通过阻[/back][/color][/font][font=宋体][color=#05073b][back=#fdfdfe]止并且切断[/back][/color][/font][font='Segoe UI'][color=#05073b][back=#fdfdfe]胃黏膜壁细胞中的H2受体,[/back][/color][/font][font=宋体][color=#05073b][back=#fdfdfe]达到[/back][/color][/font][font='Segoe UI'][color=#05073b][back=#fdfdfe]抑制胃酸的分泌[/back][/color][/font][font=宋体][color=#05073b][back=#fdfdfe]的效果[/back][/color][/font][font='Segoe UI'][color=#05073b][back=#fdfdfe]。法莫替丁还可以用于预防应激性溃疡的发生,例如在重大手术或严重创伤后。[/back][/color][/font][font=宋体][font=Calibri] CATO[/font][font=宋体]标准品提供的法莫替丁杂质用途主要是用于分析化学物质和质量控制的化学物质。[/font][/font][img=,601,510]https://ng1.17img.cn/bbsfiles/images/2024/02/202402052224404125_7305_6381607_3.png!w601x510.jpg[/img][font=宋体][font=宋体] 广州佳途科技股份有限公司,[/font][font=Calibri]CATO[/font][font=宋体]标准品厂家,提供法莫替丁全套[/font][/font][font=宋体]的[/font][font=宋体]杂质,严格的控制质量,通过全面的检测,[/font][font=微软雅黑][color=#444444]高效的沟通,专业的服务,完善的售后[/color][/font][font=微软雅黑][color=#444444],[/color][/font][font=宋体]所有产品均能现货供应[/font][font=宋体]。[/font]

  • 做硝基呋喃类化合物用的标准品的问题

    做硝基呋喃类化合物检测用的标准品大家都是用的什么呀?有标准中说的是用对照品,有标准中用的是代谢物,不知道这其中有没有什么区别呀?大家都根据哪个标准做的呢?

  • 法莫替丁颗粒系统适用性试验-2015中国药典

    法莫替丁颗粒系统适用性试验-2015中国药典

    色谱条件色谱柱:Kromasil 100-5-C18, 4.6*250mm货号:M05CLA25流动相:醋酸盐缓冲溶液(取醋酸钠 13.6g,溶于900ML水中,用冰醋酸调节pH至6.0±0.1,加水至1000ML):乙腈=93:7流速:1.5ml/min柱温:35℃波长:270nm进样量:20μL[align=center][img=,596,251]https://ng1.17img.cn/bbsfiles/images/2018/12/201812101526522191_3600_3232762_3.png!w596x251.jpg[/img][/align][align=left]结论:[/align]1. 出峰顺序为杂质Ⅰ,法莫替丁,杂质Ⅱ2. 法莫替丁保留时间约为13.4min3. 杂质Ⅰ峰和杂质Ⅱ峰相对于法莫替丁的保留时间约为0.7和1.24. 理论塔板数按照法莫替丁计算不低于5000以上指标均符合中国药典。[hr/][align=center]Kromasil品牌[/align]Kromasil是Nouryon旗下高效化学品著名品牌,是全球领先的高性能硅胶基质填料和液相色谱柱生产商。Kromasil高性能多孔球形硅胶基质填料可广泛应用于胰岛素及其类似物、比伐卢定、利拉鲁肽、胸腺法新、达托霉素、EPO等蛋白、多肽及小分子药物等的分离纯化。30年来,Kromasil的经营理念始终是:为制药行业提供以硅胶为基质的、高性价比的、用于医药分离纯化的色谱填料和用于药物分析的液相色谱柱。Kromasil,一以贯之,创新向前。[align=center][img]https://mmbiz.qpic.cn/mmbiz_png/OeFA8HArUwdQyiaia3mAT7HllVGzL6MsslxRXMs2mHMtspgIicoVZic1d5iasgCuC61vnBQBiaC9v88vVZJlTMWwlDMg/640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=1&wx_co=1[/img] [/align][align=center] 更[color=#000000]多资料请访问[/color]:[b][color=#007aaa]http://www.kromasil.com/[/color][/b][/align]

  • 法莫替丁颗粒系统适用性试验-2015中国药典

    法莫替丁颗粒系统适用性试验-2015中国药典

    色谱条件色谱柱:Kromasil 100-5-C18, 4.6*250mm货号:M05CLA25流动相:醋酸盐缓冲溶液(取醋酸钠 13.6g,溶于900ML水中,用冰醋酸调节pH至6.0±0.1,加水至1000ML):乙腈=93:7流速:1.5ml/min柱温:35℃波长:270nm进样量:20μL[align=center][/align][align=center][img=,596,251]https://ng1.17img.cn/bbsfiles/images/2018/12/201812101529374292_9755_2785_3.png!w596x251.jpg[/img][/align]结论:1. 出峰顺序为杂质Ⅰ,法莫替丁,杂质Ⅱ2. 法莫替丁保留时间约为13.4min3. 杂质Ⅰ峰和杂质Ⅱ峰相对于法莫替丁的保留时间约为0.7和1.24. 理论塔板数按照法莫替丁计算不低于5000以上指标均符合中国药典。[hr/][align=center]Kromasil品牌[/align]Kromasil是Nouryon旗下高效化学品著名品牌,是全球领先的高性能硅胶基质填料和液相色谱柱生产商。Kromasil高性能多孔球形硅胶基质填料可广泛应用于胰岛素及其类似物、比伐卢定、利拉鲁肽、胸腺法新、达托霉素、EPO等蛋白、多肽及小分子药物等的分离纯化。30年来,Kromasil的经营理念始终是:为制药行业提供以硅胶为基质的、高性价比的、用于医药分离纯化的色谱填料和用于药物分析的液相色谱柱。Kromasil,一以贯之,创新向前。[align=center][img]https://mmbiz.qpic.cn/mmbiz_png/OeFA8HArUwdQyiaia3mAT7HllVGzL6MsslxRXMs2mHMtspgIicoVZic1d5iasgCuC61vnBQBiaC9v88vVZJlTMWwlDMg/640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=1&wx_co=1[/img] [/align][align=center] 更[color=#000000]多资料请访问[/color]:[b][color=#007aaa]http://www.kromasil.com/[/color][/b][/align]

  • 法莫替丁颗粒系统适用性试验-2015中国药典

    法莫替丁颗粒系统适用性试验-2015中国药典

    [align=center][b]法莫替丁颗粒系统适用性试验-2015中国药典 [/b][/align][align=center] [/align]色谱条件色谱柱:Kromasil 100-5-C18, 4.6*250mm货号:M05CLA25流动相:醋酸盐缓冲溶液(取醋酸钠 13.6g,溶于900ML水中,用冰醋酸调节pH至6.0±0.1,加水至1000ML):乙腈=93:7流速:1.5ml/min柱温:35℃波长:270nm进样量:20[color=#333333]μL[/color][color=#333333][img=,596,251]https://ng1.17img.cn/bbsfiles/images/2018/12/201812271539396153_2091_2428063_3.jpg!w596x251.jpg[/img][/color]结论:1. 出峰顺序为杂质Ⅰ,法莫替丁,杂质Ⅱ2. 法莫替丁保留时间约为13.4min3. 杂质Ⅰ峰和杂质Ⅱ峰相对于法莫替丁的保留时间约为0.7和1.24. 理论塔板数按照法莫替丁计算不低于5000以上指标均符合中国药典。

  • 【求助】丁基锡化合物测试问题

    最近REACH指令给出了15种高注物质的清单,其中的丁基锡化合物,我查了很多资料,也没有找到相关的测试标准,仅查到一些文献资料,提出用四乙基硼酸钠进行衍生化,再提取衍生物来进行测试,但具体用什么溶剂提取,怎么做衍生化没有详细的说明,如有知道标准方法的老师,请告知标准号,急需!

  • 【讨论】欧盟对有机锡化合物的限制将涉及所有消费品

    日前,欧盟通过了决议2009/425/EC,进一步限制对有机锡化合物的使用。决议2009/425/EC指出自2010年7月1日起欧盟将在所有消费品中限制使用某些有机锡化合物。 新的欧盟指令(2009/425/EC)关注的三取代基有机锡化合物(TBT &TPT) ,二取代基有机锡化合物(DBT & DOT),被广泛的应用于消费品中。例如鞋的内底,袜子和运动衣的抗菌整理,聚氨酯泡沫生产过程中的添加剂,PVC生产过程中的稳定剂或硅橡胶生产过程中的催化剂等。由于有机锡化合物对人类健康和环境都会造成不良的影响,因此含有机锡化合物的产品被严格地限制。 决议2009/425/EC具体要求如下表:化合物范围要求生效日期(不可在产品或零部件中使用)生效日期(不允许在市场上销售)三丁基锡 所有物品0.1%(锡含量)2010年7月1日2010年7月1日三苯基锡所有物品0.1%(锡含量)2010年7月1日2010年7月1日二丁基锡所有物品0.1%(锡含量)2012年1月1日2012年1月1日二辛基锡物品包括:- 设计为皮肤接触的纺织品;- 手套;- 设计为与皮肤接触的鞋或 鞋的相应部位;- 儿童护理品;- 女性保洁产品; - 尿布; - 双组分室温硫化模具(RTV-2模具)。0.1%(锡含量)2012年1月1日2012年1月1日与欧盟等国家相比,我们在法规出台的时间和标准的严格程度上都存在滞后性,这与我们之前的技术落后有很大的关系,针对这样的行业局面,笔者曾就此问题拨打了国内最大的检测机构谱尼测试的全国客服电话400-819-5688,通过沟通,谱尼测试的检测专家建议,各大企业要增强在世界贸易中的适应性和实力,从中长期看必须加强技术的提升,适应各种法规和标准并逐步超越,但是在短期内,必须熟知法规和标准,密切关注动态,通过有实力的检测机构做好产品检测工作。

  • 怎样确定化合物的标准英文名?

    我采用岛津的气质联用仪测定挥发物,检测结果采用NIST系统确定化合物名称。现在投稿返回意见是核对化合物的中英文名称。我想知道有没有网站可以查询化合物,这些化合物没有错误,就是中英文名称让重新核对下,写其标准名称。如乙酸叶醇酯 3-hexenyl acetate这样的。谢谢!

  • HJ 648 水质中硝基苯类化合物标准品峰型拖尾

    HJ 648 水质中硝基苯类化合物标准品峰型拖尾

    做HJ 648 水质中硝基苯类化合物的检测,15种标准品的色谱峰拖尾,DB-1701柱子,30×0.32×0.25,进样口250°,检测器300°,柱子流量1ml,初温50°保持2min.,以每分钟10°升到200°,保持1min.,再以每分钟12°升到250°,保持2min.,换过非极性的柱子OV-101,分离效果更差,请问这里有没有做过这个标准的老师指导一下。[img=,690,322]https://ng1.17img.cn/bbsfiles/images/2018/12/201812140954328263_5265_1620184_3.png[/img]

  • 【求助】胶印油墨中芳香烃化合物的测定 定量方法求助

    各位前辈,现在在做胶印油墨中芳香烃化合物的测定,在定量测试环节遇到几个问题。引用的是HJ/T370-2007 中附录B的测试标准。。(见附件)在样品定性定量中,是这么表述的(1)定性检测样品中的组分:取0.1g左右样品,按照标准测试从色谱图中和标品比对是否存在被测物。如果检出被测物质,记录下被测物质的峰面积(2)混合标准溶液的配置:按定性检出的被测物质以甲醇为溶剂配置混合标准溶液。混合标准溶液中各组分的量,按下述要求确定:A 确定加入到式样中很和标准溶液的量,按所取试样量的10%左右;B混合标准溶液中每个标准组分在色谱图上的峰面积应该小于各个试样各被测组分在色谱图上的峰面积(3)样品测定:取0.1g左右的试样,精确至0.0001g,分别注入两个是样品中,准确吸取混合标准溶液,注入其中一个样品瓶,吸取标准溶液的体积按照上述方法确定,并尽快封闭样品瓶。把两个样品瓶置于顶空中,加热平衡,带平衡后开始测试,并计算测试结果。我认为和样品定量有关的是上述有颜色部分,其中对于蓝色字体部分理解不是和明白,希望有做过油墨检测的前辈多加指导。还有就是,因为检测的油墨都是含有芳香烃化合物很微量的样品,那么如何选择合适的标品浓度和样品的面积进行比较呢?

  • 化合物标准图谱

    各位高手: 现急需一种化合物的标准图谱,CAS:5549-23-5,在中科院上海化学所的数据库中没查到! 谢谢各位!

  • 【分享】欧盟执行限制鞋服类商品特定有机锡化合物-

    自今年7月起,欧盟执行2009/425/EC指令,从而正式开始限制对消费产品中特定有机锡化合物的使用。指令2009/425/EC中规定:自2010年7月1日起,欧盟在所有消费品中限制使用三丁基锡和三苯基锡化合物,其限量要求为商品中锡含量的质量百分比浓度小于0.1%,如若检出超标,则该批消费品将遭到退货乃至严厉的召回处罚。 本项指令中关注的有机锡化合物包括三丁基锡、三苯基锡化合物及二丁基锡、二辛基锡化合物,其中前两者的正式开始限制时间为2010年7月1日,而后两者的时间则为2012年1月1日。以上四种有机锡化合物被广泛地应用于消费品中,例如鞋的内底,袜子和运动衣的抗菌整理,聚氨酯泡沫生产过程中的添加剂,PVC生产过程中的稳定剂或硅橡胶生产过程中的催化剂等。据统计,在现实生产过程中,全世界的锡产量中的10%~20%是用于合成有机锡化合物的,由此可见该物质应用的广泛程度。并且有机锡化合物对生物体的危害严重,会引起糖尿病和高血脂病等。 据统计,2010年上半年,宁波口岸出口至欧盟的商品共计62413批次,合15.72亿美元,相比2009年同期,分别提高了27.0%和26.6%,呈现出良好的上升态势,其中主打的拳头产品包括纺织品、玩具产品、食品接触类材料等,这些物品在生产加工过程中都有可能会添加有机锡化合物,如果这些潜在含有有机锡化合物的产品未通过检测贸然输往欧盟,可能会导致大规模的退货乃至召回的后果,这将会严重影响“中国制造”在欧盟的声誉,最终会对正处在逐渐回暖过程中的中欧贸易造成不可预计的恶性后果。 为此,检验检疫部门提醒:第一,输欧消费类产品的生产企业要加强原辅材料和生产过程的管理,要求原辅材料供应商提供不含有机锡化合物的检测报告,同时积极改进加工工艺,确保整个生产过程不添加有机锡化合物;第二,相关企业应积极通过与政府职能部门的配合,获取更多的有毒有害物质检测技术和检测标准知识,稳固企业技术储备工作;第三,检验检疫部门应加大对相关商品的有机锡化合物的抽样检测工作力度,以保证起到切实有效的监管作用;此外,检验检疫部门还可以考虑在国际层面上加强与欧盟在有毒有害物质管理方面的信息交换和有效配合,掌握国外有毒有害物质最新标准的发展趋势,以利于企业进行各项技术创新和管理变革。

  • [原创]:TSQ质谱仪化合物条件优化标准操作规程

    [原创]:TSQ质谱仪化合物条件优化标准操作规程

    论坛里技术性帖子较少,近期打算写一系列的帖子,关于TSQ[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]的标准操作,大家喜欢的话,我会继续的。今天先谈谈TSQ质谱仪化合物条件优化标准操作规程。注:转载请注明来源及作者,谢谢!一、优化待测化合物ESI质谱条件1 样品导入方式的建立1.1 选择适当长度的Peek管将两端通过接头分别与液相系统和切换阀2号口相连。1.2 选择适当长度Teflon管将一端通过接头与切换阀1号口相连,并将另一端置于废液瓶中。1.3 选择适当长度的Peek管将一端通过接头与切换阀3号口相连,另一端通过三通分别与离子源和样品转移毛细管相连。1.4 将200 uL左右样品溶液吸入250 uL进样注射器中。1.5 将进样注射器通过一个接头和一个二通与样品转移毛细管另一端相连。1.6 按住注射泵黑色释放钮将注射泵手柄升高。1.7 将进样注射器小心置于支架上并将注射泵手柄下移至进样注射器活塞柄顶端。2. 质谱条件优化步骤2.1 在Tune Master界面点击On/Standby激活质谱仪。2.2 选择离子极性模式(正离子或负离子),如需进行正负离子切换,将将Spray Voltage调至0后操作。2.3 进入Compound Optimization Workspace。2.4 在Define Scan窗口选择Q1MS扫描模式和Full Scan扫描类型。2.5 在Optimize Compound Dependent Devices窗口设置下列参数: Spray Voltage设为3500 V Sheath Gas Pressure设为30 arb Aux Gas Pressure设为10 arbCapillary Temperature设为350℃Source CID设为0 V2.6 激活注射泵以5 uL/min流速将进样注射器中的样品溶液导入质谱仪。2.7 激活液相色谱泵选择适当流速将流动相导入质谱仪,观察到待测化合物的准分子离子峰峰强度在10的6次方左右,否则增大进样流速或选用浓度更高的待测化合物溶液(样品浓度一般建议1-10ug/mL,建议用甲醇或乙腈溶解)。2.8 在Compound Optimization界面显示Single Sample窗口,选择MS Only优化模式和Syringe Pump Infusion入口类型选项。2.9 优化Tube Lens Offset、Spray Voltage、Sheath Gas Pressure、Aux Gas Pressure和Source CID获得待测化合物稳定的准分子离子峰。2.10记录并保存准分子离子质谱图。2.11选择MS+MS/MS优化模式设置Parent Mass、Charge State和Num Product对子离子进行优化,优化前完成下列设置: 将Source CID设为0 V 将Collision Pressure设为1.5 mTorr将Quad MS/MS Bias设为-1.0 V2.12接受Collision Energy优化结果,并将Source CID设为优化值(由2.9得到)。2.13记录并保存子离子全扫描质谱图。2.14保存Tune Method文件。3. 注意事项3.1 待测化合物溶液浓度为1-10ug/mL3.2 改变流动相比例和流速后应重新进行对Sheath Gas Pressure和Aux Gas Pressure进行优化3.3 手动优化Capillary Temperature3.4 点击Start开始自动优化程序,优化结束时点击Accept接受优化结果,或者点击Undo后再点击Accept保持优化前的仪器配置3.5 仪器常用参数设置见下表。[img]http://ng1.17img.cn/bbsfiles/images/2006/05/200605240732_18885_1237095_3.jpg[/img]

  • 全氟辛烷磺酰基化合物的国标方法测定(LC/MS)

    全氟辛烷磺酰基化合物的国标方法测定(LC/MS)

    2016年5月17日至19日,第十一届持久性有机污染物国际学术研讨会在西安召开。会上,全氟化合物(PFASs)受到了与会专家的诸多关注,成为报告者讨论最多的化合物。 全氟化合物是碳氢化合物(及其衍生物)中的氢原子全部被氟原子取代后所形成的一类化合物,具有持久稳定性、生物累积性等特点。2009年5月,斯德哥尔摩公约第四次缔约方大会决定将全氟辛烷磺酸及其盐类(PFOS)与全氟辛烷磺酰氟(PFOSF)列入公约附件B(限制类),并于2013年8月在我国得到全国人大常委会批准。2015年,斯德哥尔摩缔约方大会通过了全氟辛酸(PFOA)及其盐类和相关化合物的附件D审查(POPs特性筛选),认为PFOA符合附件D筛选标准,决定在其附件E审查时应纳入可降解为PFOA的盐类和相关化合物。 为适应新的履约需求,在我国近期更新的中国履行《斯德哥尔摩公约》国家实施计划中,也将PFOS纳入了计划中,并将动用2400万美金来实现其在重点行业的淘汰和替代。这也许就是全氟化合物受到大家广泛关注的原因。(新闻详情请移步:http://www.instrument.com.cn/news/20160520/191615.shtml) 那么接下来,小编将为大家带来一篇按照国标方法对全氟辛烷磺酰基化合物的液相分析报告,希望能对大家有所帮助。全氟辛烷磺酰基化合物的国标方法测定全氟辛烷磺酰基化合物(PFOS)由于其同时具备疏油、疏水等特性,被广泛应用于生产纺织品、皮革制品、家具和地毯等表面防污处理剂,以及与人们生活接触密切的纸制食品包装材料和不粘锅等近千种产品。http://ng1.17img.cn/bbsfiles/images/2016/05/201605251408_594746_2222981_3.jpg最近研究表明,全氟辛烷磺酰基化合物持久性极强,在自然环境中极难降解,并能够在生物体内高度积累,蓄积水平甚至高于已知的有机氯农药和二噁英等持久性有机污染物的数百倍至数千倍,成为继多氯联苯、有机氯农药和二噁英之后,一种新的持久性的环境污染物。且此物质具有毒性,大量的调查研究发现,PFOS具有遗传毒性、雄性生殖毒性、神经毒性、发育毒性和内分泌干扰作用等多种毒性,被认为是一类具有全身多器脏毒性的环境污染物。本实验按照《食品包装材料中全氟辛烷磺酰基化合物(PFOS)的测定 高效液相色谱-串联质谱法》(GB/T 23243-2009)中的测定方法,使用资生堂 CAPCELL PAK C18 MGIII S5:2.0mm i.d ×150mm色谱柱,对全氟辛烷磺酰基化合物标准品进行了LC-MS测定。http://ng1.17img.cn/bbsfiles/images/2016/05/201605241037_594521_2222981_3.jpg图1MGIII色谱柱GB方法对全氟辛烷磺酰基化合物标准品分析结果http://ng1.17img.cn/bbsfiles/images/2016/05/201605241051_594527_2222981_3.jpg如图1所示,CAPCELL PAK C18 MGIII S5; 2.0mm i.d ×150mm色谱柱在此流动相条件下,对全氟辛烷磺酰基化合物得到了较好的保留,保留时间2.00min,较参考保留时间(1.67min)略长,峰形较好。同时在使用资生堂NASCA自动进样器+NANOSPACE液相系统时,进样0.1 µg /mL浓度(100ppb)标准品后,进样空白溶剂,色谱柱及系统均无残留,如图2所示。http://ng1.17img.cn/bbsfiles/images/2016/05/201605241037_594522_2222981_3.jpg图2 溶剂空白进样结果在此基础上,绘制标准曲线,全氟辛烷磺酰基化合物在0.002 μg/mL - 0.05μg/mL浓度范围内线性良好,如图3所示。http://ng1.17img.cn/bbsfiles/images/2016/05/201605241037_594523_2222981_3.jpg图3 MGIII色谱柱分析全氟辛烷磺酰基化合物标准品浓度-峰面积标准曲线图

  • 食品安全与质量控制——极性化合物分析

    食品安全与质量控制——极性化合物分析

    近几年来频发的食品安全事件,不断的考验着人们的“食神经”,从最普通的食客到国家领导人,食品安全问题已经成为当下人们关注的焦点。不管事因为标准缺失,监管不力,还是因为相关生产者的道德丧失;对于一个分析工作者而言,危机时刻,一份快速、准确的分析结果总能够让我们为此贡献一份光和热的同时,感到安心!为方便大家沟通交流,默克密理博特开设“食品安全与质量控制”论坛专题,在此和大家分享食品分析的一些应用及相关信息,供大家参考。也希望各位在此相互交流,共同提高!专题一:食品中极性、亲水性化合物分析应用一:麻痹性贝类毒素——荧光检测器ZIC®-HILIC色谱条件:色谱柱: SeQ ant® ZIC® Column: SeQuant-HILIC (5 μm, 200Å) PEEK 250x4.6 mm 1.50458.0001检测器: Fluorescence detection (Excitation=350nm, Emission=395nm)流速: 0.7 mL/min流动相 (v/v): A: 10 mM Ammonium formate and 10 mM formic acid in Milli-Q® water (100%)B: acetonitrile and Milli-Q® water with Itot 8 mM Ammonium formate (80:20)温度:室温梯度:Time(min)Solution A (%)Solution B (%)Elution0-24.01882Isocratic24.1-35.03070Isocratic35.1-50.03565Isocratic

  • 新标准发布:土壤和沉积物 15种酮类和6种醚类化合物的测定 顶空/气相色谱-质谱法

    [align=center][b]土壤和沉积物 15种酮类和6种醚类化合物的测定 顶空/[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱法Soil and sediment—Determination of 15 ketone and 6 ether compounds—Headspace/gas chromatography-mass spectrometry标准号:HJ 1289—2023[/b]  为贯彻《中华人民共和国环境保护法》《中华人民共和国土壤污染防治法》,防治生态环境污染,改善生态环境质量,规范土壤和沉积物中15 种酮类和6 种醚类化合物的测定方法,制定本标准。本标准规定了测定土壤和沉积物中15 种酮类和6 种醚类化合物的顶空/[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱法。本标准的附录A 为规范性附录,附录B 和附录C 为资料性附录。本标准为首次发布。[/align][align=center][url=https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/202303/W020230314375433652245.pdf]土壤和沉积物 15种酮类和6种醚类化合物的测定 顶空/[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱法 (HJ 1289—2023)[/url][/align]

  • 【原创大赛】化妆品中全氟及多氟化合物的快速检测及健康风险评估

    【原创大赛】化妆品中全氟及多氟化合物的快速检测及健康风险评估

    [align=center][b]化妆品中全氟及多氟化合物的快速检测及健康风险评估[/b][/align][b]摘要:[/b]基于在线湍流色谱-串联质谱法,快速检测化妆品中全氟及多氟化合物(PFASs)的赋存水平,并进行健康风险评估。本人在前期工作的基础上(指本人前期投稿的《全自动在线检测尿液中的全氟及多氟化合物》),对检测参数进行了进一步优化。使得所有目标化合物在0.05至50ng/mL的范围内具有良好的线性关系,检出限为0.012-0.18 ng/mL,加标回收率范围为78.1%-117%,精密度为3.7%-18.2%。最后,该方法用于10种化妆品中PFASs的检测和风险评估。[b]1 引言[/b]全氟及多氟化合物(PFASs)是一类人工制造的化学物质,化学通式可表示为F(CF2)xR,根据碳链末端的取代基团不同,主要包括全氟羧酸(PFCAs)和全氟磺酸(PFSAs),全氟膦酸(PFPAs),全氟磺酰化合物(POSF),以及全氟磷酸酯(PAPs)等[1]。PFASs中C-F键具有极高的键能,使其具有很好的热稳定性和化学稳定性,此外,碳氟链还具有疏水疏油的特性。自从PFASs发明以后,由于其性能优异,产量不断增加,并广泛应用于日常生活和工业生产的各个领域,包括纺织品,食品包装材料,地毯和皮革的表面处理,消防泡沫和含氟聚合物生产中的高性能化学品)[2]。化妆品已经成为人们生活中必不可少的日用品,化妆品健康风险如何成为民众关心的主要问题。化妆品质量问题、过敏性问题屡见不鲜,其中有毒有机物的组分是造成健康分析的主要原因[3]。已有研究在化妆品中检出一定浓度的PFASs,但是尚存在检测工序复杂,消耗时间长的缺点。本研究使用在线液相色谱质谱联用的方法(建立在本人前期投稿的《全自动在线检测尿液中的全氟及多氟化合物》一文所建立的方法基础上),快速检测了化妆品中PFASs并对其人体健康风险进行了评估,将有利于了解PFASs的污染现状,更有利于加强对化妆品中有害化合物的监管,降低消费者的健康风险。[b]2 实验部分2.1 材料和仪器[/b]本研究使用的所有天然和同位素标记的PFAS标准品(表1)均购置于惠灵顿实验室(Guelph, Ontario, Canada),所有标准品的纯度均超过98%。乙腈(ACN),甲醇(MeOH)和异丙醇(IPA)均为[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]级溶剂(ThermoFisher Scientific,USA)。醋酸铵(NH4 OAc),( 97%),氢氧化铵(28%),乙酸( 99.8%,HPLC级),甲酸( 98%,HPLC级)和1-甲基哌啶(1-MP, 98%)购置于自Alfa Aesar公司(Ward Hill,MA,USA)。本研究使用的超纯水(18.2 MΩcm)取自Milli-Q Advantage A10系统(Millipore,USA)。液相色谱仪为UltiMate™ 3000(ThermoFisher Scientific,USA),由DGLC-3600RS双梯度快速分离泵,WPS- 3000 TLS自动采样器和带有六通(2P-6P)阀门的TCC-3200柱温箱组成,质谱检测仪为Thermo Quantiva 三重四极杆质谱仪(ThermoFisher Scientific,USA)。整个分析过程由Chromeleon 6.70色谱工作站控制,数据由Xcalibur 3.0软件记录。[align=center][img=,687,567]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011008162247_6158_3875454_3.png!w687x567.jpg[/img][img=,690,666]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011015247514_2300_3875454_3.png!w690x666.jpg[/img][img=,663,377]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011008398102_4160_3875454_3.png!w663x377.jpg[/img][img=,690,594]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011016297924_4243_3875454_3.png!w690x594.jpg[/img][/align][b]2.2 样品收集及前处理[/b]在超市买不同品牌的化妆品(液体型)10种,取0.5 mL样品放置于1.5 mL离心管内,添加2 ng内标,添加0.5mL 0.1%的甲酸乙腈溶液,12000 r• min-1离心15 min,取上层200微升至进样瓶中,待测。[b]2.3 在线检测[/b]仪器初始位置为样品负载位置,如图1(a)所示,样品经自动进样器注入TurboFlow SPE柱(Cyclone-P,1.0×50 mm,ThermoFisher Scientific,USA),左泵的初始流动相为 1.5 mL min-1,100% A,样品加载1.0 min以清理基质杂质。样品净化后,六通阀切换至样品洗脱位置(图1(b)),将TurboFlow柱保留的分析物解吸并洗脱到分析柱(Zorbax Extend C18,3.0×150mm,3.5μm,Agilent Technologies Inc,USA)上以进一步分离和检测,分析泵流速为0.4 mL min-1。然后,六通阀切换至负载位置(图1(a))。为了保证TurboFlow SPE柱的可重复使用性,样品洗脱后,负载泵要用1 mL min-1 MilliQ-水:ACN:MeOH:IPA(V:V:V:V=1:1:1:1)冲洗TurboFlow柱5.5分钟以去除残留的杂质。然后,负载泵的流动相恢复到初始比例以准备下一针样品的进样检测。分析柱温度设定在40℃。加载和分析泵的在线SPE程序和HPLC梯度洗脱条件以及阀切换的时间在表2中列出。[align=center] [img=,564,388]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011009549992_7999_3875454_3.png!w564x388.jpg[/img][/align][align=center][img=,690,414]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011010405402_8677_3875454_3.png!w690x414.jpg[/img][/align]注:a. 1-2:负载位置(0-1 min);b. 1-6: 洗脱位置(1-6 min);c. 负载位置(6-19 min)左泵流动相:A. 0.1% 甲酸水溶液(pH调至4),B. 乙腈和甲醇(体积比1:1),C. 超纯水:ACN:MeOH:IPA(V:V:V:V=1:1:1:1),右泵流动相:A. 2mM醋酸铵缓冲溶液(pH 用氨水调至 10.5), B. ACN和METH(V:V=1:1)的混合溶液中添加5 mM 1-MP,C. 超纯水:ACN:MeOH:IPA(V:V:V:V=1:1:1:1)质谱仪使用负离子ESI源多反应监测(MRM)模式进行扫描,母离子和子离子参数如表1所示,待测PFASs采用两个子离子分别作为定性和定量离子,以确保检测方法的准确性。对于PFOS和PFHxS,采用三个扫描离子,分别作为定性、定量和确定性离子,以避免内源性物质共洗脱现象的干扰。MS相关参数设置如下:鞘气,40单位;辅助气,12单位;源电压,2500 V;汽化器温度,350℃ 毛细管温度,400℃;扫描时间0.01秒。[b]2.4 质量保证与质量控制[/b]为防止背景污染的产生,采样、样品前处理以及样品检测过程中均避免使用含氟聚合物材质的器皿或者管路。使用器皿均为聚丙烯材料,并且所有器皿和设备使用前先用甲醇清洗;PFASs测定采用内标法定量,利用一系列浓度的标准溶液(0.05、0. 1、0. 2、0. 5、1、2、5、20、50 ng• mL-1)绘制标准曲线,所有检测物线性相关系数均大于0.99。以信噪比S/N=3时所对应的浓度作为仪器检出限,化妆品中PFASs的检出限范围分别为:0.012-0.18 ng/mL,加标回收率范围为78.1%-117%,精密度为3.7%-18.2%。表明仪器和检测方法适用于实际样品的分析。在样品前处理过程中,每8个样品添加一个程序空白,以保证检测结果的可靠性;每进样检测10次,进一次标准作为质量控制,查看仪器信号漂移,若检测的标准偏离原始检测值± 20%,则重新绘制标准曲线后再定量。[b]2.5 人体通过化妆品摄入PFASs的量及暴露风险评估[/b]人体每人通过化妆品暴露于PFASs的量为:EDI = DCi* Ci/ BW (ng/kg/day) 其中,人均使用化妆品的量DCi约为5 mL/day [4],成人平均体重BW为65kg。危害指数(hazard index,HI)法是最常用的累积风险评估方法,计算公式如下: HQi= EDIi/Reference valuesiHI=∑_(i=1)^n▒ HQi式中:RVi为第 i 种 PFASs的参考限值;EDI为PFASs的每日暴露量,HQi为第i种PAE的危害因子。HQi代表的是单个物质的暴露风险,而 HI 代表的多个物质总的暴露风险。当 HI 和 HQi 的值小于 1 时,说明人群对该物质的暴露水平较低,处于安全的暴露风险;当 HI 和 HQ 的值大于 1、小于 100 时,代表具有一定的潜在暴露风险;而当它们的值大于 100 时,说明暴露风险较高,处于不安全的水平。[b]3. 结果与讨论3.1 化妆品中PFASs的赋存水平[/b]所有目标PFASs中,共有9种化合物的检出率超过40%,我们进行进一步的浓度分析,PFASs 中PFHxS、PFOS和PFOA的浓度是主要的检出物,但是不同品牌的化妆品中PFASs的浓度差别很大,这三种主要PFASs的平均浓度 ± SD分别为4.30±1.84 ng/mL,6.96±6.04 ng/mL,8.97±9.15 ng/mL。每种化妆品中这9种化合物的浓度及浓度比例见图2(a)、(b)。每种化妆品中单体PFASs的浓度存在很大的差异,并且浓度比例也各有不同,这与每种化妆品的成分、功能及制作原料有关。 [align=center][img=,558,674]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011011125640_2049_3875454_3.png!w558x674.jpg[/img][/align][b]3.2 化妆品中PFAS的风险评估[/b]PFOS和PFOA是检出率和检出浓度最高的化合物,也是关注率最高的化合物,目前国际组织也对这两种化合物的每日暴露安全值进行的估算。根据风险评估公式计算人体每日通过化妆品暴露于PFOS和PFOA的量分别为XX,XX,远低于美国[5]、德国[6]、欧盟[7]制定的每日摄入量安全阈值: PFOS 分别为 25、100、150 ng/kg.b.w/day PFOA 分别为 333、100、1500 ng/kg.b.w/day,危害指数远小于 1,表明 PFOS、PFOA 尚未对人体产生较大的风险。但是如果将所有的化合物作为整体,用总浓度进行风险评估,风险值就会高出很多。因此,未来将更加关注该类化合物在化妆品中的赋存及潜在的毒性效应。[align=center][img=,523,306]https://ng1.17img.cn/bbsfiles/images/2019/11/201911011012564222_4058_3875454_3.png!w523x306.jpg[/img][/align]参考文献[1] Sunderland E M, Hu X C, Dassuncao C, et al. A review of the pathways of human exposure to poly-and perfluoroalkyl substances (PFASs) and present understanding of health effects[J]. Journal of exposure science & environmental epidemiology, 2019, 29(2): 131-147.[2] Ross I, McDonough J, Miles J, et al. A review of emerging technologies for remediation of PFASs[J]. Remediation Journal, 2018, 28(2): 101-126.[3] Cousins I T, Herzke D, Goldenman G, et al. The concept of essential use for determining when uses of PFASs can be phased out[J]. Environmental Science: Processes & Impacts, 2019.[4] Ashhami A. Assessment of Extractable Organic Fluorine (EOF) Content and Contribution of Per-and Polyfluoroalkyl Substances (PFASs) in Cosmetic Products[J]. 2017.[5]Roos P H, Angerer J, Dieter H, et al. Perfluorinated compounds (PFC) hit the headlines[J]. Archives of toxicology, 2008, 82(1): 57-59.[6]So M K, Yamashita N, Taniyasu S, et al. Health risks in infants associated with exposure to perfluorinated compounds in human breast milk from Zhoushan, China[J]. Environmental science & technology, 2006, 40(9): 2924-2929.[7]Fromme H, Tittlemier S A, Vö lkel W, et al. Perfluorinated compounds–exposure assessment for the general population in Western countries[J]. International journal of hygiene and environmental health, 2009, 212(3): 239-270.

  • 固定源氯苯类化合物

    固定源氯苯类化合物标准中精密度:模拟无组织排放检测点空气采样后测定,是采样还是不采样?直接加标至活性炭中然后解析吗?还是加标后连接空气采样器采样完了再解析?

  • 【第三届原创大赛】ASTM D5504-2008气相色谱和化学发光法测天然气和燃料气中硫化合物的标准方法

    本文出自huacai原文是aip格式,是俄文,我没有英文稿D5504-08气相色谱和化学发光法测天然气和燃料气中硫化合物的标准方法本标准以固定名称D5504发行;紧跟在名称标号后的数字表示最初采用此标准的年份,或者如有修订,则为最后一次修订的年份。括号中的数字表明此标准最后一次重新获得批准的年份。上标(ε)表示自从最后一次修订或再次获准后的编辑变化。1.范围1.1 本方法用于测定挥发性硫化物——包括高含甲烷的气态燃料如天然气中的硫化合物。本法已成功地应用于其它气态样品如空气、消解气、填埋气、炼厂燃气等燃料气。进1mL样品分析硫化物检测范围为 10~1 000 000pg,相当于0.01~1000mg/m3。1.2本方法可通过稀释或选用更小的进样环,使检测范围扩展到更高浓度。注1——稀释会降低方法精度1.3本方法不能识别样品中全部硫化合物种类。只有在一定色谱条件下,从选定的柱中流出的硫化合物可以测定。检测器对本法1.1范围内所有硫化物等摩尔响应。所以,未识别的化合物和已识别的化合物以同等精度测定。总硫含量由各组分总和得到。1.4数值以国际单位为准。英制单位仅用于信息1.5本方法并非旨在解决所有与使用有关的安全问题,本标准的使用者有责任建立适当的安全健康措施并在使用前确定应用的规定限制。2. 参考文献2.1 ASTM标准方法:D1072通过燃烧和氯化钡滴定测定燃料气中总硫的分析方法D1945气相色谱分析天然气的方法D3609用渗透管校准技术方法D4468氢解比色法测定燃料气中总硫的分析方法E594用于气体或超临界流体气相色谱的火焰离子化检测器的测试方法3 本标准概述3.1由于气态硫化物的活性使得气态硫化物的分析富有挑战性。取样和分析较难。理想情况下最好现场分析以消除变质的影响因素。取样必须用非活性材料容器如内衬硅钢的容器,杜邦的衬有聚丙烯或同等的Tedler袋。Tedler取样袋要能避光隔热。实验室仪器必须惰性或耐氧化以保证结果可信。3.21mL样品注入气相色谱,经大孔径、厚膜,聚甲基硅酮液相,开口管状分离柱或其它适当的柱,最后分离出各个组分。3.3硫化学发光检测---当硫化物从气相色谱柱流出,在FID内或热燃烧带处理。其产物被收集并转到硫化学发光检测器(SCD)。此技术灵敏性好,选择性高,对挥发性硫化物成线性响应且可在FID收集碳氢化合物和不挥发气体数据时应用。3.3.1用SCD系列检测器---SCD可频繁用于其它不挥发气体和碳氢化合物检测器的系列。但组织可能质疑检测器兼容性并要求演示多检测器系统中的SCD和用FID或热燃烧带操作的SCD间的等同性。用户参见USEPA方法301,其中列举了一个通用等同性程序。3.3.2可替代检测器---本测试方法专为硫化学发光检测器而做,但其它证明有足够灵敏度,对全部硫化物有响应,无干扰且满足质量保证标准的硫专用检测器也可使用。4.意义和应用4.1 许多天然气和石油气源都含有硫化合物。这些硫化物有刺激味,腐蚀性,对气态燃料处理过程中的催化剂有毒。4.2为安全起见天然气和液化石油气中会加入少量硫臭味剂。有些臭味剂性质不稳定并反应形成较低味阈的化合物。定量分析这些加味的气可确保加味设备准确添加。4.3尽管不打算用于天然气及相关燃料以外的气体,但是本方法已成功应用于燃料型气体包括炼厂气,填埋气,废热发电气,污水消解等气。炼厂气,填埋气,污水消解和其它有关燃料型气体一般含有挥发性硫化物,需符合联邦,国家或当局限制。这些燃料型气体的甲烷有时卖到天然气经销商。这样,管理机构和产销商都可能要求准确测定硫以满足管理和产销要求。燃料气也用于能量生产或用催化剂转换成新产品。进气中过量的硫会使催化剂中毒。企业经常要求测定这些燃料气中的硫以保护催化剂的投资。4.4分析方法---气相色谱GC通常用于测定固定的气体和天然气中的有机组分(测试方法D1945)。其它分析燃料气中硫的ASTM方法有D1072,测总硫的D4468,方法D4010和测硫化氢的D488

  • 4氨基安替比林测定酚类化合物

    请问谁有4氨基安替比林分光光度法测定的酚类物质的标准曲线啊,是按照国标号HJ/T32-1999做的,固定污染源中酚类化合物的测定,我做了一个不知道哪里出了问题乱糟糟的,谁有的话给我一个看一下啊,找找区别,万分感谢啊

  • 【原创大赛】乳制品中的碳水化合物知多少?

    【原创大赛】乳制品中的碳水化合物知多少?

    很多朋友都问,乳制品上标注的碳水化合物是什么?下面我带大家一起了解一下牛奶中的碳水化合物。 首先看看一个牛奶的包装,如下图http://ng1.17img.cn/bbsfiles/images/2016/08/201608240846_606403_1644065_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/08/201608240847_606404_1644065_3.jpg 上面写着碳水化合4.7%,很多朋友不知道碳水化合物具体说的是什么,下面由我带大家一起了解一下。1.概述 碳水化合物的分子组成一般可用Cn(H2O)m的通式表示,但后来发现有些糖类并不符合上述公式,比如鼠李糖(C6H12O5),脱氧核糖(C5H10O4),并且有些糖还有氮、硫、磷等成分,显然用碳水化合物的名称来代替糖类名称已经不适当,但由于沿用已久,至今还在使用这个名称。碳水化合物可分为单糖、低聚糖、多糖三类。乳制品中最常见的有乳糖和蔗糖,都属于低聚糖。一般纯牛奶的不容许添加蔗糖的,纯牛奶中只含有乳糖。调制乳中为了满足小孩等不同消费者的需求,添加蔗糖以增加乳制品的甜度。2.牛乳的组成介绍牛奶=水+全乳固体全乳固体(总固体)=脂肪+蛋白质+碳水化合物+灰分 脂肪=饱和脂肪酸+不饱和脂肪酸等蛋白质(粗蛋白)=真蛋白+非蛋白氮真蛋白=酪蛋白(约80%)+乳清蛋白+乳白蛋白+乳球蛋白等碳水化合物=乳糖+蔗糖3.糖类简介3.1单糖 单糖是指不能再水解的最简单的多羟基醛或多羟基酮及其衍生物,按所含碳原子数目的不同,称为丙糖、丁糖、戊糖、己糖、庚糖等,或称为三、四、五、六、七碳糖等,其中以己糖、戊糖最为重要。3.2低聚糖 低聚糖是指聚合度小于或等于10的糖类,按水解后所产生单糖分子的数目,低聚糖可分为二糖、三糖、四糖、五糖等,其中最重要的二糖是蔗糖和麦芽糖。低聚糖又分为均低聚糖和杂低聚糖。均低聚糖是由同一种单糖聚合而成的,如麦芽糖,聚合度小于10的糊精。杂低聚糖由不同种的单糖聚合而成,如蔗糖、棉子糖等。根据低聚糖还原性也可以分为还原性低聚糖和非还原性低聚糖。3.3多聚糖 多糖又称为多聚糖,是指聚合度大于10的糖类,分为均多糖和杂多糖。均多糖如纤维素、淀粉等。杂多糖如阿拉伯木聚糖。根据多糖的来源又可分为植物多糖、动物多糖和细菌多糖。4.乳制品中最主要的糖类 乳制品中最终的糖有乳糖和蔗糖,两者都属于双糖。双糖均溶于水,有甜味、旋光性,可结晶。根据还原性,双糖可分为还原性双糖和非还原性双糖。4.1乳糖 乳糖(lactose,milksugar)是哺乳动物乳汁中的主要糖成分,牛乳中含乳糖4.6%-5.5%。乳糖分子是由β-半乳糖和葡萄糖以β-1,4糖苷键结合而成。其溶解度小甜度仅为蔗糖的六分之一,具有还原性,(用滴定法测定乳糖就是利用乳糖的还原性),含有a和β两种立体异构体,a型乳糖的熔点为223℃,β型乳糖的熔点为252℃.有旋光性,常温下,乳糖为白色固体。http://ng1.17img.cn/bbsfiles/images/2016/08/201608240849_606408_1644065_3.jpg 乳糖有助于机体内钙的代谢和吸收,但是对体内缺乏乳糖酶的热论,它可导致乳糖不耐症。乳糖不耐请参看下图:http://ng1.17img.cn/bbsfiles/images/2016/08/201608240850_606409_1644065_3.jpg4.2蔗糖 蔗糖(sucrose,cane sugar)是a-D-葡萄糖的C1与β-D-果糖的C2通过糖苷键结合的非还原糖。在自然界中,蔗糖广泛分布于植物的果实、根、茎、叶、花及种子内,尤其甘蔗、甜菜中量最多。蔗糖是人类需求最大,也是食品工业中最重要的能量型甜味剂,在人类营养上起着巨大的作用。 纯净蔗糖为无色透明的单斜晶体,相对密度1.588,熔点为160℃,加热到熔点,便形成玻璃样晶体,加热到200℃以上形成棕褐色的焦糖。蔗糖味很甜,易溶于水,溶解度随着温度的增加而增加。http://ng1.17img.cn/bbsfiles/images/2016/08/201608240850_606411_1644065_3.jpg5.检测方法 目前国标方法检测糖类采用的国际标准是《婴幼儿食品和乳品中乳糖、蔗糖的测定》,标准号为GB5413.5-2010。其中第一法为高效液相色谱法,试样中的乳糖、蔗糖经提取后,利用高效液相色谱柱分离,用示差折光检测器或蒸发光散射检测器检测,外标法进行定量。 第二法为莱因―埃农氏法,俗称滴定法,也是各个实验室最常用的方法。乳糖:试样经除去蛋白质后,在加热条件下,以次甲基蓝为指示剂,直接滴定已标定过的费林氏液,根据样液消耗的体积,计算乳糖含量。蔗糖:试样经除去蛋白质后,其中蔗糖经盐酸水解为还原糖,再按还原糖测定。水解前后的差值乘以相应的系数即为蔗糖含量。6.总结 碳水化合物是生物体维持生命活动所需能量的主要来源,是合成其他化合物的基本原料,同时也是生命体的主要结构成分。人类摄取食物的总能量中大约80%由糖类提供,因此碳水化合物是人类及动物的生命之源。

  • 4氨基安替比林测定酚类化合物

    请问谁有4氨基安替比林分光光度法测定的酚类物质的标准曲线啊,是按照国标号HJ/T32-1999做的,固定污染源中酚类化合物的测定,我做了一个不知道哪里出了问题乱糟糟的,谁有的话给我一个看一下啊,找找区别,万分感谢啊

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制