当前位置: 仪器信息网 > 行业主题 > >

聚乙烯熔体流动速率标准物

仪器信息网聚乙烯熔体流动速率标准物专题为您提供2024年最新聚乙烯熔体流动速率标准物价格报价、厂家品牌的相关信息, 包括聚乙烯熔体流动速率标准物参数、型号等,不管是国产,还是进口品牌的聚乙烯熔体流动速率标准物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合聚乙烯熔体流动速率标准物相关的耗材配件、试剂标物,还有聚乙烯熔体流动速率标准物相关的最新资讯、资料,以及聚乙烯熔体流动速率标准物相关的解决方案。

聚乙烯熔体流动速率标准物相关的资讯

  • 新品上市|低密度聚乙烯拉伸流变性能新技术--VADER 1000
    摘要在单轴拉伸流动中测量了三种选定的商用低密度聚乙烯(LDPE)的非线性流变性能。使用三种不同的设备进行测量,包括拉伸粘度装置(EVF),自制长丝拉伸流变仪(DTU-FSR)和商用长丝拉伸流变仪(VADER-1000)。通过测试显示,EVF的测量结果受到最大Hencky应变4的限制,而两个长丝拉伸流变仪能够在达到稳态的更大Hencky应变值下探测非线性行为。利用长丝拉伸流变仪的能力,我们表明具有明显差异的线性粘弹性的低密度聚乙烯可以具有非常相似的稳定拉伸粘度。这表明有可能在一定的速率范围内独立控制剪切和拉伸流变。关键词拉伸流变;聚乙烯;聚合物熔体;非线性粘弹性正文多年来,控制聚合物流体的流变行为作为分子化学的一个性能,引起了学术界和工业界的极大兴趣。最成功和最多产的理论预测的流变行为的纠缠聚合物系统是De Gennes(1971)和Doi和Edwards(1986)提出的 "管模型"。然而,尽管三十年来人们一直在努力改进管模型,但即使对于最简单的情况,即单分散线性聚合物体系,缠结聚合物在拉伸流动中的非线性流变行为仍然没有得到充分理解(Huang等人,2013a;Huang等人,2013b)。低密度聚乙烯等工业聚合物是最复杂的缠结聚合物系统,它们不仅具有高度的多分散性,而且还含有不同的支化分子结构。预测低密度聚乙烯的流变行为,特别是拉伸流动中的非线性行为,是非常具有挑战性的。在明确定义的模型系统上,已经进行了探索延伸流中支化聚合物动力学的实验工作(Nielsen等人,2006;Van Ruymbeke等人,2010;Lentzakis等人,2013)以及商业聚合物系统,如低密度聚乙烯LDPEs。有几个小组观察到低密度聚乙烯LDPE的瞬时拉伸应力的最大值(Raible等人,1979;Meissner等人,1981;M¨unstedt和Laun,1981)。Rasmussen等人(2005年)首次报告了应力过冲后的稳定应力,并通过比较长丝拉伸流变仪和十字槽拉伸流变仪的测量结果(Hoyle等人,2013年)以及比较恒定拉伸速率和恒定应力(蠕变)实验(Alvarez等人,2013年)进行了实验验证。已经开发了几个模型(Hoyle等人,2013;Wagner等人,1979;Hawke等人,2015),试图了解应力过冲背后的物理学。然而,这些模型都不能实际用于预测工业中低密度聚乙烯LDPE的流变行为,因为这些模型包含许多与分子结构没有直接关系的拟合参数。最近,Read等人(2011)提出了一个预测方案,能够计算随机长链支化聚合物熔体的线性和非线性粘弹性,作为其形成的化学动力学的函数。这些预测似乎与剪切流和拉伸流中三个低密度聚乙烯的测量结果非常一致。然而,测得的拉伸数据受到最大Hencky应变约为3.5的限制,并且没有显示出稳定状态的迹象,而模拟结果则达到了更大的 Hencky应变值,并预测了每个应变速率的稳定应力。在更大的Hencky应变值下预测非线性行为的质量仍然是未知的。此外,在Read等人(2011)的模拟中,没有预测到应力过冲。在这项工作中,我们介绍了三种不同的商用低密度聚乙烯的拉伸测量。这三种低密度聚乙烯是根据Read等人(2011)的模型预测而专门设计的。预计它们具有不同的零剪切速率粘度,但在非线性拉伸流动的大变形中具有相似的应力-应变反应。测量是在三个不同的设备上进行的,包括两个长丝拉伸流变仪和一个拉伸粘度夹具。我们表明,长丝拉伸流变仪的测量结果可以达到5以上的大Hencky应变值,在那里达到非线性稳定状态。我们还表明,低密度聚乙烯LDPE样品在拉伸流动中的大Hencky应变值具有相似的非线性行为,包括相同的应力过冲幅度和过冲后的相同稳定应力,尽管Read模型预测没有应力过冲现象。这些结果表明,低密度聚乙烯LDPE熔体的非线性粘弹性可以通过选择性聚合方案来控制。实验材料陶氏化学公司提供了三种类型的商用低密度聚乙烯树脂,分别为PE-A、PE-B和PE-C。所有样品都是颗粒状的。表1总结了样品的特性,包括密度、熔体流动指数(I2)、重量-平均摩尔质量(Mw)、数量-平均摩尔质量(Mn)和熔体强度。重量-平均摩尔质量是由多角度激光散射法确定的,而数量-平均摩尔质量是由微分折射率确定的。摩尔质量值是若干次重复的平均数。熔体强度是用通用流变仪结合通用ALR-MBR 71.92挤出机测量的。测量是在150℃下进行的,产量为600g/h。模具的长度为30毫米,直径为2.5毫米。表1实验是在24mm/s2的加速度下进行的。纺丝线的长度被设定为100毫米。流变仪测试在膜生物反应器挤出机系统清扫30分钟后进行,并一直运行到纺丝线失效。通过力-拉速数据拟合出一个四参数交叉函数,根据拟合的破坏速度曲线确定破坏时的力。表中的数据是五次连续测量的平均数。力学谱三种低密度聚乙烯样品的线性粘弹性(LVE)特性是通过小振幅振荡剪切(SAOS)测量得到的。TA仪器公司的ARES-G2流变仪采用25毫米的板-板几何形状。图1所有样品的时间-温度偏移因子αT作为温度的函数,参考温度为Tr= 150℃测量是在氮气中,在130℃和190℃之间的不同温度下进行的。对于每个样品,使用时间-温度叠加(TTS)程序,在参考温度Tr= 150℃时,数据被移动到单个主曲线。所有样品的时间-温度偏移系数(αT)与单一的阿伦尼乌斯公式一致,其形式为其中活化能∆H = 65 kJ/mol。R是气体常数,T是以开尔文表示的温度。在图1中,偏移因子αT被绘制为温度的函数。拉伸应力测量拉伸应力测量使用三种不同的设备:TA仪器的延伸粘度夹具(EVF)、自制的长丝拉伸流变仪(DTU-FSR)(Bach等人,2003a)和Rheo Filament的商用长丝拉伸流变仪(VADER-1000)。将不同设备的结果进行相互比较。用于EVF测量的样品在150℃下压缩成型,在低压10bar下3分钟,在高压150bar下1分钟,然后用淬火冷却盒在150bar下淬火冷却到室温。在短时间内,当冷却盒插入时,样品会出现压力损失。在相对较低的温度下进行短时间的压缩成型是为了防止样品的任何潜在氧化或降解。样品模具为特氟隆涂层,尺寸为100×100 0.5mm。从约20mm长的铭牌上冲压出12.7mm-12.8mm宽的样品。最终样品的厚度约为0.6mm。在EVF测量中,样品被插入设备中,在150℃下180s的平衡时间后,样品以0.005s-1的应变速率被预拉伸15.44s,然后松弛80s,然后样品被拉伸。报告的Hencky应变是由圆柱体的旋转计算出来的。通常情况下,使用EVF的拉伸测量仅限于样品保持均匀的情况。EVF一次旋转所能达到的Hencky应变值通常低于4,与EVF相比,长丝拉伸仪器并不依赖于沿拉伸方向的均匀变形的假设。事实上,由于板材上的无滑移条件,变形在轴向上是不均匀的。这些设备只是探测了通常在中间细丝平面发现的最小直径平面内的变形和应力之间的关系。在这个平面外的剩余材料只需要固定在研究的薄片上,就像在固体力学测试中用狗骨形状来固定材料一样。长丝拉伸装置确实依赖于最小直径平面内的径向均匀变形的假设。Kolte等人(1997年)的模拟表明,在长丝中间平面几乎没有任何径向应力变化。用激光测微计来测量中丝薄片的直径。为了探索更高的应变,在DTU-FSR和VADER 1000流变仪都采用了在线控制方案,该方案首先由Bach等人(2003b)使用,后来由Mar´ın等人(2013)发表,用于在拉伸过程中控制长丝中平面的直径,以便在样品断裂前确保恒定的应变速率。根据样品的类型,DTU-FSR和VADER-1000都可以达到最大Hencky应变值7。在长丝拉伸流变仪上进行测量之前,样品被热压成半径为R0、长度为L0的圆柱形试样。长宽比定义为∆0= L0/R0。样品在150℃下压制,并在相同温度下退火10分钟,然后冷却至室温。在测量中,所有样品被加热到150℃,在180s的平衡时间后,样品在拉伸实验之前被预拉伸到Rp的半径。对于DTU-FSR,R0= 4.5mm,L0= 2.5mm,Rp在3到4.5mm之间,而对于VADER-1000,R0 = 3.0mm,L0= 1.5mm,Rp = 2.5mm。在拉伸测量过程中,力F(t)由称重传感器测量,中间灯丝平面的直径2R(t)由激光测微计测量。在拉伸流动开始的小变形时,由于变形场中的剪切分量,部分应力差来自于压力的径向变化。这种影响可以通过Rasmussen等人(2010)描述的校正因子来补偿。 对于大应变,校正消失,对称平面中应力的径向变化变得可以忽略不计(Kolte等人,1997)。对于本工作中的所有样本,当Hencky应变值大于2时,校正值小于4 %,Hencky应变和中丝平面上应力差的平均值计算如下其中mf是灯丝的重量,g是重力加速度。应变率定义为ϵ• =dϵ/dt,拉伸应力增长系数定义为η-+=〈σzz-σrr 〉/ϵ• 结果和讨论线性粘弹性图2(a)显示了所有样品在参考温度150℃下的储能模量G’和损耗模量G”与角频率ω的函数关系。(b)表示在150°C相应的复数粘度η*。图中的两个星号来自稳定剪切测量,在 150°C下剪切速率为0.005 s-1图2(a)显示了所有样品在参考温度150℃下的储能模量G’和损耗模量G”与角频率ω的函数关系。相应的复数粘度η*绘制在图2(b)中。图中实线是多模麦克斯韦(multimode Maxwell fitting)拟合的结果。Maxwell relaxation modulus多模麦克斯韦弛豫模量G(t)由下式给出 其中gi和τi列于表2。表中的零剪切速率粘度η0通过下式计算 在图2(b)中,很明显三个样品具有不同的零剪切速率粘度。然而,在图2(a)、(b)中,似乎PE-C的线性行为在较低频率下接近PE-A,在较高频率下与PE-B重叠。而且在ω 1 rad/s时,PE-C的G′和G″曲线几乎与PE-A平行,垂直位移因子约为0.6。表2 LDPE 在 150°C 熔体的线性粘弹性启动和稳定状态下的拉伸流变图3(a)显示了PE-A在150℃时的拉伸应力增长系数与时间的关系。图中比较了EVF、DTU-FSR和VADER-1000的测量值。图中的虚线是根据表2中列出的麦克斯韦弛豫谱计算的LVE包络线。EVF的测量值受到最大Hencky应变4的限制,在图3(b)中可以清楚地看到。其中测量的应力是作为Hencky应变的函数绘制的。两个长丝拉伸流变仪的测量值能够达到大于5的较大Hencky应变值,在该值下观察到稳定的应力。图3我们注意到EVF和长丝拉伸测量之间存在明显的偏差。我们认为EVF测量的应力太低,特别是在低应变率下,Hoyle等人(2013)也观察到这一点,他们将长丝拉伸测量值与Sentmanat拉伸流变仪测量值进行了比较。因此,对于图3(b)中的ϵ• =0.01 s-1,已经与ϵ• =0.5有偏差,而对于ϵ• =2.5 s-1,EVF测量与DTU-FSR测量一致,最高ϵ• 为3.5。请记住,在EVF中,只有横截面的初始面积是已知的;在拉伸过程中横截面面积的变化不是测量的,而是由一个假设均匀单轴拉伸速率不变的方程计算出来的。此外,在EVF测量中,样品宽度为12.8mm略微超过了Yu等人(2010)建议的12.7mm的上限,这导致在更大的Hencky应变值下的平面延伸而不是单轴延伸。相比之下在DTU-FSR和VADER-1000中,中间直径一直被测量,因此在拉伸过程中横截面的实际面积是已知的,由此计算出中间细丝平面中的真实Hencky应变。借助于在线控制方案,在整个测量过程中保证了单轴拉伸过程中恒定的Hencky应变率。来自DTU-FSR和VADER-1000的大Hencky应变值的数据由于力小而有些分散。此外,在拉伸速率超过0.4s-1时,使用DTU-FSR和VADER-1000进行的测量观察到了应力过冲的现象。由于仪器中采用的控制方案的限制,使用两个长丝拉伸流变仪进行测量的拉伸速率不超过2.5s-1。在长丝拉伸中,表面张力可能对测量的应力有影响,尤其是在长丝中间平面的半径非常小,大的亨基应变值的时候。在所有的测量中,最小的半径是R = 0.12mm。如果我们把低密度聚乙烯LDPE的表面张力γ = 0.03 J/m2,表面张力效应产生的最大应力是σsur =γ/R = 250Pa。在图3(b)中,很明显,对于所有达到Hencky应变大于4的测量,测量的应力高于104Pa。因此可以忽略表面张力效应。图4图4显示了PE-C在150℃时拉伸应力增长系数与时间的函数关系。DTU-FSR和VADER-1000的测量结果非常一致。在0.15和2.5s-1之间的中间拉伸速率下,EVF的测量值与DTUFSR一致。拉伸速率低于0.1s-1时,偏差越来越大。根据DTU-FSR和VADER-1000的测量,在拉伸速率快于0.4s-1时,再次观察到应力过冲。图5图5比较了DTU-FSR测量的拉伸流动中PE-A和PE-C的非线性行为。如图2所示,PE-A和PE-C具有不同的线性粘弹性,这也由图5(a)中不同的LVE包络表示。在拉伸流的启动过程中,PE-A和PE-C也有不同的非线性反应。从图5a中可以清楚地看出,在所有拉伸速率下,PE-C 比 PE-A 有更明显的应变硬化。然而,在图5(a)、(b)中,有趣的是,尽管PE-A和PE-C最初有不同的非线性行为,但是它们在更大的Hencky应变值下具有相同的反应,并且在每个应变速率达到相同的拉伸稳态粘度,如图6所示。图6还显示在快速应变率下,拉伸稳态粘度表现出幂律行为,粘度比例约为ε• -0.6,这与Rasmussen等人(2005)和Alvarez等人(2013)的观察结果一致。应该注意的是,如图5(b)所示,相同的非线性行为仅在Hencky应变值大于4时观察到,这一点无法通过EVF测量。图6图7(a)比较了PE-B与PE-C在150℃时的拉伸应力增长系数。在所提出的速率下,PE-B没有显示任何应力过冲。尽管PE-B和PE-C在线性和非线性流变学方面的表现不同,但在每种拉伸速率下,它们的相对应变硬化量似乎是相似的。在图7(b)中可以更清楚地看到这一点。图7(b)中比较了Trouton比率。Trouton 比值定义为Tr = η-+ /η0,其中η0是零剪切率粘度,其数值列于表2。可以看出,在每个拉伸速率下,PE-B达到与PE-C相同的最大Trouton比率,证实它们具有相同的相对应变硬化量。图7结论我们使用三种不同的设备测量了三种商用低密度聚乙烯样品的拉伸流变性能。这三种设备在拉伸流变的启动方面给出了一致的结果。然而,EVF的测量结果受到最大Hencky应变4的限制,而两个长丝拉伸流变仪达到了更大的Hencky应变值,在这里可以观察到应力过冲和稳态粘度。此外,EVF的测量仅在取决于应变速率的应变范围内跟随长丝拉伸测量。尽管三种低密度聚乙烯样品具有不同的线性粘弹性能,但已经表明,PE-A和PE-C在Hencky应变值大于4时具有非常相似的非线性rhelogical行为,而PE-B和PE-C具有相同的相对应变硬化量。上述结果表明,工业低密度聚乙烯的非线性流变性可以通过聚合来调整。特别是,有可能合成一种聚合物(PE-C),其具有比参考聚合物(PE-A)低得多的粘弹性模量,但仍具有与参考聚合物相同的拉伸粘度。
  • 北京市地方标准《聚乙烯管道热熔对接接头微波无损检测质量控制要求》预审会召开
    近日,北京市检验检测认证中心所属市特种设备检验检测研究院组织召开了北京市地方标准《聚乙烯管道热熔对接接头微波无损检测质量控制要求》预审会。会议邀请了来自中国标准化研究院、中国特种设备检测研究院、北京化工大学、国家化学建筑材料测试中心、北京顺义燃气有限责任公司、北京航星机器制造有限公司、北京工业大学等单位共计16名专家组成审查专家组进行评议。会上,标准编制组人员就标准的目的意义、制定原则和依据、适用范围、主要条款等向专家组作了详细汇报,与会专家对标准的有关技术内容进行了质询,并对标准的完善提出了宝贵意见。最后,会议对标准征求意见稿进行了审查,专家组一致同意该标准通过预审查。《聚乙烯管道热熔对接接头微波无损检测质量控制要求》针对北京市城市燃气聚乙烯管道热熔对接接头的实际情况,首次提出了聚乙烯管道热熔对接接头的微波无损检测质量控制规范,并为聚乙烯管道热熔对接接头的质量检测与评判提供了方法与准则。本次会议为该地方标准的顺利发布奠定了基础。
  • 思尔达发布熔体流动速率仪新品
    RL-Z1B1+ 系普通材料型,RL-Z1B1- + 系耐腐型。 熔体流动速率测定仪(亦称熔融指数仪)是测定热塑性塑料在一定条件下的熔体流动速率的专用仪器。热塑性塑料的熔体流动速率(熔融指数)是指热塑性塑料在一定温度和负荷下,熔体每10分钟通过标准口模毛细管的质量或熔融体积,用MFR (MI)或MVR 值表示,它可区别热塑性塑料在熔融状态下的粘流特性。对热塑性塑料及化纤的原料、制品等产品的质量保证,有着重要的意义。本机控制温度精度高,关键零件氮化处理,强度、硬度高,变形小,这对精确测定流动速率提供了良好的条件。RL-Z1B1-型的料筒、活塞杆、口模及相关零部件均采用了航空发动机用的特殊材料,耐腐蚀性能好,甚至能用于测试F46(四氟乙烯六氟丙烯聚合物)等材料。 各国都对测试温度的精度作了相应规定,其中ASTM定为±0.2℃,ISO定为±0.5℃,JIS定为±0.2℃,我国规定为±0.5℃。 本仪器符合ISO1133:1997(E)、ASTMD1238-95、JIS-K72A以及国家标准GB3682-2000、JB/T5456、JJG878和其它相应标准制定的技术指标。 RL-Z1B1熔体流动速率仪是在RL-Z1B型的基础上对结构作进一步改进而成的。一. 主要技术参数1. 温度控制范 围 100 - 400℃ 准 确 度 不劣于±0.2℃(125℃~300℃内) 国际标准ISO1133,GB3682规定的试验温度:125、150、190、200、220、230、250、265、275、280、300℃ 波 动 不劣于±0.1℃(国家检定规程JJG878规定,不得超过±0.5℃) 8h 漂 移 ≤0.1℃ (国家检定规程JJG878规定,4h内不得超过±0.5℃) 分 布 ≤0.5℃ (国家检定规程JJG878规定,不得大于1℃) 分 辨 率 0.1℃ 误差修正 随机2. 加料后料筒温度恢复时间≤4min3. 计 时 钟 范 围 0~9.999s~999.9s~9999s; 分 辨 率 0.001s/0.1s/1s4. 切割装置4.1 自动切割装置切割:定时切割0~999s4.2 手工切割刀切割5. 口模内径 Φ2.095±0.005mm16. 料筒内径 Φ9.550±0.020mm7. 负荷: 精 度 不劣于±0.5% 组合负荷:325g,1200g,2160g,3800g,5000g,10000g,12500g,21600g(根据ISO1133、GB3682全配备)8.国家标准样品(PE)试验: 重复精度 ≤2%(国家检定规程JG828规定,不超过8%) 准 确 度 ≤5%(国家检定规程JJG828规定,不超过±10%)9. 测定范围 0.02~2000g/10min(自动测试时) 0.03~50000px3/10min(自动测试时)*能保证在预热恒温时,熔料不流出的情况下;手动切割测试时由于存在人体反映速度,对高流动速率值有较大影响。10.电 源 220V,AC,50Hz,6A11.外形尺寸 1×b×h=520×410×890mm312.重 量 主机40Kg,砝码箱25Kg二.主要构造 本仪器主要是由电脑系统、检测装置、负荷、自动测试机构及电动切割装置五大部分组成。1. 检测装置(附图1)1.1 料筒* 采用氮化钢材料,并经氮化处理制作,HV≥700。1.2 料杆(活塞杆)* 采用氮化钢材料,并经氮化处理制作,HV≥600,料杆头部比料筒内径均匀地小0.075±0.015mm,顶部装有一隔热套,使料杆与负荷隔热,在料杆上有二道相距30mm的刻线作为参考标记,它们的位置是:当料杆头下边缘与口模顶部相距20mm时,上标记线正好与料筒口持平(见图2)。1.3 口模*Φ2.095±0.005mm,HV≥700。*RL-Z1B1- 耐腐蚀型,由制造航空发动机的特殊材料制成。创新点:电动加载砝码,触摸屏,自动计算打印
  • 全自动高温乌氏粘度计在聚乙烯PE、聚丙烯PP行业的应用
    聚乙烯(polyethylene ,简称PE)是乙烯经聚合制得的一种热塑性树脂。化学式为:(C2H4)n,在工业上,也包括乙烯与少量α-烯烃的共聚物。在工业上,也包括乙烯与少量α-烯烃的共聚物。聚乙烯无臭,无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-100~-70°C),化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸)。常温下不溶于一般溶剂,吸水性小,电绝缘性优良。聚丙烯,(简称PP)是丙烯通过加聚反应而成的聚合物。化学式为(C3H6)n,密度为0.89~0.91g/cm3, 易燃,熔点189℃,在155℃左右软化,使用温度范围为-30~140℃ 。聚丙烯是一种性能优良的热塑性合成树脂,为无色半透明的热塑性轻质通用塑料。在80℃以下能耐酸、碱、盐液及多种有机溶剂的腐蚀,能在高温和氧化作用下分解。聚丙烯具有耐化学性、耐热性、电绝缘性、高强度机械性能和良好的高耐磨加工性能等。主要应用于应用在食品包装、家用物品、汽车、光纤等领域。聚乙烯和聚丙烯的应用面非常广泛,近年来发展也很迅速,许多企业也在不断增加对新技术研发的投入,其中粘度测试是一项非常重要的检测项目。国标GB/T 1632.3-2010规定聚乙烯和聚丙烯使用毛细管黏度计测定聚合物稀溶液黏度。关于PP/PP粘度标准的解读:使用毛细管乌氏粘度计,在135℃下测定溶剂以及规定浓度的聚合物溶液的流出时间,根据这些测定的流出时间和聚合物溶液的已知浓度计算比浓黏度和特性黏度。在室温下,聚乙烯和等规聚丙烯不溶于任何目前所知的溶剂。因此在试验中必须采取措施以防止因聚合物析出而导致溶液浓度发生改变。中旺全自动高温乌氏粘度计IVS800H在PP/PE中的解决方案许多企业一般使用半自动或手动的粘度仪,在135℃的油槽上进行粘度的测试,对人员以及环境都存在着安全隐患。IVS800H它是一款全自动的高温乌氏粘度计,实现自动恒温、自动进样、自动测试、自动清洗、自动干燥的操作流程,有效地避免了高温操作下引起的意外。另外它还能规避样品的析出,确保了数据的准确性。那么我们来详细的介绍下一个完整的PP/PE的粘度流程:仪器的配置:中旺DP25自动配液器、中旺聚合物溶样器、中旺全自动高温乌氏粘度计IVS800H。测试流程:配液:用万分之一天平称取聚丙烯PP样品,放入到溶样瓶中,用DP25自动配液器(移液精度≤0.1%)移取定量剂到溶样瓶中;溶样:中旺聚合物溶样器溶解PP/PE样品,采用金属浴,多孔位,转速、溶样时间、溶样温度可按要求设定。温度最高可达185℃。黏度测试:将彻底溶解好的PP/PE样品置入全自动高温乌氏粘度计IVS800H样品仓中,启动仪器,实现自动进样,采用进口不锈钢光纤可自动测试,计时精度可达0.001S,确保了数据的准确性,全程无需人员值守,并且系统自带软件,自动得出测试结果;测试结果IVS800H全自动高温乌氏粘度计连接电脑端,可自动得出测试结果并进行数据储存,便于多样化粘度数据分析;并且出分析报告。清洗黏度管乌氏粘度管固定在IVS800H高温乌氏粘度仪中,客户无需拆装取出,可自动清洗、自动排废、自动干燥。告别了乌氏粘度管耗材的时代。
  • 德可納利推出邻苯二甲酸酯在聚乙烯固态塑料的标准物质
    美国SPEX-中国独家总代理德可纳利科技集团(TKI),推出邻苯二甲酸酯在聚乙烯固态塑料的标准物质,用於美國消費者和玩具安全改進法規,相关参数请参考卖场,欢迎来电询价选购。 电话:021-64665918 021-64665971 传真:021-51079676 联系人:王小姐 邮箱:info@tkichina.com 地址:襄阳南路500号巴黎时韵大厦2509室 邮编:200031 公司网站:www.tkichina.com www.spexcsp.com
  • 全自动乌氏粘度计在超高分子量聚乙烯(UHMWPE)中的应用
    超高分子量聚乙烯英文名ultra high molecular weight polyethylene简称为UHMWPE,是一种线性结构的具有优异综合性能的热塑性工程塑料。普通高密度聚乙烯的分子量约为2-30万,而超高分子量聚乙烯则具有至少150万的分子量,因此它具有一般工程塑料难以比拟的一些优异性质,例如超高的耐磨性、抗低温冲击性、耐环境应力开裂性以及自润滑性,它在高性能纤维市场上,包括从海上油田的系泊绳到高性能轻质复合材料方面均显示出极大的优势,在现代化军工和航空、航天、海域防御装备等领域发挥着举足轻重的作用。超高分子量聚乙烯(UHMWPE)材料的分子量是其核心指标,分子量的高低影响材料的强度、韧性和耐磨度。在超高分子量聚乙烯(UHMWPE)材料的生产和研发中,乌氏毛细管法因简单、方便、快捷且经济成为首选测定方法,其中ASTM D4020-2011及GB/T1632.3-2010标准中也对乌氏毛细管法测聚乙烯的黏均分子量作出了相关规定。乌氏毛细管法实验操作简便、效率高、数据精准,在大多数高分子材料检测及相关质量控制中都起到关键作用,尤其是目前在很多行业中使用的自动乌式黏度计,以自动化的精确高效替代人工及数据误差,节省人力的同时进一步提高了实验数据的准确性。以杭州卓祥科技有限公司的IV3000X系列超高温全自动乌式黏度计、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV3000X系列超高温全自动乌式黏度计可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可到毫秒级,控温精度可达±0.001℃,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV3000X系列全自动超高温乌式黏度计连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。5. 粘度管清洗干燥过程:仪器可自动排废液,自动清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV3000X系列全自动超高温乌式黏度计可实现自动测试、自动排废液、自动清洗,自动干燥,告别了粘度管是耗材的时代。
  • 聚乙烯中炭黑含量不同测试方法的探讨
    摘要采用GB13021《聚乙烯管材和管体炭黑含量测定(热失重法)》和热重分析仪两种方法测定聚乙烯中炭黑含量。对两种方法的测定结果进行了比较,结果表面,两种方法均有良好的重复性和准确度,测定结果基本一致,采用不同方法得到的测定结果间可以互相参考  关键词 GB13021,热重分析依法,炭黑含量  Carbon black content in polyethylene was determined by two methods of GB13021, polyethylene pipe and tube carbon black content determination (thermal gravimetric method) and thermo gravimetric analyzer. Compared with the measurement results of the two methods of the surface, the two methods have good repeatability and accuracy. The measurement results are basically the same, the determination results obtained by different methods can reference each other  Key wordsGB13021, thermal gravimetric analysis, carbon black content  近年来,聚乙烯管材已成为继PVC之后,世界消费量第二大的塑料管道品种,广泛应用于给水、农业灌溉、燃气输送、排污、油田、化工、通讯等领域。无添加剂的聚乙烯耐气候老化和日光曝晒性能很差,因而实际使用时都会添加炭黑[1]。炭黑能使材料具有足够的抗紫外老化能力,当炭黑含量为2.0%~3.0%时可确保有效地防止紫外线的影响[2]。由于炭黑含量大小对聚乙烯管材具有重要的影响,许多标准都对聚乙烯中的炭黑含量作了规定,为了研发生产和销售的目的,炭黑含量是聚乙烯管材必须进行检测的指标。目前管道用塑料中炭黑含量的测试方法主要执行GB13021–1991[3]。使用热重分析仪是现在常用的热分析手段,用来测量高聚物的成分极为方便,常用标准是ASTME1131–2008[4],热重分析仪也可以用于测定聚乙烯中的炭黑含量。目前这两种方法并存,不同实验室间经常采用不同的方法测试,存在炭黑含量分析结果无法直接比较的问题。笔者用以上两种方法测定同批聚乙烯粒料中的炭黑含量,对不同测试方法的优缺点、测量重复性以及两种方法测试结果的一致性进行了探讨,对炭黑含量测试方法的选择提供了参考。1实验部分  1.1主要仪器与材料  炭黑含量分析仪:HS-TH-3500型,上海和晟仪器科技有限公司;机械分析天平:精度0.0001g,上海天平仪器厂;热重分析仪:STA449C型;德国耐驰公司;电子天平:M2P型,德国赛多利斯公司;聚乙烯:市售。  1.2实验方法  1.2.1GB13021法  称取试样质量m1(1±0.05)g置于样品舟中,将样品舟放入炭黑含量分析仪中,调氮气流量130mL/min,在氮气保护下升温至600℃,恒温裂解30min,取出后放入干燥器冷却至室温,称量质量m2,再放入马弗炉中950℃灼烧10min,取出放入干燥器冷却至室温,称量质量m3。炭黑含量c(%)  按式(1)计算。  1.2.2热重分析仪法  称取试样质量(10±0.05)mg放入样品架上,合上加热炉,设置升温程序,氮气气氛下室温升至550℃,转换成氧气,在氧气气氛下升温至750℃,计算机自动采集升温过程中样品质量变化。  2结果与讨论  2.1测量结果比较  按照1.2.1测定聚乙烯中炭黑的含量,测定结果见表1。 按照1.2.2测定聚乙烯样品的热重曲线(见图1)。根据曲线上各步失重的百分数可以判断样品分解机理及各组分的含量。随着温度升高,聚乙烯发生裂解,持续到550℃质量恒定,因为炭黑在高纯氮气中不发生反应,此时切换气体,通入氧气,使炭黑反应至完全,试样质量再次恒定。从550℃切换氧气到650℃质量稳定时发生的质量减少就是聚乙烯中的炭黑含量。650℃质量稳定后剩余物质为聚乙烯中的灰分。聚乙烯样品中碳黑含量的测定结果列于表1。从测试结果看,两种测试方法的相对标准偏差均小于3%,说明两种方法均具有较好的重复性,其中热重分析仪法的相对标准偏差比GB13021的相对标准偏差略大,这跟热重分析仪法样品量少、样品不均匀有关。两种方法测试结果的一致性可以采用以下方法进行[5]:假设两种测试方法的测试结果分别为x11,x12…x1n,平均值为x1,标准偏差为S1;x21,x22…x2n,平均值为x2,标准偏差为S2。若把xx12-看作随机变量,则根据方差的基本法则有:  故若xx2S12(x1x2)-G-则认为两组数据是一致的。将表1中的数据代入公式可以计算出:xx0.8212-=,2S(x1-x2)=0.83,计算结果表明两组数据一致。两种方法测试的结果具有一致性,可以用来相互比对。  2.2热重分析仪法准确度  热重分析仪在分析过程中自动记录样品实时质量,人为因素小,热失重量的准确度可以用标准CaC2O4来验证。CaC2O4H2O随着温度升高会发生以下3步化学反应:CaC2O4H2O(固)=CaC2O4(固)+H2O(气)(3)CaC2O4(固)=CaCO3(固)+CO(气)(4)CaCO3(固)=CaO(固)+CO2(气)(5)在每步反应中都有气体放出,从而固体出现失重现象,根据化学反应方程和分子量就可以计算出每步化学反应的理论失重量。CaC2O4H2O的每步化学反应都可以反映在热失重曲线上,用热重分析仪得到的CaC2O4H2O失重量和理论值列于表2。 从表2可以看出热重分析仪在550~750℃内的测量相对偏差为1.3%,测量准确度高。热重分析仪法和GB13021方法测量炭黑含量的结果可靠。热重分析仪法快捷方便,但是测量相对标准偏差比GB13021测试方法的要大,原因是进行热重分析时所用样品量只有10mg,如果样品中的炭黑分布不均匀,用热重分析仪测聚乙烯中的炭黑含量时就会增大测试标准偏差。建议用热重分析法分析炭黑含量时尽量从多个聚乙烯颗粒上取样并且适当增加样品量。  3结语  从实验过程及分析结果可以看出炭黑含量分析的两种不同方法具有以下特点:(1)两种测试方法均可用来测定聚乙烯中的炭黑含量,测定结果基本一致,具有可比性。(2)GB13021法测炭黑含量试验重复性好,但是用到炭黑分析仪和马弗炉两种设备,实验过程中需要冷却和3次称量,操作较热重分析仪复杂。(3)热重分析法操作方便、快捷,结果直观,但是由于所用样品量小,测试结果标准偏差较大,测试中容易出现异常值,应该从多个颗粒上取样,尽可能增加样品量,测试次数至少2次,当出现两次偏差较大时,增加测试次数。
  • 未来五年全球聚乙烯需求将快速增长
    据美国析迈(CMAI)称,2009年全球聚合物消费量达到1.76亿吨,其中聚乙烯(PE)占到消费总量的约38%。2009年全球PE需求接近6700万吨,预计未来五年将以年均逾5%的速度增长,到2014年的需求量将超过8700万吨。2009年高密度聚乙烯(HDPE)需求量约占到聚合物总需求量的17%,或约3000万吨,而线性低密度聚乙烯(LLDPE)和低密度聚乙烯(LDPE)的需求量分别占到约11%和10%。
  • 全自动乌氏粘度计在PVP(聚乙烯吡咯烷酮)材料中的应用
    聚乙烯吡咯烷酮(polyvinyl pyrrolidone),简称PVP,是一种非离子型高分子化合物,是N-乙烯基酰胺类聚合物中独具特色的精细化学品。已发展成为非离子、阳离子、阴离子3大类,工业级、医药级、食品级3种规格,相对分子质量从数千至一百万以上的均聚物、共聚物和交联聚合物系列产品,并以其独特的性能获得广泛应用。PVP(聚乙烯吡咯烷酮)材料作为一种合成水溶性高分子化合物,具有水溶性高分子化合物的一般性质,胶体保护作用、成膜性、粘结性、吸湿性、增溶或凝聚作用,其受到人们重视的独特性质是其优异的溶解性能及生理相容性。在合成高分子中像PVP(聚乙烯吡咯万通)材料这样既溶于水,又溶于大部分有机溶剂、毒性很低、生理相溶性好的并不多见,特别是在医药、食品、化妆品这些与人们健康密切相关的领域中,随着其原料丁内酯价格的降低,展示出发展的良好前景。PVP(聚乙烯吡咯烷酮)材料按其平均分子量大小分为四级,习惯上常以K值表示,不同的K值分别代表相应PVP(聚乙烯吡咯烷酮)材料的平均分子量范围。K值实际上是与PVP水溶液的相对粘度有关的特征值,而粘度又是与高聚物分子量有关的物理量,因此可以用K值来表征PVP的平均分子量。通常K值越大,其粘度越大,粘接性越强。在PVP(聚乙烯吡咯烷酮)材料的生产和研发中,K值通常使用乌氏毛细管法进行测量,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌式粘度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列全自动乌式黏度计、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列全自动乌式黏度计可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间的精度可到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列全自动乌式黏度计连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 自动粘度仪用毛细管法测定聚乙烯(PE)的分子量
    聚乙烯(polyethylene ,简称PE)是乙烯经聚合制得的一种热塑性树脂。在工业上,也包括乙烯与少量α-烯烃的共聚物。聚乙烯无臭,无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-100~-70°C),化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸)。常温下不溶于一般溶剂,吸水性小,电绝缘性优良。产品用途:高压聚乙烯:一半以上用于薄膜制品,其次是管材、注射成型制品、电线包裹层等。中低、压聚乙烯:以注射成型制品及中空制品为主。超高压聚乙烯:由于超高分子聚乙烯优异的综合性能,可作为工程塑料使用。 目前毛细管法测定聚乙烯分子量是行业内作为控制产品质量重要的指标之一实验方法如下实验所需仪器:卓祥全自动超高温粘度仪、多位溶样块、自动配液器、万分之一电子天平。实验所需试剂1:十氢萘、抗氧剂溶剂的配置:在十氢萘中加入一定比例(质量比)的抗氧剂,并搅拌致抗氧剂完全溶解溶剂粘度的测定:卓祥全自动超高温粘度仪将实验温度设置成135度并且稳定后,加入溶剂,软件中启动测试任务待结束。连续测三次时间之差在0.2秒内粘度管的清洗:启动卓祥全自动超高温粘度仪干燥程序,仪器自动将粘度管清洗干燥后待用。PE样品溶液的制备:在万分之一天平上精准称量精确到O.0055g,通过卓祥自动配液器将溶液浓度精准配制到0.0002g/ml,具体可参考GBT1632.3中7.31表格,放在卓祥多位溶样块中溶解。样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。连续测三次时间之差与其平均值在0.2秒内。粘度管的清洗:再次启动卓祥超高温全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。按照公式(1)计算样品的粘数(比浓粘度)I: 式中:t/t0-----分别代表的是样品流经平均时间/溶剂流经平均时间,单位为秒(S);C ----135度时溶液质量浓度的数值,单位为克每毫升(g/ml);公式(2): γ——20度和135度下溶剂的膨胀系数,等于相对应的密度之比,约等与1.107公式(3)特性粘度 [n]的计算 K —— 同聚合物浓度和结构有关的计算,可用K=0.27计算公式(4)分子量M的计算 以上内容未经过原作者或者现发布者的同意,任何个人或者单位都不可以转载和使用上述内容
  • 国家级聚乙烯检测实验室落户中山
    为全国第三家,将进一步规范行业   火炬开发区港华辉信聚乙烯检测认证实验室,近日获中国合格评定国家认可委员认可,成为全国第三个具备国家聚乙烯检测资格的实验室。   获评国家认证的聚乙烯检测实验室建立于2002年,经过认证后的实验室,具备为国内相关企业作标准检测、校准、检查服务方面认证的能力,检测结果可获国家与部分国家认可。港华辉信执行董事梁志刚表示,此前国内只有两个聚乙烯检测认证实验室,分别位于河北和山东,落户中山的实验室将对整个聚乙烯行业的产品质量提升与规范有重大意义。
  • 全球聚乙烯市场现状与展望
    据美国《化学周刊》近期报道 由于中国、印度、拉美、中欧等新兴经济体的驱动,预计2011年至2014年聚合物需求快于全球GDP增速,年增长率超过5%。   CMAI(休斯顿)统计数据显示,2009年全球聚合物消费量约为1.76亿吨,其中聚乙烯消费量占38%,接近6700万吨。按年增长率超过5%推算,2014年,聚乙烯需求将超过8700万吨。高密度聚乙烯(HDPE)占全球聚合物需求总量的17%,约为3000万吨 线性低密度聚乙烯(LLDPE)和低密度聚乙烯(LDPE)分别占11%和10%。LLDPE和HDPE需求的强劲增长归因于包装用品和非耐用品的用量增加,全球新投产的LDPE产能中,大多数产品为LLDPE和HDPE。2010年经济触底反弹,需求增长较快。目前美国市场聚乙烯供应趋紧,开工率达到90%。欧洲市场情况与美国相近,德国国内市场将继续增长,出口市场也将逐渐走强,土耳其市场年增长超过10%,全球所有地区都将高于2009年水平。预计2011年聚乙烯需求增长不会与今年一样显著,更接近GDP增长水平,将增长4.5%至5.5%。   2009年,美国的聚乙烯产品大部分出口到正在进行大规模基础设施建设的中国。今年,多出口到加拿大和墨西哥。美国出口中国产品减少是因为中国经济增速放缓,同时更多新增产能进入中国市场参与竞争。中东新增产能的冲击比预期要弱,因为一些中东生产能力没有按期投产,产能增长步伐比预期要慢。明年,随着新增产能投产,新产品投入市场,全球市场将需更长时间达到供需平衡。北美生产商不会与以中国、拉美、欧洲为主要目标市场的中东生产商展开竞争。一些生产商已宣布关闭部分亏损产能以应对激烈的市场竞争。利安德巴塞尔关闭位于英国Carrington的18.5万吨/年LDPE装置,去年道达尔石化关闭位于法国Carling和Gonfreville的2套LDPE装置,今年北欧化工将关闭位于Stenungsund的15万吨/年LDPE产能,最近沙特基础工业公司关闭了位于荷兰Geleen的12万吨/年LDPE装置。   埃克森美孚扩大丁基橡胶产能据美国今日下游网近期报道 埃克森美孚化工子公司日本埃克森美孚有限会社宣布,旗下的日本丁基橡胶有限公司已完成川崎丁基橡胶装置扩能,产能增加1.8万吨/年,使其丁基橡胶总产能达到9.8万吨/年,以满足亚太市场日益增长的丁基橡胶需求。公司此次扩能采用埃克森美孚化工最近开发的新工艺技术。例如,其中一项新专利技术可使丁基聚合物的聚合反应温度达到-75摄氏度,而常规技术的反应温度为-95摄氏度,该新技术可大幅降低能耗并节省投资。埃克森美孚化工在高端丁基橡胶聚合物的开发和应用方面处于业内领先地位,其产品具有更长的寿命、可节约能源、减少温室气体排放,从而带来更高的附加值。为了满足丁基橡胶行业需求的不断增长,日本丁基橡胶有限公司近期内已有过多次扩能,本次扩能也是进一步服务日益增长的丁基橡胶市场。2008年,埃克森美孚化工将其得克萨斯州贝城丁基橡胶装置的产能提高了60%。在此之前,日本丁基橡胶有限公司已在2006年将其鹿岛卤化丁基橡胶装置产能增加1.7万吨/年。
  • 我国学者在聚乙烯废塑料降解研究方面取得重大进展
    p   近日,中国科学院上海有机化学研究所的黄正课题组和加州大学尔湾分校管治斌课题组合作,在聚乙烯废塑料降解研究方面取得重大进展,相关成果于6月17日以“Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions”(温和条件下高效选择性降解聚乙烯制备液体燃料和石蜡)为题在Science Advances杂志上在线发表(Sci. Adv., 2016, 2, e1501591)。该研究工作得到优秀青年科学基金(21422209)和重点项目(21432011)等的支持。 /p p   烃类物质(烷烃、烯烃、芳烃等)是化石能源的重要组成体,也是重要的基础化工原料。为应对绿色、可持续发展的挑战,一方面需要从自然界丰富的烃类物质出发,发展高效、原子经济性的合成技术,直接制备高价值化学品,实现“分子价值的增量” 另一方面也需要发展温和、实用的催化降解技术,将废弃的高分子量、稳定的烃类化学化工产品转化成可再次利用的小分子物质,避免对环境造成污染,实现“污染物质的减量”。黄正课题组发展了高效的金属有机催化方法和技术,在这两方面取得了重要突破。 /p p   烷烃由高键能、非极性C-C单键和Csp sup 3 /sup -H键组成,是最惰性的有机分子之一,其在合成化学中的应用价值较低。黄正课题组一直致力于烷烃催化转化方面的研究。该课题组先前发展了一类新型的PSCOP螯钳型铱金属有机配合物,其在烷烃脱氢反应中表现出非常高的催化活性,但是在直链烷烃脱氢过程中,由于催化剂具有烯烃异构活性,在反应后期阶段不可避免地生成内烯烃混合物作为主要产物。为解决该问题,他们巧妙地利用双金属催化一锅两步法进行烷烃末端高区域选择性硅基化,实现烷烃至直链烷基硅的高效催化转化(图1a)。催化体系包括由该课题组发展的PSCOP螯钳型铱金属有机络合物作为烷烃脱氢催化剂,将烷烃脱氢生成内烯烃混合物,吡啶二亚胺铁络合物作为串联烯烃异构和端烯烃硅氢化催化剂。该转化的关键在于:烷烃脱氢所生成的烯烃中间体快速异构,并通过铁催化剂对端烯烃选择性硅氢化促使内烯烃向端烯烃转化。该工作为烷烃选择性官能团化提供了新思路,相关成果发表在Nature Chemistry上(Nat. Chem.,2016, 8, 157 Conversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylation 利用铑-铁催化的脱氢-异构化-硅氢化串联反应实现烷烃到直链烷基硅的转化)。 /p p   聚乙烯和烷烃结构单元相似,均由C-C单键和Csp sup 3 /sup -H键组成。聚乙烯是年产量 大的塑料产品(年产超过上亿吨),由于其化学惰性,被弃置后难以降解构成“白色垃圾”主要成分。研究人员利用双金属催化交叉烷烃复分解策略,使用价廉量大的低碳烷烃作为反应试剂和溶剂,与聚乙烯发生重组反应,可有效降低聚乙烯的分子量。由于在反应体系中低碳烷烃过量存在,可多次参与和聚乙烯的重组反应,直至把分子量高至上百万的聚乙烯降解为适用于运输系统燃油的烷烃产品。该反应适用于 HDPE、 LDPE和 LLDPE的降解,且催化剂可以兼容商业级聚乙烯中包含的各类添加剂,并进一步被证明可应用于实际生活中所产生的聚乙烯废塑料瓶、废塑料膜和废塑料袋的降解(图1b)。相比较传统高温裂解方法,该方法具有反应条件相对温和,产物选择性高的优点。高温裂解方法往往需要超过400度反应温度,产生包括气、油、蜡、焦等非常复杂的混合物 产物包括直链烷烃、支链烷烃、烯烃、芳烃等,产品利用价值低。而且黄正等发展的降解方法温度较低(150-200度),生成的产物以直链烷烃为主,且可以通过催化剂结构调控或反应时间控制,选择性生成可作为柴油的C9-C22烷烃或者聚乙烯蜡。这项研究成果得到了Nature、Science、Chemical & amp Engineering News等学术杂志的正面评论,并被《洛杉矶时报》、《华盛顿邮报》和新华网等国内外新闻媒体报道。 /p p style=" TEXT-ALIGN: center" img title=" tpxw2016-06-27-01.jpg" src=" http://img1.17img.cn/17img/images/201606/insimg/0b7ccaeb-e75f-4906-95ec-5a09ef3bc04a.jpg" / /p p style=" TEXT-ALIGN: center" strong 图1. a) 烷烃选择性硅基化 b) 聚乙烯降解。 /strong /p p /p
  • 全自动乌氏粘度计-用毛细管法测定聚乙烯基吡咯烷酮的k值
    聚乙烯吡咯烷酮(polyvinyl pyrrolidone)简称PVP,是一种非离子型高分子化合物,是N-乙烯基酰胺类聚合物中最具特色,且被研究得最深、广泛的精细化学品品种。已发展成为非离子、阳离子、阴离子3大类,工业级、医药级、食品级3种规格,相对分子质量从数千至一百万以上的均聚物、共聚物和交联聚合物系列产品,并以其优异独特的性能获得广泛应用。PVP按其平均分子量大小分为四级,习惯上常以K值表示,不同的K值分别代表相应的PVP平均分子量范围。K值实际上是与PVP水溶液的相对粘度有关的特征值,而粘度又是与高聚物分子量有关的物理量,因此可以用K值来表征PVP的平均分子量。通常K值越大,其粘度越大,粘接性越强。测定K值最常用的方法是用毛细管粘度计测的PVP水溶液的相对粘度n,再根据公式计算出K值。 实验方法如下实验所需仪器:卓祥全自动粘度仪、自动配液器、万分之一电子天平。实验所需试剂1:溶剂:纯水,无水乙醇为清洗剂。溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入纯水,软件中启动测试任务待结束,测的溶剂时间T0。粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。样品溶液的制备:在万分之一天平上精准称量精确到*g,溶解在**ml溶剂中,通过自动配液器将溶液浓度精准配制到**g/ml,溶解条件:常温搅拌。样品粘度的测定:加入**ml样品,测量样品时间**,计算粘度结果粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。
  • 阿美特克SCP新品—具有模塑功能的发泡聚乙烯
    p   位于罗德岛州韦斯特利的高可靠、严苛环境解决方案供应商阿美特克SCP,发布了新的已订立合约的具有模塑性能的聚乙烯,它将用于追求美国政府多个奖项、多年不定期交付/不确定数量(ID/IQ)合同。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/3e508488-0064-4c69-8b67-0dca1825b5af.jpg" title=" Expanded Polyethylene Molding Capabilities.jpg" width=" 300" height=" 226" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 226px " / /p p    span style=" color: rgb(255, 0, 0) " 由于具有更低的海水渗透率,聚乙烯长期以来被公认为海底电缆及终端的首选材料。 /span 阿美特克SCP为其客户提供了聚乙烯模塑,因其在全深度额定海底以嵌入式传感器和有效载荷应用时,具有长寿命和高可靠度。 /p p   阿美特克SCP与客户合作塑造 span style=" color: rgb(255, 0, 0) " 聚乙烯电缆接头、断路器和连接器终端。 /span 这些功能可在工厂或现场实现。客户被建议与阿美特克SCP协商来最好地利用其专业知识合适地挑选聚乙烯材料应用,来保证最低的寿命周期成本。 /p p    span style=" color: rgb(31, 73, 125) " i “我们非常乐意见到我们在聚乙烯资源的投资获得了盈利。我们已创立一个由固定设备、流程和人才组成的坚实基础来支持我们的客户,” /i /span 工程互联与包装业务部门副总裁Liam Shanahan评论道。 /p
  • 应用解读|光伏组件封装用乙烯-醋酸乙烯酯共聚物(EVA)胶膜的热分析标准解读
    1. 技术背景图1. 晶体硅太阳能电池结构晶体硅太阳能电池结构由钢化玻璃板/EVA膜/太阳能电池板/EVA膜/背板构成,如图1所示。其中,太阳能电池封装用EVA是以乙烯/醋酸乙烯共聚物(醋酸乙烯含量为30%-33%)为基料,辅以数种改性剂,经成膜设备热轧成薄膜型产品,厚度约0.4 mm。封装过程中EVA受热,交联剂(通常为过氧化物)分解产生自由基,引发EVA分子之间的结合,形成三维网状结构,导致EVA胶层交联固化,交联机理如图2 所示。固化后的胶膜具有相当高的透光率、粘接强度、热稳定性、气密性及耐老化性能。图2. EVA加热过程中在交联剂过氧化物下的交联机理EVA固化不足可直接导致光伏组件在其近20年的使用中性能恶化,这将意味着重大的经济风险。因此为实现经济有效的层压,快速可靠的EVA交联度分析方法至关重要。以往的化学法测交联度耗时长(30小时左右),结果重复性差,并且使用有毒的溶剂(甲苯或二甲苯),无法准确测试较低交联度和较高交联度的EVA。根据国家标准:1)GB/T 29848-2018:光伏组件封装用乙烯-醋酸乙烯酯共聚物(EVA)胶膜2)GB/T 36965-2018:光伏组件用乙烯-醋酸乙烯共聚物交联度测试方法--差示扫描量热法(DSC)采用差示扫描量热法(DSC)是目前较为可靠的分析方法,应用DSC测定光伏组件在层压过程中已交联的EVA的交联度,仅需1小时时间即可获得重复性良好的结果,是一种快速简便的产品质量控制方法。2.方法设计1)DSC:称取未交联和交联EVA样品5~10mg至40μL铝坩埚内,以10 K/min从−60℃加热到250°C,后以20 K/min的速度从250℃冷却至-60℃,再以10 K/min进行第二次升温,全程惰性氩气氛围。交联EVA的交联度可由以下方程计算获得:梅特勒-托利多差示扫描量热仪 DSC2)此外,醋酸乙烯组分的分解机理如下所示:根据上述计算公式,可通过热重法(TGA)分析计算得到EVA中VA的百分含量,从而帮助对EVA来料进行质检,以判定EVA的优劣。TGA/DSC:称取优质和劣质的交联EVA样品至陶瓷坩埚内,以10 K/min从30℃加热到600°C,全程惰性氩气氛围。3.数据分析1)DSC分析计算EVA的交联度图3为未交联EVA样品的升降升循环DSC测试曲线。在第一次升温曲线上可观察到明显的三个热效应,从低温至高温,依次是未交联EVA的玻璃化转变、结晶部分的熔融以及高温处的固化交联放热峰,所呈现的固化放热焓值为ΔH1(17.49 J/g)。由第二次升温曲线在高温处所表现处的平直基线可以得出结论,ΔH1为未交联EVA完全固化所释放出的热焓。图3. 未交联EVA样品的DSC测试曲线图4为交联EVA样品的DSC第一次升温曲线,第二次升温在高温处同样为平直的基线,故未呈现。温度从室温开始,可观察到结晶部分的熔融以及高温处的后固化交联放热峰,所呈现的后固化放热焓值为ΔH2(8.47 J/g)。因此,该交联EVA样品的交联度根据上述计算公式为51.55%。图4. 交联EVA样品的DSC第一次升温曲线1)TGA分析计算EVA中VA的百分含量图5为优质与劣质EVA的TGA/DSC测试曲线。根据EVA的分解机理,TGA曲线上的第一个失重台阶为醋酸乙烯分解产生醋酸的过程,因此失重量为醋酸的质量。第二个失重台阶为EVA中原有的乙烯组分和醋酸乙烯分解产生的乙烯的分解。因此,EVA中醋酸乙烯的含量可由第一个失重台阶即醋酸的失重百分含量的1.43倍计算而得。如图所示,优质EVA的VA含量为29.5%(太阳能电池封装用EVA的醋酸乙烯含量为30-33%),劣质EVA的VA含量仅为16.6%。与此同时,同步的DSC曲线上亦可找到相关判断依据。由于劣质EVA含有更高含量的乙烯组分,因此其结晶能力更强,所呈现的结晶熔融过程表现在更高的温度范围。图5. 优质与劣质EVA的TGA/DSC测试曲线4.小结由此可见,光伏组件封装用EVA胶膜的相关热性能的鉴定可由DSC、TGA或同步热分析TGA/DSC快速给出判断依据。此外,工艺上EVA固化通常采用层压实现,而层压的温度和时间作如何优化可由DSC动力学模块给出科学且精准的预测,为层压工艺提供数据和理论指导。
  • 三思纵横在2023长三角先进高分子材料产业发展大会占一席之地
    近日,2023长三角先进高分子材料产业发展大会暨工程塑料产业创新大会在南京国际青年会议酒店隆重召开。本次大会旨在推动长三角地区先进高分子材料产业的可持续发展,加强产业内企业、科研院所、政府部门之间的交流与合作,促进工程塑料产业的创新与升级。高分子材料是一类由相对分子质量较高的化合物构成的材料,通常包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料等。这些材料具有较高的强度、良好的塑性、较强的耐腐蚀性能,以及很好的绝缘性和重量轻等优良性能。高分子材料可以分为天然、半合成(改性天然高分子材料)和合成高分子材料三大类。天然高分子如淀粉、纤维素、天然橡胶等;半合成高分子材料包括改性天然橡胶、聚乙烯醇、聚乳酸等;合成高分子材料则包括聚乙烯、聚丙烯、聚氯乙烯、聚氨酯、聚酰胺等。高分子材料在工业、农业、医药、日常生活等领域具有广泛的应用。力学测试是评价高分子材料性能的重要手段,对高分子材料的发展具有重要的意义和影响。通过力学测试,可以了解高分子材料的强度、韧性、硬度、耐磨性等力学性能,为材料的优化设计提供依据。可以帮助高分子材料在各个领域中的应用得到验证和推广。是制定高分子材料标准的重要依据。通过测试,可以为材料的生产、加工、检验等环节提供统一的评价标准,有利于提高材料的质量和稳定性。可以推动高分子材料科学的发展和创新。通过对新材料的力学性能进行测试和分析,可以发现新材料的优点和不足,为新材料的研发提供指导。 三思纵横试验机广泛应用于高分子材料行业的研发、生产、质量控制等领域。通过使用三思纵横试验机进行材料力学性能测试,如拉伸、压缩、弯曲、冲击等试验,可以帮助高分子材料生产企业了解材料的强度、韧性、硬度等性能,为材料性能的优化提供依据。还可以帮助高分子材料生产企业对产品进行严格的质量控制,确保产品符合相关标准要求。通过测试,可以发现潜在的质量问题,降低产品在实际应用中的安全风险。为高分子材料研发人员提供丰富的试验数据,帮助研究人员了解新材料的力学性能,为新材料的研发提供指导。对高分子材料的力学性能进行测试,可以帮助材料在不同行业领域的应用得到验证和推广,如建筑、交通运输、电气电子等。三思纵横的电子万能试验机、动态疲劳试验机、溶体流动速率试验机、热变形维卡软化点试验机、落锤冲击试验机等力学试验机在高分子材料行业内的广泛应用,提高整个高分子材料产业的研发水平和技术水平,推动产业的健康发展。为材料的性能优化、质量控制、创新研发等提供了有力支持,对整个高分子材料产业的发展起到了积极的推动作用。三思纵横此次受邀参加长三角先进高分子材料产业发展大会,不仅了解了先进高分子材料产业的发展现状和未来趋势,还拓展了人脉和资源。三思纵横将继续加大研发投入,瞄准市场需求,持续推出更多具有竞争力的先进高分子材料试验设备。
  • 千亿合成赛道,该如何运用“流动监测核磁联用”成为黑马?
    ——要节省能源、要绿色发展还要反应速率快??——不是合成研发要太多,只是光化学更有优势!以在药物发现和天然产物合成中受到极大关注的高度官能化环丁烷为例,就采用了[2+2] 光环加成的合成方法。合成方法限制有利自然有弊。这种方法常受到设备、耗时耗力以及非常低的批量处理能力的限制。当采用人工方式进行化合物库合成时,大量繁琐且重复的工作很可能导致人为错误或失误,更可怕的是,实验人员中途可能不知道自己做错了,导致实验结果不可信赖,中途停下实验的一步步验证也耗时耗力。 随着时代发展,越来越多的合成设备开始出现,以前沿技术优化传统合成流程。今天这篇文章介绍的“自动化流动化学合成+在线流动核磁监测”连用:● 采用流动合成仪实现高可复现率,代表了实验的稳定性,连接自动进样器方便进行条件筛选;● UV/Vis光谱用于保障产品收集的准确性,有效保证了实验记录的及时性、完整性和可追溯性;● 实验过程中通过NMR实时在线监测,优化反应条件,及时消除副产物,有效保证新药筛选过程的高效率!案例介绍:[2+2]光环加成库合成实验 在50mg量级下,迅速合成12个[2+2]光环加成产物的化合物库快速筛选一系列光敏剂对两种产物进行优化和规模化生产01、实验装置Vapourtec R系列流动合成仪配备一个5ml盘管反应器和一个容积为10ml的UV-150光化学反应器进行。 图1:连续流反应器示意图,用于[2+2]光环加成库的合成系统连接了一个自动进样器,由Flow Commander&trade 控制。试剂由自动进样器加载到盘管反应器中,与乙烯混合,进入UV-150光化学反应器。内联UV分析用于监测反应进展,而处于压力调节模式的SF-10(独立的V-3泵)用于维持反应压力。02、合成产物在线监测 图2:使用Vapourtec UV-150连续光化学反应器合成代表性小型药用分子库该库的合成花费了350min(约6h),并在工作日结束时设置为在Flow Commander&trade 的控制下在实现无人值守情况下夜间运行。 图3:[2+2]光环加成库的结果a由1H NMR测定,b由于存在大量脂肪聚合物而无法分辨。c起始物质完全消耗,但水解产物获得率 99%,没有任何[2+2]环丁基加合物。d高度不溶的产物,无法获取核磁共振数据。 图4 a) 由内联UV/Vis光谱测量的从反应器中产物的洗脱; b) 反应过程中输送试剂和收集产物的位置。紫色表示试剂正在输送,试剂瓶上显示了编号。橙色条表示收集,并指示收集到哪个瓶中。从核磁共振分析中明显可见存在大量脂肪烃聚合物材料。考虑到使用了乙烯气体,猜测这是聚乙烯!已知在氧气存在且足够高能量的波长下,聚乙烯可以光化学反应生成。于是在后续实验阶段进行脱气处理,脱气处理后,再也没有检测到聚乙烯的形成。通过NMR的及时检测,使得实验很快调整优化,加快库合成进程!03、反应优化在成功合成库后,选择了两种化合物进行优化和扩大规模生产,即马来酰亚胺和尿嘧啶的环丁烷加合物。光敏剂的筛选也由Flow Commander&trade 自动控制,历时4h完成,同时也通过流动合成仪主机控制温度,研究了温度和乙烯过量对尿嘧啶转化的影响,最终选定45°C为最佳库合成反应温度。04、规模化和纯化在进一步研究了几个反应参数的影响后,进行马来酰亚胺和尿嘧啶环加成物的合成扩大规模生产。仅用了2.5h,转化率分别为80%和85%,扩大规模近35倍!05、总结在本文中描述了使用 UV-150光化学反应器和配备自动进样器的Vapourtec R系列流动合成仪主机合成了一系列小型、具有药用价值的分子。Flow Commander&trade 的自动控制能力可以实现在无人值守时进行安全操作,如有需要还可以进行远程监控。通过NMR的及时监测,优化反应条件,及时消除副产物;内联UV/Vis光谱用于保障产品收集的准确性,并成功地将两种产品放大到几克的数量,并且获得了较高的转化率。产品联用方案:流动化学和流动核磁 – 自我优化和控制 --更高的安全性;--更低的能耗;--更好的收益 ;--更好的反应选择性;--体积小,安装紧凑;--最小化放大→缩短产品上市时间;Vapourtec R系列流动合成仪— 微通道光热电连续合成 — ● 特别的灵活性能根据需要增加更多试剂馈送通道的反应器组合,轻松满足实验室需求;● 高精度自动化泵监测系统可维持正确流速。温度控制更精确,反应重现性好;● 高生产率可排队自动执行无数次无人监控的反应,能迅速达到反应温度,实现反应高效率!Bruker Fourier RxnLab— 在反应器旁边的反应监测 — Bruker Fourier80是一款经济高效、性能强悍的紧凑型台式核磁共振波谱仪,为科研工作人员提供多方位的核磁共振分析能力。Fourier 80现可通过Fourier RxnLab实现先进的反应监测功能。用于Fourier 80的RxnLab可在高达10 bar的压力和可调节的温度控制下运行。温控传输线和可调节的样品温度确保了混合物整个反应路径上的温度控制,以尽可能大的限度减少温度损失,并精确地优化反应结果,实时监测化学反应和生物过程:● 过程控制● 结构信息● 即时定量信息如果您对上述产品感兴趣,欢迎随时联系德祥科技德祥科技德祥集团成立于1992年,总部位于香港特别行政区。作为科学仪器供应商和服务商,德祥服务于大中华区和亚太地区,每年都为数以千计的客户提供全套解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。作为深耕科学仪器行业的供应商与服务商,德祥现已服务于政府、高校、科研、制药、检测、食品、医疗、工业、环保、石化以及商业实验室等众多领域。公司目前在亚太地区设有13个办事处和销售网点,3个维修中心和1个样机实验室。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等奖项。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!Vapourtec英国Vapourtec是德祥集团旗下代理品牌之一。英国Vapourtec公司成立于2003年,专业致力于研发和生产流动合成仪。并在世界上诸多制药公司中被广泛使用。其生产的R系列产品质量可靠、性能成熟,高效能模块系统可随您的生产需要无缝扩大,能满足您的业务发展需求。新型的E系列操作界面清晰、简单、触摸屏操控,开机即用式、无需培训或少量培训即可上手使用。同时针对性的反应器如光化学反应器、离子电化学反应器等提高对应反应的效率。Bruker德国Bruker是德祥集团旗下代理品牌之一。Bruker的使命在于通过突破性的技术和创新来支持科学界,从而推动科学研究向前发展。从高性能磁体、高效配件到新颖且精简的软件,Bruker致力于投资新的解决方案来实现这些科学发现。Bruker的产品帮助科学家不断取得突破性进展,并开发出能够提高人类生活质量的全新应用。其高性能科学仪器以及极具价值的分析诊断解决方案,使科学家能够在分子、细胞和微观层面上对生命和物质进行探索。通过与客户的密切合作,Bruker致力于帮助实现创新、生产力提升以及客户成功,领域涉及生命科学分子研究、应用材料与制药行业应用、显微技术、纳米级分析、工业应用,以及细胞生物学、临床前成像、临床表型组学与蛋白质组学研究、微生物学和分子诊断。
  • 流动分析技术在《生活饮用水标准检验方法》中的应用
    流动分析技术是20世纪50年代开发的一种湿化学分析技术,该技术自动化程度高,可批量检测样品,解放了劳动力,提高了工作效率,且具有检出限低、重现性好、分析速度快等特点,已广泛应用于环保、水质、烟草、质检及医学检验等行业,测试项目包括总氰化物、氰化物、挥发酚、阴离子表面活性剂、磷酸盐、总磷、总氮、氨氮、硫化物、六价铬、硝酸盐、亚硝酸盐、COD(Mn)、尿素等。目前主流的流动分析技术有两种,即连续流动分析技术(CFA)和流动注射分析技术(FIA)。2023年10月即将实施的生活饮用水标准检验方法GB/T 5750.4-2023中把感官性状和物理指标中的挥发酚类、阴离子合成洗涤剂指标规定了连续流动分析法和流动注射分析法;GB/T 5750.5-2023中无机非金属指标中的氰化物和氨(以N计)规定了连续流动和流动注射分析法。下面小编整理了生活饮用水标准检验方法中涉及到流动分析技术的标准,供大家参考。GB/T 5750.4-2023挥发酚-流动注射法原理:样品通过流动注射分析仪被带入连续流动的载液流中,与磷酸混合后进行在线蒸馏;含有挥发酚类的蒸馏液与连续流动的4-氨基安替比林及铁氰化钾混合,挥发酚类被铁氰化物氧化生成醌物质,在与4-氨基安替比林反应生成红色物质,于波长500nm处进行比色实验。仪器设备:流动注射分析仪:挥发酚反应单元和模块、500nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统。仪器参考条件:自动进样器蠕动泵加热蒸馏装置流路系统数据处理系统初始化正常转速设为35r/min,转动平稳加热温度稳定于150℃±1℃无泄漏、试剂流动平稳基线平直GB/T 5750.4-2023挥发酚-连续流动法原理:连续流动分析仪是利用连续流,通过蠕动泵将样品和试剂泵入分析模块中混合、反应,并泵入气泡将流体分割成片段,使反应达到完全的稳态,然后进入流通检测池进行分析测定。在酸化条件下,样品通过在线蒸馏,释放出酚在有碱性铁氰化钾氧化剂存在的溶液中,与4-氨基安替比林反应,生成红色的络合物,然后进入50mm流通池中在505nm处进行比色实验。 仪器设备:连续流动分析仪:自动进样器、多通道蠕动泵、挥发酚反应单元和蒸馏模块、比色检测器、数据处理系统。仪器参考条件:进样速率进样:清洗比加热蒸馏装置流路系统数据处理系统30个样品/h2:1加热温度稳定于145℃±2℃无泄漏,气泡规则,试剂流动平稳基线平直GB/T 5750.4-2023挥发酚-连续流动法原理:连续流动分析仪是利用连续流,通过蠕动泵将样品和试剂泵入分析模块中混合、反应,并泵入气泡将流体分割成片段,使反应达到完全的稳态,然后进入流通检测池进行分析测定。在酸化条件下,样品通过在线蒸馏,释放出酚在有碱性铁氰化钾氧化剂存在的溶液中,与4-氨基安替比林反应,生成红色的络合物,然后进入50mm流通池中在505nm处进行比色实验。仪器设备:连续流动分析仪:自动进样器、多通道蠕动泵、挥发酚反应单元和蒸馏模块、比色检测器、数据处理系统。仪器参考条件:进样速率进样:清洗比加热蒸馏装置流路系统数据处理系统30个样品/h2:1加热温度稳定于145℃±2℃无泄漏,气泡规则,试剂流动平稳基线平直GB/T 5750.4-2023阴离子洗涤剂-流动注射法原理:通过注人阀将样品注人到一个连续流动载流、无空气间隔的封闭反应模块中,载流携带样品中的阴离子合成洗涤剂与碱性亚甲基蓝溶液混合反应成离子络合物,该离子络合物可被三氯甲烷萃取,通过萃取模块分离有机相和水相。包含离子络合物的三氯甲烷再与酸性亚甲基蓝溶液混合,反萃取洗涤三氯甲烷,再次通过萃取模块分离有机相和水相。于波长 650 m 处对包含离子络合物的三氯甲烷进行比色分析,有机相的蓝色强度与阴离子合成洗涤剂的质量浓度成正比。仪器设备:流动注射分析仪:阴离子合成洗涤剂反应单元和模块、10mm比色池、650nm滤光片、自动进样器、多通道蠕动泵、数据处理系统。仪器参考测试参数:周期时间洗针时间注射时间进样时间出峰时间进载时间到阀时间峰宽200s50s50s80s100s80s80s180s注:不同品牌或型号仪器的测试参数有所不同,可根据实际情况进行调整。GB/T 5750.4-2023阴离子洗涤剂-连续流动法原理:在水溶液中,阴离子合成洗涤剂和亚甲基蓝反应生成蓝色络合物,统称为亚甲基蓝活性物质,该化合物被取到三氯甲烷中并由相分离器分离,三氯甲烷相被酸性亚甲基蓝洗涤以除去干扰物质并在第二个相分离器中被再次分离。其色度与浓度成正比,在650/660 nm处用 10 mm比色池测量其信号值。仪器设备:连续流动分析仪:自动进样器、阴离子合成洗涤剂分析单元(即化学反应模块,由相分离器、多道蠕动泵、歧管、泵管、混合反应圈等组成)、检测单元(检测单元可配备 10 mm 比色池、阴离子合成涤剂检测配备 650/660 nm 滤光片)数据处单元及相应附件。GB/T 5750.5-2023氰化物-流动注射法原理: 在pH为4左右的弱酸条件下,水中氰化物经流动注射分析仪进行在线蒸馏,通过膜分离器分离,然后用连续流动的氢氧化钠溶液吸收;含有乙酸锌的酒石酸作为蒸馏试剂,使氰化铁沉淀,去除铁氰化物或亚铁氰化物的干扰,非化合态的氰在pH数据处理系统初始化正常转速设为35r/min,转动平稳蒸馏部分稳定于120℃±1℃显色部分稳定于60℃±1℃无泄漏、试剂流动平稳基线平直GB/T 5750.5-2023氰化物-连续流动法原理:连续流动分析仪是利用连续流,通过蠕动泵将样品和试剂泵入分析模块中混合、反应,并泵入气泡将流体分割成片段,使反应达到完全的稳态,然后进入流通检测池进行分析测定。在酸性条件下,样品通过在线蒸馏,释放出的氰化氢被碱性缓冲液吸收变成氰离子,然后与氯胺-T反应转化成氯化氰,再与异烟酸-吡唑啉酮反应生成蓝色络合物,最后进入比色池于630 nm波长下比色测定。仪器设备:连续流动分析仪:自动进样器、多通道蠕动泵、氰化物反应单元和蒸馏模块、比色检测器、数据处理系统。仪器参考条件:进样速率进样:清洗比加热蒸馏装置流路系统数据处理系统30个样品/h2:1加热温度稳定于125℃±2℃无泄漏,气泡规则,试剂流动平稳基线平直GB/T 5750.5-2023氨(以N计)-流动注射法原理:在碱性介质中,水样中的氨、铵离子与二氯异氰尿酸钠溶液释放出的次氯酸根反应,生成氯胺。在50℃~60℃的条件下,以亚硝基铁氰化钠作为催化剂,氯胺与水杨酸钠反应形成蓝绿色络合物,在660 nm波长下比色测定。仪器设备:流动注射分析仪:氨反应单元和模块、660nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统、在线蒸馏模块(选配)。仪器参考条件:调整流路系统,载流、缓冲溶液、水杨酸钠溶液、亚硝基铁氰化钠溶液及二氯异氰尿酸钠溶液分别在蠕动泵的推动下进入仪器,流路系统中的试剂流动平稳,无泄漏现象。GB/T 5750.5-2023氨(以N计)-连续流动法原理:在碱性介质中,水样中的氨、铵离子与二氯异氰尿酸钠溶液释放出的次氯酸根反应,生成氯胺。在37℃~40℃的条件下,以亚硝基铁氰化钠作为催化剂,氯胺与水杨酸钠反应形成蓝绿色络合物,在660 nm波长下比色测定。仪器设备:连续流动分析仪:氨反应单元和模块、660nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统、在线蒸馏模块(选配)。仪器参考条件:调整流路系统,载流、缓冲溶液、水杨酸钠溶液、亚硝基铁氰化钠溶液及二氯异氰尿酸钠溶液分别在蠕动泵的推动下进入仪器,流路系统中的试剂流动平稳,无泄漏现象。
  • 862项标准获批,涉及半导体、化工检测和检测仪器等领域
    2020年12月25日,工信部发布《中华人民共和国工业和信息化部公告》,批准《霍尔元件 通用技术条件》等669项行业标准,批准《白云石标准样品》等76项行业标准样品,批准《高纯铝锭》等23项行业标准外文版,批准《75℃热稳定性试验仪校准规范》等94项行业计量技术规范。在669项标准中,多项标准涉及半导体行业(包括了半导体器件、半导体设备和半导体材料等方面)和多种化学品的检测。此外,94项行业计量技术规范涉及了热稳定性试验仪、便携式挥发性有机物泄漏检测仪、漆膜弯曲试验仪、漆膜附着力测定仪、直流辉光放电质谱仪、双联电解分析仪等多种分析检测仪器,相关标准如下:附件:23项行业标准外文版编号、名称、主要内容等一览表.doc94项行业计量技术规范编号、名称、主要内容等一览表.docx76项行业标准样品目录.docx669项行业标准编号、名称、主要内容等一览表.doc半导体相关标准(部分)标准号标准名称标准内容JB/T 9473-2020霍尔元件 通用技术条件本标准规定了霍尔元件的术语和定义、基本参数和符号、要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于非集成的半导体霍尔元件。JB/T 9481-2020扩散硅力敏器件本标准规定了扩散硅力敏器件的术语与定义、分类与命名、要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于半导体扩散硅力敏器件。HG/T 5736-2020高纯工业品过氧化氢本标准规定了高纯工业品过氧化氢的分型、要求、试验方法、检验规则、标志、标签、包装、运输和贮存。本标准适用于高纯工业品过氧化氢。该产品主要用于太阳能光伏行业、液晶显示器件和半导体行业制程的清洗或刻蚀,以及其他对高纯过氧化氢有需求的行业。XB/T 515-2020钪铝合金靶材本标准规定了钪铝合金靶材的要求、试验方法、检验规则与标志、包装、运输、贮存及质量证明书。本标准适用于铸造法制得的钪铝合金靶材,主要用于半导体及光电等领域。QC/T 1136-2020电动汽车用绝缘栅双极晶体管(IGBT)模块环境试验要求及试验方法本标准规定了电动汽车用绝缘栅双极晶体管(IGBT)模块环境适应性要求和试验方法。本标准适用于电动汽车用IGBT模块,其他半导体器件模块可参考使用。SJ/T 11761-2020200mm及以下晶圆用半导体设备装载端口规范本标准规定了晶圆承载器与晶圆制造/检测设备之间的机械端口要求,主要包括晶圆承载器在设备上的位置和方向。本标准适用于加工直径200 mm及以下晶圆的半导体设备装载端口。SJ/T 11762-2020半导体设备制造信息标识要求本标准规定了半导体设备制造信息标识的术语和定义、设计和原则、使用及相应的综合标签库。半导体设备制造信息标识包括半导体制造设备选择、安装、使用和维护时需要的各种类型的技术和商业信息。信息类型包括操作手册/指南、安装手册、维护手册、维护计划、备件/零部件清单、维修/故障排除手册、发行说明、培训手册等。SJ/T 11763-2020半导体制造设备人机界面规范本标准规定了半导体制造设备人机界面的术语和要求。本标准适用于半导体制造设备。SJ/T 10454-2020厚膜混合集成电路多层布线用介质浆料本标准规定了厚膜混合集成电路多层布线用介质浆料的技术要求、试验方法、检验规则、包装、贮存及运输,适用于与金、钯银导体浆料相匹配的厚膜混合集成电路多层布线用介质浆料。SJ/T 10455-2020厚膜混合集成电路用铜导体浆料本标准规定了厚膜混合集成电路用铜导体浆料的技术要求、试验方法、检验规则、包装、贮存及运输,适用于厚膜混合集成电路用铜导体浆料。化工检测相关标准(部分)标准号标准名称标准内容SH/T 1829-2020塑料 聚乙烯和聚丙烯树脂中微量元素含量的测定 电感耦合等离子体发射光谱法 本标准规定了采用电感耦合等离子体发射光谱法(ICP-OES)测定聚乙烯和聚丙烯树脂中镁(0.10 mg/kg~50.00 mg/kg)、铝(0.20 mg/kg~100.00 mg/kg)、钙(0.40 mg/kg~130.00 mg/kg)、锌(0.50 mg/kg~200.00 mg/kg)、铬(0.10 mg/kg~3.00 mg/kg)、钛(0.10 mg/kg~6.00 mg/kg)等微量元素含量的方法。 本标准适用于粉末状、颗粒状聚乙烯和聚丙烯树脂。SH/T 1830-2020丙烯腈-丁二烯橡胶中壬基酚含量的测定 气相色谱-质谱法 本标准规定了采用气相色谱-质谱法测定丙烯腈-丁二烯生橡胶中壬基酚含量的方法。 本标准适用于丙烯腈-丁二烯生橡胶,壬基酚单组分含量最低检出限为1.4mg/kg。SH/T 1831-2020丙烯腈-丁二烯橡胶中游离丙烯腈含量的测定 顶空气相色谱法 本标准规定了采用顶空气相色谱法测定丙烯腈-丁二烯生橡胶中游离丙烯腈含量的方法。 本标准适用于丙烯腈-丁二烯生橡胶,游离丙烯腈含量最低检出限为1.8mg/kg。SH/T 1832-2020异戊二烯橡胶微观结构的测定 核磁共振氢谱法 本标准规定了采用核磁共振氢谱法测定异戊二烯橡胶(IR)中顺式1,4结构(cis-1,4)、反式1,4结构(trans-1,4)和3,4结构(3,4)含量的方法。 本标准适用于异戊二烯生橡胶。SH/T 1142-2020工业用裂解碳四 液态采样法 本标准规定了采取供分析用的工业用裂解碳四以及其他碳四液态烃类样品的设备和方法。 本标准适用于采取工业用裂解碳四及其他碳四液态烃类样品。SH/T 1482-2020工业用异丁烯纯度及烃类杂质的测定 气相色谱法 本标准规定了用气相色谱法测定工业用异丁烯纯度及烃类杂质的含量。 本标准适用于纯度大于98.00%(质量分数),丙烷、丙烯、异丁烷、正丁烷、反-2-丁烯、1-丁烯、顺-2-丁烯、丙炔、1,3-丁二烯、正戊烷、异戊烷等烃类杂质含量不小于0.0010%(质量分数)的工业用异丁烯测定。SH/T 1483-2020工业用碳四烯烃中微量含氧化合物的测定 气相色谱法 本标准规定了用气相色谱法测定工业用碳四烯烃中的微量含氧化合物含量。 本标准适用于工业用碳四烯烃中微量二甲醚、甲基叔丁基醚、甲醇和叔丁醇等含氧化合物的测定,其最低测定浓度为0.0001%(质量分数)。SH/T 1492-2020工业用1-丁烯纯度及烃类杂质的测定 气相色谱法 本标准规定了用气相色谱法测定工业用1-丁烯的纯度及其烃类杂质含量。 本标准适用于纯度不小于99.00% (质量分数),丙烷、丙烯、异丁烷、正丁烷、乙炔、反-2-丁烯、异丁烯、顺-2-丁烯等烃类杂质含量不小于0.001%(质量分数),丙二烯、丙炔含量不小于2mL/m3,1,3-丁二烯含量不小于10 mL/m3或0.001%(质量分数)的工业用1-丁烯试样的测定。SH/T 1549-2020工业用轻质烯烃中水分的测定 在线分析仪使用导则本标准规定了测定轻质烯烃气体中微量水分的在线分析仪的工作原理、一般特征、分析程序和结果报告等要求的指南。本标准适用于工业用轻质烯烃中水分的测定。SH/T 1763-2020氢化丁腈生橡胶(HNBR)中残留不饱和度的测定 碘值法 本标准规定了用韦氏(Wijs)试剂测定氢化丁腈生橡胶(HNBR)残留不饱和度(即碘值)的方法。 本标准适用于氢化丁腈生橡胶。SH/T1814-2020乙烯-丙烯共聚物(EPM)和乙烯-丙烯-二烯烃三元共聚物(EPDM)中钒含量的测定 本标准规定了用分光光度法和电感耦合等离子体发射光谱法测定乙烯-丙烯共聚物(EPM)和乙烯-丙烯-二烯烃三元共聚物(EPDM)中钒含量的方法。 本标准适用于以齐格勒-纳塔型催化剂(铝-钒催化剂)生产的钒含量范围在0.5 µg/g~40 µg/g的乙丙橡胶。SH/T 3042-2020合成纤维厂供暖通风与空气调节设计规范 本标准规定了合成纤维(涤纶、锦纶、维纶、腈纶、氨纶)厂供暖、通风与空气调节设计的空气计算参数和设计要求。 本标准适用于新建、扩建和改建的合成纤维厂的生产厂房及辅助建筑物的供暖、通风与空气调节设计。SH/T 3523-2020石油化工铬镍不锈钢、铁镍合金、镍基合金及不锈钢复合钢焊接规范 本标准规定了铬镍不锈钢、铁镍合金、镍基合金、不锈钢复合钢的材料、焊接工艺评定、焊工考试、焊接工艺、焊接检验和焊后热处理要求。 本标准适用于石油化工、煤化工、天然气化工设备与管道的焊条电弧焊、钨极气体保护焊、熔化极气体保护焊和埋弧焊。SH/T 3545-2020石油化工管道工程无损检测标准本标准规定了石油化工金属管道射线检测、超声检测、磁粉检测、渗透检测、衍射时差法超声检测、相控阵超声检测和便携式荧光光谱检测的工艺要求及质量评定。本标准适用于下列管道无损检测的质量评定:1)公称厚度为2 mm~100 mm的金属管道对接焊接接头、支管连接焊接接头的射线检测与质量评定;2)公称厚度大于或等于6 mm、外径大于等于108 mm的碳钢和非奥氏体合金钢制管道对接焊接接头的超声检测与质量评定;3)铁磁性材料的表面和近表面缺陷磁粉检测与质量评定;4)表面开口缺陷的渗透检测与质量评定;5)公称厚度为16 mm~100mm、外径大于等于273 mm的碳钢和非奥氏体合金钢制管道对接焊接接头的衍射时差法超声检测与质量评定;6)公称厚度3.5 mm~60 mm、外径大于等于57 mm的碳钢和非奥氏体合金钢制管道对接焊接接头的相控阵超声检测与质量评定;奥氏体不锈钢管道对接焊接接头的相控阵超声检测与质量评定按附录M的规定进行;7)金属材料(包括熔敷金属)中金属元素的便携式荧光光谱检测。行业计量技术规范(部分)技术规范编号技术规范名称技术规范主要内容JJF(石化)030-202075℃热稳定性试验仪校准规范本校准规范适用于爆炸品分类用的75℃热稳定性试验装置的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)031-2020固体氧化性试验装置校准规范本规范适用于固体氧化性试验装置的校准,不适用于氧化性固体重量试验装置的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)032-2020易燃固体燃烧速率试验装置校准规范本校准规范适用于易燃固体燃烧速率试验装置的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)033-2020便携式挥发性有机物泄漏检测仪(氢火焰离子法)校准规范本规范适用于量程小于50000µmol/mol的便携式挥发性有机物(VOCs)泄漏检测仪(氢火焰离子法)的校准,其他相似原理和用途的仪器校准可参照本规范。其主要内容包含本规范的适用范围、引用的技术文件、计量性能、校准条件、校准方法、校准结果、校准时间间隔和不确定度评定示例等。JJF(石化)034-2020石油化工产品软化点试验仪(环球法)校准规范本规范适用于环球法测定软化点的软化点试验仪的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)035-2020漆膜弯曲试验仪(圆柱轴)校准规范本规范的校准适用于测试漆膜圆柱弯曲试验时用的漆膜弯曲试验仪。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)036-2020漆膜附着力测定仪(划圈法)校准规范本规范的校准适用于测试漆膜划圈试验用的漆膜附着力试验仪。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)037-2020橡胶门尼黏度计校准规范本规范规定了橡胶门尼黏度计的计量特性、校准条件、校准用设备及校准方法。本规范适用于橡胶门尼黏度计的校准。JJF(石化)038-2020硫化橡胶回弹性试验机校准规范本规范规定了硫化橡胶回弹性试验机的计量特性、校准条件、校准用设备及校准方法。本规范适用于硫化橡胶回弹性试验机的校准。JJF(石化)039-2020橡胶阿克隆磨耗试验机校准规范本规范适用于橡胶阿克隆磨耗试验机的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定评定示例等。JJF(石化)040-2020橡胶压缩应力松弛仪校准规范本规范适用于橡胶压缩应力松弛仪的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定评定示例等。
  • 成都航天模塑订购我司的融脂仪
    成都航天模塑股份有限公司昆山分公司订购我司的熔体流动速率测定仪,型号为HY(RZ)。熔体流动速率测定仪客户简介: 成都航天模塑股份有限公司改制后成立于2000年12月21日,隶属于中国航天科技集团公司,是一家专业从事汽车零部件研发与制造的高新技术企业集团,总资产34亿元。公司总部位于成都经济技术开发区航天工业园,在东北、华北、华中、华东、华南、成渝等地拥有22个生产制造基地,主要产品有内外饰件总成、功能件等汽车零部件及注塑模具。 熔体流动速率测定仪客户对进行了高度评价: 上海衡翼精密仪器有限公司生产的熔体流动速率测定仪满足了我们对塑料颗粒的流动速率的测试,并且是一机多用的,既有体积法,也有质量法,让我们大在节约了资金;负责培训的技术工程师耐心地为我们讲解熔体流动速率测定仪的操作流程以及注意事项,讲解的非常的全面,服务态度也很和蔼,希望后期我们更多合作!熔体流动速率测定仪参数指标: HY(RZ)熔体流动速率测定仪技 术 参 数仪 器 主 要 配 置产品介绍:本机按照GB/T3682-2000的要求设计制造,其主要参数满足ISO1133-97、ASTM1238、GB/T3682等标准要求.可用于对ABS、聚苯乙烯、聚乙烯、聚丙烯、聚酰胺、纤维树脂、丙烯酸酯、聚甲醛、氟塑料、聚碳酸脂等多种塑料材料的熔体质量流动速率(MFR)或熔体体积流动速率(MVR)来进行测定.测定仪采用微处理器进行控制.具有集成化、数字化等优点,是一种智能化的新型仪器.该仪器具有液晶中文显示,自动计时,自动切料,自动打印等多种功能. 熔体流动速率测控系统,是基于SoEUI开放式软件开发平台的一款高端产品,具有一路位移采集系统、两路测温、两路温控、四路I/O控制(控制切料、加载、卸载等);系统集成CAN、RS485、RS232 等数据通讯接口,系统集成RTC实时时钟、计时器、蜂鸣器等全部功能,用户仅需将传感器、调压模块连接到控制器即可完成产品组装。l 测得的结果可自动相互转化,具有熔体密度测试功能,可增配砝码自动加载装置,一机多能,计时、切料、加载、结果打印自动化。l 控制软件可实现对参数的设定、恒温控制、切料、计量校准、定时、MFR及MVR结果的显示、熔体密度的计算,试验结束可以进行试验数据的查询与导出等功能。l 升温速度快、超调量极小、恒温精度高,在填料之后,能迅速恢复恒温状态。具有上限温度保护、恒温声音提示、回复时间声音提示等功能。l 使用体积法试验时,可测定规定时间试样的MVR值,称量试样后得出MFR值,与质量法测试结果进行比对。l 符合GB/T3682-2000、ASTMD1238、BS2782、ISO1133:2005中的MFR及MVR等标准要求。主要技术参数: 一、 温度控制参数:⑴ 控温范围: 0---400 ℃⑵ 控温精度: ±0.2 ℃⑶ 显示分辨率: 0.1 ℃⑷ 最大功耗: ≤500 W⑸ 温度恢复时间: 4 min二、活塞位置检测:⑴ 上下环距离: 30 mm⑵ 位移控制精度:±0.1 mm三、标准件参数:1料筒内径尺寸: ¢9.550±0.025 mm2活塞头尺寸: ¢9.475±0.01 mm 3活塞头长度: 6.35±0.1 mm 4口膜内径尺寸: ¢2.095±0.005 mm四、主要配置及附件1 主机一套2 打印机一台3 控制软件(台湾衡翼)4 砝码(5Kg):0.325 kg(含料杆)0.875 kg 0.96 kg 1.2 kg 1.64 kg各一件五、附件 ⑴ 水平仪一件 ⑵ 活塞一个 ⑶ 口膜一个 ⑷ 漏斗一只 ⑸ 清洗工具两件六:电源电压:220V七:电源功率:1200W八、体 积: 250mm×400mm×500mm九、重 量 35KG
  • 国家标准化管理委员会下达2024年《水中溶解性稀有气体同位素组成及含量测定方法》等第五批推荐性国家标准计划及相关标准外文版计划
    国务院各有关部门办公厅(办公室、综合司):经研究,国家标准化管理委员会决定下达2024年第五批推荐性国家标准计划和相关推荐性国家标准外文版计划(附后)。本批推荐性国家标准计划共计195项,其中制定155项、修订40项,推荐性标准190项、指导性技术文件5项。本批推荐性国家标准同步下达标准外文版计划共计38项,全部为英文。请组织、监督有关全国专业标准化技术委员会和主要起草单位,在计划执行中加强协调,广泛征求意见,按要求完成推荐性国家标准制修订任务及相关标准外文版的组织翻译和技术审查工作,确保标准的质量和水平。国家标准化管理委员会2024年7月24日(此件公开发布)附件下载国标委发〔2024〕32号.pdf一、2024年第五批推荐性国家标准计划相关项目如下:序 号国家标准 计划号国家标准计划名称标准性质制修订项目周期代替标准号采标号主管部门120242210-T-469冷链运输电子运单技术要求推荐制定18国家标准化管理委员会220242272-T-469洁净室及相关受控环境微振动控制技术要求推荐制定18国家标准化管理委员会320242285-T-469商品条码文档编码与条码表示推荐制定18国家标准化管理委员会420242293-T-469环境标志和声明产品种类规则的制定推荐制定16ISO/TS 14027:2017国家标准化管理委员会520242294-T-469环境标志和声明足迹信息交流的原则、要求和指南推荐制定16ISO 14026:2017国家标准化管理委员会620242295-T-469环境管理体系引入生态设计的指南推荐制定16ISO 14006: 2020国家标准化管理委员会720242296-T-469环境管理体系在设计和开发中引入材料循环的指南推荐制定16ISO 14009: 2020国家标准化管理委员会820242360-T-469标准内容数字化协同研制要求推荐制定18国家标准化管理委员会920242361-T-469标准内容模块化 第1部分:主结构与配置通用技术要求推荐制定18国家标准化管理委员会1020242363-T-469标准语义知识库 第1部分:标准内容语义化表达通用要求推荐制定18国家标准化管理委员会1120242365-T-469水中溶解性稀有气体同位素组成及含量测定方法推荐制定12国家标准化管理委员会1220242290-T-306真菌毒素快速检测仪性能测试方法推荐制定18科学技术部1320242394-T-607白酒质量要求 第12部分:董香型白酒推荐制定18中国轻工业联合会1420242219-T-606塑料聚乙烯(PE)和聚丙烯(PP)树脂中金属含量的测定电感耦合等离子体发射光谱法推荐制定16ISO 24047:202 1中国石油和化学工业联合会1520242253-T-606化学试剂氢氧化钠推荐修订16GB/T 629-1997中国石油和化学工业联合会1620242255-T-606化学试剂氨水推荐修订16GB/T 631-2007中国石油和化学工业联合会1720242258-T-606表面活性剂含水量的测定推荐修订16GB/T 11275-2007ISO 4317:2011中国石油和化学工业联合会1820242311-T-606工业用氢氧化钠成分分析 第1部分:氢氧化钠和碳酸钠推荐修订16GB/T 4348.1-2013中国石油和化学工业联合会1920242322-T-606气体分析基于比较测量的傅立叶变换红外光谱法推荐制定18中国石油和化学工业联合会2020242264-T-442蜂蜜质量通则推荐制定18中华全国供销合作总社二、相关推荐性国家标准外文版计划项目如下:序号国家标准计划号国家标准计划名称翻译 语种120242272-T-469洁净室及相关受控环境微振动控制技术要求英语220242394-T-607白酒质量要求第12部分:董香型白酒英语320242363-T-469标准语义知识库 第1部分:标准内容语义化表达通用要求英语420242360-T-469标准内容数字化协同研制要求英语520242322-T-606气体分析基于比较测量的傅立叶变换红外光谱法英语
  • 2013第一批拟立项国家标准样品研复制项目公布
    2013年11月4日,国家标准化管理委员会发布对2013年第一批拟立项国家标准样品研复制项目征求意见的通知,通知全文如下:   各有关单位:   经研究,国家标准委决定对2013年第一批拟立项国家标准样品研复制项目(见附件)公开征求意见,其中新研制项目20项,复制项目76项。征求意见截止时间为2013年11月18日。   请将国家标准样品立项意见回复表发至电子信箱:crm@sac.gov.cn。   附件:1.2013年第一批拟立项国家标准样品研复制项目   2. 国家标准样品立项意见回复表   2013年11月4日   附件: 2013年第一批拟立项国家标准样品研复制项目 项目名称 研复制 被复制标样号 对应文字标准 研制单位 钕同位素比值分析标准样品 研制   GB/T 17672-1999岩石中铅、锶、钕同位素测定方法 中国地质科学院地质研究所 正己烷中2,2&rsquo ,4,5,5&rsquo -五氯联苯分析校准用标准样品(PCB101) 研制     环境保护部标准样品研究所 正己烷中2,2' ,3,4,4' ,5' -六氯联苯分析校准用标准样品(PCB138) 研制     环境保护部标准样品研究所 丙酮中菲-D10分析校准用标准样品 研制     环境保护部标准样品研究所 氮气中二氧化硫气体标准样品 (10&mu mol/mol) 研制     环境保护部标准样品研究所 环境基体 土壤重金属元素分析标准样品 研制   GB15168-1995《土壤环境质量标准》及HJ 332-2006《食用农产品产地环境质量评价标准》 环境保护部标准样品研究所 环境基体 烟尘重金属元素分析标准样品 研制     环境保护部标准样品研究所 甲醇/二氯甲烷中苯并(j)荧蒽分析校准用标准样品 研制     环境保护部标准样品研究所 甲醇中硝基苯-D5分析校准用标准样品 研制     环境保护部标准样品研究所 水质 碘化物分析校准用标准样品 研制     环境保护部标准样品研究所 水质 铋分析校准用标准样品 研制     环境保护部标准样品研究所 氮气中丙烯气体标准样品 研制     环境保护部标准样品研究所 22种氯代烃混合气体标准样品 研制     环境保护部标准样品研究所 甲醇中十氯酮分析校准用标准样品 研制     环境保护部标准样品研究所 甲醇中五氯苯分析校准用标准样品 研制     环境保护部标准样品研究所 A类火灾试验用塑料杯组合体燃烧物标准样品 研制   用于灭火系统灭火试验的标准火源(计划号20110730-T-312) 公安部天津消防研究所 A类火灾试验用纸杯组合体燃烧物标准样品 研制     公安部天津消防研究所鞋类勾心纵向刚度性能标准样品 研制   GB 28011-2011鞋类钢勾心 GB/T 3903.34-2008鞋类 勾心试验方法纵向刚度 QB/T 1813-2000皮鞋勾心纵向刚度试验方法 中国皮革和制鞋工业研究院 鞋底耐磨性能标准样品 研制   GB/T 3903.2-2008鞋类 通用试验方法 耐磨性能 中国皮革和制鞋工业研究院 家用燃气灶具检测用标准容器 研制   GB16410 家用燃气灶具 中国标准化协会、浙江苏泊尔股份有限公司 金属材料拉伸用标准样品 复制 GSB 03-2039-2006 GB/T 228.1-2010金属材料 拉伸试验 第1部分:室温试验方法 钢铁研究总院 钢研纳克检测技术有限公司 金属夏比冲击试验机用标准样品L-级 复制 GSB 03-2040-2006 GB/T 18658-2002摆锤式冲击试验机检验用夏比V型缺口标准试样 钢铁研究总院 钢研纳克检测技术有限公司 金属夏比冲击试验机用标准样品M-级 复制 GSB 03-2041-2006   钢铁研究总院 钢研纳克检测技术有限公司 金属夏比冲击试验机用标准样品H-级 复制 GSB 03-2042-2006   钢铁研究总院 钢研纳克检测技术有限公司 金属夏比冲击试验机用标准样品UH-级 复制 GSB 03-2043-2006   钢铁研究总院钢研纳克检测技术有限公司 含钼、铜、铌、氮不锈钢光谱光谱用系列标准样品 复制 GSB 03-2028-2006 GB/T 11170-2008不锈钢 多元素含量的测定 火花放电原子发射光谱法(常规法) 钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 合金铸铁光谱分析用系列标准样品1# 复制 GSB 03-2152-2007 GB/T 14203-1993钢铁及合金光电发射光谱分析法通则 钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 合金铸铁光谱分析用系列标准样品2#复制 GSB 03-2153-2007   钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 合金铸铁光谱分析用系列标准样品3# 复制 GSB 03-2154-2007   钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 合金铸铁光谱分析用系列标准样品4# 复制 GSB 03-2155-2007   钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 合金铸铁光谱分析用系列标准样品5# 复制 GSB 03-2156-2007   钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 合金铸铁光谱分析用系列标准样品6# 复制 GSB 03-2157-2007   钢铁研究总院分析测试研究所(钢研纳克检测技术有限公司) 锰硅合金(FeMn67Si23)标准样品 复制 GSB 03-1359-2001 GB/T4008-2008锰硅合金 中钢集团吉林铁合金股份有限公司 微碳铬铁(FeCr65C0.10)标准样品 复制 GSB 03-1314-2000 GB/T5683-2008铬铁 中钢集团吉林铁合金股份有限公司 钛精矿标准样品 复制 GSB 03-1686-2004 YB/T 159.1~7-1999钛精矿(岩矿)化学分析方法 攀钢集团攀枝花钢铁研究院有限公司 铝合金3003(含Pb)光谱标准样品 复制 GSB 04-1708-2004 GB/T 7999-2007铝及铝合金光电直读发射光谱分析方法 西南铝业(集团)有限责任公司熔铸厂 氟化铝标准样品 复制 GSB 04-1477-2002 GB/T 8156.1~10-1987工业用氟化铝化学分析方法 湖南有色湘乡氟化学有限公司&ensp &ensp &ensp &ensp &ensp 点燃式发动机检测用油标准样品 复制 GSB 06-1631-2010 GB 17930-1999车用无铅汽油 中国石油乌鲁木齐石化总厂研究院、中国石油乌鲁木齐石化总厂西峰工贸总公司、辽宁省标准样品开发中心 压燃式发动机检测用油标准样品 复制 GSB 06-1632-2010 GB/T19147-2003《车用柴油》标准以及我国汽车排放试验用基准燃料的技术规格GB 18352.3,GB/T19147 中国石油乌鲁木齐石化总厂研究院、中国石油乌鲁木齐石化总厂西峰工贸总公司、辽宁省标准样品开发中心 水泥用石灰石成分分析标准样品 复制 GSB 08-1345-2010 GB/T5762&mdash 2000建材用石灰石化学分析方法 中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心 水泥用粘土成分分析标准样品 复制 GSB 08-1347-2010 JC/T 874&mdash 2009水泥用硅质原料化学分析方法 中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心 水泥用矾土成分分析标准样品 复制 GSB 08-1351-2001 GB/T 205&mdash 2008铝酸盐水泥化学分析方法 中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心 水泥生料成分分析标准样品 复制 GSB 08-1353-2013 GB/T 176&mdash 2008水泥化学分析方法 中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心 水泥熟料成分分析标准样品 复制 GSB 08-1355-2013 GB/T 176&mdash 2008水泥化学分析方法 中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心 普通硅酸盐水泥成分分析标准样品 复制 GSB 08-1356-2013 GB/T176&mdash 2008水泥化学分析方法 中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心 铝酸盐水泥成分分析标准样品 复制 GSB 08-1533-2003 GB/T 205&mdash 2008铝酸盐水泥化学分析方法 中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心 水泥细度用萤石粉标准样品(80&mu m筛余和比表面积) 复制 GSB 08-2184-2008 GB/T1345-2005 水泥细度检验方法 筛析法GB/T8074-2008 水泥比表面积测定方法 勃氏法 中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心 水泥细度用萤石粉标准样品(45µ m筛余和比表面积) 复制 GSB 08-2185-2008 GB/T1345-2005 水泥细度检验方法 筛析法 GB/T8074-2008 水泥比表面积测定方法 勃氏法 中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心 中国ISO标准砂 复制 GSB 08-1337-2013 GB/T17671-1999水泥胶砂强度检验方法(ISO法) 中国建筑材料科学研究总院 厦门艾思欧标准砂有限公司 水泥细度和比表面积标准样品 复制 GSB 14-1511-2010 GB/T208-1994水泥密度测定方法 GB/T 1345-2005水泥细度检验方法 筛析法 GB/T8074-2008水泥比表面积测定方法 勃氏法 中国建筑材料科学研究总院 水泥与科学新型建筑材料研究院 食品分析用丙酸溶液标准样品 复制 GSB 11-2358-2008 GB/T 5009.120-2003食品中丙酸钠、丙酸钙的测定 沈阳标准样品研究所 食品分析用环己基氨基磺酸钠溶液标准样品 复制 GSB 11-2359-2008 GB/T 5009.97-2003食品中环已基氨基磺酸钠的测定 沈阳标准样品研究所 食品分析用乙酰磺胺酸钾、糖精钠溶液标准样品 复制 GSB 11-2360-2008 GB/T 5009.28-2003食品中糖精钠的测定 沈阳标准样品研究所 食品分析用锑溶液标准样品 复制 GSB 11-2361-2008 GB/T 5009.137-2003食品中锑的测定 沈阳标准样品研究所 食品分析用脱氢乙酸溶液标准样品 复制 GSB 11-2362-2008 GB/T 5009.121-2003食品中脱氢乙酸的测定 沈阳标准样品研究所 食品分析用乙酰磺胺酸钾溶液标准样品 复制 GSB 11-2363-2008 GB/T 5009.28-2003食品中糖精钠的测定 沈阳标准样品研究所 食品分析用丁二酸溶液标准样品 复制 GSB 11-2364-2008 GB/T 5009.157-2003食品中有机酸的测定 沈阳标准样品研究所 食品分析用对羟基苯甲酸丙酯溶液标准样品 复制 GSB 11-2365-2008 GB/T 5009.31-2003食品中对羟基苯甲酸酯类的测定 沈阳标准样品研究所 食品分析用对羟基苯甲酸乙酯、丙酯溶液标准样品 复制 GSB 11-2366-2008 GB/T 5009.31-2003食品中对羟基苯甲酸酯类的测定 沈阳标准样品研究所 食品分析用对羟基苯甲酸乙酯溶液标准样品 复制 GSB 11-2367-2008 GB/T 5009.31-2003食品中对羟基苯甲酸酯类的测定 沈阳标准样品研究所 食品分析用钠、钾溶液标准样品 复制 GSB 11-2368-2008 GB/T 5009.91-2003食品中钾、钠的测定 沈阳标准样品研究所 食品分析用钾溶液标准样品 复制 GSB 11-2369-2008 GB/T 5009.91-2003食品中钾、钠的测定 沈阳标准样品研究所 食品分析用酒石酸溶液标准品 复制 GSB 11-2370-2008 GB/T 5009.157-2003食品中有机酸的测定 沈阳标准样品研究所 食品分析用没食子酸丙酯溶液标准样品 复制 GSB 11-2371-2008GB/T 5009.32-2003油酯中没食子酸丙酯(PG)测定 沈阳标准样品研究所 食品分析用钠溶液标准样品 复制 GSB 11-2372-2008 GB/T 5009.91-2003食品中钾、钠的测定 沈阳标准样品研究所 食品分析用柠檬酸溶液标准样品 复制 GSB 11-2373-2008 GB/T 5009.157-2003食品中有机酸的测定 沈阳标准样品研究所 食品分析用牛磺酸溶液标准样品 复制 GSB 11-2374-2008 GB/T 5009.169-2003食品中牛磺酸的测定 沈阳标准样品研究所 食品分析用苹果酸溶液标准样品 复制GSB 11-2375-2008 GB/T 5009.157-2003食品中有机酸的测定 沈阳标准样品研究所 食品分析用有机酸溶液标准样品 复制 GSB 11-2376-2008 GB/T 5009.157-2003食品中有机酸的测定 沈阳标准样品研究所 食品分析用苯甲酸溶液标准样品 复制 GSB 11-2377-2008 GB/T 5009.29-2003食品中山梨酸、苯甲酸的测定 沈阳标准样品研究所 食品分析用钙溶液标准样品 复制 GSB 11-2378-2008 GB/T5009.92-2003食品中钙的测定 沈阳标准样品研究所 食品分析用汞溶液标准样品 复制 GSB 11-2379-2008 GB/T 5009.17-2003食品中总汞及有机汞的测定 沈阳标准样品研究所 食品分析用磷溶液标准样品 复制 GSB 11-2380-2008 GB/T 5009.87-2003食品中磷的测定 沈阳标准样品研究所 食品分析用山梨酸溶液标准样品 复制 GSB 11-2381-2008 GB/T 5009.29-2003食品中山梨酸、苯甲酸的测定 沈阳标准样品研究所 食品分析用糖精钠溶液标准样品 复制 GSB 11-2382-2008 GB/T 5009.28-2003食品中糖精钠的测定 沈阳标准样品研究所食品分析用亚硝酸钠溶液标准样品 复制 GSB 11-2383-2008 GB/T 5009.33-2008食品中亚硝酸盐与硝酸盐的测定 沈阳标准样品研究所 食品分析用镉溶液标准样品 复制 GSB 11-2085-2007 GB/T5009.15-2003食品中镉的测定 沈阳标准样品研究所 食品分析用铝溶液标准样品 复制 GSB 11-2086-2007 GB/T5009.182-2003面制食品中铝的测定 沈阳标准样品研究所 食品分析用镁溶液标准样品 复制 GSB 11-2087-2007 GB/T5009.90-2003食品中铁、镁、锰的测定 沈阳标准样品研究所 食品分析用锰溶液标准样品 复制 GSB 11-2088-2007 GB/T5009.90-2003食品中铁、镁、锰的测定 沈阳标准样品研究所 食品分析用镍溶液标准样品 复制 GSB 11-2089-2007 GB/T5009.138-2003食品中镍的测定 沈阳标准样品研究所 食品分析用铅溶液标准样品 复制 GSB 11-2090-2007 GB/T5009.12-2010食品中铅的测定 沈阳标准样品研究所 食品分析用铁溶液标准样品 复制 GSB 11-2091-2007 GB/T5009.90-2003食品中铁、镁、锰的测定 沈阳标准样品研究所 食品分析用铜溶液标准样品 复制 GSB 11-2092-2007 GB/T5009.13-2003食品中铜的测定 沈阳标准样品研究所 食品分析用锡溶液标准样品 复制 GSB 11-2093-2007 GB/T5009.16-2003食品中锡的测定 沈阳标准样品研究所 食品分析用锌溶液标准样品 复制 GSB 11-2094-2007 GB/T5009.14-2003食品中锌的测定 沈阳标准样品研究所 河豚毒素标准样品 复制 GSB 11-2533-2009   国家海洋局第三海洋研究所 食品中菌落总数标准样品 复制 GSB 11-2219-2008   中国检验检疫科学研究院 鳕鱼中金黄色葡萄球菌标准样品 复制 GSB 11-2224-2008   中国检验检疫科学研究院 鳕鱼中副溶血性弧菌标准样品 复制 GSB 11-2223-2008   中国检验检疫科学研究院 奶粉中单核细胞增生李斯特氏菌标准样品 复制 GSB 11-2274-2008   中国检验检疫科学研究院 奶粉中沙门氏菌标准样品 复制 GSB 11-2275-2008   中国检验检疫科学研究院 测定聚乙烯树脂熔体流动速率用标准样品PE-T 复制 GSB 15-1160-2008 GB/T 3682-2000热塑性塑料熔体质量流动速率和熔体体积流动速率的测定 中国石油化工股份有限公司北京燕山分公司树脂应用研究所 测定聚丙烯树脂熔体流动速率用标准样品PP-M 复制 GSB 15-1313-2010   中国石油化工股份有限公司北京燕山分公司树脂应用研究所 标准贴衬织物(棉、毛、丝、苎麻、聚酯、聚丙烯腈、粘胶、聚酰胺) 复制 GSB 16-2082-2010 GB/T7568.1~6 纺织品色牢度试验标准贴衬织物规格 GB/T13765-1992纺织品色牢度试验 亚麻和苎麻标准贴衬织物规格 上海市纺织工业技术监督所 评定变色、沾色用灰色样卡 复制 GSB 16-2083-2010 GB/T250-2008 纺织品 色牢度试验 评定变色用灰色样卡 GB/T251-2008纺织品 色牢度试验 评定沾色用灰色样卡 上海市纺织工业技术监督所
  • 11月份有154个与检测相关的国家标准将实施
    11月份有154个与检测相关的国家标准将实施金秋桂飘香,11月份将要实施的仪器及检测行业相关的标准又有哪些呢?让我们一起随着小编来梳理一番吧。本期我们梳理出有154个标准将在11月份实施,涉及多个行业领域,其中机械、石油化工塑料、金属矿产、电力、食品农业新实施的标准比较多。11月份即将实施的标准如下,需要的可以收藏。点击链接即可下载收藏↓化妆品标准GB/T 39999-2021 化妆品中恩诺沙星等15种禁用喹诺酮类抗生素的测定 液相色谱-串联质谱法 GB/T 39993-2021 化妆品中限用防腐剂二甲基噁唑烷、7-乙基双环噁唑烷和5-溴-5-硝基-1,3-二噁烷的测定 食品农业标准GB/T 39991-2021 感官分析 橄榄油品评杯使用要求 GB/T 3883.209-2021 手持式、可移式电动工具和园林工具的安全 第209部分:手持式攻丝机和套丝机的专用要求 GB/T 40003-2021 感官分析 葡萄酒品评杯使用要求 GB/T 40076-2021 农业灌溉设备 过滤器 过滤等级验证 GB/T 6232-2021 农林拖拉机和机械 车轮在轮毂上安装尺寸 GB/T 40039-2021 土壤水分遥感产品真实性检验 GB/T 40038-2021 植被指数遥感产品真实性检验 GB/T 40034-2021 叶面积指数遥感产品真实性检验GB/T 39992-2021 感官分析 方法学 平衡不完全区组设计 GB/T 39914-2021 主要农作物品种真实性和纯度SSR分子标记检测 玉米 GB/T 39917-2021 主要农作物品种真实性和纯度SSR分子标记检测 稻 GB/T 40001-2021 食品包装评价技术通则 GB/T 27021.9-2021 合格评定 管理体系审核认证机构要求 第9部分:反贿赂管理体系审核与认证能力要求 环境标准GB/T 24674-2021 污水污物潜水电泵 GB/T 39986-2021 泵 试验 污水和类似应用的潜水搅拌器 GB/T 6165-2021 高效空气过滤器性能试验方法 效率和阻力 冶金标准GB/T 40084-2021 钢铁行业能源管理绩效评价指南 机械标准GB/T 40072-2021 潜水器金属框架强度试验方法 GB/T 25217.8-2021 冲击地压测定、监测与防治方法 第8部分:电磁辐射监测方法 GB/T 39982-2021 水润滑径向滑动轴承 承载能力测试方法 GB/T 12243-2021 弹簧直接载荷式安全阀 GB/T 40011-2021 低温先导式安全阀 GB/T 39983-2021 滚珠圆弧导轨副 验收技术条件 GB/T 19924-2021 流动式起重机 稳定性的确定 GB/T 2877.2-2021 液压二通盖板式插装阀 第2部分:安装连接尺寸 GB/T 3480.3-2021 直齿轮和斜齿轮承载能力计算 第3部分:轮齿弯曲强度计算 GB/T 40077-2021 往复式容积泵和泵装置 技术要求 GB/T 40078-2021 轮式拖拉机燃油经济性 评价指标 GB/T 40079-2021 阀门逸散性试验分类和鉴定程序 GB/T 40024-2021 实验室仪器及设备 分类方法 GB/T 40048-2021 木质结构材螺栓连接力学性能测试方法 GB/T 26077-2021 金属材料 疲劳试验 轴向应变控制方法 GB/T 24596-2021 球墨铸铁管和管件 聚氨酯涂层 GB/T 40080-2021 钢管无损检测 用于确认无缝和焊接钢管(埋弧焊除外)水压密实性的自动电磁检测方法 GB/T 11640-2021 铝合金无缝气瓶 GB/T 26667-2021 电磁屏蔽材料术语 GB/T 3093-2021 柴油机用高压无缝钢管GB/T 8361-2021 冷拉圆钢表面超声检测方法 GB/T 40013-2021 服务机器人 电气安全要求及测试方法GB/T 40073-2021 潜水器金属耐压壳外压强度试验方法 GB/T 39980-2021 机械式停车设备 设计规范 GB/T 39994-2021 聚烯烃管道中六种金属元素(铁、钙、镁、锌、钛、铜)的测定 GB/T 39704-2020 真空绝热板有效导热系数的测定 GB/T 39709-2020 动车组玻璃、车窗耐静压及车窗密封性能试验方法 GB/T 39710-2020 电动汽车充电桩壳体用聚碳酸酯/丙烯腈-丁二烯-苯乙烯(PC/ABS)专用料 GB/T 39705-2020 轨道交通用道床隔振垫 GB/T 29042-2020 汽车轮胎滚动阻力限值和等级 GB/T 39548-2020 真空绝热板湿热条件下热阻保留率的测定 GB/T 39702-2020 汽车轮胎力和力矩试验方法 石油、化工塑料标准GB/T 40169-2021 超高分子量聚乙烯(PE-UHMW)和高密度聚乙烯(PE-HD)模塑板材 GB/T 40009-2021 废轮胎、废橡胶热裂解技术规范 GB/T 39995-2021 甾醇类物质的测定 GB/T 40029-2021 液化天然气储罐用预应力钢绞线 GB/T 40062-2021 变性燃料乙醇和燃料乙醇中总无机氯的测定方法 离子色谱法 GB/T 6809.12-2021 往复式内燃机 零部件和系统术语 第12部分:排放控制系统 GB/T 40089-2021 石油和天然气工业用钢丝绳 最低要求和验收条件 GB/T 39998-2021 纸、纸板和纸制品 烷基苯酚聚氧乙烯醚类的测定 高效液相色谱质谱法 GB/T 17744-2020 石油天然气工业 钻井和修井设备 GB/T 39691-2020 塑料 折光率的测定 GB/T 39694-2020 氢化丙烯腈-丁二烯橡胶(HNBR) 通用规范和评价方法 GB/T 39692-2020 硫化橡胶或热塑性橡胶 低温试验 概述与指南 GB/T 39697.2-2020 橡胶或塑料包覆辊 规范 第2部分:表面特性GB/T 39693.6-2020 硫化橡胶或热塑性橡胶 硬度的测定 第6部分:IRHD法测定胶辊的表观硬度GB/T 39695-2020 橡胶烟气中挥发性成分的鉴定 热脱附-气相色谱-质谱法GB/T 39697.1-2020 橡胶或塑料包覆辊 规范 第1部分:硬度要求GB/T 39530-2020 热喷涂 纳米氧化锆粉末及涂层制备工艺技术条件 GB/T 39699-2020 橡胶 聚合物的鉴定 裂解气相色谱-质谱法GB/T 39544-2020 浓缩天然胶乳 总磷酸盐含量的测定 分光光度法矿业标准GB/T 13449-2021 金块矿取样和制样方法 GB/T 9966.15-2021 天然石材试验方法 第15部分:耐盐雾老化强度测定 GB/T 9966.14-2021 天然石材试验方法 第14部分:耐断裂能量的测定 GB/T 8151.24-2021 锌精矿化学分析方法 第24部分:可溶性锌含量的测定 火焰原子吸收光谱法 GB/T 9966.17-2021 天然石材试验方法 第17部分:盐结晶强度的测定 GB/T 9966.12-2021 天然石材试验方法 第12部分:静态弹性模数的测定 GB/T 9966.10-2021 天然石材试验方法 第10部分:挂件组合单元抗震性能的测定 GB/T 19346.3-2021 非晶纳米晶合金测试方法 第3部分:铁基非晶单片试样交流磁性能 GB/T 9790-2021 金属材料 金属及其他无机覆盖层的维氏和努氏显微硬度试验 GB/T 39952-2021 二氧化钛基光催化分散液GB/T 11066.11-2021 金化学分析方法 第11部分:镁、铬、锰、铁、镍、铜、钯、银、锡、锑、铅和铋含量的测定 电感耦合等离子体质谱法 GB/T 9966.16-2021 天然石材试验方法 第16部分:线性热膨胀系数的测定 GB/T 9966.18-2021 天然石材试验方法 第18部分:岩相分析GB/T 39996-2021 烟花爆竹 烟火药发热量的测定 GB/T 39701-2020 粉煤灰中铵离子含量的限量及检验方法 GB/T 39708-2020 三氟化硼 GB/T 39706-2020 石膏中SO42-溶出速率、溶出量的测定方法 GB/T 39527-2020 实体面材产品中钙、铝、硅元素含量的测定 化学分析法 GB/T 39700-2020 硼泥处理处置方法 GB/T 39696-2020 精细陶瓷粉末流动性测定 标准漏斗法GB/T 39703-2020 波纹板式脱硝催化剂检测技术规范 纺织标准GB/T 39973-2021 纺织行业能源管理体系实施指南 医疗生物标准GB/T 40002-2021 牙膏对口腔硬组织的安全评价 GB/T 40049-2021 鸡肠炎沙门氏菌PCR检测方法 GB/T 39920-2021 蛙病毒感染检疫技术规范 GB/T 18642-2021 旋毛虫诊断技术 GB/T 18643-2021 鸡马立克氏病诊断技术 GB/T 37036.4-2021 信息技术 移动设备生物特征识别 第4部分:虹膜 电力标准GB/T 8897.1-2021 原电池 第1部分:总则GB/T 8897.2-2021 原电池 第2部分:外形尺寸和电性能GB/T 8897.3-2021 原电池 第3部分:手表电池 GB/T 40025-2021 24GHz车辆无线电设备射频技术要求及测试方法 GB/T 17215.321-2021 电测量设备(交流) 特殊要求 第21部分:静止式有功电能表 (A级、B级、C级、D级和E级) GB/T 17651.1-2021 电缆或光缆在特定条件下燃烧的烟密度测定 第1部分:试验装置 GB/T 40032-2021 电动汽车换电安全要求 GB/T 2900.36-2021 电工术语 电力牵引GB/T 17215.211-2021 电测量设备(交流) 通用要求、试验和试验条件 第11部分:测量设备 GB/T 33351.2-2021 电子电气产品中砷、铍、锑的测定 第2部分:电感耦合等离子体发射光谱法 GB/T 40031-2021 电子电气产品中多氯化萘的测定 气相色谱-质谱法 GB/T 40030-2021 电子电气产品中中链氯化石蜡的检测方法 GB/T 24202-2021 光缆增强用碳素钢丝 GB/T 40082-2021 风力发电机组 传动链地面测试技术规范 GB/T 7424.22-2021 光缆总规范 第22部分:光缆基本试验方法 环境性能试验方法 GB/T 15972.20-2021 光纤试验方法规范 第20部分:尺寸参数的测量方法和试验程序 光纤几何参数 GB/T 15972.43-2021 光纤试验方法规范 第43部分:传输特性的测量方法和试验程序 数值孔径 GB 24427-2021 锌负极原电池汞镉铅含量的限制要求 GB/T 15972.30-2021 光纤试验方法规范 第30部分:机械性能的测量方法和试验程序 光纤筛选试验 GB/T 15972.41-2021 光纤试验方法规范 第41部分:传输特性的测量方法和试验程序 带宽 GB/T 15972.34-2021 光纤试验方法规范 第34部分:机械性能的测量方法和试验程序 光纤翘曲 GB/T 15972.45-2021 光纤试验方法规范 第45部分:传输特性的测量方法和试验程序 模场直径 GB/T 17651.2-2021 电缆或光缆在特定条件下燃烧的烟密度测定 第2部分:试验程序和要求 GB/T 15972.54-2021 光纤试验方法规范 第54部分:环境性能的测量方法和试验程序 伽玛辐照 GB/T 15972.10-2021 光纤试验方法规范 第10部分:测量方法和试验程序 总则 GB/T 16895.32-2021 低压电气装置 第7-712部分:特殊装置或场所的要求 太阳能光伏(PV)电源系统 GB/T 17650.1-2021 取自电缆或光缆的材料燃烧时释出气体的试验方法 第1部分:卤酸气体总量的测定 GB/T 17650.2-2021 取自电缆或光缆的材料燃烧时释出气体的试验方法 第2部分:酸度(用pH测量)和电导率的测定 GB/T 39950-2021 LED灯用氧化铝陶瓷散热元件GB/T 7424.20-2021 光缆总规范 第20部分:光缆基本试验方法 总则和定义 建材标准GB/T 40083-2021 建筑材料行业能耗在线监测技术要求 GB/T 39712-2020 快速施工用海工硫铝酸盐水泥GB/T 39711-2020 海洋工程用硫铝酸盐水泥修补胶结料 GB/T 39526-2020 建筑幕墙空气声隔声性能分级及检测方法 GB/T 39528-2020 建筑幕墙面板抗地震脱落检测方法 GB/T 39525-2020 玻璃幕墙面板牢固度检测方法 其他标准GB/T 40151-2021 安全与韧性 应急管理 能力评估指南GB/T 40063-2021 工业企业能源管控中心建设指南 GB/T 14909-2021 能量系统 分析技术导则 GB/T 40008.1-2021
  • 吉天仪器为您配齐流动注射土壤检测方案
    概述:流动注射(FIA)技术已被广泛应用于很多分析领域,使用流动注射分析仪不仅可以大大提高检测分析的效率,并且具有检测精度高、可靠性好、稳定性强等特点,所以在土壤检测方面同样具有广泛的应用。本文采用聚光科技(杭州)股份有限公司下属子公司北京吉天仪器有限公司(以下简称“吉天仪器”)土壤样品经过批量处理后使用流动注射分析仪进行检测,根据检测项目的不同对土壤样品进行不同方法的样品处理,本文介绍了使用流动注射分析仪检测土壤中“氮”和“磷”含量的样品前处理方法。一、土壤中全氮的测定(HJ 717-2014):  1.1方法原理:  该方法基于改进的贝特洛反应,氨氯化生成一氯胺,一氯胺与水杨酸盐反应生成5-氨基水杨酸盐,接下来的氧化和氧化偶合反应生成了绿色的络合物,该络合物在660nm有最大吸收峰。  1.2试样的制备:  将土壤样品置于风干盘中,平摊成2~3cm厚的薄层,先剔除植物、昆虫、石块等残体,用铁锤或瓷质研磨棒压碎土块,每天翻动几次,自然风干。  充分混匀风干土壤,采用四分法,一份留存,一份用研磨机研磨至全部通过2mm(10目)土壤筛。取10g~20g过筛后的土壤样品,研磨至全部通过0.25mm(60目)土壤筛,装于样品袋或样品瓶中。  1.3还原剂的制备:  将五水合硫代硫酸钠(Na2S2O35H2O)研磨后过0.25mm(60目)筛,临用现配。  1.4催化剂的配置:  将200g 硫酸钾(K2SO4)、6 g 五水合硫酸铜(CuSO4?5H2O)和 6 g 二氧化钛(TiO2)于玻璃研钵中充分混匀,研细,贮于试剂瓶中保存。  1.5样品处理(HJ717-2014):  称取适量上述土壤样品(3.2)0.2000g~1.0000g(含氮约 1mg),精确到0.1mg,放入凯氏氮消解瓶(容积50ml或100ml)中,用少量水(约 0.5ml~1ml)润湿,再加入4ml 浓硫酸(H2SO4),瓶口上盖小漏斗,转动凯氏氮消解瓶使其混合均匀,浸泡8小时以上。使用干燥的长颈漏斗将0.5g 还原剂(3.3)加到凯氏氮消解瓶底部,置于消解器(或电热板)上加热,待冒烟后停止加热。冷却后,加入1.1g 催化剂 (3.4),摇匀,继续在消解器(或电热板)上消煮。消煮时保持微沸状态,使白烟到达瓶颈 1/3 处回旋,待消煮液和土样全部变成灰白色稍带绿色后,表明消解完全,再继续消煮1h,冷却。在土壤样品消煮过程如果不能完全消解,可以冷却后加几滴高氯酸后再消煮。  注 1:消解时温度不能超过400℃,以防瓶壁温度过高而使铵盐受热分解,导致氮的损失。  1.6样品处理(非标准方法):  称取上述土壤样品1.5g(精确至0.1mg)于50ml的消化管中(每个样品3次重复),每支消化管中加入2.0g加速剂(m硫酸钾:m五水合硫酸铜=10:1)和5ml浓硫酸(H2SO4),然后将样品和空白试剂置于远红外消解炉消解,直至土壤样品为蓝绿色或灰白色(颜色较浅)。待溶液冷却后,定容至50ml,摇匀过滤,滤液用于样品氮含量的测定。  1.7应用案例:  使用吉天仪器最新全自动流动注射分析仪iFIA7进行土壤中全氮含量测定。图1 iFIA7全自动流动注射分析仪-全氮分析通道  1.7.1:标准曲线的测定:表1 土壤中全氮标准曲线标准样品浓度(mg/L)吸光度峰高吸光度峰面积回算浓度(mg/L)00.00020.03340.07520.10.00340.74590.15250.250.00911.99040.28760.50.01914.2120.528610.03928.62791.007720.078917.30181.948850.201744.17124.8642100.414890.69.9017200.8449184.449920.0844图2土壤中全氮标准曲线分析图图3 土壤中全氮方法工作曲线  1.7.2土壤有效态成分分析标准物质全氮的测定:  采用中国计量科学研究院的土壤有效态成分分析标准物质(GBW07414,标准值0.094%,不确定度0.005%, GBW07417,标准值0.076%,不确定度0.004%),对方法及仪器进行检验,测定结果如下。表2 土壤有效态成分分析标准物质全氮含量测定结果样品名称已知含量(%)回算含量(%)GBW074140.094±0.0050.095GBW074170.076±0.0040.078 二、土壤中氨氮的测定(HJ 634-2012):  2.1方法原理:  氯化钾溶液提取土壤中的氨氮,在碱性条件下,提取液中的氨离子在有次氯酸根离子存在时与苯酚反应生成蓝色靛酚染料,在630?nm波长具有最大吸收峰。在一定浓度范围内,氨氮浓度与吸光度值符合朗伯-比尔定律。  2.2试样的制备:  将采集后的土壤样品去除杂物,手工或仪器混匀,过样品筛。在进行手工混合时应戴橡胶手套。过筛后样品分成两份,一份用于测定干物质含量,测定方法参见HJ613;另一份用于测定待测组分含量。  2.3样品处理:?  称取40.0g试样(1.2),放入500ml聚乙烯瓶中,加入200ml氯化钾溶液(1mol/L),在20±2℃的恒温水浴振荡器震荡提取1h。转移约60ml提取液于100ml聚乙烯离心管中,在3000r/min的条件下离心分离10min。然后将约10ml上清液转移至10ml样品管中。三、土壤中硝酸盐氮/亚硝酸盐氮的测定(HJ 634-2012):  3.1硝酸盐氮方法原理:  氯化钾溶液提取土壤中的硝酸盐氮和亚硝酸盐氮,提取液通过还原柱,将硝酸盐氮还原成亚硝酸盐氮,在酸性条件下,亚硝酸盐氮与磺胺反应生成重氮盐,再与盐酸N-(1萘基)乙二胺偶联生成红色染料,在波长543nm处具有最大吸收峰,测定硝酸盐氮和亚硝酸盐氮总量。硝酸盐氮和亚硝酸盐氮总量与亚硝酸盐氮含量之差即为硝酸盐氮含量。  3.2亚硝酸盐氮方法原理:  氯化钾溶液提取土壤中的亚硝酸盐氮,在酸性条件下,亚硝酸盐氮与磺胺反应生成重氮盐,再与盐酸N-(1萘基)乙二胺偶联生成红色染料,在波长543nm处具有最大吸收峰。在一定浓度范围内,亚硝酸盐氮浓度与吸光度值符合朗伯-比尔定律。  3.3试样的制备:同2.2  3.4样品处理:同2.3四、土壤中全磷的测定(GB 9837-88):  4.1方法原理:  土壤样品与氢氧化钠熔融,使土壤中含磷矿物及有机磷化合物全部转化为可溶性的正磷酸盐,用水和稀硫酸溶液熔块,在规定条件下样品溶液与钼锑抗显色剂反应,生成磷钼蓝。  4.2样品的制备:  取通过1mm孔径筛的风干土样在牛皮纸上铺上薄层,划分成许多小方格。用小勺在每个方格中提取出等量土样(总量不少于20g)与玛瑙研钵中进一步研磨,是全部通过0.149mm孔径筛。混匀后装入磨口瓶中备用。  4.3溶样(样品处理):  准确称取风干样品0.25g(精确到0.1mg)小心放入镍(或银)坩埚,切勿粘在壁上。加入无水乙醇3~4,滴润湿样品,在样品上平铺2g氢氧化钠(NaOH)。将坩埚(处理大批样品时暂放入大干燥器中以防潮吸潮)放入高温电路,升温。当温度升至400℃左右时,切断电源,暂停15min。然后继续升温720℃,并保持15min,取出冷却。加入80℃的水10ml,待熔块溶解后,将溶液无损失地转入100ml容量瓶内,同时用3mol/L的硫酸溶液和10ml水多次洗坩埚,洗涤液也一并移入该容量瓶。冷却,定容。用无磷定性滤纸过滤或离心澄清。同时做空白式样。五、土壤中有效磷的测定(HJ 704-2014):  5.1方法原理:  用0.5mol/L碳酸氢钠溶液(pH=8.5)浸提土壤中的有效磷。浸提液中的磷与钼锑抗显色剂反应生成磷钼蓝,在波长880nm处测量吸光度。在一定浓度范围内,磷的含量与吸光度值符合朗伯-比尔定律。  5.2干扰和消除:  砷(V )、铌、钽、锆、钛和钼酸铵产生同主反应类似的杂多酸,砷大于2mg/L干扰测定,1μg砷同0. 35 μg磷相当,当水样中砷含量超过磷时,应采用硫代硫酸钠掩蔽。对铌、钽、锆、钛的影响可通过萃取或加氟化物来避免。硅和钼酸铵产生同主反应类似的杂多酸,干扰测定,使结果偏高,在微酸性(pH4-6)的条件下,加入酒石酸可消除干扰。铁含量为20mg/L,使结果偏低5%,在大于30mg/L以上会使钼蓝退色, 可加入过量抗坏血酸抑制。亚硝酸影响钼兰显色,显色液中亚硝酸盐达数毫克会使显色液褪色,可在加入钼酸铵前加入0.05g氨基磺酸(NH2SO3H)以防干扰。六价铬大于50mg/L有干扰,可用亚硫酸钠去除。硫化物含量大于2mg/L有干扰,在酸性条件下通氮气可去除。强氯化剂及铬酸盐使生成钼蓝褪色,高亚硝酸盐也有褪色作用,可在加入钼酸铵前加入0.05g氨基磺酸(NH2SO3H)以防干扰。  5.3浸提剂的制备c(NaHCO3)=0.5mol/L:  称取42.0g碳酸氢钠溶于约800ml水中,加水稀释至约990ml,用氢氧化钠溶液(10%)调节至pH=8.5(用pH计测定),加水定容至1L,温度控制在25±1℃。贮存于聚乙烯瓶中,该溶液应在4h内使用。  注1:浸提剂温度需控制在25±1℃。具体控制时,最好有1小间恒温室,冬季除室温要维持25℃外,还需将去离子水事先加热至26~27℃后再进行配制。  5.4样品采集与保存:  按HJ/T 166的相关规定进行采集和保存土壤样品。  5.5试样的制备:  试样的制备按NY/T 395-2012《农田土壤环境质量监测技术规范》进行土壤处理和制备。  5.6干物质含量的测定:  准确称取适量试样(5.5),参照HJ 613测定样品干物质的含量。  5.7样品处理:  称取2.50g试样(5.5),置于干燥的150ml具塞锥形瓶中,加入50.0ml浸提剂(5.3),塞紧,置于恒温往复振荡器上,在25±1℃下以180~200r/min的振荡频率振荡30±1min,立即用无磷滤纸过滤,滤液应当天分析。  注2:浸提时最好有1小间恒温室,冬季应先开启空调,待室温达到25℃,且恒温往复振荡器内温度达到25℃后,再打开振荡器进行振荡计时。  5.8应用案例:  使用吉天仪器最新全自动流动注射分析仪iFIA7进行土壤中有效磷含量测定:  5.8.1标准曲线的测定:表3土壤中有效磷工作曲线标准样品浓度(μg/L)吸光度峰高吸光度峰面积回算浓度(μg/L)00.00010.01236.0100.00170.315212.6200.00340.639619.6500.01041.942747.91000.02284.141195.72000.04938.7410195.65000.137022.8786502.6图4土壤中有效磷标准样品分析图图5土壤中有效磷方法工作曲线  5.8.2土壤中有效态成分分析标准物质有效磷的测定:表4 土壤中有效态成分分析标准物质有效磷含量测定结果样品名称已知浓度mg/kg回算浓度mg/kgGBW0741413.8±2.314.2GBW0741413.8±2.313.6GBW0741413.8±2.313.6GBW0741614.8±3.114.9GBW0741614.8±3.115.0GBW0741614.8±3.115.0GBW0741748±348.0GBW0741748±347.8GBW0741748±347.6  5.8.3 土壤中有效态成分分析标准物质土壤有效磷加标测定:表5 土壤中有效磷加标回收率实验样品名称样品浓度(mg/kg)加标前浓度(mg/kg)加标浓度(mg/kg)加标后浓度(mg/kg)回收率(%)GBW0741413.8±2.313.9 20.0 32.392.0GBW0741614.8±3.1 15.0 10.0 24.9 99.0GBW0741748±3 47.8 20.0 67.799.5
  • 标准解读 |《汽车用金属材料圆棒室温高应变速率拉伸试验方法》
    10月26日,中国汽车工程学会正式发布由泛亚汽车技术中心有限公司联合中国汽车技术研究中心有限公司、清华大学苏州汽车研究院、中国飞机强度研究所、ITW集团英斯特朗公司、道姆光学科技(上海)有限公司、东风汽车集团有限公司等单位联合起草的CSAE标准《汽车用金属材料圆棒室温高应变速率拉伸试验方法》(T/CSAE 233-2021)。本标准提出的金属材料圆棒高应变速率拉伸试验方法适用于汽车底盘用的铸造、锻件类零件材料的高应变速率拉伸测试。本标准在GB/T 228.1-2010及GB/T 30069.2-2016基础上,对金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的规定,以确保棒材高应变速率拉伸测试的准确性。当前,汽车底盘用的铸造类零件如Knuckle和Mount等零件的材料高速拉伸曲线是CAE碰撞分析中重点关注技术参数,为了建立CAE分析用高速拉伸所需数据库,提高碰撞安全分析的准确性,需要借助高速拉伸机、三维光学测试(Digital Image Correlation, DIC)技术获取金属棒材的应力、应变场数据。目前对于铸铁、铸铝的圆棒试样的高速拉伸测试还没有相应的国际、国内标准,各整车企业及总成制造商对铸件材料的高应变率拉伸试验方法未见详细说明,测试结果也存在在较大差异,由此带来该对底盘类铸件材料性能和可靠性的评价存在诸多差异。起草工作组在充分总结和比较了国内外金属材料高应变速率拉伸测试方法标准、调研了国内外对车用铸、锻方法制造的零件用的金属材料棒材的试验方法的基础上,参考了GB/T 30069 《金属材料 高应变速率拉伸试验》和《ISO 26203 金属材料高应变率拉伸试验》,并确定板材的测试与棒材的测试有明显不同。通过金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的研究和试验。高应变速率拉伸测试系统是由高速拉伸机,高速相机,光源,数据采集及分析系统,同步器,夹具,散斑制备装置,应变片粘贴设备等部分组成。试验时,确保设备的连接可靠,经过静态速率试验确认力、速度、对中性及相机、数据采集均正常的情况下开始正式测试。编制组基于国内外行业研究现状,通过正交矩阵进行试验方案设计,共48组试验,每组数据需要完成3根样条。随后又增加汽车底盘锻压零件最小壁厚3毫米小直径样条的测试。合格的样条必须断在标距内。所有测试结果不需过滤处理,直接反映整个系统的测试状态和结果。经过一系列试验,为标准的制定奠定可靠的基础。首先是确定试验夹具,根据不同的拉伸设备,可以设计不同的设备连接方式,考虑到试样是圆形截面,推荐使用螺纹接头连接试样,螺纹的长度也进行了优化试验,选择大于2倍平行段长度。而且在夹具上做出平面以粘贴应变片。对夹具的选材上也做了研究,选用常用的45钢和钛合金进行比对。通过图1的试验结果,推荐使用钛合金材料,硬度28~38HRC,以减少夹具的固有震荡信号。编制组在充分总结和比较了国内外金属材料高应变速率拉伸测试方法标准、调研了国内外对车用铸、锻方法制造的零件用的金属材料棒材的试验方法的基础上,参考了《GB/T 30069 金属材料 高应变速率拉伸试验》和《ISO 26203 金属材料高应变率拉伸试验》,并确定板材的测试与棒材的测试有明显不同。通过金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的研究和试验。高应变速率拉伸测试系统是由高速拉伸机,高速相机,光源,数据采集及分析系统,同步器,夹具,散斑制备装置,应变片粘贴设备等部分组成。试验时,确保设备的连接可靠,经过静态速率试验确认力、速度、对中性及相机、数据采集均正常的情况下开始正式测试。编制组基于国内外行业研究现状,通过正交矩阵进行试验方案设计,共48组试验,每组数据需要完成3根样条。随后又增加汽车底盘锻压零件最小壁厚3毫米小直径样条的测试。合格的样条必须断在标距内。所有测试结果不需过滤处理,直接反映整个系统的测试状态和结果。经过一系列试验,为标准的制定奠定可靠的基础。首先是确定试验夹具,根据不同的拉伸设备,可以设计不同的设备连接方式,考虑到试样是圆形截面,推荐使用螺纹接头连接试样,螺纹的长度也进行了优化试验,选择大于2倍平行段长度。而且在夹具上做出平面以粘贴应变片。对夹具的选材上也做了研究,选用常用的45钢和钛合金进行比对。通过图1的试验结果,推荐使用钛合金材料,硬度28~38HRC,以减少夹具的固有震荡信号。图1 钛合金和45#钢夹具及分别在100-1s时的拉伸曲线在应变片的粘贴和标定方面做了详细的试验,在本标准中给出了具体阐述,尤其指明标定的系数R2≥0.999。设备状态的确认中,如果测试力的同时还需要测试应变,设备需要连接额外的数据线,试验前需检查所有的连线是否牢固连接,尤其是信号触发线。每次测试前先在静态试验机上低应变速率拉伸,然后在高速试验机上以同样的速率拉伸同一批次的试样检验设备。静态试验根据 GB/T 228.1-2010规定进行。为了验证验证圆棒试样的应变是否需要三维测试,分别用单台和两台相机试验,发现当使用单台相机时,大截面尺寸(5毫米直径棒材)会出现由于散斑扭曲导致跟踪不了散斑变化产生测量误差或试验失效,因此当出现散斑测试的应变变化跟不上力值变化时,应使用两台相机测试。如图2、3所示。铸铝(左) 铸铁(右)图2 一台相机照片-铸铁及铸铝的应变-时间&应力-时间的曲线铸铝(左) 铸铁(右)图3 两台相机照片-铸铁及铸铝的应变-时间&应力-时间的曲线标准起草组对于数据采集频率也做了研究,图像拍照及采集系统的采样频率应考虑试样断裂时间。当应变速率≤100s-1时,所取得的应变有效数据大于力值的采样数据,而且一般会大于400。当应变速率100s-1时,应变的有效数据会急剧下降,应调整应变的采集频率和拍摄参数,最终应变的有效采集不低于100个点。否则不能有效测出弹性模量及剪切模量。对于拉伸速度偏差认可的确认,各测试单位做了详细讨论,考虑到高应变率速度的影响因素复杂,因此给出按照最大力对应的应变划分不同平均速度的限制要求。即当最大力对应的应变率大于5%时,实际应变速率的平均值推荐在目标应变速率的±5%以内,当最大力对应的应变率小于5%时,记录实际应变速率到报告中。试样尺寸也是本标准重点考虑的内容,较短的测试长度有助于获得高的应变速率,但测量长度不能过小,否则不能保证反映材料的性能。因此参考静态的标准及高应变速率拉伸的现有标准,制作了4种不同的试样并测试。试样的装夹方式,尺寸及夹具材料在标准中得到具体描述。优化后的的试样如图4,并给出推荐尺寸。 图4 典型的试样尺寸说明:(1)尺寸公差为0.05mm,平行段工作部分粗糙度0.32,同轴度为0.01毫米。(2)推荐区域直径为5mm,=10mm,=15mm,R=16mm,=5mm,=35mm,D=12mm,或者区域直径为3mm,=10mm,=15mm,R=12mm,=5mm,=35mm,D=6mm。综上所述,该标准围绕车用金属材料的使用工况,对3毫米直径以上的哑铃型拉伸试样进行充分的试验,给出了从夹具,散斑制作,相机标定,系统试验前验证,试样尺寸与装夹,力的测试,数据采集及处理等方面系统的说明,试验准确性高,试验失效率低,同时避免不同试验员试验结果差异等问题。本标准充分考虑了汽车行业用到的铸件和锻件零件,具有普遍适用性,可以为CAE仿真高效地提供更加准确可靠的材料数据。与目前使用的GB/T 30069 《金属材料 高应变速率拉伸试验》和ISO 26203 《金属材料高应变率拉伸试验》中的方法协调统一,互不交叉,提供了标准外的常用形状试样的高应变速率下的详细试验方法,对现有标准起到补充作用。
  • 【瑞士步琦】使用SFC分离手性反式-1,2-二苯乙烯氧化物
    使用SFC分离手性反式-1,2-二苯乙烯氧化物SFC 应用”本应用描述了以反式二苯乙烯氧化物为手性分子的手性柱筛选和连续的制备方法,并用叠层进样方法进行制备分离。1简介手性分子是一种有机化合物,它具有一种独特的性质,即互为不可重叠的镜像。这意味着它们以两种形式存在,称为对映体,除了原子的三维排列外,它们在各方面都是相同的。虽然这些对映体具有相同的化学性质,但它们可能具有不同的生物活性和药理作用[1,2]。因此,手性分子在制药工业中变得越来越重要,它们被用于开发药物和其他治疗方法,因此分离对映体十分重要。超临界流体色谱法(SFC)在手性分子的分离纯化中,具有其他分离技术无法比拟的优点。SFC 使用超临界二氧化碳作为流动相,这是一种清洁和绿色的溶剂,很容易从最终产品中去除。此外,SFC 提供了高分辨率和快速的分离。预测哪种固定相能够有效分离 SFC 中特定的一组对映异构体,即使在现在看来也是十分困难,这使得我们需要选择合适的手性固定相来不断试错[2]。手性 SFC 多采用与手性高效液相色谱(HPLC)相同的色谱柱,其中最常用的是多糖手性固定相(CSPs),由于可以选择不同改性的多糖,因此具有很强的通用性[3]。多糖 CSPs 具有高负载能力,这使得它们在制备规模应用中非常有用。许多商业多糖手性固定相是可用的,主要是基于直链淀粉或纤维素和改性的卤化或非卤化芳香基团。改性后的多糖可以包被或固定在二氧化硅载体上,以增强其对强溶剂的抵抗力[3]。还有其他 CSPs 通常用于手性 SFC 应用,例如,Pirkle 型手性固定相[3]。本文介绍了使用 Sepmatix 8x SFC 对反式二苯乙烯氧化物(TSO)进行平行柱筛选,随后通过方法优化转移到制备的 Sepiatec SFC-50。▲反式 - 二苯乙烯氧化物 两种手性结构2设备Sepiatec SFC-50Sepmatix 8x SFCPrepPure cCDMPC, 5um, 250 x 4.6mmPrepPure cADMPC, 5um, 250 x 4.6mmPrepPure iADMPC, 5um, 250 x 4.6mmPrepPure iCDMPC, 5um, 250 x 4.6mmPrepPure iCDCPC, 5um, 250 x 4.6mmPrepPure iBT, 8um, 250 x 4.6mmPrepPure iBT, 8um, 250 x 10mm3试剂和耗材二氧化碳(99.9%)甲醇(≥99%)乙醇(99%)异丙醇(99%)乙腈(99%)反式二苯乙烯氧化物(99%)(为了安全操作,请注意所有相应的MSDS)4实验过程样品制备:在筛选和方法优化时,将 0.075g 反式二苯乙烯氧化物溶解在 5.0mL 甲醇中;在堆叠注射时,将 0.1909g 反式二苯乙烯氧化物溶解于 6.0mL 甲醇中。使用 Sepmatix 8x SFC 进行筛选:流动相A = 二氧化碳;B = 甲醇流速3 mL/min (每根色谱柱)流动相条件0 - 0.5min5% B0.5 - 8.0min5 - 50% B8.0 - 9.4min50% B9.4 - 9.5min50 - 5% B9.5 - 10min5% B检测200nm – 600nm 紫外扫描筛选完全是全自动运行,采用流量控制单元,将每通道内的流量设置为 3mL/min,并将流量平衡。样品自动进样(每根色谱柱 5μL),启动平行筛选(运行时长=10分钟)。背压调节器设置为 150bar,柱温箱设置为32℃。使用 Sepiatec SFC-50 进行制备:流动相A = 二氧化碳;B = 甲醇流动相条件等度运行检测229nm 紫外检测PrepPure iBT 色谱柱在设定的流速下预热 4 分钟,样品通过定量环自动进样并运行。背压调节器设置为 150bar,柱温箱设置为 40℃。5实验结果色谱柱筛选:为了确定手性化合物 TSO 的最佳分离条件,进行了不同手性色谱柱的筛选,使用 Sepmatix 8x SFC 允许同时进行 8 根不同色谱柱的平行筛选。本实验一共使用了 6 根不同色谱柱:Chiral iADMPC, Chiral iCDMPC, Chiral iCDCPC, Chiral iBT, Chiral cADMPC 和 Chiral cCDMPC。图1 为色谱柱筛选结果,其中 Chiral iADMPC 色谱柱不能很好地分离对应异构体 TSO(可见表1),而 Chiral iCDMPC,Chiral iCDCPC,Chiral iBT,Chiral cADMPC 和 Chiral cCDMPC 色谱柱可以分离 TSO。▲ 图1. Sepmatix 8x SFC 筛选结果。从左上至右下依次是Chiral iADMPC,Chiral iCDMPC和Chiral iCDCPC;Chiral iBT,Chiral cADMPC 和 Chiral cCDMPC。运行时长 =10min,紫外检测波段 =229nm在处理复杂的混合物时,分辨率 R 是一个特别重要的参数,因为它衡量了每一次分离的程度,并且可以被准确识别和量化。例如分辨率 R=1 表明了不理想的分离效果,两个峰本质上并没有分离,更高的分辨率数值代表了更好的分离效果。在实际运行过程中,分辨率 R 至少达到 1.5 才会被认为是分离的。表1 显示了不同色谱柱分离 TSO 时的分辨率 R。在转移至 SFC-50 制备时,选择 iBT 色谱柱,因为它有最佳的分离效果,最容易实现转移,进样量可大大提高。表1. 使用 Sepmatix 8x SFC 筛选时不同色谱柱的分辨率色谱柱RiADMPC1.23iCDMPC1.74iCDCPC4.68iBT14.47cADMPC6.20cCDMPC4.22使用 SFC-50 进行结果优化为了确定改性剂对 TSO 的影响,下列每一种改性剂都在等度条件下使用:PrepPure iBT, 8um, 250 x 10mm 色谱柱;甲醇,乙醇,异丙醇,乙腈 (见图2)。▲ 图2. 左上-甲醇,右上-乙醇,左下-异丙醇,右下-乙腈。流速 =20mL/min,改性剂含量 =25%,温度 =40℃,背压调节器 =150bar,进样量 =150μL甲醇(偶极矩参数= 5[4])在对映体有足够的峰距的情况下,仅在 3 分钟内分离 TSO。乙醇(偶极矩参数= 4[4])作为极性稍小的改性剂,分离所需时间略大于 3 min。异丙醇(偶极矩参数= 2.5[4])在不到 3.5 分钟的时间内分离 TSO,这是由于异丙醇的极性较小。乙腈(偶极矩参数= 8[4])在 2.25 分钟内最有效地分离 TSO。然而,甲醇被用作进一步实验的改性剂,因为它的窄峰宽和对称峰有望带来高进样量。此外,它比乙腈毒性更小,价格也更便宜。由于流动相中改性剂的含量会因极性变化而对分离产生影响,所以采用了不同的甲醇含量(见图3)。▲ 图3. 左上 20% 甲醇,右上 25% 甲醇,左下 30% 甲醇,右下 35% 甲醇。流速 = 20mL/min,,温度 =40℃,背压调节器 =150bar,进样量 =150μL流动相甲醇含量由 20% 连续增加到 35%,运行时间逐渐缩短。当改性剂含量为 35% 时,运行时间可以从大约 3.5 分钟缩短至约 2.5 分钟。不过分辨率有所降低,对映体的峰宽也降低了。因此,在进一步的实验中,改性剂的浓度被设定为 35%。每根色谱柱都有可达到最大效率或理论塔板数的固有最佳流速。如果流量减小或增大,则用非最佳分离塔板数进行分离。与液相色谱法相比,SFC 可以使用更高的流速,而分离塔板数不会大幅减少[5]。因此,图4显示了流速对分离效率的影响。▲ 图4. 左 20mL/min,右 30mL/min,改性剂 % = 35%,温度 = 40℃,背压调节器 =150bar,进样量 =150μL随着流量的增加,运行时间和峰宽进一步减小。运行时间从大约 2.5 分钟缩短至 2 分钟以内。根据样品的不同,温度和压力对组分的分离和保留的选择性有影响。因此,在 100 bar 和 150 bar 以及 40℃ 和 50℃ 范围内进行了 4 次实验(见图5)。可以看出,温度和压力的变化对各自的分离没有明显的影响。因此,叠层进样时,温度控制在 40℃,背压调节器控制在 150 bar。▲ 图5.左上 100bar 和 40℃,右上 150bar 和 40℃,左下100bar 和 50℃,右下 150bar 和 50℃。流速 = 30 mL/min,改进剂 %=35%,进样量 =150μL为了提高分离效率,增加 TSO 的浓度和进样量(150μL ~ 250 μL)(见图6左上)。在这些条件下,基线分离仍然是可行的。图6(右上和下)显示了在与单次进样图 6 左上相同的实验条件下,叠层进样时间为 0.97min,即每 0.97 分钟进样一次。在这种情况下,每次额外注入都节省了平衡时间,提高了产能。最终采用基于时间的方法收集馏分。每次进样的紫外信号都表明了该方法具有良好的再现性(图6右上)。垂直线表示收集相应馏分的时间窗口。▲ 图6. 左上 250μL (0.1909 g TSO 的 6mL 甲醇溶液),右上叠层进样 TSO 的紫外信号,下最后的色谱图。流速 = 30 mL/min,改进剂 %=35%,温度 =40℃,背压调节器=150bar,进样量 = 250μL,进样次数 = 10次6结论在文中,使用 Sepmatix 8x SFC 仪器进行以 TSO 为分析物的手性柱筛选,将最合适的手性色谱柱,转移到 Sepiatec SFC-50 仪器进行制备。每根手性柱对手性物质的反应都不同,这就是为什么在纯化过程之前必须进行筛选的原因,作为标准物质的 TSO 可以在许多不同的手性柱上分离。随后在 SFC-50 上放大,并利用制备柱对等度纯化的方法进行优化。结果表明,改性剂的选择、改性剂在流动相中的比例和流量对分离效果有较大影响。在这些特定条件下,温度和压力的变化对分离效果的影响不大。在一般情况下,这两个参数也可以改变以优化分离条件。7参考文献https://doi.org/10.1038/s41570-023-00476-zSUPERCRITICAL FLUID CHROMATOGRAPHY, Terry A. Berger, Agilent Technologies, Inc., 2015PRACTICAL APPLICATION OF SUPERCRITICAL FLUID CHROMATOGRAPHY FOR PHARMACEUTICAL RESEARCH AND DEVELOPMENT, Vol. 14, M. Hicks and P. Ferguson, 2022 Elsevier Inc.Laboratory Chromatography Guide, ISBN 3-033-00339-7, by Büchi Labortechnik AG (Switzerland)http://dx.doi.org/10.1016/j.chroma.2012.10.005
  • 中国化工学会发布《聚合级乙烯、丙烯中一氧化二氮的测定 气相色谱-质谱法》团体标准征求意见稿
    各有关单位及专家:由中国化工学会组织制定的《聚合级乙烯、丙烯中一氧化二氮的测定 气相色谱-质谱法》团体标准已完成征求意见稿,现公开征求意见。请于2024年5月17日之前将中国化工学会团体标准征求意见表(见附件2)以电子邮件的形式反馈至中国化工学会。联系人:杨越 电话:010-64455951 邮箱:yangy@ciesc.cn附 件:1.《聚合级乙烯、丙烯中一氧化二氮的测定 气相色谱-质谱法》征求意见稿2. 中国化工学会团体标准征求意见表 关于《聚合级乙烯、丙烯中一氧化二氮的测定 气相色谱-质谱法》团体标准征求意见的通知.pdf附件1《聚合级乙烯、丙烯中一氧化二氮的测定 气相色谱-质谱法》征求意见稿.pdf附件2 征求意见表.doc
  • 吉天仪器FIA 6000+ 全自动流动注射分析仪在河流污染中的应用
    水是生命之源,但是随着我国人口数量的几何增长、现代工业废水的乱排乱放、城市垃圾、农村农药喷洒等等,造成河流污染严重,本来已是极少的淡水资源加剧短缺,无法为人所用。  随着国务院“水十条”的颁布,实验室水质检测能力的提高迫在眉睫,新的环境标准也应运而生。2017年3月30日,环保部发布了七项国家环境保护标准(水质),其中的四项标准涉及流动注射仪器分析方法。  本文介绍了一种快速、准确、安全的流动分析技术,使用聚光科技下属子公司北京吉天仪器有限公司(以下简称“吉天仪器”)fia6000+全自动流动注射分析仪对河水中的挥发酚、氰化物、阴离子表面活性剂和硫化物进行分析及加标回收率的测定。该仪器应用非稳态fia理论,使用在线加热、蒸馏、冷凝、萃取等系统,完全符合环保部最新发布的国家环境保护标准。吉天仪器fia6000+为环境行业的水质分析提供了高效准确的溶液化学分析解决方案。吉天仪器fia6000+可以做什么?fia 6000+ 全自动流动注射分析仪方案优势  完全符合环境新标准hj 825-2017、hj 824-2017、hj 823-2017、hj 826-2017。  配有试剂包解决方案,提供了方便、快速、可靠、绿色的试剂配制方式。  检测过程高效,反应在密闭的管路中进行,避免接触有害试剂。  检测项目全面,广泛应用于水质分析、环境分析等多个领域。样品制备  挥发酚  采集河水样品,需现场检测有无游离氯等氧化剂存在,参照hj825-2017方法,“样品滴于淀粉-碘化钾试纸上出现蓝色,说明存在氧化剂”。氧化剂(如游离氯)能将一部分酚类化合物氧化使结果偏低,如有氧化剂存在(水样酸化后滴于碘化钾-淀粉试纸上出现蓝色),立即加入过量的硫酸亚铁铵消除干扰。(硫酸亚铁铵的配制方法:在500ml的容量瓶中,溶解0.55g硫酸亚铁铵[fe(nh4)2(so4)2?6h2o]于包含0.5ml浓硫酸的250ml去离子水,用去离子水定容,摇匀)。  现场未发现河水样品存在氧化剂。样品储存在硬质玻璃瓶中,采用氢氧化钠固定,冷藏(4℃),在采集后24h内进行测定。  氰化物  采集河水样品,首先检验是否有硫化物和活性氯等氧化剂的干扰,参照hj823-2017方法,“试样中存在活性氯等氧化性物质干扰测定,可在蒸馏前加亚硫酸钠(na2so3)溶液消除干扰”“试样中存在硫化物干扰测定,可在蒸馏前加碳酸镉(cdco3)或碳酸铅(pbco3)固体粉末消除干扰”。  采样现场滴一滴样品在乙酸铅试纸上,如果试纸变黑,则显示有硫化物存在于样品当中,加碳酸镉或碳酸铅固体粉末,生成黄色的硫化镉或黑色的硫化铅沉淀,再用乙酸铅试纸检测是否使试纸变黑,如果确定试纸不变黑,则过滤溶液除去硫化物。  采样现场滴一滴样品在淀粉-碘化钾试纸上,如果试纸显示蓝色,则样品需要预处理,加入一些抗坏血酸固体于水样中,过一段时间再用淀粉碘化钾试纸检测,如不显示蓝色证明干扰已被消除,然后在每升水样中加入0.6g抗坏血酸。亚砷酸钠和亚硫酸钠也用来消除此干扰。  现场未发现河水样品存在硫化物和活性氯等氧化剂。因此采取立即加氢氧化钠固定的方法,一般每升水加0.5g固体氢氧化钠,尽量使样品的ph12,并将样品存于聚乙烯塑料瓶或硬质玻璃瓶中,存放在暗处,避免紫外光的照射。  阴离子表面活性剂  采集河水样品,采样和保存样品应使用清洁的玻璃瓶,并事先经甲醇清洗过。  hj826-2017说明“主要干扰物为有机的磺酸盐、羧酸盐、酚类以及无机的硫酸盐、亚硫酸盐、硝酸盐、氰酸盐、硫氰酸盐等”,可以通过水溶液反洗,消除这些正干扰,未能除去的可用气提萃取法,参见gb7494。  在测量前,将水样经0.45μm的滤膜过滤,以除去悬浮物。吸附在悬浮物上的表面活性剂不计在内。  硫化物  采集河水样品。现场采集并固定的样品应保存在棕色瓶内。为了消除样品采集过程中的损失,首先对于每100ml样品,加入10 滴15m naoh(大约0.5ml)和400mg 抗坏血酸于容器中,然后加样品于容器中(样品的ph11)。冷却至4oc,马上进行分析。  为防止采集的河水样品中大颗粒堵塞管路,所有采集的样品都使用0.45μm的膜过滤后再进行分析。 仪器  吉天仪器fia6000+流动注射仪:包括自动进样器、挥发酚、氰化物、阴离子表面活性剂和硫化物4个化学反应模块(预处理通道、注入泵、反应通道及流通检测池)、数据处理系统。  分析天平:精度为0.1mg。  超声波仪:频率 40 khz。试剂配置  吉天仪器和安谱实验强强联合,为仪器配有专门的试剂包方案,是适用于全自动流动注射分析仪fia6000+的配套产品,方便、快速、可靠、绿色的试剂配置方式。试剂无需称量,开包溶解即用。  挥发酚  hj825-2017规定了测定水中挥发酚的流动注射-4-氨基安替比林分光光度法。表1 吉天挥发酚试剂包与hj825试剂配制比较试剂类型吉天仪器试剂包hj825要求比较蒸馏试剂磷酸磷酸体积分数略有差异缓冲溶液铁氰化钾溶液ph=10.3铁氰化钾溶液ph=10.3配制过程完全相同显色剂4-氨基安替比林溶液ρ=0.64 g/l4-氨基安替比林溶液:ρ=0.64 g/l配制过程完全相同  氰化物  hj823-2017规定了测定水中氰化物的流动注射-分光光度法。其中包括异烟酸-巴比妥酸法和吡啶-巴比妥酸法。  由于吡啶剧毒,不建议采用,实际上异烟酸无吡啶的剧毒性,显色原理基本相同,因此采用异烟酸-巴比妥酸法进行检测。表2 吉天仪器氰化物试剂包与hj823试剂配制比较试剂类型吉天试剂包hj823要求比较载流、吸收液氢氧化钠c=0.025mol/l氢氧化钠c=0.025mol/l配制过程完全相同蒸馏试剂磷酸磷酸体积分数略有差异缓冲溶液铁氰化钾缓冲液ph=10.3铁氰化钾缓冲液ph=10.3配制过程完全相同氯胺t氯胺t溶液ρ=4 g/l氯胺t溶液ρ=6 g/l或=2 g/l配制密度略有差异显色剂异烟酸-巴比妥酸试剂异烟酸-巴比妥酸试剂配制过程完全相同  阴离子表面活性剂  hj826-2017规定了测定水中阴离子表面活性剂的流动注射-亚甲基蓝分光光度法。  hj826-2017中的甲基蓝原液需净化萃取,将甲基蓝原液萃取6-7次,直至有机相澄清;吉天试剂包优化了试剂配制方法,甲基蓝原液无需净化萃取。 表3 吉天仪器阴离子试剂包与hj826试剂配制比较试剂类型吉天仪器试剂包hj826要求比较碱性亚甲基蓝溶液不需要萃取需要萃取配制过程有所差异酸性亚甲基蓝溶液不需要萃取需要萃取配制过程有所差异氯仿不含氯仿优级纯氯仿需要单独购买  硫化物  hj824-2017规定了测定水中硫化物的流动注射-亚甲基蓝分光光度法。表4吉天仪器硫化物试剂包与hj824试剂配制比较试剂类型吉天仪器试剂包hj824要求比较载流及吸收液氢氧化钠c=0.025 mol/l氢氧化钠c=0.025 mol/l配制过程完全相同蒸馏试剂磷酸磷酸体积分数略有差异显色剂对氨基二甲基苯胺溶液对氨基二甲基苯胺溶液配制过程完全相同氯化铁氯化铁溶液ρ=13.3g/l氯化铁溶液ρ=13.3g/l配制过程完全相同标准曲线  新环境标准中的“标准系列的准备”将工作曲线的最高浓度设置为测定范围的最高值,本解决方案对于标准样品的配置浓度进行了优化,如表5所示。标准曲线的绘制按照新环境标准的要求“以信号值(峰面积)为纵坐标,对应的浓度为横坐标”进行绘制,所得到的曲线如图1所示,相关系数都可以达到0.999以上,说明相关性很好。表5 标准样品浓度对比表(μg/l)挥发酚总氰阴离子硫化物实验数据hj825推荐实验数据hj823推荐实验数据hj824推荐实验数据hj824推荐0.000.000.000.000.000.000.000.002.0010.02.002.025.010020.01005.0025.05.005.050.020050.020010.050.010.010.010050010050020.010020.050.02001000200100030.020050.01255002000500200050.0-100250800-1000-100-2005001000---四种方法的工作曲线检出限和精密度  计算了仪器测定4种方法的检出限和精密度,与新环境标准进行比较,数据见表6。其中,仪器检出限采用epa方法dl=t(n-1,α=0.99)*(s),当测定次数n=7时,t=3.14,计算结果;仪器的精密度则通过连续进样7次得到的数据进行计算。表6 仪器检出限、精密度与新环境标准对比项目检出限(μg/l)精密度rsdfia6000+新hj标准fia6000+新hj标准挥发酚0.31220.0μg/l0.77%20.0μg/l0.7-2.9%氰化物0.26120μg/l0.92%20μg/l0.7%-2.1%阴离子8.9540500.0μg/l1.11%500.0μg/l 1.1%-4.9%硫化物1.884200.0μg/l0.85%200.0μg/l1.5%-2.3%质量控制  以挥发酚为例:采用国家环境保护总局标准样品研究所的挥发酚质控样(200331,标准值49.8μg/l,不确定度±4.5μg/l),对方法及仪器进行检验,测定结果见表7。质量控制的结果符合要求,说明仪器稳定可靠。表7 挥发酚质控样的测定序号样品属性已知浓度(μg/l)回算浓度(μg/l)吸光度峰面积1质控样品49.8±4.548.00.872982质控样品49.8±4.548.80.887663质控样品49.8±4.548.10.87486实验结果  参照环境标准的方法,我们对采集的河水水样进行了分析,并进行了加表实验。实际样品并未检出挥发酚和硫化物,检出的氰化物和阴离子表面活性剂的浓度分别为11.8μg/l和1.20μg/l。  参照环境标准的要求,挥发酚、氰化物、硫化物的加标回收率应在70%~120%之间,阴离子表面活性剂的加标回收率应在80%~120%之间。实际的加标回收结果均符合要求。表8 实际样品检测结果及加标回收实验结果检测项目空白浓度(μg/l)加标浓度(μg/l)加标后回算浓度(μg/l)回收率挥发酚010098.098.0%氰化物11.820.032.2102.5%阴离子表面活性剂1.2020020097.8%硫化物0500498.599.7%结论  本文基于环保部最新发布的四项国家环境保护标准(水质),为测定环境水(河水)中的挥发酚、氰化物、阴离子表面活性剂和硫化物提供了解决方案。用fia6000+全自动流动注射分析仪测定这几种物质,完全符合环境标准方法,快速简便、灵敏度和准确度高,是未来环境行业水质检测的重要发展趋势。
  • 生态环境部有关负责人就《危险废物填埋污染控制标准》答记者问
    p   近日,《危险废物填埋污染控制标准》(GB18598-2019)(以下简称《标准》)发布实施。生态环境部有关负责人就《标准》的修订背景、思路等内容,回答了记者的提问。 /p p   问:《标准》修订背景和思路是什么? /p p   答:《危险废物填埋污染控制标准》(GB18598-2001)为我国加强危险废物填埋环境管理、防范填埋过程的环境风险发挥了关键作用。该标准已发布实施18年,随着危险废物填埋场建设需求不断增加,我国危险废物填埋场在设计、建设和运行相继暴露出了一些问题:如缺乏针对特殊地质条件下的填埋场设计要求、防渗系统施工和验收要求薄弱、填埋场运行过程污染控制要求不够完善等,亟需通过标准修订,提升危险废物填埋污染控制技术水平和环境管理水平,降低环境风险。另外,由于填埋废物环境危害特性长期存在,填埋处置应被视为危险废物在环境隔离条件下的长期贮存措施,填埋场需长期维护和监测,并需考虑到达设计寿命期后的填埋废物处置方案,以确保其环境风险长期可控。 /p p   本次标准修订思路:一是严格控制环境风险,提高填埋场建设标准,避免低水平填埋场无序发展。二是提高填埋场入场要求和运行技术门槛,促进废物源头减量化。三是确保危险废物填埋场运行和封场后的长期环境安全。 /p p   问:《标准》主要修订了哪些内容? /p p   答:本次修订旨在降低填埋场渗漏导致污染地下水的可能性,修订重点主要围绕以下几个方面: /p p   一是完善填埋场选址要求。增加了填埋场选址应没有泉水出露等技术要求,明确了填埋场场址天然基础层的饱和渗透系数要求,对于特定地质条件提出了刚性填埋结构的建设要求。 /p p   二是加强设计、施工与质量保证要求。增加了渗滤液导排层渗透系数、可接受渗漏速率技术规定,新增了设计寿命期后废物处置方案制定要求,通过新增施工方案等报备要求确保填埋场科学施工。 /p p   三是细化废物入场填埋要求。明确了进入柔性填埋场和刚性填埋场的污染物控制限值、水溶性盐总量、有机质含量等技术要求。 /p p   问:本次标准修订首次对刚性填埋提出建设运行要求,其制定过程主要考虑了哪些因素? /p p   答:我国现有的刚性填埋场都采用大型水池工艺,由于不同废物的密度、压实度差异较大,在填埋过程中易产生不均匀沉降,刚性填埋工艺环境风险突出。本次修订借鉴了国内外刚性填埋场的建设规定和经验,要求刚性填埋场应分成单元建设,能在目视条件下观察到每个填埋单元的渗漏情况,并考虑了有利于以后可能的废物回取操作。 /p p   鉴于东部沿海地区填埋处置能力仍然紧张,填埋需求旺盛。考虑到环境敏感性与建设高标准的填埋场需求,本次修订规定对于地下水位高、软土区等特定地质条件如需建设危险废物填埋场,必须采用刚性填埋建设方案。 /p p   问:本次修订对于危险废物填埋运行管理要求更加严格,主要考虑什么因素? /p p   答:危险废物填埋场环境风险控制主要是通过三重屏障实现,一是地质屏障,二是防渗屏障,三是预处理屏障。其中地质屏障是通过选址进行保障,防渗屏障和预处理屏障都和运行管理要求紧密联系。加强危险废物填埋场运行管理要求,通过监测渗滤液产生量、渗滤液组分和浓度、渗漏检测层渗漏量、地下水监测结果等数据可对填埋场环境风险进行综合评估,以确保填埋场长期运行过程的环境安全。 /p p   问:本次标准修订细化了不同类型填埋结构的入场要求,是如何细分的? /p p   答:本次修订根据不同结构危险废物填埋场的环境风险大小,规定了废物入场不同技术要求。对于柔性填埋结构,规定了填埋废物浸出液中的有害成分浓度限值、有机质含量等要求。考虑到废盐等水溶性物质对于填埋稳定性的不利影响,对废物进入柔性填埋场水溶性盐总量也提出了具体规定。基于刚性填埋结构的环境风险控制水平和日后回取再利用的需求,本次修订适当放宽了废物进入刚性填埋场的污染控制技术要求。 /p p   问:本次修订规定了填埋场应制定到达设计寿命期后填埋废物的处置方案,如何理解填埋场的设计寿命期? /p p   答:设计寿命期是指填埋场在正常运行条件下,高密度聚乙烯(HDPE)防渗膜、导排介质等材料性能衰减使得填埋场渗漏量逐渐增加,最终造成其丧失安全填埋的时间。影响填埋场设计寿命期的关键因素是填埋场建设材料的质量和建设、施工、运行管理技术水平。危险废物填埋场在进入封场后到达设计寿命期的很长时间内都应该继续加强监测,确认其环境风险可控。 /p p   问:本次《标准》修订的主要作用是什么? /p p   答:本次修订基于危险废物填埋环境管理需求和技术发展水平,进一步提升了危险废物填埋污染控制技术水平,并凸显以下四方面的作用: /p p   一是有利于提高危险废物填埋行业水平。本次修订将提高危险废物填埋场建设、运行水平,有效防止危险废物填埋行业的低水平竞争,提升企业在填埋过程的污染控制水平和管理水平。 /p p   二是有利于控制危险废物填埋环境风险。危险废物填埋是重要社会风险防范领域之一,本次修订将会加强危险废物填埋全过程的环境风险控制,识别关键环境风险环节,以保障土壤与地下水环境安全。 /p p   三是有利于推进地方填埋环境风险防控工作。本次修订将促进地方政府加强危险废物填埋处置企业的环境监管,切实推动地方政府按照国家有关要求开展危险废物填埋环境风险防控工作。 /p p   四是有利于推进“无废城市”建设。本次修订提出的刚性填埋结构将有利于今后的废物回取利用,将填埋废物再次纳入废物资源循环再生产业链中,对减少填埋量、提高资源化利用水平起到关键作用。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制